
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

GIAC Certified Forensic Analyst
Practical Assignment

(GCFA)
v1.5

James D. Perry II

Submitted: November 20, 2004



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 2 of 88

Table of contents

ABSTRACT 3

PART ONE:  Analyze an Unknown Image 4

Letter to Mr. David Keen of Ballard Industries  6

Forensic Analysis Report for Ballard Industries  6

Executive Summary 6

Examination Details 6

Examination Conclusion 27

Appendix A-1:  a:\/_ndex.htm Strings Report 32

Appendix A-2:  a:\/CamShell.dll Strings Report 33

Part One References 40

PART TWO:  Option 2 – Perform Forensic Tool Validation 41

Validation of Compromised Computer Inventory System (CCIS) 42

Executive Summary 42

Scope 43

Tool Description 45

Test Apparatus, Environmental Conditions, and Procedures 70

Criteria for Approval 73

Results, Analysis, and Presentation 73

Conclusion 74

Appendix A:  ccis_collector script 77

Appendix B:  ccis_sender script 85

Appendix C:  ccis_sender.bat 87



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 3 of 88

Part Two References 88



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 4 of 88

ABSTRACT

The GIAC Certified Forensic Analyst (GCFA) certification requires that 
each candidate complete a comprehensive practical to demonstrate, as stated 
on the GIAC website (http://www.giac.com/GCFA.php), that the candidate has 
the “necessary knowledge, skills, and abilities to handle advanced incident 
handling scenarios, conduct formal incident investigations, and carry out 
forensic investigation of networks and hosts.” The purpose of this practical is to 
achieve these objectives, identified above, and to fulfill a requirement for the 
GCFA certifications.

Part one of this practical contains a forensic analysis report that was 
generated after analyzing an unknown image.  The report outlines the 
methodology of investigation and a step-by-step outline of the tasks performed 
to identify the content and purpose of a floppy disk.  The knowledge, skill, and 
ability of the forensic analyst are made clear in the analysis

Part two of this practical focuses on the validation of forensic tool.  The 
Compromised Computer Inventory System (CCIS), created by the certification 
candidate, is a forensic evidence collection system that automates the 
acquisition of data.  The CCIS forensic tool is described in detail and includes a 
discussion on how it benefits the analyst.  Additionally, the complete code is 
provided for use by the forensic community.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 5 of 88

PART ONE:  
Analyze an Unknown Image



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 6 of 88

ACME Security Services, Inc.
1337 GIAC Certification Way
Las Vegas, NV  31337

November 20, 2004

Mr. David Keen, Security Administrator
Ballard Industries, Inc.
6667 IRC Highway
Las Vegas, NV  31337

Mr. Keen:

ACME Security Services, Inc. has completed our analysis of the floppy disk 
you provided.  Per your request, a comprehensive review of the disk was 
performed with the specific tasks of identifying the contents and the 
associated potential uses.  I have enclosed a comprehensive report with 
appendices for your review.

Thank you for the opportunity to assist Ballard Industries with this 
investigation.  We appreciate your business.  Should you need additional 
information, please feel free to contact me at (555) AUT-OPSY. Additionally, 
please contact me with instructions on returning the floppy disk and chain of 
custody form to you.  

Regards,

James D. Perry II
Senior Forensic Analyst

(Enclosure)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 7 of 88

REPORT ON FORENSIC ANALYSIS OF FL-260404-RJL1.IMG.GZ

EXECUTIVE SUMMARY:

David Keen, Security Administrator for Ballard Industries, has retained 
ACME Security Services, Inc. to perform a forensic analysis of a floppy disk that 
was seized from an employee.  Mr. Keen explained that Ballard Industries, a 
designer of fuel cell batteries, had recently noticed a decline in customer 
reorders for one of Ballard’s unique lines of fuel cell batteries.  An internal 
investigation has determined that one of Ballard’s major competitors, Rift, Inc. 
has been receiving orders for the same fuel cell battery.  Based on the recent 
decline in reorders, and the results of their continuing internal investigation, 
Ballard is fearful that the company’s customer database and proprietary 
information has been disclosed to their competition.

Mr. Keen explained that a security guard had seized the floppy disk, 
mentioned above, from Robert J. Leszczynski Jr., Lead Process Control 
Engineer for Ballard Industries, on April 26, 2004 at approximately 4:45PM 
Mountain Standard Time as he was leaving the R&D labs.  According to Mr. 
Keen, removing a floppy disk from these labs is against company policy.

Mr. Keen provided ACME Security Services, Inc. with a single floppy disk 
and chain of custody form that included the following information:

TAG#  fl-260404-RJL1•
3.5 inch TDK floppy disk•
MD5: d7641eb4da871d980adbe4d371eda2ad (file: fl-260404-RLJ1.img)•
fl-260404-RJL1.img.gz•

ACME Security Services’ primary goal for this analysis was to provide a report to 
Mr. Keen regarding the contents of the floppy disk and how the contents might 
have been used by Mr. Leszczynski.

EXAMINATION DETAILS:

Prior to performing the examination, a few critical actions were taken to 
ensure that the integrity of the floppy disk was maintained.  The first action taken 
was to engage the write protection tab on the floppy disk.  As described at 
http://www.computerhope.com/help/floppy.htm, this prohibits the floppy disk 
drive from writing any changes to the floppy disk.  This was important to ensure 
the integrity of the floppy disk.  Next, the floppy disk was inserted into the floppy 
drive of Jericho, one of ACME Security Services’ forensic analysis stations 
(Jericho is a Dell Inspiron XPS Laptop running the Fedora Core 2 distribution of 
Linux).  Once inserted, the floppy disk was mounted using the following 
command:



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 8 of 88

# mount –r –t vfat /dev/fd0 /mnt/floppy

This command mounts the floppy device (/dev/fd0) to the mount point of 
/mnt/floppy using the read-only (-r) option.  This further protects the integrity of 
the floppy by not allowing the operating system to attempt writing to the disk
(Mandia & Prosise, Pg. 122).

Once the disk was protected from potential modification, forensic 
duplication of the floppy disk was performed.  This process, described in the 
following paragraphs, creates an exact bit-by-bit copy, referred to as an image 
throughout this report, of the original floppy disk.  This task was completed so 
that all analysis is performed on an image of the disk rather than the original 
disk, thus, further protecting the integrity of the original evidence and providing a 
scientific control.  One would naturally question how an exact copy can be made 
of the disk and how can one objectively conclude that the image is exact.  These 
questions will be answered in the following paragraphs.

As described earlier, the write-protected floppy disk was mounted read-
only on one of ACME Security Services’ forensic workstations.  The built-in Unix
command dd was then used to create the forensic image.  dd is, according to 
http://encyclopedia.thefreedictionary.com/Dd%20(Unix), “a common Unix
program whose primary purpose is the low-level copying of files.” It is widely 
used in “computer forensics when the contents of a partition need to be 
preserved in a byte-exact copy.” To perform the duplication the following 
command was used:

# dd if=/dev/fd0 of=/forensics/gcfa/v1_5.gz

This command instructs dd to make a bit-by-bit copy of the contents of 
/dev/fd0 (the protected floppy) and save the image in a file named v1_5.gz in the 
/forensics/gcfa directory.  This answers the question asked earlier regarding 
how an exact image can be obtained.  

To answer the question concerning an objective method to insure the 
image is an exact duplication, I relied on the tool md5sum.  Professor Ronald L. 
Rivest of MIT created the MD5 algorithm to take an input file of arbitrary length, 
process the file through an algorithm, outlined in RFC 1321, to create a 128-bit 
“fingerprint.” As stated at http://www.networksorcery.com/enp/data/md5.htm “it 
is conjectured that it is computationally infeasible to product two [different] 
messages having the same” fingerprint.  Because of this fact, MD5 fingerprints 
are used as a reliable method to insure that the contents of a file have not 
changed.  The md5sum command computes an MD5 fingerprint for a file.      

The chain-of-custody form provided to ACME Security Services by Mr. 
Keen included an MD5 fingerprint that was created for the floppy disk prior to 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 9 of 88

transferring the evidence to ACME. 

