
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

!!
[VERSION!June!2014]!

!
! !

Creating a Baseline of Process Activity for

Memory Forensics

GIAC (GCFA) Gold Certification

Author:!Gordon!Fraser,!Gordon.fraser@ctipc.com!
Advisor:!Richard!Carbone!

Accepted:!August!19th!2014!!
!

Abstract!
!
A!component!of!memory!forensics!is!the!examination!of!running!processes!looking!
for!anomalies.!!However,!this!assumes!that!the!analyst!can!recognize!the!anomalies.!!
A!frame!of!reference!to!assist!the!analyst!is!the!creation!of!a!baseline!which!
identifies!what!is!expected!to!be!present!in!memory!for!a!given!configuration.!!The!
analyst!can!use!the!baseline!as!a!reference!to!quickly!filter!out!expected!processes!
and!to!focus!on!what!is!not!expected!to!be!there.!!This!paper!covers!the!creation!of!a!
baseline!for!Windows!Server!2008!R2!with!several!different!configurations.!!!
!
!

Creating a Baseline of Process Activity for Memory Forensics! 2
!

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

1. Introduction

SANS’s Advanced Forensic Analysis and Incident Response course (Lee &

Tilbury, 2013) defines a process for the examination of memory to identify indicators of

compromise. It is comprised of the following six steps: identify rogue processes,

analyze process objects, review network artifacts, look for evidence of code injection,

check for signs of rootkits, and dump suspicious processes and drivers.

While identifying rogue processes the analyst is looking at what is running, parent

processes, and when they started. Should a process be there? What is the parent process

and is it what is expected? Did the process start when it was supposed to?

When analyzing process objects, the analyst examines the name of the executable,

the executable’s path, the command line parameters used for starting the process, and the

security identifiers associated with it. Did the executable start from the directory from

which it was expected? Are the command line parameters what we expected to see? Is

the context in which the process is running what is expected? That is, was it run as

System or was it run as a user? The analyst can also look at dynamic link libraries

(DLLs) and kernel modules, which have been loaded into memory.

Next, the analyst examines the network connections that have been established

and which process they are associated with. Are there any unusual network connections?

Are the network connections associated with the process expected to have initiated them?

The common thread for each of the first three steps is looking for anything

unusual. However, how does one know if something is unusual? Or, to turn the question

around, how does one know what is expected? Searches through the literature and the

web can provide some guidance, but it only provides a starting point. One solution is to

establish a baseline of what is expected and use it as a reference of what to expect. Such

a baseline could be used to filter out expected processes allowing the analyst to focus on

the unexpected.

This paper starts out by creating a baseline from the literature, such as Windows

Internals, 6th Edition Part 1 (Russinovich, Solomon & Ionescu, 2012a) and Part 2

(Russinovich, Solomon & Ionescu, 2012b), “Know your Windows Processes or Die

Creating a Baseline of Process Activity for Memory Forensics! 3
!

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

Trying” (Olsen, 2014), and The Art of Memory Forensics (Ligh, Case, Levy, and

Walters, 2014). It then tests the baseline against a series of Windows 2008 R2 servers in

order to validate and refine the baseline.

2. Creating and Validating a Windows Server 2008 R2
Baseline

2.1. Data Collection Approach
2.1.1. Memory Acquisition

The starting point for memory analysis is the acquisition of a memory image.

There are a number of tools that can be used to acquire memory; win64dd.exe from

MoonSols was used for this analysis. Best practice is to capture the memory image to an

external device in order to minimize the impact the capture process has on the system

being analyzed. Writing the image to a disk on the system, which is the subject of the

investigation, could result in important data be overwritten and lost. Given the amount of

memory being captured, this could amount to gigabytes of data. For this analysis, since

we are only interested in the memory image and not the disk contents, memory was

collected by running win64dd.exe from the C:\tmp directory on the hard drive of the

server.

2.1.2. Memory Analysis

There are a number of tools that can be used to analyze the memory image. For

the purpose of this analysis, Volatility was chosen. It is an open source memory analysis

framework written in Python (Volatility Wiki, 2013).

Volatility requires the memory image format be defined when executing

Volatility commands, except when analyzing a Windows XP Service Pack 2 memory

image (Volatility Wiki, 2013). The format used in the analysis, Win2008R2SP1x64,

was determined by running the command: vol.py -f mem.img imageinfo, where

mem.img was the name of the image file being analyzed. An alternative to including the

image format in every Volatility commands is to set the VOLATILITY_PROFILE

environment variable using the command:

Creating a Baseline of Process Activity for Memory Forensics! 4
!

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

export VOLATILITY_PROFILE=Win2008R2SP1x64.

2.1.3. Server Installation

Windows Server 2008 R2 was installed in VMware Workstation 9.0 with

VMware Tools installed. All variations of Windows were installed from the same

installation ISO disk image. The Windows Server 2008 R2 version, obtained using the

command: systeminfo | find “OS”, was 6.1.760 Service Pack 1 Build 7601. Updates

to the operating system were not applied.

2.2. Establishing an Initial Baseline
As a starting point for constructing a baseline of processes in memory one needs a

basic understanding of the core processes loaded by the operating system upon boot and

the processes that are loaded when a user logs on. This has been documented in detail in

Windows Internals, 6th Edition Part 1 (Russinovich, Solomon & Ionescu, 2012a) and

Part 2 (Russinovich, Solomon & Ionescu, 2012b). A summary of the critical Windows

processes can be found in the article “Know your Windows Processes or Die Trying”

(Olsen, 2014), in The Art of Memory Forensics (Ligh, Case, Levy, and Walters, 2014),

as well as on the SANS DFIR Digital Forensics and Incident Response Poster (Pilkington

& Lee, 2014).

The first process that appears in the process list from memory is System. System

is a container for kernel processes (Ligh, Case, Levy, and Walters, 2014). It has a static

process ID of 4 and no parent process. System starts the session manager (smss.exe)

(Olsen, 2014).

Smss.exe is the first user-mode process of the boot sequence. It is responsible for

creating sessions. Two sessions are created on boot. Session 0 contains processes owned

by the system and Windows services. Session 1 contains processes owned by the user.

(Ligh, Case, Levy, and Walters, 2014) Smss.exe starts a copy of the client/server runtime

subsystem (csrss.exe) for each session. It starts the Windows Initialization Process

(wininit.exe) to initialize session 0 and the Windows Logon Process (winlogon.exe) to

initialize user sessions. Each user logon has a unique session ID that is created when

they log on. When creating a new session, smss.exe creates a child instance of itself

Creating a Baseline of Process Activity for Memory Forensics! 5
!

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

which initializes the session and then exits. For this reason, the parent process ID (PPID)

of csrss.exe, wininit.exe, and winlogon.exe do not map back to the process ID (PID) of a

process in memory (Pilkington & Lee, 2014).

Wininit.exe performs the user-mode initialization processes that run in session 0.

These include Local Security Authority (lsass.exe), Load Session Manager Service

(lsm.exe), and Service Control Manager (services.exe). Lsass.exe is responsible for the

local security policy. Lsm.exe manages terminal server sessions, calling smss.exe when a

new session needs to be started (Olsen, 2014).

 Windows, like most operating systems, has processes that are not associated

with a specific interactive user. Instead, they run independent of user logons. These are

services and are started by services.exe. Windows does not run each service as its own

process. Instead, it groups services together with common characteristics into service

groups. These service groups are started using a generic process called svchost.exe. This

is why multiple svchost.exe can be seen running in memory. Svchost.exe is launched

with a -k parameter specifying which service group to start. We will populate the initial

baseline with the major service groups defined in Windows Internals Part 1 (Russinovich,

Solomon & Ionescu, 2012a) listed in Table 1.

Service Group Owner
Local Service Local Service
LocalServiceAndNoImpersonation Local Service
LocalServiceNetworkRestricted Local Service
LocalServiceNoNetwork Local Service
LocalSystemNetworkRestricted Local System
NetworkService Network Service
NetworkServiceAndNoImpersonation Network Service
NetworkServiceNetworkRestricted Network Service
Table 1: Major Service Groupings

An initial baseline for process memory analysis can be built using this description

of the Windows boot process. Table 2 summarizes the processes one would expect to

find in a memory dump for session 0.

