
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Implementing and Auditing CIS Controls (Security 566)"
at http://www.giac.org/registration/gccc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gccc

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers

GIAC GCCC Gold Certification

Author: Stefan Winkel, stefan@winkelsnet.com
Advisor: Adam Kliarsky

Accepted: 10/18/2016

Abstract

With recent movements like DevOps and the conversion towards application security as a
service, the IT industry is in the middle of a set of substantial changes to how software is
developed and deployed. In the infrastructure space, software developers have seen the
uptake of lightweight container technology, while application technologies are moving
towards distributed micros services. There is a recent explosion in popularity of package
managers and distributors like OneGet, NPM, RubyGems, and PyPI. Amid this process,
application containers technologies like Docker, LXC, and Rocket, used to
compartmentalize software components, are getting immense popular. More and more
software development becomes dependent on small, reusable components developed by
many different developers and is often distributed by infrastructures outside control of
development. As a result, the thread landscape is changing. Because of these changes the
risk of introducing vulnerabilities in the development cycle has increased manifold. The
Notary project, recently introduced in Docker, is built upon the assumption that the
software distribution pipeline can no longer be trusted. Notary attempts to protect against
attacks on the software distribution pipeline by association of trust and duty separation to
Docker containers. In this paper, the Notary service will be explored with regards to an
in-depth look at security testing of Docker containers.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 2

Stefan	Winkel,	stefan@winkelsnet.com	

1. Introduction
1.1. DevOps, SecDevOps, and DevSecOps

With recent growth of software and services delivered through cloud computing,

information security is playing a catch-up game with rapid continuous development. One

of the latest trends is around DevSecOps and/or SecDevOps. Jim Bird, author of

‘DevOpsSec: Securing software through continuous delivery’, explains in his book the

contrasting perspectives of the growth of DevOps when he states “Some people see

DevOps as another innovation, the newest thing over-hyped by Silicon Valley and by

enterprise vendors trying to stay relevant. Others believe it is an authentically disruptive

force that is radically changing the way that we design, deliver, and operate systems.”

(Bird, 2016) No matter what one believes, one cannot ignore that many companies, from

small startups to Fortune 500 companies, including Google, Netflix, Etsy and Amazon,

are having real success with DevOps at scale. In 2014, Amazon deployed 50 million

changes: that is more than one change every second of every day (Brigham, & Liguori,

n.d.). Google, well known for various cloud services like Gmail, Google Maps, etc. has

also embraced DevOps technologies. Joe Beda, a senior staff engineer at Google, recently

stated at a conference that “Google spins up more than 2 billion containers per week,

more than 3,300 containers per second.” (Beda, n.d.)

The various recent DevOps technologies that are being developed catalysis the

speed of software development even further when are being used in conjunction. Victor

Farcic, a senior consultant at CloudBees, explains in his book ‘DevOps 2.0 toolkit’, the

relation between cloud services and containers. “On the first look, continuous

deployment (CD), microservices (MS) and containers might seem like three unrelated

subjects. After all, DevOps movement does not stipulate that microservices are necessary

for continuous deployment, nor microservices need to be packaged into containers”

(Farcic, 2016). But he goes on to explain that when these three concepts are bundled

together, are very powerful. Combining these concepts, allows for split-second

deployments, which decreases the time to market, while at the same time, the

combination improves the quality of the services by providing continuous quality

feedback loop and hence benefiting both worlds. Farcic explains that “MS are used to

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 3
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

create complex systems composed of small and autonomous services that exchange data

through their APIs and limit their scope to a specific bounded context.” These services

provide us with more freedom to make better decisions, faster development and easier

scaling of our services. Finally, “containers provide the solution to many deployment

problems; in general, and especially when working with microservices. They also

increase reliability due to their immutability.” (Farcic, 2016). To summarize

microservices are abstracting software problems while use of containers solve issues

related to deployment scenarios of software updates.

One major benefit of using containers over Virtual Machines (VMs) is that

containers have less overhead associated with server density as they are typically 1/10th to

1/00th the size of a similar application packaged within in a VM. A technology called

Linux Containers (LXC) achieves this reduced server density. In LXC, a Linux Kernel is

shared to manage the underlying Operation System (OS). If, for example, a	physical

server would be running 4 VMs, this would require 4 OSes in addition to a hypervisor.

But with containers, the server could share the same OS, binaries, and libraries as shown

in ‘Figure 1: VMs	and	containers	resource	utilization	comparison’	below.	

	

	

Figure	1:	VMs	and	containers	resource	utilization	comparison.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 4
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Though containers share the same Linux kernel, they are platform agnostic, which

makes them portable to any environment. Other benefits of using containers include

encapsulation and scalability. Encapsulation means to package everything needed by the

application (e.g. dependencies, environment variables) within the container. The

containers are also scalable which means that they can be dynamically be reduced or

expanded in size. “Scalability can be applied to either one or multiple instances through

centralized orchestration.” (Bird, 2016). These powerful container concepts explain why

there has been an immense growth in use container usage in DevOps environments in the

past few years.

Furthermore, combining containers with microservices makes it possible to

support micro-segmentation; each microservice is running in a separate runtime

environment. This is the catalysator for container technologies like LXC, Rocket and

especially Docker.

	

1.2. Introduction to Docker
Docker is a platform that combines applications and all their dependent

components (e.g. libraries, tools) into an archive called a Docker Image. A Docker Image

can be run on many different platforms like PCs, data centers, VMs or clouds. As a

Docker Image compartmentalizes the application(s) and all its dependencies, it provides

various benefits over bare metal like portability and scalability. These features,

combined with reduced footprint that Docker Images have over Virtual Images, result in

deployments of Docker Images in many different environments like data centers and

cloud solutions.

