
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Frank Adelstein

Submitted on: April 28, 2004

An analysis of an unknown binary
and an evaluation of a tool to aid analyzing
the forensic footprint of archiving programs

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
2

Abstract
This paper constitutes the practical examination for the GIAC Certified Forensic
Examiner certification, version 1.4, and contains three parts. Part 1 presents an
analysis of an unknown binary found on a floppy disk. Part 2 (option 2) evaluates
a tool created to aid in the analysis of the forensic footprint of archiving
programs. Part 3 discusses the legal issues involved in the case from Part 1.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
3

Table of Contents

Abstract...2
Table of Contents..3
Table of Figures ..4
Part 1 – Analysis of an unknown binary ..5

Introduction..5
Summary ...5
Initial steps ..6
Binary details...6
Program description ..8
Forensic details ...21
Program identification..22
Legal implications..27
Interview questions..28
Case information ...29
Additional information..32

Part 2 – Option 2: Forensic tool validation ..34
Introduction..34
Scope ..34
Tool description ...35
Test apparatus ..39
Environmental conditions ..41
Description of the procedures..41
Criteria for approval...43
Data and results ..44
Analysis...45
Presentation ..45
Conclusions...47
Additional Information..48

Part 3 – Legal issues of incident handling...49
Question A...49
Question B...53
Question C ..54
Question D ..54

References ...56
Appendix A – File timeline ..58
Appendix B – Files sorted by inode...59
Appendix C – tar2d2 output from tar under Linux ...60
Appendix D – tar2d2 output from tar under XP ...63

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
4

Table of Figures

Figure 1 MD5 hash of unknown binary ...8
Figure 2 Identification of unknown file type ...10
Figure 3 string search for a false lead...11
Figure 4 run of prog with garbage options ..11
Figure 5 prog run with --help...12
Figure 6 strace command to capture system calls ..12
Figure 7 strace output of prog with --doc man ..13
Figure 8 screen shot of strace of hello world ..14
Figure 9 running prog on a file (without root privilege) ..14
Figure 10 strace of prog with --mode s (without root privilege)15
Figure 11 slack space extraction...16
Figure 12 contents of the hidden downloads file ...16
Figure 13 rpm information on nc package...19
Figure 14 contents of file Mikemsg.doc...22
Figure 15 diff of bmap.c ..24
Figure 16 diff of Makefile for bmap..25
Figure 17comparison of hash of output of two binaries.......................................27
Figure 18 screen shot of help screen with prog version and date.......................31
Figure 19 screen shot of config file on Windows XP Pro36
Figure 20 tar2d2 config file for Linux...37
Figure 21 dynamic libraries used by perl under Linux...38
Figure 22 command to install perl XML package ..39
Figure 23 Screen shot showing the version of tar used on Windows XP40
Figure 24 read-only ISO image of test files ...42
Figure 25 perl 1-liner to translate epoch time into a human-readable date44
Figure 26 sample XML summary tags ..46

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
5

Part 1 – Analysis of an unknown binary

Introduction
In this section, we1 describe an analysis of an image of a floppy disk obtained
from an employee (John Price) who was discovered by an audit to be using
company computing resources to illegally distribute copyrighted material. In the
scenario, his hard disk was wiped, and all that could be obtained was a floppy
that was in the drive of his PC. Mr. Price denies the floppy belongs to him. The
floppy contains files, including an unknown binary. The primary goal of this
analysis is to determine the purpose of the binary and how it may have been
used by Mr. Price.

The primary investigative machine is an IBM R32 series ThinkPad with 768Mb of
memory and 40Gb of disk running Linux version Red Hat 9 [13]. It has a variety
of forensic tools installed on it (they will be described as they are used), as well
as VMware 4.0 [19], which allows “virtual machines” to run from within the
environment. The main benefit of a virtual machine is the ability to restore it to a
known state. Since this practical involves running an unknown binary which may
compromise (or destroy) a system, the ability to rapidly undo all changes is highly
desirable. Under VMware, we installed another Red Hat 9 system, which was
used to run theunknown binary.

Note: In this report, any program names, file names, or quoted computer output
will be shown in a fixed, courier font (like this) Output of files, when only a
few lines long, will be quoted or shown in a screen shot. Longer output will be
shown in a box with a grey background.

Summary
Before describing all of the detailed results of the analysis and the process that
was performed, we will summarize the more important results we obtained. An
analysis of the binary, combined with Internet based searches revealed the
unknown binary to be a program called bmap, a tool to manipulate the slack
space on files. Further, we found one file on the floppy disk had a file hidden in
its slack space. The hidden file, once extracted and uncompressed, contained a
list of sites to use to download illegal (copyrighted) MP3s. We describe the
investigative process in detail, as well as other, lesser results obtained during the
analysis.

1 Note: All work was performed by the sole author of this paper; the use of the first person plural
(i.e., “we”) in the text is merely a writing convention and sounds better to the author than writing
“I” or continually using the term “the author.” And in general, reports of this type will be submitted
by a collection of people representing a lab.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
6

Initial steps
We downloaded the initial file, named binary_v1_4.zip, from the SANS web
site. Running the program unzip –l lists the contents of the zip file. It showed
2 files: fl-160703-jp1.dd.gz and fl-160703-jp1.dd.gz.md5. The SANS web site
lists the floppy image as fl-160703-jp1.dd.gz, so this makes sense. Next, we ran
md5sum on the binary to compute the cryptographic hash of it, so we could verify
it had been successfully downloaded without corruption. The hash is:
4b680767a2aed974cec5fbcbf74cc97a. Printing the contents of the file fl-
160703-jp1.dd.gz.md5 by using the cat command produced an identical hash.
In addition, the same MD5 hash was listed on the SANS web site. Therefore, the
file transfer was successful.

The next step is to uncompress the gzip file and put it on a CD-ROM. The “.gz”
suffix on a file indicates that it is compressed with the GNU zip command.
Running the program gunzip on the compressed file fl-160703.jp1.dd.gz,
produces the uncompressed file fl-160703-jp1.dd. We can verify that no
data was lost during un-compression by running gzip –c fl-160703-jp1.dd
| md5sum and verifying the hash is still
4b680767a2aed974cec5fbcbf74cc97a.

We created a CD-ROM of the files fl-160703-jp1.dd and fl-160703-jp1.dd.gz.md5.
By putting the data on a CD-ROM, we have essentially put a “write-block” on the
file, so neither the contents of the files nor their metadata (e.g., time stamps) will
change by any tools we use during the subsequent analysis. Finally, after
creating the CD-ROM, we once again verified its hash via the command gzip –
c fl-160703-jp1.dd | md5sum.

The file program identifies file types based on their content. Running file on
fl-160703.jp1.dd indicates that it is a Linux ext2 file system image (Linux
rev 1.0 ext2 filesystem data). We then mounted the CD-ROM on the
Linux system using the “loop” device. This allows a file on a disk or CD
containing an image of a file system to be interpreted as if it were a disk. It is
mounted and the files on the file system are visible through the mount point. The
mount command used was: mount –o ro,loop,noexec,noatime
/mnt/cdrom/fl-160703-jp1.dd /mnt/hack/unixforensics_mount/.
At this point, we could begin to look at the contents of the disk without fear of
changing the files or the access time.

Binary details
The true name of the unknown binary named “prog” on the floppy is bmap,
written by Daniel Ridge, email address: newt@scyld.com. The “Program
description” and “Forensic details” sections describe how we discovered this.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
7

The MAC time information (last modified, last accessed and last changed time)
is:
Access: 2003-07-16 02:12:45.000000000 -0400
Modify: 2003-07-14 10:24:00.000000000 -0400
Change: 2003-07-16 02:05:33.000000000 -0400

The file’s owner is ID number 502 and the group is ID number 502. The user and
group names cannot be determined without the /etc/password and
/etc/group files. However, it should be noted that Red Hat Linux systems
begin assigning user IDs at 500, by default. This would imply that there were two
other user accounts that had been created on the account in question, assuming
the defaults were used. There is no way, however, to know if that was the case
given the current evidence.

The file size of the binary called prog (in bytes) is 487476.

The MD5 hash of the binary called prog is:
7b80d9aff486c6aa6aa3efa63cc56880.

Figure 1 shows a screen snapshot with the file MAC times and MD5 hash, which
was determined by using the programs stat and md5sum.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
8

Figure 1 MD5 hash of unknown binary

We used the strings program to extract ASCII strings from the binary. The
following is a list of the more distinctive strings that can be used as key words for
subsequent searches to help identify the unknown binary.
venum, MFT_LOG_THRESH, mft_log_shutdown, checkfrag, newt,
bmap_get_slack_block, bmap_get_block_count, bmap_raw_open,
bmap_raw_close, bmap_get_block_size, bogowipe, newt, 1.0.20, 07/15/03,
Brazil.

A false lead came from the strings “Keld Simonsen” and “keld@dkuug.dk” as
these were found in the binary file, but are not part of the program. They are part
of the standard libc library, which was included in this binary, which was statically
compiled.

Program description
The program “prog” is “bmap,” a slack space tool. Broadly speaking, the
program can be used to list available slack space in files, and store and retrieve
data from the slack space in files. This becomes an effective tool for hiding
information in an operating system. The slack space is the space left over on the
last sector of the file. By default, disk blocks are 4K in Red Hat, so slack space

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
9

varies from 0 to 4095 bytes. Data stored in the slack space would not be listed in
any ls command, nor would it show up in any du or df disk space usage listing.
The slack data would also not be visible through any program examining the file
containing the slack space, such as grep or strings. The only way to see the
data is to look at the raw blocks.

In addition to storing and retrieving data from a file’s slack space, bmap can wipe
out data stored in the slack space as well as wiping out the entire file. Wiping
(“bogowipe”) is done by writing 0x00 (null), then writing 0xFF, then writing 0x00
to the slack space or file. bmap also can check if a file has data (i.e., non-null)
stored in its slack space, print the number of bytes of slack space available,
check if a file is fragmented (i.e., if the file spans non-contiguous sectors on the
disk), and display any fragmentation points.

The last time “prog” was used was July 16th, 2003 at 02:12:45 EDT. This was
the last time the file was accessed. It is very likely that this represents the last
time it was run.

Description of the analysis process performed
First, we simply looked at the files present on the disk. The contents of the disk
are shown below:

• Docs/
o Letter.doc
o Mikemsg.doc
o DVD-Playing-HOWTO-html.tar
o Kernel-HOWTO-html.tar.gz
o MP3-HOWTO-html.tar.gz
o Sound-HOWTO-html.tar.gz.

• John/
o sect-num.gif
o sectors.gif

• May03/
o ebay300.jpg

• lost+found/
• prog
• nc-1.10-16.i386.rpm..rpm
• .~5456g.tmp

Running the file program on prog produced:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
10

file prog
prog: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.2.5, statically linked, stripped

Figure 2 Identification of unknown file type

Since prog was a statically linked binary, it included all of the libraries it uses.
And since it was stripped, function names would not be visible from a debugger.

Running strings on prog was inconclusive. strings suggested there was a
built-in help option to display all of the command line parameters, however we
could not learn anything useful because the actual help messages were
generated dynamically. All that could be seen from the string extraction were
disconnected fragments of help messages.

The help messages could be displayed in text, HTML, or nroff (“man page”)
format. The messages were generated dynamically, depending on the help
format requested. The text in the binary contained text fragments that were used
to build the messages at run-time, so the actual command line parameters to
control “prog” were not included in the (static) help text in the binary, just
represented as “%s” (most likely, a printf-like call would replace this with the real
parameter). This meant that we would need to run the binary in order to get a
clear help message. This either suggested sophistication on the part of the
perpetrator by making it difficult to determine the nature of the program without
running it, or possibly dumb luck by picking a complex program to use. Later
analysis, which showed the help messages were deliberately edited, suggests
sophistication is more likely.

We used google [10] to search the web for various strings in the file, such as
“bogowipe,” but that produced no hits. That meant that finding the source code
would require more work—we would need to identify the program first and then
find its code, rather than find the code from a string in the program. Searching
for “newt” produced too many hits.

The name and email address strings present in the binary, Keld Simonsen and
keld@dkuug.dk, yielded hits, but examination of his web pages suggest that he is
a Linux contributor. And in fact, upon further examination, we determined that
the string came from libc as shown in Figure 3, and is thus present in all Linux
binaries.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
11

[root@localhost tmp]# ll /lib/tls/libc-2.3.2.so
-rwxr-xr-x 1 root root 1531064 Mar 13 2003 /lib/tls/libc-
2.3.2.so
[root@localhost tmp]# strings /lib/tls/libc-2.3.2.so | grep Keld
Keld Simonsen
C/o Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V

Figure 3 string search for a false lead

Because the help messages in the binary were split up, printed with %s
conventions (which is how the C language printing library functions like printf()
and fprintf() allow the user to specify a string variable), the only way to really get
the usage help message would be to run prog.

After configuring the VMware Linux system, we created a non-root account called
“frank” which was used to initially run prog. We ran the program via the strace
command, so that all system calls would be recorded. That way, we could
determine if the program was attempting to access restricted resources.

We made “frank” a non-root user in order to limit potential damage it could do.
The file first needed to be on the disk, rather than CD-ROM to run, so we copied
prog to the /tmp directory. We ran prog with garbage parameters to get a
help message shown in Figure 4.

/tmp/prog -asdfzxcv
invalid options: -asdfzxcv
try '-–help' for help.

Figure 4 run of prog with garbage options

The second time, we ran it with --help as a command line option. This produced
the help message shown in Figure 5.