Creating a Baseline of Process Activity for Memory Forensics! 6
!

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

Name Parent
Process

Session Event Owner Path

System - 0 Boot Local System %SystemRoot%\System32
smss.exe System 0 Boot Local System %SystemRoot%\System32
csrss.exe smss.exe 0 Boot Local System %SystemRoot%\System32
wininit.exe smss.exe 0 Boot Local System %SystemRoot%\System32
services.exe wininit.exe 0 Boot Local System %SystemRoot%\System32
lsass.exe wininit.exe 0 Boot Local System %SystemRoot%\System32
lsm.exe wininit.exe 0 Boot Local System %SystemRoot%\System32
svchost.exe services.exe 0 Boot %SystemRoot%\System32
Table 2: Initial Process Baseline

Winlogon.exe is responsible for interactive logon processes. It launches the

LogonUI.exe process which manages the user logon interaction, changing of passwords,

and locking and unlocking the workstation (Russinovich, Solomon & Ionescu, 2012a).

Once the user successfully authenticates, the shell process, as defined in the registry

value HKLM\SOFTWARE\Microsoft\Windows NT\Current Version\Winlogon\shell, is

started. The default shell process is Explorer.exe. This is started by the process Userinit,

which ends once explorer.exe is started. Therefore, we should not find its parent process

running. If the user’s logon is via remote desktop, rather than the console, the process

rdpclip.exe will also be found in memory associated with the user’s session (Ligh, Case,

Levy, and Walters, 2014).

There are three states that a user session can be in: user not logged in, user logged

in from console, and user logged in remotely. Table 3 lists the processes that are

expected to be seen for each of these states. It constitutes the initial baseline for user

logon processes. The parent process is not listed because its parent exits and so the PPID

does not track back to a process in memory. Session n refers to any user session since a

user session could be session 1, session 2, etc.

Name Parent
Process

Session Owner Path

User not logged in
csrss.exe n Local System %SystemRoot%\System32
winlogon.exe n Local System %SystemRoot%\System32
LogonUI.exe winlogon.exe n Local System %SystemRoot%\System32

User logged in on console
csrss.exe n Local System %SystemRoot%\System32
winlogon.exe n Local System %SystemRoot%\System32
explorer.exe n User %SystemRoot%

User logged in remotely

Creating a Baseline of Process Activity for Memory Forensics! 7
!

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

Name Parent
Process

Session Owner Path

csrss.exe n Local System %SystemRoot%\System32
winlogon.exe n Local System %SystemRoot%\System32
rdpclip.exe services.exe n User %SystemRoot%\System32
explorer.exe n User %SystemRoot%
Table 3: Initial Process Baseline for logon

In addition to processes, there are three other artifacts of interest when creating a

baseline for memory forensics -- dynamic link libraries, modules, and drivers. Dynamic

link libraries (DLLs) contain code and resources that are shared between multiple

processes. Modules are code that is loaded into the Operating System kernel. Finally,

drivers are the code that allows the computer to communicate with hardware devices

(Ligh, Case, Levy, and Walters, 2014). Since each of these artifacts consists of a large

number of objects, the baseline will be created from the analysis of live systems rather

than from literature searches.

Another set of attributes of interest to the forensic analyst is the network

connections that have been opened up by processes. These can be viewed using the

netscan plugin. The network connections portion of the baseline will be built by

gathering data from live systems and then analyzing it.

2.3. Testing Baseline against Generic Windows Server 2008 R2
Now that we have an initial memory baseline, we can compare it against a

memory image collected from a live system in order to validate and improve it. The first

Windows 2008 R2 server was built using a generic standard edition installation with the

server being part of a workgroup. Since this is a fresh installation from Windows media,

it is assumed that it is “clean”.

2.3.1. Identify Rogue Processes

Following the memory analysis methodology, we will start with Step 1: looking

for rogue processes. Since there should be no rogue process, we are really looking for

processes that are not part of our initial baseline.

The output below provides a process listing using Volatility’s pslist plugin. In

order to fit it on the page the cut command was used to remove some irrelevant output.

Creating a Baseline of Process Activity for Memory Forensics! 8
!

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

To separate the boot process from the logon processes, there was a gap in time between

them. This is evident from the start time column, seen below.

$ vol.py -f win2008r2-01-a.img pslist | cut -c 20-76,84-104
Volatility Foundation Volatility Framework 2.3.1
Name PID PPID Thds Hnds Sess Start
-------------------- ------ ------ ------ -------- ------ --------------------
System 4 0 76 460 ------ 2014-06-22 13:26:36
smss.exe 232 4 2 29 ------ 2014-06-22 13:26:36
csrss.exe 324 316 9 335 0 2014-06-22 13:26:42
csrss.exe 376 368 10 189 1 2014-06-22 13:26:43
wininit.exe 384 316 3 79 0 2014-06-22 13:26:43
winlogon.exe 420 368 3 96 1 2014-06-22 13:26:43
services.exe 480 384 8 189 0 2014-06-22 13:26:44
lsass.exe 488 384 6 530 0 2014-06-22 13:26:45
lsm.exe 496 384 10 145 0 2014-06-22 13:26:45
svchost.exe 588 480 11 345 0 2014-06-22 13:26:48
svchost.exe 656 480 6 233 0 2014-06-22 13:26:49
svchost.exe 744 480 13 288 0 2014-06-22 13:26:49
svchost.exe 788 480 26 824 0 2014-06-22 13:26:49
svchost.exe 836 480 10 508 0 2014-06-22 13:26:50
svchost.exe 884 480 7 198 0 2014-06-22 13:26:51
svchost.exe 928 480 16 429 0 2014-06-22 13:26:51
svchost.exe 216 480 17 289 0 2014-06-22 13:26:53
spoolsv.exe 904 480 13 313 0 2014-06-22 13:26:54
svchost.exe 1040 480 3 46 0 2014-06-22 13:26:56
vmtoolsd.exe 1096 480 9 253 0 2014-06-22 13:26:56
TPAutoConnSvc. 1292 480 10 140 0 2014-06-22 13:26:59
dllhost.exe 1456 480 13 194 0 2014-06-22 13:27:01
msdtc.exe 1612 480 12 147 0 2014-06-22 13:27:03
svchost.exe 1752 480 5 67 0 2014-06-22 13:29:01
taskhost.exe 1276 480 5 118 1 2014-06-22 13:34:03
TPAutoConnect. 1328 1292 5 126 1 2014-06-22 13:34:03
conhost.exe 1556 376 1 30 1 2014-06-22 13:34:03
dwm.exe 1116 884 3 65 1 2014-06-22 13:34:03
explorer.exe 848 968 15 478 1 2014-06-22 13:34:03
vmtoolsd.exe 2012 848 7 184 1 2014-06-22 13:34:06
cmd.exe 332 848 1 20 1 2014-06-22 13:39:31
conhost.exe 1228 376 2 36 1 2014-06-22 13:39:31
win64dd.exe 868 332 2 49 1 2014-06-22 13:52:33

The bolded lines above identify those processes that are not already present in the

baseline. These ones need to be examined more closely.

The servers are running on VMware Workstation, so there may be processes

associated with VMware that are not part of the normal generic Windows installation.

Indeed, we find three processes -- TPAutoConnSvc.exe, TPAutoConnect.exe, and

vmtoolsd.exe. A clue to this association to VMware is given when examining the process

information in more detail. Each of these processes is being run out of the directory

C:\Program Files\VMware\VMware Tools\ as shown in the output below from the dlllist

plugin.

Creating a Baseline of Process Activity for Memory Forensics! 9
!

