
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Practical Assignment v1.5
Part One – Analyze An Unknown Image

Part Two, Option One – Perform Forensic Analysis On A System

YOU CAN RUN, BUT YOU CAN’T HIDE:
A WALKTHROUGH OF TWO COMPUTER FORENSICS CASES

PETER C. HEWITT

Submitted Thursday, November 4, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 2 of 63

Table of Contents

Abstract and Statement of Purpose 3
Grammatical and Stylistic Conventions 3

Part 1 – Analyze An Unknown Image 4
Verification 4

Overview of the Case 4
System Description 4
Evidence Collection 4

Examination Details 4
Timeline Creation and Analysis 8

Image Details 8
String Search 11

Forensic Details 11
Operating System-Specific Media Analysis 15

Program Identification 15
Data Recovery 17

Legal Implications 23
Additional Information 24

Part 2, Option 1 – Perform Forensic Analysis on a System 25
Verification 25

Synopsis of Case Facts 25
System Description 25

Describe the system(s) you will be analyzing 25
Hardware 28

Evidence Collection 28
Image Media 28

Operating System – Specific Media Analysis 30
Media Analysis of System 30

Timeline Creation and Analysis 34
Timeline Analysis 34

Data Recovery 40
Recover Deleted Files 40
String Search 42

Conclusion 43
References and Cited Works 44
Appendix A: Strings Reports of Deleted Files on Mr. Leszczynski’s Disk 45
Appendix B: IPCop Network Log for Honeypot Compromise 53
Appendix B: IPCop Network Log for Honeypot Compromise 53

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 3 of 63

Abstract and Statement of Purpose
The objectives of this paper are to fulfill the requirements of the GIAC Certified
Forensic Analyst (GCFA) Practical Assignment version 1.5. The paper is divided into
two parts, both of which involve the forensic analysis of previously unknown computer
data images, using forensically sound techniques. The first part of the paper will
involve the analysis of an unknown image provided by the SysAdmin, Audit, Network,
and Security (SANS) Institute website. The second part of the paper will show the
forensic analysis of a potentially compromised system in an unknown state. Both
examinations will utilize the forensic investigation methodology as outlined by the
GCFA course material1:

Verification1.
System Description2.
Evidence Collection3.
Timeline Creation and Analysis4.
Operating System – Specific Media Analysis5.
Data Recovery6.
String Search7.
Reporting8.

The analysis will make use of the tools taught in the GCFA class, but will not be limited
to them.

Grammatical and Stylistic Conventions
Throughout this paper, several pronouns will be used to avoid confusion between the
investigator and the (alleged) perpetrators of computer mischief. “I”, “myself” and “my”
will hereinafter refer to the author of this paper as well as the person performing the
forensic analyses. “We” will be used in situations where I assume the reader can draw
conclusions based on the information placed in front of him or her (i.e. “we can see by
the following facts that this computer has been compromised.”) “S/he”, the “assailant”,
“attacker” or “intruder” will represent the perpetrator in Part two of the paper (SANS has
supplied fictitious names for the players in the Part One analysis.)

To enhance the readability of this paper, the following stylistic conventions will be
used:

My analysis and comments will appear in 12-point Arial type.•
File and program names will appear in “quotes” the first time they are •
mentioned.
System commands will appear in Courier New.•
Machine responses to these commands will appear in Bold •
Courier New.
Reproduced screenshots will contain their own fonts that may vary from the •
above.
External IP addresses will be obfuscated to protect their real-life assignments.•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 4 of 63

Part 1 – Analyze An Unknown Image
Verification
Overview of the Case
In the fictitious scenario for Part One of this paper, I have been asked to analyze a
floppy disk image by the security administrator of Ballard Industries, David Keen.
Ballard designs and produces fuel cell batteries, and has recently come to suspect that
its proprietary information, including customer lists, were given to one of its major
competitors, Rift Inc. The floppy disk was seized from Ballard’s lead process control
engineer, Robert John Leszczynski, Jr., as he left the office on 26 April 2004. My
charge from Mr. Keen is to analyze the image obtained from the floppy disk, determine
what is on the disk and how it might have been used by Mr. Leszczynski, and provide a
report stating what information, if any, had been compromised and how to determine if
Mr. Leszczynski had compromised other systems at Ballard.