The help message is not all that helpful. It appears to deal with files in some
way, and mentions troubling functions like “wipe”—but in general, we need to run
more tests before we can make any determinations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
12

prog:1.0.20 (07/15/03) newt
Usage: prog [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 m list sector numbers
 c extract a copy from the raw device
 s display data
 p place data
 w wipe
 chk test (returns 0 if exist)
 sb print number of bytes available
 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress |
entryexit> logging threshold ...
--target <filename> operate on ...

Figure 5 prog run with --help

The next test was to run the program with the “--mode man” command line
argument. We used the following command, shown in Figure 6, to run it under
strace so we could generate a list of all of the system calls.

strace –o /tmp/prog.out.3 –tt /tmp/prog –doc man >
/tmp/prog.man

Figure 6 strace command to capture system calls

The strace output file (shown in Figure 7) did not appear to contain anything
suspicious.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
13

20:45:42.951344 execve("/tmp/prog", ["/tmp/prog", "--doc", "man"], [/*
29 vars */]) = 0
20:45:43.029135 fcntl64(0, F_GETFD) = 0
20:45:43.031876 fcntl64(1, F_GETFD) = 0
20:45:43.033575 fcntl64(2, F_GETFD) = 0
20:45:43.034379 uname({sys="Linux", node="VMwareRH1", ...}) = 0
20:45:43.043918 geteuid32() = 500
20:45:43.044687 getuid32() = 500
20:45:43.045354 getegid32() = 500
20:45:43.046014 getgid32() = 500
20:45:43.047144 brk(0) = 0x80bedec
20:45:43.048338 brk(0x80bee0c) = 0x80bee0c
20:45:43.049098 brk(0x80bf000) = 0x80bf000
20:45:43.049768 brk(0x80c0000) = 0x80c0000
20:45:43.051319 fstat64(1, {st_mode=S_IFREG|0664, st_size=0, ...}) = 0
20:45:43.053797 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40000000
20:45:43.055717 write(1, ".TH PROG \"1\" \"07/15/03\" \"1.0.20 "...,
1776) = 1776
20:45:43.064223 munmap(0x40000000, 4096) = 0
20:45:43.065294 _exit(0) = ?

Figure 7 strace output of prog with --doc man

The strace output above shows the system calls the program made. Most of
the code is standard entrance and exit code that comes from the run-time
libraries linked in by the compiler. In order to determine what system calls make
up the entrance code, we performed a simple test. We created a simple “hello
world” style C program, compiled it statically, and then ran it under strace and
compared the results to those shown in Figure 7.

The screen shot in Figure 8 shows the “hello world” style C program, followed by
the static compiling of it and the run under strace. The output of strace produces
the same calls, though not in the same order, as the strace output from prog.
This allows us to determine what parts of strace are from the unknown binary
and what is part of the normal C runtime library (libc).

By comparing the output from the two strace commands, it was apparent that
all of the system calls shown in the strace of prog (Figure 7) were part of the
entrance and exit code, except the third from the end call, i.e., “write.” This lets
us know that, so far, the program is not doing anything hidden behind the
scenes.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
14

Figure 8 screen shot of strace of hello world

The help message suggested it was necessary to run prog against a file, shown
in Figure 9 below.

strace –o /tmp/prog.out.5 –tt /tmp/prog –mode s John/sect-
num.gif
unable to open raw device /dev/loop0
unable to raw open John/sect-num.gif

Figure 9 running prog on a file (without root privilege)

The error indicated prog needed to be run as root. It was attempting to open the
raw device (/dev/loop0) on which the specified file (John/sect-num.gif)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
15

was mounted. The results of strace, shown in Figure 10, suggested prog was
not doing anything unexpected.

20:51:37.671486 execve("/tmp/prog", ["/tmp/prog", "--mode", "s",
"John/sect-num.gif"], [/* 29 vars */]) = 0
20:51:37.761550 fcntl64(0, F_GETFD) = 0
20:51:37.768467 fcntl64(1, F_GETFD) = 0
20:51:37.769923 fcntl64(2, F_GETFD) = 0
20:51:37.770797 uname({sys="Linux", node="VMwareRH1", ...}) = 0
20:51:37.779011 geteuid32() = 500
20:51:37.779757 getuid32() = 500
20:51:37.780417 getegid32() = 500
20:51:37.781287 getgid32() = 500
20:51:37.782520 brk(0) = 0x80bedec
20:51:37.787189 brk(0x80bee0c) = 0x80bee0c
20:51:37.787927 brk(0x80bf000) = 0x80bf000
20:51:37.788601 brk(0x80c0000) = 0x80c0000
20:51:37.790166 lstat64("John/sect-num.gif", {st_mode=S_IFREG|0755,
st_size=19088, ...}) = 0
20:51:37.796685 open("John/sect-num.gif", O_RDONLY|O_LARGEFILE) = 3
20:51:37.798355 ioctl(3, FIGETBSZ, 0xbffff214) = 0
20:51:37.799654 lstat64("John/sect-num.gif", {st_mode=S_IFREG|0755,
st_size=19088, ...}) = 0
20:51:37.802134 lstat64("/dev/loop0", {st_mode=S_IFBLK|0660,
st_rdev=makedev(7, 0), ...}) = 0
20:51:37.818124 open("/dev/loop0", O_RDONLY|O_LARGEFILE) = -1 EACCES
(Permission denied)
20:51:37.820294 write(2, "unable to open raw device /dev/l"..., 37) =
37
20:51:37.822899 write(2, "unable to raw open John/sect-num"..., 37) =
37
20:51:38.000240 _exit(6) = ?

Figure 10 strace of prog with --mode s (without root privilege)

From this trace, we can see that the program first opens the specified file (sect-
num.gif) in read-only mode. It “stats” the file to get information on it, which
includes the physical device where the file resides—in this case /dev/loop0.
The program then stats that file and then tries to open the raw device, again in
read-only mode. It then prints the error messages we saw. To find out more
about the program, we needed to run it as root.

We tried to minimize the risks of running an unknown binary on our machine by
examining what the program was attempting to do. Our final protection was that
we were using a virtual machine, with a saved snapshot and a back up as well.
In the event of a disaster, we could easily restore the machine to its previous
state

Repeating the same command as root showed that prog was looking at the
inodes of the files. Because prog was trying to open the raw device, going

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
16

below the file system level, we formulated a working theory—this might be a
program to hide data in the slack space of files.

A search on google for the terms “linux slack space” yielded a web page [5] by
Anton Chuvakin, which says “the obscure tool bmap exists to jam data in slack
space, take it out and also wipe the slack space if needed.” The text printed from
the examples in the page suggested that the unknown binary is “bmap.” The
web page gave a reference to an FTP site that had the source for the tool [2].2

We downloaded the program, bmap, and noted that the most recent version was
1.0.20, which matched one of the strings in prog. We compiled bmap by running
make. We then ran bmap and observed its output, which was very similar to the
output of prog, except the command names were full words indicative of their
function.

After compiling bmap, we ran it on files in the John and Doc directories. Most
yielded nulls in the slack space. However, the file Docs/Sound-HOWTO-
HTML.tar.gz yielded a 185 byte file. It was the only file on the disk that contained
data in the slack space. The file program identified the file that was extracted
from the slack space as a compressed file named “downloads.”

/tmp/prog --mode s Docs/Sound-HOWTO-HTML.tar.gz | file –
getting from block 190
file size was; 26843
slack size: 805
block size: 2024
standard input: gzip compressed data, was "downloads", from Unix

Figure 11 slack space extraction

We decompressed this file and displayed its contents by: prog --mode s
Sounds-HOWTO.html.tar.gz | gunzip -c . The contents of the file are
shown in Figure 12. Bingo!

Ripped MP3s - latest releases:

www.fileshares.org/
www.convenience-city.net/main/pub/index.htm
emmpeethrees.com/hidden/index.htm
ripped.net/down/secret.htm

NOT FOR DISTRIBUTION

Figure 12 contents of the hidden downloads file

2 Note that since this was first written, the source is no longer available via the Scyld FTP site. It
is still available at other mirror sites [3].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
17

We take an MD5 hash of the file since it will be evidence. The MD5 hash of the
file downloads is: fb13acabc77f1d562fd7397cd7b230af.

We had extracted a hidden file from the floppy. The next steps involved a
detailed study of the program and an examination of the other files on the disk for
any supplementary clues.

GIF files
There are two files in the John directory, sect-num.gif and sectors.gif
both of which were confirmed as being GIF image data, version 87a, by the file
program. We did a google image search for “sect-num.gif” and only one hit came
up, at: http://www.cf-intl.com/evidence_recovery_basics.htm. We downloaded
the image and took an MD5 hash of it, which was:
95246c5b7112efd7dff3ae9aeac22f24. However, the MD5 hash of
John/sect-num.gif was: 636be3f63d098684b23965390cea0705. In
addition, the file sizes differ, with John/sect-num.gif containing 9088 bytes
and the other 17640. Under the xview image viewing program, however, they
appear identical.

On the same web page is a file eviden3.gif which corresponds to the image
John/sectors.gif. Again, the file sizes differ (13793 and 20680,
respectively), and this time the images look similar but slightly different (the font
on the John/sectors.gif file looks thinner), but the images are very similar.
It is possible that something else is in embedded in the images.

Depending on available time and goals, we could use stegonography tools to
analyze the images. Our goal, however, was simply to identify the unknown
binary. The content of the file named downloads suggests we should look for
MP3 files, but such files would be too big to fit in the 7-8 Kbytes in these images.

netcat
We concluded that the file nc-1.10.16.i386.rpm..rpm on the floppy is the
standard nc (netcat) program in an RPM (Red Hat Package Manager) format,
since we were able to find the identical file at an archive site. We determined
that as follows:

The file program identified the file nc-1.10.16.i386.rpm..rpm as RPM file
(RPM v3 bin i386 nc-1.10-16). We did a search on google [10] for “nc-
1.10.16.i386.rpm” in case the extra “..rpm” at the end was extraneous. We found
several sites listing it as the rpm package for nc for Red Hat 8.0. We
downloaded the file nc-1.10.16-i386.rpm from a mirror site [11] and then
compared the downloaded file to the one from the floppy image. Both files were
56950 bytes. md5sum showed that both files had the same hash of:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
18

535003964e861aad97ed28b56fe67720. Therefore, we can be somewhat
confident that this is the standard nc (netcat) program. netcat is used to send
and receive data across a network.

Since the file is an RPM (Red Hat package manager), the nc binary itself would
most likely be installed in the directory specified in the RPM. Running RPM with
the -qlip flags shows it installs files in /usr/bin/nc, as well as
/usr/share/man and /usr/doc by default (see Figure 13). These files would
be on the hard disk, rather than the floppy disk. The last MAC time was the c-
time, possibly indicating the file was renamed, moved, or touched. Based on the
large number of c-times late in the timeline (shown in Appendix A), it seems likely
that the latter option, touch, is the most likely cause of the time stamp.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
19

rpm –qlip nc-1.10-16.i386.rpm..rpm
Name : nc Relocations: (not
relocateable)
Version : 1.10 Vendor: Red Hat, Inc.
Release : 16 Build Date: Tue 23 Jul 2002
12:47:55 PM EDT
Install Date: (not installed) Build Host: astest
Group : Applications/Internet Source RPM: nc-1.10-
16.src.rpm
Size : 114474 License: GPL
Signature : DSA/SHA1, Tue 03 Sep 2002 05:30:55 PM EDT, Key ID
219180cddb42a60e
Packager : Red Hat, Inc. <http://bugzilla.redhat.com/bugzilla>
Summary : Reads and writes data across network connections using
TCP or UDP.
Description :
The nc package contains Netcat (the program is actually nc), a simple
utility for reading and writing data across network connections, using
the TCP or UDP protocols. Netcat is intended to be a reliable back-end
tool which can be used directly or driven by other programs and
scripts. Netcat is also a feature-rich network debugging and
exploration tool, since it can create many different connections and
has many built-in capabilities.
/usr/bin/nc
/usr/share/doc/nc-1.10
/usr/share/doc/nc-1.10/Changelog
/usr/share/doc/nc-1.10/README
/usr/share/doc/nc-1.10/scripts
/usr/share/doc/nc-1.10/scripts/README
/usr/share/doc/nc-1.10/scripts/alta
/usr/share/doc/nc-1.10/scripts/bsh
/usr/share/doc/nc-1.10/scripts/dist.sh
/usr/share/doc/nc-1.10/scripts/irc
/usr/share/doc/nc-1.10/scripts/iscan
/usr/share/doc/nc-1.10/scripts/ncp
/usr/share/doc/nc-1.10/scripts/probe
/usr/share/doc/nc-1.10/scripts/web
/usr/share/doc/nc-1.10/scripts/webproxy
/usr/share/doc/nc-1.10/scripts/webrelay
/usr/share/doc/nc-1.10/scripts/websearch
/usr/share/man/man1/nc.1.gz

Figure 13 rpm information on nc package

Step-by-step analysis of the bmap tool
We have identified the program named prog on the floppy as the program bmap.
We obtained the source to bmap on the Internet. The following analysis is based
on the two source files in the bmap 1.0.20 distribution, bmap.c and libbmap.c.
Output from strace confirms that program flow matches the source listing. To
limit space, we are presenting a “walkthrough” of the main() function and
summarize elsewhere the purpose of the ancillary function calls.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
20

After initializing variables and the logger (by calling mft_log_init()), it parses the
command line using mft_getopt(), a variant of the getopt() function provided with
the source, and performs some simple error checking to ensure that a filename is
provided. The string “try --help for help” is printed if there is an argument error.

