
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst (GCFA)
Practical Assignment

Version 1.5

Part 1 – Forensic Data Report re: Ballard Industries

Part 2 - Option 2 - The Forensic Validity of Netcat 1.1

Submitted by: Michael Worman, GCIA
Submission Date: October 26th, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Summary

This practical assignment fulfills the initial requirement for GIAC Forensic Analyst
(GCFA) Certification. It is a two-part report examining several contemporary
issues in the field of computer forensics. In the first part, a theoretical case of
alleged corporate espionage is examined for potential forensic evidence. The
entire forensic examination process is outlined including methodology, results,
and documented conclusions.

The second part is a study of the forensic validity of a software tool. A potentially
valuable forensic network utility, Netcat, is examined to determine whether its
results are both verifiable and repeatable, and how the tool might aid in an
investigation and/or criminal prosecution.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 1 - Analyze an Unknown Image

Forensic Data Report

Prepared for:
Mr. David Keen

Security Administrator
Ballard Industries

Summary

This report will detail the forensic examination of a floppy disk provided to our lab
by David Keen, Security Administrator for Ballard Industries. The floppy disk was
confiscated from Robert John Leszczynski, Jr., a Ballard employee, at 4:45 MST
on April 26th, 2004. There is reason to believe that proprietary corporate
information is being leaked from Ballard, and Mr. Leszczynski’s actions are very
suspicious and are in violation of Ballard’s corporate security policies. The
original floppy disk was imaged by the Ballard Security Administrator and a copy
of the evidentiary image was provided for examination. The goal is to determine
the nature of the data on the floppy disk and whether or not Mr. Leszczynski is
involved in the suspected corporate espionage.

Evidence

There is only one piece of known physical evidence in this case:

One (1) 1.4M Floppy Disk

Chain of Custody Information
Tag# fl-260404-RJL1
3.5 inch TDK floppy disk
MD5: d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img
fl-260404-RJL1.img.gz

After accepting the floppy disk, the Chain of Custody form was signed and dated.
(Note: For the remainder of the practical this file is referred to by the name
provided by SANS, v1_5.img). This image was burned to a CD-R for further
analysis. The floppy disk itself was stored in a secure evidence locker along with
its Chain of Custody form.

Examination Environment

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

All examinations on the evidentiary image were performed on a new installation
of Windows 2000 Service Pack 4, installed on a laptop computer dedicated for
forensic analysis. A read-only CD containing a basic forensic toolkit (the SANS
Track 8 CD Response kit, to be exact) was mounted for access to software
necessary for analysis. The examination system itself was not connected to any
computer network. The purpose of this was to ensure that any malicious code
contained on the image was quarantined from any production networks, as well
as to be certain that the forensic analysis system itself is free from compromise.
This helps to preserve the confidentiality of our investigation as well as the
integrity of all data involved.

Some analysis steps (such as running Autopsy to search for deleted files) were
performed using Helix 1.5, a CD-bootable forensics and incident response-
oriented Linux distribution. It is available for free download from E-fense at the
following website:

http://www.e-fense.com/helix/

A second, Internet-connected PC was used for online research such as browsing
the Cornell Law Library’s United States Code Repository and for following
investigative leads.

Examination Details

The first step in the analysis process was to verify that the evidentiary image
provided by Ballard’s security personnel was identical to the evidence originally
seized, regardless of filenames. Ballard provided an MD5 hash value for the
original floppy image, and by re-processing the image we can compare the two
for any inconsistencies. A single-bit difference between the image originally
seized and the image provided will generate completely different MD5 values.
An examination of the file’s MD5 hash produced the following output:

C:\ >md5 v1_5.img
d7641eb4da871d980adbe4d371eda2ad *v1_5.img

This value was compared to the MD5 hash provided by Mr. Keen:

 MD5: d7641eb4da871d980adbe4d371eda2ad

Since the MD5 hash of the evidence image is identical to the one recorded on
the Chain of Custody documentation provided by Mr. Keen, it can be assumed
that the integrity of the image is intact. It has not been altered or corrupted since
it was originally obtained.

The first step in analysis was to restore the data to its original form (that of a
FAT12 filesystem) in order to view what the original data on the disk would have

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

looked like to a casual observer. A useful utility for this is rawrite.exe, which is
commonly used for copying images to floppy media. The original image
(v1_5.img) was copied with rawrite.exe to a blank 1.44M floppy disk. It was
then mounted in a portable USB floppy drive and its contents were listed in a
Windows 2000 command shell. The following file information was displayed:

04/23/2004 02:11p 42,496 Information_Sensitivity_Policy.doc
04/22/2004 04:31p 32,256 Internal_Lab_Security_Policy1.doc
04/22/2004 04:31p 33,423 Internal_Lab_Security_Policy.doc
04/23/2004 11:55a 307,935 Password_Policy.doc
04/23/2004 11:54a 215,895 Remote_Access_Policy.doc
04/23/2004 02:10p 22,528 Acceptable_Encryption_Policy.doc

 6 File(s) 654,533 bytes
 0 Dir(s) 798,208 bytes free

At first glance, it appears the floppy contains Microsoft Word documents related
to internal information security practices at Ballard. This is immediately
suspicious, as these types of documents should not be leaving Ballard on any
media. It is also very odd that the suspect, Mr. Leszczynski, would be leaving
the Research and Development areas of Ballard with documents that are not
clearly related to that department. Thus, the documents warrant further
inspection.

In order to view their “obvious” content, each of the six documents on the floppy
disk was opened and examined in Microsoft Word 2000. A check of the local
anti-virus logs showed no viruses or detectable malware. It was noted that each
file was an information security policy document between one and five pages in
length. The size of the files immediately seemed peculiar. The Word documents
themselves contained no images and none of them should be more than a few
kilobytes, based on their text-only content. Opening each Word document in the
WinHex editor revealed that each file contained a large amount of binary data
(possibly encrypted) in addition to the expected content for a Word file. This
helped to explain why the documents were several times the expected size.

It seemed clear at this point that the data and the floppy disk were not quite what
they seemed and a deeper analysis of the entire disk image, including deleted
files, slack space, and unused portions of the floppy was warranted.
The strings.exe utility is useful for extracting ASCII and/or Unicode text from a
binary image. Returning to the image file itself, the ASCII strings within it were
extracted into an output file for analysis, using the following command:

C:\strings c:\v1_5.img > v1_5.img.strings

After examining the string fragments in this file, it became clear that there was a
large amount of additional data on the floppy that was not part of the Word
documents, possibly in hidden or deleted files or even within the Word
documents themselves. Due to the recent suspected corporate espionage, a
search for steganographic (i.e. data-hiding) tools is worthwhile.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

After analyzing the initial pages of strings output, several lines seemed worth
noting:

*\AC:\My Documents\VB Programs\Camouflage\Shell\CamouflageShell.vbp

This string indicated that some type of Visual Basic program was
previously stored on the disk. Since there was no Visual Basic data on
the floppy disk, this string was probably part of a deleted file. However the
very name of the Visual Basic Project (*.vbp) file is suspicious, so there
may indeed be some sort of data-hiding tool present.