System Description
The system I used for my analysis in this case is a Toshiba Satellite P25 laptop
computer, with a 3.2 GHz processor and 512MB of memory. I had previously installed
Red Hat Linux 9 along with the original manufacturer’s installation of the Windows XP
Home Edition operating system, and installed additional security and forensic tools on
the Linux side, for use in my SANS GCFA classes. Additionally, I utilized the Helix
Incident Response and Forensics Live CD2, a self-booting disc based on the Knoppix
operating system (in which in turn is based on the Linux operating system) that
contains pre-configured security and forensic tools and has the added advantage of not
using nor altering the host system’s hard drive, as all operations are performed in the
computer’s Random Access Memory (RAM). Were one of the files I was examining
somehow begin executing, any damage it would cause would be limited to the
computer’s RAM, which would disappear when I turned the power off. To further
prevent the potential spread of malicious code, I did not connect this computer to any
others while performing my analysis. My system was made physically secure by virtue
of it being in my house, under lock and alarm.

Evidence Collection
Examination Details
I received the floppy disk and a related chain-of-custody (COC) form from Mr. Keen.
The COC form describes in detail whom has had possession of and contact with a
particular piece of evidence since that evidence was seized. COC provides a measure
of assurance that evidence was not tampered with, since its possession is known at all
times. The details of the COC form follow:

Evidence Tag #: fl-260404-RJL1•
Evidence Item Physical Description: 3.5 inch TDK floppy disk•

At this point we should note that, for the purposes of this paper, since I was not able to
actually possess the floppy disk, I downloaded an “image” file of the data contained on
the disk from the SANS website. To ensure the data did not change from the floppy
disk to the image file, SANS created a cryptographic “fingerprint” of the data using the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 5 of 63

Message Digest 5 (MD5)3 “hashing” algorithm. This algorithm produces a 32-character
fingerprint that is unique to this specific set of data; changing even one character of the
data would result in an observably different fingerprint output, so it is infeasible with
today’s technology (although theoretically possible) to produce two different files that
would create the same fingerprint. The MD5 fingerprint is widely accepted as valid in
court cases. The COC form contained the following additional data:

Image Filename: fl-260404-RJL1.img•
Cryptographic (MD5) Fingerprint: d7641eb4da871d980adbe4d371eda2ad•
Compressed Image Filename: fl-260404-RJL1.img.gz •

The file downloaded from SANS was not entitled “fl-260404-RJL1.img” as shown
above, nor entitled “fl-260404-RJL1.img.gz” but rather “V1_5.gz.” I needed to ensure
the file I downloaded was the same file that Mr. Keen (SANS) intended me to analyze,
but first I wanted to gather some information about the compressed file. The .gz file
extension told me that the file was a compressed archive created by the “gzip” file
compression utility. I used my copy of gunzip (which decompresses .gz files) on the
Helix CD to first list the contents of the .gz archive. I used two options, “-v” (for verbose
output) and “-l” (to list the contents.)

[root (helix)]# gunzip –v -l v1_5.gz
method crc date time compressed uncompressed ratio uncompressed_name
defla 948edf93 Oct 30 12:30 502408 1474560 65.9% v1_5

The .gz archive contains only one compressed file inside itself, the “v1_5” file. I next
ran the “File” utility on the .gz archive. One of the tests File performs is an attempt to
determine the file type of a given file by comparing data within a known location in the
file to a listing of “magic numbers” used by common file formats; if a number matches,
File assumes the file to be in that format.

[root (helix)]# file v1_5.gz
v1_5.gz: gzip compressed data, was "fl-260404-RJL1.img", from Unix

From the File output we can confirm that this file is indeed a gzip compressed archive.
Additionally, we can see that the file appears to have been named "fl-260404-
RJL1.img" (which is the name used on the SANS website) prior to compression, but
has been renamed to output v1_5 when uncompressed.

To uncompress the file into something I could examine, I ran the gunzip utility once
again, using a slightly different set of options: “-v” (for verbose output) and “-d” (to
decompress the file.)

[root (helix)]# gunzip -v -d v1_5.gz
v1_5.gz: 65.9% -- replaced with v1_5

This means that the gzip file was replaced by its contents in the same directory. Now
that I had the actual image file to examine, I wanted to ensure that it had not changed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 6 of 63

since I received it from Mr. Keen. I used the “md5sum” utility to determine the MD5
fingerprint of the file I received and compared it to the fingerprint shown above.