Started in 2013, Docker is an open -source project, and was released under the

Apache 2.0 license, which efficiently allows for the creation, shipment, and running of

contains within a single Linux instance. Docker was initiated as a project to build single-

application Linux Containers (LXC) and introduced numerous improvements to LXC that

made containers more flexible and portable to use than LXC, as well as some other older

container technologies like FreeBSD Jails and Solaris Zones.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 5
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

LXC, based on a user-space lightweight virtualization mechanism that

implements namespaces and Control Groups (cgroups), manages resource isolation.

Chenxi Wang, strategy officer at container security firm Twistlock, describes this

isolation when he says, “Namespaces deal with resource isolation for a single process,

while cgroups, originally developed by Google, manage resources for a group of

processes” (Wang, 2016). Cgroups isolate and limit a given resource over a collection of

processes to control performance or security.

Portability is probably amongst the biggest advantage of Docker over LXC

(Wang, 2016). Portability allows the container to run on different OS distributions and

hardware configurations without any changes to the image itself. This makes it very

attractive to be used in multitude of different architectures suitable in cloud

environments.

1.2.1. Role of Docker in DevOps

John Willis, an evangelist at Docker, explains the concepts of DevOps discussed

above in something that he calls “The Three Ways of DevOps”. The “Three Ways of

DevOps” are systems thinking, amplifying and shortening feedback loops, and

continuous learning (Willis, 2015). All other DevOps patterns use these three principles.

‘Figure 2: The three ways of DevOps’ below visualizes these development patterns.

	

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 6
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

	

	

	
	

Figure	2:	The	Three	Ways	of	DevOps	

Figure	2	visualizes	the	continuous	feedback	loops	in	the	third	drawing.		In	this	

model,	‘the	way	of	continual	experimentation	and	learning’,	development	and	

operations	teams	adjust	production	environments	on	the	fly	based	upon	customer	

feedback.		Through	features	like	portability	and	micro-segmentation,	Docker	

amplifies	this	third	way	of	continual	experimentation	and	learning,	which	leads	to	

“faster	innovation,	higher	quality	and	a	feedback	loop	of	continuous	learning,	

advancing	to	a	higher	rate	of	success” (Willis, 2016). The fact that Docker has been

embraced by large software powerhouses like Red Hat, IBM, Microsoft, Huawei, Google,

and Cisco, who are also the top contributors to the Docker project ("Docker - Updated

project statistics · GitHub," n.d.), indicates that Willis might be right when he states that

Docker is a great adjunct to the third way of DevOps. The embracement of the software

power houses has led to a quick adoption rate and to extensive investments being made in

Docker. Jack Dougal, author at Banking.com, confirms this when stating that Docker has

been included in the financial industry by firms like Goldman Sachs and Bank of

America (Dougal, 2015).		

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 7
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

1.3. The Faulty Software Distribution Pipeline
As many organizations are starting to integrate Docker into their CI and CD

practices to help speed up system provisioning, reduce job time, and improve the overall

infrastructure utilization, they are becoming more dependent on	small,	reusable	

components	developed	by	many	different	developers	and	often	distributed	by	

infrastructures	outside	control	of	development.		Because	of	these	changes	the	risk	of	

introducing	vulnerabilities	in	the	development	cycle	has	increased	manifold.		The	

thread	landscape	is	shifting	because	of	these	changes.	The	Notary	project,	recently	

introduced	in	Docker,	is	built	upon	this	assumption	that	the	software	distribution	

pipeline	can	no	longer	be	trusted.

1.4. Changed Security Lifecycle
One disadvantage/shortcoming of Docker is the impact of security on the software

development cycle. As companies are adopting continuous deployment workflows and

implementing microservices and embracing containers, security needs to adapt at this rate

of change when there is no time to do pen testing or audits (Bird 2016). Figure 3 shows

how in a traditional waterfall development cycle security is often part of the hardening

phase, at the end of the release cycle just before putting the code base in production. Bird

states that “Security must ‘shift left’ earlier into design and coding and into automated

test cycles instead of waiting until the system is designed and built and then trying to fit

some security checks just before release” (Bird, 2016). By shifting left, he means that

security needs be integrated earlier in the development stage instead of close to

production at the end. As the second picture shows, in a pure DevOps environment,

security needs to be integrated from the design phase and not be implemented as an

afterthought. In other words, security becomes integral part of the SDLC in a pure

DevOps environment as can be seen in the second picture. This is aligned with the Third

Way of DevOps as explained above, e.g. only when integrated with the development

cycle through continuous security, code can secure be deployed in a DevOps world.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 8
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Figure	3:	Waterfall	versus	DevOps	development	cycle.	

	

1.5. Separation of Duties and other Critical Controls
One of the most difficult challenges in DevOps is Separations of Duties (SoD).

Breaking down silos and sharing responsibilities between developers and operations seem

to be in direct conflict with SoD (Bird,2016). In the continuous development model the

developer cannot hand over code to the next phase as there are continuous adjustments

being made. The developer becomes part of the end-product and closer interaction with

customers is crucial to streamline efficiency. The role of the developer and the operator

are merging. In an interview for ACMQueue, Amazon’s CTO Werner Vogels explains

why Amazon promotes this development model: ‘You build it, you run it’ (Vogels,

2006). Similar as to Amazon, John Allspaw, CTO at Etsy, explained why they promote

at Flickr to giving developers access, or least limited access, to product environments

(Allspaw, 2009). But this also raises concerns. Given developer access to managed

systems, even giving them read-only access, raises questions and problems for regulators,

compliance, infosec, and customers. To address such concerns, you will need to put

strong compensating controls in place (Bird, 2016; Robinson, 2016). Such controls can

only come from automation, e.g. security tools.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 9
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