MD5: d7641eb4da871d980adbe4d371eda2ad (file: fl-260404-RLJ1.img)•

Thus, the image, if it is an exact copy, should provide the exact same 
fingerprint as above when an MD5 sum is created for it.  The following figure 
shows the results from the md5sum command:

Figure 1

Figure1, above, illustrates that the MD5 fingerprint provided by Ballard 
Industries, on the chain-of-custody form, are identical to the fingerprint of my 
image, thus, I was assured that my image was an exact copy of the floppy disk.  

The analysis of the image began by attempting to determine what type of 
computer used the floppy disk.  To do this I used the Unix file command which 
performs an analysis of a file and outputs its type.  The following figure shows 
the results on the image file:

Figure 2

The output above provided some very useful information.  First, I
determined that the disk was formatted using FAT12.   This indicates that the 
disk was likely formatted using a Microsoft Windows operating system.  
Second, I could infer that the disk was most likely formatted by Mr. Robert J.
Leszczynski.  This assumption is based on the disk’s label “RJL” which are Mr. 
Leszczynski’s initials. The end-user is prompted to create the label of choice 
when formatting a disk using Microsoft Windows.

During a forensic analysis it is important to establish an investigative 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 10 of 88

foundation.  To accomplish this, a few key pieces of information must be 
obtained.  First, it is important to establish a timeline of when files that are 
contained within an image were last modified, last accessed, and last changed
(referred to as MAC times).  This information helps identify a chronological order 
of the activities performed on or by the device being reviewed. In this particular 
case, a floppy disk is being analyzed. Second, the analyst needs to identify the 
contents of the image.  This includes identifying and recovering files that may 
have been deleted, modified, and/or partially overwritten.  These tasks provide 
valuable information in establishing what is on the floppy disk and how it might 
have been used; both of which were identified as goals of this analysis by Mr. 
Keen.   

My analysis used the Autopsy Forensic Browser V2.03 to establish a 
MAC timeline and an inventory of the image contents.  Autopsy Forensic 
Browser, available at http://www.sleuthkit.org/autopsy/desc.php, is an Open 
Source tool built for Unix systems that automates several of the fundamental 
forensic analysis tasks.  I began my analysis by importing the floppy image into 
the Autopsy Forensic Browser system.  Autopsy Forensic Browser provides the 
ability to create a MD5 fingerprint for imported images.  This provides additional 
assurance that the Autopsy Forensic Browser maintained the integrity of the 
image during the analysis.  The following figure shows the MD5 fingerprint that 
was generated for the floppy disk image inside the Autopsy Forensic Browser:

Figure 3



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 11 of 88

 The MD5 fingerprint shown above in Figure 3 matches the one provided 
on the chain of custody form.

Once I verified the MD5 fingerprint, Autopsy Forensic Browser was used 
to create a MAC timeline.  The results of the timeline showed activity during 
February, 2001 and April, 2004.  The following figures illustrate the results:

Figure 4: February 2001 Timeline Summary



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 12 of 88

Figure 4, above, indicates that a file named a:\CamShell.dll was modified 
on Saturday, February 3, 2001 at 19:44:16.  After the filename I noticed in 
parenthesis that the file was later deleted.  Based on experience, recovering and 
analyzing deleted files usually provides an excellent source of possible leads.  In 
this particular case, the file has an extension of *.dll. DLL stands for dynamic 
link library which is a “file containing a collection of Windows functions designed 
to perform a specific class of operations….Functions within DLLs are called 
(invoked) by applications as necessary to perform the desired operation”
(http://www.google.com/search?hl=en&lr=&oi=defmore&q=define:DLL).  This 
provided the first lead to investigate.  Making note of the file name, I next looked 
at the timeline for April 2004 which is shown below in Figure 5.

Figure 5, below, indicated that a file name a:\_ndex.htm was modified on 
Friday, April 23, 2004 at 10:53:56.  Again, I noticed that the file is later deleted.  
This time the file had an extension of *.htm which is the file extension for 
Hypertext Markup Language, HTML for short.  HTML is “the coded format 
language used for creating hypertext documents on the World Wide Web and 
controlling how Web pages appear 
(http://www.getnetwise.org/glossary.php#H).”  This provided another lead to 
investigate.

 The April 2004 timeline in Figure 5, below, also lists several files with 
the *.doc file extension.  The *.DOC extension is commonly known as that of 
Microsoft Word, a popular word processing software application.  In general, 
Microsoft Word documents are normally small in size.  With that information in 
mind, two particularly large files immediately caught my attention:  
a:\Remote_Access_Policy.doc and a:\Password_Policy.doc.  These files were 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 13 of 88

noted for further investigation.  

Figure 5: April 2004 Timeline Summary

With the timeline established and a few items identified to further 
investigate, the next action performed was a review of the contents of the floppy
disk.  Figure 6, below, shows the contents of the floppy disk using the Autopsy 
Forensic Browser.

Figure 6



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 14 of 88

Figure 6 outlined a total of eight files on the floppy disk.  Two of which 
have been deleted, and the rest are Microsoft Word documents.

Based on the analysis of the timeline and disk contents, I identified two 
deleted files and two Microsoft Word documents that initially required further 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 15 of 88

Autopsy Forensic Browser provides a strings reporting mechanism.  The 
reporting tool was used to generate the strings reports that are found in the 
appendix of this document.  

Appendix A-1 and Figure 7, below, provides information that the file
a:\_ndex.htm contained HTML code for a simple webpage.   Within the code a 
few references to Ballard Industries are found providing a link to the purpose of 
the HTML code.  Otherwise, the file didn’t provide much additional information.  

Figure 7: a:\_ndex.htm strings command information
--------------------------------------------------------------

 CONTENT

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html;  charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">
<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#vers
ion=6,0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality VALUE=high> <PARAM 
NAME=bgcolor VALUE=#CCCCCC> <EMBED src="ballard.swf" quality=high bgcolor=#CCCCCC  
WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash" 
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>
</OBJECT>
</center>
</BODY>
</HTML>

--------------------------------------------------------------

The file a:\CamShell.dll was analyzed next.  Appendix A-2 contains the 
complete strings report and Figure 8, below, shows a key portion of the report.

Figure 8: a:\CamShell.dll strings command information  
--------------------------------------------------------------

CONTENT

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html;  charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">
<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#vers
ion=6,0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality VALUE=high> <PARAM 
NAME=bgcolor VALUE=#CCCCCC> <EMBED src="ballard.swf" quality=high bgcolor=#CCCCCC  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 16 of 88

WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash" 
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>
</OBJECT>
</center>
</BODY>
</HTML>
ll\SheCamouflageShell
ShellExt
VB5!
CamShell
BitmapShellMenu
CamouflageShell
CamouflageShell
Shell_Declares
Shell_Functions
--------------------------------------------------------------

Figures 7 & 8 look identical for the first dozen lines or so.  Since 
a:\CamShell.dll is a dynamic link library, it is odd to discover HTML code
embedded within, especially since it was the exact same code as in 
a:\_ndex.htm.  The remainder of the file appears to be a program DLL with an 
unknown purpose.  Based on experience, seeing two files in an image that have 
been deleted as these two were, and finding the one file contained within the 
other usually means that someone/something was trying to masquerade the 
a:\CamShell.dll file as a HTML webpage.  Continuing with the analysis of 
a:\CamShell.dll, the strings report provided several keywords that could be used 
to potentially determine the purpose of the DLL.  Figure 9, below, provides a list 
of the keywords identified.

Figure 9
--------------------------------------------------------------

A:\CamShell.dll KEYWORDS

Camouflage
CamShell
CamouflageShell
C:\My Documents\VB Programs\Camouflage\Shell\IctxMenu.tlb
CamShell.dll

--------------------------------------------------------------

Armed with an initial list of keywords, I then attempted to define the 
purpose of the a:\CamShell.dll file. With no previous experience or encounters 
with a file named CamShell.dll, the keywords in Figure 9, above, were used to 
perform searches using www.google.com’s comprehensive search engine. The 
goal was to find out information about the file in question. Figure 10, below, 
shows the results of a search for CamShell.dll.

