
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GCFA PRACTICAL ASSIGNMENT
V 1.4

JEFF McGURK

4/28/2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Abstract

The following paper reflects a hands-on exercise in the world of digital forensics. It is
divided into 3 parts:

 Analysis of an unknown binary
 Analysis of a suspect’s system
 Discussion of the legal implications of incident response

Part 1 includes both static and dynamic analyses of the provided binary file. Static
analysis involves determining the true identity of the program and what its intended
functions are. Dynamic analysis includes running the program and recording what
changes it affects on a system.

Part 2 is the analysis of a real system found “in the wild” and suspected to have been
used for producing counterfeit checks and ID cards. The analysis involved recovering
deleted information, determining likelihood of a system compromise and locating checks
or IDs produced using the system.

Part 3 discusses some legal issues facing network managers who discover illegal
activity on the part of their users. This included statutes regarding mandatory reporting
and liability as contributing offenders.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 1
Unknown Binary Analysis

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Case Summary

On 10/27/2003, investigator Smith of CCNOU Corp. contacted me regarding pending
administrative action against an employee. A recent audit of CCNOU's router logs
indicated that John Price had been illegally distributing copyrighted material using
company resources. Mr. Smith, leading a team of investigators, searched Mr. Price's
desk on 07/16/03 at approximately 1900hrs. Among the items seized were Mr. Price's
business computer, an x86-based PC running Red Hat Linux 7.3, and (1) 3.5” floppy
diskette found inserted in the PC's floppy drive. Mr. Smith searched the hard drive of
the seized computer and found it to be completely wiped of information. He then
imaged the floppy disk found at the scene and discovered an unknown binary among
the disk's files. Mr. Smith has requested that I conduct a forensic exam of the disk to
attempt to determine what the unknown binary prog really is and to discover any
information relevant to the above outlined case. The equipment used for this analysis
(relevant information only) is as follows:

Dell Precision 650 Workstation
Dual Intel Xeon 2.8GHz processors
2GB PC2100 DDR RAM
Integrated Intel PRO/1000 NIC
Integrated LSI Logic U320 SCSI Controller

(1) Seagate ST336753LW hdd running Windows 2000
(1) Seagate ST336753LW hdd running Red Hat 9

Vmware 4 for Linux running Red Hat 8 guest

Binary Details

Investigator Smith provided a gzip compressed dd image of the floppy seized from John
Price's computer. I received the file, fl-160703-jp1.dd.gz electronically, in the file
binary_v1_4.zip. Also included in the zip file was an MD5 hash of the gzip file, and an
additional file Prog.md5, presumably a hash of the unidentified file prog.

Provided Hashes:
Image MD5: 4b680767a2aed974cec5fbcbf84cc97a
Prog MD5: 7b80d9aff486c6aa6aa3efa63cc56880

I first calculated an MD5 hash of the file binary_v1_4.zip, as shown in Figure 1, and
then extracted the enclosed files issuing the command unzip binary_v1_4.zip. Next, I
calculated the hash of fl-160703-jp1.dd.gz and received as output the hash listed above
as “Image MD5” (Figure2). It bears noting that although this seems to be provided as
the hash for the raw floppy image it is in fact the hash of the compressed version of that
file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 1: MD5 Hash, binary_v1_4.zip

Figure 2: MD5 Hash, fl-160703-jp1.dd.gz

Figure 3: MD5 Hash, fl-160703-jp1.dd

My last step in preparation was to calculate an MD5 hash of the raw image file
fl-160703-jp1.dd, which is shown in Figure 3. With that, I was ready to begin my
analysis. I started by importing the raw image file into EnCase v4, and then reacquiring
the image into the proprietary EnCase format. This allowed me to conduct further
analysis later, after the Linux portion of my analysis was complete. EnCase calculated

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

an acquisition hash equal to that in Figure 3. This offers a level of redundancy,
providing an exact duplicate backup copy of the evidence image.

I located the questioned binary prog within the EnCase image file and noted its
properties. The discovered data was:

Modified 07/16/2003 0105
Accessed 07/16/2003 0112
Changed 07/14/2003 0924
MD5 Hash 7b80d9aff486c6aa6aa3efa63cc56880
Owner/Group 502/502
File Size (bytes) 487,476 logical / 488,448 physical

The EnCase data can be found in Figure 4.

Figure 4: EnCase data for prog

Some noteworthy information is listed in the Permissions section shown in Figure 4.
This file is listed as belonging to user 502, which corresponds to a Linux user name
which would be stored in the /etc/passwd file. Linux begins numbering regular users at
500, reserving lower numbers for system accounts. While true that if John Price was

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

assigned user number 502 on his machine it would be quite convincing evidence, the
fact is that anyone could have put that file there. Linux uses the same default user
numbers for every installation, starting at 500 and progressing onward. A file can be
placed onto a floppy using any machine, say a home system for example, and then the
owner can be changed by root to be any user number– even one that doesn’t exist. If
the disk is then taken to a system on which that user number DOES exist, Linux will
report that the file belongs to that user. Plus, since Figure 4 shows execute permissions
for everyone there is no sure guarantee that user 502 was the one who executed it, if it
is found to have been executed at all. These are important considerations to keep in
the back of one’s mind, although Ockham’s Razor <http://www.merriam-
webster.com/cgi-bin/dictionary?book=Dictionary&va=occam> suggests that user 502 be
considered the owner of prog until it is shown otherwise.

Program Description

I next exported prog out of EnCase and returned to my virtual machine running Red Hat
8.0. I started by running the file command on prog, which performs various tests and
provides information to help determine prog’s function. The results were:

prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5, statically linked, stripped

The results verified that prog was indeed a Linux executable file. The most important
information learned at this stage was that prog is a statically linked and stripped.
Statically linked means that an executable contains any library routines needed for its
execution, instead of relying on shared libraries on the host system. This allows for
portability as the file contains everything needed to run on any compatible system.
Stripped refers to debugging information used by programmers. The debug info can
provide great insight into a programs function and is quite often removed when
someone doesn’t want the function discovered.

My next step was to run the strings command on the file, directing the output to a new
file called prog.strings. The strings command simply searches any given file for human
readable text and can be invaluable in locating help statements or other useful text
within binaries. Some of the more unique strings found included:

(1) Keld Simonsen
(2) 1.0.20 (07/15/03)
(3) wipe the file from the raw device
(4) use block-list knowledge to perform special operations on files

Each phrase was searched individually in Google, and #4 resulted in a hit at
<http://lwn.net/2000/0420/announce.php3> for a program called bmap, version 1.0.17.
This hit looked promising, as the description for bmap matched my search term
verbatim. Armed with the new information, I ran a new Google search for “linux bmap.”
After a few listings for kernel related information, I struck upon something intriguing
indeed, a page titled “Linux Data Hiding and Recovery.” The author writes “The
obscure tool bmap exists to jam data in slack space, take it out and also wipe the slack

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

space, if needed.”1 Clicking on the word “bmap” connected to an ftp site,
<ftp.scyld.com/pub/forensic_computing/bmap> which contained source code and RPM
installers for the tool bmap, including version 1.0.20 (site no longer available, see
Additional Information section.) Remembering my search term “1.0.20 (7/15/03)”, I was
confident I had discovered the true identity of the mysterious prog file.

I downloaded the source for bmap and, not being a heavy Linux programmer, I checked
my local man pages of gcc for the word static. I did this by first issuing the command
man gcc and then using /static to search the man page. Approximately half-way down
the resulting page was a section titled “Linker Options” with a “-static” option. Not
knowing how to pass this -static option from the Makefile, I searched Google for
“makefile static linker options.” The 2nd search hit was a listserv archive message titled
“Re: Static linking.” The author writes that when using a pre-configured Makefile, simply
“use'LDFLAGS=-g -static'”2 to link statically. Checking the man pages for gcc once
again, I learned that “-g” concerns debugging information. Based on the output of the
file command, which reported prog as stripped, I ignored the “-g” option and added
“-static” to the makefile’s already existing line of

“LDFLAGS = -L$(MFT_LIB_DIR) -lmft”

At this point I was ready to compile the bmap source code, and I issued the make
command from within the source directory. Although dvips returned an error killing
make, several binaries, bclump, bmap, dev_builder and slacker were successfully
created. Issuing the file command on bmap yielded:

bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5, statically linked, not
stripped

The binary had been statically linked, but was still not stripped. The command strip
bmap handled this, and now file reported:

bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5, statically linked, stripped

I had now hypothesized that the unknown binary prog was in fact the data hiding tool
bmap and downloaded the bmap source code. I had also compiled a stripped, statically
linked bmap binary. The indisputable proof of prog's true identity would have been if the
MD5 hash value of bmap matched the provided prog hash of
7b80d9aff486c6aa6aa3efa63cc56880. Unfortunately, although not surprisingly, the
hashes did not match. This was most likely due to configuration differences between
the suspect's system and my own. However, all was not lost. Hashes may offer
incontrovertible proof, but they are not the only way to determine that prog and bmap
are one in the same. Using strings bmap > bmap.strings I created a text file of all
printable strings within the bmap executable. Comparing this file to the previously
created prog.strings shows a correlation that is too great to be by chance. Here's what I

1 Chuvakin, Anton. “Linux Data Hiding and Recovery.” 10 March, 2002.
<http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html>(27 Oct., 2003)
2 Mouw, Erik. “Re: Static Linking.” 17 Dec., 1999.
<mail.gnome.org/archives/gtk-app-devel-list/1999-December/msg00271.html> (27 Oct., 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

did:

sort prog.strings > prog.strings.sort
sort bmap.strings > bmap.strings.sort
comm -1 -2 prog.strings.sort bmap.strings.sort > common.strings

The 2 sort commands arranged all lines in each of the files into alphabetical order.
Then the comm command compared each of the new sorted files, line by line. The
“-1 -2” options told comm to disregard lines unique to file1 or file2, and only return those
lines common to both files. The resulting file, common.strings, contained 4,100 lines!
(See Figure 5.)

The command wc -l provides a line count of text files in Linux. It can be seen in Figure
5 that prog contained 4760 lines of readable text, and 4100 of them were exact matches
with the executable bmap.

Figure 5: Common string count between prog and bmap

Some of the most significant matches were:

bmap_get_block_count
bmap_get_block_size
bmap_get_slack_block
bmap_map_block
bmap_raw_close
bmap_raw_open
wipe the file from the raw device
use block-list knowledge to perform special operations on files

As you can see from the above list, the word bmap appeared multiple times within the
file prog. This supports the belief that prog and bmap are one in the same.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Forensic Details

Since analysis was being performed on a virtual machine, with networking disabled,
contamination was not a concern. I was able to run various instances of prog and bmap
andbegan by comparing the help statements by issuing the “--help” flag.

[root@JMcGurk bmap-1.0.20]# ./bmap --help
bmap:1.0.20 (11/04/03) newt@scyld.com
Usage: bmap [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files
--doc VALUE

where VALUE is one of:
version display version and exit
help display options and exit
man generate man page and exit
sgml generate SGML invocation info

--mode VALUE
where VALUE is one of:
map list sector numbers
carve extract a copy from the raw device
slack display data in slack space
putslack place data into slack
wipeslack wipe slack
checkslack test for slack (returns 0 if file has slack)
slackbytes print number of slack bytes available
wipe wipe the file from the raw device
frag display fragmentation information for the file
checkfrag test for fragmentation (returns 0 if file is fragmented)

--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress | entryexit>

logging threshold ...
--target <filename> operate on ...

[root@JMcGurk binary]# ./prog --help
prog:1.0.20 (07/15/03) newt
Usage: prog [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
where VALUE is one of:
version display version and exit
help display options and exit
man generate man page and exit
sgml generate SGML invocation info

--mode VALUE
where VALUE is one of:
m list sector numbers
c extract a copy from the raw device
s display data
p place data
w wipe
chk test (returns 0 if exist)
sb print number of bytes available

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

wipe wipe the file from the raw device
frag display fragmentation information for the file
checkfrag test for fragmentation (returns 0 if file is fragmented)

--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress | entryexit>

logging threshold ...
--target <filename> operate on ...

Notice the striking similarities; they’re almost identical, affirming again that these are in
fact the same program. The most important descriptions listed for prog, as far as this
investigation is concerned, were “place data”, “wipe” and “wipe the file from the raw
device.” What this means is that prog can be used to insert data into file slack, wipe file
slack, and wipe entire files from the system. Given the fact that the suspect's system
was wiped of all files, there is a good chance that prog was used to do it. But, as the
main intention of bmap is to deal with slack space, I decided to look there first. In the
next section I will discuss what was found in slack space.