It then performs an lstat() of the filename and verifies that the file is a regular file
and not a link (and prints an error message and exits if that is not the case). If
there is more than one link to the file, it prints a warning message. Then it sets
the output to be the output filename, if specified, otherwise it uses STDOUT.

Then it opens the file read-only. This is done in order to determine the device
upon which the file is mounted. Opening a file does not modify the access time
on a file; only performing the actual file read will change the access time. bmap
does not read the file through this mechanism and thus leaves no “fingerprint”
from this operation. (This was verified with a simple program that open()’ed a file
then closed it, under Red Hat 9, and then comparing the MAC times reported by
the stat program before and after running the test.)

Next, the program obtains the block size of the file via the
bmap_get_block_size() function call (which is essentially a wrapper around the
FIGETBSZ ioctl() call, which gets the block size for a file).

Then, it determines if the raw device must be opened as read or write only. If the
function to be performed is “carve,” “wipe,” or “putslack” then the mode is write,
otherwise it is read. And then the raw device is opened via the
bmap_raw_open() function.

Next, the block count is determined by calling bmap_get_block_count(). Then it
allocates a memory buffer (unless the operation is “map”). It stores the file size
and checks if the file is sparse, i.e., the file size is greater than the block size
multiplied by the number of blocks. If so, it prints a message indicating the file is
sparse (“has holes in it”).

Then, the program iterates through all the blocks in the file. It does this by calling
bmap_map_block() which is a wrapper around the FIBMAP ioctl(), which returns
a block number on the physical device that corresponds to a point in the file. If
the program was run in “carve” mode, it then seeks that block in the raw device,
reads the block and writes it to output. If it was run in “wipe” mode, it calls
bogowipe() on the block, which then writes 0x00, then 0xFF, followed by 0x00 to
the block. If it was run in “frag” mode, it prints where the file is fragmented. A file
is fragmented when it has non-contiguous blocks, which can be determined by
checking if the current block is not the immediate successor (i.e., 1 greater than)
the previous block. If it was run in “checkfrag” mode, then it simply sets a flag to
true if fragmentation is detected. If run in “map” mode then it prints information
about each block. All modes described in this paragraph must iterate over all the
blocks in the file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
21

The final three modes only operate on the final block of the file. After completing
the iteration, the program calculates an offset to the end of the data in the file. It
determines the number of bytes available in slack space by subtracting the file
size from the number of blocks multiplied by the block size.

If the program was run in “slack” mode, it seeks to the end of the file and then
reads and writes the remaining data in the block.

If the program was run in “putslack” mode, it seeks to the end of the file, reads
data in from standard input, and writes it into the slack space of the file.

If the program was run in “wipeslack” mode, then it calls bogowipe() on the slack
space, which writes 0x00, then 0xFF and then 0x00 to the slack space (the
remainder of the last block).

If the program was run in “checkslack” mode, then it reads in the slack space and
checks if any data there is non-zero and returns true if so, false otherwise.

If the program was run in “slackbytes” mode, then it prints the number of bytes
available in the slack space.

Finally, the program closes the raw device and target file, and the output file, if
not STDOUT, and frees memory, if it was allocated. If the mode was
“checkslack” or “checkfrag” the program will print a message saying whether
there was or was not slack space or fragmentation, as appropriate.

Forensic details
In this section, we discuss the forensic footprints left by the program. The
program stores data in the slack space of files, within the last block of the file,
which is up to 4096 bytes long. No formal installation is required with bmap, so
the presence of the binary is the only forensic footprint resulting from its
“installation.”

bmap opens the raw block device which contains the file system that contains the
file specified as a command line argument.

bmap stores data in the slack space of files by writing directly to the filesystem by
using the raw device. Unfortunately (or remarkably), opening and closing a raw
device this way does not affect the MAC times of the raw device. The tests we
performed showed that, other than the presence of (non-null) data stored in the
slack space itself and the access time on the binary, the program leaves no other
traces that it had been run.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
22

The program is statically compiled, so it does not use any shared libraries.
Analyses of the program using strace as well as the source code showed that
the only files the program manipulates are the target file and the raw device on
which the target file exists.

Our analysis obtained a number of leads for further investigation. We extracted
the file named downloads from the slack space of Sounds-
HOWTO.html.tar.gz. The contents of the file are shown in Figure 12.
Obviously, these URLs are leads that should be investigated. Note: none of
these sites actually exist, since this is not a real case. We verified that using the
whois command to look up these domain names.

In addition, there were two Word .doc files in the Docs directory. The file
Mikemsg.doc contains the text (obtained by using Microsoft Word 2002 version
10.0):

Hey Mike,

I received the latest batch of files last night and I’m ready to rock-n-roll (ha-ha).

I have some advance orders for the next run. Call me soon.

JP
.

Figure 14 contents of file Mikemsg.doc

The properties in the file show “John Price” as the author. The MAC times of the
Mikemsg.doc file all are Monday, July 14 2003 at 10:48:15am.

The file Letter.doc was a blank template for a letter and also listed “John
Price” as the author in the properties. It may indicate he was sending a mass
mailing out for distribution.

In the binary itself, there was the version number, 1.0.20, the compile date of
07/15/03, and the name “newt.” But “newt” points to the author of the tool, not to
what it was used for or who used it.

Program identification
The source code for bmap is available through anonymous FTP at:
ftp://ftp.scyld.com/pub/forensic_computing/bmap/.

Note: as of April 2004, this FTP directory is no longer available. bmap 1.0.20 is
available through a mirror site at:
http://ftp.cfu.net/mirrors/garchive.cs.uni.edu/garchive/bmap-1.0.20/bmap-
1.0.20.tar.gz.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
23

Earlier, we described how we found the bmap program and located the source on
the Internet. Below, we described the evidence we gathered to demonstrate that
the program named prog on the floppy disk was bmap version 1.0.20.

We analyzed the bmap program and compared its output to the unidentified
program. The lists of strings extracted from the two programs have a great deal
of overlap, although they are not identical. Both include all of the search terms
mentioned above, such as “bogowipe”, “MFT_LOG_THRESH”, “newt”, and the
various bmap strings. The next step was to attempt to make trivial changes to
bmap that would get the two programs to match; however we realized that it was
unlikely that we would get an exact binary match (verified with MD5 hashes),
since the entrance code was different in the two libraries. We decided to see
how closely we could match the programs.

The command line arguments were different in the two programs, to obscure the
meaning of prog. So, we made minor changes to 8 lines in the c program
bmap.c. These changes are shown in Figure 15.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
24

Figure 15 diff of bmap.c

In addition, we made three changes to the Makefile to set the compile date,
change the author to “newt” (deleting his email address), and to compile the
program statically. These changes are shown in Figure 16, in addition to a
directory listing (via the ls command) to show all the files in the bmap top level
source directory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
25

Figure 16 diff of Makefile for bmap

After compiling a static version of bmap, we stripped the program of the symbol
table (via the strip command). This version of bmap was able to read slack
space stored on the evidence disk.

However, as we suspected, the MD5 checksum of our version did not match the
MD5 checksum of prog. The problem is that we do not know on what system the
binary was compiled. Even within the same version of Red Hat (e.g., 9.0),
libraries differ. After compiling it on a Red Hat 9.0, we tried it on an 8.0 system,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
26

but neither the file size nor MD5 hash matched the MD5 hash of prog. The file
size was 543908 and the hash was f67dec94a73c3effda9fb47cf71a693d for
RH9, and 526576 and 7d3f4f999857aff301c343df5e98b1db for RH8.

Failing to show the hashes matched, and not having ready access to all versions
of Linux distributions, including Red Hat, Debian, SuSE, Slackware, etc. and the
shared libraries, we tried the next best thing.

We generated output by running both programs in help mode (with the command
line parameters --doc man, --doc sgml, and --help). We compared the
output in 3 ways—md5sum, diff, and cmp—and they matched according to all
three tests.

Figure 17 is a screen shot that shows the two binaries, which are different sizes,
producing output with identical MD5 hashes, when run with identical parameters.
The previous figures show our modifications are minimal; the changes to bmap.c
consisted solely of changing “map” to “m”, “carve” to “c”, “slack” to “s”, “putslack”
to “p”, “wipeslack” to “w”, “checkslack” to “chk”, “slackbytes” to “sb” and “bmap” to
“prog”. We changed nothing else, no spacing, tabbing, punctuation, or anything.
The likelihood that an entire page of text in two programs would be formatted
identically is extremely small.

While a “smoking gun” would have been to have the binary match exactly, we
feel that this result is a strong indication that these binaries come from the same
source.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
27

Figure 17comparison of hash of output of two binaries

Legal implications
It is highly probable that bmap was run on the system in which the floppy was
found. bmap was on the floppy that was in John Price’s computer; in addition,
the floppy contained a file listing (most likely illegal) MP3 download sites hidden
in the slack space of another file.

But, it is not 100% certain. We cannot show the data on the floppy was put there
by bmap run from that PC and not on (say) a home machine. A good defense
attorney could introduce some doubt on tying the disk to the work machine.
Having any supporting evidence, such as router flow logs, would be extremely
useful to establish what was going on—for example, showing that John Price’s
machine established a connection to ripped.net during a time when John was at
work.

Strictly speaking, the bmap program does not do anything illegal. It might violate
a policy on using company machines for personal use or stating that all
information is “owned” by the company and must be visible by them (no
encryption, etc.). The netcat program implies there was a direct connection

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
28

with another machine, which might also be against company policy—for
example, using machines for non-work related purposes.

The laws most likely to have been broken would involve copyright laws and
computer fraud. 18 USC 2319 defines illegal distribution of copyrighted material.
The computer fraud act could be violated by wiping the disk of the machine,
which might be a “protected computer” under 18 USC 1030. Additional state
laws may also be applicable—for example Chapter 40, Article 156 of the New
York State Consolidated laws defines computer tampering (S156.20-27),
unlawful duplication of computer related materials (S156.30), and criminal
possession of computer related materials (S156.35). A detailed discussion of
these laws, their applicability and penalties, is presented in Part III of this report.

Interview questions
A few approaches can be used in an interview to help prove the subject had
installed and executed the program, depending on the nature of Mr. Price. The
first and least likely to work is the straightforward approach: tell him that we can
show the floppy belongs to him and that we have identified the binary, and give
him a chance to talk. Questions 1 and 2 take that approach.

The second approach is to intimidate him, revealing enough information to show
that he is in big trouble, and use that to get him to confess and reveal additional
information, possibly making him feel betrayed by his “associate” Mike.
Questions 3 and 5 take that approach.

If he appeared to be confident, a third approach would be to appeal to his inner
geek, impress him with the technology and make him want to brag. Question 4
takes that approach. We could make deliberate technical errors that he might
correct to show how much he knows. Question 6 takes that approach.

1. Tell me what was on that floppy. There is a directory named John and a
mail message you sent to Mike. What was the program, what did it do?
When did you rename bmap to prog?

2. Why did you wipe your computer? What did you put on it? You know that

one format isn’t enough to get rid of information. It just takes us longer
and costs us more to find it, and means we’re going to pursue the full
penalty of law. Let me see if I can jog your memory…do these sites
sound familiar: fileshares.org, convenience-city.net,
emmpeethrees.com/hidden, ripped.net/down/secret.htm?

3. We’ve already talked to Mike. In fact, he was the one that fingered you. If

you work with us, that’ll help. The police might be willing to cut a deal. If
not, I’m sure Mike’ll be happy that you took the rap alone. You know the
RIAA is looking for people to hang up for publicity. The law says, what

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
29

[ask the “bad” cop], 5 to 10 years for willful infringement of copyrighted
material and 10-15 under the anti-hacking law? You’re looking at up to 25
years if you go it alone. Good friend, that Mike. Now, have you got
anything you want to say about him?

4. We examined the floppy in your computer. It’s got your name on a bunch

of files, so you won’t be able to claim it’s not yours. We saw netcat, found
bmap, and found your list of download sites. Cute, hiding it in the
HOWTO. We’ve got enough on you to prosecute. [pause] It must’ve been
incredibly tedious to transfer all those files by hand, and to organize them.
How could you stand to just type file names all day and move all that stuff
around? Didn’t you at least throw together some scripts to make life a
little easier and keep things organized?

5. Are you familiar with MAC times on a file? You know they can be used to

analyze what happened on a computer? It appears that you don’t know
that inode numbers are just as useful, even when someone attempts to
hide their trail. Like they say, we can do this the easy way or the hard
way, it’s your choice. If you help us, we’ll help you. Just tell us
everything, from the beginning. And remember, we already know most of
the details, so we’ll know if you try to lie.

6. Do you really understand how bmap works? Did you think no one would

notice the slack space being used? If we hadn’t seen that program, we
could’ve compared du and df. [At this point, he might want to correct our
“misunderstanding” on how slack space works. Allow him to “teach” us
and show that he understands it.]

Case information
System administrators can detect if bmap has been used on their systems to
hide data in the slack space of files by running the following command sequence,
as suggested in [9]:
find / -exec ./bmap --mode checkslack {} \; 2>&1 | grep
'has slack'
This command enumerates all the files on a disk (starting with the root directory),
runs the bmap command on it to check if any non-null data is stored in the file’s
slack space and prints any results that match the words “has slack.” Normally,
Linux stores nulls in the slack space of files. This command would be useful for
system administrators to run to detect data hidden in the slack space in their
disks. It would be a good indication that this binary, or a functionally similar one,
were in use.

inode-based timeline analysis
We created two timelines, one based on the MAC times and the other based on
the inode numbers, and compared them. The two analyses are inconsistent,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
30

suggesting either that another machine was used (with a different time base) or
that the MAC times were deliberately altered to hide the trail. We describe the
timeline analyses below.