Camouflage.exe /C
Camouflage.exe /U

This seemed to be the command line syntax used by a Visual Basic
program called “Camouflage”. This clue warranted further investigation on
the Internet to see if it is a known tool.

http://www.camouflage.freeserve.co.uk
CompanyName
Twisted Pear Productions
FileDescription
Keeps files containing sensitive information safe from prying eyes.
LegalCopyright
Copyright (c) 2000-2001 by Twisted Pear Productions, All rights
reserved worldwide.

These strings seemed to indicate the group responsible for developing the
Camouflage utility, along with their website and a brief description of the
program. It appears that Camouflage is indeed some type of
steganographic (i.e. data hiding) application designed to conceal data
from casual observation. Now that the tool had been identified, we can
give Ballard security personnel something to look for on the Research and
Development systems.

CamShell.dll
@RJL FAT12

These lines appeared very important: the name of a specific file (a
dynamic link library) associated with the Camouflage software distribution,
as well as the Volume Label of the FAT12 partition associating the disk
with Mr. Leszczynski, “RJL”. Knowing the name of a critical Camouflage
library will allow us to search for signs of the program’s installation/use
amongst the IT systems in the Ballard enterprise. More importantly, the
Volume Label links the floppy disk directly to the suspect.

The next step was to examine the image in Autopsy 2.0 to search for deleted or
hidden data. The forensic laptop was booted with a CD-R copy of Helix 1.5, a
Linux distribution specifically designed for forensics and incident response. The
original evidentiary image was mounted read-only in Autopsy 2.0. A quick

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

analysis of the floppy image revealed that there were two recently deleted files
on the disk.

The first file, index.html, was a 727-byte HTML file and appeared to be part of a
Ballard web page associated with an embedded Shockwave Flash Object movie
file named ballard.swf. The purpose and hosted location of this index.html are
unknown but can be provided to Ballard for further details. Although it looks
inconspicuous, for all we know this file could be considered proprietary
information by Ballard.

The following excerpt from the Autopsy 2.0 ASCII Report illustrates the contents
of the file:

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-
8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">

<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash
/swflash.cab#version=6,0,0,0"
 WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
 <PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality
VALUE=high> <PARAM NAME=bgcolor VALUE=#CCCCCC> <EMBED
src="ballard.swf" quality=high bgcolor=#CCCCCC WIDTH="800"
HEIGHT="600" NAME="ballard" ALIGN=""
 TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED
>
</OBJECT>
</center>
</BODY>
</HTML>

The second file was far more interesting. The 36864-byte file was named
camshell.dll, indicating that this deleted file was the source of the Camouflage-
related strings found within the ASCII strings of the image. Referring back to the
strings output obtained earlier, it is becoming more likely that the Camouflage
utility had not only been used on this floppy, but had also been deleted. The
following details were noted on the Autopsy ASCII Report:

 Autopsy ASCII Report

 GENERAL INFORMATION

File: a:\/CamShell.dll (_AMSHELL.DLL)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

MD5 of recovered file: 6462fb3acca0301e52fc4ffa4ea5eff8

Image: /var/local/evidence/Practical/floppy/images/v1_5.img

To compare the deleted file to a stock installation of Camouflage, the research
system was used to install and test the software. The files included in the
Camouflage 1.2.1 package were also examined.

The test installation of Camouflage 1.2.1 included a 36864-byte camshell.dll file
that appeared to have the same ASCII text strings as the deleted file, line for line.
It was noted, however, that the MD5 hashes of the files were not the same.
Running md5.exe on the stock version of camshell.dll revealed the following:

C:\Program Files\Camouflage>md5 camshell.dll
4e986ab0909d2946bed868b5f896906f *camshell.dll

It was noted, however, that the first 720 bytes or so of the deleted camshell.dll
file were identical to the data in the deleted index.html file. This seemed to
indicate that the original index.html file was copied into the camshell.dll before
both files were deleted, perhaps in an attempt to overwrite any evidence of the
Camouflage program itself. This would explain the MD5 differences, however
due to the fact that the suspect chose to utilize a very small file to cover his
tracks, a large portion of the deleted camshell.dll file data remained intact in slack
space, and only the first 700 bytes or so were overwritten. It was the surviving
data (bytes 728 to 36864 of the deleted file) that brought about our conclusions.

Conclusions and Recommendations

The following findings suggest that the suspect, Mr. Leszczynski, is indeed
involved in the recently suspected corporate information leaks:

• The floppy disk contains evidence of a steganographic tool (Camouflage
1.2.1 or older).

• The FAT12 Volume Label on the floppy is “RJL”, the suspect’s initials.

This serves to associate the floppy with the suspect. In other words, it
would be difficult for the suspect to claim the disk was not his.

• There is substantial evidence that the Word documents on the floppy disk

have been tampered with, and they are many times larger in size than
they should be given their content.

• There is evidence of an attempt to destroy (overwrite) the steganograhic

tools (Camouflage 1.2.1) used by the suspect.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• The “Camouflaged” files on the floppy disk are password protected, and
cannot be recovered except with a password that Mr. Leszczynski should
be able to provide.

System Administrators at Ballard will be able to identify instances of Camouflage
by searching for the files camshell.dll, camouflage.exe, or any other file that is
part of the standard Camouflage software package. Any instance of the text
string “Camouflage” in the Windows Registry will also indicate the tool’s
installation. System Administrators should also check for recently deleted files
that appear similar to the Camouflage files (36864-byte files, for instance).
Based on the apparent activities of the suspect, a search for additional
suspicious (e.g. exceptionally large) Word documents might also prove valuable.
Finally, Word documents matching the filenames of the those on the floppy
should be searched for across the enterprise, as the suspect may have left
additional evidence on the systems or network drives where they were originally
located.

Image Details

The evidentiary file image was that of a floppy disk (FAT12) volume that
contained the following files and timestamps:

04/23/2004 02:10p 22,528 Acceptable_Encryption_Policy.doc
04/23/2004 02:11p 42,496 Information_Sensitivity_Policy.doc
04/22/2004 04:31p 33,423 Internal_Lab_Security_Policy.doc
04/22/2004 04:31p 32,256 Internal_Lab_Security_Policy1.doc
04/23/2004 11:55a 307,935 Password_Policy.doc
04/23/2004 11:54a 215,895 Remote_Access_Policy.doc

Each file was processed using md5.exe, producing the following hashes:

f785ba1d99888e68f45dabeddb0b4541 *Acceptable_Encryption_Policy.doc
99c5dec518b142bd945e8d7d2fad2004 *Information_Sensitivity_Policy.doc
b9387272b11aea86b60a487fbdc1b336 *Internal_Lab_Security_Policy.doc
e0c43ef38884662f5f27d93098e1c607 *Internal_Lab_Security_Policy1.doc
ac34c6177ebdcaf4adc41f0e181be1bc *Password_Policy.doc
5b38d1ac1f94285db2d2246d28fd07e8 *Remote_Access_Policy.doc

There were also two deleted files within the image, uncovered with the Autopsy
Forensic Browser. Selected information from the Autopsy ASCII Report on these
files is included below:

 Index.html

MD5 of recovered file: 17282ea308940c530a86d07215473c79
Size: 727
Written: Fri Apr 23 10:53:56 2004
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:47:36 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 Camshell.dll

 MD5 of recovered file: 6462fb3acca0301e52fc4ffa4ea5eff8
 Size: 36864
 Written: Sat Feb 3 19:44:16 2001

Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:46:18 2004

A full MAC timeline for the image was extracted using Autopsy and is included
with the practical as autopsy.timeline.txt. The MAC timeline illustrates another
peculiarity of the data that would have struck an investigator as odd: The files
have modified timestamps of April 22th to the 23rd, but their creation times are
dated the morning of the 26th. This could be a result of running Camouflage.