Continuing my work on the executable prog, I began a dynamic analysis to observe
what actions the program takes when run. From the “Unix Forensics and Incident
Response CD v1.9” provided by SANS Institute I ran netstat and lsof commands and
routed the output to files netstat.before and lsof.before.

The netstat command lists the current network connections for a system along with the
process ID and name of any process that owns the connection (such as an ftp server,
etc.)

Running lsof provides a list of all currently open files along with what process is holding
them open.

I also ran ps -aux from the host system (ps is not provided on the SANS CD) with an
output file ps.before. Ps is a very common Linux/Unix command for listing active
processes. I issued the -a flag to list all processes, -u to include user information, and
–x to include processes not associated with a terminal.

I then ran prog with the -w (wipe) flag on a temporary file in /tmp. I used the wipe flag
because it is possible that the suspect used prog to wipe the hard drive of his work
computer and, if so, then prog -w was likely run on that system.

After running prog, I once again checked my system state by running netstat, lsof, and
ps. I also ran mac_robber, from the SANS CD, to gather modified, accessed, and
changed times of all files on the system. I used mactime, once again from the CD
provided by SANS Institute, to parse the mac_robber data and send output to
mactime.after. @Stake maintains both mactime and mac_robber and they can be
found at <http://www.atstake.com/research/tools/forensic/>.

Next, I used the Linux diff command to compare netstat.before, lsof.before and
ps.before with netstat.after, lsof.after and ps.after. The diff command compares to files,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

line by line, for differences. If differences are found the table, as shown in Figure 6,
indicates the line where the difference occurred and displays the line from each file for
user comparison.

Figure 6: netstat, lsof and ps, compared before and after running prog

Figure 6 shows that netstat.before and netstat.after are identical. This means that no
new network sockets have been opened as a result of running prog.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The next command shown in Figure 6 compares lsof output before and after running
prog. The only differences indicated by diff are for lsof itself. This was expected
because the two instances of lsof had different process ID numbers. Other than lsof, no
new process was holding files open that wasn't already doing so before prog was run.
The final section of Figure 6 shows the differences between ps.before and ps.after.
What I was looking for here was new processes that were not present before prog was
executed. The majority of the differences listed deal with the same process. For
example, difference number 1 is for process 1, the init process. The process was active
both before and after prog, but the resource percentage had changed. Before prog the
init process was using 1.1% of the CPU cycles, afterwards it was using 0.9%.

These are not the types of differences that concerned me; I was looking more for
something similar to the last difference, indicated by the “60c60” header. This shows
that the highest active process before prog was run was 1159, but then after prog was
run the highest process was 1180. I needed to be sure that prog didn't spawn a rogue
process that was waiting to do damage to the system. Luckily process 1180 was
merely the ps -aux command that I issued, not anything to be concerned with.

Figure 7: Files affected by prog and bmap

It seemed, from the results of netstat, lsof and ps, that prog did not attempt to
compromise the system with any sort of backdoor. To ensure that nothing differed from
my own clean copy, I ran bmap -wipe on a second temporary file. I then ran
mac_robber and mactime once again, to gather file MAC times as changed by bmap. I
compared my two mactime.after files for any unnecessary file access or modification on
the part of prog. I first loaded each file into a spreadsheet, and then alphabetically
sorted all files that occurred at exactly the same time. This made it easier to compare

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

between the two files. Both lists had precisely the same files, in exactly the same
grouping. Figure 7 shows the files affected by prog. The list for bmap is not shown
since it is nearly identical, with only the times being different between the two. Since
the (somewhat) trusted bmap affected all of the same files that prog did, I felt confident
that prog contained no malware.

Two interesting observations were made while experimenting with prog/bmap. The first
deals with the modified and accessed times of files which prog is used to inject
information into or read/wipe information out of. By its very design, prog acts not on
files, but on disk blocks allocated to those files. This means that the file system is not
invoked in the traditional way, and MAC times of any files used to contain hidden data
will not be affected.

Figure 8: prog/bmap does not affect file access time

In the above illustration I began by creating a file called tester in the /tmp directory. The
ls –lu shows that the file was accessed at 1008 (-l gives a long list and–u tells ls to sort
by access time.) Next you can see that at 1009 I used bmap to insert the word “hidden”
into the slack space of /tmp/tester. Another ls –lu indicates that the access time has not
been updated by the action even though, as the following command shows, the word
“hidden” was successfully injected. I then accessed the file using the cat command,
which types out the file’s contents to standard out, and the final ls –lu shows that this
now has updated the access time.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The second observation regarding prog/bmap is a little more involved than the first.
While running tests on prog and bmap I ran strace while using the -wipeslack flag. The
following is an excerpt of the results.

write(2, "stuffing block 427826\n", 22stuffing block 427826) = 22
write(2, "file size was: 15\n", 18file size was: 15) = 18
write(2, "slack size: 4081\n", 17slack size: 4081) = 17
write(2, "block size: 4096\n", 17block size: 4096) = 17
_llseek(4, 1752375311, [1752375311], SEEK_SET) = 0
write(4, "\0"..., 4081) = 4081
write(2, "write error\n", 12write error) = 12
_llseek(4, 1752375311, [1752375311], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"..., 4081) = 4081
write(2, "write error\n", 12write error) = 12
_llseek(4, 1752375311, [1752375311], SEEK_SET) = 0
write(4, "\0"..., 4081) = 4081
write(2, "write error\n", 12write error) = 12
close(3) = 0
close(4) = 0
exit_group(0) = ?

Line 1 indicates which block the file slack is located in. The seek value in line 5 created
some concern, because the block reported in line 1, 427826, multiplied by the block size
of 4096 equals the exact 1752375311 bytes being indicated within the seek command.
But the slack space doesn't start for another 15 bytes into the block (file size in line 2).
This means that prog/bmap is seeking to the start of the block and not the start of slack.
I thought, incorrectly as it turns out, that this indicated some bug in the functionality of
prog/bmap. The write errors reported after each write attempt reinforced this suspicion.
I tried the prog command again, this time with the -wipe flag to wipe an entire file.
Figure 9 shows that this did not go as planned either.

Figure 9: prog -wipe seems to have failed

The data from the file “/tmp/wipe” seemed tobe fully in tact, not wiped at all! I thought
for sure there must be a failure somewhere in the execution of the program. I wrote an
email to Anton Chuvakin, whose writing cited above had first introduced me to prog's
intended uses, asking for any insight. Dr. Chuvakin's response was that “the tools is old
(2000) and might not like the newest Linux (I assume that is what you have) file system

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

changes (at least that is what I think off the top of my head)...”3 This suggestion
seemed to make sense immediately. I thought back to the system differences that were
the most likely cause of the differing hashes for prog and my own bmap.

I decided to attempt to determine what operating system was used to compile the file
prog. Consulting my strings output, Ifound the strings “GCC: (GNU) 2.96 20000731
(Red Hat Linux 7.3 2.96-112)” and “GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.3
2.96-113).” I downloaded the ISO files for Red Hat 7.3 and created a new virtual
machine running RH7.3. Checking gcc I found that the default version was 2.96-110. I
updated gcc to 2.96-112 and compiled a new bmap executable. This one still provided
the write errors for -wipeslack and did not appear to wipe the entire file.

My decision was that the issue would require more research than its relevance to the
case would allow. I felt I had gathered enough information about prog and the errors
would have to go unsolved. And then, somehow, I stumbled on the answer. I returned
to the virtual machine running Red Hat 8.0 and I noticedthat my test file “wipe” had
been cleanly wiped after all. I was a bit puzzled at first, but further tests confirmed that
prog and bmap had been functioning properly the whole time. The following script log
shows that -wipeslack functioned as intended. The write errors that I observed were
most likely being misreported, and were probably just an indication that bmap had
reached the end of the block and could not proceed any further. The dd tool gives a
similar error when it reaches the end of a device. I decided that like dd the prog error
could be safely ignored. The -wipe function was a bit more interesting. It too worked
100% as intended, but when asked to cat the contents of the file, Linux was erroneously
reporting that it had failed.

Script started on Fri Jan 16 13:06:51 2004
#]0;root@localhost:/mnt/lab4/Jeff certification/binary[root@localhost binary]# echo DATA > /tmp/wipe
[root@localhost binary]# echo HIDDEN | ./prog -p /tmp/wipe
stuffing block 449389
file size was: 5
slack size: 4091
block size: 4096
[root@localhost binary]# dd bs=4096 skip=449389 count=1 if=/dev/sda2 | xxd | head
1+0 records in
1+0 records out
0000000: 4441 5441 0a48 4944 4445 4e0a 0000 0000 DATA.HIDDEN.....
0000010: 0000 0000 0000 0000 0000 0000 0000 0000
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
0000030: 0000 0000 0000 0000 0000 0000 0000 0000
0000040: 0000 0000 0000 0000 0000 0000 0000 0000
0000050: 0000 0000 0000 0000 0000 0000 0000 0000
0000060: 0000 0000 0000 0000 0000 0000 0000 0000
0000070: 0000 0000 0000 0000 0000 0000 0000 0000
0000080: 0000 0000 0000 0000 0000 0000 0000 0000
0000090: 0000 0000 0000 0000 0000 0000 0000 0000
[root@localhost binary]# ./prog -w /tmp/wipe
stuffing block 449389
file size was: 5

3 Chuvakin, Anton. <anton@netForensics.com> Re: question regarding bmap. 01/13/2004. Email to Jeff
McGurk

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

slack size: 4091
block size: 4096
write error
write error
write error
[root@localhost binary]# dd bs=4096 skip=449389 count=1 if=/dev/sda2 | xxd | head
1+0 records in
1+0 records out
0000000: 4441 5441 0a00 0000 0000 0000 0000 0000 DATA............
0000010: 0000 0000 0000 0000 0000 0000 0000 0000
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
0000030: 0000 0000 0000 0000 0000 0000 0000 0000
0000040: 0000 0000 0000 0000 0000 0000 0000 0000
0000050: 0000 0000 0000 0000 0000 0000 0000 0000
0000060: 0000 0000 0000 0000 0000 0000 0000 0000
0000070: 0000 0000 0000 0000 0000 0000 0000 0000
0000080: 0000 0000 0000 0000 0000 0000 0000 0000
0000090: 0000 0000 0000 0000 0000 0000 0000 0000
[root@localhost binary]# ./prog -wipe /tmp/wipe
[root@localhost binary]# dd bs=4096 skip=449389 count=1 if=/dev/sda2 | xxd | head
1+0 records in
1+0 records out
0000000: 0000 0000 0000 0000 0000 0000 0000 0000
0000010: 0000 0000 0000 0000 0000 0000 0000 0000
0000020: 0000 0000 0000 0000 0000 0000 0000 0000
0000030: 0000 0000 0000 0000 0000 0000 0000 0000
0000040: 0000 0000 0000 0000 0000 0000 0000 0000
0000050: 0000 0000 0000 0000 0000 0000 0000 0000
0000060: 0000 0000 0000 0000 0000 0000 0000 0000
0000070: 0000 0000 0000 0000 0000 0000 0000 0000
0000080: 0000 0000 0000 0000 0000 0000 0000 0000
0000090: 0000 0000 0000 0000 0000 0000 0000 0000
[root@localhost binary]# cat /tmp/wipe
DATA
[root@localhost binary]# exit
Script done on Fri Jan 16 13:10:44 2004

The above log shows how I placed the word “data” into the body of the file “wipe” and
used prog to inject the word “hidden” into the slack space. I then used the -w, or
-wipeslack flag to remove “hidden” from the slack space, and the use of dd piped
through xxd shows that it worked. Next I used the -wipe flag to wipe the entire file and
dd | xxd again shows success. The strange thing is that cat, after we've already seen
the disk block is empty, still reports the word “data.” There must be some type of cache
that cat is pulling from, because “data” simply doesn't exist on the disk. I even tried the
sync command to flush the disk buffers, but this didn't work either. A reboot is the only
way I found to get an accurate reading that the file was indeed wiped.

What this means for this investigation is that John Price did not use prog to wipe his
hard drive. Prog has the ability to wipe the contents of files, but a simple ls shows that
the directory entry is left in tact. If Mr. Price's drive was completely void of information
he probably ran a dd if=/dev/zero type command to overwrite the entire device. It is
more likely that the reason Mr. Price used this tool was to hide data in the slack space
of one or more files.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Case Information

With prog fully analyzed, and its purpose of slack space manipulation discovered, I
moved on to exploring the floppy disk image for signs of its use. It is my opinion based
on observing prog that for the CCNOU investigators to determine that it had been run
on any particular system would be quite difficult. Prog can place and retrieve data to
and from slack space without altering MAC times at all. Plus, prog is a finite, run-once
application that does not stay resident after a user finishes a task, and it does not
spawn any sub-processes that can be looked for after the fact. Therefore, the only way
to get an idea of whether or not prog was run would be to check slack space of all files
for signs of suspicious data. One could use prog (or bmap) itself in a script to
accomplish this by dumping all slack to a new file and then manually checking for data
of interest. Also, the bmap source includes a tool called slacker that manipulates the
slack of an entire directory tree, which can be used to export all slack space. In
analyzing the floppy seized by investigator Smith, I used EnCase to view slack in a
similar fashion.