Using the timeline created by the Autopsy [1] program (included in Appendix A),
we looked at the MAC times of the file named prog. In addition, we compared
that to a list of files on the floppy, sorted by inode number (included in Appendix
B). Operating systems generally allocate inode numbers in a sequence. So the
sorted inode list gives us a relative timeline for the order in which files were
created.

We tested how inodes are allocated on a Red Hat 9 system, creating an ext2
floppy via the mkfs program, then creating files, deleting some, creating more,
and observing how the inode numbers were allocated. We observed the system
to always allocate the lowest available inode number. Thus if files were not
deleted, ordering by inodes shows the relative order in which files were created.
However, out of order inodes may reflect the presence of files that were created
earlier, and then deleted, freeing a (lower number) inode for reuse. For example,
inode number 13 is /Docs/DVD-Playing-HOWTO-html.tar and inode number 15 is
Docs. It should be noted that Windows does not exhibit this behavior; it does not
immediately reclaim unused inodes. Also, for large ext2 disks, files in the same
directory get sequential inodes and files in other directories get sequential inodes
from a different group. In this case, the floppy’s limited size simplifies the inode
analysis.

The inode numbering inconsistency may result if a file is created first, then a
directory, and then the file is moved into the directory. Alternatively, inode 13
could have been deleted after inode 15 was created, although other evidence
does not support that. An inode number analysis can be used to corroborate the
data in the timeline. To defeat this analysis requires creating and deleting many
files throughout the time the computer is used. This technique to defeat the
inode analysis does not seem to be a common practice.

The file MAC timeline analysis does not agree with the inode timeline analysis.
In the timeline, there are many files that have an MA (modify, access) time, and
then later on have a c (inode change) time. A c-time by itself implies the file was
renamed, moved within the same file system, changed ownership, group, or
permissions, or had its m- and a-times changed via the touch command. While
bmap had to be renamed to prog at some point, that renaming does not explain
the changes to files in John and many of the files in Docs. The m-time of the
Docs directory is earlier than the c-times of the files in the Docs directory; this
means the c-times on those files were not a result of moving the files into the
Docs directory. Had it been due to a move, then m-time of the Docs directory
would reflect the change as well. The c-time must have been due to a different
operation performed on them.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
31

Therefore, it seems likely that the MAC times were deliberately altered to hide
the trail after the fact. The c-times will show when the m- and a-times were
altered, but their previous values are lost.

Another piece of evidence is that the bmap tool stores the date when it was built.
The Makefile creates the file config.h which contains various #define
statements. Of relevance to us is the BUILD_DATE, which is created by the
command in the Makefile:
BUILD_DATE = $(shell date +%D)
followed later by
echo “#define $BUILD_DATE \”${BUILD_DATE}\”” >> $@
which sets the variable BUILD_DATE to the current date, of the form MM/DD/YY,
in which MM is the month, DD is the day, and YY is the year. So, for example,
July 15, 2003 is 07/15/03.

The bmap tool prints the build date when the help is displayed. Figure 18 below
shows when prog was run with the command line arguments --doc man. The
build date can be seen in parentheses on the bottom left side of the screen as
well as at the bottom center of the screen. It is 07/15/03.

Figure 18 screen shot of help screen with prog version and date

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
32

Looking at the file timeline, we can see that the m-time of the file was July 14,
2003 at 10:24am, the c-time of the file was July 16, 2003, 2:05am, and the a-time
of the file was July 16, 2:12am. If the build time in the binary is correct, then the
last modification time occurs before the file was built. One explanation is that the
m-time was changed on the 16th. However, the inode listing shows the file
created immediately before prog was Mikemsg.doc and the MAC time of it is
July 14 2003, 10:48. Another explanation is that the binary was built on a
different machine with a clock set to a different time or possibly in a different time
zone.

So, the timestamp on bmap conflicts with the build date compiled into the
program, as well as the date on the message for to Mike. This suggests that
either another machine was used to build bmap or that the file timestamps and
the clock on John Price’s machine were deliberately altered to cover the trail.

Several details suggest that John Price was using the organization’s computing
resources to distribute copyrighted material. The file downloads was stored in
the slack space of the file Sound-HOWTO-html.tar.gz and contains a list of pirate
sites from which MP3s can be illegally obtained (note that these are not real
sites, but for the assignment, we can assume they are). Also, the message to
“Mike” is from John Price. It is signed by “JP” and the properties of the file,
viewable under Microsoft Word, shows the document author as John Price. In
addition, the text of the message mentions that he received files “last night” (July
13, 2003) and jokes that he is “ready to rock and roll” which further supports the
claim that John Price was distributing copyrighted material. The floppy contained
netcat, which would allow him to make network connections to other machines
and transfer data. Finally, the floppy contains a directory named “John,” which
further suggests that this is John Price’s disk. It should be mentioned that many
of these clues could be faked to frame John Price. However, this must be
weighed against the overall consistency of the facts and how they corroborate
each other.

The images are curious anomalies. The Ebay image may be a lead as to how
Mr. Price distributed the material. A search on Ebay revealed a user named
Johnprice, but he had not been active recently.

Additional information
The following web pages were useful during the research for this part. Link 1
provided useful information on the slack space tool bmap. Links 2 and 3 provide
detailed information on the ext2 file system. This was useful in understanding
the physical layout of the disk. Link 4 suggested running bmap with the find
command to find all files with slack space on a disk. It also has good forensic
resources. Finally, Link 5 is the Legal Information Institute at Cornell University,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
33

and provides easy to navigate, searchable, and cross-referenced web pages of
the United States Code (as well as other legal sources).

1. “Linux Data Hiding and Recovery” by Anton Chuvakin, PhD.
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html

2. “Some Notes on the Linux Kernel” by Andries Brouwer, 2003-02-01,

Section 7.2, the Ext2 file system, http://www.win.tue.nl/~aeb/linux/lk/lk-
8.html#ss7.2

3. “Design and Implementation of the Second Extended Filesystem” by

Rémy Card, Theodore Ts’o, and Stephen Tweedie,
http://e2fsprogs.sourceforge.net/ext2intro.html

4. “Forensic Tools”, http://www.forinsect.de/forensics/forensics-tools.php.

5. “US Code” by the Legal Information Institute,

http://www4.law.cornell.edu/uscode/.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
34

Part 2 – Option 2: Forensic tool validation

Introduction

Timelines are an essential tool in forensic analyses. File MAC (modify, access,
change) times are the building blocks forensic analysts use to generate them.
Interpreting timelines is less precisely defined than building them, and relies on
the knowledge and experience of the analysts. Anomalies in the timeline are
often “footprints” of certain activities. Attackers commonly use archive programs,
typically to extract files downloads onto a compromised system. The footprints
left in the timeline will depend on the tools that were used, the operating system
on which they were run, and even the type of file system used.

To determine what effects a particular archiving/extraction program may have
had, an investigator would need to conduct an experiment on a particular
configuration, with the right tools. While this is a straightforward process, it is
tedious and easy to make mistakes that could contaminate the results of the
tests. What is needed is an automated tool to assist an investigator to conduct
these tests in a repeatable, forensically valid way.

We have created such a tool, called tar2d2.3

The following scenario describes how tar2d2 could be used. An investigator gets
a disk to examine and notices an anomaly in the file system—for example, create
times are more recent than modification times, modification times pre-date the
system installation, and the file owner is not a local user. The investigator also
notices two archive tools on the system and notes the last access time of each.
He forms a hypothesis that one of the tools was used to extract files from an
archive. He then uses tar2d2 to test his hypothesis on a machine running the
same operating system and configuration. Another situation is that tar2d2 can be
used to create a library of fingerprints of various archive programs, which can
then be used to help create hypotheses to explain anomalies.

In this part, we conduct a tool validation analysis, demonstrating that the data
produced by the tool is verifiable and repeatable, and showing the forensic
integrity of the tool. In the process, we will describe the design, function, and use
of the tool.

Scope
In order to properly test this tool, we ran it on two different operating system
platforms—Windows XP Pro and Linux Red Hat 9.0. We conducted the tests

3 While technically, the name can stand for Testing of Archivers for Reference of Restored Disk
Data, in reality the name is a bad pun, since the tool is a helpful little droid.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
35

using two different archiving programs, tar and zip. Tar2d2 is a tool that helps an
investigator run tests on archiving programs. It runs the tests, gathers the data in
a specific order, and stores it in a consistent way. It is designed to be used in the
lab, so that file system fingerprints can be observed.

The scope of testing is limited to running the tool on two different operating
system platforms, and observing and analyzing the results in order to show
consistent performance.

Tool description
The tool name is: tar2d2, version 1.00, written by Frank Adelstein. The tool is
freely available and redistributable and can be obtained at the web site: http://atc-
nycorp.com/downloads/frank/tar2d2.pl.

The tool is designed to help automate the process of testing archiving tools and
observing their effects. Different tools have different affects—for example, an
extraction program that explicitly sets the modification time on a file based on the
archive may have the create time after the modification time. Alternatively, the
granularity of the timestamps on the file system may show access times as
midnight of the current date.

It can be useful for an investigator to verify the behavior of the suspected
program on a computer in a particular configuration. Conducting the test by hand
can be straightforward, but to conduct it in a forensically sound way is tedious
and can be prone to contamination if the investigator is not careful. tar2d2 is
designed to provide a standardized process for conducting these tests, storing
the data, and comparing the data with a standard. These tests are easily
reproducible and could support the testimony of an expert witness.

A more detailed description of the tool’s functionality is presented later, but
briefly, each experiment goes like this: the experimenter starts with a central
directory, which is then archived; he then uses tar2d2 to extract files from the
archive to a specified location and compare the extracted version with the
original.

tar2d2 helps the forensic investigation by performing tests in a controlled,
repeatable way, so investigators can determine (or verify) the effects of running
archive programs. The program was designed to perform the tests in a
forensically sound way and preserve useful information about the “forensics
fingerprint” of the archive program under consideration. It is extensible and
configurable and runs on Unix and Windows platforms.

By using this tool, investigators gain a clear understanding of the forensic
fingerprint of an archive tool run with specific options on a particular OS platform
using a particular file system. This allows investigators to recreate the conditions

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
36

on a system under investigation and determine what effects a particular tool has.
The effects include preserving or overwriting values including the MAC times, file
and group IDs. In addition, the tool creates a datafile that contains all of the
relevant information, including MD5 hashes of all of the files examined, in order
to preserve the integrity of the results of the experiments.

Detailed description of tar2d2:

tar2d2 is invoked via the command line. The user specifies a directory to be
used for datafile extraction and a filename in which the results are stored. The
user can specify a configuration file, as well as “debugging” and “verbose”
options.

The config file is an XML file that specifies the location of the archive/extraction
program, the flags to be passed to the program, the location of the archive file,
and the location of the control directory (which may, but need not be, a CD-ROM
or read-only mounted file system). In addition there is a field to vary the number
of tests run, but that was not used for this validation (instead, we performed
multiple individual runs of the entire tool). Figure 19 shows a screen shot
containing a config file that was used on a Windows XP system.

Figure 19 screen shot of config file on Windows XP Pro

Figure 20 shows the configuration file used for Linux.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
37

<?xml version='1.0' standalone='yes'?>
<main>
 <archiveFile>/tmp/sans.star</archiveFile>
 <extractionFlags>xf</extractionFlags>
 <extractionProg>/usr/bin/star</extractionProg>
 <numberofTrials>1</numberofTrials>
 <stddir>/mnt/hack/forensic_challenge_mount</stddir>
</main>

Figure 20 tar2d2 config file for Linux

If no configuration file is specified, a default is used and the file config is
created. While this is unlikely to guess the location of the files, it is a fast way to
create a conforming XML file which can be edited to change the path
specifications as required.

The tool does not verify that the control directory is mounted read-only. The
investigator must ensure that during the setup, otherwise the access times on the
files and directories in the control directory will be changed.

The tool then gathers information about the control directory, iterating recursively
through all the files in it and writes the data to an output file (specified by the user
with “.std” appended to the end of the name). The file persists but is only
useful for debugging or comparison purposes (refer to the conclusions for
suggestions on improvements). A detailed description of the data gathered is
presented later.

The tool then verifies that the command line specified directory to use for the
extraction of the files is empty. The program terminates with an error message if
the directory is not empty. Then it changes to that directory and runs the
specified archive program. Output and errors go to STDOUT and STDERR,
which can be captured by simple redirection.

After extraction, the tool gathers data on the extracted files in the same manner
that it collected information on the control data. The tool gets a list of all of the
files in the directory and performs a stat() library call on each one in turn, and
saves the data. The data consists of the name, m-time, a-time, and c-time, file
size, inode number, mode (permissions), number of links, owner ID, group ID,
rdev (major and minor numbers if it is a device file), block size, and number of
blocks. In addition, the program computes the MD5 hash of the file (the MD5
field for directories are listed as “0”).

If the file is a directory, then after obtaining the information, the tool recursively
descends into that directory and repeats the process.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
38

After gathering the data on the extracted files, the tool compares the data from
the extracted files in the test directory to the files in the control directory. The tool
compares each attribute (i.e., m-time, size, etc.) in each file in the test directory
to that of the control group. If the values are the same, the value is considered
preserved, and if the values differ, it is considered overwritten. The tool keeps a
count of how many times each attribute is preserved or overwritten. The tool
then writes summary information, which includes two categories: overwritten and
preserved. Each category contains a list of the attributes and a count of how
many times each was overwritten or preserved. In addition, the attribute
numberoffiles is a count of the total number of files and directories processed.
As a check, the count for each attribute in preserved and overwritten should sum
to numberoffiles.