Since the Word documents were created or written onto a floppy (FAT12)
partition, there is no owner, user, or group information included in the files. The
only data signifying an individual is the Volume Label on the floppy partition:
@RJL, indicating Robert John Leszczynski as the owner of the disk.

Forensic Details

Based on the ASCII strings found within the deleted camshell.dll file, it appears
that Mr. Leszczynski used Camouflage 1.2.1 by Twisted Pear Productions in an
attempt to sneak some type of corporate data out of the company. Camouflage
is a steganographic program designed to hide selected files inside of any other
type of file. As observed, common side effects of steganography include files of
inordinate size and odd MAC timestamps. The Word documents are clearly
many times their normal size.

Camouflage appears to have been last used at 9:46am on April 26th 2004 to
create the six “camouflaged” Word files contained on the floppy disk. This was
the same day the suspect attempted to move the floppy disk past Research and
Development Security.

In an attempt to further investigate the history and operation of the Camouflage
program, an attempt was made to access the project homepage that was
previously discovered in the strings output of the image:

http://www.camouflage.freeserve.co.uk
Twisted Pear Productions

The website did not appear to be maintained any longer, but a Google search for
keywords “Camouflage” and “Twisted Pear” uncovered several existing mirrors of
the original Twisted Pear Productions website. I found a link to the most recent
version (1.2.1) at the following location:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

http://camouflage.unfiction.com/

Downloading and testing this tool only took a few minutes, as the operation is
very straightforward. Once Camouflage is installed, a right-click on any file will
display “Camouflage” and “Uncamouflage” in the context menu. Selecting
“Camouflage” brings up a dialog box for the user. The user simply verifies the
file to be hidden by clicking “Next”, selects a “Camouflage Using” file, and finally
selects a “Create this File” filename. It also allows the user to choose whether or
not to set the file to read-only. The last step is an optional password that must be
used to encode or encrypt the data (details on Camouflage’s algorithms could not
be found online). The tool’s functionality was examined by Camouflaging and
Un-camouflaging several test files, all of which exhibited the same peculiarities
detected in the evidence files. The addition of unreadable binary data appended
to the “disguising” files was immediately noted.

The Word documents on the evidentiary image all appeared to have been
created with some version of Camouflage, most likely the latest version 1.2.1
given that the size of the Camouflage library is identical (36864 bytes).

Several attempts were made to Un-camouflage the Word documents on the disk,
but it appeared that a password had been used to protect the data. The following
passwords were tested with no success:

A blank password (Camouflage requests a password whether one was

used or not)
“Robert”
“John”
“RJL”
“Leszczynski”
“Rift”
“Ballard”
“password”
“secret”

Although the password cannot be easily guessed, we can continue to attempt
different passwords. Camouflage contains no lockout or anti-tampering features
so Ballard can attempt as many passwords as they wish. A quick search through
several security websites located no apparent security weaknesses for
Camouflage, so there appears to be no way of bypassing whatever password
has been set.

It would also be possible, given sufficient time and resources, to attempt to brute
force the encryption itself if the Camouflage encryption algorithm could be
obtained. This will require additional research into the program and may even
require contacting the developers or analyzing the program in an debugging
environment.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Program Identification

The original website for Camouflage is no longer active, the authors do not
receive email (per their Contact Us page) and no instances of Camouflage
source code could be found via web searches. Binary downloads of Camouflage
1.2.1 are available on existing mirrors of the Twisted Pear website, so this
version was installed on a test system running Windows 2000.

Camouflage 1.2.1 installed four files into C:\Program Files\Camouflage:

Directory of C:\Program Files\Camouflage

09/17/2004 08:59p <DIR> .
09/17/2004 08:59p <DIR> ..
03/29/2001 10:13p 217,088 Camouflage.exe
02/03/2001 07:44p 36,864 CamShell.dll
03/28/2001 07:50p 11,649 Readme.txt
09/17/2004 08:59p 19,758 Uninst.isu
 4 File(s) 285,359 bytes
 2 Dir(s) 30,756,566,016 bytes free

It was noted that the Camshell.dll file installed by Camouflage 1.2.1 was the
same size as the deleted camshell.dll found on the floppy disk, 36864 bytes.

As previously noted, the MD5 hashes of the deleted camshell.dll file on the
floppy and a stock camshell.dll were not the same, and the deleted file was
reported by Autopsy 2.0 as being an HTML document:

Stock 1.2.1 Library
C:\Program Files\Camouflage>md5 CamShell.dll
4e986ab0909d2946bed868b5f896906f *CamShell.dll

Evidence File (from Autopsy ASCII Report)
File: a:\/CamShell.dll (_AMSHELL.DLL)
MD5 of recovered file: 6462fb3acca0301e52fc4ffa4ea5eff8
File Type: HTML document text

The reason for this is clarified when examining the first 727 bytes of the deleted
file camshell.dll file:

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-
8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">

<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash
/swflash.cab#version=6,0,0,0"
 WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
 <PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality
VALUE=high> <PARAM NAME=bgcolor VALUE=#CCCCCC> <EMBED
src="ballard.swf" quality=high bgcolor=#CCCCCC WIDTH="800"
HEIGHT="600" NAME="ballard" ALIGN=""
 TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED
>
</OBJECT>
</center>
</BODY>
</HTML>

The first 727 bytes are identical to the deleted file index.html. Someone may
have intentionally copied index.html into camshell.dll in an attempt to overwrite
and destroy camshell.dll completely. Doing so would, in effect:

• Alter the file header of camshell.dll to give it the appearance of a
deleted HTML file instead of a Dynamic Link Library (DLL)

• Change the MD5 hash of the deleted camshell.dll file to complicate

any attempts to link it to parts of the Camouflage program

However since the original camshell.dll file occupied 36,864 bytes, a large
amount of slack space remained intact even after index.html was copied over it.
This was the “silver bullet” evidentiary data that remained intact, linking the
otherwise inconspicuous floppy disk to the Twisted Pear Camouflage utility.

Although MD5 hashes cannot be used to verify that the file deleted from the
floppy is, in fact, identical to the Camouflage DLL, there was a way to prove that
the files are nearly identical, or at least identical enough to convince Ballard or a
jury. It was possible to perform an MD5 hash on only the last 36,100 bytes of
both files! If we can strip out the overwritten portion of the deleted camshell.dll
file and compare it to the stock version, we should be able to produce a very
high probability of similarity.

By using the dd.exe utility to copy part of the stock Camouflage library, we set
the input block size to 1 byte and skip the first 730 bytes (the ‘damaged
evidence’):

Z:\tools\response_kit\win2k_xp\dd ibs=1 skip=730 if=CamShell.dll
of=c:\test.bin

Copying C:\Program Files\Camouflage\CamShell.dll to
c:\test.bin...