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

$ vol.py -f win2008r2-01-a.img dlllist -p 1096 | grep -B 1 -i "command line"
Volatility Foundation Volatility Framework 2.3.1
vmtoolsd.exe pid: 1096
Command line : "C:\Program Files\VMware\VMware Tools\vmtoolsd.exe"

$ vol.py -f win2008r2-01-a.img dlllist -p 1292 | grep -B 1 -i "command line"
Volatility Foundation Volatility Framework 2.3.1
TPAutoConnSvc. pid: 1292
Command line : "C:\Program Files\VMware\VMware Tools\TPAutoConnSvc.exe"

$ vol.py -f win2008r2-01-a.img dlllist -p 1328 | grep -B 1 -i "command line"
Volatility Foundation Volatility Framework 2.3.1
TPAutoConnect. pid: 1328
Command line : TPAutoConnect.exe -q -i vmware -a COM1 -F 30

The VMware Knowledge base (2014) identifies TPAutoConnect.exe and

TPAutoConnSvc.exe as being started when the Virtual Printing module is installed. We

can see from the pslist output that TPAutoConnSvc.exe is started by the services control

manager (SCM) in session 0. TPAutoConnect.exe is started as part of the initialization of

session 1 by TPAutoConnSvc.exe. The VMware tools service (vmtoolsd.exe) is installed

on guest Windows operating systems (VMware, 2011). From the output of pslist, we see

that there is an instance of vmtoolsd.exe running in both session 0 and session 1. Thus,

these processes are added to the baseline.

Some memory artifacts are introduced by a user logon. LogonUI.exe is not

present because a user is logged in. Instead, several processes associated with a

successful logon are present including: taskhost.exe, conhost.exe, and dwm.exe. These

processes where not part of the initial baseline. Table 4 provides a revised list of the

processes that are started when a user logs on.

Name Parent Process Session Owner Path
User not logged in

csrss.exe n Local
System

%SystemRoot%\System32

winlogon.exe n Local
System

%SystemRoot%\System32

LogonUI.exe winlogon.exe n Local
System

%SystemRoot%\System32

User logged in on console
csrss.exe n Local

System
%SystemRoot%\System32

winlogon.exe n Local
System

%SystemRoot%\System32

taskhost.exe services.exe n user %SystemRoot%\System32
TPAutoConnect.exe TPAutoConnSvc.exe n user
conhost.exe crsrr.exe n user %SystemRoot%\System32

Creating a Baseline of Process Activity for Memory Forensics! 1
0 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

Name Parent Process Session Owner Path
dwm.exe svchost.exe n user %SystemRoot%\System32
explorer.exe n user %SystemRoot%
vmtoolsd.exe explorer.exe n user C:\Program

Files\VMware\VMware
Tools\

User logged in remotely
csrss.exe n Local

System
%SystemRoot%\System32

winlogon.exe n Local
System

%SystemRoot%\System32

taskhost.exe services.exe n user %SystemRoot%\System32
TPAutoConnect.exe TPAutoConnSvc.exe n user C:\Program

Files\VMware\VMware
Tools\

conhost.exe crsrr.exe n user %SystemRoot%\System32
dwm.exe svchost.exe n user %SystemRoot%\System32
rdpclip.exe services.exe n user %SystemRoot%\System32
explorer.exe n user %SystemRoot%
vmtoolsd.exe explorer.exe n user C:\Program

Files\VMware\VMware
Tools\

Table 4: Revised Process Baseline for logon

Another group of artifacts is associated with an actual memory acquisition.

Cmd.exe was run in administrative mode (PID - 332) to get a command window from

which win64dd.exe (PID 868) was started to capture the memory image. When cmd.exe

is run, Windows also starts up a supporting process, console host (conhost.exe - PID

1228). While these last processes are not part of the process baseline, they are taken into

account when analyzing the memory image.

We also see three more processes: spoolsvc.exe, dllhost.exe, and msdtc.exe, which

were started by services.exe that are not part of the initial baseline. Dllhost.exe is

associated with the management of Component Object Model (COM) objects (Startup

Programs Database, 2014c). Msdtc.exe is the Distributed Transaction Coordinator

(Startup Programs Database, 2014d). Spoolsvc.exe is the spooler service and is

associated with printing (Startup Programs Database, 2014e).

2.3.2. Analyze Process Objects

Step 2 in the memory analysis methodology is to examine process objects. We

will use several Volatility plugins to do this starting with the dlllist plugin. Since it is

Creating a Baseline of Process Activity for Memory Forensics! 1
1 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

very verbose, we ran the command limiting its output to one process, smss.exe, which has

a PID of 232. The output of this command provides information about the command

used to initiate the process as well as the DLLs associated with the process, as seen

below.

$ vol.py -f win2008r2-01-a.img -p 232 dlllist
Volatility Foundation Volatility Framework 2.3.1
**
smss.exe pid: 232
Command line : \SystemRoot\System32\smss.exe

Base Size LoadCount Path
------------------ -------------- -------------- ----
0x0000000047a50000 0x20000 0xffff \SystemRoot\System32\smss.exe
0x0000000077120000 0x1a9000 0xffff C:\Windows\SYSTEM32\ntdll.dll

Since what we are interested in are the names of the process, the process ID, and

the command line used to start the process, we can use grep to create an abbreviated

output from the dlllist plugin that only prints out the lines with the PID and the command

line, as seen below.

$ vol.py -f win2008r2-01-a.img dlllist | grep -B 1 -i "command line"
Volatility Foundation Volatility Framework 2.3.1
smss.exe pid: 232
Command line : \SystemRoot\System32\smss.exe
--
csrss.exe pid: 324
Command line : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows
SharedSection=1024,20480,768 Windows=On SubSystemType=Windows
ServerDll=basesrv,1 ServerDll=winsrv:UserServerDllInitialization,3
ServerDll=winsrv:ConServerDllInitialization,2 ServerDll=sxssrv,4
ProfileControl=Off MaxRequestThreads=16
--
csrss.exe pid: 376
Command line : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows
SharedSection=1024,20480,768 Windows=On SubSystemType=Windows
ServerDll=basesrv,1 ServerDll=winsrv:UserServerDllInitialization,3
ServerDll=winsrv:ConServerDllInitialization,2 ServerDll=sxssrv,4
ProfileControl=Off MaxRequestThreads=16
--
wininit.exe pid: 384
Command line : wininit.exe
--
winlogon.exe pid: 420
Command line : winlogon.exe
--
services.exe pid: 480
Command line : C:\Windows\system32\services.exe
--
lsass.exe pid: 488
Command line : C:\Windows\system32\lsass.exe
--
lsm.exe pid: 496
Command line : C:\Windows\system32\lsm.exe
--

Creating a Baseline of Process Activity for Memory Forensics! 1
2 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

svchost.exe pid: 588
Command line : C:\Windows\system32\svchost.exe -k DcomLaunch
--
svchost.exe pid: 656
Command line : C:\Windows\system32\svchost.exe -k RPCSS
--
svchost.exe pid: 744
Command line : C:\Windows\System32\svchost.exe -k LocalServiceNetworkRestricted
--
svchost.exe pid: 788
Command line : C:\Windows\system32\svchost.exe -k netsvcs
--
svchost.exe pid: 836
Command line : C:\Windows\system32\svchost.exe -k LocalService
--
svchost.exe pid: 884
Command line : C:\Windows\System32\svchost.exe -k LocalSystemNetworkRestricted
--
svchost.exe pid: 928
Command line : C:\Windows\system32\svchost.exe -k NetworkService
--
svchost.exe pid: 216
Command line : C:\Windows\system32\svchost.exe -k LocalServiceNoNetwork
--
spoolsv.exe pid: 904
Command line : C:\Windows\System32\spoolsv.exe
--
svchost.exe pid: 1040
Command line : C:\Windows\system32\svchost.exe -k regsvc
--
vmtoolsd.exe pid: 1096
Command line : "C:\Program Files\VMware\VMware Tools\vmtoolsd.exe"
--
TPAutoConnSvc. pid: 1292
Command line : "C:\Program Files\VMware\VMware Tools\TPAutoConnSvc.exe"
--
dllhost.exe pid: 1456
Command line : C:\Windows\system32\dllhost.exe /Processid:{02D4B3F1-FD88-11D1-
960D-00805FC79235}
--
msdtc.exe pid: 1612
Command line : C:\Windows\System32\msdtc.exe
--
svchost.exe pid: 1752
Command line : C:\Windows\system32\svchost.exe -k
LocalServiceAndNoImpersonation
--
taskhost.exe pid: 1276
Command line : "taskhost.exe"
--
TPAutoConnect. pid: 1328
Command line : TPAutoConnect.exe -q -i vmware -a COM1 -F 30
--
conhost.exe pid: 1556
Command line : \??\C:\Windows\system32\conhost.exe
--
dwm.exe pid: 1116
Command line : "C:\Windows\system32\Dwm.exe"
--
explorer.exe pid: 848
Command line : C:\Windows\Explorer.EXE
--
vmtoolsd.exe pid: 2012

