
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc

!!
!

!

eAUDIT: Designing a generic
tool to review entitlements

GIAC (GCCC) Gold Certification

Author: François Bégin, francois.begin@telus.com
Advisor: Dr. Ray Davidson
Accepted: June 15th 2015

Abstract

In a perfect world, identity and access management would be handled in a fully
automated way. On their first day of work, new employees would receive all the required
access to the systems they need in order to perform their job function. Over time, as their
roles within the company evolved, these entitlements would be automatically adjusted.
Unfortunately, we do not live in a perfect world. Access to systems is often cumulative,
with employees keeping access they no longer require. This in turn poses a risk to the
enterprise: unneeded access can lead to abuses and increases the possibility of data
leakage if an employee is social engineered. This paper proposes a system to help address
this problem: eAUDIT is a custom-built, generic entitlement review system that can
simplify the task of reviewing user entitlements. eAUDIT is well suited to cases where no
such tool exists in an enterprise, but can also complement an identity management system
that does not fully cover all systems and applications. This paper covers the design of
eAUDIT as well as an overview of its implementation, including sample code.

eAUDIT – Designing a generic tool to review entitlement! 2
!

François!Bégin,!francois.begin@telus.com!! !

Доверяй, но проверяй

Trust, but verify

Russian proverb

Special thanks to my A-Team of coders, Kobe Lin and Jaya Balasubramaniam, who

made eAUDIT happen.

eAUDIT – Designing a generic tool to review entitlement! 3
!

François!Bégin,!francois.begin@telus.com!! !

1. Introduction
When a new employee joins a company, he should be automatically provided an

identity within this company as well as various methods to authenticate himself. These

authentication methods can take various forms: a physical access badge, a centrally-

managed username and password, a virtual smart card carrying a cryptographically

signed certificate, etc. Once an identity has been established for the new employee, this

identity should be automatically associated with all the access entitlements he requires to

perform his job functions. From that point on, as the employee progresses in his career, it

is fairly likely that he will change teams, roles and positions. At every such milestone, his

entitlements should be automatically re-adjusted, ensuring that he always has the access

he requires. This will ensure that the employee’s access is limited to the resources he

requires, a key element of a good authorization policy (Ballad, Ballad, and Banks, 2010).

This, of course, is an idealized description of Identity and Access Management

(IAM), which is of great value to any enterprise. But IAM can be challenging. As

Mather, Kumaraswamy and Latif (2009) aptly pointed out, “Many of these [IAM]

initiatives are entered into with high expectations, which is not surprising given that the

problem is often large and complex.”

This is particularly true for organizations that have grown through mergers and

acquisition, as well as for organizations that have existed for decades and rely on legacy

systems. Building IAM hooks (if that is even an option) into these systems can be costly

or complicated. Sometimes, the best approach is to retain existing entitlements and

address any access management gaps by conducting regular reviews of these entitlements

to prune the ones that are no longer required.

Building a system that can conduct regular entitlement reviews is in itself a

significant project, best handled by following a software development life cycle model.

As part of the pre-development activities, one element of the discussion will invariably

touch upon whether to develop the software functions in-house, outsource them, get an

off-the-shelf package, or adapt and reuse exiting software (Saleh, 2009). While there are

commercial products that can help conduct reviews of entitlements, these tools are often

eAUDIT – Designing a generic tool to review entitlement! 4
!

François!Bégin,!francois.begin@telus.com!! !

tied to large, costly products related to both IAM and Governance, Risk and Compliance

(GRC) management. This paper chooses the first path: a custom-built solution. The main

argument in favor of this choice is that, with a suitably clear scope, such a tool can be

built and deployed at limited cost and provide a quick and significant benefit to an

enterprise that does not have this capability. The tool presented here is called eAUDIT

and can achieve a simple goal of providing a custom-made solution for entitlement

review. The scope, design and high-level implementation of this tool are covered in this

paper.

2. eAUDIT

2.1. Defining the elements of an entitlement audit
Prior to diving into the main topic, some of the key words that will be used

throughout this paper need to be clearly defined.

In this paper, an entitlement refers to a privilege that has been granted to a user.

Typical examples of entitlements include authorization to access a particular software

application/data source, privileged access to a system or application, etc. Note that

entitlements are granular: if a specific system has different levels of access, e.g. read

access vs. read/write access, each of these count as a separate entitlement. The goal of an

audit is to determine whether or not the entitlement is still valid.

An authorizer is defined as the person (or persons) who can grant someone a

specific entitlement. In many organizations, managers often take on that role for their

direct reports. This is supported by the fact that managers are well positioned to assess

the business needs related to this type of access. Security professionals who may wish for

more access control enforcements should be reminded that “Business will always trump

security […]” (Kadrich, 2007). With that said, a manager is not always the main

authorizer, as some systems have a specific business owner who plays that role.

Entitlements are granted to entities. In most cases, an entity will simply be an

employee of the company, but since the goal of eAUDIT it to create a system that is

purely generic, the word ‘entity’ is used instead. For instance, an audit could be

conducted against physical access cards that are not associated directly to a user e.g.

eAUDIT – Designing a generic tool to review entitlement! 5
!

François!Bégin,!francois.begin@telus.com!! !

generic access cards for escorted access that are left in the care of the security guard desk.

These cards are a good example of a business need (convenience of being able to provide

quick access to vendors on support calls) that outweighs security concerns (difficulty in

associating a specific user to these cards).