1.6. Are security tools ready for DevOps?
With continuous learning through experimentation, we have seen that the DevOps

model not only changes the development phases but we have seen also a shift regarding

responsibilities as developers become directly responsible for the end product. Use of

security tools in this changed model is key to success. “CIS Critical Security Controls

(CSCs) describe a set of specific actions designed to improve an organization’s ability to

resist or recover from information security incidents” (“CIS critical security controls,”

2016). Usage of automated tools is an effective way to enforce policies associated with

CSCs. Tools will help to continuously measure, test and validate the effectiveness of an

organization’s current security measures. Tool usage is even more important in a DevOps

environment where the approach to change management is reversed (e.g. optimize small

and frequent changes). Robinson concludes in her paper ‘Continuous Security:

Implementing the Critical Controls in a DevOps environment’ that, “we can expect

increased maturity for new security tools developed for DevOps as the shift towards

DevOps continuous” (Robinson, 2016). The question remains if security tools are

currently on par with DevOps landscape.

2. Container integrity: Docker Notary
2.1. Who do you trust?

As applications become more dependent on external components, having secure

software update systems becomes increasingly important. Diogo Monica, a security

architect at Docker, argues that software developers and publishers should start to include

in their risk analysis the possibility that considers the distribution infrastructure itself as

being actively malicious. He explains, “They should start following best practices

concerning role responsibility separation, offline storage of signing keys, and routine

rotation of signing keys” (Monica, 2015). So basically, to securely deliver updates check

and balances need to be put in place during the delivery phase itself. No longer can one

assume that the content can be trusted blindly.

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 10
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

 Diogo blames the easy of package installation being a root cause of the

distribution infrastructure potentially becoming malicious. “More and more our

infrastructures are depending on external sources of content like NPM and package

managers such as RPM. The funny part is that these things are all being managed by

thousands of developers that we don't know in infrastructures that are totally outside of

our control while the number of package managers keeps on increasing.” (Monica (2015).

Figure 4, a comic from xkcd.com, shows how a modern install script calls the many

different package mangers to install packages from many different locations.

	
Figure	4:	Universal	install	script	from	http:/xkcd.com/1654/	

Another example that the distribution infrastructure might be tainted comes from

a recent security analysis of OEM Updates by Duo Security which indicated that “all

OEM vendors had at least one vulnerability that could allow for a man-in-the-middle

(MITM) attacker to execute arbitrary code as SYSTEM.” (Camp, Czub, & Dadidov,

n.d.). Whether it is through different package managers or through automatically applied

updates in an OEM environment it is obvious there are many different attack vector on

the distribution pipeline.

There are many known attacks on software update systems. From arbitrary

software installation and mix-and-match attacks to fast-forward attacks. For an overview

of many known attacks on these update systems, see ("tuf/SECURITY.md at develop ·

theupdateframework/tuf · GitHub," n.d).

Diogo explains in a Docker blog that HTTPS and GPG by itself are not sufficient

to trust the content. GPG is not a framework, but a message format, in which one applies

a signature to an application and then verifies the signature which leaves the system open

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 11
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

to, for example, downgrade attacks. Such attacks mean, if there is a man in the middle, or

someone has control over the actual cloud, the adversary can then serve the victim an old

(vulnerable) version of the content as there is no revocation scheme.

2.2. The Update Framework (TUF)

 Software update systems that do not authenticate updates have received increased

scrutiny in recent years. Unfortunately, due to this attention, many of these systems have

implemented simple authentication mechanisms that cannot survive key compromise

(Docker Inc, 2016). The Update Framework (TUF) is a flexible, comprehensive security

framework that is used for securing software update systems that mitigate such attacks.

“TUF, allows both new and existing systems to benefit from a design that leverages

responsibility separation, multi-signature trust, trust revocation, and low-risk roles”

(Docker Inc, 2016). There are many different update systems in use today but TUF is

different in the sense that it is built upon a specification and library that can be used

universally to secure update systems.

2.3. Notary
To securely publish Docker Images with content that is verifiable, Docker

introduced the Notary utility. “Notary is a Docker utility build upon the TUF framework

for securely publishing and verifying content, distributed over any insecure network”

(Monica, 2015). Notary has a few important objectives:

● Survivable key compromise

● Freshness guarantee

● Configurable trust thresholds

● Signing delegation

● Use of existing distribution

● Untrusted mirrors and transport

The TUF specification outlines these and other implementation directives

("tuf/SECURITY.md at develop · theupdateframework/tuf · GitHub," n.d.).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 12
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Notary implements various recommendations from the TUF framework. For

example, through signed collections, it supports software to have relations where versions

are dependent on other versions. With survivable key compromise and signing

delegation, Notary allows for key delegation. Best practices would be to store the most

crucial key, (GPG master key), offline. Other keys which are less sensitive and should

have a short expiration could live in the cloud. Such keys could for example be keys that

sign certain portions of the software development lifecycle.

Transparent key rotation is another feature that allows keys to be rotated at

different intervals. In case the root key is the source key of trust, the administrator cannot

rotate it without taking the system offline. By using trust delegation, the root key can be

taken offline. New keys can be signed and send to the user. Adversaries cannot

compromise the trust chain as the root key was offline. Trust delegation allows for key

rotation multiple times a week/day. One could, for example, rotate CI keys every month.

2.4. Notary Threshold Signing
 One of the advantages of Notary from a security assurance perspective is that it

allows users to sign packages by multiple keys unlikely to GPG key signing where there

is only one key. For example, a software package needs to be built and signed by CI

system and then later the security team need to rubber stamp it. A second example could

be where different types of the assurance process could get signatures, such as a unit test,

integration test, security test, etc. Clients should be able to verify all keys being signed.