Creating a Baseline of Process Activity for Memory Forensics! 1
3 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

Command line : "C:\Program Files\VMware\VMware Tools\vmtoolsd.exe" -n vmusr
--
cmd.exe pid: 332
Command line : "C:\Windows\system32\cmd.exe"
--
conhost.exe pid: 1228
Command line : \??\C:\Windows\system32\conhost.exe
--
win64dd.exe pid: 868
Command line : win64dd /f win2008r2-01-a.img

We compare the output of the dlllist plugin to our baseline to validate the

commands used to start processes and to identify the service groups started by

services.exe. In doing so, we quickly identify three service groups: DcomLaunch,

RPCSS, and regsvc; all of which are not in the baseline and need to be added.

The process analysis step includes checking to make sure the process is running

under the expected account. This information is available using the getsid Volatility

plugin. The example below shows the output for one process with a PID of 488.

$ vol.py -f win2008r2-01-a.img -p 488 getsids
Volatility Foundation Volatility Framework 2.3.1
lsass.exe (488): S-1-5-18 (Local System)
lsass.exe (488): S-1-5-32-544 (Administrators)
lsass.exe (488): S-1-1-0 (Everyone)
lsass.exe (488): S-1-5-11 (Authenticated Users)
lsass.exe (488): S-1-16-16384 (System Mandatory Level)

The Volatility output can be shortened using the uniq command as shown below.

Here is a list of each process and the account it runs under. This technique of using uniq

is not perfect. A few duplicate lines show up for System, but it still simplifies the

analysis process.

$ vol.py -f win2008r2-01-a.img getsids | uniq -w 18
Volatility Foundation Volatility Framework 2.3.1
System (4): S-1-5-18 (Local System)
System (4): S-1-1-0 (Everyone)
System (4): S-1-5-11 (Authenticated Users)
System (4): S-1-16-16384 (System Mandatory Level)
smss.exe (232): S-1-5-18 (Local System)
csrss.exe (324): S-1-5-18 (Local System)
csrss.exe (376): S-1-5-18 (Local System)
wininit.exe (384): S-1-5-18 (Local System)
winlogon.exe (420): S-1-5-18 (Local System)
services.exe (480): S-1-5-18 (Local System)
lsass.exe (488): S-1-5-18 (Local System)
lsm.exe (496): S-1-5-18 (Local System)
svchost.exe (588): S-1-5-18 (Local System)
svchost.exe (656): S-1-5-20 (NT Authority)
svchost.exe (744): S-1-5-19 (NT Authority)
svchost.exe (788): S-1-5-18 (Local System)
svchost.exe (836): S-1-5-19 (NT Authority)
svchost.exe (884): S-1-5-18 (Local System)

Creating a Baseline of Process Activity for Memory Forensics! 1
4 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

svchost.exe (928): S-1-5-20 (NT Authority)
svchost.exe (216): S-1-5-19 (NT Authority)
spoolsv.exe (904): S-1-5-18 (Local System)
svchost.exe (1040): S-1-5-19 (NT Authority)
vmtoolsd.exe (1096): S-1-5-18 (Local System)
TPAutoConnSvc. (1292): S-1-5-18 (Local System)
dllhost.exe (1456): S-1-5-18 (Local System)
msdtc.exe (1612): S-1-5-20 (NT Authority)
svchost.exe (1752): S-1-5-19 (NT Authority)
taskhost.exe (1276): S-1-5-21-2236604341-3981238657-2714753860-1000
TPAutoConnect. (1328): S-1-5-21-2236604341-3981238657-2714753860-1000
conhost.exe (1556): S-1-5-21-2236604341-3981238657-2714753860-1000
dwm.exe (1116): S-1-5-21-2236604341-3981238657-2714753860-1000
explorer.exe (848): S-1-5-21-2236604341-3981238657-2714753860-1000
vmtoolsd.exe (2012): S-1-5-21-2236604341-3981238657-2714753860-1000
cmd.exe (332): S-1-5-21-2236604341-3981238657-2714753860-1000
conhost.exe (1228): S-1-5-21-2236604341-3981238657-2714753860-1000
win64dd.exe (868): S-1-5-21-2236604341-3981238657-2714753860-1000

One item of note concerning the above output is that two SIDs are listed by

Volatility as NT Authority. A better translation, more in line with the literature, is S-1-5-

19 translates to Local Service and S-1-5-20 translates to Network Service (Microsoft

Knowledge Base, 2013a). The SIDs with the long list of numbers ending in “-1000” are

associated with a user. Thus, processes such as taskhost.exe, cmd.exe, and win64dd.exe

are running in the user’s context.

As expected, different services started using svchost have different SIDs based on

the requirements of the service group. Moreover, processes associated with the logged

on user are associated with a user SID.

Another memory artifact to analyze is the DLLs. A complete list of DLLs

generated by the dlllist plugin is rather lengthy. As seen earlier, it also includes other

information in addition to the DLLs. We can take advantage of the fact that each line

listing a DLL begins with a “0x” and produce output from the dlllist plugin which only

lists the DLLs. The following command lists those lines containing a DLL and then

counts them. In all, 1,411 DLLs were identified.

$ vol.py -f win2008r2-01-a.img dlllist | grep "^0x" | cut -c 20-37,57- | wc -l
Volatility Foundation Volatility Framework 2.3.1
1411

By examining the list of DLLs, it becomes clear very quickly that there are many

duplicates which exist because many different processes use the same DLL. By sorting

the list and then only displaying unique lines and ignoring case, we can trim the list down

Creating a Baseline of Process Activity for Memory Forensics! 1
5 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

considerably. The command below shows a reduction to only 370 lines from the memory

image.

$ vol.py -f win2008r2-01-a.img dlllist | grep "^0x" | cut -c 20-37,57- | sort |
uniq -i | wc -l
Volatility Foundation Volatility Framework 2.3.1
370

For our baseline, rather than creating a table listing 370 items, we created a file

that can then be compared to the output of the same command run against another

memory image to look for DLLs not listed in the baseline. The file should be reviewed to

make sure that there are no entries that do not belong. One entry, win64dd.exe, should be

removed since it was introduced as part of the memory capture process. The command

used to create the DLL baseline is:

$ vol.py -f win2008r2-01-a.img dlllist | grep "^0x" | cut -c 20-37,57- | sort |
uniq -i > dll-baseline-01.lst
Volatility Foundation Volatility Framework 2.3.

Similarly, Volatility provides a plugin to list kernel modules in memory called

modules. Reviewing the output reveals 147 modules in memory. A similar approach was

used to create a module baseline as shown below.

$ vol.py -f win2008r2-01-a.img modules | cut -c 20-40,60- | grep "0x" | sort |
uniq -i | wc -l
Volatility Foundation Volatility Framework 2.3.1
147

$ vol.py -f win2008r2-01-a.img modules | cut -c 20-40,60- | grep "0x" | sort |
uniq -i > module-base-01.lst
Volatility Foundation Volatility Framework 2.3.1

$ cat module-base-01.lst | wc -l
147

The file should be reviewed to make sure that there are no entries that do not

belong. Win64dd.sys was removed since it is an artifact of the memory capture process.