The Google search returned with only one result.  The synopsis from the 
one query hit contained some interesting information.  First, the words 
“BackDoor” being using in association with CamShell.dll was curious.  Next, the 
title of the result mentions Camoflagued MP3s.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 17 of 88

Figure 10

 

The website that was returned in the Google search, as shown in Figure 
10, above, proved to be a critical discovery in the analysis of the CamShell.dll 
file.  Figures 11 & 12, below, shows excerpts from the webpage. 

The website that was returned by the Google search, as illustrated in 
Figures 11 &12, below, appears to be a web based discussion forum where 
individuals were discussing the possibility of a program called Camouflage 
potentially installing a backdoor on their systems.  The particular post in Figure 
11 describes the purpose of the Camouflage software.  In short, it appears that 
the Camouflage software is a steganography tool and CamShell.dll is a 
component of the Camouflage software.  Steganography is defined as the 
practice of hiding information by embedding messages within other seemingly 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 18 of 88

harmless messages (http://www.webopedia.com/TERM/S/steganography.html).”

Figure 11

Figure 12, below, provides the specific name, called Camouflage, of the 
software that contains the CamShell.dll.  Since camouflage was found in my 
strings analysis of the CamShell.dll, I next performed a Google search using 
“camouflage software” as the keywords for the query.  The results are shown in 
Figure 13.

Figure 12



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 19 of 88

Figure 13

The third link shown in Figure 13 was used to successfully confirm the 
purpose of the Camouflage software as described in the user forum posts 
shown in Figures 11 & 12.  Figure 14, below, shows the website with the 
information regarding the functionality of Camouflage.  At this point I had a good 
idea of how the CamShell.dll might be used; however, further analysis of the 
Camouflage software and a direct correlation between the software and our DLL 
needed to be made.  To continue my analysis, I downloaded the Camouflage 
V1.2.1 software from the site shown in Figure 14. 

Using a test system running Microsoft Windows XP Professional, I 
installed the Camouflage software.  Upon completion of the installation, I 
inspected the C:\Program Files\Camouflage directory, which is where the 
software was installed by default.  Figure 15, below, shows the contents of the 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 20 of 88

directory. 
Figure 14

Immediately, the presence of a file named CamShell.dll stood out.  Given 
that the floppy disk had a deleted file with the same name, knowing the 
background information regarding the recent developments at Ballard Industries, 
understanding the function of the Camouflage software, and having two
unusually large Microsoft Word documents left to investigate, the potential for 
hidden files within the image was probable.  Nevertheless, to finish the analysis 
of the CamShell.dll file, a direct connection needed to be established.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 21 of 88

Figure 15

The first direct correlation, as illustrated in Figures 4 and 15, is that both 
CamShell.dll files have the exact same file modification timestamp.  Thus, the 
probability that these files are one in the same is high.  To establish further 
proof, I compared the CamShell.dll file recovered from the floppy disk image to 
the one installed by the Camouflage software.  Figures 8, above, illustrated the 
fact that the recovered CamShell.dll file had the HTML code from the _ndex.htm 
file overwritten where the file header normally would be.  As such, I used 
khexedit, a hexadecimal editor for Unix, to identify the size of the _ndex.htm file.  
I determined, based on looking at the _ndex.htm file in khexedit, that the end of 
the file is located at the hexadecimal offset of 0000:02d6.  This information 
allowed me to get the exact location of the HTML code within the recovered 
CamShell.dll file and remove it from the file.  To achieve this goal, I then opened 
the recovered CamShell.dll file using khexedit and, using the hexadecimal 
offset determined from the _ndex.htm file, deleted everything in the recovered 
CamShell.dll files prior to the 0000:02d6 offset, thus effectively removing the 
HTML code.  My next goal was to copy the same amount of data, deleted in the 
previous step, from the new CamShell.dll file installed by Camouflage.  To 
achieve this task, I opened the new CamShell.dll and copied all of the 
hexadecimal values from the beginning of the file to the 0000:02d6 offset and 
inserted it into the beginning of the recovered CamShell.dll.  Using the same 
forensic theory as earlier, if the 2 files are identical, they should then have the 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 22 of 88

same MD5 fingerprint.  Figure 16, below, confirms that MD5 fingerprints did 
indeed match.  Thus, considering the identical last modification date timestamp 
and the MD5 fingerprint, I was able to prove that the two CamShell.dll files are in 
fact one in the same.  Furthermore, referring back to the timeline illustrated in 
Figure 5, the program was accessed last on April 26, 2004, which is the same 
day the disk was seized.  

Figure 16

My investigation so far has linked the floppy disk to Mr. Leszczynski using 
the floppy disk volume label, has recovered two deleted files, and has 
successfully established the origin and potential functionality of the previously 
unknown program DLL.  Given that the program DLL CamShell.dll is part of a 
steganography program named Camouflage, and that there are two abnormally 
large Microsoft Word documents, my investigation began to focus on analyzing 
these documents.

As was the case in earlier steps of the analysis, I used the Unix
command strings to perform an evaluation of the files 
a:\Remote_Access_Policy.doc and a:\Password_Policy.doc.  Figure 17, below, 
provides a critical portion of the a:\Remote_Access_Policy.doc Strings Report.

Figure 17: a:\Remote_Access_Policy.doc Strings Report
--------------------------------------------------------------

CONTENT

Normal.d
Microsoft Word 10.0
Ballard
Cisco Systems, Inc.
Remote Access Policy   
Title
Microsoft Word Document
MSWordDoc
Word.Document.8
Remote Access Policy   
Normal.dot
Microsoft Word 10.0
Ballard
O6pQ
gW^b!



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 23 of 88

)AqXSh]
"`LJ
\N> )x)
NNVs
ZKfqjj
(J$?
nQh`n
;pt]`

--------------------------------------------------------------

Previous experience in investigating the format of Microsoft Word 
documents has taught me that at the end of all Microsoft Word documents there 
is registration information that was provided during the installation of the 
software.  As expected, the files analyzed contained the normal information 
such as company name (Ballard), the application version of Microsoft Word 
(Microsoft Word 10.0) and other miscellaneous information.  However, after the 
last Ballard and for several pages of the report, a significant amount of 
scrambled (perhaps compressed or encrypted data) is present.  Based on the 
information already established, this indicated that it was very likely that the file 
contains an embedded file of some sort.  Given this information, I then 
performed a Strings Report on the other five remaining Microsoft Word 
Documents.  The result of this analysis identified the presence of additional data 
contained within three of the Word documents contained on the floppy disk.  
The files in question are the original two I noted from the timeline analysis 
(a:\Remote_Access_Policy.doc and a:\Password_Policy.doc), and one 
additional file (a:\Internal_Lab_Security_Policy.doc).

Being unfamiliar with the Camouflage software, I then revisited some of 
the links Google provided earlier in Figure 13.  The last link illustrated in Figure 
13 was to the link www.sans.org/rr/papers/20/762.pdf.  This link was to a 
document entitled Stegonagraphy: The Ease of Camouflage written by John 
Bartlett in March of 2002.  Contained with the document was a basic step-by-
step process for “camouflaging” and “uncamouflaging” files with the Camouflage 
software.  Additionally, valuable information was documented regarding how to 
determine if the Camouflage software has ever been installed and what, if any, 
files have been “camouflaged” or “uncamouflaged” using the software.  For now 
I was only interested in learning how to use the software.  Nevertheless, the 
information on detection will be revisited later.

In short, the Camouflage software’s function is to take a file, of ANY type, 
and embed another file of ANY type within it.  To do this, the software simply 
adds the file to be hidden at the end of the normal file.  As such, the application 
that uses the normal file is unaware of the hidden files existence as the file 
headers and format remain in tact.  The only indication of the file being altered is 
that the size of the file is reported as the true size which includes the hidden file.

Using the information learned from Mr. Bartlett’s timely paper, I attempted 
to “uncamouflage” the a:\Remote_Access_Policy.doc file.  The process was as 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 24 of 88

easy as right clicking on the desired file from within Windows Explorer.  This 
action resulted in the menu appearing that is depicted in Figure 18 below.   

Figure 18

I then selected the “Uncamouflage” option and was presented with the 
option window shown below in Figure 19.