One of the key elements of eAUDIT is its generic nature. Entities can be anything

and the various characteristics that these entities possess can also be anything. In the

previous example, badge entities can have attributes such as: Badge ID, Badge Label,

Manager (if applicable), Badge Type, Expiry Date, etc., as shown in Table 1.

!
Primary'attributes'''! Secondary'attributes!

Badge!ID!
Badge!
Label! Manager!(if!applicable)! Badge!Type! Expiry!date!

1000000!
Penny!
Robinson! John!Robinson![200000]! Employee!badge! 2020901901!

1000001! Guard!Desk! n/a! Generic!cards! 2015912931!
Table!1.!Mockup!data!for!an!audit!of!physical!access!badges.!

In another example such as Table 2, where entities are defined as employees, the

attributes of these employees would be different: Employee ID, First Name, Last Name,

Title, Computer ID, City, etc.

Primary'attributes'''! Secondary'attributes!
Employee!
ID!

First!
Name! Last!Name! Title! Computer!ID!

!
City!

!
200002! Don!! West! Pilot!! LX73926!

!
Toronto!

!
200003! Judy! Robinson! Zoologist! LD04934!

!
Edmonton!

Table!2.!Mockup!data!for!an!audit!of!employee.!
!

eAUDIT users are those individuals responsible to conduct audits based on any

type of entities and/or attributes. Giving eAUDIT users the ability to define their own

attributes to meet their needs is crucial. In eAUDIT, entity attributes are therefore

referred to as user-defined entity attributes (UDEA). Furthermore, a distinction is made

between primary attributes and secondary attributes. Primary attributes are those

attributes that normally suffice to an authorizer for an entitlement review. Secondary

attributes contain extra information that an authorizer may need to consult to make a final

eAUDIT – Designing a generic tool to review entitlement! 6
!

François!Bégin,!francois.begin@telus.com!! !

determination. How these attributes are presented to authorizers will prove important

when discussing the creation of the web interface for the audit engine.

2.2. Scope

Since eAUDIT is a custom-built design and implementation project, one of the

most important aspects of this project is to provide a clear scope. This will avoid scope

creep, which is one of the top five reasons why a project can fail (Doraiswamy and Shiv,

2012).

The main elements of eAUDIT’s scope are:

• Import generic data by relying on user-defined entity attributes.

• Present a simple landing page to authorizers, showing them active audits that

need their attention.

• Present a simple entitlement review page where all entities are listed in a

sortable/filterable data table. The data table will show the primary entity

attributes (always) and secondary attributes (on demand) to the authorizer.

• Conduct entitlement review based on binary responses (confirm | revoke)

through a single click for each entity.

• Support for multiple authorizers for any given entitlement.

• Ability to group similar entitlements together.

The last point is important to clarify: in eAUDIT, a given audit can cover more

than one entitlement, provided that all entities have the same attributes. For example,

consider Table 3, a mockup of the entitlement review page presented to an authorizer:

eAUDIT – Designing a generic tool to review entitlement! 7
!

François!Bégin,!francois.begin@telus.com!! !

!
Authorizer:!John!Robinson! ! !
Badge!ID! Badge!Label! Entitlement! Verify!

1000000! Penny!Robinson! *R*!Main!Data!Center! Review!|!Revoke!

1000001! Guard!Desk! *R*!Main!Data!Center! Review!|!Revoke!

1000002! Maj.!Don!West! *R*!DR!Site! Review!|!Revoke!

1000003! Robot! *R*!Wire!Center! Review!|!Revoke!
Table!3.!Mockup!of!an!entitlement!review!page!as!presented!to!an!authorizer.!

In this particular audit, John Robinson is responsible for three different

entitlements: *R* Main Data Center, *R* DR Site and *R* Wire Center. Since all

these entitlements are similar in nature – and since they all relate to the same type of

entities with the same attributes (badges granting physical access to buildings) – they are

all part of the same meta-audit. Section 2.5 will discuss how the web interface will

support the authorizers who are faced with multiple entitlements to review.

When entities and their attributes are loaded at the start of an audit, they are

locked-in for the duration of the audit. This is an important design decision that warrants

some additional explanation: after all, if we are reviewing administrative access to

company-issued laptops, should users be added and removed from the audit if they are

granted those rights while the audit is taking place?

Although this may appear to provide a more accurate representation of the data,

the complications associated with auto-adjusting the dataset greatly outweigh the benefits

of a locked-in audit. In some cases, data will be loaded in eAUDIT through a spreadsheet.

Re-creating the spreadsheet throughout the audit would be time-consuming, and

additional code would be required to adjust the existing data to handle deltas.

Furthermore, audits conducted by eAUDIT typically last 3-4 weeks. These short audit

windows are another mitigating factor. Rather than capturing in-flight deltas, eAUDIT

will strive for a high success rate and repeated audits throughout the year. With all of this

said, if data is loaded dynamically inside eAUDIT through an adapter, then that adapter

can be written to handle in-flight changes.

eAUDIT – Designing a generic tool to review entitlement! 8
!

François!Bégin,!francois.begin@telus.com!! !

2.3. Design

!
Figure!1.!HighAlevel!overview!of!eAUDIT’s!design.!
!

As previously alluded to, the design of eAUDIT (Figure 1) is fairly simple. At a

high level, entitlement data needs to be acquired from various data sources, and then

presented to authorizers for review. Section 2.4 covers data acquisition in more detail.