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Output c:\test.bin (0 bytes)
36134+0 records in
8+1 records out

The file test.bin now contains bytes 731 to 36864 of the deleted camshell.dll
file. Running MD5 on this new, 36,134-byte file obtains the following output:

C:\Program Files\Camouflage>md5 c:\test.bin
\4247ae5544e572e4aec0d1027a347140 *c:\\test.bin

Autopsy 2.0 was used to extract the deleted camshell.dll file from the floppy
image, which was renamed camshell-restored.dll. Running the same process
as above to extract bytes 731 to 36864 reveals the following:

C:\tools\response_kit\win2k_xp>dd if=c:\CamShell-restored.dll
ibs=1 skip=730 of=c:\test-restored.bin

Copying c:\CamShell-restored.dll to c:\test-restored.bin...

Output c:\test-restored.bin (0 bytes)
36134+0 records in
8+1 records out

C:\tools\response_kit\win2k_xp>md5 c:\test-restored.bin
\4247ae5544e572e4aec0d1027a347140 *c:\\test-restored.bin

As it turned out, the MD5 hashes for these particular sections of each file were
identical. Taking into account a 36,864-byte file size, this means that the files
were at least 98.0% identical, leaving very little doubt as to the nature of the
deleted file. This information (along with the identical file sizes) should be
sufficient to prove to Ballard, law enforcement, or the court that the tool used on
the floppy was indeed Camouflage 1.2.1.

Legal Implications

It can be proven that Camouflage 1.2.1 was used to create the Word documents
at 9:46 AM on April 26th, 2004, and the suspect attempted to remove these
documents from the Ballard premises later that day. It was also clear that
several actions were attempted to eliminate any evidence left behind by the tool
that was used. Further work may be required to determine what data was hidden
inside the Word documents on the floppy, but some additional examinations into
the Ballard R&D environment should turn up additional evidence supporting the
prosecution of the suspect.

Based on the suspect’s alleged activity, it is unlikely that any federal computer
crime laws were broken. The Federal Computer Fraud and Abuse act does not
seem to be applicable to the Ballard case since the computer systems involved
are:

• Not owned or operated by the Federal Government

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

• Not owned or operated by a financial institution
• Not involved in interstate or foreign commerce

Likewise, Federal Wiretap and Snooping laws (USC Title 18, Subsections 2511
and 2701, the Federal Wiretap Act) appear inapplicable.

However, if a deeper investigation into the Word documents on the floppy disk as
well as Ballard IT systems uncovers additional evidence of proprietary data
leaving Ballard in “Camouflaged” files, the suspect may potentially be charged
under several Federal Industrial Espionage statutes.

Although possible, it is unlikely that the suspect would be charged under Title 18,
Subsection 1831 (the Economic Espionage Act) of the United States Code
unless the following assertion was determined:

“Whoever, intending or knowing that the offense will benefit any
foreign government, foreign instrumentality, or foreign agent,
knowingly”

Since there is no immediate evidence that the suspect’s actions were linked to a
foreign government or agent, the penalties defined in this Act are likely
inapplicable. Still, additional investigation may show that the suspect was
providing proprietary Ballard data to entities other than Rift.

It is highly likely that Mr. Leszczynski could be charged under Title 18,
Subsection 1832 (the Trade Secrets Act) of the United States Code. His alleged
actions meet the requirement in parts a-1 and a-2:

(a)

“Whoever, with intent to convert a trade secret, that is related
to or included in a product that is produced for or placed in
interstate or foreign commerce, to the economic benefit of anyone
other than the owner thereof, and intending or knowing that the
offense will, injure any owner of that trade secret, knowingly –
“

(1)

steals, or without authorization appropriates, takes,
carries away, or conceals, or by fraud, artifice, or
deception obtains such information;

(2)

without authorization copies, duplicates, sketches, draws,
photographs, downloads, uploads, alters, destroys,
photocopies, replicates, transmits, delivers, sends, mails,
communicates, or conveys such information;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

If it can be argued that Ballard’s fuel cells have any uses in United States
interstate commerce (a possibility), the suspect could face the penalties outlined
in Subsection 1832, namely a fine with no defined upper limit for individuals and
up to 10 years in prison. If it can also be proven that Rift, Inc. is involved in the
suspect’s actions, that corporation may also be fined up to $5,000,000 in
penalties.

If this incident were to occur within the State of New Jersey, the suspect would
also be susceptible to a strong state computer crime statute:

New Jersey Statutes Chapter 20 Title 2C

 2C:20-25. Computer-related theft

 A person is guilty of theft if he purposely or knowingly and without
 authorization:

a. Alters, damages, takes or destroys any data, data base,
computer program, computer software or computer equipment existing
internally or externally to a computer, computer system or computer network;

 2C:20-26. Property or services of $75,000 or more

a. Theft under section 4 of this act [FN1] constitutes a crime of the
second degree if the offense results in the altering, damaging, destruction or
obtaining of property or services with a value of $75,000.00 or more.

 2C:20-27. Property or services between $500 and $75,000

a. A person is guilty of a CRIME of the third degree if he purposely
Or knowingly accesses and recklessly alters, damages, destroys or obtains
any data, data base, COMPUTER, COMPUTER program, COMPUTER
software, COMPUTER
equipment, COMPUTER system or COMPUTER network with a value of
$75,000.00 or more.

2C:20-28. Property or services between $200 and $500; degree of crime

a. Theft under section 4 of this act [FN1] constitutes a crime of the fourth
degree if the offense results in the altering, damaging, destruction or
obtaining of property or services with a value of more than $200.00 but
less than $500.00.

In summary, the suspect is most likely susceptible to both federal and state
felonies carrying large fines and significant prison terms.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Additional Information

The following link is a publicly available mirror of the original Twisted Pear
website. It is useful for researching the operation and uses of the last available
version of Camouflage (1.2.1):

 http://camouflage.unfiction.com/

The SANS Organization’s Reading Room offers several interesting research
papers on Steganography, the art of hiding data within data:

 http://www.sans.org/rr/catindex.php?cat_id=54

Cornell University operates a very useful website for researching the full text of
the Unites States Code. Title 18 contains federal laws related to computer crime
(Subsections 1030, 2511,2701) as well as the Theft of Trade Secrets
(Subsection 1832) and Industrial Espionage (Subsection 1831):

 http://www4.law.cornell.edu/uscode/

 http://www4.law.cornell.edu/uscode/18/

The New Jersey Legislature maintains the following website, which serves as a
definitive source for NJ state laws, crimes, and penalties.

 http://www.njleg.state.nj.us

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Part 2 - Option 2: Perform Forensic Tool Validation

The Forensic Validity of Netcat 1.1

The field of computer forensics and (forensic science in general) has gained
increased popularity in recent years due to the evolution of information systems
and their ever-broadening reach into the daily lives of individuals. The media
allows us to scrutinize case after case involving digital evidence, from the San
Francisco Bay current diagrams found on Scott Peterson’s personal computer to
the email transactions of former Enron CEO Kenneth Lay. The popularity of
television shows such as “CSI” illustrate the public’s interest in the “cat and
mouse games” of forensic investigations. This fascination serves to assist the
field in many ways, and it will hopefully lead to growth and a continual evolution
in skills, tools, and techniques. I would argue, however, that as younger faces
join the field it is our duty as veteran investigators to teach them to look past the
distracting “flashiness” of forensic science and the “bells and whistles” of tools
that we sometimes employ. In fact, newcomers to the field should be taught that
the simplest of tools can sometimes be the most useful and more importantly, the
most defensible.