Figure 19

Having not found any indication of a password thus far, I attempted to 
guess the password using best guesses from information surrounding the 
investigation and other commonly used passwords, including a blank password.  
Figure 20 shows the response for an invalid password and Figure 21 shows the 
error message received when attempting a blank password.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 25 of 88

Figure 20  

Figure 21

After several unsuccessful attempts at guessing the password for the 
a:\Remote_Access_Policy.doc, I attempted the same approach on the other two 
files.  When I used a blank password on the 
a:\Internal_Lab_Security_Policy.doc the window in Figure 22 appeared.

Figure 22

The window indicated that the file Opportunity.txt had been 
“Camouflaged” into the file Internal_Lab_Security_Policy.doc.  I then selected 
the Opportunity.txt file and clicked next.  The window shown in Figure 23 then 
appeared.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 26 of 88

Figure 23

I selected the appropriate directory to extract the file to and completed the 
task by selecting the “Finish” button.  Figure 24 show the contents of the 
recovered Opportunity.txt file.

Figure 24

The Opportunity.txt file speaks for itself, however, it alludes to the “latest 
schematics” being available and provides the clue “First Name.” Additionally it 
indicates that this is not the first occurrence of releasing confidential information 
as it states “more information” is available for a price.  Being that I had already 
tried the password Robert in various configurations, I inferred that it may have to 
do with the first name of the file.  I then retried entering the passwords for the 
a:\Remote_Access_Policy.doc and a:\Password_Policy.doc documents using 
the “First Name” of the file.  Figures 25 and 26 illustrate that my deduction was 
correct.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 27 of 88

Figure 25

Figure 26

While it was obvious that I had discovered the intent of the files and the 
capability of the CamShell.dll, one additional confirmation was identified.  
Earlier I reported that the recovered CamShell.dll and the new one installed by 
Camoulfage were identical using MD5 fingerprints and that the modified 
timestamps were also identical.  Figures 25 and 26, above, further strengthen 
that conclusion in that the Camouflage program indicates that the files were 
“created with Camouflage v1.2.1”.” Thus, another method of proof that I have 
matching versions of software has been determined. 

Figures 25 and 26 indicate the presence of four “camouflaged” files.  
Using the same process as before, I then “uncamouflaged” the files for further 
review.  Figures 27 through 30 illustrate three proprietary drawings and a portion 
of a customer database that were “camouflaged” into Microsoft Word 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 28 of 88

documents.

Figure 27

Figure 28



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 29 of 88

Figure 29

Figure 30

EXAMINATION CONCLUSION:

ACME Security Services, Inc. performed a comprehensive forensic 
analysis of a floppy disk for Ballard Industries.  The intent of the analysis was to 
determine the contents of the floppy disk and establish how it may have been 
used.  The following bullet points summarize the findings:



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 30 of 88

The floppy disk was formatted on a Windows operating system and had a •
disk volume label of RJL.  The same initials as the individual (Robert J. 
Leszczynski) the disk was seized from.
Two deleted files on the floppy disk were recovered.  The CamShell.dll •
file was determined to be a dynamic link library for an application called 
Camouflage V1.2.1 that is used to hide a file within another file using a 
technique called steganography.
Three files were confirmed to have hidden files embedded within.  The •
files recovered included two proprietary Ballard fuel cell design 
schematics, one proprietary Ballard fuel cell design document, a portion 
of the Ballard customer database, and a text document soliciting 5 million 
dollars in exchange for proprietary Ballard information signed by Mr. 
Robert J. Leszczynski.

Based on these findings, it appears that Mr. Robert J. Leszczynski has, in 
the past, successfully obtained and disclosed proprietary Ballard Industries 
information.  Considering the contents and the associated changed timestamps, 
it appears that Mr. Robert J. Leszczynski was intending to disclose additional 
information, including drawings and portions of a customer database to the 
same entity as before.  While it is clear that Mr. Robert J. Leszczynski was 
successful at removing such information from Ballard Industries in the past, 
based on the information provided by Mr. Keen regarding that date and time the 
disk was seized, it is unlikely the information on this disk was successfully 
disclosed using the floppy disk.  Figure 5 illustrates that the three files 
containing the proprietary information had last access timestamps of Monday, 
April 26, 2004 at 00:00:00.  This indicates that the files were not accessed on 
the floppy disk once they were saved there.  While this eliminates the likelihood 
of the information being disclosed via the floppy disk, it doesn’t preclude the 
possibility that the information was transmitted via some other means. 

As mentioned earlier, John Bartlett has written a comprehensive document 
entitled “Steganography: The Ease of Camouflage.” This document, provided at 
www.sans.org/rr/papers/20/762.pdf, provides a basic step-by-step tutorial on 
how to use the Camouflage software that was discovered during this analysis.  
In addition, the document provides specific information on how to determine if 
the Camouflage software is or has been installed on a computer system.  
Specifically, Mr. Bartlett reports that the Camouflage software, even if 
uninstalled, keeps a record of every file that has been “camouflaged” and 
“uncamouflaged” within the Windows registry.  I would suggest that a 
comprehensive analysis be performed on all of the systems that Mr.  
Leszczynski has had access to.  The analysis should focus on looking for the 
presence of the Camouflage software and evaluating the registries of those 
machines to develop a comprehensive list of the information that may have been 
disclosed. Additional analysis may help to determine if the information may 
have been transmitted via a different mechanism.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 31 of 88

In addition, considering the magnitude of the possible damages caused to 
Ballard Industries, law enforcement should be engaged when appropriate, and 
legal action could certainly be pursued.  While ACME Security Services Inc. can 
not provide legal advice, it is possible that the following laws, in addition to 
others, may have been broken:

The Federal Computer Fraud & Abuse Act•
18 U.S.C. §1030(a)(2) & (c)(2)(B)(i)-(ii)

Criminal Copyright Laws Violations•
18 U.S.C. 2319 & 17 U.S.C. 506a

Criminal Trade Secrets Violations•
18 U.S.C. 1831, 1832

Furthermore, in my experience, these laws typically require a loss of $5,000 or 
more to meet the minimum damage requirement. As such, Ballard Industries 
has likely experienced a loss significantly greater than the minimum 
requirement.

  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 32 of 88

REPORT APPENDIX



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 33 of 88

APPENDIX A-1

Autopsy string Report

--------------------------------------------------------------
GENERAL INFORMATION

File: a:\/_ndex.htm
MD5 of recovered file: 17282ea308940c530a86d07215473c79
SHA-1 of recovered file: a6d082e1caf590ae8c08a1017178bebdfa78cf3d
MD5 of ASCII strings: 0b8511be3a323360dba213413132a39d
SHA-1 of ASCII strings: f26bf2c1d87837cd7930c409f2f77d52fa18dbb3

Image: /forensics/fl-260404-RJL1/fl-260404-RJL1/images/v1_5.gz
Image Type: fat12

Date Generated: Sat Oct 23 11:52:59 2004
Investigator: JamesPerry

--------------------------------------------------------------
META DATA INFORMATION

Directory Entry: 28
Not Allocated
File Attributes: File, Archive
Size: 727
Num of links: 0
Name: _ndex.htm

Directory Entry Times:
Written: Fri Apr 23 10:53:56 2004
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:47:36 2004

Sectors:
33 

Recovery:
33 34 

File Type: HTML document text

--------------------------------------------------------------
CONTENT

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html;  charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">
<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 34 of 88

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,
0,0,0"

WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality VALUE=high> 

<PARAM NAME=bgcolor VALUE=#CCCCCC> <EMBED src="ballard.swf" quality=high 
bgcolor=#CCCCCC  WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""

TYPE="application/x-shockwave-flash" 
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>

</OBJECT>
</center>
</BODY>
</HTML>

--------------------------------------------------------------
VERSION INFORMATION

Autopsy Version: 2.03
The Sleuth Kit Version: 1.72



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 35 of 88

APPENDIX A-2

Autopsy string Report

--------------------------------------------------------------
GENERAL INFORMATION

File: a:\/CamShell.dll (_AMSHELL.DLL)
MD5 of recovered file: 6462fb3acca0301e52fc4ffa4ea5eff8
SHA-1 of recovered file: 3aa22c20039a7fa2d357888f6416a35fb0f0ee73
MD5 of ASCII strings: f5b147de128821842e8fa2d9f2980211
SHA-1 of ASCII strings: 93acce94a2d38f3bb32625bbb91928d4b426b751