How the data ends up in the database is critical. eAUDIT needs to handle generic data

efficiently. Taking a page from Jurney (2013): “In choosing our tools, we seek linear

scalability, but above all, we seek simplicity”, the data model for eAUDIT seeks

simplicity. In Jurney’s case, he was referring to NoSQL big data tools, but his comment

is just as applicable to a traditional SQL database. eAUDIT’s data is held in a SQL

database, with a simple data model (see Appendix A). Let us consider the data model and

go over some of the key characteristics.

The AuditTypeReference table (figure 2) holds the base audit type information,

such as the name and description of the audit, a start and end date and some instructions.

This is where the overall type of audit is defined: reviewing active contractors at TELUS,

reviewing badges with *R* profiles attached, etc. Since TELUS is a bilingual company,

various key fields are held in two separate fields (EN | FR), which will be required by the

Web interface.

eAUDIT – Designing a generic tool to review entitlement! 9
!

François!Bégin,!francois.begin@telus.com!! !

Figure!2.!AuditTypeReference!table!in!the!eAUDIT!database.!
!

The AuditTypeReference table also holds the labels for the primary and

secondary User Defined Entity Attributes (UDEA) fields. Initially, a pre-defined set of

fields was considered e.g. UDEAPrimaryField1, UDEAPrimaryField2, etc. but this set a

hard limit as well as being less than esthetically pleasing from a data model perspective.

Another approach considered was a mapping table that would hold as many of these user-

defined fields as required, with a many-to-one relationship with the AuditTypeReference

table. In the end though, a simple and elegant solution was chosen: the UDEA fields hold

the labels in JSON format. Figure 3 shows examples of primary and secondary fields

(labels) for two different types of audits:

Figure!3.!UserAdefined!entity!attributes!fields!for!two!different!audits.!

Table Audit (Figure 4) defines the actual entitlements being reviewed within an

audit type. It also has a count of the total number of entities that bear each entitlement.

eAUDIT – Designing a generic tool to review entitlement! 10
!

François!Bégin,!francois.begin@telus.com!! !

Figure!4.!Audit!table!in!the!eAUDIT!database.!

Using our previous example of restricted profiles on access badges, this table

would hold all the different types of restricted profiles that are to be reviewed (Figure 5).

The table uses a foreign key to link itself to the AuditTypeReference table. It is the

relationship between Audit and AuditTypeReference that allows eAUDIT to group

similar entitlement reviews together.

!

Figure!5.!Different!entitlements!reviewed!within!the!same!audit.!
!

The Entities table (Figure 6) is the one that holds a list of who (or what) was

granted entitlements. This is where the UDEAprimaryFields and UDEAsecondaryFields

from the AuditTypeReference table will find their counterparts, called

UDEAprimaryFieldsValues and UDEAsecondaryFieldsValues respectively.

eAUDIT – Designing a generic tool to review entitlement! 11
!

François!Bégin,!francois.begin@telus.com!! !

Figure!6.!Entities!table!in!the!eAUDIT!database.!

The values are saved in JSON format (see Figure 7), just like the labels. The

choice of JSON as a format to hold field values may appear a little strange at first. After

all, flattening all entities’ attributes in a single field will make SQL searches more

expensive. But the main goal of eAUDIT is not efficient searches. The goal is to

efficiently present datasets for entitlement review. The choice of JSON to keep labels and

values is directly related to the web interface that will allow authorizers to conduct their

review – and having field values in this format will prove useful once we start discussing

eAUDIT’s web implementation in section 2.5.

Figure!7.!UserAdefined!field!values!as!kept!in!the!Entities!table.!

The EntitiesAuditReponses table (Figure 8) holds the responses i.e. whether or

not the authorizer confirmed or revoked the entitlement. Keeping this data in a separate

table allows for fields such as LastUpdatedDateTime and LastUpdatedBy to capture who

reviewed the entitlement. Although mentioned here, note that the full implementation of

this table’s functionality is not covered in this paper.

eAUDIT – Designing a generic tool to review entitlement! 12
!

François!Bégin,!francois.begin@telus.com!! !

Figure!8.!EntitiesAuditReponses!table!in!the!eAUDIT!database.!

Finally, the Authorizers table (Figure 9) is where the authorizers of a particular

Audit record are kept. This table has a many-to-one relationship to the Audit table,

allowing multiple individuals to be named authorizers of a particular audit. TELUS uses a

unique numerical value for its employee IDs, and this is reflected in field

AuthorizerEmpID, which is defined as an integer value.

Figure!9.!Authorizers!table!in!the!eAUDIT!database.!
.

2.4. Data acquisition
Since eAUDIT is all about validating data, acquiring data is key to the tool. Not

only that, but from the scope defined in section 2.2, data need to be acquired as easily as

eAUDIT – Designing a generic tool to review entitlement! 13
!

François!Bégin,!francois.begin@telus.com!! !

possible. After all, if you cannot load authorizers, entitlements and entities into the

eAUDIT database, you cannot review these records. To help with the acquisition of data,

a java library called jEAUDITlibrary was created (Figure 10).

Figure!10.!Main!classes!and!supporting!libraries!of!jEAUDITlibrary.!
!