Packages can get as many signatures as desired. This features also protects against non-

technical attacks like subpoenas by nation states. For example, multiple keys could be

hosted in different countries (e.g. Russia, China, US). So, US companies would need

approval from a security team in China.

2.5. Deploying and testing Docker Notary
The Notary and Registry services have much different scaling and security

requirements, so decoupling them has many benefits. Notary has both a server and client

component. In the section below a sandbox will be set up to demonstrate trust operations

locally without impacting production images. The sandbox will be used to test the Notary

service and look at the various security tools for testing Docker images. To use Notary,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 13
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

the user must be familiar with the command-line environment (Gallagher, 2016). Note

that this sandbox is just for development purposes. When moving from deployment to

production, there are various considerations like high availability, databases and

certificates to ensure security and scalability. See the online Docker documentation for

how to run the Notary service in production (Docker Inc, 2016).

2.5.1. Setup of a Docker Content Trust Sandbox

In this section, the example shows various containers and how to setup a sandbox

to demonstrate the functionality of Docker Notary. A container called Trustsandbox will

be generated, which has the latest version of the Docker Engine with some preconfigured

certificates. In the example the sandbox is used to test the Docker client to test various

trust operations.

The registry server container is a local registry service where Docker images can

be stored. The Notary server container is the service that does all the heavy-lifting of

managing Trust. The Notary Signer service ensures that the keys are secure while the

MySQL container has the database that stores all the trust information. Docker Hub has

these components already built-in so one would not need those if working exclusively

with the Docker Hub.

The commands below, with minor modifications, are obtained from Docker’s

website (Docker Inc., 2016). See Appendix Section A ‘Prerequisites Docker Content

Trust Sandbox’ for prerequisites and Appendix Section B ‘Setting up Docker Content

Trust SandBox’ for setting up the trust sandbox.

2.5.2. Testing Notary Trust Operations

When the content trust sandbox is up and running, various trust operations will be

executed to demonstrate the Notary functionality. These operations are as follows:

Test Trust Operations

Download a Docker test image

$ docker pull docker/trusttest

Tag it to be pushed to sandbox registry

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 14
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

$ docker tag docker/trusttest

sandboxregistry:5000/test/trusttest:latest

Enable content trust

$ export DOCKER_CONTENT_TRUST=1

Identify the trust server

$ export DOCKER_CONTENT_TRUST_SERVER=https://notaryserver:4443

Pull the test image

$ docker pull sandboxregistry:5000/test/trusttest

Figure	5:	Pull	trusted	Docker	container	from	local	Registry	fails	

You will get an error with the pull command above as the content does not exist in the

sandbox Registry yet.

Push and sign the trusted image

$ docker push sandboxregistry:5000/test/trusttest:latest

Pull the pushed image

$ docker pull sandboxregistry:5000/test/trusttest

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 15
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Figure	6:	Notary	signing	and	pulling	of	the	signed	image

Test with a malicious image

Open terminal into sandboxregistry

$ docker exec -it sandboxregistry sh

Change into registry storage

cd /var/lib/registry/docker/registry/v2/blobs/sha256/aa/<SHA

_received_when_pushing_image>

#Add malicious data to one of the trusted layers

$ echo "Malicious data" > data

#Return to sandbox terminal and list the trusted image

$ docker images | grep trusttest

Remove the trustiest:latest image

$ docker rmi -f a9539b34a6ab

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 16
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

#Pull the image again

$ docker pull sandboxregistry:5000/test/trusttest

Figure 7 shows that the pull operation did not complete because the trust system

could not verify the image. The user will get an error similar as the one listed below. This

error validates that the Notary works as expected.

Figure	7	Docker	Pull	fails	on	corrupt	image

Bring down services

$ docker-compose down -v

This section illustrates how Docker Notary can be used to implement various basic trust

operations on Docker containers. By using Notary one can start securing the distribution

infrastructure by simple operations as the ones above.

2.6. Notary Integration with 3rd Party Repositories
Section 2.5.2 shows how to use Notary with a private Docker Registry as a

repository. Instead of using a private Docker Registry, the same also works with cloud

repositories like Docker Hub as well with third party repositories like Nexus and

Artifactory. See for example, JFrog’s Artifactory User Guide on how to setup Notary

with Artifactory (JFrog, 2016).

2.6.1. Google Container Registry

In early 2015, Google introduced Google Container Registry for managing private

Docker images. Its functions are described by the company as follows: “The Google

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 17
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

service, which runs on Google’s Cloud Platform, stores, shields, encrypts, and controls

access to a customer’s Docker containers, offering a higher level of security for

containers than has been available in the past.” (Google Inc, 2015) While the Google

Registry has Docker V2 API registry support, it is not clear at the time of this writing if

this includes Notary functionality as well. But it shows that containers cannot be trusted

as is and a verification service is needed to secure the distribution pipeline.

3. Docker Security Scanning
3.1. Docker Registry in a CI/CD Environment

The Docker Notary service allows a user to assign trust to Docker containers as

shown above. This section describes how to validate these Docker images during the

CI/CD lifecycle, once trust has been assigned.

At Dockercon 2016, Cem Gürkök gave an overview of SalesForce architecture

(see Figure 8) that uses Notary for signing and validation of Docker images in their

CI/CD lifecycle.

Figure	8	SalesForce	usage	of	Notary.(Gurkok	&	Falko,	2016)	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 18
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Gürkök categorizes the various aspects of Docker security into a few categories:

• Hardening

• Patching

• Monitoring

Hardening includes both host as well as Container hardening. The NCC Group

published an excellent white paper ‘Understanding and hardening Linux containers’ on

different aspects of Container hardening (Grattafiori, 2016). Tools like Docker Bench are

available to test many best practices around Docker containers in production.