As the field evolves, the tools employed by investigators have evolved as well.
Where there was once a barren market for digital forensic tools just five years
ago, now examiners have access to a diverse selection of commercial and open-
source utilities. Software products such as Encase and imaging tools from
companies such as Logicube are certainly valuable in specific forensic situations,
but care should be taken, particularly with those new to the field. An examiner
should always keep in mind that the value of any forensic tool is not in fancy
functions and glossy reporting (which can certainly be useful), but in simplicity
and validity. A pen, for all its simplicity, is a forensic tool when it is used to record
observations regarding a case. The simplicity of the pen also makes it defensible
in court, as in the case of an investigator’s notes submitted as evidence.
Electronic notes can be subject to loss or tampering much more than those that
are handwritten in a notebook. It would be difficult if not impossible for any
attorney to attempt to argue the forensic validity of penned examination notes.

Likewise, digital forensic examinations should have a similar goal: evidence
(when present) should be acquired, transferred, analyzed, and stored in the most
simple, transparent, and verifiable ways possible. An expensive or complicated
commercial tool might serve these purposes, but how would one defend the
validity of a tool if the process involved were simply “point and click”? For some
products (e.g. Encase), there is already a wealth of court precedent supporting
their use. But with the numerous “forensic” utilities available today, an
investigator must put their faith in many valuable tools for which no precedent
has been established. It was in this spirit that I chose to examine the forensic

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

uses of Netcat in the hope that novice forensic examiners will continue to re-
discover this handy utility for years to come.

Netcat is a free and very popular network utility available from @Stake, Inc. It is
commonly referred to as the “TCP/IP Swiss Army Knife” tool due to an enormous
number of potential networking uses. The tool provides a simple interface to the
process of opening arbitrary TCP or UDP sockets. These sockets are software
connectors that allow data transfer between Internet-capable applications. The
sockets created by netcat can be used for very simple purposes such as copying
files between instances of netcat, or they can be linked with other tools to
provide advanced operations. Netcat can be used to copy entire forensic toolkits
to a remote system, or it can be used with the dd utility to capture remote drive
images. Netcat also provides an investigator with the ability to push the results
of a remotely executed (perhaps automated?) tool across a network to another
listening socket, useful when large amounts of data need to be stored and
analyzed on a system other than the target.

Netcat has been examined as a general security tool before, in a SANS paper
entitled “Netcat – The TCP/IP Swiss Army Knife” by Tom Armstrong (February
15, 2001). In it, the basic usage of netcat is described along with the available
options. By any assessment, netcat is an invaluable tool in an incident response
or computer forensics toolkit. Netcat has many obvious uses to a skilled security
professional, but are all of these uses forensically sound? The validation test in
this section of the practical will attempt to answer the following questions:

• In what ways is netcat useful as a forensic tool?
• In what ways can the data processed by netcat be validated or certified?
• Can netcat be counted on to produce verifiable and repeatable results?
• Does it have the potential to alter data in any way?
• Can the use of such a tool be supported in a court of law?

Testing Scope

Netcat is essentially a network data transfer tool that allows “piping” of binary or
text data over a network connection, from one instance of netcat to the other.
Our test will include two Windows 2000 systems: a “remote” target named
SUSPECT1 and a dedicated forensic analysis station named ANALYSIS1.

The standard use of netcat on the SUSPECT1 platform will be that of a netcat
sender, i.e. data will be redirected from a tool or file to netcat. Netcat can be
used on a remote suspect system in a number of ways. If the remote system is
already powered down, a trusted assistant in the remote location can mount the
suspect system with a CD-based operating system such as Helix, Knoppix, or
even some generic Linux distributions. In many cases, netcat is already included
on the CD. In other situations (for instance, when a “live” system cannot be shut

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

down for analysis), netcat can simply be copied on to a CD-R and operated from
the remote CD-ROM drive. The remote assistant simply needs to mount the CD
and run the appropriate command. In situations where there is no remote
assistance available but remote Administrator or root-level access is possible,
netcat can be copied to the suspect system and run directly via a remote
command shell (e.g. via SSH, SCP, or Sysinternals.com’s psexec utility) or a
scheduled job (e.g. via crond, Windows Task Scheduler). Although this scenario
requires some interaction with the suspect environment, Netcat’s small footprint
(under 60 Kbytes) and lack of prerequisite dynamic libraries or other software
make it a perfect, low-impact solution in most cases.

The use of netcat on the ANALYSIS1 system will be that of a netcat listener,
i.e. netcat will bind itself to a local TCP or UDP port and enter a TCP/IP
“Listening” state. Typically, data received from a listening instance of netcat can
then be redirected anywhere, such as to a local file or even to another remote
instance of netcat!

The netcat sender will connect to the netcat listener, and data will be
transmitted from the remote, sending process (for our test case this will be the dd
byte-copying utility) to the local, receiving process (a command shell output
redirection to a local file). In essence, netcat forms a “data bridge” between the
remote and local processes.

The scope of testing will include:

• How well netcat preserves the integrity of data transferred between
systems

• What effects (if any) the execution of netcat has on either systems’
running state, processes, etc. What system libraries does netcat access?

• Determining what methods exist for verifying the operation of the tool

Tool Description

Netcat 1.1 for Windows is available for both Windows and Unix platforms from
@Stake at the following website:

http://www.atstake.com/research/tools/network_utilities/

According to the website, the tool was ported to the Win32 platform by Chris
Wysopal in 1998, from Hobbit’s original Unix package developed in 1996.

Netcat has many used to both the system administrator and security professional
alike, but its use in forensics is considered particularly valuable. As a binary, it
has a very small footprint (under 60 kilobytes). It does not write any unnecessary
data to the local disk unless its output is redirected (to a file, for instance). It can

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

be quickly deployed to a target system and combined with just a few other tools
to allow remote transfer of files, output, or even raw disk images.

The listdlls.exe utility is a tool available from Mark Russinovich at the following
website:

http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml

This is a useful way of determining the system files that are accessed by a
running instance of netcat. Whether it is executed in sending or listening mode
(e.g. nc.exe –l –p <port number>), netcat accesses the following libraries under
Windows 2000:

C:\tools\response_kit\win2k_xp>listdlls.exe -r nc

ListDLLs V2.23 - DLL lister for Win9x/NT
Copyright (C) 1997-2000 Mark Russinovich
http://www.sysinternals.com

nc.exe pid: 1592
Command line: nc -l -p 4444 -v

 Base Size Version Path
 0x00400000 0x13000 C:\tools\response_kit\win2k_xp\nc.exe
 0x77f80000 0x7d000 5.00.2195.6899 C:\WINNT\system32\ntdll.dll
 0x7c570000 0xb8000 5.00.2195.6897 C:\WINNT\system32\KERNEL32.dll
 0x75050000 0x8000 5.00.2195.6603 C:\WINNT\system32\WSOCK32.dll
 0x75030000 0x14000 5.00.2195.6601 C:\WINNT\system32\WS2_32.DLL
 0x78000000 0x45000 6.01.9844.0000 C:\WINNT\system32\MSVCRT.DLL
 0x7c2d0000 0x62000 5.00.2195.6876 C:\WINNT\system32\ADVAPI32.DLL
 0x77d30000 0x71000 5.00.2195.6904 C:\WINNT\system32\RPCRT4.DLL
 0x75020000 0x8000 5.00.2134.0001 C:\WINNT\system32\WS2HELP.DLL
 0x782c0000 0xc000 5.00.2195.6603 C:\WINNT\System32\rnr20.dll
 0x77e10000 0x65000 5.00.2195.6897 C:\WINNT\system32\USER32.DLL
 0x77f40000 0x3e000 5.00.2195.6898 C:\WINNT\system32\GDI32.DLL
 0x77980000 0x24000 5.00.2195.6824 C:\WINNT\system32\DNSAPI.DLL
 0x77340000 0x13000 5.00.2195.6602 C:\WINNT\system32\iphlpapi.dll
 0x77520000 0x5000 5.00.2134.0001 C:\WINNT\system32\ICMP.DLL
 0x77320000 0x17000 5.00.2181.0001 C:\WINNT\system32\MPRAPI.DLL
 0x75150000 0xf000 5.00.2195.6897 C:\WINNT\system32\SAMLIB.DLL
 0x75170000 0x4f000 5.00.2195.6949 C:\WINNT\system32\NETAPI32.DLL
 0x7c340000 0xf000 5.00.2195.6695 C:\WINNT\system32\Secur32.dll
 0x77bf0000 0x11000 5.00.2195.6666 C:\WINNT\system32\NTDSAPI.dll
 0x77950000 0x2a000 5.00.2195.6666 C:\WINNT\system32\WLDAP32.DLL
 0x751c0000 0x6000 5.00.2134.0001 C:\WINNT\system32\NETRAP.dll
 0x77a50000 0xef000 5.00.2195.6906 C:\WINNT\system32\OLE32.DLL
 0x779b0000 0x9b000 2.40.4522.0000 C:\WINNT\system32\OLEAUT32.DLL
 0x773b0000 0x2f000 5.00.2195.6601 C:\WINNT\system32\ACTIVEDS.DLL
 0x77380000 0x23000 5.00.2195.6701 C:\WINNT\system32\ADSLDPC.DLL
 0x77830000 0xe000 5.00.2168.0001 C:\WINNT\system32\RTUTILS.DLL
 0x77880000 0x8e000 5.00.2195.6622 C:\WINNT\system32\SETUPAPI.DLL
 0x7c0f0000 0x61000 5.00.2195.6794 C:\WINNT\system32\USERENV.DLL

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

 0x774e0000 0x33000 5.00.2195.6625 C:\WINNT\system32\RASAPI32.DLL
 0x774c0000 0x11000 5.00.2195.6604 C:\WINNT\system32\RASMAN.DLL
 0x77530000 0x22000 5.00.2195.6664 C:\WINNT\system32\TAPI32.DLL
 0x71710000 0x84000 5.81.4916.0400 C:\WINNT\system32\COMCTL32.DLL
 0x70a70000 0x64000 6.00.2800.1552 C:\WINNT\system32\SHLWAPI.DLL
 0x77360000 0x19000 5.00.2195.6685 C:\WINNT\system32\DHCPCSVC.DLL
 0x777e0000 0x8000 5.00.2160.0001 C:\WINNT\System32\winrnr.dll
 0x777f0000 0x5000 5.00.2168.0001 C:\WINNT\system32\rasadhlp.dll
 0x74fd0000 0x1e000 5.00.2195.6602 C:\WINNT\system32\msafd.dll
 0x75010000 0x7000 5.00.2195.6601 C:\WINNT\System32\wshtcpip.dll

Under Windows XP SP1, netcat accesses far fewer system libraries:

Z:\tools\response_kit\win2k_xp>more c:\netcat.xp.txt

ListDLLs V2.23 - DLL lister for Win9x/NT
Copyright (C) 1997-2000 Mark Russinovich
http://www.sysinternals.com

nc.exe pid: 1388
Command line: nc -l -p 4444

 Base Size Version Path
 0x00400000 0x13000 C:\tools\response_kit\win2k_xp\nc.exe
 0x77f50000 0xa7000 5.01.2600.1217 C:\WINDOWS\System32\ntdll.dll
 0x77e60000 0xe6000 5.01.2600.1106 C:\WINDOWS\system32\kernel32.dll
 0x71ad0000 0x8000 5.01.2600.0000 C:\WINDOWS\System32\WSOCK32.dll
 0x71ab0000 0x14000 5.01.2600.1240 C:\WINDOWS\System32\WS2_32.dll
 0x77c10000 0x53000 7.00.2600.1106 C:\WINDOWS\system32\msvcrt.dll
 0x71aa0000 0x8000 5.01.2600.0000 C:\WINDOWS\System32\WS2HELP.dll
 0x77dd0000 0x8d000 5.01.2600.1106 C:\WINDOWS\system32\ADVAPI32.dll
 0x78000000 0x87000 5.01.2600.1361 C:\WINDOWS\system32\RPCRT4.dll
 0x71a50000 0x3b000 5.01.2600.0000 C:\WINDOWS\System32\mswsock.dll
 0x76f20000 0x25000 5.01.2600.1106 C:\WINDOWS\System32\DNSAPI.dll
 0x76fb0000 0x7000 5.01.2600.0000 C:\WINDOWS\System32\winrnr.dll
 0x76f60000 0x2c000 5.01.2600.1106 C:\WINDOWS\system32\WLDAP32.dll
 0x76fc0000 0x5000 5.01.2600.0000 C:\WINDOWS\System32\rasadhlp.dll
 0x71a90000 0x8000 5.01.2600.0000 C:\WINDOWS\System32\wshtcpip.dll

Both the Unix and Windows variants of netcat can be statically linked and run
directly from a CD, and neither has any special installation requirements such as
special libraries or registry keys. It should be noted that netcat for Windows
uses around 40 standard Windows 2000 dynamic link libraries (only 14 under
Windows XP) during regular operation. Even if a CD-based instance of netcat is
used on a target system, a compromised DLL file in the operating system could
impact its operation significantly. If any evidence of operating system tampering
is evident, only a statically linked version of netcat should be employed.

To ensure maximum integrity, it is possible to create a CD-R with the appropriate
DLLs included, or to manually compile the Win32 source to statically link all of
the necessary libraries. Doing so will create a much larger netcat binary, but it

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

would be completely standalone and independent of the system libraries in
\WINNT\System32. Changing PATH variables to accomplish this, or recompiling
nc.exe as a statically linked binary, is left as an exercise for the reader.

Test Apparatus and Environment

The testing environment consists of two Intel PC’s in a two-node, isolated TCP/IP
network. The first system, SUSPECT1 is meant to represent a production
system that is part of an incident under investigation. SUSPECT1 has the
following configuration:

 Hostname SUSPECT1
 Description An imaginary production server containing

potential forensic evidence
 Hardware Intel Pentium 4 Platform, 3.0 GHz
 Operating System Windows XP Service Pack 1
 Patch Level All available security patches applied (except

for XP Service Pack 2, still under testing)
 IP Address 192.168.0.2

The analysis station used in this test is named ANALYSIS1, and is meant to
represent the Forensic Analyst’s workstation. ANALYSIS1 has the following
configuration:

 Hostname ANALYSIS1
 Hardware Intel Pentium 4 M Platform, 1.6 GHz
 Operating System Windows 2000 Service Pack 4
 Patch Level All available security patches applied
 IP Address 192.168.0.1
 Tools SANS Track 8 Toolkit mounted on CD-R
 Netcat for Windows 1.10 from @Stake

ANALYSIS1 and SUSPECT1 are connected via a UTP crossover cable to
simulate a production network, 192.168.0.0/24. The two test systems have no
access to any real production networks. In a real-world scenario the two systems
would likely be geographically distant.