2.3.3. Review Network Artifacts

Starting with Windows Vista and Windows Server 2008 Microsoft changed the

dynamic port range assignment from 1025 through 5000 to 49152 through 65535, as per

the IANA recommendation (Microsoft Knowledge Base, 2013c). The Volatility netscan

plugin provides a list of open ports and which process owns it. In the case of each

Creating a Baseline of Process Activity for Memory Forensics! 1
6 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

svchost.exe instance, further analysis needs to be done to determine which service group

owns it. For example, consider the following:

$ vol.py -f win2008r2-01-a.img netscan | cut -c 12-18,21-40,51-63,88-92,94-112
| uniq -w 20
Volatility Foundation Volatility Framework 2.3.1
Proto Local Address Foreign Addr Pid Owner
TCPv4 0.0.0.0:49156 0.0.0.0:0 480 services.exe
TCPv6 :::49156 :::0 480 services.exe
TCPv4 0.0.0.0:445 0.0.0.0:0 4 System
TCPv6 :::445 :::0 4 System
TCPv4 0.0.0.0:47001 0.0.0.0:0 4 System
TCPv6 :::47001 :::0 4 System
TCPv4 0.0.0.0:49153 0.0.0.0:0 744 svchost.exe
TCPv6 :::49153 :::0 744 svchost.exe
TCPv4 0.0.0.0:49154 0.0.0.0:0 788 svchost.exe
TCPv4 192.168.139.129:139 0.0.0.0:0 4 System
TCPv4 0.0.0.0:135 0.0.0.0:0 656 svchost.exe
TCPv6 :::135 :::0 656 svchost.exe
TCPv4 0.0.0.0:49152 0.0.0.0:0 384 wininit.exe
TCPv6 :::49152 :::0 384 wininit.exe
TCPv4 0.0.0.0:49155 0.0.0.0:0 488 lsass.exe
TCPv6 :::49155 :::0 488 lsass.exe
TCPv4 0.0.0.0:49154 0.0.0.0:0 788 svchost.exe
TCPv6 :::49154 :::0 788 svchost.exe
UDPv4 0.0.0.0:5355 *:* 928 svchost.exe
UDPv4 0.0.0.0:0 *:* 928 svchost.exe
UDPv6 :::0 *:* 928 svchost.exe
UDPv4 0.0.0.0:123 *:* 836 svchost.exe
UDPv6 :::123 *:* 836 svchost.exe
UDPv4 0.0.0.0:123 *:* 836 svchost.exe
UDPv4 0.0.0.0:0 *:* 836 svchost.exe
UDPv6 :::0 *:* 836 svchost.exe
UDPv4 0.0.0.0:0 *:* 836 svchost.exe
UDPv4 192.168.139.129:137 *:* 4 System
UDPv4 0.0.0.0:5355 *:* 928 svchost.exe
UDPv6 :::5355 *:* 928 svchost.exe

Table 5 provides a list of ports opened by Windows Server 2008 R2 as identified

by the netscan plugin. This list establishes the initial baseline and includes some services

that an organization might disable for security reasons including Server Message Block

(SMB) and NETBIOS.

Port Protocol Service/Process
123 udp svchost.exe

(LocalService)
Windows Time Services

135 tcp RPCSS Terminal Services
137 udp System NETBIOS Name Resolution
138 tcp System NETBIOS Datagram Service
139 tcp System NETBIOS Session Service
445 tcp System SMB

Port Protocol Service/Process

Creating a Baseline of Process Activity for Memory Forensics! 1
7 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

5355 udp svchost.exe
(NetworkService)

Local Link Multicast Name Resolution
(LLMNR)

47001 tcp System Windows Remote Management listener
(WINRM)

49152 tcp wininit.exe
49153 tcp svchost.exe

(LocalServiceNetworkRestricted)

49154 tcp svchost.exe
(NetworkService)

49155 tcp lsass.exe
49156 tcp services.exe
Table 5: Initial Baseline of open ports

2.4. Testing the Baseline against a Domain Attached Windows
Server 2008 R2

We repeat the process again using the new revised baseline against another

system to further validate and refine it. The second Windows Server 2008 R2 server for

testing the baseline against was built using the same configuration as the first with the

exception that is was attached to a domain and remote logon was enabled to see what

differences exist as a result. In this image two users have logged into the server, one

remotely, using Microsoft Terminal Server Connection (mstsc) and one via the console.

The memory image was created by the remote user.

2.4.1. Identify Rogue Processes

Our analysis starts by running the pslist plugin to get a listing of processes so we

can identify rogue processes. Consider the following:

$ vol.py -f win2008r2-03-s1.img pslist | cut -c 20-53,70-76,84-114
Volatility Foundation Volatility Framework 2.3.1
Name PID PPID Sess Start
-------------------- ------ ------ ------ ------------------------------
System 4 0 ------ 2014-07-28 01:26:59 UTC+0000
smss.exe 224 4 ------ 2014-07-28 01:26:59 UTC+0000
csrss.exe 316 308 0 2014-07-28 01:27:04 UTC+0000
wininit.exe 368 308 0 2014-07-28 01:27:04 UTC+0000
services.exe 472 368 0 2014-07-28 01:27:05 UTC+0000
lsass.exe 480 368 0 2014-07-28 01:27:05 UTC+0000
lsm.exe 488 368 0 2014-07-28 01:27:05 UTC+0000
svchost.exe 584 472 0 2014-07-28 01:27:10 UTC+0000
svchost.exe 660 472 0 2014-07-28 01:27:11 UTC+0000
svchost.exe 740 472 0 2014-07-28 01:27:11 UTC+0000
svchost.exe 796 472 0 2014-07-28 01:27:11 UTC+0000
svchost.exe 848 472 0 2014-07-28 01:27:12 UTC+0000
svchost.exe 888 472 0 2014-07-28 01:27:12 UTC+0000
svchost.exe 932 472 0 2014-07-28 01:27:13 UTC+0000
svchost.exe 236 472 0 2014-07-28 01:27:14 UTC+0000

Creating a Baseline of Process Activity for Memory Forensics! 1
8 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

spoolsv.exe 324 472 0 2014-07-28 01:27:15 UTC+0000
svchost.exe 1092 472 0 2014-07-28 01:27:16 UTC+0000
vmtoolsd.exe 1148 472 0 2014-07-28 01:27:16 UTC+0000
svchost.exe 1412 472 0 2014-07-28 01:27:18 UTC+0000
svchost.exe 1472 472 0 2014-07-28 01:27:18 UTC+0000
TPAutoConnSvc. 1508 472 0 2014-07-28 01:27:19 UTC+0000
dllhost.exe 1776 472 0 2014-07-28 01:27:22 UTC+0000
msdtc.exe 1896 472 0 2014-07-28 01:27:23 UTC+0000
svchost.exe 1204 472 0 2014-07-28 01:29:19 UTC+0000
sppsvc.exe 1068 472 0 2014-08-02 20:10:58 UTC+0000
TrustedInstall 252 472 0 2014-08-02 20:11:00 UTC+0000
csrss.exe 3020 2956 1 2014-08-02 20:16:53 UTC+0000
winlogon.exe 2896 2956 1 2014-08-02 20:16:53 UTC+0000
taskhost.exe 1264 472 1 2014-08-02 20:17:25 UTC+0000
dwm.exe 2328 888 1 2014-08-02 20:17:25 UTC+0000
explorer.exe 1284 3068 1 2014-08-02 20:17:25 UTC+0000
vmtoolsd.exe 1556 1284 1 2014-08-02 20:17:25 UTC+0000
TPAutoConnect. 2712 1508 1 2014-08-02 20:17:25 UTC+0000
conhost.exe 2856 3020 1 2014-08-02 20:17:25 UTC+0000
csrss.exe 2232 376 2 2014-08-02 20:18:27 UTC+0000
winlogon.exe 2124 376 2 2014-08-02 20:18:27 UTC+0000
taskhost.exe 2116 472 2 2014-08-02 20:18:29 UTC+0000
rdpclip.exe 2108 1412 2 2014-08-02 20:18:29 UTC+0000
dwm.exe 2088 888 2 2014-08-02 20:18:29 UTC+0000
explorer.exe 2708 1388 2 2014-08-02 20:18:29 UTC+0000
vmtoolsd.exe 1124 2708 2 2014-08-02 20:18:29 UTC+0000
TPAutoConnect. 2012 1508 2 2014-08-02 20:18:30 UTC+0000
conhost.exe 672 2232 2 2014-08-02 20:18:30 UTC+0000
cmd.exe 1268 2708 2 2014-08-02 20:18:40 UTC+0000
conhost.exe 2904 2232 2 2014-08-02 20:18:40 UTC+0000
win64dd.exe 2836 1268 2 2014-08-02 20:19:53 UTC+0000

Two new processes appear in session 0 -- sppsvc.exe and TrustedInstall -- both of

which were started by services.exe. Sppsvc.exe is Microsoft’s software protection service

and is associated with managing digital licenses for Windows and Microsoft applications

(Startup Programs Database, 2014a). TrustedInstaller.exe is the Windows Modules

Installer and is associated with Windows Updates (Startup Programs Database, 2014b).