Image: /forensics/fl-260404-RJL1/fl-260404-RJL1/images/v1_5.gz
Image Type: fat12

Date Generated: Sat Oct 23 11:48:50 2004
Investigator: JamesPerry

--------------------------------------------------------------
META DATA INFORMATION

Directory Entry: 5
Not Allocated
File Attributes: File, Archive
Size: 36864
Num of links: 0
Name: _AMSHELL.DLL

Directory Entry Times:
Written: Sat Feb  3 19:44:16 2001
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:46:18 2004

Sectors:
33 

Recovery:
33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 
49 50 51 52 53 54 55 56 
57 58 59 60 61 62 63 64 
65 66 67 68 69 70 71 72 
73 74 75 76 77 78 79 80 
81 82 83 84 85 86 87 88 
89 90 91 92 93 94 95 96 
97 98 99 100 101 102 103 104 

File Type: HTML document text

--------------------------------------------------------------
CONTENT



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 36 of 88

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html;  charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">
<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,
0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality VALUE=high> <PARAM 

NAME=bgcolor VALUE=#CCCCCC> <EMBED src="ballard.swf" quality=high bgcolor=#CCCCCC  
WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash" 

PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>
</OBJECT>
</center>
</BODY>
</HTML>
ll\SheCamouflageShell
ShellExt
VB5!
CamShell
BitmapShellMenu
CamouflageShell
CamouflageShell
Shell_Declares
Shell_Functions
ShellExt
modShellRegistry
kernel32
lstrcpyA
lstrlenA
ole32.dll
CLSIDFromProgID
StringFromGUID2
ReleaseStgMedium
shell32.dll
DragQueryFileA
RtlMoveMemory
VirtualProtect
gdi32
CreateICA
GetTextMetricsA
CreateCompatibleDC
DeleteDC
GetObjectA
CreateBitmapIndirect
SelectObject
StretchBlt
DeleteObject



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 37 of 88

FindResourceA
advapi32.dll
user32
LoadBitmapA
LoadResource
advapi32
RegQueryValueExA
ModifyMenuA
InsertMenuA
SetMenuItemBitmaps
LoadLibraryA
SystemParametersInfoA
GetFullPathNameA
RegOpenKeyExA
RegCloseKey
__vbaI4Var
VBA6.DLL
__vbaCopyBytes
__vbaFreeStrList
__vbaFreeObj
__vbaCastObj
__vbaLateIdCallLd
__vbaHresultCheckObj
__vbaI2I4
__vbaNew2
7__vbaObjSet
__vbaStrCmp
__vbaStrVarVal
IContextMenu_QueryContextMenu
__vbaBoolVar
__vbaObjSetAddref
__vbaAptOffset
__vbaAryDestruct
IShellExtInit_Initialize
__vbaStrVarCopy
__vbaAryUnlock
__vbaGenerateBoundsError
__vbaAryLock
IContextMenu
__vbaStr2Vec
__vbaAryMove
__vbaStrCat
__vbaStrToUnicode
__vbaFreeVar
F__vbaStrVarMove
__vbaStrMove
__vbaStrCopy
__vbaErrorOverflow
__vbaFreeStr
__vbaSetSystemError
__vbaStrToAnsi
Class
C:\WINDOWS\SYSTEM\MSVBVM60.DLL\3
VBRUN



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 38 of 88

FIShellExtInit
C:\My Documents\VB Programs\Camouflage\Shell\IctxMenu.tlb
IContextMenu_TLB
IContextMenu_GetCommandString
IContextMenu_InvokeCommand
__vbaRedim
__vbaUbound
__vbaVar2Vec
__vbaRecDestruct
__vbaLsetFixstr
__vbaLsetFixstrFree
__vbaLenBstr
__vbaFreeVarList
__vbaFixstrConstruct
__vbaVarTstEq
__vbaVarMove
__vbaVarCopy
__vbaVarDup
7m_szFile
IContextMenu
IShellExtInit
pidlFolder
lpdobj
hKeyProgID
hMenu
indexMenu
idCmdFirst
idCmdLast
uFlags
idCmd
pwReserved
pszName
cchMax
lpcmi
pVfk
pIVR
Pj@j
L$ j
7hd(
7hd(
7hd(
Sh|)
j4hl)
7PWh
Qh<)
Vh|)
j4hl)
WPQj
B4Ph(.
PQWWR
`SVW
Ph .
Ph .
Vh|)



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 39 of 88

Vh|)
Ph .
t 9u
PVQR
MSVBVM60.DLL
_CIcos
_adj_fptan
__vbaVarMove
__vbaFreeVar
__vbaAryMove
__vbaLenBstr
__vbaStrVarMove
__vbaAptOffset
__vbaFreeVarList
_adj_fdiv_m64
_adj_fprem1
__vbaCopyBytes
__vbaStrCat
__vbaLsetFixstr
__vbaRecDestruct
__vbaSetSystemError
__vbaHresultCheckObj
_adj_fdiv_m32
__vbaAryDestruct
EVENT_SINK2_Release
__vbaObjSet
_adj_fdiv_m16i
__vbaObjSetAddref
_adj_fdivr_m16i
__vbaBoolVar
_CIsin
__vbaChkstk
EVENT_SINK_AddRef
__vbaGenerateBoundsError
__vbaStrCmp
__vbaVarTstEq
__vbaI2I4
DllFunctionCall
_adj_fpatan
__vbaFixstrConstruct
__vbaLateIdCallLd
__vbaRedim
EVENT_SINK_Release
_CIsqrt
EVENT_SINK_QueryInterface
__vbaStr2Vec
__vbaExceptHandler
__vbaStrToUnicode
_adj_fprem
_adj_fdivr_m64
__vbaFPException
__vbaUbound
__vbaStrVarVal
__vbaLsetFixstrFree



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 40 of 88

_CIlog
__vbaErrorOverflow
__vbaVar2Vec
__vbaNew2
_adj_fdiv_m32i
_adj_fdivr_m32i
__vbaStrCopy
EVENT_SINK2_AddRef
__vbaFreeStrList
_adj_fdivr_m32
_adj_fdiv_r
__vbaI4Var
__vbaAryLock
__vbaVarDup
__vbaStrToAnsi
__vbaVarCopy
_CIatan
__vbaStrMove
__vbaCastObj
__vbaStrVarCopy
_allmul
_CItan
__vbaAryUnlock
_CIexp
__vbaFreeStr
__vbaFreeObj
CamShell.dll
DllCanUnloadNow
DllGetClassObject
DllRegisterServer
DllUnregisterServer
_|:cu
_|:cu
_|:cu
_|:cu
_|:cu
_|:cu
_|:cu
_|:cu
_|:cu
DDDDDD@
DDDDDD@
DDDDDD@
DDDDDD@
"%R%
MSFT
stdole2.tlbWWW
IctxMenu.tlbWW
1CamouflageShellW
_ShellExtWWWd
_ShellExt
m_szFile
2$2*20262<2B2H2N2T2Z2`2f2l2r2x2~2
3 3&3,32383>3D3J3P3V3\3b3h3n3t3z3