I returned to Windows/EnCase and viewed the complete file structure in one table.
Including some metadata, this gave a list of 36 files. Using the EnCase hex view I went
through each file alphabetically, observing the slack at the end of each file, looking for
data that may have been hidden there by prog. The last file in the list, \Docs\Sound-
HOWTO-html.tar.gz was the only file to contain any value other than 0x00 in slack
space (Figure 10).

Figure 10: File slack, \Docs\Sound-HOWTO-html.tar.gz

I recognized the value 0x1F8B0808 as a header for gzip compression, and exported the
data to a file for closer analysis. According to RFC1952
<http://www.faqs.org/rfcs/rfc1952.html>, the final 4 bytes of a gzipped data stream is the
original uncompressed file size. The value 0xB9 at the end of the data stream could be
the last byte of the file, but that would make the original size 3117644179. Barring
some decompression bomb, this seems rather unlikely. Progressively moving outward,
possible sizes are 12178297, 47571 and 185 bytes. Given that the amount of non-zero
data present is 170 bytes, I decided to start with a value of 185. I exported the first 173
bytes of file slack, including 3 trailing 0x00 bytes and discarding the rest. I then ran the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

file command on the resulting file and the response was:

method crc date time compressed uncompressed ratio uncompressed_name
defla d37993c2 Jul 14 05:43 173 185 21.6% downloads

This confirmed that the data was indeed gzip compressed, and reported that the original
name was “downloads.” The value 0x646F776E6C6F616473 in Figure 10 is the hex
representation of the word “downloads,” this is where file gets that information.

My next step was to uncompress and see exactly what “downloads” was. I issued
gzip -dN and extracted “downloads” to the working directory. The command ls -l listed
the following for “downloads”:

-rwxr-xr-x 1 root root 185 Jul 14 2003 downloads

I saw that “downloads” is 185 bytes, as expected, and the date matched what gzip
reported. Combining the two date fields, I determined that the file was last modified
07/14/2003 at 1043 GMT or 0543 Central Daylight Time.

Finally, a check of the CRC value showed that “downloads” had been correctly
extracted to the same data that went into the hidden gzipped file. To check this, I used
Theo Van Dinter's perl script, found at <http://www.kluge.net/~felicity/ppt/cksum> with
the “-o 3” flag. The help statement for the script tells that -o “3 is CRC32r (reverse
CRC32) displayed in hex.” The output was simply:

D37993C2 185 downloads

I was finally ready to look into “downloads” and see what it was that someone felt they
needed to hide. I issued the cat downloads command and received:

Ripped MP3s - latest releases:

www.fileshares.org/
www.convenience-city.net/main/pub/index.htm
emmpeethrees.com/hidden/index.htm
ripped.net/down/secret.htm

NOT FOR DISTRIBUTION

It seems that someone was hiding their list of illegal MP3 websites. This is definitely
good circumstantial evidence against the suspect, but not concrete. The file prog has
world execute permissions, so anyone can run it to hide data. The data hidden in the
slack of Sound-HOWTO-html.tar.gz has no user data or permissions associated with it,
because the file system has no knowledge of its existence. That means that
determining who hid the data there is virtually impossible. Furthermore, the gzip
standard, as defined in RFC1952, does not provide for storing user/permission settings,
so there's no help in the data either.

However, all is not lost. Investigator Smith obviously had good evidence that John Price
was involved in illegal activities. The websites listed above should help when combined

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

with other evidence, such as router logs. Also, Mr. Price's claim that the disk was not
his to begin with can quickly be debunked.

Except for one temporary file “.~5456g.tmp” and the “lost+found” directory, all files
contained within the floppy disk image belong to the previously mentioned user 502. It
will be advised that investigator Smith obtain the user number assigned to Mr. Price,
and with a little luck it will be 502.

If records of assigned user numbers are not available, there are also 2 Microsoft Word
documents on the disk that appear to belong to John Price. “Letter.doc” is a MS Word
letter template that does not appear to have been modified. But a look at the file
properties told me everything I needed to know (see Figure 11). The 2nd file,
“Mikemsg.doc”, is also listed as belonging to John Price (Figure 11), but unlike
“Letter.doc” this file has been edited to contain some useful information.

Figure 11: File properties of Letter.doc and Mikemsg.doc

The body of Mikemsg.doc is a short note:

Hey Mike,

I received the latest batch of files last night and I'm ready to rock-n-roll (ha-ha).
I have some advance orders for the next run. Call me soon.
JP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The note is signed “JP,” the MS Word metadata lists John Price as author, and the
Linux user data has the file belonging to user 502. Combined with the websites listed in
the hidden “downloads” file, this note suggests that Mr. Price was working with
someone named Mike to distribute illegally copied music files, in MP3 format.

The disk also contains a file “nc-1.10-16.i386.rpm..rpm”, and Linux HowTo's regarding
DVD's, sound, MP3's and kernel tuning.

“Nc-1.10-16.i386.rpm..rpm” contains the program nc (netcat). Netcat is used for
transferring data over a network (including the internet.) Any data can be sent with
netcat over any port number, making it hard to detect its transfer. It is possible that
Price used netcat in the alleged distribution of copyrighted material.

The Linux HowTo’s are instructional documents on system configuration and fine tuning
for a particular purpose. The documents found on the floppy image relate to multimedia
subjects and tweaking the kernel for specific uses.

All of these files, when taken together, suggest that Price was interested in configuring
Linux for multimedia and MP3 creation and also had the capability to send files to any
other network-attached computer using any predetermined port number. This isn't
condemning evidence, but certainly suggests that investigator Smith has the right
suspect. Network logs should be checked for any large scale activity from Mr. Price's
assigned IP address to any single or small group of destination IP’s.

Beyond that, given Price’s successful wipe of the hard drive before being confronted,
the best bet is to overwhelm him with the circumstantial evidence collected. The floppy
disk seized by investigator Smith certainly seems to confirm that John Price was
involved in distributing copyrighted material, though it does not contain “the smoking
gun.” The file prog is an executable designed to hide data in the slack space of other
files. It is known that prog was used to hide such data on at least one occasion.
However, it is not known who used the program to hide the data since prog is
executable by anyone. It is also not discernable from the floppy which system the
program was run from when it was used. If IT can confirm that John Price’s computer
had been running Red Hat 7.3 then it could be assumed under the circumstances that
prog was compiled on that system. And if Price was user 502 then that goes a long way
to refuting his denial attempts. With the abundance of circumstantial evidence, Mr.
Price may be persuaded to confess his actions and put the whole situation behind him.

Legal Implications

Again, given the lack of discernable footprints, determining after the fact whether
prog/bmap had been run on a system would prove extremely difficult, but if it had the
question then becomes, “Now what?” It does not appear from the results of my analysis
that prog itself or its possession, use or attempted use violates any laws of this country
or state. In fact, I can envision a very effective use of bmap in the world of forensics for
retrieving information from the slack space of files. Much like the various tools and
methods employed by police in their duties, e.g. handguns, it is the ultimate use of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

bmap that determines the legality. In the case of Mr. Price the suspected use was to
facilitate the infringing of multiple copyrights, an issue that will be discussed in part 3 of
this paper.

Although not illegal, the use or suspected use of bmap may violate an acceptable use
policy (AUP) governing an organization’s computer resources. This depends greatly on
exactly how the policy is written but some points to consider are:

1. Unauthorized code.
It is a good idea to state in any AUP that users are allowed to run only software that

has been approved for business purposes. It should also not be assumed, but explicitly
stated that applications and code that are not on the list are not to be run under any
circumstances. CCNOU should review its AUP for such a clause, and verify that John
Price signed it.

2. Business use only
The AUP should stipulate that use of computing resources is authorized for

legitimate purposes only, and all other uses are expressly prohibited. The use of prog
will most likely not qualify as legitimate business use, and its use to distribute
copyrighted material will certainly not qualify.

3. Tampering/Destruction of Data
Another clause to be included in any AUP regards the intentional destruction of data

or tampering with any IT resources. This is an obvious act to prohibit, but again it
should not be assumed. Specific penalties should be laid out and a list of example
violations may be included, with the standard “but not limited to” clause.

Interview Questions

1. I want to thank you for your patience and cooperation through this whole thing,
management is really riding my ass to get this thing cleared up. I think they’re
concerned about the RIAA suing them or something. It all seems a little
excessive to me, but I’ve got my job to do. Is there anything you want to tell me
before we get started?

Setting the suspect’s mind at ease right up front may cause him to let his guard down as
the interview progresses. He needs to know that the interviewer is on his side, and that
management is to blame. Letting him know that the interviewer doesn’t want the
situation to drag out any longer than he does will set the tone for the remainder of the
questioning, “Just a few quick points to clear up and we’re out of here.” Humans are
inherently bad keepers of secrets. Perhaps Mr. Price will be compelled to share
everything and further questions will be unnecessary.

2. Ok then, just a few quick questions. First, we know that the disk found in your
computer belongs to you. It has your name all over it. And we found your letter
to Mike. What can you tell me about him?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

This first point must be delivered with unwavering confidence. The interviewer knows
that the disk is his, this isn’t a question. He’s just mentioning it as an aside. By building
a foundation of facts the interviewer is making the suspect think that everything he says
is known fact. Mr. Price is given some leeway in answering this question, but his
reaction must be monitored closely. This is where he decides to be honest or continue
denying everything. Mike’s involvement is irrelevant, because it doesn’t excused Price
for his actions. But Price may see this as his ticket out and blame the whole thing on
Mike. The interviewer should carefully monitor the suspect’s demeanor and body
language, looking for signs of lying. If the suspect’s answer doesn’t provide any help, a
follow up may lead him where we want him to go.

3. Well it seems to me that Mike was really the one breaking the law. You were
just a small time accomplice. Maybe you made a few bucks; I don’t see any harm
there.

Again the interviewer appears to be sympathetic, to relate to the suspect’s situation.
But the realopportunity here is another test of human nature. Some egos just can’t
stand to be called “small time” and they refuse to let someone else take the credit for
their work. Mr. Price may insist on refuting the claim that Mike was in charge and admit
to being the brains of the operation. Or, he may go along and claim to be an unfairly
persecuted patsy, forced to take the fall for Mike. Either way he will need to admit to
actions that violate acceptable use of CCNOU computers.

4. That prog was a cool little program, I had fun playing with that. I assume you
downloaded that from scyld.com?

Nothing too intimidating here, the interviewer just wants to keep the suspect talking
openly. Do not give him time to stop and think. Make him react on his toes, not with
some rehearsed speech. Hopefully the suspect feels comfortable enough at this point
to answer honestly to questions that seem non-threatening. This sets him up for the
next question.

5. It was pretty cool how you were able to hide those websites in the slack space
of the SOUND-HowTo.

Once more the interviewer is on the suspect’s side, playing to his ego. The undisputed
fact approach along with the friendly tone set by the interviewer should at this point
avoid the “I don’t know what you’re talking about” response. With luck Mr. Price will
admit to hiding the data and the interviewer can use it for one last set-up.

6. Unfortunately it gave us some strings with which to search your hard drive. I
don’t know how familiar you are with computer forensics, but information is very
difficult to get rid of. We were able to recover the “downloads” file with your
websites from the swap partition.

Here the interviewer takes some liberties, since this isn’t a criminal investigation, to
throw off the suspect. The hope is that the suspect will reveal what method was used to
wipe the system and indeed that he was responsible at all.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Additional Information

The article by Dr. Anton Chuvakin regarding bmap and data hiding under Linux can be
found at <http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html>.

Source and binaries for bmap were issued by Scyld Computing and had been posted at
<ftp://ftp.scyld.com/pub/forensic_computing/bmap> but they have since been taken
down. Source is posted at <http://www.madchat.org/crypto/stegano/unix/covert>
however reliability cannot be guaranteed and caution should be used.