Vulnerability management uses image scans to validate the OS, application source code

and their dependent libraries and network scans for traditional vulnerability scanning

(discovery and exposed services). Furthermore, there are of course manual, and

automated source code audits. Each of these categories theoretically could mean running

a Security Tool and the Notary client signing/tagging the Docker image upon successful

verification. Figure 9 shows an example of Notary client signing a Docker image with

different keys.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 19
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Figure	9:	Signing	Docker	image	after	different	Security	Testing	Phases	(Static,	Dynamic,	and	Fuzz	testing)	

This shows that Docker Notary can be used to assign and validate trust by different

signatures as the Docker Image moves to different stages in the CD/CI pipeline. For

example, after successfully running a web application scan with a tool like Burp Suite,

the Docker Image could be signed to indicate it successfully completed the dynamic test

phase.

4. Docker Container Testing as a Service (DCTaaS)
This chapter will explore externalizing some of the security testing of Docker

Containers. Stephen DeVries, CTO of Continuum Security, states that security tests are

often not included as part of the quality controls. “Automated unit, integration and

acceptance tests are essential quality controls in running a reliable continuous integration

or continuous delivery pipeline. Too often, security tests are left out of this process

because of the erroneous belief that security testing is solely the domain of security

experts.” (DeVries, 2015). This is important as the traditional separation of duties no

longer apply in a CD/CI environment as discussed earlier.

4.1. Security Testing in Different CI/CD Stages
In the continual experimentation and learning model, described earlier as the

Third Way, and often referred to as the automated deployment pipeline, it is important to

include different security tests and the results. As discussed above this could mean

assigning a signature by Docker Notary after Burp Suite successfully ran. Hooks need to

build into the automated process to validate these security tests. “The automated

deployment pipeline provides a mechanism which requires that defenses like static

analysis, web app scanning and code review are executed before putting software in

production” (Cole & Terala, 2015).

Jenkins, Hudson, and most other popular deployment tools provide support via

plugins both for static analysis as well as for requiring code reviews as part of the

pipeline (Robinson, 2016). Humble & Farley explain, “These acceptance tests should be

designed to complete quickly and can be run before deploying new code to the

integration/staging environment as part of the full commit stage” (Humble & Farley,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 20
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

2011). In integration/staging, vulnerability and application security scans, as well as other

security tests, can then be run alongside other acceptance tests (De Vries, 2015). DeVries

distinguishes between quick inline acceptance tests who should be acting as a gate to

code submissions and longevity tests, which could be run in parallel before production

deployment.

Keeping the production deployment separate from the infrastructure that pushes

code to non-production environments like load or staging can help to provide the access

needed for automation and debugging while still enforcing separation of duties and

restricted access to the production environment (Smith, 2014). To summarize security

tests will need to build into the pipeline some of which can be run inline and some of the

m separately on non-production environments.

4.1.1. Notary Trust Delegation

To externalize some of these security tests it becomes important to delegate some

of the security test validation. Docker supports targets/releases delegation as an approved

source of a trusted image tag. Using trust delegation, it allows one to collaborate with

different publishers without sharing repository keys. A collaborator can keep his or her

delegation key private (Docker, 2016). This could allow a central or external entity for

example to sign content after static analysis has been successfully completed.

4.1.2. Categorizing Security Testing

To implement the Security Testing of Docker Images, it is important to group

different tests. There are many ways of classifying Security Testing. One way as

described by DeVries, which extends itself to work in CI/CD environment, is the

following:

● Functional Security Tests

● Specific non-functional tests against known weaknesses

● Security Scanning of application and infrastructure

● Security Testing Application Logic

Some of these categories require an additional step when integrating into a CI/CD

environment, to identify clearly passing and failing criteria. Defining these benchmarks is

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 21
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

with an automated scanning tool a bit more complicated as it could involve False

Positives (FPs), which in a manual process involves investigating and removing FPs. To

automate this process one can wrap the security operation (FPs) in a test, like the open

source security testing framework BDD-Security does, that uses Behavior Driven

Development concepts (De Vries, 2015).

The following BDD-Security sample performs an automated scan for SQL

injection vulnerabilities using the following test:

	

	
Figure	10:	Sample	BDD-Security	test	scenario	

	

This example stores the false positives in the tables/false_positive.table. Content could

include:

	

	
Figure	11:	BDD-Security,	example	of		tables/false_posible.table	

4.2. Security Software Testing as a Service (SSTaaS)
	

Due to a wide range of applications of Cloud Computing, Software Security

Testing as a Service has become very popular in the current era of the computing (Virdi,

Kalyan, & Kaur, 2015). Virdi, Kalyan and Kaur conclude in their paper “Software

Testing as a Service using Cloud Computing” that, while STaaS reduces effort and

development costs of software development, there are many challenges, including lack of

overall system testing, as subject matter experts in a particular field perform the testing.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 22
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Besides an explosion in STaaS services, there is uprising related to security

testing services as well. For example, Microsoft recently released a new “cloud-based

service for developers that will allow them to test application binaries for vulnerabilities

before deploying.” (Microsoft Corporation, 2016). This cloud-based fuzz testing, called

project Springfield, is an example of how to use externalized SSTaaS to test different

aspects of the security testing.

There are different aspects of security testing that can be externalized, outsourced,

or both to 3rd parties in the form of services. Using the security testing categorization

described above, security scanning of application and infrastructure is probably an

effective example that lends itself for Security Testing as a Service as it requires limited

knowledge of the application, business logic, or both. The decision regarding which

aspects of security testing to outsource is business-related and beyond the scope of this

paper.