[root (helix)]# md5sum -v v1_5
d7641eb4da871d980adbe4d371eda2ad v1_5

We can see that the MD5 fingerprint of v1_5 exactly matches that of fl-260404-
RJL1.img on the COC form above. I now ran File again on the uncompressed file to
see what additional facts I could gather.

[root (helix)]# file v1_5
v1_5: x86 boot sector, code offset 0x3c, OEM-ID " mkdosfs", root
entries 224, sectors 2872 (volumes <=32 MB) , sectors/FAT 9,
serial number 0x408bed14, label: "RJL ", FAT (12 bit)

From the output of the File command we can surmise that the image is probably of a
floppy disk made by what used to be known as an “IBM-compatible machine”, or now
known as “Wintel” (Microsoft Windows/ DOS operating system, Intel central
processing unit.) The items above supporting this conclusion are: “x86 boot sector”
(reflecting the x86 series of Intel processors), and “sectors/FAT 9” and “FAT (12 bit)”
which reflect the File Allocation Table (FAT) system used by Wintel systems for floppy
disks. However, we will not know the actual types of files contained in the image until
we extract them.

My next step in the analysis was to run Autopsy (version 2.03)4. According to the
program’s website, “The Autopsy Forensic Browser is a graphical interface to the
command line digital forensic analysis tools in The Sleuth Kit. Together, The Sleuth Kit
and Autopsy provide many of the same features as commercial digital forensics tools
for the analysis of Windows and UNIX file systems.” 5 Forensic practitioners generally
trust Autopsy not to modify the data under examination; however, I took extra steps to
ensure that this remained the case, as we will see in the following sections. Autopsy is
pre-configured in the Helix distribution, so I activated the program from the desktop,
bringing up the following window:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 7 of 63

Figure 1: Autopsy startup window showing location of evidence locker

Note the location of the “evidence locker” (var/log/evidence): this is the folder location
of all the logs, outputs and analyses that Autopsy generates. I made sure to copy this
entire folder to a backup USB drive when I had finished my work, as all files contained
in Helix would be erased from system memory once the computer had shut down.

To set up my analysis in Autopsy, I first created a new “case” in the system entitled
“BallardFloppy” naming myself as the investigator. I then specified a “host” name;
typically this is used when an entire computer system is being analyzed, as we will see
in the second half of this paper, but for now I once again specified BallardFloppy as the
host name. I then pointed Autopsy to the image (copied in from my USB drive) and
had it create a “symbolic link” to the image file (to minimize the number of times the file
would be copied over and possibly altered.) Autopsy, in “importing” (linking to) the
image, once again created an MD5 fingerprint of the image, which I once again
compared to the fingerprint specified by Mr. Keen. An exact match resulted, case
notwithstanding:

Figure 2: MD5 fingerprint calculation performed by Autopsy as it links to image file

We shall see in the following sections that Mr. Leszczynski was attempting to sell
Ballard company secrets to another (unknown) entity. He does not appear to have
been successful, as the floppy disk on which the information was contained was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 8 of 63

seized before he could bring it outside of the company. However, a full investigation of
the workstation that Mr. Leszczynski typically uses at Ballard should be made, as well
as a review of any other removable media (floppy disks, CDs) in Mr. Leszczynski’s
work area. Additionally, steps (outlined in the following sections) should be taken to
ascertain whether Mr. Leszczynski tampered with any other systems at Ballard, and if
so, how it was done and what damage may have been caused.

Timeline Creation and Analysis
Image Details
Once I had the image file ready to go, I needed to decide what types of analyses I
would have Autopsy perform. I first chose the main Autopsy file analysis by clicking
“OK” at the Host Manager page, and was presented with the following options at the
top of the screen:

Figure 3: Autopsy file analysis option tabs

I selected “File Analysis” and was presented with a listing of the files contained within
the image. As described by Mr. Keen, the disk appeared to contain Microsoft Word
documents of Ballard’s various security policies: a little odd for a senior process control
engineer to want to carry around, but not an outright indication of wrongdoing (save
that Mr. Leszczynski was carrying them out of the company campus on a floppy disk.)
I noted a total of 7 files contained within the image, and one volume label entry (the
name given to the floppy disk by Mr. Leszczynski. Two of the files, both not Word
documents like the others appeared to be, had been deleted, but were still recoverable.