By considering the preserved and overwritten MAC time attributes, an
investigator can quickly verify what an archive program is doing when it performs
an extraction. Other attributes such as owner and group may also be useful.
The file size and MD5 hash can be used to support the forensic integrity of the
experiment by verifying that the

Certain attributes will never be preserved, such as the inode number in Linux.
Others will always be preserved, such as the name and MD5 hash. The
behavior of some attributes will differ between Linux and Windows, due to library
implementations. For example, blocksize and blocks will be empty under
Windows.

Finally, the tool writes out the data file in XML. Examples of the data files are
included in Appendix C and Appendix D.

Since this is a perl script, it uses the dynamic libraries that perl uses. Figure 21
shows a list of the dynamic libraries used by perl, version 5.8.0, on our Red Hat 9
Linux system.

ldd /usr/bin/perl
 libperl.so => /usr/lib/perl5/5.8.0/i386-linux-thread-
multi/CORE/libperl.so (0x40017000)
 libnsl.so.1 => /lib/libnsl.so.1 (0x4015c000)
 libdl.so.2 => /lib/libdl.so.2 (0x40171000)
 libm.so.6 => /lib/tls/libm.so.6 (0x40174000)
 libpthread.so.0 => /lib/tls/libpthread.so.0 (0x40196000)
 libc.so.6 => /lib/tls/libc.so.6 (0x42000000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x401a4000)
 libutil.so.1 => /lib/libutil.so.1 (0x401d1000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Figure 21 dynamic libraries used by perl under Linux

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
39

In addition, tar2d2 uses the following perl packages: Getopt::Long,
Digest::MD5, XML::Simple, Cwd, File::Spec::Functions, and
File::Glob. XML::Simple is the only package not provided with the standard
perl installation and can be installed with the command shown in Figure 22.

perl –MCPAN –e shell
cpan> install XML::Simple

Figure 22 command to install perl XML package

While the tool can be run from a CD-ROM, it is not necessary, since it is intended
to be run on the investigator’s machine, which should be in a known (and
controlled) state. Similarly, there is no need to statically link perl (which can be
difficult). To ensure tar2d2 is used in an evidentiary sound way, the investigator
must be able to document the state of his machine, including what was installed
on it and not use the machine for arbitrary programs (such as web browsing and
reading mail). A simple approach is to use a virtual machine via VMware.
VMware has the capability of taking a snapshot of the state of a virtual machine
and later to restore the machine to that state. The state includes the disk,
memory, and screen. If the investigator maintains an MD5 hash of the files
associated with the snapshot, he can ensure the snapshots have not been
modified. By performing and documenting this process, the investigator can
ensure that tar2d2 is used in an evidentiary sound way.

Test apparatus
In this section, we describe the testing environment, including the OSs used
(version and configurations), the format of disk (e.g., NTFS, ext2), and tools used
to conduct the tests (e.g., stat, cygwin).

Red Hat Linux test system
We used GNU tar version 1.13.25, which was the same version that was used on
the windows platform.

#uname -a
Linux localhost 2.4.20-8 #1 Thu mar 13 17:54:28 EST 2003
i686 i686 i386 GNU/Linux
cat /etc/issue
Red Hat Linux release 9 (Shrike)
The machine used is a server installation with all packages selected and
installed. There are 1396 RPM packages listed when the command rpm -qa
via the command. Due to the large number of entries, this list is not included in
this report. The file system is an ext2 format.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
40

The extraction program used to test tar2d2 on Linux was GNU tar version
1.13.35 and is included in the standard Red Hat 9 distribution.

Windows XP Pro test configuration

The Windows XP Pro system is configured as follows:

Kernel: Microsoft Windows XP, Uniprocessor Free
Service pack: 1
System root: C:\WINDOWS
Build number: 2600
Registered organization:
Processor #1: 1395 MHz
Physical memory: 535740416 bytes (510.92 MB)
Drive information:
C:\ Fixed IBM_PRELOAD NTFS 24783728640 (23635MB)
24783728640 (23635MB) 36485373952 (34795MB)
D:\ CD-ROM - - UNKNOWN (UNKNOWN MB) UNKNOWN
(UNKNOWN MB) UNKNOWN (UNKNOWN MB)
Hotfixes:
A total of 46 hotfixes were installed.

The tool was tested using the C: drive, which is an NTFS disk. The extraction
program used to test tar2d2 was GNU tar version 1.13.25, as supplied by the
standard Cygwin installation. Figure 23 shows a screen snapshot with tar
invoked with --version.

Figure 23 Screen shot showing the version of tar used on Windows XP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
41

Environmental conditions
The tests were conducted on two machines, one running Red Hat 9.0 Linux and
the other running Windows XP Pro. The machines are connected to a local
network, assigned an IP address via DHCP, and the connection to the Internet
goes through a router/firewall that provides Network Address Translation (NAT).
The IP addresses are in the 192.168.1.* range. Both systems were connected to
the network via an IEEE 802.11b wireless Ethernet card. The Linux system used
Lucent Technologies Orinoco Gold PCMCIA card, and the Windows system used
an Intel(R) PRO/Wireless LAN 2100 3B Mini PCI Adapter built-in card. The
network connectivity of the machines should not be significant and the disks used
were local and had no other users. The tests were conducted either on the
weekends or sufficiently late at night that no one else was on the network.

The Red Hat machine runs on an IBM R32 Thinkpad running a 1.8GHz Pentium
4 processor with 40G of disk and 768M of memory. The Windows XP Pro
machine is an IBM T41 Thinkpad running a 1.4GHz Pentium M processor with
30G of disk and 512M of memory.

Description of the procedures
The testing is performed using a single PC. Tests were run on two platforms, a
laptop running Linux and a laptop running XP.

Preparation of the platforms includes installing Perl and the XML::Simple library
package. In addition, we created the following set of test files with properties
related to their names:

• readfile
• writefile
• chmodfile
• movedfile
• firstdirectory

o readsubdirefile
• secondsubdirectory

o movedsubdirfile

The file readfile was created and then at a later point in time it was read, so
its access time would be after its modification time. Similarly, writefile was
created and not read. chmodfile was created and then had the permissions
changed via the chmod command. movedfile was renamed via the mv (move
command).

Two directories were created, firstdirectory and secondsubdirectory.
A file readsubdirfile was created in that directory and then subsequently
read after it was written, similar to readfile in its parent directory. And finally,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
42

movedsubdirfile was created in the parent directory and moved into
secondsubdirectory.

This represents a selection of common operations performed on files and would
be reflected in their timestamps. The file system was then turned into an ISO
9660 image with Joliet extensions by using the command:
mkisofs -J –R -o testimage.iso dirname

That command created an ISO image of the directory subtree starting at
“dirname” which contained the previously mentioned files. We then tested the
integrity of the ISO file with the command:
mount -o loop,ro testimage.iso mount_point

Figure 24 shows a screen shot of the setup. The first command shows the ISO
is mounted read-only via the /dev/loop1 device on the mount-point
/mnt/hack/forensic_challenge_mount. The second command, df .,
shows the current directory is a mount of the file /root/testimage.iso,
which is the file we created with mkisofs. Finally, the files under the directory
are shown.

Figure 24 read-only ISO image of test files

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
43

It should be noted that since this is mounted read-only, nothing will change on
the mounted file system, including any of the time stamps on the files.

We then created a tar file via the command tar cf /tmp/sans.tar . .
Then the config file was created and the empty directory to hold the extracted
files, named blarg, was created. The code was run via the command:
tar2d2 -c config blarg data.out

The data file was then analyzed based on the approval criteria described in the
next section. The contents of the directory were removed and the process was
repeated, saving the output to a different file. The program was run three times.

Finally, we verified that testimage.iso had not changed (been modified) since it
was created, by looking at its last modification time and its MD5 hash
(192d135a51f53538eba068d45ce38bab).

The entire process was repeated on a Windows XP system, using a CD-ROM
created from the testimage.iso file.

The results of the output are the “data.out” files. The files are given meaningful
names, such as linux.out and xp.out. When multiple runs are done to show the
files did not change, a number is added to the name, such as linux1.out,
linux2.out, etc.

Criteria for approval
There are several criteria for approval for tar2d2.

1. The data it generates must be correct. The timestamps, MD5 hashes, etc.
all must be correct.

2. tar2d2 must examine and include all files extracted by the archive
program.

3. The results must be consistent and repeatable. Subsequent runs must
produce consistent results. Note that identical results are not to be
expected, since inode numbers and timestamps may change from run to
run; but the fundamental data it reports, and the reports that the data has
changed in comparison to the control data set must be the same from run
to run.

The evaluation addresses these criteria by the experiments. In addition, the
correctness was further supported by the step-by-step description of the source
code presented in the Tool Description section.

In addition, we performed a similar procedure to analyze the tar and star
programs by hand. This allowed us to subjectively compare performing the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
44

process by automation versus by hand, in terms of ease of use, accuracy, and
repeatability.

Data and results
First, the code was written to perform its tasks in a repeatable and forensically
valid way. For example, data is preserved by recording all of the file attributes,
including MAC times, before anything is done to the files. The MD5 hash is
computed before obtaining the MAC times, so the tool records the original
access time of the file.4 In addition, the tool records the MAC times for a
directory before recursively processing that directory; so again, the tool records
the original access time of the directory.

Correctness test: We ran “stat” by hand on the files analyzed by tar2d2 and
then used the 1-line perl script shown in Figure 25 to translate the timestamps
into a human-readable format:

perl -e 'print localtime($ARGV[0]) . "\n"' timestamp

Figure 25 perl 1-liner to translate epoch time into a human-readable date

Note that timestamp is replaced by the numeric value in the atime, ctime, or
mtime tag in the result file. We ran md5sum on the files to confirm that the
values in the MD5 field is correct.

Ensure all files were processed: We verified that the file data.out contained a
file tag for all 8 entries in the tar file which is equivalent to the ISO file. There are
two directories, firstdirectory and secondsubdirectory, four files at the
top level: chmodfile, movefile, readfile, and writefile, and one file
under each of the subdirectories, firstdirectory/readsubdirfile and
secondsubdirectory/movesubdirfile.

By executing the command “grep name data.out” we could easily determine
how many files were in the output (by searching for “name” tags). In addition,
because there were only 8 entries, we examined the entire file by hand as well.

To test the repeatability, we ran the program 3 times in a row, saving the
resultant data files and then comparing them. This was done under Linux and
Windows to verify that the results were consistent.

4 Recall that this tool is designed to be used in a laboratory to analyze archiving programs; it is
not intended to operate on the forensic data of a compromised machine itself. So changing the a-
time of files the tool creates is not significant, provided that it records the original a-times, as well
as other data.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
45

Appendix C and Appendix D includes the XML output file from running tar2d2 on
the sample files under Linux and XP, respectively.

Analysis
tar2d2 provides two types of data to the investigator. The first type is the raw
data on the files and directories and the second is the summary information. The
raw data is useful for verifying the functioning of the tool—for example, showing
the MAC times are correctly recorded. The raw data can also be used to gain
insight into some of the low level OS functioning. The order in which inodes are
allocated within a single directory and across directories is shown by examining
the raw data.

The summary data is more useful to the investigator. By examining the
“preserved” and “overwritten” attributes, an investigator can quickly determine
what file attributes have changed during extraction. In addition, the output file is
in XML format, which can be parsed easily by other scripts, either for analysis or
entry into a database.

The preserved and overwritten attributes help characterize the fingerprint of an
extraction tool. While some tools may not leave distinguishing fingerprints on the
file system, others may. This data can then be used to support an investigator’s
hypothesis that a particular tool was used to explain artifacts left in a file system.

The analyses conducted for this practical are based on the acceptance criteria
described above. The raw data consists of MAC times, file hashes, directory
listings, file sizes, as well as experiment configuration data (OS platform,
program, filesystem, etc.).

Presentation
The data saved by tar2d2 are stored in XML, which is a general format that is
easily parsed and read in by other tools. The perl library XML::Simple allows an
XML file to be read in directly into a data structure consisting of direct values of
strings and numbers (floats and integers), arrays, and associative arrays
(hashes). In addition, to the raw data stored in the <file> </file> tags, the
<preserved> </preserved> and <overwritten> </overwritten> tags
contain a set of tags indicating which attributes in the extracted file were identical
to the control file (the read-only ISO image) and which were modified. Each
subtag under preserved and overwritten contains a count of how many files
preserved or overwrote that attribute. Figure 26 shows an example in which the
ctime and atime attributes were the only attributes changed. The attribute
numberoffiles represents the number of files processed, so it serves as a check
that all files were processed. In general, all files should fall into one group or

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
46

another, but it is not required. For example, directories may be treated differently
than regular files.

 <numberoffiles>8</numberoffiles>
 <preserved>
 <dev>8</dev>
 <mode>8</mode>
 <nlink>8</nlink>
 <MD5>8</MD5>
 <ino>8</ino>
 <size>8</size>
 <name>8</name>
 <rdev>8</rdev>
 <mtime>8</mtime>
 <gid>8</gid>
 <uid>8</uid>
 <blksize>8</blksize>
 <blocks>8</blocks>
 </preserved>
 <overwritten>
 <ctime>8</ctime>
 <atime>8</atime>
 </overwritten>

Figure 26 sample XML summary tags

The summary information mentioned above could be used to validate a
hypothesis about the traces left by running an archive program. An investigator
would create a hypothesis to explain particular artifacts (say, time stamp
anomalies) after observing that an archive program had been run recently (based
on its access time). To help support the hypothesis, he could run tar2d2 to show
the archive program leaves the same traces that were observed. Similarly, it
could be used to refute a claim that such a program was used by showing the
archive program does not leave such traces.