These processes may not have shown up in our initial baseline because it was created

soon after system boot, while they were started later.

In examining the two user sessions 1 and 2, we see that they are consistent with

the baseline.

2.4.2. Analyze Process Objects

Once again, we start the analysis of the process objects by running the dlllist

plugin.

$ vol.py -f win2008r2-03-s1.img dlllist | grep -B 1 -i "command line"
Volatility Foundation Volatility Framework 2.3.1
smss.exe pid: 224
Command line : \SystemRoot\System32\smss.exe

Creating a Baseline of Process Activity for Memory Forensics! 1
9 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

--
csrss.exe pid: 316
Command line : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows
SharedSection=1024,20480,768 Windows=On SubSystemType=Windows
ServerDll=basesrv,1 ServerDll=winsrv:UserServerDllInitialization,3
ServerDll=winsrv:ConServerDllInitialization,2 ServerDll=sxssrv,4
ProfileControl=Off MaxRequestThreads=16
--
wininit.exe pid: 368
Command line : wininit.exe
--
services.exe pid: 472
Command line : C:\Windows\system32\services.exe
--
lsass.exe pid: 480
Command line : C:\Windows\system32\lsass.exe
--
lsm.exe pid: 488
Command line : C:\Windows\system32\lsm.exe
--
svchost.exe pid: 584
Command line : C:\Windows\system32\svchost.exe -k DcomLaunch
--
svchost.exe pid: 660
Command line : C:\Windows\system32\svchost.exe -k RPCSS
--
svchost.exe pid: 740
Command line : C:\Windows\System32\svchost.exe -k LocalServiceNetworkRestricted
--
svchost.exe pid: 796
Command line : C:\Windows\system32\svchost.exe -k netsvcs
--
svchost.exe pid: 848
Command line : C:\Windows\system32\svchost.exe -k LocalService
--
svchost.exe pid: 888
Command line : C:\Windows\System32\svchost.exe -k LocalSystemNetworkRestricted
--
svchost.exe pid: 932
Command line : C:\Windows\system32\svchost.exe -k NetworkService
--
svchost.exe pid: 236
Command line : C:\Windows\system32\svchost.exe -k LocalServiceNoNetwork
--
spoolsv.exe pid: 324
Command line : C:\Windows\System32\spoolsv.exe
--
svchost.exe pid: 1092
Command line : C:\Windows\system32\svchost.exe -k regsvc
--
vmtoolsd.exe pid: 1148
Command line : "C:\Program Files\VMware\VMware Tools\vmtoolsd.exe"
--
svchost.exe pid: 1412
Command line : C:\Windows\System32\svchost.exe -k termsvcs
--
svchost.exe pid: 1472
Command line : C:\Windows\system32\svchost.exe -k
NetworkServiceNetworkRestricted
--
TPAutoConnSvc. pid: 1508
Command line : "C:\Program Files\VMware\VMware Tools\TPAutoConnSvc.exe"
--

Creating a Baseline of Process Activity for Memory Forensics! 2
0 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

dllhost.exe pid: 1776
Command line : C:\Windows\system32\dllhost.exe /Processid:{02D4B3F1-FD88-11D1-
960D-00805FC79235}
--
msdtc.exe pid: 1896
Command line : C:\Windows\System32\msdtc.exe
--
svchost.exe pid: 1204
Command line : C:\Windows\system32\svchost.exe -k
LocalServiceAndNoImpersonation
--
sppsvc.exe pid: 1068
Command line : C:\Windows\system32\sppsvc.exe
--
TrustedInstall pid: 252
Command line : C:\Windows\servicing\TrustedInstaller.exe
--
csrss.exe pid: 3020
Command line : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows
SharedSection=1024,20480,768 Windows=On SubSystemType=Windows
ServerDll=basesrv,1 ServerDll=winsrv:UserServerDllInitialization,3
ServerDll=winsrv:ConServerDllInitialization,2 ServerDll=sxssrv,4
ProfileControl=Off MaxRequestThreads=16
--
winlogon.exe pid: 2896
Command line : winlogon.exe
--
taskhost.exe pid: 1264
Command line : "taskhost.exe"
--
dwm.exe pid: 2328
Command line : "C:\Windows\system32\Dwm.exe"
--
explorer.exe pid: 1284
Command line : C:\Windows\Explorer.EXE
--
vmtoolsd.exe pid: 1556
Command line : "C:\Program Files\VMware\VMware Tools\vmtoolsd.exe" -n vmusr
--
TPAutoConnect. pid: 2712
Command line : TPAutoConnect.exe -q -i vmware -a COM1 -F 30
--
conhost.exe pid: 2856
Command line : \??\C:\Windows\system32\conhost.exe
--
csrss.exe pid: 2232
Command line : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows
SharedSection=1024,20480,768 Windows=On SubSystemType=Windows
ServerDll=basesrv,1 ServerDll=winsrv:UserServerDllInitialization,3
ServerDll=winsrv:ConServerDllInitialization,2 ServerDll=sxssrv,4
ProfileControl=Off MaxRequestThreads=16
--
winlogon.exe pid: 2124
Command line : winlogon.exe
--
taskhost.exe pid: 2116
Command line : "taskhost.exe"
--
rdpclip.exe pid: 2108
Command line : rdpclip
--
dwm.exe pid: 2088
Command line : "C:\Windows\system32\Dwm.exe"

Creating a Baseline of Process Activity for Memory Forensics! 2
1 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

--
explorer.exe pid: 2708
Command line : C:\Windows\Explorer.EXE
--
vmtoolsd.exe pid: 1124
Command line : "C:\Program Files\VMware\VMware Tools\vmtoolsd.exe" -n vmusr
--
TPAutoConnect. pid: 2012
Command line : TPAutoConnect.exe -q -i vmware -a COM1 -F 30
--
conhost.exe pid: 672
Command line : \??\C:\Windows\system32\conhost.exe
--
cmd.exe pid: 1268
Command line : "C:\Windows\system32\cmd.exe"
--
conhost.exe pid: 2904
Command line : \??\C:\Windows\system32\conhost.exe
--
win64dd.exe pid: 2836
Command line : win64dd /f win2008r2-03-s1.img

Two new services appear in the memory image: termsvcs and service group

NetworkServiceNetworkRestricted. These would be expected upon having enabling

remote desktop. All of the other processes are in our baseline and the paths for the

executables are correct.

Running the getsids plugin provides the account under which the processes are

running. Termsvcs and service group NetworkServiceNetworkRestricted are running

under network service. All other processes are running under the expected accounts.