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 41 of 88

4"4(4.444:4@4F4L4R4Z4_4 54585P5X5l5p5x5
5@6T6X6`6p6
7 7(70787@7H7P7X7`7h7p7x7
8 8(80888D8H8T8X8\8h8x8
9 9$9(9,9<9@9D9H9L9P9p9t9x9|9
:0<<<@<L<h<x<
=$=,=4=T=X=\=`=
?8?<?D?Q?\?a?
0$0(000=0H0M0|0
1%10151\1`1h1u1
2D2H2P2]2h2m2
3 3$3,393D3I3d3h3p3}3
4!4,414X4\4d4q4|4
5 5%5@5D5L5Y5d5i5
6$616<6A6h6l6t6
8,80888E8P8U8
9L:P:$<4<8<<<
0 0,04080<0@0D0H0L0P0T0X0d0h0l0p0t0
1(1P1l1
2 2$2(2,2024282<2@2(3
4#454:4`4k4
4%5,5<5E5]5r5
6#6,626F6L6V6\6o6
717G7j7~7
8!8A8K8f8n8s8{8
929G9h9x9
:q:e;
< <+<@<H<_<g<p<
= =(=C=I=Y=j=}=
=^>s>}>
?!?=?E?N?o?u?
0 020H0u0
1(1C1J1`1r1{1
2I2N2U2`2
2-3>3E3Y3o3
4#4-484P4V4
5%5B5`5o5y5
5"606>6G6R6X6n6|6
7$7:7`7d7h7l7p7t7x7|7
868L8e8o8u8
9Q9b9
:':-:F:N:j:r:
: ;+;>;D;N;T;m;u;
<0<R<n<
=#=4=w=
>$>*>=>H>
?"?F?O?_?
0B0b0m0y0
101A1f1w1
2/2?2R2W2h2r2
3 3$3(3.3

--------------------------------------------------------------
VERSION INFORMATION



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 42 of 88

Autopsy Version: 2.03
The Sleuth Kit Version: 1.72



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 43 of 88

Part One References:

1.) “Computer Hardware, Information about computer floppy drives”, URL:
http://www.computerhope.com/help/floppy.htm (22October, 2004).

2.)  TheFreeDictionary.com by Farlex.  “DD (Unix)”, URL:
http://encyclopedia.thefreedictionary.com/Dd%20(Unix) (23October, 2004).

3.)  Rivest, Ronald. “RFC 1321: The MD5 Message-Digest Algorithm”, URL:
http://www.ietf.org/rfc/rfc1321.txt (23October, 2004).

4.)  “MD5, Message-Digest Algorithm”, URL:
http://www.networksorcery.com/enp/data/md5.htm (23October, 2004).

5.)  “Autopsy Forensic Browser: Description”, URL:
http://www.sleuthkit.org/autopsy/desc.php (24October, 2004).

6.) “Definitions of DLL on the Web:”, URL:
http://www.google.com/search?hl=en&lr=&oi=defmore&q=define:DLL
(24 October, 2004).

7.) “Guide to Internet Terms: A Glossary – HTML”, URL:
http://www.getnetwise.org/glossary.php#H (24 October, 2004).

8.) “Linux / Unix Commands: strings”,
http://Linux.about.com/library/cmd/blcmdl_strings.htm (25 October, 2004).

9.) “What is steganography? – A Word Definition From the Webopedia Computer 
Dictionary”, URL:
http://www.webopedia.com/TERM/S/steganography.html (27October, 2004).

10.) Bartlett, John.  “Ease of Steganography and Camouflage”, URL:
www.sans.org/rr/papers/20/762.pdf (27October, 2004).

Mandia, Kevin and Prosise, Chris.  Incident Response: Investigating Computer 11.)
Crime, Berkeley, California Osbourne/McGraw-Hill 2001.

SANS Institute.  Track 8 – Systems Forensics, Investigation & Response:   12.)
Forensic Methodology Illustrated using Linux, Part 1 and 2, 2004.

SANS Institute.  Track 8 – Systems Forensics, Investigation & Response:   13.)
Windows 2000/XP & NTFS Filesystem Forensics, 2004.

SANS Institute.  Track 8 – Systems Forensics, Investigation & Response:   14.)
Computer Crime Law & Best Practices: Managerial and Legal Issues, 2004.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 44 of 88

PART TWO:  
Option 2 - Perform Forensic

Tool Validation



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 45 of 88

Forensic Tool Validation of:
Compromised Computer Inventory System (CCIS)

Developed by: James D. Perry II 
GCFA Certification Candidate

EXECUTIVE SUMMARY:

It was in August of 2004 that I truly discovered the value and importance 
of incident response plans and the necessary tools to execute them.  As a 
security analyst with a major research university, I had grown accustom to the 
weekly discovery of one or two compromised computer systems.  On occasion, 
a compromise of significant impact would occur; however, the far majority of 
compromised systems were the run-of-the-mill hacker looking to take advantage 
of the massive storage capabilities of the typical university system; not to 
mention our 622Mbit/sec OC-12 Internet connection.  

Past compromises of significance had taught me that, in general, the 
university was not prepared to respond to major incidents.  First, the university 
lacked an official incident response plan that provided the necessary authority 
for the Information Security Office (ISO); which is the office I work for; to respond 
to compromised systems in a manner that was forensically sound.  Second, the 
university’s Office of General Council and campus police had traditionally 
appeared uninterested in pursuing legal action against attackers when possible.   
Third, while the university had invested in firewalls, intrusion 
detection/prevention systems, vulnerability assessment tools, etc.; little had 
been invested in forensic analysis tools.  Fourth, the current security personnel 
had little training on the handling of evidence, forensic analysis, and legal 
implications regarding the incident response plan.  

To address these issues, the university named an Information Security 
Officer.  The result has been recent investments in training, acquisition of 
forensic tools, revised incident response plans, and better cooperation with the 
university’s legal council and law enforcement offices. As mentioned earlier, I 
learned the value of these improvements in August of this year.  

One otherwise normal August morning I arrived at work to discover two 
FBI agents in my office.  Let me assure you, this is never a good sign.  The 
purpose of their visit was to inform our office of a large scale international 
investigation of a particular hacker/group of hackers, and to deliver a court order 
to gather forensic data and perform a network trap and trace on the university 
systems involved.  According to the FBI, numerous university systems had been 
used as launching points by the hacker(s) to attack various government 
agencies including the Department of Defense and Department of Energy.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 46 of 88

Based on the information provided by the FBI, our office performed a 
preliminary analysis of the identified machines and determined the scope of the 
incidents could possibly include as many as 50 computer systems.  

To this point, the university had traditionally sought permission from the 
system owner to remove the computer from its physical location and bring it to 
our office for forensic duplication.  Thus, getting permission was a major 
obstacle as the system, often mission critical to the owner, would be unavailable 
for several days due to the lengthy forensic process.  Furthermore, having 5 
university campuses that are up to 375 miles apart, logistics became a major 
hurdle.  To that end, it was clear that an automated method of performing 
forensic duplication needed to be developed, especially with potentially 50 
different systems requiring forensic duplication.  

As a result, the university quickly decided to send several employees in 
the Information Security Office to obtain SANS training on intrusion detection, 
hacker techniques, and forensic analysis with the goal of devising a knowledge 
base to establish better methods of performing wide-scale detection and 
duplication of compromised system.

During the Las Vegas 2004 SANS Conference, I attended Track 8 –
System Forensics, Investigation, & Response that was taught by Rob Lee.  Over 
the course of several days, Mr. Lee presented numerous forensic tools that aid 
in performing an analysis.  However, it was apparent that there are differing 
opinions on how the forensic process should be ordered and, as a result, 
automated tools were lacking.  Given my need to automate the process of 
gathering forensic data from remote campuses up to 375 miles away, I decided 
to develop a series of shell scripts and batch files to accomplish my goal.  The 
result, as we’ll discuss in detail in the following pages, is what I have called the 
“Compromised Computer Inventory System (CCIS).”  

SCOPE:

The scope of this project was to develop an automated method to send 
forensic data over a TCP/IP network from a compromised system to a forensic 
workstation.  By automated I mean an easy to use tool that could conceivably be 
emailed to a remote administrator or employee, and with little direction, could be 
used to facilitate the collection of forensic data.  As such, the following goals 
were established:

Provide an automated script, for both Microsoft Windows and •
various Unix/Linux operating systems, to be run from the 
compromised computer that performs the following:

Collects forensic information in a forensically sound mannero
Uses trusted binary files for the collection of informationo
Provides a mechanism for remote command executiono



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 47 of 88

Redirects all gathered data to a remote forensic workstationo
Provide an automated script to be run from a forensic workstation •
that performs the following:

Collects forensic data from compromised system and saveso
the data to a user specified location
Processes the hard drive/mount information to automate the o
process of performing forensic duplication
Provides a mechanism to collect forensic disk images using o
logical partitions or physical drives

To complicate matters, it should be noted (before a critique of my scripts 
are performed) that I have no scripting/programming experience.  Unless, of 
course, you want to count the introduction to programming course I took in 
college back in 1994.  As such, as a side benefit to developing these automated 
scripts, I am better prepared to automate several of the routine functions I 
perform in the future. To some this may seem like a trivial task.  Nevertheless, 
given my lack of programming experience and limited Linux/Unix knowledge, I 
would suspect that many other forensic analysts’ could benefit from such a tool, 
thus, my motivation in developing the tool. 