If interested, the official gzip specification can be found in RFC 1952 at
<http://www.faqs.org/rfcs/rfc1952.html>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2
Analysis of an Unknown System

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Synopsis of Case Facts

On 3/5/2003 the Crime Lab received the source media referenced below for forensic
evaluation, per the request of Detective David Thome. Based on evidence recovered
from a stolen motor vehicle, Detective Thome is conducting an investigation regarding
2nd Degree Forgery and requested that a search be done on the storage media for
information relating to this investigation, i.e. finding evidence of manufactured checks
and IDs, and of checks executed. As described by Detective Thome, the details of the
case are as follows:

[Mr. X] attempted to pass a manufactured and forged check at Cash 'N Go on January 4,
2003 in the amount of $460.70 on the account of [Company A] through Pinnacle Bank.
[Ms. Y] later passed a check on that same date for the same amount, same account,
same bank. X and Y were later arrested in Marshall, IL for possession of a stolen
vehicle, forgery and other charges. A subsequent search of the vehicle produces forged
instruments, false Nebraska IDs manufactured checks on various accounts with some
executed and some practiced on. Included in these items seized was equipment used to
manufacture checks and false IDs.

Equipment Used

Imaging-
Digital Intelligence F.R.E.D.

Intel P-III 937MHz processor
512MB PC133 SDRAM
3COM 3C996B-T PCI Gigabit NIC
Adaptec 29160 Ultra160 PCI SCSI Adapter

GSI Fastbloc® hardware write blocker
Maxtor 34098H4 40GB Ultra ATA/100 hard drive

Storage-
Snap Server 4400 network attached storage appliance

Analysis-
Dell Precision 650 Workstation

Dual Intel Xeon 2.8GHz processors
2GB PC2100 DDR RAM
Integrated Intel PRO/1000 NIC
Integrated LSI Logic U320 SCSI Controller

(1) Seagate ST336753LW hdd running Windows 2000
(1) Seagate ST336753LW hdd running Red Hat 9

Source Media

The evidence listed below is the computer and electronic media evidence submitted in
this case.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Lab Case #: 2003C-0616 Agency Case #: P030074
Item #: 1 Town of Incident: Hastings

Hewlett Packard Pavilion 503N computer S/N MX240B0371Description as
Submitted:
Was seal found intact? Yes No
Actual Submission Contents: same as above (if not, describe below)

40GB Western Digital hdd S/N WMAAT8664598

I first removed the evidence from the lab evidence storage area. The computer was
stored in a cardboard box, which was sealed with a combination of evidence tape and
clear tape. I opened the box and removed the enclosed computer. The box also
included a keyboard, mouse, a USB cable attached to the computer and a power strip
to which the computer, a (presumed) monitor power cable and an HP printer power
adapter were all connected.

I removed all cables from the computer and removed the outer chassis case. Using a
permanent marker, I labeled the inside chassis with my initials, the date and time, lab
case number, lab submittal number and item number. This provides for two things, the
first being accountability. If someone should open the computer’s case in the future
they will see that I have accessed it before them. If an issue should arise such as
tampering or vandalism there is a record directly on the machine as to who was
responsible for ensuring its integrity. The second thing this helps is future identification
of the computer. Lawyers like to make use of “props” and hold evidence in front of a
jury while they are talking about it. If asked “Is this the computer you processed on x/y/z
date?” I have really no way to know, given thesheer volume of evidence I process in a
year. Labeling and initialing the computer allows me to answer with great certainty,
even years later, that a given computer was indeed handled and processed by me.

I then disconnected the power and data cables from the single hard drive and labeled
each connector with my initials and the hard drive number (1). I removed the hard drive
from the computer and labeled it with my initials, the date and time, lab case number,
lab submittal number, evidence item number and hard drive number. This again allows
for accountability and identification during future court proceedings.

I took the hard drive to my imaging machine and attached it using a Fastbloc hardware
write blocking device by Guidance Software, Inc. The Fastbloc allows an examiner to
attach an EIDE hard drive to a Windows system without fear of altering the evidence in
any way. It does this by use of an internal bridge which accepts all system calls to the
attached drive. The device then sends back the appropriate success message to the
system, without actually passing any data to the hard drive. The only calls allowed to
access the drive are read calls. In this way the Fastbloc acts as a data “flap,” allowing
information to move in only one direction.

I booted the imaging machine to Windows and loaded EnCase Forensic Edition v4.
Using the standard Imaging Worksheet, form NSPCCU-3, I recorded the drive
information (see below). I checked the manufacturer's website for drive specifications
(Figure 12) and compared those against the values EnCase reported (Figure 13). The
manufacturer's specs were attached to the Imaging Worksheet and placed in the file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 12: Manufacturer's drive specs

Figure 13: EnCase drive information

IMAGING WORKSHEET

Lab Case #: 2003C-0616 Submittal #: 1 Item #: 1 Examiner: McGurk

Computer Information:
Make:
Hewlett Packard

Model: Pavilion
500 #P9849A

Serial #: MX240B0371 Case Style: Tower

BIOS Make:
Phoenix

BIOS Version:
4.06

BIOS Serial #:
N/A

BIOS Password:
Disabled

Actual Date:
06/30/03

CMOS Date:
06/30/03

Actual Time:
1634

CMOS Time:
1532

Boot Sequence:
FDD/HDD/CD/NET

Hard Drive Information:
Hdd #: 1 Make: Western Digital Model:WD400EB Serial #: WMAAT8664598
IDE Channel: Primary, Cable Select
Mfr’s C / H / S: N/A Mfr’s LBA: 78165360 Mfr’s Capacity: 40.0 GB

Encase Information:
Physical Logical

Access: Fastbloc Sectors: 78165360
Size: 37.3 GB C/H/S: N/A
Code Type Sectors Size LP Label System Free Size

0B FAT32 10538640 5.0 GB N/A FAT32 1.2 GB 5.0 GB
7 NTFS 67601520 32.2 GB HP_PAVILION NTFS 20.8 GB 32.2 GB

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Forensic Programs Used:
Name DOS WIN Name
Encase v. N/A 4.13 v.

Acquire Information:
Dest. : Lab1 Number of Image Files Created: 12 Total Elapsed Time: 2:29:00

With drive specs verified, I began imaging the drive to NAS server “Lab1.” Lab1 is a
780GB volume using a raid 0 array comprised of six 180GB EIDE drives. The volume is
available via an SMB share which is mapped to drive X:\ on the forensic machine. I
created a new folder on X:\ to hold this case, using the case number and suspects’
names, and then created a subfolder to contain the image files.

I then created a new case in EnCase called “Acquire” and entered the requested
information (Figure 14).

Figure 14: Create a new case in EnCase

The next step was to add the physical device to the newly created case before imaging
it. Previous versions of EnCase allowed the examiner to simply specify a device to be
imaged and proceed, however version 4 implements the extra steps of creating a new
case and adding the device before imaging.
I clicked “Add Device” and in the resulting window chose “Local Drives” (Figure 15).
Upon clicking “Next” the “Add Device” window closed and the “Choose Devices” window
opened. I chose the evidence drive from the list and followed the prompts to finish.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 15: Add new device to case

With the evidence added to EnCase I was now ready to create my image file. Upon
highlighting the evidence drive a new “Acquire” button appeared on the menu bar
(Figure 16). I clicked “Acquire” and an “After Acquisition” window appeared.

Figure 16: EnCase "Acquire" button

I chose “Replace source device” and clicked next, bringing up the “Options” window. I
entered my case information (Figure 17) and clicked “Finish” to begin imaging.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 17: "Options" window for entering image description and settings

While the drive was imaging, I powered on the suspect machine to check the BIOS
settings and recorded the settings on the Imaging Worksheet (above). The most
commonly used information contained in the BIOS is the date and time of the system.
This needs to be compared to the actual date and time to help determine the accuracy
of the times stored on the hard drive. While matching date/time information does not
guarantee accurate times it is advised to approach all times as suspect if the current
system time does not match the current “real world” time. The BIOS time was found to
be 62 minutes off. This is discussed below in the Timeline section.

The imaging finished successfully in 2 hours, 29 minutes. I then disconnected the drive
from my machine and returned it to the suspects’ computer. The computer was then
resealed with tape covering the drive bays, chassis access points and power connector.
I returned the computer to the cardboard box and sealed the box with tape. I then
returned the box to the lab evidence storage area.

Analysis

The previously created image files sat on the NAS server until 01/07/2004, when this
case came up in the rotation. I loaded the image files into EnCase v4.16a and allowed
EnCase to verify the file integrity. EnCase does this by calculating a new MD5 hash on

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the present data and checking it against a value calculated at the time of imaging
(Figure 18). Since these hash values match it is computationally infeasible that even
one bit has changed since the day the imaging took place.

Figure 18: EnCase information with verified hash value

After the evidence had verified as good, I checked the “system” and “software” registry
hives for system information. There were no network shares listed in the
“Services/lanmanserver/Shares” registry key. Also, curiously, the “Registered User”
and “Registered Organization” are blank. I began running the EnCase function for
checking file signatures and calculating hash values on individual files. The signature
checker compares each file's extension to a list of known extensions, and verifies that
the file header matches for each given extension. The hash function calculates an MD5
hash value for each file on the drive. This allows comparison against a list of known
files such as Windows .cab files, .dll files, etc and any such known files can be ignored
as irrelevant to the case at hand. This is because every install of Windows XP is going
to have a certain number of files in common with every other installation of the same
version. These files will have the same hash value on every single machine, and any
file that matches that hash value can be said with mathematical certainty to contain
exactly the same data. The National Institute of Standards and Technology maintains
databases of such files at <http:// www.nsrl.nist.gov> for the purpose of separating
these known files from the unknown.

After the hashing and signature checking was complete, I restored the drive to a clean
lab drive and scanned for viruses using McAfee VirusScan with DAT 4312. No viruses
or trojans were found on the drive. I also manually checked the
\SOFTWARE\Microsoft\Windows\CurrentVersion\Run registry key for programs loaded
at system startup. I performed an internet search for each program and my results are
listed in Appendix A.

All programs listed to run at startup are commonly found applications, not known to
contain malware. McAfee also found no signs of malware on the system's hard drive. It
is therefore believed that the suspect system has not been compromised and should be
checked only for evidence of the suspected forgery offenses.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

I next ran an EnCase EnScript that I prepared to search for printer spool files. “EnScript
is a powerful macro-programming language and API developed by Shawn McCreight
that is designed to work within the EnCase® environment. Hundreds of existing
EnScript programs perform such tasks as finding and extracting all image files, instant
message chat logs, or spreadsheet files within unallocated clusters.”4 This particular
script uses EMF-type headers known to be used in Microsoft Windows printer spooling
to check for potentially printed information stored on the hard drive. The information is
then checked manually to see if any viewable data exists. The current EnCase
“Graphics File Finder” EnScript covers these printer spool files, but at the time of my
exam this was not the case and I needed to craft my own (see appendix B.) No data
was able to be viewed using this technique. This is common because printer spools are
temporary files, which are deleted and overwritten quite quickly.

My next step was to check for images visible in the EnCase gallery. The EnCase
gallery provides a quick access method to view all of the recognized graphic files in
allocated space (Figure 19). I browsed the gallery view and bookmarked several files
relating to false IDs.

Figure 19: EnCase gallery view

4 Guidance Software. “EnCase EnScript - designed by Shawn McCreight“.
<http://www.guidancesoftware.com/support/enscript/index.shtm> (5 April, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

I next searched for evidence of the known checks by string searching for “460.70,”
“[Company A]” and “Pinnacle.” No hits were found for “460.70.” “[Company A]” resulted
in one hit from unallocated space. I bookmarked this result for inclusion in my report to
Detective Thome. This information has been purposely excluded from this paper, but it
consisted of the account name, [Company A], the company address, the bank name,
Pinnacle, bank address and account number.

The “Pinnacle” results included some data believed to be related to printing activity,
located in streams containing headers of “PDL.” I bookmarked the readable text and
tried to view the streams as they might have been printed on the page. Most printers
require that a page to be printed be passed as an image instead of text, as if someone
had taken a picture of the page and printed that instead. These images are often
formatted as EMF graphics and can usually be recovered and viewed in any common
image viewer. I checked for viewable images in the “PDL” hits and also searchedfor
any EMF headers that may contain additional printed information. No print images were
viewable using the above methods.

Unable to view the data contained in the “PDL” streams I posted a message to the
Computer Forensics Investigators Digest (CFID) listserv asking if anyone had dealt with
such data before. Rich Mason responded that he has not seen “PDL”, but that
“.%-12345X” is a common RAW print header, and that he has also seen “@PJL” used
quite frequently as well. I searched for both headers, which resulted in about 600 hits.
Reviewing these hits resulted in no viewable print data, but several check transactions
are clearly visible within the text. I bookmarked these hits for delivery to the
investigator.

To attempt to find information as the suspect saw it, I booted a restored copy of the
drive in VMware.