As would be expected from any other java library, jEAUDITlibrary contains

classes for the main objects that are at the core of eAUDIT: Audit, AuditTypeReference,

Authorizers, Entities, and EntitiesAuditReponses. These classes map to the data model

(Appendix A) that was discussed in the previous section. There are also *Util classes that

contains static methods related to these objects: AuditUtil, AuditTypeReferenceUtil,

AuthorizersUtil, EntitiesUtil, and EntitiesAuditReponsesUtil. The eAUDIT library relies

on two external libraries: the standard MySQL java connector and a toolbox library

called UnifiedToolBoxV2, which is mostly used to help manage SQL connections as well

as provide logging capabilities.

eAUDIT – Designing a generic tool to review entitlement! 14
!

François!Bégin,!francois.begin@telus.com!! !

The source code for jEAUDITlibrary is available from the eAUDIT project page

on GitHub (https://github.com/francoisbegin/eAUDIT). The project page also includes

the source code for eAUDIT_BatchOps (Figure 11), a program that contains sample code

to demonstrate data acquisition using the eAUDIT library. Appendix B gives a quick

overview of how to set up an environment to use the library and eAUDIT_BatchOps.

! !!
!
Figure!11.!Main!classes!of!eAUDIT_BatchOps!(supporting!libraries!not!shown)!

2.4.1. Excel-driven data acquisition

!
The first demo in eAUDIT_BatchOps covers data import from an Excel

spreadsheet. This particular section of the code relies heavily on Apache POI, an open-

source Java API for Microsoft Documents (Apache Foundation, 2015). Note that all

libraries required by eAUDIT_BatchOps are included with the project.

eAUDIT – Designing a generic tool to review entitlement! 15
!

François!Bégin,!francois.begin@telus.com!! !

 A demo spreadsheet, dataLoadExample.xlxs, is included with the

eAUDIT_BatchOps project (Figure 12)

Figure!12.!DataLoadExample.xlsx!spreadsheet!included!with!eAUDIT_BatchOps.!
!

This spreadsheet holds three separate sheets: AuditTypeRef (Appendix C)

contains all the data required to create the AuditTypeReference record in the eAUDIT

database. AuditData (Appendix D) contains all the data required to create the

Authorizers, Entities and Audit records. Finally, Notes contains notes to help users fill in

the template correctly.

This spreadsheet can be used as a template for Excel-driven data loads. It is built

to support generic data. To add/remove primary and secondary user-defined entity

attribute fields, one only has to create/delete columns in the AuditData sheet and set the

top row label to either UDEAprimary or UDEAsecondary.

Multiple Authorizers per entitlements is supported by listing them under the

Authorizers column and separating each authorizer by a semi-colon. As mentioned in

section 2.3, authorizer’s IDs are expected to be integer values that map to the TELUS

employee ID of the authorizer. Using eAUDIT at a company that relies on non-numerical

employee IDs would require making modifications to the Authorizers class of

jEAUDITlibrary.

Method Ops_ExcelDataLoader.loadFromExcelTemplate handles the spreadsheet

data load, provided it matches the expected template. To demonstrate this, one can create

a new directory called dataLoad under the base path of eAUDIT and copy the demo

spreadsheet to that location. One then compiles and runs eAUDIT_BatchOps with the

loadFromExcelTemplate switch (or runs it with that switch inside a Java IDE):

eAUDIT – Designing a generic tool to review entitlement! 16
!

François!Bégin,!francois.begin@telus.com!! !

Figure!13.!Loading!data!into!eAUDIT!using!a!spreadsheet.!
!

In the example shown in Figure 13, a new AuditTypeReference record with id = 4

was created. Under that audit type reference, 5 sub-audits were created to match the 5

different entitlements that were defined in the spreadsheet (Figure 14), and 43 entities

will need to be reviewed (Figure 15).

Figure!14.!Entitlements!to!be!reviewed!following!the!data!load!from!a!spreadsheet.!
!

Figure!15.!Entities!to!be!reviewed!following!the!data!load!from!a!spreadsheet.!
!

Obviously, loading data from a spreadsheet is not ideal. Dealing with

spreadsheets comes with pitfalls such as sensitive data exposure (Walsh, 2014). Still,

spreadsheet imports may prove useful in cases where an application/system does not have

a simple API to extract the data, or when a support team is reluctant to provide direct

access to its data.

eAUDIT – Designing a generic tool to review entitlement! 17
!

François!Bégin,!francois.begin@telus.com!! !

Another well-known reality is that, in many cases, spreadsheets are all that people

know (Allen, 2015). Asking a subject-matter expert to do an export of the key data, and

massaging these data to fit the eAUDIT Excel template might be the path of least

resistance to acquire audit data.

2.4.2. Adapter-driven data acquisition

A better solution to an Excel data-load is to write an adapter to retrieve the audit

data from a system. In its current incarnation, eAUDIT does not provide a generic

interface for such adapters, but the jEAUDITlibrary provides methods and classes to

support their creation. Additionally, method Ops_AdapterDataLoad.loadFromAdapter()

of eAUDIT_BathOps demonstrates the implementation of a simple adapter.

The first step in building a custom adapter is to determine how the data can be

acquired programmatically. In this case, each solution will likely be custom-built. For

instance, TELUS has developed a custom adapter to interact with the Lenel Onguard

physical access system. Data acquisition was achieved by the use of two database service

accounts: one account to interact with Lenel Onguard to obtain a list of badges and access

profiles, and another account to interact with the database where authorizers of these

access profiles are maintained. The adapter simply correlates the two data sources and

feeds the resulting data to the eAUDIT database.