4.3. Open-source Docker Tools
Many open-source and commercial security tools are being developed because of

the explosive growth of Docker. Below includes an in-depth look at some of them:

4.3.1. Docker Bench for Security

Docker Bench is an open- source tool that validates configuration based upon CIS

benchmark recommendations (Center for Internet Security, 2015). It can be utilized to

scan Docker environments as well as start the host level and inspect all the aspects of the

host. Other features include testing the Docker daemon and its configuration, validating

the containers running on the Docker host, and reviewing the Docker security operations.

The tool also can give recommendations across the board of a threat or concern

(Gallagher, 2016).

To run Docker Bench, execute the following on the Docker host:

	
$ docker run -it --net host --pid host --cap-add audit_control \	
-v /var/lib:/var/lib \	
-v /var/run/docker.sock:/var/run/docker.sock \	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 23
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

-v /usr/lib/systemd:/usr/lib/systemd \	
-v /etc:/etc --label docker_bench_security \	
docker/docker-bench-security	

	

	

	
Figure	12:	Example	of	Docker	Bench	execution	

		

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 24
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

4.3.2. OpenSCAP Container Compliance

OpenSCAP is a tool that can assess vulnerabilities (CVEs) or security compliance

(CCEs) of running Docker containers or cold Docker images based on the same

philosophy as the parent OpenSCAP project which supports CVE scan, multiple report

formats and customized policies (Red Hat Corporation, 2016). Below are some samples

of how to start the different type of OpenSCAP scans of Docker Images.

#	Install oscap-docker	
wget https://raw.githubusercontent.com/OpenSCAP/container-

compliance/master/oscap-docker && chmod 755 oscap-docker

Offline compliance scan

./oscap-docker image docker.io/richxsl/rhel6.2

xccdf eval --profile xccdf_org.ssgproject.content_profile_rht-ccp \

/usr/share/xml/scap/ssg/content/ssg-rhel6

-ds.xml

#Offline vulnerability scan

./oscap-docker image-cve docker.io/richxsl/rhel6.2 --results

/var/www/html/image-oval.xml --report /var/www/html/

image-rhel62.html

#Online compliance scan

./oscap-docker container-cve docker.io/richxsl/rhel6.2 --results

/var/www/html/container-oval.xml --report /var/

www/html/container

-rhel62.htm

The	examples	above	show	that	OpenSCAP	project	for	Docker	is	similar	to	the	well-

known	generic	OpenSCAP	project	and	hence	has	a	small	learning	curve	to	start	

scanning	Docker	Images.	

4.3.3. Docker Security Scanning (aka Project Nautilus)
Docker Security Scanning is Docker’s image scanning capability. It delivers

secure content by providing deep insights into Docker images along with a security

overview of its components. The tool has been in use since the end of last year by various

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 25
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

repositories to distribute updated containers signed with Content Trust. Security Scanning

is available in Docker cloud and can be integrated to scan an image tag every time one

pushes. (Docker, Inc, n.d.).

4.4. Commercial solutions
4.4.1. Banyanops

Banyanops received quite a bit of publicity after it produced a report last year

stating that more than 30% of images in the official Docker Hub repositories are highly

susceptible to a variety of security attacks (e.g. Shellshock, Heartbleed, Poodle, etc.)

(Gummaraju, Desikan, & Turner, 2015). The company used an open- source component,

Banyan Collector, a framework for static analysis of Docker container images, and a

service called Banyan Insights to produce the data.

4.4.2. AquaSec

The Aqua Container Security Platform delivers an advanced security solution for

containerized environments, supporting Docker on both Windows and Linux. The

solution is available for on-premise deployment or on Azure, AWS, and Google clouds.

The platform provides development-to-production container lifecycle protection by

combining smart default security profiles, behavioral analytics, and in-house research to

create a comprehensive security and compliance report. The company received in

October 2016 a significant funding, led by Microsoft Ventures.

4.4.3. TwistLock

TwistLock scans container images in registries, on workstations like developer

systems, and or on production servers. The tool detects and reports vulnerabilities in the

Linux distribution layer, app frameworks, and in customer application packages.	Users

can configure TwistLock with open-source threat feeds as well as commercial threat

feeds. It also offers access control to actions based on users and groups and a Runtime

defense that monitors and subsequently responds to malicious actions.

4.4.4. IBM BlueMix – Vulnerability Advisor

IBM has the Vulnerability Advisor (VA) for inspecting Docker images. Its

capabilities include: the automatic inventory of packages installed on the Docker image,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 26
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

which then compares them against vulnerability databases, a report of packages that have

vulnerabilities, and the scanning of Ubuntu security notices. Currently, VA is only

available in the BlueMix- hosted VMs.

4.5. Integration of SSTaaS and Notary
The tools described above provide a sample of numerous tools available for

security testing of Docker Images. Alfresco’s website provides a decent overview of

Docker tools available for just Docker auditing and vulnerability assessment (Alfresco,

2015). Some of these tools are still very new. It is hard to keep up as Docker is growing

rapidly and new versions are being released frequently. As there is currently no complete

third-party Docker Security Testing solution available, security architects will need to

integrate any partial SSTaaS results into the overall Docker Security Assurance lifecycle

through Notary and trust delegation to provide a complete security testing solution.

Conclusion	
Many tools related to security testing Docker containers are new with just months

or weeks since release. As Docker is growing rapidly and releasing versions with many

new features (including security improvements) almost weekly, it is a challenging race to

keep any of these tools up to date. An initial goal should be to address audit and

vulnerability assessments of the container ecosystem regardless of whether it is a

development, staging, test or production environment. But it should not stop there.