Any file on a computer system has two components: the data stored in the file itself (a
letter to Grandma, for example) and metadata, or “data about the data” (such as the
type of file, the user who owns it, and the location of the file on the storage media.)
Metadata has been compared by SANS instructor Rob Lee6 to a card catalog in a
library, where the computer files are the books and the metadata / card catalog shows
their location on the shelf, publication date, etc. One of the most important pieces of
metadata contained in a file is its timeline, or what’s known as the MAC times. MAC
stands for the last time a file was Modified (written), Accessed (read) or Changed (had
its metadata written to.) These parameters differ by filesystem; in the FAT filesystem I
believe was used on the floppy disk, the times are Written (modified), Accessed (same
as before) and Created. These times can be extracted from an image by Autopsy and
viewed, even for files that had been deleted. The figure below shows the files noted by
Autopsy, their timeline parameters, size, and userID and group membership of the
person that created.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 9 of 63

Figure 4: Autopsy list of files contained in image

Autopsy highlights the deleted files in red and puts a checkmark in the first column
(labeled “Del”.) The “Type” column shows whether the entry is a directory or a file (“in”
stands for inode, which is a type of metadata.) The next three columns show the
timeline parameters. We find it interesting that the file creation times appear to be
subsequent to the file written and accessed times. This is an artifact of Microsoft FAT
file systems where when a file is copied from one system to another (say, from a hard
drive to a floppy disk) the file creation time is updated while the other two parameters
are retained. The file creation times above are within seconds of one another,
meaning that either Mr. Leszczynski is a very fast typist or he copied these files from
elsewhere.

The next two columns show no data (“0”) for the userID and group membership of the
files’ creator. This too is par for the course for the Microsoft FAT filesystem, which
does not keep track of user and group IDs relating to files (subsequent Microsoft file
and operating systems do record this data, but only FAT is currently usable on floppy
disks.)

The final column shows the location of the metadata related to each filename. By
clicking on these we find information about each file, including the file type, MAC
times, and the physical sectors of the disk on which the actual data resides.

In the tradition of the classic Sesame Street song “One of these is not like the others” it
seems rather odd that the two deleted files are not of the same type as the other Word
document files. The first deleted file, “_ndex.htm”, appears to be a web page. The
Index page is usually the first page a person comes across when s/he visits a website,
providing a gateway to the rest of the site. The second deleted file, “CamShell.dll

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 10 of 63

(_AMSHELL.DLL) appears to be a Dynamic Link Library (DLL) commonly used by
Microsoft Windows-based executable files. I made a mental note to pay special
attention to these two files as my investigation progressed.

Seeing the timeline for each file is interesting, but a more complete picture is obtained
when a full timeline is created. This function shows what a user did to each file in
sequence, like a trail of footprints through a recently robbed bank. I returned to the
Host page and selected “File Activity Timelines” from the main menu. Most people
think that when they delete a file on their computer, it’s gone for good, but that simply
isn’t the way systems work. A file can have one of three states:

Allocated, where the data in the file is linked to an allocation entry in the file •
system, and can be read by a directory command or file browser;
Unallocated, where the operating system has flagged the file as “deleted” but •
retains information on it, such as MAC times and physical location on the
media, or
Unallocated Metadata Structures, where the connection between the filename •
and its related metadata has been broken, but the connection between the
metadata and the actual file data is preserved.

I requested that Autopsy look for file information in all three states. The results are
displayed below:

Sat Feb 03 2001 19:44:16 36864 m.. -/-rwxrwxrwx 0 0 5 C:\/CamShell.dll (_AMSHELL.DLL) (deleted)
36864 m.. -rwxrwxrwx 0 0 5 <v1_5-_AMSHELL.DLL-dead-5>

Thu Apr 22 2004 16:31:06 33423 m.. -/-rwxrwxrwx 0 0 17 C:\/Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)

32256 m.. -/-rwxrwxrwx 0 0 13 C:\/Internal_Lab_Security_Policy1.doc
(INTERN~1.DOC)
Fri Apr 23 2004 10:53:56 727 m.. -/-rwxrwxrwx 0 0 28 C:\/_ndex.htm (deleted)