For an adapter data load, one must refer back to the data model and note that the

Audit table is at the heart of the model. Contrary to all other tables in the model, its

primary key, idAudit, is not an auto-increment field. This was done on purpose as it

allows for the controlled creation of new records. When a custom-adapter needs to send

data to the eAUDIT database, it needs to determine the next available idAudit value.

Then, each new entitlement is assigned the next idAudit value. As this list is built up, the

list of corresponding Authorizers and Entities records can also be built.

If all of these records were written one at a time, data loads would be woefully

slow. A custom-built adapter should therefore take a different approach. In the demo

code proposed in method loadFromAdapter(), a HashMap is built as the code iterates

through all entities. If it finds a new entitlement, it creates a new Audit record and

attaches to it the authorizers for that entitlement and the entity record. If it finds an

eAUDIT – Designing a generic tool to review entitlement! 18
!

François!Bégin,!francois.begin@telus.com!! !

entitlement it already knows about, it retrieves it from the HashMap, increments field

Audit.TotalNumberOfEntities, and adds the new entity to previously correlated entities

for that particular entitlement. All of this is done in memory, inside the HashMap. A

special object called jEAUDITlibrary.AuditDataLoaderObject (Figure 16) is used to

organize all the data:

Figure!16.!Fields!for!java!class!AuditDataLoaderObject.!

This object is a meta-object, which can hold all the key data: idAudit, the

corresponding Audit record, a list of Authorizers associated with the Audit record, and all

entities for that particular audit. Once the HashMap has been fully populated, a simple

call to method AuditDataLoaderObjectUtil.massLoad() handles batched writes to the

database. Compiling eAUDIT_BatchOps and running it with the -loadFromAdapter

switch demonstrates a simple adapter (Figure 17):

eAUDIT – Designing a generic tool to review entitlement! 19
!

François!Bégin,!francois.begin@telus.com!! !

Figure!17.!Loading!data!into!eAUDIT!using!an!adapter.!

2.5. Web interface implementation
Gathering data and normalizing it into a database is fine, but eAUDIT needs to

present this data to authorizers to allow for an efficient review. Currently, the web

interface implementation of eAUDIT exists as a proof-of-concept written in Java and

deployed in a customized Spring framework commonly used by TELUS Chief Security

Office (CSO). Obviously, this customized framework is infused with TELUS enterprise

standards: it relies on TELUS’s single sign-on (SSO) infrastructure, it has built-in

security groups based on TELUS employee IDs, and it makes heavy use of TELUS-

branded CSS. Many of these elements are either irrelevant to another organization or

considered proprietary to TELUS and therefore will not be discussed here.

That being said, the core of the eAUDIT web implementation can be covered. This

core is the audit interface, and to a lesser extent, the landing page for authorizers. Figure

18 shows the landing page for eAUDIT.

eAUDIT – Designing a generic tool to review entitlement! 20
!

François!Bégin,!francois.begin@telus.com!! !

Figure!18.!eAUDIT!web!interface!main!landing!page!for!an!authorizer.!
!

The landing page is a simple data table triggered when an authorizer logs in to the

tool. A query is run using the employee ID of the authorizer as authenticated by SSO and

returns audits that are currently active for that person (see Figure 19):

Figure!19.!SQL!query!to!build!the!authorizer!main!landing!page.!
!

The names of the audits are links to the review engine. Note that the audits here are

AuditTypeReference records, with a single such record potentially representing multiple

entitlements of similar entities.

If a user selects a specific audit, this request is intercepted by the controller.

Appendix E and F show the simple code for the controller, as well as the SQL query that

retrieves Entities records for a particular AuditTypeReference record – and a particular

authorizer. Entities data is attached as an attribute called EntityList to a ModelAndView

object (See Code sample 1).

eAUDIT – Designing a generic tool to review entitlement! 21
!

François!Bégin,!francois.begin@telus.com!! !

!
Code!sample!1.!Attaching!entity!data!to!a!ModelView.!

Audit.jsp (Appendix G) is where this data gets presented to the authorizer.

Fundamentally, this is a simple page that presents the audit name, description and a data

table with the entities (Code sample 2 and Figure 20)

Code!sample!2.!Main!section!of!audit.jsp.!

!

ModelAndView mv = new ModelAndView("audit");

[…]

mv.addObject("EntityList", auditDao.getEntitiesByAuditAndAuthorizer(auditID,

SDDIHelper.getCurrentTeamMemberNumericalPIDFromRequest(request)));

!

<div><h3>${AuditDetail.auditName}</h3></div>

<div><h5>${AuditDetail.auditDescription}</h5></div>

<div id="tableContainer"

style="margin-left:auto; margin-right:auto;

width: auto;clear:both;">

 <table id="dataTable" style="width:100%;"></table>

</div>

eAUDIT – Designing a generic tool to review entitlement! 22
!

François!Bégin,!francois.begin@telus.com!! !

Figure!20.!eAUDIT!web!interface!audit!review!page.!
!

The design decision to keep user-defined fields in JSON format was motivated by

the fact that this data format can easily be manipulated. Javascript is used to generate the

main audit data table on the fly. Although these fields are not easily or efficiently

searchable by the system from the perspective of the whole dataset, once re-formatted in

a data table, that data becomes easily sortable and filterable.

User-defined primary fields form visible rows while hidden rows hold the secondary

attributes. Clicking on the details icon will trigger the hidden rows and present them

to the authorizer (Code sample 3 and Figure 21):

eAUDIT – Designing a generic tool to review entitlement! 23
!

François!Bégin,!francois.begin@telus.com!! !