VMware Workstation works by enabling multiple operating systems and their applications
to run concurrently on a single physical machine. These operating systems and
applications are isolated in secure virtual machines that co-exist on a single piece of
hardware. The VMware virtualization layer maps the physical hardware resources to the
virtual machine's resources, so each virtual machine has its own CPU, memory, disks,
I/O devices, etc. Virtual machines are the full equivalent of a standard x86 machine.5

By cloning the suspect hard drive to a clean lab drive I was able to bring up the
suspects’ operating system inside the virtual machine just as if the drive were physically
attached to another computer. These suspects ran Windows XP Home Edition and the
configuration of the virtual machine required that Windows activation be rerun.
Windows activation is explained at
<http://www.microsoft.com/windowsxp/pro/evaluation/overviews/activation.asp> This
new copy protection scheme that Microsoft introduced with the XP line (Windows and
Office) works by way of activation codes. The installation routine generates a
supposedly unique Installation ID number from a combination of the Product ID and
various hardware components of the machine it is installed on. The user then either

5 Vmware Inc. “Products -- VMware Workstation 4.5”.
<http://www.vmware.com/products/desktop/ws_features.html> (6 April, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

places a telephone call or accesses an internet site and provides Microsoft with the
Installation ID and they in turn send back an activation code to unlock the software.
This way, only one machine at a time can use a particular Product ID, instead of the old
days when any number of people could share one Windows CD and ID number. For
my purposes it prevented me from booting Windows inside the virtual machine because
the hardware configuration did not match that of the original installation and thus
Windows could tell that the Installation code was not valid for my setup. Windows XP
Service pack 1 introduced a 3 day grace period for reactivating, but the suspect’s
machine was not running SP1.

I instead booted into “Safe Mode” to avoid performing a reactivation. In a program
called PhotoImpression, I discovered the existence of several files with the extension
“PSF” that contain albums of photos. Several of these files, saved in the “Owner” user
directory, contain albums of images that could be used to create false Nebraska IDs
(Figure 20). Within EnCase, I ran a graphic recovery EnScript (Appendix C) on all PSF
files to pull out any JPG format images within them. This resulted in 2223 hits which I
went through, bookmarking all ID related images.

Figure 20: Example of fake ID images

The system also contained check writing programs “VersaCheck” and “My Checkwriter.”
I located a VersaCheck data file called DSETUP.vdf and installed VersaCheck on my
lab analysis machine to view the file and print any recoverable information. The file
appeared to contain account data for printing checks in the name of [Mr. Z] and
[Company B]. Two accounts are set up for [Mr. Z], one for Pinnacle Bank-Gretna at
6145 Havelock Ave in Lincoln, and one for Pinnacle Bank-Gretna at 70th & Adams in
Lincoln. The [Company B] account is drawn from Pinnacle Bank-Gretna at 6145
Havelock Ave in Lincoln. I printed all checks listed in the registers of all three accounts
and attached them to the report provided to Detective Thome.

After printing the checks, I reviewed the unallocated space on my lab machine to look
for what print information was sent by the VersaCheck software. The results showed
that “NAME=”VersaCheck” appeared at the beginning of each print job that I submitted.
I searched the unallocated space and pagefile.sys of the suspect drive for the same
string, but no hits were found. I also tried additional strings of “JOB NAME” and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

“JOBNAME”. All results for these searches occurred in line with my previous “@PJL”
search, so I canceled the search after 1 hour with 1hr 10min remaining.

I next searched the unallocated space and pagefile for the string “AND ##/100” to find
any checks that may have been missed by the “Pinnacle” search. Several partial check
transactions were located and added to the bookmarks. These appear to be in the
same format as those located in the Versacheck .vdf files.

Using Encase's “copy/unerase” command, I exported all files from “Program
Files\MySoftware\MyCheckBook\Data.” I then used a hex editor to change the status of
checks within .mcb files to be reprinted. In loading the files into the MyCheckwriter
software, I noticed a simple yes or no flag indicating if a check is “selected for Printing.”
By using the hex editor, I saw that each record had a “0” at offset 702. Thinking that
this may indicate the record was not selected for printing, I changed each “0” to a “1.” In
“00[Name-Withheld1].mcb,” this meant printing 1 check, #3346 to [Ms. Y]. The register
did not indicate that this check had previously been printed. A prompt appeared asking
to choose the owner of checks, with choices of [Mr. Z] or “Sample Company.” “Sample
Company” has no associated document name to print from, so I chose [Mr. Z], which
has one document called “Test.” The check printed successfully and was attached to
the report.

“00[Name-Withheld2].mcb” contains no transactions in the register.

In “00[Name-Withheld3].mcb,” I chose to print 1 check, #100 made payable to “Me.” The
register indicates that the check was printed on 12/24/2002.

None of the checks found include the known [Company A] check described by Detective
Thome. To attempt to locate additional information about the [Company A] account, I
exported an extra copy of DSETUP.vdf, then overwrote from hex “040108077E” with
data from the [Company A] search hit, saving the resulting file as [Company A].vdf. I
loaded [Company A].vdf into VersaCheck and screen captured several screens (Figure
21). On the “Write Check” screen, the “Pay to the Order of” field uses a drop-down
menu that included the name of suspect [Mr. X]. When I chose this name the remaining
fields automatically filled in, presumably with the data used for the last check made out
to this payee.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 21: [Company A].vdf screen shot

I had hoped to provide a sample to Detective Thome to compare with the 2 checks that
were known to have been passed on 1/04/2003. Unfortunately, since the file was
constructed using portions of two unrelated files, some essential information was
missing and I was unable to print any sample checks. However, the account number is
contained in the bookmarked text of the [Company A] search hit and this should prove
helpful, if it matches the account numbers found on the aforementioned checks.

I concluded my analysis by verifying that all account information located during the
various string searches, including account numbers, had been bookmarked
appropriately. I then exported my bookmarks to an html page for delivery on CD-ROM.
Included among these bookmarks was subscriber information for a Charter
Communications broadband Internet account that was located during a search of the
Windows registry. A search of the Yahoo! White Pages verified that the name, address
and phone number are valid. The name also matches an ID found in the “.PSF” albums
mentioned above, though the address is different. It is unclear if the computer was
stolen from this individual, along with his wallet (or at least his driver's license), or if this
is another accomplice.

String Search

As mentioned above several string searches were performed to locate data in various
places on the drive. EnCase allows the examiner to input any number of keywords to
search across the media (Figure 22). The keywords are saved so that common terms
can be reused from case to case.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 22: EnCase keyword entry

Figure 23: Search results for keyword "Pinnacle"

I first input 3 keywords, “460.70,” “[Company A]” and “Pinnacle,” that were reported to
be included on forged checks passed by the suspects. EnCase then went sector by
sector over the physical drive, as well as logically through each file, in search of my
keywords. The results were presented in a table showing the context in which each hit
occurred (Figure 23). I reviewed the hits for all 3 keywords, finding one hit for
“[Company A]” in unallocated space and numerous hits for the word “Pinnacle.” I

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

bookmarked the relevant results for inclusion in my report to Detective Thome. EnCase
bookmarks, as the name suggests, provide a means to jump instantly to an important
piece of information. Bookmarks may then be arranged into a final report of all of an
examiner’s findings.

I next wanted to search for recoverable print data and added the keywords“.%-12345X”
and “@PJL” that were suggested by Rich Mason on CFID. I reviewed the 600 hits for
the 2 print related keywords, but could not view any of the print images discussed
above. I instead bookmarked the text of the hits that appeared to contain check
information. This information included bank names, account numbers, “Pay to the order
of”, etc. As indicated in the Analysis section above, I also searched for print data using
keywords “NAME=”VersaCheck,” “JOB NAME” and “JOBNAME.” These produced no
additional information.

Since data in unallocated space gets overwritten gradually I decided to search for any
partial check data that may have been missed by previous searches. I used a keyword
of “and ##/100” to locate the amount field of the checks. The # symbol is a wildcard that
matches any single digit, so the keyword becomes “and “ followed by any two digits
followed by “/100”. This resulted in several partial check entries that I then bookmarked.

Timeline

A timeline analysis was not pertinent to the investigation, but has been included here for
certification purposes. The BIOS check during the imaging phase revealed a difference
of 62 minutes between the system clock and the actual time. 2 minutes is acceptable
deviation, but the additional 60 minutes requires explanation. This is almost certainly
due to the fact that the computer was seized during the months of Central Standard
Time, but imaging took place during Central Daylight Time. Since the system was in
police custody on April 27, 2003 the clock was not “sprung ahead” and still reflects CST,
or -6 hours from GMT. The actual time observed during imaging reflects the -5 hours
for Central Daylight Time. It may be assumed, barring other indicators, that dates and
times were accurately recorded to the hard drive, and EnCase v4 translates them
according to the appropriate time zone setting.

A brief chronology of the system which will be detailed below is:
Late July 2002–Hewlett Packard began OEM setup of the computer system. Most of
the patches present on the system were applied at this time.
08/03/2002–Setup completed and Windows metafiles were created.
10/24/2002–Probably close to purchase date of the computer. Windows records this
as the official install date, and pagefile.sys and hiberfil.sys indicate Windows was
probably first booted on this date.
12/22/2002–Earliest files related to fake IDs were created. Two MyCheckBook data
files created.
12/24/2002–Third MyCheckBook data file created
12/27/2002–Versacheck software installed
01/09/2003–Last ID file accessed
01/10/2003–Last logoff and last shutdown.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

There was some initial confusion concerning the install date of the system, but closer
study seemed to explain everything. I had first checked the registry to find the install
date in the SOFTWARE\Microsoft\Windows NT \CurrentVersion\InstallDate key. As
shown in Figure 24, the date stored there was 10/24/2002.

Figure 24: Install Date as stored in Windows Registry

The confusion began when I checked the date/time stamps on the system files such as
$Boot, $MFT, etc. These files are created when an NTFS volume is first formatted, and
for the average user this would normally match the date that Windows was installed.
However, as seen in Figure 25, these files were all created 08/03/2002 at 9:22 PM.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 25: Created dates of Windows metafiles

It can also be seen in Figure 25 that pagefile.sys and hiberfil.sys were both created on
10/24/2002. Pagefile.sys is a swap file used for swapping memory data and hiberfil.sys
is used to store the contents of RAM when Windows hibernates. These files are
normally first created when Windows is booted for the first time, although they can be
recreated later if deleted by the user. I did some more exploration to try to come up with
an explanation and found a file named software.log. Software.log is, as it sounds, a log
file of the running of various programs. The first few lines are:

2002-07-23 18:33:05 HP_Build_PrepBlock_WW_XP_0000-60.exe
2002-07-24 08:58:43 beginbuild_WW_XP_0000-01.exe
2002-07-24 08:59:05 FullScreen_WW_XP_0000-10.exe
2002-07-24 08:59:26 HPSysInfo_WW_XP_00000741_D-04.exe
2002-07-24 08:59:49 Fall02_all_boards_EN_XP_00000000_A-01.exe

This log continues until the 26th when it ends with “2002-07-26 13:38:05
HP_EndBuild_WW_XP_0000-36.exe.” This suggests to me that the computer was
undergoing some configuration as might be done by HP prior to deploying the system.

I therefore feel that the precise dates and times during this early stage are unreliable.
Original equipment manufacturers such as Hewlett Packard often use special OEM
CD's with Windows pre-configuration routines. It is enough to know that around the end
of July 2002 the system was undergoing this sort of pre-configuration, either at the
factory or by a system restore CD used by the owner. 10/24/2002 is quite reliably the
date on which configuration was complete and Windows was booted into interactive
GUI mode.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 26: Dates of Windows Updates

As seen in Figure 26, most updates were applied during the configuration period on
07/24/2002. One update, Q312370, was applied on 10/24/2002 during the final install
of the operating system.

The next activity of interest chronologically is when any apparent forgery may have
begun. The files that appeared to be used for manufacturing fake IDs first appeared on
the drive on 12/22/02 (Figure 27).

Figure 27: Earliest ID files located

Activity on this date seems to be a lot of scanning and then manipulating various
legitimate licenses. File scan0001.jpg has the earliest created date, with scan0002.jpg
and scan0003.jpg coming sequentially down the line. Several files had last written
times later than their creation times, suggesting that the images had been edited in
some fashion. The last file in the above list, Dec22_08.JPG, illustrates a classic
date/time anomaly. Notice that the created time was 2300 hours on 12/22, and the last
written time was 1440 hours on the same day. The file was edited nearly 8 ½ hours
BEFORE it was created!