The testing methodology will include the execution of the completed 
scripts on several “compromised” systems.  Under normal circumstances, an 
MD5 “fingerprint” would be calculated on the compromised system prior to 
collecting forensic data. Professor Ronald L. Rivest of MIT created the MD5 
algorithm to take an input file of arbitrary length, process the file through an 
algorithm, outlined in RFC 1321, to create a 128-bit “fingerprint.”  

As stated at http://www.networksorcery.com/enp/data/md5.htm  “it is 
conjectured that it is computationally infeasible to product two [different] 
messages having the same” fingerprint.  Because of this fact, MD5 fingerprints 
are used as a reliable method to insure that the contents of a file have not 
changed.  Thus, if a MD5 fingerprint is created for the data prior to executing 
the script and sending it over the network, and again created on the forensic 
workstation after the data is transferred, the two resulting “fingerprints” should 
be identical.  

Unfortunately, in the real world this practice isn’t always possible.  A 
majority of the compromised systems we investigate are defined as mission 
critical and are usually a production system of some sort.  After all, forensic 
investigation of a compromised system is usually only performed on high profile 
systems or those that have protected information stored such as Social Security 
Numbers, student records, and the like.  Thus, forensic duplication is usually 
performed on live systems.  As such, it should be noted that, since the collection 
is taking place on a live system with an active network connection, it should be 
understood that that the system’s data is dynamic.  Network connections, 
process information, modified, access, and changed timestamps (called MAC 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 48 of 88

times), memory contents, etc. will all likely change.  Furthermore, considering 
that a majority of the systems being imaged are servers, a normal image is 
easily 200GB or more. Thus, imaging a drive over the network takes several 
hours, sometimes days.  Therefore, it is almost certain that system data will be 
different, thus rendering the MD5 fingerprint useless.  Nevertheless, once the
data has been collected, an MD5 fingerprint is useful to insure that the data was 
not modified as part of the investigation.  

Since the purpose of this forensic tool is to merely automate the usage of 
open source forensic tools, it is assumed that the tools used, listed later, are
forensically sound.  As a precaution, the utilized tools will all be executed from a 
trusted CDROM that was created using many of the tools provided on the Track 
8 CD from SANS in addition to a few others as outlined later.

TOOL DESCRIPTION:

The Compromised Computer Inventory System (CCIS) was developed to 
automate the collection of forensic data from a compromised system using 
industry best practices and open source tools.  It helps the forensic investigator 
by providing a simple configurable framework using scripts to send/collect data 
in a forensically sound manner, using a specific sequence, over a standard 
TCP/IP network.  

Figure 1: System Overview



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 49 of 88

Figure 1, above, provides a high-level overview of the general design of 
the system.  There are subtle differences between the methods used for 
Unix/Linux systems versus Microsoft Windows systems; however, the same 
mechanisms are utilized.  Nevertheless, the tool will be demonstrated first using 
Linux and then again using Windows. 

Linux Step One: Script Execution on Forensic Server

The Compromised Computer Inventory System contains two main script 
components:  a script named ccis_collector that runs on the forensic evidence 
collection server and another called ccis_sender that is to be run on a 
compromised system.  As the names indicate, one collects and the other sends 
evidence.  The complete scripts are located in Appendix A through C.  
Nevertheless, excerpts are located throughout this document as necessary.

The ccis_collector script is the major element to the system.  It is 
responsible for accepting initial input options from the forensic analyst and for 
launching several Netcat listeners to collect data from the compromised system 
and redirect it to a file with a specific name.

Figure 2, below, provides an overview of the commands executed in the 
first phase of the script.  Line numbers have been added to the figure for 
readability.  Line 1 of the script launches a bourne shell and feeds the remainder 
of the commands within the script to the newly created shell as standard input.  
Line 2 prompts the user to enter the type of system that forensic data will be 
collected from.  At present the system has been developed for Unix/Linux and 
Windows systems, additional Operating Systems could be added as necessary.  
Again, we will be looking at the Unix/Linux process separately from Windows. 
Line 3 reads in the data typed by the analyst and saves it to a variable named 
remote_os.  Line 4 checks to see if the remote_os variable is equal to Unix.  If 
so, lines 5 through 16 will be executed, otherwise, the system bypasses these 
commands.  Line 5 prints a blank line to standard out.  This is used to make the 
screen output more readable.  Line 6 prompts the user for the IP address of the 
remote computer, the compromised system, and line 7 saves the information to 
a new variable named remote_ip.  Next, line 9 asks the user to enter the location 
where the collected forensic data should be stored and line 10 saves the 
location information to a variable named save_to.  Lines 11 through 21 launches
a series of Netcat listeners, described in the next paragraph, that only allow 
connections from the machine IP address saved in the remote_ip variable and 
writes the received input to the location specified in the save_to variable using a 
specific file name.  The “&” at the end of each line launches the service and runs 
it in the background.  This allows the script to continue processing, otherwise, 
line 12 would not execute until the process in line 11 finished.  Line 22 and 23 is 
used to force the script to pause which signifies the end of step one.  Step two 
and beyond hinge on information that is collected in lines 11 through 21.  
Therefore, once this data has been collected, the user enters “go” and the script 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 50 of 88

continues.  

As mentioned above, Netcat is used to collect data from the remote 
computer.  According to the GNU Netcat Project webpage, the variation used in 
all of the Linux testing for these scripts, “Netcat is a featured networking utility 
which reads and writes data across network connections, using the TCP/IP 
protocol.  It is designed to be a reliable “back-end” tool that can be used directly 
or easily driven by other programs and scripts.” The CCIS scripts rely on Netcat
to provide the network layer functionality for sending/receiving forensic data.  
The command syntax used in figure 2 is nc –l –p {port number} {hostname or ip} 
where “-l” tells Netcat to listen on “-p {port_number}” for inbound connections 
from “{hostname or ip}.” The “>” symbol instructs Netcat to redirect the received 
data into a file as specified by the save_to/{filename} data commands.  
Additional information about Netcat can be found at 
http://Netcat.sourceforge.net/.

Figure 2: ccis_collector script excerpt

1 #!/bin/sh
2 echo -n What operating system is the remote computer '(Unix / windows)':" "
3 read remote_os
4 if [ $remote_os = "Unix" ]; then
5 echo
6 echo -n What is the IP address for the remote computer:" "
7 read remote_ip
8    echo
9 echo -n Where do you want the data stored:" "
10 read save_to
11  nc -l -p 221 $remote_ip > ${save_to}/memdump.img &
12 nc -l -p 222 $remote_ip > ${save_to}/mactimes.info &
13 nc -l -p 223 $remote_ip > ${save_to}/lsof_process.info &
14 nc -l -p 224 $remote_ip > ${save_to}/lsof_net.info &
15 nc -l -p 225 $remote_ip > ${save_to}/w.info &
16 nc -l -p 226 $remote_ip > ${save_to}/date.info &
17 nc -l -p 227 $remote_ip > ${save_to}/uname_a.info &
18 nc -l -p 228 $remote_ip > ${save_to}/fdisk.info &
19 nc -l -p 229 $remote_ip > ${save_to}/mount.info &
20 nc -l -p 230 $remote_ip > ${save_to}/trusted.info &
21 nc -l -p 231 $remote_ip > ${save_to}/forensic.info &
22 echo -n When the remote computer has transmitted the data, type "go":" "
23 read go

In my particular case, a dedicated machine has been configured 
specifically for forensic analysis.  As such, all of the required software tools 
utilized in the script have been installed and are found in the system path.  
Nevertheless, one could modify the script to execute the server side programs 
using a specific location such as a CDROM.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 51 of 88

In order for the ccis_collector script to be executed, the default file 
permissions must be modified.  Figure 3, below, illustrates the required 
command to allow the script to be executable.  Essentially, this allows the read, 
write, and execute permission for root (the first #7).  In addition it sets the group 
and user permissions to read and execute the script. 