$ vol.py -f win2008r2-03-s1.img getsids | uniq -w 18
Volatility Foundation Volatility Framework 2.3.1
System (4): S-1-5-18 (Local System)
System (4): S-1-1-0 (Everyone)
System (4): S-1-5-11 (Authenticated Users)
System (4): S-1-16-16384 (System Mandatory Level)
smss.exe (224): S-1-5-18 (Local System)
csrss.exe (316): S-1-5-18 (Local System)
wininit.exe (368): S-1-5-18 (Local System)
services.exe (472): S-1-5-18 (Local System)
lsass.exe (480): S-1-5-18 (Local System)
lsm.exe (488): S-1-5-18 (Local System)
svchost.exe (584): S-1-5-18 (Local System)
svchost.exe (660): S-1-5-20 (NT Authority)
svchost.exe (740): S-1-5-19 (NT Authority)
svchost.exe (796): S-1-5-18 (Local System)
svchost.exe (848): S-1-5-19 (NT Authority)
svchost.exe (888): S-1-5-18 (Local System)
svchost.exe (932): S-1-5-20 (NT Authority)
svchost.exe (236): S-1-5-19 (NT Authority)
spoolsv.exe (324): S-1-5-18 (Local System)
svchost.exe (1092): S-1-5-19 (NT Authority)
vmtoolsd.exe (1148): S-1-5-18 (Local System)
svchost.exe (1412): S-1-5-20 (NT Authority)
svchost.exe (1472): S-1-5-20 (NT Authority)
TPAutoConnSvc. (1508): S-1-5-18 (Local System)

Creating a Baseline of Process Activity for Memory Forensics! 2
2 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

dllhost.exe (1776): S-1-5-18 (Local System)
msdtc.exe (1896): S-1-5-20 (NT Authority)
svchost.exe (1204): S-1-5-19 (NT Authority)
sppsvc.exe (1068): S-1-5-20 (NT Authority)
TrustedInstall (252): S-1-5-18 (Local System)
csrss.exe (3020): S-1-5-18 (Local System)
winlogon.exe (2896): S-1-5-18 (Local System)
taskhost.exe (1264): S-1-5-21-4249217695-1663262354-3778214704-1110
dwm.exe (2328): S-1-5-21-4249217695-1663262354-3778214704-1110
explorer.exe (1284): S-1-5-21-4249217695-1663262354-3778214704-1110
vmtoolsd.exe (1556): S-1-5-21-4249217695-1663262354-3778214704-1110
TPAutoConnect. (2712): S-1-5-21-4249217695-1663262354-3778214704-1110
conhost.exe (2856): S-1-5-21-4249217695-1663262354-3778214704-1110
csrss.exe (2232): S-1-5-18 (Local System)
winlogon.exe (2124): S-1-5-18 (Local System)
taskhost.exe (2116): S-1-5-21-4249217695-1663262354-3778214704-1109
rdpclip.exe (2108): S-1-5-21-4249217695-1663262354-3778214704-1109
dwm.exe (2088): S-1-5-21-4249217695-1663262354-3778214704-1109
explorer.exe (2708): S-1-5-21-4249217695-1663262354-3778214704-1109
vmtoolsd.exe (1124): S-1-5-21-4249217695-1663262354-3778214704-1109
TPAutoConnect. (2012): S-1-5-21-4249217695-1663262354-3778214704-1109
conhost.exe (672): S-1-5-21-4249217695-1663262354-3778214704-1109
cmd.exe (1268): S-1-5-21-4249217695-1663262354-3778214704-1109
conhost.exe (2904): S-1-5-21-4249217695-1663262354-3778214704-1109
win64dd.exe (2836): S-1-5-21-4249217695-1663262354-3778214704-1109

Following the same process for analyzing DLLs in our second image, we identify

1990 instances. Again, this number can be reduced significantly by sorting and removing

duplicates thus reducing the population of interest to 397.

$ vol.py -f win2008r2-03-s1.img dlllist | grep "^0x" | cut -c 20-37,57- | wc -l
Volatility Foundation Volatility Framework 2.3.1
1990

$ vol.py -f win2008r2-03-s1.img dlllist | grep "^0x" | cut -c 20-37,57- | sort
| uniq -i | wc -l
Volatility Foundation Volatility Framework 2.3.1
397

Next we create a file containing the 397 DLLs in the same format as our DLL

baseline file. As a double check, the number of lines was counted using wc.

$ vol.py -f win2008r2-03-s1.img dlllist | grep "^0x" | cut -c 20-37,57- | sort
| uniq -i > dll-03.lst
Volatility Foundation Volatility Framework 2.3.1
$ cat dll-03.lst | wc -l
397

By applying the baseline against the DLL list, we can reduce the population of

DLLs to review to 37. This is a significant improvement over reviewing 1990.

$ cat dll-03.lst dll-baseline-01.lst dll-baseline-01.lst | sort | uniq -iu | wc
-l

Creating a Baseline of Process Activity for Memory Forensics! 2
3 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

37

In our analysis, we took advantage of several properties of the uniq command to

perform the comparison. The -i parameter was used to ignore case. The -u parameter

directed uniq to only print lines that are unique. To ensure the uniqueness was only due

to the contents of the dll-03.lst file, the baseline file was added twice.

In reviewing the 37 DLLs, they look reasonable. Only one entry, win64dd.exe,

should be removed as it was introduced by the memory capture process. Since they come

from a clean image, a new baseline for DLLs can be created by merging the two lists.

$ cat dll-03.lst dll-baseline-01.lst | sort | uniq -i | wc -l
406
$ cat dll-03.lst dll-baseline-01.lst | sort | uniq -i >dll-baseline-02.lst
$ cat dll-baseline-02.lst | wc -l
406

In checking the module count for the domain attached memory image, 153

modules were found. Following the same process as with the DLLs, we quickly narrow

down the modules not in the baseline to 7. This provides a much more manageable

number of modules to investigate.

$ vol.py -f win2008r2-03-s1.img modules | cut -c 20-40,60- | grep "0x" | sort |
uniq -i | wc -l
Volatility Foundation Volatility Framework 2.3.1
153

$ vol.py -f win2008r2-03-s1.img modules | cut -c 20-40,60- | grep "0x" | sort |
uniq -i > module-03.lst
Volatility Foundation Volatility Framework 2.3.1

$ cat module-03.lst | wc -l
153
$ cat module-03.lst module-base-01.lst module-base-01.lst | sort | uniq -iu |
wc -l
7

The modules, which were not in our baseline, are shown below. Win64dd.sys is

an artifact of the memory capture process and does not belong in the baseline, as shown

below. The other modules do.

$ cat module-03.lst module-base-01.lst module-base-01.lst | sort | uniq -iu
RDPDD.dll 0x48000 \SystemRoot\System32\RDPDD.dll
rdpdr.sys 0x2e000 \SystemRoot\System32\drivers\rdpdr.sys
RDPWD.SYS 0x39000 \SystemRoot\System32\Drivers\RDPWD.SYS
spsys.sys 0x71000 \SystemRoot\system32\drivers\spsys.sys
tdtcp.sys 0xb000 \SystemRoot\system32\drivers\tdtcp.sys
tssecsrv.sys 0xf000
\SystemRoot\System32\DRIVERS\tssecsrv.sys
win64dd.sys 0x11000 \??\C:\temp\windd\win64dd.sys

Creating a Baseline of Process Activity for Memory Forensics! 2
4 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

2.4.3. Review Network Artifacts

Analysis of the network artifacts begins by running the netscan plugin.

$ vol.py -f win2008r2-03-s1.img netscan | cut -c 12-18,21-40,50-63,86-112 |
sort | uniq -w 20
Volatility Foundation Volatility Framework 2.3.1
Proto Local Address Foreign Addr Pid Owner
TCPv4 0.0.0.0:135 0.0.0.0:0 660 svchost.exe
TCPv4 0.0.0.0:3389 0.0.0.0:0 1412 svchost.exe
TCPv4 0.0.0.0:445 0.0.0.0:0 4 System
TCPv4 0.0.0.0:47001 0.0.0.0:0 4 System
TCPv4 0.0.0.0:49152 0.0.0.0:0 368 wininit.exe
TCPv4 0.0.0.0:49153 0.0.0.0:0 740 svchost.exe
TCPv4 0.0.0.0:49154 0.0.0.0:0 796 svchost.exe
TCPv4 0.0.0.0:49173 0.0.0.0:0 472 services.exe
TCPv4 0.0.0.0:49174 0.0.0.0:0 1472 svchost.exe
TCPv4 0.0.0.0:49178 0.0.0.0:0 480 lsass.exe
TCPv4 -:0 24.217.239.1 480 lsass.exe
TCPv4 192.168.139.102:139 0.0.0.0:0 4 System
TCPv6 -:0 18d9:ef0d:80:ffff:0 CLOSED 48
TCPv6 :::135 :::0 660 svchost.exe
TCPv6 :::3389 :::0 1412 svchost.exe
TCPv6 :::445 :::0 4 System
TCPv6 :::47001 :::0 4 System
TCPv6 :::49152 :::0 368 wininit.exe
TCPv6 :::49153 :::0 740 svchost.exe
TCPv6 :::49154 :::0 796 svchost.exe
TCPv6 :::49173 :::0 472 services.exe
TCPv6 :::49174 :::0 1472 svchost.exe
TCPv6 :::49178 :::0 480 lsass.exe
UDPv4 0.0.0.0:0 *:* 1472 svchost.exe
UDPv4 0.0.0.0:123 *:* 848 svchost.exe
UDPv4 0.0.0.0:4500 *:* 796 svchost.exe
UDPv4 0.0.0.0:500 *:* 796 svchost.exe
UDPv4 0.0.0.0:5355 *:* 932 svchost.exe
UDPv4 127.0.0.1:57762 *:* 480 lsass.exe
UDPv4 127.0.0.1:65282 *:* 796 svchost.exe
UDPv4 192.168.139.102:137 *:* 4 System
UDPv6 :::0 *:* 1472 svchost.exe
UDPv6 :::123 *:* 848 svchost.exe
UDPv6 :::4500 *:* 796 svchost.exe
UDPv6 :::500 *:* 796 svchost.exe
UDPv6 :::5355 *:* 932 svchost.exe