727 m.. -rwxrwxrwx 0 0 28 <v1_5-_ndex.htm-dead-28>
Fri Apr 23 2004 11:54:32 215895 m.. -/-rwxrwxrwx 0 0 23 C:\/Remote_Access_Policy.doc (REMOTE~1.DOC)
Fri Apr 23 2004 11:55:26 307935 m.. -/-rwxrwxrwx 0 0 20 C:\/Password_Policy.doc (PASSWO~1.DOC)
Fri Apr 23 2004 14:10:50 22528 m.. -/-rwxrwxrwx 0 0 27 C:\/Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)
Fri Apr 23 2004 14:11:10 42496 m.. -/-rwxrwxrwx 0 0 9 C:\/Information_Sensitivity_Policy.doc
(INFORM~1.DOC)
Sun Apr 25 2004 00:00:00 0 .a. -/-rwxrwxrwx 0 0 3 C:\/RJL (Volume Label Entry)
Sun Apr 25 2004 10:53:40 0 m.c -/-rwxrwxrwx 0 0 3 C:\/RJL (Volume Label Entry)
Mon Apr 26 2004 00:00:00 36864 .a. -rwxrwxrwx 0 0 5 <v1_5-_AMSHELL.DLL-dead-5>

33423 .a. -/-rwxrwxrwx 0 0 17 C:\/Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)

307935 .a. -/-rwxrwxrwx 0 0 20 C:\/Password_Policy.doc (PASSWO~1.DOC)
22528 .a. -/-rwxrwxrwx 0 0 27 C:\/Acceptable_Encryption_Policy.doc

(ACCEPT~1.DOC)
727 .a. -rwxrwxrwx 0 0 28 <v1_5-_ndex.htm-dead-28>

42496 .a. -/-rwxrwxrwx 0 0 9 C:\/Information_Sensitivity_Policy.doc
(INFORM~1.DOC)

36864 .a. -/-rwxrwxrwx 0 0 5 C:\/CamShell.dll (_AMSHELL.DLL) (deleted)
215895 .a. -/-rwxrwxrwx 0 0 23 C:\/Remote_Access_Policy.doc (REMOTE~1.DOC)
32256 .a. -/-rwxrwxrwx 0 0 13 C:\/Internal_Lab_Security_Policy1.doc

(INTERN~1.DOC)
727 .a. -/-rwxrwxrwx 0 0 28 C:\/_ndex.htm (deleted)

Mon Apr 26 2004 09:46:18 36864 ..c -/-rwxrwxrwx 0 0 5 C:\/CamShell.dll (_AMSHELL.DLL) (deleted)
36864 ..c -rwxrwxrwx 0 0 5 <v1_5-_AMSHELL.DLL-dead-5>

Mon Apr 26 2004 09:46:20 42496 ..c -/-rwxrwxrwx 0 0 9 C:\/Information_Sensitivity_Policy.doc
(INFORM~1.DOC)
Mon Apr 26 2004 09:46:22 32256 ..c -/-rwxrwxrwx 0 0 13 C:\/Internal_Lab_Security_Policy1.doc
(INTERN~1.DOC)
Mon Apr 26 2004 09:46:24 33423 ..c -/-rwxrwxrwx 0 0 17 C:\/Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)
Mon Apr 26 2004 09:46:26 307935 ..c -/-rwxrwxrwx 0 0 20 C:\/Password_Policy.doc (PASSWO~1.DOC)
Mon Apr 26 2004 09:46:36 215895 ..c -/-rwxrwxrwx 0 0 23 C:\/Remote_Access_Policy.doc (REMOTE~1.DOC)
Mon Apr 26 2004 09:46:44 22528 ..c -/-rwxrwxrwx 0 0 27 C:\/Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)
Mon Apr 26 2004 09:47:36 727 ..c -rwxrwxrwx 0 0 28 <v1_5-_ndex.htm-dead-28>

727 ..c -/-rwxrwxrwx 0 0 28 C:\/_ndex.htm (deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 11 of 63

From this timeline, it appears that whoever was in charge of the document files
modified them on Friday, April 23, 2004, brought them all up into memory at the same
time on Monday, April 26, and copied them over to another system nine hours
thereafter. While this appears to be rather odd timing at first, we must keep in mind
that we do not know the time zone in which the actions were committed, and thus
Autopsy (using the current time zone in which it was running, Pacific Standard Time)
may skew the results.

String Search
Forensic Details
Having not found much that I didn’t already suspect out from the timeline analysis, I
next turned to the keyword search capability available in Autopsy. I first returned to the
File Analysis page, clicked on each file, and selected “Strings – Report”. Strings, in
computer parlance, are words or phrases. The Strings function in Autopsy looks for
words in a given file of a certain minimum length (default is four) and lists them for the
analyst’s review. From these listings, an analyst can assemble a “dirty word list” of
words that might prove useful in examining other files in the investigation. An example
of this would be the word “MP3” when searching for evidence of illegally copied music.