This suggests that this is not the original copy of this file. The Windows created date
reflects the date and time that the file was first created on this particular volume, while
the written date reflects when the contents of the file were last edited, even if it was on a
different volume than where the file currently resides. If the file was edited at 1440 and
then moved to another disk at 2300, the result would be as shown in the above list.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

The last ID related file to be created, written or accessed was Jan09#89.JPG on
01/09/03. This file contains the image of a signature. It seems logical that the suspects
would create their IDs exactly how they wanted them and then add the signature to
create the final product.

There were three data files for the MyCheckBook software located, two created on
12/22/02 and one created on 12/24/02. The MyCheckBook software itself had been
removed, leaving only these data files behind. There were no registry keys or log files
to indicate when the software may have been installed. The 3 remaining data files all
have their individual last written times equal to their last accessed times, all between
1656 and 1824 on 12/24/02. It was probably not long after this that the software was
removed.

Additionally, the only two allocated data files to contain VersaCheck information were
Vcheck.vdf and DSETUP.vdf, both of which were created on 12/27/2002. This
corresponds to a located registry key which states that VersaCheck was installed on the
same date, 3 days after the last MyCheckBook file was accessed. Perhaps
MyCheckBook did not meet the suspects’ needs so they decided to try VersaCheck.

The event that is naturally expected to occur last on any computer system which is in
the “off” state is the time at which it entered such a state. That is to say, when was this
computer shut down or when was the plug pulled? If Windows is allowed to shut down
properly the time at which this happens is recorded in a couple of ways. As seen in
Figure 28 the last recorded logout for this system was recorded in the security event log
at 1/10/03 at 1026. This matches the
SYSTEM\ControlSet001\Control\Windows\ShutDownTime registry key which recorded
1/10/03 1026 as the last shutdown time of the system. The suspects were picked up
shortly after this, with the computer in their possession, so it is probably an accurate
reflection of the last time the system was used.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Figure 28: Last logout recorded by Security Event log

The full timeline of all 76000 files created a spreadsheet of over 15MB and is therefore
not included in this report.

Deleted Files

One of the great things about the EnCase software is that it automatically attempts to
recover as many deleted files as possible. The term “unallocated space” which I have
used several times refers to all clusters that are not currently being taken up by active
files (those that show up in Windows Explorer or DOS’s dir list.) An unallocated cluster
must satisfy one of two conditions: either it has never contained data or else data it
once contained hasbeen “deleted.” I place deleted in quotes to emphasize the very
principal of data forensics that data is not truly gone until it is overwritten with other
data.

Files that have been deleted from an NTFS volume such as the suspects had can
themselves satisfy one of multiple conditions, and EnCase handles them according to
which one they satisfy.

Firstly, a file6 may be deleted from its parent directory, in which case the file’s entry in
the parent directory is deleted, the entry in the Windows master file table ($MFT)7 is
marked as reusable and the clusters are marked available in the $Bitmap file. If

6 Everything in NTFS, including directories, is treated as a file. Therefore the concepts described for files
apply equally to directories.

7 See http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/master_file_table.asp for
an explaination of the $MFT file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

EnCase finds an $MFT entry that has been deleted in this way it checks for the parent
entry (every $MFT record indicates the $MFT record number of its parent directory) to
see if it is still intact. If an intact record belonging to a directory is located then EnCase
places the file back into this directory and indicates that the file has been deleted
(Figure 29). One interesting point to note is that EnCase has no way of verifying if the
directory residing in the $MFT record listed as the parent is in fact still the correct
parent. If the actual parent were to be deleted and then a new directory given its spot in
the $MFT then EnCase, and any other file recovery method, would be forced to assume
that the new directory is the parent of the file in question. See Appendix D for more
information.

Figure 29: EnCase file list showing deleted files

A second possibility is that EnCase will encounter an $MFT record for a deleted file and
check the parent entry, only to find it no longer in tact. In this case the file will be
designated as lost. All files that fit this description are placed into a “Lost Files” folder in
the EnCase file structure (Figure 30).

Figure 30: Example of EnCase "Lost Files"

The two above possibilities involve MFT records marked for reuse but which have not
yet been overwritten. Additionally, the deleted file’s data remains in unallocated space
until such time as it too is overwritten. Two more possibilities are if the MFT record has
not yet been overwritten but the data in unallocated space has, or conversely if the MFT
record is overwritten, but the data remains in unallocated space. EnCase designates
the former files as “Deleted, Overwritten” and provides the original directory location of
the deleted file as well as the location and name of the file that is now using the space
on the disk. Figure 31 illustrates this in EnCase. The red X indicates that the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Shockwave Flash file has been overwritten, and the path along the bottom tells that
pagefile.sys is the file that overwrote it.

Figure 31: EnCase designation of deleted and overwritten files

The latter type of file, with MFT record gone but data remaining in unallocated space,
describes all of the relevant deleted information located during my analysis. With the
MFT record gone I was unable to recover filenames or dates/times associated with any
of the data. This type of metadata is stored directly in the MFT record and once it is
overwritten becomes extremely difficult to recover. The only hope is to locate any
possible help outside the MFT such as .lnk files or transactions logged in $Logfile.

There was one file of interest which had been sent to the Recycler and had not been
emptied yet. The file was called MyCheckBook20021222.bak and contained a PKzip
structure with what appeared to be backups of one of the .mcb MyCheckWriter files.
MyCheckBook20021222.bak was created 12/22/02 1527 and deleted 12/30/02 0800.

Conclusion

As a result of my forensic analysis of the above listed media, it appears that the
submitted system was in fact used by [Mr. X], [Ms. Y] or both to commit the offense of
forgery in the second degree, in violation of Nebraska Statute Section 28-603.
Subsection 1 of section 28-603 states that

Whoever, with intent to deceive or harm, falsely makes, completes, endorses, alters, or
utters any written instrument which is or purports to be, or which is calculated to become
or to represent if completed, a written instrument which does or may evidence, create,
transfer, terminate, or otherwise affect a legal right, interest, obligation, or status, commits
forgery in the second degree.8

An abundance of data for creating fake IDs and printing counterfeit checks was located
all over the hard drive. The account numbers, names of account holders, and some
sample checks were included in the report turned over to the investigator of the case.
The dollar amount of the checks recovered off of the hard drive indicates that the
suspects, if convicted, would be sentenced under subsection 2 of the above named
section, which states that

Forgery in the second degree is a Class III felony when the face value, or purported face
value, or the amount of any proceeds wrongfully procured or intended to be procured by

8 Section 28-603, Nebraska State Statutes. 31 Aug., 2003.
<http://statutes.unicam.state.ne.us/Corpus/Statutes/chap28/R2806003.html>(24 Feb., 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the use of such instrument, is one thousand dollars or more.9

The checks made out to the names of the suspects that were recoverable and printable
totaled $3966.09. In addition there was $11133.64 worth of checks made out to 2 other
names, one of which was found among the images of fake IDs. These are most likely
pseudonyms used by the suspects when cashing phony checks.

Additionally, an attempt should be made to ascertain the proper owner of the computer
as there is a possibility that either it was stolen or else there may be an additional
accomplice besides the two found in possession of the machine.

9 Ibid

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 3
Legal Issues of Incident Handling

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1. It is believed that John Price was producing and/or distributing unauthorized copies
of copyrighted works in the form of audio and perhaps video recordings in violation of
United States copyright law, Title 17, Section 106. Section 106 states that owners of
copyrights hold the exclusive right to reproduce any work covered under such copyright.
Section 503 of Title 17 provides that an infringer of copyright is civilly liable to the
copyright holder for actual damages plus all profit realized by the infringing act. If
proven to be a willful act of infringement, as Mr. Price is believed to have committed, the
copyright holder may seek statutory damages of up to $150,000 per offense.

If it can be shown that the value of works which John Price copied illegally exceeds
$1000, or that he profited from his actions, he may be charged criminally under section
506 of Title 17. If profit is shown, penalties may include imprisonment of up to 5 years
or fines in addition to those imposed civilly. If retail value of the works is used to
determine criminal liability penalties may include imprisonment of up to 3 years or
additional fines.

2. In order to avoid liability as contributing to the infringement of the copyright of others,
one should act in good faith as described in section 512 of Title 17 USC, as amended
by the Digital Millennium Copyright Act. Section 512 states that a service provider may
not be held liable for the storage, at the direction of users, of any infringing material if
the provider has no knowledge or expected knowledge of such infringement, and that
“upon obtaining such knowledge or awareness, acts expeditiously to remove, or disable
access to, the material.”10 This section is intended to protect ISP’s in an effort tofoster
cooperation in determining subscriber information. However, the definitions set forth in
Section 512 do not specify commercial ISP’s and define service provider as any
“provider of online services or network access, or the operator of facilities therefore.”
Under this definition anyone who provides equipment and services for accessing the
Internet, including private employers, should in theory be covered if they quickly remove
access to any infringing material and subsequently notify the offender of such removal.

3. All information to this point will be archived to CD-R and placed in the case file at the
state crime lab. This includes the EnCase image file of the submitted floppy found in
John Price’s computer. The use of EnCase images as best evidence has been upheld
in various U.S. court decisions. Several such decisions can be viewed from the website
of Guidance Software, Inc. (author of the EnCase forensic suite) at
<http://www.encase.com/corporate/legal/index.shtm>.

CD-R is widely expected to last at least 10 years under optimal conditions, but optimal
conditions are hard to come by. With proper care, the discs should realistically last at
least as long as it would take to bring action against Mr. Price.

4. Unlike copyright violations, the mandatory reporting of distribution of images of child
sexual abuse (42 U.S.C. 13032) is specifically limited to service providers accessible by
the public at large. Luckily, it is common feeling among the majority of citizens in this
country, as well as most others, that child sexual abuse images are an abomination
worthy of swift notification to the proper authorities. Since I happen to be employed by

10 Section 512, Title 17, USC. <http://www.copyright.gov/title17/92chap5.htm> (3 March, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

one such authority however, my actions are governed by regulations pertaining to
search and seizure.

Had investigator Smith suspected the distribution of child sexual abuse images from the
beginning, his natural course of action would have been to contact his local law
enforcement agency. They, in turn, would have forwarded the evidence to the lab for
analysis or perhaps conducted analysis themselves, if so equipped.

If contraband such as child sexual abuse images were located by me in the course of
searching for copyright violations, I would have been required to immediately cease my
analysis. At that point an affidavit would need to be submitted requesting a warrant to
search for evidence of distribution of child sexual abuse images.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

References

Part 1
http://lwn.net/2000/0420/announce.php3
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html
ftp://ftp.scyld.com/pub/forensic_computing/bmap
http://mail.gnome.org/archives/gtk-app-devel-list/1999-December/msg00271.html
http://www.faqs.org/rfcs/rfc1952.html
http://www.kluge.net/~felicity/ppt/cksum
Special Thanks to Dr. Anton Chuvakin, http://www.netForensics.com

Part 2
http://www.guidancesoftware.com/support/enscript/index.shtm
http://www.vmware.com/products/desktop/ws_features.html
http://www.techspot.com/vb/showthread/t-9798.html
http://www.videocard-forum.com/nvidia (continued)

/How_to_stop_loading_NvCplDaemon_at_startup_403028.html
http://www.liutilities.com/products/wintaskspro/processlibrary
http://www.nerdhelp.com/forums/index.php?act=ST&f=37&t=784&
http://www.annoyances.org/exec/forum/win2000/r1057000914
http://www.safersite.com/pestinfo/w/wildtangent.asp
http://h20015.www2.hp.com/hub_search/document.jhtml?lc=en&docName=bps05762

Part 3
http://www.copyright.gov/title17/92chap5.html
http://www4.law.cornell.edu/uscode/18/2319.html
http://www.encase.com/corporate/legal/index.shtm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix A
Format of each listing is“application name, URL of explanation, explanation.”

hpsysdrv
http://www.techspot.com/vb/showthread/t-9798.html
Krugger wrote:
hpsysdrv.exe;
This item keeps track of how many times the system has been recovered and the times
of the first and last recoveries done on the system. Leaving unchecked will sometimes
prevent the Keyboard Manager program from detecting that the computer is an HP.
Since this program/driver was only made to run on HP, if it can't tell that it is an HP it will
not run. If unchecked, it can prevent the running of the Application Recovery CDs, the
use of the multimedia keys, and the HP Instant Support. Also seen that without it
running, the Riptide Sound card that was installed on some older HP computers stops
working.