Explaining the output of the tool to a court would be challenging. Anything
involving the technical details of a file system, the time stamps, creation or
(worse) inode modification change time can quickly lead to glazed over
expressions and a lack of understanding, or worse, a misunderstanding (perhaps
even a sentiment that the prosecution is trying to “hide” the truth or misdirect the
court by presenting all these “facts” and numbers).

The less time spent on an explanation, the better. The investigator would need
to mention that he looked at files on a computer and that the operating system
records whenever a user or program reads or writes files (leave off c-time unless

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
47

needed). These are the timestamps. The investigator has reconstructed the
actions of the defendant based on evidence in the files and the timestamps on
the files. The claim is that a certain program was run. The investigator can say
that he has tested the validity of the claim in the lab, using a scientifically and
forensically valid method, and it shows what evidence would be left by running
the tool. This information then supports or refutes the claims.

Conclusions
We feel the testing successfully demonstrated the validity and repeatability of the
tool. In addition, performing the task by hand emphasized the need for an
automated, easily repeatable process. It is easy to make mistakes, perform
steps out of order, or accidentally contaminate the data with a stray ls
command. In addition, recording the data in a consistent, machine-readable
format is tedious and error prone. Automating the process is highly desirable.

A question remains as to the overall usefulness of such a tool. A colleague who
is the security administrator at a large university said, in private communication,
that a list of fingerprints of archive tools would be useful. However, the
usefulness of a tool will be decided by those in the field “in the trenches.”

The tool is designed to produce forensically sound data. It can not be used for
incident response on original data. The tool is intended to reproduce the effects
of archive tools to help explain the anomalies that might be observed in a MAC
timeline. It must be used in a controlled laboratory setting using calibrated test
data that is either provided with the tool or created by the investigator.

Limitations: tar2d2 relies on some of the abstractions defined in the perl libraries
to increase its portability. Because of this, some data is not obtained on
Windows machines. The most important data—specifically file MAC times, sizes,
and MD5 hashes—are correctly obtained, but other data including permissions,
owner and group, and inode number are not. The investigator must be aware
what data is valid under Windows when determining a fingerprint.

A caveat: the author of this report is the author of the tool. A study made by an
independent third party would be warranted to validate the results presented
here.

Potential improvements: tar2d2 focuses on determining the fingerprints of
extraction tools, since such tools are often used to exploit compromised
machines once software has been downloaded, such as root kits and IRC
servers. Files are commonly gzipped tar files, tar files, or zip files, so this is
useful. However, with a little additional work, tar2d2 could support analyzing
archive creation as well as extraction. For example, depending on the tool and
the flags used, an extraction program may preserve the a-times at the expense
of c-times. Noting the presence of this artifact on all files associated with a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
48

popular archive might suggest that an archive was built on a machine under
investigation. Being able to verify that the tools on a given machine behave in
the presumed way would be useful.

The .std file is only useful as a debugging tool. The program should be
modified so that it is created only when the debugging flag is enabled.

Windows uses a more complex mechanism for file permissions: access control
lists (ACLs). A useful addition would be supporting Windows ACLs, although that
requires non-portable OS-specific code.

Additional Information
We discovered additional information during the creation and testing of this tool.

Interesting details (re)discovered during the testing:

• Linux allocates inodes in a regular, repeatable way. Windows allocates
them in a (seemingly) random way.

• star -k preserves all 3 MAC times. An impressive trick (performed by
temporarily altering the system time).

We focused on data file extraction, since investigators typically will obtain disks in
which archives were unpacked (root kits, etc.). Archive programs also leave
fingerprints when they create an archive. There are flags that determine whether
they will affect the a-time or not (by changing the c-time). Further experiments
on archive creation would be interesting, and tar2d2 would support those
experiments with minor modifications.

Windows handles ISO file systems poorly, often ignoring MAC times on the
media. An improvement to tar2d2 would be to have it create the files with the
desired properties before the tests run.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
49

Part 3 – Legal issues of incident handling

Question A
This question asks what laws were broken, if John Price was distributing
copyrighted MP3s.

Federal Law
By distributing copyrighted material, John Price is committing a criminal
infringement of a copyright. Title 17, Chapter 5 of the US Code defines
“Copyright Infringement and remedies” and specifically, Section 506(a) defines
“Criminal offenses” as follows [14]:

 (a) Criminal Infringement -
 Any person who infringes a copyright willfully either –
 (1)
 for purposes of commercial advantage or private financial
gain, or
 (2)

 by the reproduction or distribution, including by electronic
means, during any 180-day period, of 1 or more copies or
phonorecords of 1 or more copyrighted works, which have a total
retail value of more than $1,000,

shall be punished as provided under section 2319 of title 18, United
States Code. For purposes of this subsection, evidence of
reproduction or distribution of a copyrighted work, by itself, shall not
be sufficient to establish willful infringement.

Title 18, Part 1, Chapter 113 of the US Code covers “Stolen Property.” Section
2319 [15] defines “Criminal infringement of a copyright” as follows:

 (a)

 Whoever violates section 506(a) (relating to criminal offenses) of
title 17 shall be punished as provided in subsections (b) and (c) of this
section and such penalties shall be in addition to any other provisions of
title 17 or any other law.

 (b)
 Any person who commits an offense under section 506(a)(1) of title
17 –

 (1)

 shall be imprisoned not more than 5 years, or fined in the
amount set forth in this title, or both, if the offense consists of the
reproduction or distribution, including by electronic means, during a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
50

180-day period, of at least 10 copies or phonorecords, of 1 or more
copyrighted works, which have a total retail value of more than
$2,500;

 (2)
 shall be imprisoned not more than 10 years, or fined in the
amount set forth in this title, or both, if the offense is a second or
subsequent offense under paragraph (1); and

 (3)
 shall be imprisoned not more than 1 year, or fined in the
amount set forth in this title, or both, in any other case.

To prosecute under 18 USC 2319, it must be shown that the more than 10 copies
of the copyrighted material were distributed and that that represents more than
$2,500 of value. At roughly $20 per CD, Mr. Price would need to have distributed
at least 125 copies. A first offense is punishable by up to 5 years in prison, and
subsequent offenses up to 10 years. Legal counsel should be sought to
determine what is necessary to establish “willful infringement” since “evidence of
reproduction or distribution of a copyrighted work” is not sufficient to establish
this.

If it was not “willful infringement,” 18 USC 2319(c) defines a punishment of 3
years imprisonment, fines, or both, for the first offense, if 10 or more copies
having a total retail value of $2,500 or more were distributed. Subsequent
offenses are punishable by up to 6 years imprisonment. The minimum offense,
requiring a total retail value of more than $1,000 and at least one copy
distributed, is punishable by no more than 1 year imprisonment, fines, or both.
Again, assuming a $20 retail price per CD, this means Mr. Price is culpable
under the law if 50 copies were distributed.

While “Criminal infringement of a copyright” is the most obvious charge, it is not
the only one. The Computer Fraud and Abuse Act (18 USC 1030) [16] may also
be applicable. It was stated that Mr. Price was distributing the material on a
“publicly available system.” Mr. Price’s PC was on the Internet. Therefore, if he
was using his PC to distribute copyrighted material, it may be considered a
“protected computer” under the definition in 18 USC 1030(e)(2)(B), which
includes a computer “which is used in interstate or foreign commerce or
communication, including a computer located outside the United States that is
used in a manner that affects interstate or foreign commerce or communication
of the United States.” A publicly available computer on the Internet should fall
under the definition of protected computer.

18 USC 1030(a)(5)(A)(i) states that this section applies to whoever “knowingly
causes the transmission of a program, information, code, or command, and as a
result of such conduct, intentionally causes damage without authorization, to a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
51

protected computer.” It was stated that “Mr. Price was able to wipe the hard disk
of his office PC before investigators could be deployed.” If Mr. Price did not
merely delete files from his machine but performed a low level format of his disk,
wiping out everything contained on the disk, he was knowingly causing
intentional damage to his computer. He can be prosecuted under section 1030,
if the total damage is $5,000 or more, as defined in 18 USC 1030(a)(5)(B)(i).
This includes the cost of the time spent restoring his machine to service, in
addition to the value of the data that was destroyed.

State Law (New York State)
In addition, several different New York5 state laws are relevant – specifically,
computer crimes are defined under Article 156, Title JA156, of the Penal code of
the New York State Consolidated Laws [12]. The specific sections that are
relevant are S156.20, S156.25, and S156.26 “computer tampering,” S156.30,
“unlawful duplication of computer related material,” and S156.35, “criminal
possession of computer related materials.”

Section 156.20, 156.25, and156.26 define “computer tampering” in the fourth,
third, and second degrees, respectively. 156.20 states:

S 156.20 computer tampering in the fourth degree.
A person is guilty of computer tampering in the fourth degree when he uses or
causes to be used a computer or computer service and having no right to do
so he intentionally alters in any manner or destroys computer data or a
computer program of another person.
Computer tampering in the fourth degree is a class A misdemeanor.

This is, essentially, a “catch-all” that can be used for any intentional altering or
destruction of data or programs on a computer. Clearly, John Price destroyed
data by wiping his desktop hard disk. A more serious crime is computer
tampering in the third degree, which is defined as follows:

S 156.26 Computer tampering in the third degree.
 A person is guilty of computer tampering in the third degree when he
commits the crime of computer tampering in the fourth degree and:
1. he does so with an intent to commit or attempt to commit or further the

commission of any felony; or
2. he has been previously convicted of any crime under this article or

subdivision eleven of section 165.15 of this chapter; or
3. he intentionally alters in any manner or destroys computer material; or
4. he intentionally alters in any manner or destroys computer data or a

computer program so as to cause damages in an aggregate amount
exceeding one thousand dollars.

 Computer tampering in the third degree is a class E felony.

5 Since the author lives in New York State, these are the only state laws that are considered for
this practical.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
52

If the damage caused by John Price by wiping the disk was more than $1000, he
has committed computer tampering in the third degree. This would include the
cost of the programs and the time required to repair the damage (and restore the
programs).

In addition, if the data was in some way sensitive, it might be considered
“computer material,” which S156.00 (5) defines as a computer program or data
which (a) contains medical records, (b) contains records maintained by the state,
or (c) “is not and is not intended to be available to anyone other than the person
or persons rightfully in possession thereof or selected persons having access
thereto with his or their consent and which accords or may accord such rightful
possessors an advantage over competitors or other persons who do not have
knowledge or the benefit thereof.” There is no minimum cost of damage required
for computer tampering in the third degree. Finally, and more seriously, is
computer tampering in the second degree, defined as follows:

S 156.26 Computer tampering in the second degree.
 A person is guilty of computer tampering in the second degree when he
commits the crime of computer tampering in the fourth degree and he
intentionally alters in any manner or destroys computer data or a computer
program so as to cause damages in an aggregate amount exceeding three
thousand dollars.
 Computer tampering in the second degree is a class D felony.

It seems unlikely that the damages would exceed $3000, but that is not out of the
question. If the investigation was conducted internally, then it is possible that the
costs of the investigation may contribute towards the $3000 minimum. Again,
legal counsel would need to be sought.

If it can be shown that John Price downloaded MP3s illegally, Section 156.30 and
156.35 may apply. They state:

S 156.30 Unlawful duplication of computer related material.
 A person is guilty of unlawful duplication of computer related material when
having no right to do so, he copies, reproduces or duplicates in any manner:
1. any computer data or computer program and thereby intentionally and

wrongfully deprives or appropriates from an owner thereof an economic
value or benefit in excess of two thousand five hundred dollars; or

2. any computer data or computer program with an intent to commit or
attempt to commit or further the commission of any felony.

 Unlawful duplication of computer related material is a class E felony.

S 156.35 Criminal possession of computer related material.
 A person is guilty of criminal possession of computer related material when
having no right to do so, he knowingly possesses, in any form, any copy,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
53

reproduction or duplicate of any computer data or computer program which
was copied, reproduced or duplicated in violation of section 156.30 of this
article, with intent to benefit himself or a person other than an owner thereof.
 Criminal possession of computer related material is a class E felony.

The illegal MP3s would seem to constitute data John Price knowingly possessed
with the intent to benefit himself rather than the owners. And by downloading
them, he created an illegal duplicate of the computer data (MP3s). Most likely,
the MP3s would need to be recovered to show 156.30 and 156.35. It is likely
that enough evidence exists to obtain a search warrant of John Price’s home. If
he has a computer at home, it may contain some of the missing pieces. 156.30
and 156.35 are self-referential and not very clear – it is essential that legal
counsel provide guidance on the interpretation of the laws.

Question B
This question asks what steps should be taken upon discovering the information
on a system.

As an employee, Mr. Price should have had to sign an employment agreement
allowing his employers access to his data. Most likely, the company would not
be considered a public provider; but even so, a signed statement would permit
searching for Mr. Price’s data, as provided by the Electronic Communication
Privacy Act (ECPA) 18 USC 2701(c)(3) and 2703(c)(3)(C). Therefore, a
representative of the company should be able to investigate Mr. Price’s data – for
example, his email.

In addition, the company should have an incident handling policy that provides
guidance on the next steps to take, who to contact (corporate legal, internal law
enforcement, local law enforcement, etc.).

Corporate legal counsel should be consulted about interpreting the laws. But in
general, evidence should be gathered (via the exception to the ECPA of prior
permission, provided by 18 USC 2701(c)(3) and 18 USC 2703 (c)(3)(C) before
contacting the appropriate law enforcement office. Once enough data has been
collected, then an appropriate law enforcement agency should be contacted.
Note that we assume the copyrighted material are MP3s (as opposed to, say,
child pornography, which is discussed in Question D).