Code!sample!3.!Trigger!to!display/hide!secondary!entity!attributes.

$('#dataTable tbody td img').click(function() {

 var nTr = this.parentNode.parentNode;

 if (this.src.match('details_close')){ /* row is already open - close it */

 this.src =

 "${pageContext.request.contextPath}/img/details_open.png";

 oTable.fnClose(nTr);

 } else { /* Open this row */

this.src =

"${pageContext.request.contextPath}/img/details_close.png";

 oTable.fnOpen(nTr,fnFormatDetails(oTable,nTr),'details');

 }

 });

!

eAUDIT – Designing a generic tool to review entitlement! 24
!

François!Bégin,!francois.begin@telus.com!! !

Figure!21.!Displaying!secondary!userAdefined!entity!attributes!in!eAUDIT!web.!
!

The table auto-adjusts to the number of user-defined primary fields and to the

number of user-defined secondary fields. There is obviously a physical limitation on the

amount of screen real estate that one has access to, so the number of primary fields must

be kept reasonable. Primary fields should be chosen amongst those fields that are most

likely to clearly identify the entity to an authorizer, with secondary fields used

occasionally by the authorizer to ascertain whether or not to confirm the entitlement. This

confirmation is handled by action buttons at the end of each row.

 As previously mentioned, using a data table has numerous advantages, including

the ability to sort and filter the data. The filtering in particular can be used to focus on

specific entitlements if multiple entitlements are being reviewed by the same authorizer

within the same audit (see figure 22). Moreover, all of the work is offloaded to the client,

leaving the server to simply process user requests.

eAUDIT – Designing a generic tool to review entitlement! 25
!

François!Bégin,!francois.begin@telus.com!! !

Figure!22.!eAUDIT!search!filter!capability!used!to!group!entitlements.!

Since most of the heavy lifting is handled client-side, the tool must ensure that

authorizers can only review entities and entitlements for which they are authorized, and

this verification is made server-side, prior to updating table EntitiesAuditResponses.

2.6. Future enhancement
!

eAUDIT is still a proof-of-concept at this stage and requires polishing. The data

model supports the ability for authorizers to delegate an audit to someone else.

Delegation will give a busy authorizer the ability to offload some of his audit work to a

trusted direct report. Additionally, the TELUS implementation will implicitly provide

access to the supervisors of authorizers. This means that anyone above a base audit

authorizer will be a super-authorizer, able to view and delegate any of these audits – or

let their subalterns know they need to pick up the pace! Both the delegation feature and

the implied super-authorizers feature should help promote high audit completion rates.

Another reality of audits is that the data provided may be stale or inadequate at load

time. For instance, an employee loaded as an entity may not have a current manager. If

the manager is the authorizer of a particular entitlement, this employee will not be

reviewed. eAUDIT will address this challenge by taking the company’s organizational

eAUDIT – Designing a generic tool to review entitlement! 26
!

François!Bégin,!francois.begin@telus.com!! !

hierarchy into account when allowing entitlement review. It will provide reports to the

audit administrator of these stale/incomplete records, allowing the administrator to

review them himself, or re-assign them to someone who can.

Yet another feature of TELUS’s planned eAUDIT implementation is the use of a

PrimaryKey in the Entities table to provide historical correlation between audits. This

will allow an authorizer to determine whether or not this entity’s entitlement was

reviewed or revoked the last time the audit ran.

Another important aspect of auditing that this paper did not cover is communication.

A successful audit is one where authorizers are clearly informed of deadlines and

reminded to meet them. The TELUS CSO has a communication tool called eMAC that is

capable of handling audit communications (kickoff email, reminders, escalations) and

eAUDIT will be tightly integrated with this tool to offer an end-to-end auditing solution.

3. Conclusion
This paper presented eAUDIT, a generic audit review tool to conduct entitlement

reviews. This tool is currently being implemented at TELUS to mitigate some

shortcomings of our identity and access management infrastructure. It should be noted

that IAM is often seen through the lenses of compliance, and it is true that TELUS’s audit

tools predecessors have been compliance-driven. On the other hand, there are other solid

business cases to be made with regard to auditing and managing access properly:

operational effectiveness (or cost savings) as well as business enablement are other

considerations (Osmanoglu, 2013). There is already evidence to support the proposition

that eAUDIT will benefit TELUS beyond compliance.

eAUDIT – Designing a generic tool to review entitlement! 27
!

François!Bégin,!francois.begin@telus.com!! !

References
!
Allen, J. (2015). Excel Is NOT a Database! Retrieved from

http://adminsecret.monster.com/benefits/articles/2599-excel-is-not-a-database.

Apache Foundation (2015). Apache POI – The Java API for Microsoft Documents.

Retrieved from https://poi.apache.org/.

Ballad, B., Ballad, T. and Banks, E. (2010). Access Control, Authentication, and Public

Key Infrastructure. Jones & Bartlett Learning.

Doraiswamy, P., Shiv, P. (2012). 50 Top IT Project Management Challenges. IT

Governance Ltd.

Jurney, R. (2013). Agile Data Science. O’Reilly Media Inc.

Kadrich, M. (2007). Endpoint Security. Addison-Wesley Professional.

Mathers, T. Kumaraswamy, S. and Latif, S. (2009). Cloud Security and Privacy. O’Reilly

Media Inc.

Osmanoglu, E. (2013). Identity and Access Management. Syngress Press.

Saleh, K. A. (2009). Software Engineering. J. Ross Publishing.