NvCpl
www.videocard-forum.com/nvidia/How_to_stop_loading_NvCplDaemon_at_startup_403028.html
"Flow" <flowing@zonnet.nl > wrote:
> Why do you want it gone?
> You need it for your desktop,the comp will shutdown if this file is damaged or
> deleted.
> It is for controlpanel\display\advanced\nvidia tabs. That's why it always runs at
> startup.
> It does no harm and will not eat any extra sources.
> In fact if you get error messages about it at startup you need to uninstall
> proper and reinstall your videodrivers.

nwiz
http://www.liutilities.com/products/wintaskspro/processlibrary/nwiz/
Process File: nwiz or nwiz.exe
Process Name: NVIDIA nView Wizard
Description: Application enables user to having 32 virtual desktops, get a desktop larger
than the viewable area of the monitor, being able to divide the display across more than
one monitor, managing applications and many more functionality.
Company: NVIDIA Corporation
System Process: No
Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

KBD
http://www.liutilities.com/products/wintaskspro/processlibrary/kbd/
Process File: kbd or kbd.exe
Process Name: Kbd
Description: Multimedia keyboard manager for logitech keyboards. Required if you use
the multimedia keys
Company: Logitech
System Process: No

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

StorageGuard
http://www.liutilities.com/products/wintaskspro/processlibrary/sgtray/
Process File: sgtray or sgtray.exe
Process Name: StorageGuard Tray Application
Description: System tray bar applicaion which used to remind the user for back up of
files.this free utility combines with Backup MyPC , Simple Backup and MS Backup
software.
Company: VERITAS Software Corporation.
System Process: No
Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

dla
http://www.liutilities.com/products/wintaskspro/processlibrary/tfswctrl/
Process File: tfswctrl or tfswctrl.exe
Process Name: DLA Packet Writing Software
Description: Application used to write data onto CD’s directly from Windows
applications, without using the actual CD Writing software.
Company: Hewlett-Packard
System Process: No
Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

Recguard
http://www.nerdhelp.com/forums/index.php?act=ST&f=37&t=784&
tonya wrote:
x RECGUARD
Y Recguard recguard.exe On HP computers, Recguard prevents the deletion or
corruption of the WinXP Recovery Partition. Without it enabled, it is possible to knock
that completely out and force the customer to send the PC back to HP for a re-image,
possibly at the customer's expense.

IgfxTray
http://www.liutilities.com/products/wintaskspro/processlibrary/igfxtray/
Process File: igfxtray or igfxtray.exe
Process Name: igfxtray
Description: Intel Graphics System Tray icon which gets installed with the drivers for
onboard VGA cards based on the Intel 81x graphics chipset. Double-clicking on it
enables you to quickly change the display resolution, save your current Display
Scheme, or configure your onboard graphics card. You can also configure keyboard
hotkeys (shortcuts this is handled by another background task called HKCMD). You
can access the same features through the "Intel Graphics Technology" icon in the
Control Panel.
Company: Intel Corporation.
System Process: No

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

HotKeysCmds
http://www.liutilities.com/products/wintaskspro/processlibrary/hkcmd/
Process File: hkcmd or hkcmd.exe
Process Name: Hkcmd
Description: Application which implemements Intel’s Hotkey Command.
Company: Intel Corporation
System Process: No
Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

PS2
http://www.liutilities.com/products/wintaskspro/processlibrary/ps2/
Process File: ps2 or ps2.exe
Process Name: Ps2
Description: Application provides functionality to keyboard on HP computers.
Company: Hewlett-Packard
System Process: No
Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

NAV Agent
http://www.liutilities.com/products/wintaskspro/processlibrary/navapw32/
Process File: navapw32 or navapw32.exe
Process Name: Norton AntiVirus Agent
Description: Background application for Norton AntiVirus which provides Auto-
Protection to the system.It runs on Windows 95/98/ME .
Company: Symantec Corporation
System Process: No
Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

BJCFD
http://www.annoyances.org/exec/forum/win2000/r1057000914
re: Broadjump programs
Monday, June 30, 2003 at 12:21 pm
Windows 2000 Annoyances Discussion Forum
Posted by Syd:
These programs are often included in the installation software from cable ISPs. They
can normally be deleted through Add/Remove Programs.

tgcmd
http://www.liutilities.com/products/wintaskspro/processlibrary/tgcmd/
Process File: tgcmd or tgcmd.exe
Process Name: Tgcmdprovidersbc
Description: Part of a Software from SupportSoft provided to manufacturers (such as

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Sony (Vaio Support Agent) and Toshiba (Virtual Tech)) and ISPs (such as Comcast,
Cox and Charter (Pipeline Support Agent)) that allows them to offer on-line support.
This part ensures that software is installed correctly. Regarded as spyware as it has the
ability to retrieve user information.
Company: SupportSoft, Inc
System Process: No
Security Risk (Virus/Trojan/Worm/Adware/Spyware): No
Common Errors: N/A

wcmdmgr, WT GameChannel
http://www.safersite.com/pestinfo/w/wildtangent.asp
Vendor Notes: a web plug in for online gaming, similar to Macromedia’s flash. We
make and publish 3D online and offline games that play in the web browser. Users are
able to purchase our games though our E-Commerce solution and unlock the download
version of our games. We also have the WildTangent Web Driver that these games
need to run. It is a 3D plug-in for the browser, similar to Macromedia’s Flash. We also
have a technology called GameChannel that users opt-in to receive. The
GameChannel delivers new updates (notifications) to the user’s machine when there
are new games available to play and purchase.
Category: Adware: Software that brings ads to your computer. Such ads may or may
not be targeted, but are "injected" and/or popup, and are not merely displayed within the
form of an ad-sponsored application.

checktime
No useful information found, however the online postings of several HP owners indicate
that this is a common program installed on HP systems.

Share-to-Web Namespace Daemon
http://h20015.www2.hp.com/hub_search/document.jhtml?lc=en&docName=bps05762
Through direct ties to the HP digital camera, scanner, or all-in-one product, HP's
exclusive Share-to-Web software makes it easy to share photos and other digital
content through the HPPhoto.com Web site. This Web site provides such services as:
Secure, online photo sharing
Photo reprints
Creating and sending electronic or printed greetings
Online "safe deposit box" storage for important files
Document sharing and collaboration

MSMSGS
http://www.liutilities.com/products/wintaskspro/processlibrary/msmsgs/
Process File: msmsgs or msmsgs.exe
Process Name: MSN Messenger Traybar Process
Description: Tray Bar Icon for MSN Messenger which is an Online Chat and Instant
Messaging Client.
Company: Microsoft Corp.
System Process: No
Security Risk (Virus/Trojan/Worm/Adware/Spyware): No

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix B

/* Windows NT/2000/XP printer spool finder
Created by modifying the Graphic file Finder released
by Guidance Software

*/

class MainClass {
double Total;
BookmarkFolderClass Folder;
SearchClass Search;
String Extension,

Path;
FileClass Index;
uint I;
int CHECKUC,

CHECKALL,
CHECKEXT,
CHECKPAGE,
ToSearch;

MainClass() {
Total = 0;
I = 0;
CHECKEXT = 0;
CHECKPAGE = 1;
CHECKUC = 2;
CHECKALL = 3;

Search.Add("\\x01\\x00\\x00\\x00(\\x58[\\x6E\\x00])|(\\x18\\x17)|(\\xD8[\\x10\\x17])|(\\x5c\
\x01)\\x00\\x00", FileClass::GREP);

Extension = "spl";
Path = User.GetExportFolder();

}

void Write(EntryClass &entry, long startpos, String name){
Folder.AddBookmark(entry, startpos, 6, name+ ": " + entry.LongName(),

BookmarkClass::SHOWPICTURE, BookmarkClass::PICTURE);
I++;

}

void CheckEntry(EntryClass &entry) {
int result;
uint length;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

ulong curPos = 0,
lastPos = 0,
startPos;

bool hit = false;
FileClass file;
if (file.Open(entry, FileClass::SLACK)) {
do {

User.StatusMessage("Found " + I + " possible spool files");

if ((result = file.Find(Search, file.GetSize(), length)) >= 0) {
startPos = file.GetPos();
hit = true;
Write(entry, startPos, "spool");
file.Seek(startPos+6);

} else
hit = false;

if(!hit)
User.StatusInc(file.GetSize() - lastPos);

else
User.StatusInc(file.GetPos() - lastPos);

lastPos = file.GetPos();
} while (result >= 0 && (file.GetPos() < file.GetSize()));

}
}

void Recurse(EntryClass &entry) {
if ((ToSearch == CHECKALL) && !entry.IsFolder()) {

CheckEntry(entry);
} else {

if ((ToSearch == CHECKEXT) && !Extension.Compare(entry.Extension(), 0))
CheckEntry(entry);

if ((ToSearch == CHECKUC) && entry.IsUnallocated())
CheckEntry(entry);

if ((ToSearch == CHECKPAGE) && entry.LongName().Compare("PageFile.sys", 0))
CheckEntry(entry);

}
for (EntryClass e = entry.FirstChild(); e; e++)

Recurse(e);
}

void Count(EntryClass &entry) {
if (ToSearch == CHECKALL && !entry.IsFolder())
Total += entry.LogicalSize();

else if ((ToSearch == CHECKEXT) && !Extension.Compare(entry.Extension(), 0))
Total += entry.LogicalSize();

else if ((ToSearch == CHECKUC) && entry.IsUnallocated())
Total += entry.LogicalSize();

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

else if ((ToSearch == CHECKPAGE) && entry.LongName().Compare("PageFile.sys",
0))

Total += entry.LogicalSize();
for (EntryClass e = entry.FirstChild(); e; e++)

Count(e);
}

void Main(EntryClass case) {
String BookmarkFolderName = "Recovered Spool Files",

BookmarkFolderComment = "Files recovered through EnScript";

WindowClass dialog(MainWindow,"EnCase Printer Spool file Finder");
WindowClass page1 (dialog, "Input Parameters");

page1.AddRadioButtons(10, 20, 220, 0, 0, ToSearch, "Files to search", "Search files
with extension:\tPageFile.sys\tSearch Unallocated Clusters\tSearch all files");

page1.AddStringEdit (145, 30, 50, 14, WindowClass::AUTOHSCROLL, Extension,
10, 0);

page1.AddGroupBox (10, 130, 220, 75, 0, "Output Options");
page1.AddStaticText(20, 140, 80, 14, 0, "Bookmark Folder Name");
page1.AddStringEdit(20, 150, 200, 14, WindowClass::AUTOHSCROLL,

BookmarkFolderName, 100, WindowClass::REQUIRED);
page1.AddStaticText(20, 170, 100, 14, 0, "Bookmark Folder Comment");
page1.AddStringEdit(20, 180, 200, 14,

WindowClass::AUTOHSCROLL,BookmarkFolderComment, 256, 0);

if (dialog.Execute() == UserClass::OK){
Total = 0;
if ((ToSearch == CHECKEXT) && Extension == "") {
User.Message(UserClass::MBOK|UserClass::ICONEXCLAMATION,"Error","Must

specify an extension if you wish to search for one");
return;

}
if (case) {
Folder = User.AddBookmarkFolder(BookmarkFolderName,

BookmarkFolderComment);
Count(case);
User.StatusRange("Finding files", Total);
Recurse(case);

} else
User.Message(UserClass::MBOK | UserClass::ICONSTOP, "No open case", "This

script requires an open case!\nPlease open a case, add devices and run the script
again.");

User.Exit();
}

}
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix C

/* Graphics File Finder (v4)
(c) 2003, Guidance Software, Inc.
For use with EnCase v.4.16
Last Modified: January 7, 2004

* v4.16 required, as well as attendant Include folder
* Is able to identify footers of AOL ART, GIF, and JPEG files

*/

include "GSI_LogLib"

class FoundGraphicClass {
String FormatName;
long Offset;
uint Length;

}

class MainClass {
double Total;
BookmarkFolderClass Folder;
SearchClass Search;
EntryClass CurEntry;
NameListClass Types,

ChosenTypes,
ChosenFooters,
Headers,
Footers;

String Extension,
Path;

uint I,
NumHeaders,
Section,
StackThreshold;

long FurthestPos;
int CHECKUC,

CHECKALL,
CHECKEXT,
CHECKPAGE,
CHECKSEL,
ToSearch,
SearchCount;

bool UseFooters;
LogClass Log;

MainClass() {
Log.Name = "GFF";
Log.CurPriority = LogClass::INFO;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Total = 0;
I = 0;
NumHeaders = 0;
StackThreshold = 200;
CHECKEXT = 0;
CHECKPAGE = 1;
CHECKUC = 2;
CHECKSEL = 3;
CHECKALL = 4;
SearchCount = 30015488;

Add("AOL ART", "\\x4A\\x47\\x04\\x0E\\x00\\x00\\x00\\x00", "\\xCF\\xC7\\xCB");
Add("BMP", "BM....\\x00\\x00\\x00\\x00....\\x28", "");
Add("EMF",