If a relationship to a particular (local) law enforcement office already exists, that
would most likely be a reasonable starting point for first contact, even if it is to
seek a recommendation for another office. For copyright piracy, the department
of Justice’s web site recommends contacting the FBI local office or, if the
material was imported), the US Customs Service [18].

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
54

Question C
This question asks what steps should be taken to ensure the evidence collected
will be admissible if legal action is pursued in the future.

First, the evidence should be preserved via a cryptographic hash, such as MD5
or SHA1. A hash should be taken of all of the files individually, as well as
collectively (i.e., creating a tar or zip file of all of the individual evidence files and
taking a hash of the zip or tar file). The hash should be printed, signed and
dated. Then, all the evidence should be kept in a secure location, such as a safe
or locked cabinet. This helps preserve the chain of custody. A record must be
kept of anyone who has had access to the data. The best approach is to limit the
number of people who had access to the data to a minimum, preferably one.

The Daubert Test, established in 1993,6 is a set of criteria to determine if
evidence gathered by a particular technique is admissible. [20] summarizes the
Daubert criteria as:

1. whether the theory or technique can be and has been tested
2. whether it has been subjected to peer review and publication
3. the known or potential error
4. the general acceptance of the theory in the scientific community
5. whether the proffered testimony is based upon the expert’s special skill

Essentially, this means that forensic evidence obtained in the investigation must
be based on current “best practices” in digital forensics, such as [4], or based on
the investigator’s skill. If the latter is the case—e.g., the investigator has created
a new method for extracting evidence—care must be taken to document the
process, as well as potential sources of errors or error rates (e.g., bit error rates
in copying data using a wireless card).

Question D
This question asks the differences in actions required if it was discovered that
John Price was distributing child pornography.

Title 18, Part 1, Chapter 110, sections 2251 - 2260 of the United States Code
covers “Sexual exploitation and other abuses of children” and specifically, 18
USC 2252A[17] defines “Certain activities relating to materials constituting or
containing child pornography.” If John Price was distributing child pornography,
18 US 2252A would apply. It defines 5 types of activities in 2252A(a)(1) – (a)(5),
which we summarize below.

The first four categories of activities relating to child pornography are defined as:
(a)(1) transporting; (a)(2) receiving or distributing; (a)(3) reproducing; and (a)(4)
selling or possessing with intent to sell. Section 2252A(b)(1) defines the penalty

6 Daubert v. Merrell Dow Pharmaceuticals (92-102), 509 U.S. 579 (1993),
http://supct.law.cornell.edu/supct/html/92-102.ZS.html.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
55

for these categories as up to 15 years for the first offence, and 5-15 years if there
were prior convictions under in this chapter (Chapter 110, “sexual exploitation
and other abuse of children”) or other sex offenses (Chapter 109A and 117 or
state laws relating to aggravated sexual abuse, sexual abuse, or abusive sexual
conduct involving a minor or ward, or the production, possession, receipt,
mailing, sale, distribution, shipment, or transportation of child pornography).

The fifth category is: (a)(5) possessing. Section 2252A(b)(2) defines the penalty
for this category as up to 5 years for the first offense or 2-10 years for prior
convictions in this chapter (Chapter 110, “sexual exploitation and other abuse of
children”) or for other sex offenses (Chapter 109A and 117 or state laws relating
to aggravated sexual abuse, sexual abuse, or abusive sexual conduct involving a
minor or ward, or the production, possession, receipt, mailing, sale, distribution,
shipment, or transportation of child pornography).

18 USC 2252A(d) specifies “affirmative defense” against a charge of violating
subsection (a)(5) if the defendant possessed less than 3 images of child
pornography and “promptly and in good faith” took reasonable steps to destroy
the images and reported the matter to a law enforcement agency, allowing them
access to the images.

Child pornography is contraband and must be reported to law enforcement.

18 USC 2256(2) defines what is considered “sexually explicit conduct.” In page
371 of [8], JJ McLean mentions the Dost-Standards7, which are used to
determine what constitutes “lascivious exhibition of the genitals or pubic area”
under 18 USC 2256(2)(E) and were summarized in Knox8; these standards
provide investigators with a more clearly defined list of what constitutes child
pornography.

In addition, Article 263 of the New York State Consolidated Laws defines laws
relating to the “sexual performance of a child.” Section 263.11 covers
“possessing an obscene sexual performance by a child” and section 263.16
covers “possessing a sexual performance by a child”; both are class E felonies.

7 US v. Dost 636 F. Supp. 828, 831 (S.D. California, 1986).
8 US v. Knox, US 3rd Circuit 1994, http://laws.findlaw.com/3rd/940734p.html.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
56

References

[1] The Autopsy Forensic Browser, http://www.sleuthkit.org/autopsy/index.php

[2] bmap, ftp://ftp.scyld.com/pub/forensic_computing/bmap

[3] bmap source from a mirror site,
http://ftp.cfu.net/mirrors/garchive.cs.uni.edu/garchive/bmap-1.0.20/bmap-
1.0.20.tar.gz

[4] D. Brezinski and T. Killalea, “Guidelines for Evidence Collection and
Archiving,” Request for Comment 3227/Best Current Practice 55, February 2002,
http://www.ietf.org/rfc/rfc3227.txt.

[5] Anton Chuvakin, “Linux Data Hiding and Recovery,” March 10, 2002,
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html

[6] Computer Forensics International, “How Hard Drives Work,” http://www.cf-
intl.com/evidence_recovery_basics.htm.

[7] Eoghan Casey, Digital Evidence and Computer Crime, San Diego: Academic
Press, 2000.

[8] Eoghan Casey (ed), Handbook of Computer Crime Investigation, San Diego:
Academic Press, 2002.

[9] Forensic Tools, http://www.forinsect.de/forensics/forensics-tools.php.

[10] Google, http://www.google.com.

[11] netcat mirror, http://mirror.trouble-
free.net/jq/noarch/interserpatches/requires/8.0.

[12] New York State Consolidated Laws, Penal Code, Chapter 40, Title JA156,
Article 156, Offenses Involving Computers,
http://assembly.state.ny.us/leg/?cl=82&a=35

[13] Red Hat, http://redhat.com.

[14] Title 17 USC 506, “Criminal offenses,”
http://www4.law.cornell.edu/uscode/17/506.html.

[15] Title 18 USC 2319, “Criminal infringement of a copyright,”
http://www4.law.cornell.edu/uscode/18/2319.html.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
57

[16] Title 18, Part 1, Chapter 47, Section 1030, “Fraud and related activity in
connection with computers,” http://www4.law.cornell.edu/uscode/18/1030.html.

[17] Title 18 USC 2252A, “Certain activities relating to materials constituting or
containing child pornography,”
http://www4.law.cornell.edu/uscode/18/2252A.html.

[18] US Department of Justice, “How to Report Internet-Related Crime,”
http://cybercrime.gov/reporting.htm.

[19] VMware, http://www.vmware.com.

[20] ZymaX Forensics, “Tests for Legal Viability”
http://www.zymaxforensics.com/forensicslegal/testslegal.htm.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
58

Appendix A – File timeline
In this appendix, we include a timeline of the MAC times of the files on the floppy.
Note that there are a number of c-time entries. It is possible that Mr. Price made
extensive use of the touch command to alter the modify (M) and access (A)
times to destroy the evidence trail. Note that the bmap program does not affect
MAC times on files.

Tue Jan 28 2003 10:56:00 20680 ma. -/-rwxr-xr-x 502 502 25
/mnt/floppy/John/sectors.gif
 19088 ma. -/-rwxr-xr-x 502 502 24 /mnt/floppy/John/sect-
num.gif
Mon Feb 03 2003 06:08:00 1024 m.. d/drwxr-xr-x 502 502 12 /mnt/floppy/John
Sat May 03 2003 06:10:00 1024 m.. d/drwxr-xr-x 502 502 14 /mnt/floppy/May03
Wed May 21 2003 06:09:00 29184 ma. -/-rwxr-xr-x 502 502 13 /mnt/floppy/Docs/DVD-
Playing-HOWTO-html.tar
 27430 ma. -/-rwxr-xr-x 502 502 19 /mnt/floppy/Docs/Kernel-
HOWTO-html.tar.gz
Wed May 21 2003 06:12:00 32661 ma. -/-rwxr-xr-x 502 502 20 /mnt/floppy/Docs/MP3-
HOWTO-html.tar.gz
Wed Jun 11 2003 09:09:00 29696 ma. -/-rw------- 502 502 16
/mnt/floppy/Docs/Letter.doc
Mon Jul 14 2003 10:08:09 12288 m.c d/drwx------ 0 0 11 /mnt/floppy/lost+found
 0 mac ---------- 0 0 1 <fl -160703-jp1.dd-alive-1>
Mon Jul 14 2003 10:11:50 26843 ma. -/-rwxr-xr-x 502 502 21 /mnt/floppy/Docs/Sound-
HOWTO-html.tar.gz
Mon Jul 14 2003 10:12:02 56950 ma. -/-rwxr-xr-x 502 502 22 /mnt/floppy/nc-1.10-
16.i386.rpm..rpm
Mon Jul 14 2003 10:12:15 100430 ma. -rwxr-xr-x 0 0 23 < fl-160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:12:48 13487 ma. -/-rwxr-xr-x 502 502 26
/mnt/floppy/May03/ebay300.jpg
Mon Jul 14 2003 10:13:13 546116 m.. -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:13:52 2592 m.c -/-rw-r--r-- 0 0 28 /mnt/floppy/.~5456g.tmp
Mon Jul 14 2003 10:19:13 100430 ..c -rwxr-xr-x 0 0 23 <fl-160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:22:36 1024 m.. d/drwxr-xr-x 502 502 15 /mnt/floppy/Docs
Mon Jul 14 2003 10:24:00 487476 m.. -/-rwxr-xr-x 502 502 18 /mnt/floppy/prog
Mon Jul 14 2003 10:43:44 1024 ..c d/drwxr-xr-x 502 502 15 /mnt/floppy/Docs
 26843 ..c -/-rwxr-xr-x 502 502 21 /mnt/floppy/Docs/Sound-
HOWTO-html.tar.gz
Mon Jul 14 2003 10:43:53 13487 ..c -/-rwxr-xr-x 502 502 26
/mnt/floppy/May03/ebay300.jpg
Mon Jul 14 2003 10:43:57 56950 ..c -/-rwxr-xr-x 502 502 22 /mnt/floppy/nc-1.10-
16.i386.rpm..rpm
Mon Jul 14 2003 10:45:48 29184 ..c -/-rwxr-xr-x 502 502 13 /mnt/floppy/Docs/DVD-
Playing-HOWTO-html.tar
Mon Jul 14 2003 10:46:00 27430 ..c -/-rwxr-xr-x 502 502 19 /mnt/floppy/Docs/Kernel-
HOWTO-html.tar.gz
Mon Jul 14 2003 10:46:07 32661 ..c -/-rwxr-xr-x 502 502 20 /mnt/floppy/Docs/MP3-
HOWTO-html.tar.gz
Mon Jul 14 2003 10:47:10 546116 .a. -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:47:57 29696 ..c -/-rw------- 502 502 16
/mnt/floppy/Docs/Letter.doc
Mon Jul 14 2003 10:48:15 19456 mac -/-rw------- 502 502 17
/mnt/floppy/Docs/Mikemsg.doc
Mon Jul 14 2003 10:48:53 19088 ..c -/-rwxr-xr-x 502 502 24 /mnt/floppy/John/sect-
num.gif
 20680 ..c -/-rwxr-xr-x 502 502 25
/mnt/floppy/John/sectors.gif
Mon Jul 14 2003 10:49:25 1024 ..c d/drwxr-xr-x 502 502 12 /mnt/floppy/John
Mon Jul 14 2003 10:50:15 1024 ..c d/drwxr-xr-x 502 502 14 /mnt/floppy/May03
Wed Jul 16 2003 02:03:00 546116 ..c -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-dead-27>
Wed Jul 16 2003 02:03:13 1024 m.c -/drwxr-xr-x 0 0 2 /mnt/floppy/John/
(deleted-realloc)
Wed Jul 16 2003 02:05:33 487476 ..c -/-rwxr-xr-x 502 502 18 /mnt/floppy/prog
Wed Jul 16 2003 02:06:15 12288 .a. d/drwx------ 0 0 11 /mnt/floppy/lost+found
Wed Jul 16 2003 02:09:35 1024 .a. d/drwxr-xr-x 502 502 12 /mnt/floppy/John
Wed Jul 16 2003 02:09:49 1024 .a. d/drwxr-xr-x 502 502 14 /mnt/floppy/May03
Wed Jul 16 2003 02:10:01 1024 .a. d/drwxr-xr-x 502 502 15 /mnt/floppy/Docs
Wed Jul 16 2003 02:11:36 2592 .a. -/-rw-r--r-- 0 0 28 /mnt/floppy/.~5456g.tmp
Wed Jul 16 2003 02:12:39 1024 .a. -/drwxr-xr-x 0 0 2 /mnt/floppy/John/
(deleted-realloc)
Wed Jul 16 2003 02:12:45 487476 .a. -/-rwxr-xr-x 502 502 18 /mnt/floppy/prog

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
59

Appendix B – Files sorted by inode
In this appendix, we list the files, sorted by inode number as generated by the
command ls -li. The inode number is the first column in each line. In the
ext2 file system, block 1 contains the bad block list, and block 2 is the root node.
The first user-visible block is inode 11, which is lost+found which the system
generates when the file system is created (via mkfs). The inodes for files within a
directory are generally allocated in sequential order. Deleted inodes are then
(re)allocated.