Walsh, K. (2014). 5 Pitfalls of Using Spreadsheets for Business Analytics. Retrieved from

http://www.bisoftwareinsight.com/5-pitfalls-spreadsheets-for-business-analytics/.

eAUDIT – Designing a generic tool to review entitlement! 28
!

François!Bégin,!francois.begin@telus.com!! !

Appendix A – eAUDIT data model
!

!

eAUDIT – Designing a generic tool to review entitlement! 29
!

François!Bégin,!francois.begin@telus.com!! !

Appendix B – Setting up eAUDIT for a demo

Here is a quick overview of how to set up an environment to run/demo eAUDIT’s

data acquisition capability. First, in a directory of your choice, clone the eAUDIT project

code (Figure B-1).

Figure!BA1.!Cloning!eAUDIT!code!from!GitHub.!
!

There are two separate projects in the code pulled from GitHub: the

jEAUDITlibrary itself, as well as eAUDIT_BatchOps, a project to demonstrate data

acquisition. You can import these projects into your preferred Java IDE to examine the

code.

Next, you need to set up a server to run the eAUDIT database. eAUDIT was built

on MySQL and the data model has been included as a MySQL WorkBench file inside

jEAUDITlibrary (Figure B-2). A service account with read-write access to the database

also needs to be created

Figure!BA2.!MySQL!WorkBench!data!model!file!for!eAUDIT.!
!

eAUDIT – Designing a generic tool to review entitlement! 30
!

François!Bégin,!francois.begin@telus.com!! !

Prior to running eAUDIT_BatchOps, a few configuration changes must be made:

1. Edit files db_eAUDITDV and db_eAUDITPR. Set the database name, user,

password and URL to point to the database that was created to hold eAUDIT

data.

2. Edit files StaticParamsDV and StaticParamsPR (Figure B-3). Set the path for

the system where you will be trying out eAUDIT_BatchOps. Logging can also

be adjusted through the various LOG_* parameters.

Figure!BA3.!Static!parameters!as!defined!in!class!StaticParamsDV/PR.!
!

3. Create the toolBasePath directories. Assuming the demo is running on a

Linux computer and the configuration file shown in Figure B-3, the following

directories would need to be created:

a. /export/data/eaudit

b. /export/data/eaudit/tmp

c. /export/data/eaudit/logs

!

eAUDIT – Designing a generic tool to review entitlement! 31
!

François!Bégin,!francois.begin@telus.com!! !

Appendix C – AuditTypeRef sheet of
the eAUDIT Excel template

eAUDIT – Designing a generic tool to review entitlement! 32
!

François!Bégin,!francois.begin@telus.com!! !

Appendix D – AuditData sheet of
the eAUDIT Excel template

eAUDIT – Designing a generic tool to review entitlement! 33
!

François!Bégin,!francois.begin@telus.com!! !

Appendix E – Controller that maps a request to an
authorizer view of audit data

 @RequestMapping({

 "/audit/{auditID}"

 })

 public ModelAndView displayAuditDetailsPage(@PathVariable String auditID)

throws ObjectNotFoundException,

 SQLException {

 ModelAndView mv = new ModelAndView("audit");

 //TODO: validate permission

 IAuditDao auditDao = getAuditDao();

 mv.addObject(USER_NAME,

SDDIHelper.getCurrentTeamMemberNameFromRequest(request));

mv.addObject(USER_TID,

SDDIHelper.getCurrentTeamMemberTIDFromRequest(request));

 mv.addObject("AuditDetail", auditDao.getAuditDetailsByID(auditID));

 mv.addObject("EntityList", auditDao.getEntitiesByAuditAndAuthorizer(auditID,

SDDIHelper.getCurrentTeamMemberNumericalPIDFromRequest(request)));

 return mv;

 }

eAUDIT – Designing a generic tool to review entitlement! 34
!

François!Bégin,!francois.begin@telus.com!! !

Appendix F – SQL query getEntitiesByAuditIDAndAuthorizer
to retrieve entities of a specific audit and specific authorizer

<statement id="getEntitiesByAuditIDAndAuthorizer"

resultMap="resultEntity"

parameterClass="map">

SELECT

 e.idEntities,e.PrimaryKey,

e.UDEAprimaryFieldsValues,

e.UDEAsecondaryFieldsValues,

a.Entitlement,

resp.RecordedResponse

 FROM Entities as e

 INNER JOIN Audit as a

ON (e.Audit_idAudit=a.idAudit

AND a.AuditTypeReference_idAuditTypeReference = #auditType#)

 LEFT JOIN Authorizers as auth

ON (auth.Audit_idAudit=a.idAudit)

 LEFT JOIN EntitiesAuditResponses as resp

ON e.idEntities = resp.Entities_idEntities

 WHERE auth.AuthorizerEmpID=#authorizerID#

 </statement>

eAUDIT – Designing a generic tool to review entitlement! 35
!

François!Bégin,!francois.begin@telus.com!! !