Based on the output from netscan and comparing it with the baseline, the ports

can be divided into three categories -- general ports, ports used when the server is not

domain attached, and ports used when a server is domain attached. These are

summarized in Table 6. Additional work would need to be done to validate this list with

additional configurations including an IIS server, domain controller, and SQL server.

Port Protocol Service/Process

General Ports

Creating a Baseline of Process Activity for Memory Forensics! 2
5 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

Port Protocol Service/Process
123 udp svchost.exe

(LocalService)
Windows Time Services

135 tcp RPCSS Terminal Services
137 udp System NETBIOS Name Resolution
138 tcp System NETBIOS Datagram Service
139 tcp System NETBIOS Session Service
445 tcp System SMB
3389 tcp terminal services
5355 udp svchost.exe

(NetworkService)
Local Link Multicast Name
Resolution (LLMNR)

47001 tcp System Windows Remote Management
listener (WINRM)

49152 tcp wininit.exe
49153 tcp svchost.exe

(LocalServiceNetworkRestricted)

49154 tcp svchost.exe
(NetworkService)

Server Not domain Attached
49155 tcp lsass.exe
49156 tcp services.exe

Server Domain Attached
49173 tcp services.exe
49174 tcp svchost.exe

(NetworkServiceNetworkRestricted)

49178 tcp lsass.exe
4500 udp netsvcs
500 udp netsvcs
57762 udp lsass.exe
65282 udp netsvcs
Table 6: Revised Baseline of open ports

Caution!must!be!exercised!when!using!the!network!ports!in!the!baseline.!!

When!looking!at!ports!in!the!dynamic!port!range!a!different!dynamic!port!might!be!

assigned!in!a!different!server!configuration,!if!another!process!already!is!using!the!

port.!

3. Conclusion

This paper laid out a process for building a baseline for memory analysis. The

baseline documented here is only a start. More work would have to be done to validate

and build upon it using additional different Windows Server 2008 R2 configurations. A

Creating a Baseline of Process Activity for Memory Forensics! 2
6 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

similar process could be used to build baselines for Windows 7, Windows 8, and

Windows Server 2012.

The value of a baseline was demonstrated during the process of building and

testing one. The baseline, by documenting the expected processes, allowed us to quickly

identify processes that were not in the baseline but should have been. We could just as

easily have used the baseline against the memory image of a compromised system to

identify the unexpected. In looking at the processes in the process and DLL lists, we

were able to quickly focus on a few processes out of dozens. The value of using a

baseline was even more dramatic when we reduced the list of DLLs to examine from

1990 to 37 and the list of kernel modules from 153 to 7.

A generic baseline can be helpful for general analysis of memory images from

multiple sources. For an organization, a baseline tailored to their standard configurations

could save considerable time in analysis. In our baseline, we saw the effects of the

baseline on artifacts introduced by our implementing the servers under VMware

workstation. Other artifacts could be expected for an organization’s standard

configurations like anti-virus software. Thus, establishing a baseline could save the

analyst considerable time.

Creating a Baseline of Process Activity for Memory Forensics! 2
7 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

4. References

IANA. (2014). Service Name and Transport Protocol Port Number Registry. Retrieved

August 3, 2014 from http://www.iana.org/assignments/service-names-port-

numbers/service-names-port-numbers.xhtml.

Lee, Rob & Tilbury, Chad. (2013). Incident Response and Memory Analysis. The SANS

Institute.

Ligh, Michael Hale, Case, Andrew, Levy, Andrew, and Walters, Aaron. (2014). The Art

of Memory Forensics. Indianapolis, ID: Wiley.

Microsoft Developer Network. (2014). Obtaining Data from the Local Computer.

Retrieved August 3, 2014 from http://msdn.microsoft.com/en-

us/library/aa384424(v=vs.85).aspx.

Microsoft Knowledge Base (2013a). Well-known security identifiers in Windows

Operating Systems, Article ID: 243330. Retrieved July 27, 2014 from

http://support.microsoft.com/kb/243330.

Microsoft Knowledge Base (2013b). Service overview and network port requirements

for Windows, Article ID: 832017. Retrieved July 27, 2014 from

http://support.microsoft.com/kb/832017.

Microsoft Knowledge Base (2013c). The default dynamic port range for TCP/IP has

changed in Windows Vista and in Windows Server 2008, Article ID: 929851.

Retrieved July 27, 2014 from http://support.microsoft.com/kb/929851.

Olsen, Patrick. (2014). Know your Windows Processes or Die Trying. Retrieved July

30, 2014 from http://sysforensics.org/2014/01/know-your-windows-

processes.html.

Pilkington, Mike & Lee, Rob. (2014). SANS DFIR Digital Forensic & Incident Response

Poster, Spring 2014, 29th Edition. The SANS Institute.

Russinovich, Mark, Solomon, David A., and Ionsecu, Alex. (2012a). Windows Internals.

6th Edition, Part 1. Redmond, WA: Microsoft Press.

Russinovich, Mark, Solomon, David A., and Ionsecu, Alex. (2012b). Windows Internals.

6th Edition, Part 2. Redmond, WA: Microsoft Press.

Creating a Baseline of Process Activity for Memory Forensics! 2
8 !

Gordon!Fraser,!Gordon.fraser@ctipc.com! ! !

The Cable Guy. (2006, November). Link-Local Multicast Name Resolution. Retrieved

August 3, 2014 from http://technet.microsoft.com/library/bb878128.

VMware. (2011) vSphere Virtual Machine Administration Guide. Palo Alto, CA:

VMware, Inc.

VMware Knowledge Base. (2014, June 24). Processes started by the View Agent and

View Client (1015677). Retrieved July 27, 2104 from

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=d

isplayKC&externalId=1015677.

Startup Programs Database. (2014a). TrustedInstaller.exe Information. Retrieved August

2, 2014 from http://www.bleepingcomputer.com/startups/TrustedInstaller.exe-

25809.html.

Startup Programs Database. (2014b). Sppsvc.exe Information. Retrieved August 2, 2014

from http://www.bleepingcomputer.com/startups/sppsvc.exe-25807.html.

Startup Programs Database. (2014c). Dllhost.exe Information. Retrieved August 2, 2014

from http://www.bleepingcomputer.com/startups/dllhost.exe-25641.html.

Startup Programs Database. (2014d). Msdtc.exe Information. Retrieved August 2, 2014

from http://www.bleepingcomputer.com/startups/msdtc.exe-3339.html.

Startup Programs Database. (2014e). spoolsv.exe Information. Retrieved August 2, 2014

from http://www.bleepingcomputer.com/startups/spoolsv.exe-25571.html.

Volatility Wiki. (2013). Volatility 2.3: Volatility Basic Usage. Retrieved August 9,

2014 from http://code.google.com/p/volatility/wiki/VolatilityUsage23.