It is possible, for example, that inode 13 (“DVD…”) was created after inode 15
(“Docs”) and has a number less than the directory that contains it because 13
originally was used by a file that was deleted. Alternatively (and more likely), the
file was created before the directory and was later moved into the directory.
Normally, this would be reflected in a c-time change of the file. Note that inodes
23 and 27 are not currently in use; they were used by files that were deleted (this
is reflected on the timeline in Appendix A).

This type of analysis provides another view of the relative order in which files
were created which can be compared to the MAC timeline. And just like the
MAC timeline data can be corrupted via the touch command, creating and
deleting many junk files can create many gaps in the inode table, corrupting the
information here. However, the floppy disk does not contain that many files, so it
is less likely that sort of anti-forensic technique was employed.

11 drwx------ 2 root root 12288 Jul 14 2003 /lost+found
12 drwxr-xr-x 2 502 502 1024 Feb 3 2003 /John
13 -rwxr-xr-x 1 502 502 29184 May 21 2003 /Docs/DVD-Playing-HOWTO-
html.tar
14 drwxr-xr-x 2 502 502 1024 May 3 2003 /May03
15 drwxr-xr-x 2 502 502 1024 Jul 14 2003 /Docs
16 -rw------- 1 502 502 29696 Jun 11 2003 /Docs/Letter.doc
17 -rw------- 1 502 502 19456 Jul 14 2003 /Docs/Mikemsg.doc
18 -rwxr-xr-x 1 502 502 487476 Jul 14 2003 /prog
19 -rwxr-xr-x 1 502 502 27430 May 21 2003 /Docs/Kernel-HOWTO-html.tar.gz
20 -rwxr-xr-x 1 502 502 32661 May 21 2003 /Docs/MP3-HOWTO-html.tar.gz
21 -rwxr-xr-x 1 502 502 26843 Jul 14 2003 /Docs/Sound-HOWTO-html.tar.gz
22 -rwxr-xr-x 1 502 502 56950 Jul 14 2003 /nc-1.10-16.i386.rpm..rpm
24 -rwxr-xr-x 1 502 502 19088 Jan 28 2003 /John/sect-num.gif
25 -rwxr-xr-x 1 502 502 20680 Jan 28 2003 /John/sectors.gif
26 -rwxr-xr-x 1 502 502 13487 Jul 14 2003 /May03/ebay300.jpg
28 -rw-r--r-- 1 root root 2592 Jul 14 2003 /.~5456g.tmp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
60

Appendix C – tar2d2 output from tar under Linux
In this appendix, we include the output file that results from running tar2d2 on a
Red Hat Linux system, using tar with the ‘xf’ parameters.

<?xml version='1.0' standalone='yes'?>
<main>
 <result>
 <name>PID 24504, run 0</name>
 <basename>/root/sansresults/blarg</basename>
 <command>/bin/tar xf /tmp/sans.tar</command>
 <file>
 <name>/firstdirectory</name>
 <MD5>0</MD5>
 <atime>1082321548</atime>
 <blksize>4096</blksize>
 <blocks>8</blocks>
 <ctime>1082321548</ctime>
 <dev>771</dev>
 <gid>0</gid>
 <ino>3745469</ino>
 <mode>16877</mode>
 <mtime>1081904847</mtime>
 <nlink>2</nlink>
 <rdev>0</rdev>
 <size>4096</size>
 <uid>0</uid>
 </file>
 <file>
 <name>/firstdirectory/readsubdirfile</name>
 <MD5>8272da861b889760891513f2477c1193</MD5>
 <atime>1082321548</atime>
 <blksize>4096</blksize>
 <blocks>8</blocks>
 <ctime>1082321548</ctime>
 <dev>771</dev>
 <gid>0</gid>
 <ino>3745470</ino>
 <mode>33188</mode>
 <mtime>1081904847</mtime>
 <nlink>1</nlink>
 <rdev>0</rdev>
 <size>37</size>
 <uid>0</uid>
 </file>
 <file>
 <name>/readfile</name>
 <MD5>bae6901663dbd94c3933acc3eca1bb54</MD5>
 <atime>1082321548</atime>
 <blksize>4096</blksize>
 <blocks>8</blocks>
 <ctime>1082321548</ctime>
 <dev>771</dev>
 <gid>0</gid>
 <ino>2829761</ino>
 <mode>33188</mode>
 <mtime>1081904704</mtime>
 <nlink>1</nlink>
 <rdev>0</rdev>
 <size>58</size>
 <uid>0</uid>
 </file>
 <file>
 <name>/writefile</name>
 <MD5>4d7bbbba20506585f048aa9af3ba67af</MD5>
 <atime>1082321548</atime>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
61

 <blksize>4096</blksize>
 <blocks>8</blocks>
 <ctime>1082321548</ctime>
 <dev>771</dev>
 <gid>0</gid>
 <ino>2829762</ino>
 <mode>33188</mode>
 <mtime>1081904718</mtime>
 <nlink>1</nlink>
 <rdev>0</rdev>
 <size>48</size>
 <uid>0</uid>
 </file>
 <file>
 <name>/movefile</name>
 <MD5>3adf760cdf3429476e7ec542af792c25</MD5>
 <atime>1082321548</atime>
 <blksize>4096</blksize>
 <blocks>8</blocks>
 <ctime>1082321548</ctime>
 <dev>771</dev>
 <gid>0</gid>
 <ino>2829763</ino>
 <mode>33188</mode>
 <mtime>1081904742</mtime>
 <nlink>1</nlink>
 <rdev>0</rdev>
 <size>49</size>
 <uid>0</uid>
 </file>
 <file>
 <name>/chmodfile</name>
 <MD5>5c68f0cda66541fa9e59b1599d93ee68</MD5>
 <atime>1082321548</atime>
 <blksize>4096</blksize>
 <blocks>8</blocks>
 <ctime>1082321548</ctime>
 <dev>771</dev>
 <gid>0</gid>
 <ino>2829764</ino>
 <mode>33204</mode>
 <mtime>1081904774</mtime>
 <nlink>1</nlink>
 <rdev>0</rdev>
 <size>44</size>
 <uid>0</uid>
 </file>
 <file>
 <name>/secondsubdirectory</name>
 <MD5>0</MD5>
 <atime>1082321548</atime>
 <blksize>4096</blksize>
 <blocks>8</blocks>
 <ctime>1082321548</ctime>
 <dev>771</dev>
 <gid>0</gid>
 <ino>3123463</ino>
 <mode>16877</mode>
 <mtime>1081904917</mtime>
 <nlink>2</nlink>
 <rdev>0</rdev>
 <size>4096</size>
 <uid>0</uid>
 </file>
 <file>
 <name>/secondsubdirectory/movesubdirfile</name>
 <MD5>0b381b4b6340e01ec64278a9cedbbb59</MD5>
 <atime>1082321548</atime>
 <blksize>4096</blksize>
 <blocks>8</blocks>
 <ctime>1082321548</ctime>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
62

 <dev>771</dev>
 <gid>0</gid>
 <ino>3123465</ino>
 <mode>33188</mode>
 <mtime>1081904902</mtime>
 <nlink>1</nlink>
 <rdev>0</rdev>
 <size>73</size>
 <uid>0</uid>
 </file>
 <numberoffiles>8</numberoffiles>
 <overwritten>
 <atime>8</atime>
 <blocks>8</blocks>
 <ctime>8</ctime>
 <dev>8</dev>
 <ino>8</ino>
 <mode>8</mode>
 <mtime>3</mtime>
 <nlink>2</nlink>
 <rdev>2</rdev>
 <size>2</size>
 </overwritten>
 <preserved>
 <name>8</name>
 <MD5>8</MD5>
 <blksize>8</blksize>
 <gid>8</gid>
 <mtime>5</mtime>
 <nlink>6</nlink>
 <rdev>6</rdev>
 <size>6</size>
 <uid>8</uid>
 </preserved>
 <rc>0</rc>
 <rundate>Sun Apr 18 16:52:28 2004</rundate>
 <start>1082321548</start>
 <stop>1082321548</stop>
 </result>
</main>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
63

Appendix D – tar2d2 output from tar under XP

In this appendix, we include the output file that results from running tar2d2 on a
Windows XP Pro system, using tar with the ‘xf’ parameters. Note that the same
data is present as in Appendix C although the tags are in a different order. Also,
because of difference between Windows and Linux, some of the values returned
by the stat() command are always zero under Windows. atime, ctime, and
mtime are correctly returned.

<?xml version='1.0' standalone='yes'?>
<main>
 <result>
 <basename>C:\cygwin\home\MFP User\sans</basename>
 <rc>0</rc>
 <command>\cygwin\bin\tar.exe xf ../sans.tar</command>
 <rundate>Sun Apr 18 16:14:13 2004</rundate>
 <name>PID 2736, run 0</name>
 <numberoffiles>8</numberoffiles>
 <start>1082319253</start>
 <stop>1082319253</stop>
 <file>
 <blocks></blocks>
 <size>44</size>
 <uid>0</uid>
 <MD5>5c68f0cda66541fa9e59b1599d93ee68</MD5>
 <blksize></blksize>
 <dev>2</dev>
 <name>\chmodfile</name>
 <ino>0</ino>
 <gid>0</gid>
 <rdev>2</rdev>
 <ctime>1082247807</ctime>
 <mode>33206</mode>
 <nlink>1</nlink>
 <atime>1082319253</atime>
 <mtime>1081904774</mtime>
 </file>
 <file>
 <blocks></blocks>
 <size>0</size>
 <uid>0</uid>
 <MD5>0</MD5>
 <blksize></blksize>
 <dev>2</dev>
 <name>\firstdirectory</name>
 <ino>0</ino>
 <gid>0</gid>
 <rdev>2</rdev>
 <ctime>1082319253</ctime>
 <mode>16895</mode>
 <nlink>1</nlink>
 <atime>1082319253</atime>
 <mtime>1081904847</mtime>
 </file>
 <file>
 <blocks></blocks>
 <size>37</size>
 <uid>0</uid>
 <MD5>8272da861b889760891513f2477c1193</MD5>
 <blksize></blksize>
 <dev>2</dev>
 <name>\firstdirectory\readsubdirfile</name>
 <ino>0</ino>
 <gid>0</gid>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
64

 <rdev>2</rdev>
 <ctime>1082319253</ctime>
 <mode>33206</mode>
 <nlink>1</nlink>
 <atime>1082319253</atime>
 <mtime>1081904847</mtime>
 </file>
 <file>
 <blocks></blocks>
 <size>49</size>
 <uid>0</uid>
 <MD5>3adf760cdf3429476e7ec542af792c25</MD5>
 <blksize></blksize>
 <dev>2</dev>
 <name>\movefile</name>
 <ino>0</ino>
 <gid>0</gid>
 <rdev>2</rdev>
 <ctime>1082247807</ctime>
 <mode>33206</mode>
 <nlink>1</nlink>
 <atime>1082319253</atime>

 <mtime>1081904742</mtime>
 </file>
 <file>
 <blocks></blocks>
 <size>58</size>
 <uid>0</uid>
 <MD5>bae6901663dbd94c3933acc3eca1bb54</MD5>
 <blksize></blksize>
 <dev>2</dev>
 <name>\readfile</name>
 <ino>0</ino>
 <gid>0</gid>
 <rdev>2</rdev>
 <ctime>1082247807</ctime>
 <mode>33206</mode>
 <nlink>1</nlink>
 <atime>1082319253</atime>
 <mtime>1081904704</mtime>
 </file>
 <file>
 <blocks></blocks>
 <size>0</size>
 <uid>0</uid>
 <MD5>0</MD5>
 <blksize></blksize>
 <dev>2</dev>
 <name>\secondsubdirectory</name>
 <ino>0</ino>
 <gid>0</gid>
 <rdev>2</rdev>
 <ctime>1082319253</ctime>
 <mode>16895</mode>
 <nlink>1</nlink>
 <atime>1082319253</atime>
 <mtime>1081904917</mtime>
 </file>
 <file>
 <blocks></blocks>
 <size>73</size>
 <uid>0</uid>
 <MD5>0b381b4b6340e01ec64278a9cedbbb59</MD5>
 <blksize></blksize>
 <dev>2</dev>
 <name>\secondsubdirectory\movesubdirfile</name>
 <ino>0</ino>
 <gid>0</gid>
 <rdev>2</rdev>
 <ctime>1082319253</ctime>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.
65

 <mode>33206</mode>
 <nlink>1</nlink>
 <atime>1082319253</atime>
 <mtime>1081904902</mtime>
 </file>
 <file>
 <blocks></blocks>
 <size>48</size>
 <uid>0</uid>
 <MD5>4d7bbbba20506585f048aa9af3ba67af</MD5>
 <blksize></blksize>
 <dev>2</dev>
 <name>\writefile</name>
 <ino>0</ino>
 <gid>0</gid>
 <rdev>2</rdev>
 <ctime>1082247807</ctime>
 <mode>33206</mode>
 <nlink>1</nlink>
 <atime>1082319253</atime>
 <mtime>1081904718</mtime>
 </file>
 <preserved>
 <uid>8</uid>
 <size>8</size>
 <blocks>8</blocks>
 <MD5>8</MD5>
 <blksize>8</blksize>
 <name>8</name>
 <dev>8</dev>
 <ino>8</ino>
 <rdev>8</rdev>
 <gid>8</gid>
 <mode>8</mode>
 <nlink>8</nlink>
 <mtime>8</mtime>
 </preserved>
 <overwritten>
 <ctime>8</ctime>
 <atime>8</atime>
 </overwritten>
 </result>
</main>