"\\x01\\x00\\x00\\x00(\\x58[\\x6E\\x00])|(\\x18\\x17)|(\\xD8\\x10)|(\\x5c\\x01)\\x00\\x00",
"");

Add("GIF", "GIF8[79]", "\\x00\\x3B");
Add("JPG", "\\xFF\\xD8\\xFF[\\xFE\\xE0\\xDB]..(EXIF)|(JF(IF)|(XX))", "\\xFF\\xD9");
Add("Photoshop", "\\x38\\x42\\x50\\x53\\x00\\x01\\x00\\x00\\x00\\x00\\x00\\x00", "");
Add("TIFF - Big Endian", "\\x4D\\x4D\\x00\\x2A", "");
Add("TIFF - Little Endian", "\\x49\\x49\\x2a\\x00", "");

Extension = "doc";
Path = User.GetExportFolder();

}

void Add(const String &name, const String &header, const String &footer) {
Types.Add(name);
Headers.Add(header);
Footers.Add(footer);

}

String GetGrepDescriptions() {
String ret = "";
NodeClass grep = Headers.FirstChild();
for (NodeClass type = Types.FirstChild(); type; type++) {

ret += type.Name() + ":\t" + grep.Name() + "\n";
++grep;

}
return ret;

}

void InitSearchClass() {
if (Types.Count() == Headers.Count() && Types.Count() == Footers.Count()) {

NodeClass type, header, footer;
for (uint i = 0; i < Types.Count(); ++i) {

type = Types.GetChild(i);
header = Headers.GetChild(i);

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

footer = Footers.GetChild(i);
if (type.IsSelected()) {

++NumHeaders;
Log.Info("Script will look for " + type.Name() + " files");
Search.Add(header.Name(), FileClass::GREP);
ChosenTypes.Add(type.Name());

}
}
if (0 < NumHeaders) {
for (uint i = 0; i < Types.Count(); ++i) {

type = Types.GetChild(i);
footer = Footers.GetChild(i);
if (type.IsSelected()) {
if (UseFooters && "" != footer.Name()) {

ChosenFooters.Add(footer.Name());
Search.Add(footer.Name(), FileClass::GREP);

}
else {

ChosenFooters.Add("");
}

}
}

}
else {

User.Message(UserClass::MBOK|UserClass::ICONEXCLAMATION,"Error","You
must select at least one graphics format!");

User.Exit();
}
for (type = Search.FirstChild(); type; type++) {

Log.Debug("Search term: " + type.Name());
}

}
else {

User.Message(0, "Error", "Number of Headers does not match number of available
graphic types!");

User.Exit();
}

}

void Write(EntryClass &entry, const FoundGraphicClass &hit) {
++I;
if (hit.Offset + hit.Length > FurthestPos)
Log.Debug("New Furthest Pos: " + (hit.Offset + hit.Length));

FurthestPos = Max(FurthestPos, hit.Offset + hit.Length);
Log.Debug("Hit: " + entry.Name() + ", " + hit.FormatName + ", " + hit.Offset + ", " +

hit.Length + ", FurthestPos = " + FurthestPos);
String comment = hit.FormatName + ":\t" + entry.Name() + "\nFile offset:\t" +

hit.Offset + "\nLength:\t" + hit.Length + "\n";

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Folder.AddBookmark(entry, hit.Offset, hit.Length, comment,
BookmarkClass::SHOWPICTURE, BookmarkClass::PICTURE);

}

long Min(long x, long y) {
if (x < y)

return x;
else

return y;
}

long Max(long x, long y) {
if (x > y)

return x;
else

return y;
}

long GetSearchCount(FileClass &file) {
if (file.GetPos() / SearchCount == Section) {

return -1;
}
else {

++Section;
return SearchCount;

}
}

bool FindGraphic(FileClass &file, FoundGraphicClass &hit, int lastResult, uint
stackLevel) {

int result;
long count = GetSearchCount(file),

startPos = file.GetPos();
ScopedLogClass scope(Log, "FindGraphic (" + lastResult + ")");
Log.Debug("Searching from " + startPos + " for " + count + " bytes");
if ((result = file.Find(Search, count, hit.Length)) >= 0) {
hit.Offset = file.GetPos();
file.Skip(hit.Length);
Log.Debug("Result = " + result + ", Pos = " + hit.Offset);
if (result < NumHeaders) {
hit.FormatName = ChosenTypes.GetChild(result).Name();
NodeClass footer = ChosenFooters.GetChild(result);
if ("" != footer.Name() && stackLevel < StackThreshold) {
do {

FoundGraphicClass nexthit;
bool success = FindGraphic(file, nexthit, result, stackLevel + 1);
if (success) {

if (hit.FormatName == nexthit.FormatName) {

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Write(CurEntry, nexthit);
success = false;

}
else if ("" == nexthit.FormatName)
hit.Length = nexthit.Offset + nexthit.Length - hit.Offset;

}
file.Seek(Max(FurthestPos, nexthit.Offset + nexthit.Length));

} while (!success && FileClass::EOF != file.Peek());
}
return true;

}
else {

hit.FormatName = "";
return (-1 < lastResult && lastResult < NumHeaders &&

Search.GetChild(result).Name() == ChosenFooters.GetChild(lastResult).Name());
}

}
else {

long max = Min(file.GetSize(), SearchCount * (Section + 1));
hit.Length = max - startPos;
hit.Offset = startPos;
hit.FormatName = "";
return false;

}
}

void SearchFile(FileClass &file) {
FoundGraphicClass hit;
long startPos;

file.Seek(0);
FurthestPos = 0;

while (FileClass::EOF != file.Peek()) {
startPos = file.GetPos();
if (FindGraphic(file, hit, -1, 0)) {
Write(CurEntry, hit);

}
User.StatusMessage("Found " + I + " pictures");
file.Seek(Max(FurthestPos, hit.Offset + hit.Length));
User.StatusInc(file.GetPos() - startPos);

}
}

void CheckEntry(EntryClass &entry) {
FileClass file;
if (file.Open(entry, FileClass::SLACK)) {
Log.Debug("Examining entry: " + entry.FullPath());

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

CurEntry = entry;
Section = -1;
SearchFile(file);

}
}

bool Filter(EntryClass &entry) {
if (!entry.IsFolder()) {

if (CHECKALL == ToSearch)
return true;

else if (CHECKEXT == ToSearch && Extension == entry.Extension())
return true;

else if (CHECKUC == ToSearch && entry.IsUnallocated())
return true;

else if (CHECKPAGE == ToSearch && (0 ==
"PageFile.sys".Compare(entry.Name(), false) || 0 ==
"win386.swp".Compare(entry.Name(), false)))

return true;
else if (CHECKSEL == ToSearch && entry.IsSelected())

return true;
}
return false;

}

void Recurse(EntryClass &entry) {
if (Filter(entry)) {

CheckEntry(entry);
}
for (EntryClass e = entry.FirstChild(); e; e++)

Recurse(e);
}

void Count(EntryClass &entry) {
if (Filter(entry)) {
Total += entry.PhysicalSize();

}
for (EntryClass e = entry.FirstChild(); e; e++)

Count(e);
}

void Main(EntryClass case) {
User.ClearConsole();

String BookmarkFolderName = "Recovered Graphics Files",
BookmarkFolderComment = "Files recovered";

WindowClass dialog(MainWindow,"EnCase Graphic file Finder");
WindowClass page1 (dialog, "Input Parameters");

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

WindowClass page2 (dialog, " Help ");

page1.AddListBox (10, 10, 220, 40, 0, "Graphic Types", Types,
WindowClass::LISTCHECK);

ToSearch = 4;
page1.AddRadioButtons(10, 70, 220, 0, 0, ToSearch, "Files to search", "Files with

extension:\tPageFile.sys\tUnallocated Clusters\tSelected files only\tAll files");
page1.AddStringEdit (125, 80, 50, 14, WindowClass::AUTOHSCROLL, Extension,

10, 0);
page1.AddCheckBox (10, 170, 0, 0, 0, "Use footer analysis (ART, GIF, JPEG)",

UseFooters);
page1.AddGroupBox (10, 185, 220, 75, 0, "Output Options");
page1.AddStaticText(20, 195, 80, 14, 0, "Bookmark Folder Name");
page1.AddStringEdit(20, 205, 200, 14, WindowClass::AUTOHSCROLL,

BookmarkFolderName, 100, WindowClass::REQUIRED);
page1.AddStaticText(20, 225, 100, 14, 0, "Bookmark Folder Comment");
page1.AddStringEdit(20, 235, 200, 14,

WindowClass::AUTOHSCROLL,BookmarkFolderComment, 256, 0);

page2.AddGroupBox (10, 10, 220, 30, 0, "Graphics File Finder EnScript");
page2.AddStaticText(20, 20, 0, 0, 0, "Locate various graphics files\n and

bookmark them.");
page2.AddGroupBox (10, 50, 220, 50, 0, "Files to search");
page2.AddStaticText(20, 60, 0, 0, 0, "Extension:\tonly searches files with the

ext.\n"
"PageFile.sys:\tonly search the pagefile.sys.\n"
"Unallocated:\tonly searches unallocated clusters\n"
"All:\t\tsearches every file.");

page2.AddGroupBox (10, 110, 360, 85, 0, "Graphics to search - (Headers)");
page2.AddStaticText(20, 120, 0, 0, 0, GetGrepDescriptions());
page2.AddStaticText(10, 200, 0, 0, 0,"Please email any bugs or requests

concerning this EnScript\nto EnScript@encase.com at Guidance Software, Inc.");

if (dialog.Execute() == UserClass::OK){
Total = 0;
if ((ToSearch == CHECKEXT) && Extension == "") {
User.Message(UserClass::MBOK|UserClass::ICONEXCLAMATION,"Error","Must

specify an extension if you wish to search for one");
return;

}
if (case) {
DateClass now;
now.Now();
uint start = now.GetUnix();
LogRecordClass runLog("Run Log");
Log.RunLog = runLog;
Log.OutputToRunLog = true;
Log.Info("Script started");

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

String config = "Script will look for graphics in ";
if (CHECKEXT == ToSearch)

config += "files with " + Extension + " as their extension";
else if (CHECKUC == ToSearch)

config += "unallocated space";
else if (CHECKPAGE == ToSearch)

config += "swap space";
else if (CHECKSEL == ToSearch)

config += "selected files only";
else if (CHECKALL == ToSearch)

config += "all files";
Log.Info(config);
InitSearchClass();
Folder = User.AddBookmarkFolder(BookmarkFolderName,

BookmarkFolderComment);
Count(case);
Log.Info("Script will search " + Total + " bytes");
User.StatusRange("Finding images", Total);
Recurse(case);
Log.Info("Script found " + I + " graphics");
now.Now();
Log.Info("Script completed in " + (now.GetUnix() - start) + " seconds");
Folder.AddDatamark("Run Log", runLog);

}
else {

User.Message(UserClass::MBOK | UserClass::ICONSTOP, "No open case", "This
script requires an open case!\nPlease open a case, add devices and run the script
again.");

}
}

}
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Appendix D

Attaining 100% certainty in any aspect of computer forensics is generally believed to be
a practical impossibility. There is always an alternative explanation for any scenario, no
matter how unlikely it may be. As discussed briefly in the above section titled “Deleted
Files” therecovery of files on an NTFS volume requires reference to deleted entries in
the Master File Table. The MFT has to be assumed reliable, but as with most things in
life it is not foolproof. Here’s a brief experiment I conducted:

I first created a directory called “parent” off of the root directory and added 5 random
files. I then previewed the drive in EnCase and saw the correct listing of directories and
files, with an indication that “parent” had MFT record # 9743. I next deleted the 5 files
from parent and then previewed the drive again. “Parent” was shown to contain 5 files
each marked as deleted. I then deleted “parent” and again previewed the drive.
“Parent” was now also marked as deleted and still contained 5 deleted files. I sorted the
list by MFT# and filtered so that only the deleted files would show. “Parent” was the first
deleted file (lowest MFT #) so its record should get used first by any new files. Had
“parent” been at the end of the list of deleted files this would have been a lot more work.
I copied a new file to the volume and once more previewed the drive in EnCase. This
time “parent” was gone, and the 5 files were now listed under "Lost Files". My newly
copied file had been given MFT# 9743. I deleted the new file, and created a new
directory called “fake_parent” off of the root directory. I previewed the drive one last
time and observed that “fake_parent” now had MFT# 9743 and was said to contain my
original 5 files, each still marked as deleted!

As stated in the “Deleted Files” section, since all 5 files listed MFT record 9743 as that
of their parent, and 9743 contained a valid directory, EnCase had to assume that they
must have all been deleted from “fake_parent.”