Beyond that, security practitioners should set an overall goal to have security tests

integrated as part of the CD process and block software delivery if tests fail. Use of

Docker Notary to accomplish this integration seem to be the correct approach. Complete

automation is unfortunately not realistic for many at this point with the state of Docker

development. In the interim, tests can be run parallel to the build with supervision by the

security team. It is then the responsibility of the security team to manually block delivery

if test failures indicate the presence of unacceptable risk.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 27
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

References	
	

Alfresco. (2015, December 3). Docker Security Tools: Audit and Vulnerability

Assessment | Alfresco DevOps Blog [Web log post]. Retrieved from

https://www.alfresco.com/blogs/devops/2015/12/03/docker-security-tools-audit-

and-vulnerability-assessment/

Allspaw, J. (2009, June). 10+ deploys per day: dev and ops cooperation at Flickr. Paper

presented at Velocity, San Jose, CA. Retrieved from

http://www.kitchensoap.com/2009/06/23/slides-for-velocity-talk-2009/

Beda, J. (n.d.). Containers at scale. Paper presented at GlueCon 2014, Denver, Colorado.

Bird, J. (2016). DevOpsSec, Securing Software through Continuous Delivery.

Brigham, R., & Liguori, C. (n.d.). AWS re:Invent 2015 | (DVO202) DevOps at Amazon:

A Look at Our Tools and Processes [Video file]. Retrieved from

https://www.youtube.com/watch?v=esEFaY0FDKc

Camp, D., Czub, C., & Dadidov, M. (n.d.). Out of box exploitation - A security analysis

of OEM updaters. Retrieved from https://duo.com/assets/pdf/out-of-box-

exploitation_oem-updaters.pdf

Cappos, J. (2008). A look in the mirror: attacks on package manager (Doctoral

dissertation, University of Arizona). Retrieved from

https://isis.poly.edu/~jcappos/papers/cappos_mirror_ccs_08.pdf

Cappos, J., Samuel, J., Baker, S., & Hartman, J. H. (2008). A look in the mirror.

Proceedings of the 15th ACM conference on Computer and communications

security - CCS '08. doi:10.1145/1455770.1455841

Center for Internet Security. (2015, April 22). CIS Docker 1.6 benchmark. Retrieved

from

https://benchmarks.cisecurity.org/tools2/docker/cis_docker_1.6_benchmark_v1.0.

0.pdf

Center for Internet Security. (2016, April 12). CIS Docker 1.11.0 Benchmark. Retrieved

from

https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.11.0_Benchmark_

v1.0.0.pdf

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 28
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

CIS Critical Security Controls. (n.d.). Retrieved October 1, 2016, from

https://www.cisecurity.org/critical-controls.cfm

Cole, E., & Tarala, J. (2016). Implementing & Auditing the Critical Security Controls –

In Depth . The SANS Institute.

Conjur, inc. (2016, June 18). Securing Docker With Secrets and Dynamic Traffic

Authorization [Web log post]. Retrieved from https://blog.conjur.net/securing-

docker-with-secrets-and-dynamic-traffic-authorization

Docker - Updated project statistics · GitHub. (n.d.). Retrieved October 2, 2016, from

https://gist.github.com/icecrime/18d72202f4569a0cab1ee60f7583425f

Docker Inc. (2016). Play in a content trust sandbox. Retrieved October 15, 2016, from

http://54.71.194.30:4111/engine/security/trust/trust_sandbox/

Docker Inc. (2016, October). Content trust in Docker. Retrieved October 18, 2016, from

http://docs.master.dockerproject.org/engine/security/trust/content_trust/

Dougal, J. (2015, December 19). The Container Factor | Banking.com [Web log post].

Retrieved from http://www.banking.com/2015/12/29/the-container-

factor/#.WAaCuK33CUl

Farcic, V. (2016). The DevOps 2.0 Toolkit: Automating the Continuous Deployment

Pipeline with Containerized Microservices. CreateSpace Independent Publishing

Platform.

Gallagher, S. (2016). Securing Docker: Learn how to secure your Docker environment

and keep your environments secure irrespective of the threats out there.

Google Inc. (2015, January 1). Google Cloud Platform Blog: Secure hosting of private

Docker repositories in Google Cloud Platform [Web log post]. Retrieved from

https://cloudplatform.googleblog.com/2015/01/secure-hosting-of-private-Docker-

repositories-in-Google-Cloud-Platform.html

Grattafiori, A. (2016). Understanding and hardening Linux containers. Retrieved from

https://www.nccgroup.trust/globalassets/our-

research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_c

ontainers-1-1pdf/

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 29
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Gummaraju, J., Desikan, T., & Turner, Y. (2015, May 1). BanyanOps analyzing

DockerHub. Retrieved from https://banyanops.com/pdf/BanyanOps-

AnalyzingDockerHub-WhitePaper.pdf

Gurkok, C., & Falko, A. (2016, June 27). Salesforce usage of Notary [Digital image].

Retrieved November 3, 2016, from http://image.slidesharecdn.com/dockercon-

2016-cg-securingthecontainerpipelineatsalesforce-sf-6-23-2016-public-

160627171137/95/securing-the-container-pipeline-at-salesforce-by-cem-gurkok-

14-638.jpg?cb=1467047655

Humble, J., & Farley, D. (2011). Continuous delivery. Upper Saddle River, NJ: Addison-

Wesley.

JFrog. (2016, October 5). Working with Docker Content Trust: JFrog Artifactory User

Guide [Web log post]. Retrieved from

https://www.jfrog.com/confluence/display/RTF/Working+with+Docker+Content

+Trust

Microsoft Corporation. (2016, September 26). Microsoft previews Project Springfield, a

cloud-based bug detector - Next at Microsoft [Web log post]. Retrieved from

https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-

springfield-cloud-based-bug-detector/

Monica, D. (2015, August 1). Introducing Docker Content Trust - Docker Blog.

Retrieved from https://blog.docker.com/2015/08/content-trust-docker-1-8/

Red Hat Corporation. (2016, June). A security state of mind: container security. Paper

presented at Usenix, Austin, Texas.