Testing Scenario and Procedures

In our primary test, we will examine the ability of netcat to forensically copy a
suspicious file from a remote system (SUSPECT1) to the analysis platform
(ANALYSIS1), providing a verifiable audit trail of the operation. We must show
that netcat’s results are predictable, repeatable, and that some method of
verification is possible.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

For the actual test, we will assume the scenario presented in Part I of this
practical (“Analyze an Unknown Image”). The suspect, Mr. Leszczynski, has
been accused of using a steganographic (data hiding) tool that has been
identified through a forensic analysis as Camouflage 1.2.1. The distribution of
the utility includes a dynamic link library names camshell.dll, and the software
package itself must be installed via a self-extracting executable file. Instances of
camshell.dll on any Ballard system indicate that the suspect used Camouflage
on that system.

For testing purposes, we assume that a diligent System Administrator has
searched for camshell.dll on all of the Ballard R&D production and test systems.
On a critical Windows 2000 server used for developing fuel cell schematics, the
System Administrator finds the following deleted file:

 Directory of C:\RECYCLER\S-1-5-21-XXX-XXX-XXX-500

02/03/2001 07:44p 36,864 Dc118.dll
 1 File(s) 36,864 bytes
 0 Dir(s) 30,714,478,592 bytes free

This file is exactly 36864 bytes and is likely a copy of camshell.dll that has been
deleted but not completely purged from Windows. Because of the criticality of
this server, it cannot be taken offline for imaging. We have been instructed that
any evidence to be moved off of the system must be done in a low-impact
manner so as to not negatively affect R&D. By having the System Administrator
mount a copy of our CD and using the appropriate commands to pipe the file
through netcat, we should be able to obtain a pristine forensic copy of dc118.dll
from the Recycle Bin, and we should be able to verify that it is indeed a copy of
the stock Camouflage 1.2.1 DLL.

Preparation Phase

In preparation for testing, the SUSPECT1 computer and ANALYSIS1 computer
are connected with a crossover cable. (For the purpose of the test it can be
assumed that SUSPECT1 has a second network interface available for
connecting directly to ANALYSIS1).

Network connectivity between the two systems must first be verified, and we can
use the simple ping.exe utility to test this:

Using ping to test connectivity from SUSPECT1 to ANALYSIS1:

C:\>ping 192.168.0.1

Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time<10ms TTL=128

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

. . .

Using ping to test connectivity from ANALYSIS1 to SUSPECT1:

C:\>ping 192.168.0.2

Pinging 192.168.0.2 with 32 bytes of data:
Reply from 192.168.0.2: bytes=32 time<10ms TTL=128

 . . .

To establish a pre-transfer baseline for comparison, we assume the System
Administrator runs a local copy of MD5.exe to obtain the following hash value for
the deleted file:

C:\RECYCLER\S-1-5-21-XXX-XXX-XXX-500>md5 Dc118.dll
4e986ab0909d2946bed868b5f896906f *Dc118.dll

The System Administrator mounts the CD-R containing nc.exe on SUSPECT1.
Only one file is present on the CD:

 Directory of Z:\

01/03/1998 02:37p 59,392 nc.exe
 1 File(s) 59,392 bytes
 0 Dir(s) 0 bytes free

Test Phase 1 – Initiate Netcat Listener

For our first Test Phase, we will initiate a process for the netcat listener on
ANALYSIS1. The following command syntax will start a listening process on
TCP port 4444, and data received will be redirected to an output file. A 3-second
limit is set to ensure that the netcat connection is closed once the transfer is
complete:

C:\nc.exe –l –p 4444 –w 3 > camshell.test.bin

Test Phase 2 – Initiate Netcat Sender

Next, the netcat sender is initiated to begin transferring the suspicious file to
ANALYSIS1. The command syntax for the netcat sender (SUSPECT1) is
entered as follows:

C:\RECYCLER\S-1-5-21-XXX-XXX-XXX-500\cat Dc118.dll | z:\nc.exe
192.168.0.1 4444

This will copy the data in Dc118.dll through netcat to the IP address of
ANALYSIS1 on TCP port 4444.

Test Phase 3 – Results

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

After a short wait (approximately 1 second) the file transfer is complete, and we
now have a complete copy of the suspicious file in the local file
camshell.test.bin.

02/03/2001 07:44p 36,864 camshell.test.bin

Now we must verify that the file transported via the two instances of netcat has
not been altered in any way. If a single bit has been altered, the initial MD5 hash
and the new hash will not be the same, and netcat will be considered weak or
unusable for forensic purposes.

Test Phase 4 – Verification and Approval

Executing MD5 on this file reveals the following:

C:\>md5 camshell.test.bin
4e986ab0909d2946bed868b5f896906f *camshell.test.bin

Now we can compare this MD5 hash with the one obtained previously by the
System Administrator. They are the same, so the data transferred is validated
and no alteration of the evidence has occurred. In fact, it can already be shown
that this MD5 hash is identical to the hash for a stock camshell.dll file included
with Camouflage 1.2.1:

 C:\Program Files\Camouflage>md5 CamShell.dll

4e986ab0909d2946bed868b5f896906f *CamShell.dll

The above data transfer test was performed a number of times to
determine that the results are indeed predictable and repeatable.
Forensically, this illustrates that netcat has a valid use as a forensic data
transfer tool, and that a netcat sender does not change a single bit of
data when redirected to a netcat listener. Evidentiary data of any form
(whether a file, partition, volume, or raw disk image) is preserved when
transferred through the pipe. But is there another way of producing a
forensically acceptable audit trail for transfers performed with netcat?

As it turns out that, there is. Recent versions of netcat include an
outstanding forensic option for logging the transfer in hexadecimal format,
as shown below:

C:\tools\response_kit\win2k_xp>nc -h
. . .
 -o file hex dump of traffic
. . .

This means that in addition to verifying the unique fingerprint of the file
before and after transferring (via MD5), we can also record a hex dump of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

the transfer to a file. Using the hex dump option can be a great benefit for
two reasons.

First, it provides a basic log of the transfer itself, and even the hex log can
be processed via MD5 to create a unique fingerprint of the network
transfer itself. For a command-line tool with no-built in logging function,
the hex dump option provides an excellent way to record use of the tool,
and the process for doing so is built right into the utility.

Second, the hex dump itself can be a vital source of forensic data.
Viewing the hex dump of the network transfer is essentially the same as
opening the file itself in a hex editor, which is a common task in forensic
examinations. If a hex editor is unavailable to the Forensic Analyst, the
hex dump file created by netcat can simply be examined instead,
revealing important information such as hex offsets, data, and ASCII
translations of the data.