A complete listing of the Strings output for each deleted file in the image is included at
the end of this paper. I once again turned my attention to these deleted files. The first
file, “_ndex.htm”, appears to contain a reference to a Shockwave Flash file pertaining
to Ballard Inc., as the Autopsy report content shows:

 CONTENT

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-
8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">
<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash
/swflash.cab#version=6,0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality
VALUE=high> <PARAM NAME=bgcolor VALUE=#CCCCCC> <EMBED
src="ballard.swf" quality=high bgcolor=#CCCCCC WIDTH="800"
HEIGHT="600" NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 12 of 63

>
</OBJECT>
</center>
</BODY>
</HTML>

The code used in a web page, HyperText Markup Language (HTML), makes use of
“framing” where pieces of human-readable information are surrounded by special code
“tags” telling the computer how to display this information. In the output above, we can
see that this is a complete web page, bookended as it is by the <HTML> and </HTML>
tags. What would Mr. Leszczynski be doing with a Shockwave Flash file on his
diskette? I added the values “swf” and “ballard.swf” to my dirty word list and moved on
to the second deleted file, “_amShell.dll”. As stated before, this appears to be a library
file accessed by a Windows-based executable file, but the file itself does not appear to
be on the floppy. I once again generated the Autopsy Strings report and examined it
for interesting words:

CONTENT

(Same HTML code as in “_ndex.htm”)
ll\SheCamouflageShell
ShellExt
VB5!
CamShell
BitmapShellMenu
CamouflageShell
CamouflageShell
Shell_Declares
Shell_Functions
ShellExt
modShellRegistry
kernel32
lstrcpyA
lstrlenA
ole32.dll
CLSIDFromProgID
StringFromGUID2
ReleaseStgMedium
shell32.dll
(multiple lines of code deleted for brevity)
C:\My Documents\VB Programs\Camouflage\Shell\IctxMenu.tlb
(remaining lines of code deleted for brevity)

Words that appear to repeat several times include Camouflage and “Shell.” The most
significant piece of data is the phrase “C:\My Documents\VB
Programs\Camouflage\Shell\IctxMenu.tlb“ which suggests that Camouflage is was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 13 of 63

originally written in Microsoft Visual Basic, a development platform used to create
many Windows-based applications. At this point I decided to step away from the
Autopsy application and access what is commonly believed to be a forensic analyst’s
most valuable resource, the search site www.Google.com. I began my Google search
by putting in the “CamouflageShell” keyword, but the only results I retrieved were for
physical camouflage products, including camper shells for pickup trucks. I next tried
the actual filename I was analyzing, camshell.dll. That brought up a single web page,
but one of extreme significance – it appeared to be a discussion board of people who
appeared to believe that a program called Camouflage contained malicious code:

Figure 5: Google response for search on camshell.dll

When I went to referenced web page, I found a long list of people commenting on both
the Camouflage program and the possibility that it contained malicious code. From the
final post in this series, it turned out the user’s problem was unrelated to Camouflage,
but the discussion also gave me a tantalizing piece of information on the Camouflage
program:

Figure 6: Discussion group explanation of Camouflage

This was very interesting – a program that could hide files inside other files. This
concept is known as steganography, “The art and science of hiding information by
embedding messages within other, seemingly harmless messages.”7 (webopedia
reference) I added the word steganography to my search for Camouflage in Google,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 14 of 63

and scored a direct hit:

Figure 7: Google response for search on steganography and camouflage

I clicked over to the spiesonline.net website, which contained a link under “Camouflage
Encryption” to another page at camouflage.unfiction.com8:

Figure 8: Camouflage main page at camouflage.unfiction.com

This appeared to be the main site for the program, and included a download section
where I could retrieve a copy for my own testing. However, was this the same program
that Mr. Leszczynski appeared to have used? If so, did he use it to hide data inside the
files on the floppy, and if so, which ones? I continued to navigate around the unfiction
website, and found a good explanation of the program in “Overview”:

Figure 9: Camouflage overview page at camouflage.unfiction.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 15 of 63

Camouflage apparently had an option password-protection capability, which could
present a problem as I obviously did not know any passwords to open Mr.
Leszczynski’s files. I also found from the “Download” that the program was no longer
being developed by the authors:

Figure 10: Camouflage download page at camouflage.unfiction.com

The lack of support (along with a promise by the site owners to ignore any requests for
information on the program) would certainly make it more difficult to determine if Mr.
Leszczynski’s suspected program and Camouflage were one in the same – one of the
techniques commonly used by forensic specialists is to download a separate copy of a
program’s “source code” (the human-readable instructions that make up the program),
“compile” it (convert the source code into something the computer can directly read,
called “object code”) and then compare the two programs running side-by-side. My
problem here was twofold: a lack of the source code for Camouflage and the fact that
the Camouflage program did not appear to exist on Mr. Leszczynski’s disk, except in
the form of camshell.dll. I nonetheless downloaded the “final version” (1.2.1) of
Camouflage for review.