Figure 3: Setting the file permissions to allow execution

Figure 4, below, provides a sample of what the normal output would look 
like while performing forensic duplication of a compromised Unix system.  
Again, the user is asked to indicate the type of operating system being imaged, 
the IP address of that system, and the location where the evidence will be 
stored.  Thus, Figure 4 illustrates that a Unix system with the IP address of 
192.168.1.14 is being imaged and the collected evidence will be saved to the 
/evidence directory on the forensic server.  

Figure 4 also notifies the analyst that the Netcat listeners have been 
started and specifies the TCP ports that are being used.  In this case TCP ports 
221 through 231 are being used.  Again, the used ports can be customized by 
the analyst by modifying the script.  Finally, the script prompts the user to type
go once the remote system has transmitted the initial data.  Thus,  step one of 
the system is to define a few key elements such as type of operating system, 
remote IP address, and where the data should be stored.  The script then 
launches several Netcat listeners in the background and saves the collected 
data to the specified location.  Finally, step one is complete when the script 
prompts the user to enter go.  The action of typing go should not be performed 
until step three.   



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 52 of 88

Figure 4: Normal output from the ccsi_collector script

Figure 5, below, illustrates the effects of completing step one.  First, the 
command lsof –ni | grep nc was executed in another terminal window.  The 
purpose of the lsof –ni command is to list all open files and identify the program 
and process id that opened the file.  Next, the results are piped to the grep nc
command which parses the results from lsof –ni and only outputs the lines that 
contain “nc” which is the Netcat program.  Thus, by entering lsof –ni | grep nc
one can verify that the Netcat listeners have indeed been started.  

The second command illustrated in Figure 5 is ls –l /evidence.  This 
command outputs file information for the specified file/directory including file 
sizes and names.  Thus, we see that the file names coded into the script, above 
in Figure 2, have been created and show a current size of “0.” Thus, we know 
that Netcat is listening and it has created the files it will save the collected data 
to.  At this point we are ready to move on to step two of the system which is to 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 53 of 88

execute the necessary script on the remote computer, our compromised 
system.

Figure 5: Verification that step one completed successfully

Linux Step Two: Script Execution on Compromised System

The ccis_sender script is used to facilitate the collection of forensic data 
on a compromised system.  It is responsible for accepting initial input options 
from the forensic analyst and for launching several forensic tools, in a 
predetermined order and transmit the data to the forensic server over a TCP/IP 
network, again, using  Netcat.  

The collection of forensic data must be performed in a manner that 
preserves the integrity of the evidence as much as possible.  As such, the order 
in which the script executes the forensic commands has been evaluated to 
achieve this goal.  Nevertheless, varying opinions exist regarding which actions 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 54 of 88

should be taken and in what order.  Again, the real value of using a scripted 
approach is that it can be customized to meet the needs of the individual 
analyst.  Therefore, the order of execution and underlying assumptions of the 
ccis_sender script are deliberate.

Prior to beginning step two of the process, it may be prudent to address 
how this tool is being utilized within my organization.  As a major research 
university, traditional security devices such as firewalls, intrusion 
detection/prevention systems, and anti-virus gateways have been implemented.  
Thus, 90% of the time we are able to determine that a system has been 
compromised without entering the first command on the system console.  
Furthermore, due to the number of events we encounter, we usually only 
perform forensic analysis on high-profile systems.  As a result, if a system of 
interest is compromised, we generally do not perform verification prior to 
forensic duplication as the verification process can and most likely will modify 
important data. Instead, we immediately perform forensic duplication and 
evidence collection, and then review the image to additionally verify the incident.  
To that end, the ccis_sender does not collect system logs or evaluate the 
/etc/passwd file as is normally completed in the verification process.  The 
primary goal is rather to collect the evidence with as little of impact as possible.

The ccis_sender script was written in such a way as to preserve the 
integrity of the compromised system.  Based on information provided in the 
SANS Institute Track 8 – System Forensics, Investigation & Response and that 
contained in the Incident Response: Investigating Computer Crime book written 
by Kevin Mandia and Chris Prosise, the collection of data is performed in the 
following order:

Order of Data Collection:
Memory Contents (using memdump)1.
MAC Timestamps (using mac-robber)2.
Active Process Information (using lsof)3.
Active Network Information (using lsof –ni)4.
Current System Users (using w)5.
Current System Time (using date)6.
Operating System Version (using uname –a)7.
Disk Drive Information (using fdisk –l)8.
Mount Point Information (using mount)9.

Figure 6, below, provides an overview of the commands executed in the 
ccis_sender script.  Line numbers have been added to the figure for readability.  
Line 1 of the script launches a bourne shell and feeds the remainder of the 
commands within the script to the newly created shell as standard input.  The 
first two commands, line 2 and 3, prompt the user for the location of the trusted 
binary files and then saves the response to a variable named trusted_path.  A 
forensic analyst should never trust the integrity of binary files on a compromised 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Page 55 of 88

system.  Thus, a common practice is to create a forensic response toolkit, 
usually a CDROM, with all of the software programs and utilities needed to 
analyze and collect forensic data.  As such, the script asks the user where these 
files are located.  Next, lines 5 and 6 prompts the user for the IP address of the 
forensic server where the collected data will be sent and save the input to a 
variable named forensic_ip.  Note that this MUST be the same machine that
executed the ccis_collector script in step one of the system.  Lines 8 through 
16 execute the necessary commands, located in the trusted_path location, to 
collect the forensic data and send the results to the Netcat listener at 
forensic_ip.  Special attention should be paid to line 8 and 9 as they are NOT 
started as background processes using the “&” command shell option.  Since 
line 8 is used to collect the physical memory, which is by its very nature volatile,
the complete imaged must be received prior to executing any other command.  
Otherwise later commands in the script, if run simultaneously, would modify the 
contents of memory.  Likewise, line 9 launches the utility to collect MAC times 
for the entire file system.  Again, if other processes, located later in the script, 
were executed simultaneously, the MAC timestamps for various files and 
directories would be changed.   

Line 17 and 18 uses the echo command to send what the user entered 
for the trusted_path and forensic_ip variables to the forensic server. This will be 
important in step three.  Finally, line 19 launches a Netcat listener from the 
trusted_path and uses the “-e” option to direct inbound connections to a 
command shell.  The listener is launched on TCP port 232 and will only accept 
connections from the forensic_ip. This allows the forensic server to issue 
remote commands to the compromised system in step three. This is an obvious 
security risk and should be used carefully.  Adding the IP address of the forensic 
server to the end of the Netcat command provides an added level of security by 
only allowing connections from that address.  Regardless, this functionality 
should only be enabled when needed and should closely be monitored.

Figure 6: ccis_sender script excerpt

1 #!/bin/sh
2 echo -n Enter the location of the trusted binaries "(i.e. /mnt/cdrom/Linux)":" "
3 read trusted_path
4 echo
5 echo -n Enter the IP address of the forensic workstation "(i.e. 192.168.1.13)":" "
6 read forensic_ip
7 echo
8 ${trusted_path}/memdump | ${trusted_path}/nc -c ${forensic_ip} 221 
9 ${trusted_path}/mac-robber / | ${trusted_path}/nc -c ${forensic_ip} 222
10 ${trusted_path}/lsof | ${trusted_path}/nc -c ${forensic_ip} 223 &
11 ${trusted_path}/lsof -ni | ${trusted_path}/nc -c ${forensic_ip} 224 &
12 ${trusted_path}/w | ${trusted_path}/nc -c ${forensic_ip} 225 &
13 ${trusted_path}/date | ${trusted_path}/nc -c ${forensic_ip} 226 &
14 ${trusted_path}/uname -a | ${trusted_path}/nc -c ${forensic_ip} 227 &