The Uses of Netcat for Forensic Imaging

Netcat’s uses for imaging are not limited to single files. The tool enjoys a
reputation as a tried and true method for moving hard drive images. By
combining netcat with dd (another forensic favorite) we can transfer single
partitions, entire hard drives, or even the live contents of physical memory (RAM)
between netcat instances. The following command (executed on a remote
netcat sender) will acquire the contents of RAM and push them to an analytical
workstation where a netcat listener process awaits:

C:\dd if=\\.\PhysicalMemory | nc [analysis IP and port]

On the analysis station, the listening instance can simply redirect this image
stream to a file, which can then be processed through additional tools such as
strings, Autopsy, or Encase for analysis:

 C:\nc –l –p [port] > physicalmemory.img

Obtaining an MD5 hash of the physical memory is problematic, however. The
RAM of any running computer system is constantly changing by design, and it is
absolutely certain that a second hash taken will not match any of the previous
values. It is still prudent to obtain a value on the imaged RAM, however, as the
MD5 hash still provides a timestamp value, and can always be used to verify the
integrity of later copies of the physical memory with the one initially imaged.

The Uses of Netcat for Forensic Analysis

To an investigator, netcat certainly has more than one potential use in forensics,
but its function as a simple network pipe is invaluable. Without having to install
software such as FTP or SSH, we can move data between any two computers

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

capable of running netcat with little or no setup. Moreover, the data can be
verified before and after transfer, and an optional hex log of the transfer can be
generated to further validate the results.

Netcat was not meant to be an analytical tool, but it can certainly be used to
facilitate many parts of the forensic analysis process. Data moved with the
netcat methods described above is typically redirected (via a command shell
redirection such as “> filename”) and then the received file is examined. In our
test case, a file in a remote Recycling Bin was received via netcat on the
ANALYSIS1 system for analysis in the following manner:

C:\nc.exe –l –p 4444 –w 3 > camshell.test.bin

To the examiner, the camshell.test.bin file should be byte-for-byte identical to
the file sent from SUSPECT1, and MD5 hashes were shown above the validate
this. Once the file has been hashed, it can be viewed with any other tool for
further analysis. It can be opened in Winhex, for example, to view the format of
the data. It can be run through the strings utility to examine ASCII data within
the file that could be important (in this case, the strings in camshell.test.bin can
be compared to the Camouflage 1.2.1 library).

Analyzing the hex dumps provided by the –o option are simple to read (assuming
the Forensic Analyst is familiar with hexadecimal):

File
Offset Data (in base 16) ASCII Decoding

 00000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 # MZ..............
 00000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 #@.......
 00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 #
 00000030 00 00 00 00 00 00 00 00 00 00 00 00 c8 00 00 00 #
. . .

Presentation

In a court setting where the jury (and potentially the judge) has little technical
exposure, explaining the operation of netcat in a clear and concise manner is
absolutely vital. The advanced technical processes behind raw TCP/IP sockets,
terminal I/O redirection, and filesystem internals cannot be explained in a
courtroom setting during the brief amount of time that a trial allows. Nor can
anyone in the courtroom (with the exception of expert witnesses) be expected to
follow any line of reasoning that requires a detailed technical dissertation.

An even more important concern when defending a forensic examination is the
complexity of assertions made regarding evidence. Complex, detailed
arguments (by either the defense or the prosecution) are the most easily assailed
during cross-examination. Simple, straightforward arguments involving clear,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

concise evidence are the most defensible and the logic is easier to follow. Our
goal is to convince the jury that the evidence is sound and to remove the
“mystery” surrounding its origin, so simplicity of form and function in our forensic
tools is imperative.

As far as the presentation of netcat and its data is concerned, the simplicity of
the tool is clearly its greatest asset. Netcat is not the fastest or the most secure
method for transferring investigative data, but it is also one of the most
transparent and flexible. For juries, attorneys, or judges with little or no technical
background, the tool’s basic command-line usage is very straightforward and
specific. An examiner can display, explain, and if necessary justify the various
command-line options with very simple analogies. By using simple ideas like
“bridge” or “pipe”, a non-technical jury can quickly grasp the nuts and bolts of
netcat. In contrast, a complex commercial tool for remote imaging (a backup
utility such as Symantec’s Ghost, for instance) may produce useful data in an
investigation, but explaining the processes involved in using such as tool is not
nearly as cut and dry as a typing a single command and hitting ‘Enter’.

The basic networking function that netcat provides can be very easily illustrated
by the following diagram:

Data Transfer

Netcat can thus be presented to the court as a simple data conduit, “pipe”, or
“bridge” between physically or logically separate computer file systems. Its value
as a forensic tool is in the connection that it can create between two instances of
itself. A file (or any chunk of data, for that matter) is simply “pushed” into the
netcat sender process, which connects to a remote netcat listener process,
which “pushes” the received data to some other location on the remote end.
Data is copied verbatim (i.e. byte-for-byte), and nothing in the data stream is
altered in any way.

In fact, netcat is so flexible that the sender and recipient systems don’t even have
to run the same operating system, something else that can help clarify the
examiner’s actions to the court. Data can be moved from a Unix system to a
Windows system or vice versa. The “bridge” analogy works to our advantage
again, and we can describe netcat as a “generic data bridge” between

SUSPECT1

Original
Evidence File

ANALYSIS1

Evidence Copy
and Hex
Transfer Log

Netcat Sender
Process (run
from CD)

Netcat
Listener
Process

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

contrasting computer environments, such as those of a suspect’s Windows
system and a forensic examiner’s Linux workstation.

Conclusions

At the conclusion of our testing, netcat has displayed flexible use as an
analytical tool, and that it is much more than a simple network copying utility. In
a forensic investigation, netcat can be used to analyze remote potential evidence
locally without modifying any data. The remote data can be a file or raw sectors
from the physical disk drive, and this raw form can be preserved throughout a
network transfer. In this fashion, netcat can used to create a forensically
acceptable remote disk image, removing the need for personnel travel or
expensive imaging hardware. Data moved via netcat can be analyzed or
processed through many additional tools without any fear of manipulating original
evidence, which is the fundamental test of forensic validity that we have
attempted to prove.

Netcat should be a standard tool in any experienced examiner’s forensic or
incident response toolkit. Powerful yet simple and completely free, netcat will
surely continue to guard its reputation as being one of the most versatile,
trustworthy tools in the field of digital forensics. As new investigators enter the
field, they should try to learn to look past the forensic “gadget” mentality and
marketing hype that goes along with it. No tool is worth the cost of a failed
investigation, defense, or prosecution.

As is true in most aspects of computer security, simplicity has great advantages
and can lead to the greatest security. In the realm of computer forensics, a
simple tool can help to secure your conclusions.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

List of References

The United States Code Archive at Cornell University
URL:http://www4.law.cornell.edu/uscode/ (18 Sept. 2004)

Armstrong, Tom. “Netcat – The TCP/IP Swiss Army Knife”. 15 Feb. 2001. URL:
http://www.sans.org/rr/papers/5/952.pdf (15 Sept. 2004)

Twisted Pear Productions. “The Camouflage FAQ”. Unknown Date. URL:
http://camouflage.unfiction.com/(10 Sept. 2004)

The New Jersey State Legislature Website. URL:
http://www.njleg.state.nj.us (12 Sept. 2004)

The SANS Reading Room Website URL:
http://rr.sans.org (12 Sept. 2004)