Robinson, A. (2016, December 20). Continuous Security: Implementing the Critical

Controls in a DevOps Environment. Retrieved from

https://www.sans.org/reading-room/whitepapers/critical/continuous-security-

implementing-critical-controls-devops-environment-36552

tuf/SECURITY.md at develop · theupdateframework/tuf · GitHub. (n.d.).

Retrieved October 4, 2016, from

https://github.com/theupdateframework/tuf/blob/develop/SECURITY.md

tuf/tuf-spec.txt at develop · theupdateframework/tuf · GitHub. (n.d.). Retrieved from

https://github.com/theupdateframework/tuf/blob/develop/docs/tuf-spec.txt

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 30
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Virdi, K., Kalyan, R., & Kaur, N. (2015). Software testing as a service (STaaS) using

cloud computing. IJECS, 4(1), 7. Retrieved from http://docplayer.net/12543741-

Software-testing-as-a-service-staas-using-cloud-computing.html

Vliet, J, & Paganelli, F. (2011). Programming Amazon EC2. Sebastopol, CA: O'Reilly

Media.

Vogels, W. (2006, June 30). Learning from the Amazon technology platform. Association

for Computing Machinery (ACM), 4(4), 8. Retrieved from

http://delivery.acm.org/10.1145/1150000/1142065/p14-o_hanlon.pdf

Wang, C. (2016, May 6). Containers 101: Linux containers and Docker explained |

InfoWorld. Retrieved from

http://www.infoworld.com/article/3072929/linux/containers-101-linux-containers-

and-docker-explained.html

Willis, J. (2015, July 31). Docker and the three ways of devOps. Retrieved from

https://www.docker.com/sites/default/files/WP_Docker%20and%20the%203%20

ways%20devops_07.31.2015%20(1).pdf

	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 31
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Appendix section A
Prerequisites Docker Content Trust Sandbox

	
	

To install the Docker Sandbox, docker-compose, docker-engine and docker need

to be installed on the host. The following snippets help to install these prerequisites. It

uses the DevOps2 toolkit to install the Docker dependencies.

	
Kali 20616.1 Prerequisites
Install Vagrant
wget
https://releases.hashicorp.com/vagrant/1.8.6/vagrant_1.8.6_x86_64.deb
dpkg -i ./ vagrant_1.8.6_x86_64.deb
vagrant plugin install vagrant-cachier
Install VirtualBox
wget http://download.virtualbox.org/virtualbox/5.1.6/virtualbox-
5.1_5.1.6-110634~Ubuntu~trusty_amd64.deb
dpkg -i ./ http://download.virtualbox.org/virtualbox/5.1.6/virtualbox-
5.1_5.1.6-110634~Ubuntu~trusty_amd64.deb

REM Windows10 Prerequisites
REM Install Chocolatey
REM Install Vagrant
cinst vagrant -yf --AllowEmtpyChecksums
vagrant plugin install vagrant-cachier
REM Install GIT
cinst git -yf

Clone DevOps2 toolkit
Prereqs: This requires Vagrant and Git to be available on the host
git clone https://github.com/vfarcic/ms-lifecycle.git
cd ms-lifecycle
Add the following line to the Dockerfile:
d.vm.box_version="20160801.0.0"
Start the boxes
vagrant up cd prod
SSH into CD box
vagrant ssh cd

	 	

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 32
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

Appendix section B
Setting up Docker Content Trust Sandbox

	
#Add an entry for the notaryserver to /etc/hosts:

$ sudo sh -c 'echo "127.0.0.1 notaryserver" >> /etc/hosts'

#Add an entry for the sandboxregistry to /etc/hosts

$ sudo sh -c 'echo "127.0.0.1 sandboxregistry" >> /etc/hosts'

#Make the notarysandbox/notarytest directory structure

$ mkdir notarysandbox && cd notarysandbox && mkdir notarytest && cd

notarytest

#Create a Dockerfile with the following content:

FROM debian:jessie

ADD https://master.dockerproject.org/linux/amd64/docker

/usr/bin/docker

RUN chmod +x /usr/bin/docker \

 && apt-get update \

 && apt-get install -y \

 tree \

 vim \

 git \

 ca-certificates \

 --no-install-recommends

WORKDIR /root

RUN git clone -b trust-sandbox

https://github.com/docker/notary.git

RUN cp /root/notary/fixtures/root-ca.crt /usr/local/share/ca-

certificates/root-ca.crt

RUN update-ca-certificates

ENTRYPOINT ["bash"]

Build the test container

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Security Assurance of Docker Containers	 33
	

Stefan	Winkel,	stefan@winkelsnet.com	 	 	

$ docker build -t notarysandbox .

Change to back to the root of your Notarysandbox directory

$ cd ../../notarysandbox

Clone the Notary project

$ git clone -b trust-sandbox https://github.com/docker/notary.git

Clone the distribution project.

$ git clone https://github.com/docker/distribution.git

Change to the Notary project directory.

$ cd notary

Build the server image and run service on the local box

mkdir notary2

$ git clone https://github.com/docker/notary.git

$ cd notary

$ docker-compose up -d

Setup a local version of the Docker Registry v2

Change to the notarysandbox/distribution directory.

$ cd ../../../notarysandbox/distribution

Build the sandboxregistry server

$ docker build -t sandboxregistry .

#Start the sandboxregistry server

$ docker run -p 5005:5005 --name sandboxregistry sandboxregistry &

Start the notarysandbox and link it to the running

notary_notaryserver_1 and sandboxregistry containers. The links allow

communication among the containers.

$ docker run -it -v /var/run/docker.sock:/var/run/docker.sock --link
notary_notaryserver_1:notaryserver --link
sandboxregistry:sandboxregistry notarysandbox