Appendix G – audit.jsp: main page of
the eAUDIT review engine

<%@ taglib prefix="form" uri="http://www.springframework.org/tags/form"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%>

<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<%@ taglib uri="http://www.springframework.org/tags" prefix="spring"%>

<%@ taglib uri="http://www.springframework.org/security/tags" prefix="sec"%>

<script>

var numOfPrimaryColumns = ${fn:length(AuditDetail.primaryFields)};

$(document).ready(function() {

 var rootPath = '${pageContext.request.contextPath}';

 var data = [];

 var secondaryFields = [

 <c:forEach items="${AuditDetail.secondaryFields}"

var="pfield2" varStatus="loop">

 ${pfield2}<c:if test="${!loop.last}">,</c:if>

 </c:forEach>

];

 <c:forEach items="${EntityList}" var="entity">

 data.push(['<img

src="${pageContext.request.contextPath}/img/details_open.png">',

 <c:forEach items="${entity.primaryFields}" var="fieldValue" >

 ${fieldValue},

 </c:forEach>

 "${entity.entitlement}",

 '<div class="ui-corner-all list_icon text_icon grey action_yes"

title="Keep"></div><div

eAUDIT – Designing a generic tool to review entitlement! 36
!

François!Bégin,!francois.begin@telus.com!! !

class="ui-corner-all list_icon text_icon grey action_no" title="Revoke"><span

class="ui-icon ui-icon-closethick"></div>',

 '<div id="${entity.entityID}_details">' +

 <c:forEach items="${entity.secondaryFields}" var="fieldValue"

varStatus="loop">

 '<div class="content_name">'+

secondaryFields[${loop.index}] +':</div><div class="content_value">' +

${fieldValue} + '</div>' +

 </c:forEach>

 '</div>'

]);

 </c:forEach>

 var oTable = $('#dataTable').dataTable({

 bJQueryUI: true,

 "aaData": data,

 "aoColumns": [

 { "sTitle": "", "sWidth": "20px" },

 <c:forEach items="${AuditDetail.primaryFields}" var="pfield">

 { "sTitle": ${pfield} },

 </c:forEach>

 { "sTitle": "Entitlement", "sWidth": "250px" },

 { "sTitle": "Actions", "sWidth": "40px" },

 { "sTitle": "details" }

],

 "aoColumnDefs": [

 { "bSearchable": false, "bSortable": false,

"aTargets": [0] },

 { "bSearchable": false, "bSortable": false,

"aTargets": [numOfPrimaryColumns + 2] },

eAUDIT – Designing a generic tool to review entitlement! 37
!

François!Bégin,!francois.begin@telus.com!! !

 { "bSearchable": false,"bVisible":

false,"bSortable": false, "aTargets": [numOfPrimaryColumns + 3] }

],

 "iDisplayLength": 1000,

 sPaginationType : "full_numbers",

 oLanguage : {

 sProcessing : "<spring:message code="app.datatable.text1" />",

 sLengthMenu : "<spring:message code="app.datatable.text2" />",

 sZeroRecords : "<spring:message code="app.datatable.text3"

/>",

 sInfo : "<spring:message code="app.datatable.text4" />",

 sInfoEmpty : "<spring:message code="app.datatable.text5" />",

 sInfoFiltered : "<spring:message code="app.datatable.text6" />",

 sInfoPostFix : "<spring:message code="app.datatable.text7" />",

 sSearch : "<spring:message code="app.datatable.text8" />",

 sUrl : "<spring:message code="app.datatable.text9" />",

 oPaginate : {

 sFirst : "<spring:message code="app.datatable.text10"

/>",

 sPrevious : "<spring:message

code="app.datatable.text11" />",

 sNext : "<spring:message code="app.datatable.text12"

/>",

 sLast : "<spring:message code="app.datatable.text13"

/>",

 }

 }

 });

eAUDIT – Designing a generic tool to review entitlement! 38
!

François!Bégin,!francois.begin@telus.com!! !

 /* Add event listener for opening and closing details * Note that the indicator

for showing which row is open is not controlled by DataTables, * rather it is

done here */

 $('#dataTable tbody td img').click(function() {

 //var nTr = $(this).parents('tr')[0];

 var nTr = this.parentNode.parentNode;

 if (this.src.match('details_close')){ /* This row is already open - close it

*/

 this.src =

"${pageContext.request.contextPath}/img/details_open.png";

 oTable.fnClose(nTr);

 } else { /* Open this row */

 this.src =

"${pageContext.request.contextPath}/img/details_close.png";

 oTable.fnOpen(nTr,fnFormatDetails(oTable,nTr),'details');

 }

 });

 $("div.action_yes").mouseover(function() {

 $(this).addClass('green').removeClass('grey');

 }).mouseout(function(){

 $(this).addClass('grey').removeClass('green');

 }).click(function(){

 $(this).addClass('greenSelected').removeClass('grey');

 $(this).parent().find('div.action_no').removeClass('redSelected').addClass(

'grey');

 });

eAUDIT – Designing a generic tool to review entitlement! 39
!

François!Bégin,!francois.begin@telus.com!! !

 $("div.action_no").mouseover(function() {

 $(this).addClass('red').removeClass('grey');

 }).mouseout(function(){

 $(this).addClass('grey').removeClass('red');

 }).click(function(){

 $(this).addClass('redSelected').removeClass('grey');

 $(this).parent().find('div.action_yes').removeClass('greenSelected').addCl

ass('grey');

 });

});

/* Formating function for row details */

function fnFormatDetails(table, nTr) {

 var aData = table.fnGetData(nTr);

 return aData[numOfPrimaryColumns+3];

}

</script>

<div><h3>${AuditDetail.auditName}</h3></div>

<div><h5>${AuditDetail.auditDescription}</h5></div>

<div id="tableContainer" style="margin-left:auto; margin-right:auto; width:

auto;clear:both;">

 <table id="dataTable" style="width:100%;"></table>

</div>