If Mr. Leszczynski did in fact use Camouflage to hide some as-yet-unknown
information, how could I prove that he did so? The best way would be to look at the
computer Mr. Leszczynski had performed his daily duties on and see if I could find the
Camouflage program itself. Lacking that capability, I looked at the last time the related
“_camshell.dll” file had been accessed from the timeline created by Autopsy. It
matched the time of all the other files on the disk – midnight on Monday, April 26,
2004. This supports the theory that Mr. Leszczynski utilized the Camouflage program
(and the .dll library that allowed to function) at the same time as he accessed the other
files on the computer.

Operating System-Specific Media Analysis
Program Identification
Unfortunately, due to the lack of support by Camouflage’s original authors, I was
unable to locate the source code of the program for download and comparison to the
.dll file I had in hand. I took several alternate steps to ensure that the executable
program I had downloaded was the same as the one used by Mr. Leszczynski,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 16 of 63

including performing a monitored test installation, and comparing the library file of the
executed program with the same one located on Mr. Leszczynski’s floppy.

Up until this point, the chances of a program I was analyzing somehow executing and
damaging my system was remote, as I was using the Helix CD (which protects the
hard drive of the host computer from being written to) and the programs appeared to
run in a Microsoft Windows environment and thus would not execute in something
Linux-based. However, I now wanted to execute the program, so I found an older
server box (generic brand, AMD K2/350 processor, 256MB of RAM), installed a copy of
Windows 2000 Advanced Server on it, and copied the downloaded Camouflage file
onto it.

While I wanted to run the Camouflage program primarily to see if I could get any
information out of Mr. Leszczynski’s files, I also wanted to observe the program as it
ran to see if it did anything else beside hide files inside of other files. Therefore, I used
the following utilities on the Windows box:

“Regmon”9 – This program monitors changes to the Windows Registry (location •
in the Windows operating system where many configuration parameters are
stored, in the form of “keys”) to determine what changes the Camouflage
installation or run program might make to the registry;
“Winalysis”10 – This program monitors changes to the Windows Registry similar •
to regmon, but instead of actively recording the changes like regmon does,
“Winalysis” takes a snapshot of the registry before and after the execution of the
program being scrutinized. Additionally, Winalysis looks at changes to files,
user accounts, groups, services, and more.
“Netstat” – A networking program installed with Windows 2000 that shows detail •
of all network connections on a computer and if a computer is listening for new
connections. Similar to Winalysis I ran Netstat once before and after I ran
Camouflage.

From the report output of these three programs I learned the following: although the
installation and execution of Camouflage made some registry changes, these were
consistent with the installation of a Windows executable that made use of context (right-
click) menus as Camouflage does. Additionally, no changes were made to users,
groups, services, or file sharing settings, nor were any network changes discovered by
comparing the two Netstat outputs.

To corroborate my findings here, I once again investigated Google to see if anyone had
done an analysis of the changes made by the Camouflage program, and found one at
the SANS Institute by John Bartlett11, a candidate for a different GIAC certificate. John
noted, as I did, that the changes made to registry by Camouflage were minor. John
took a further step of uninstalling the Camouflage program and noted that it left behind
a number of changes it had made, including a list of all files on the computer that had
been “camouflaged.” This would prove invaluable to checking all the systems at
Ballard (including Mr. Leszczynski’s) for tampering. A simple check of the each

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 17 of 63

computer’s registry for the following keys:

HKEY_CURRENT_USER\Software\Camouflage\frmMain\CamouflageFileList•
HKEY_CURRENT_USER\Software\Camouflage\frmMain\uncamouflageFileList•

would reveal what, if any, files had been “camouflaged” or “uncamouflaged.”

Data Recovery
I also learned something disturbing while trying to figure out what was inside the files
on the floppy; one or more of the files appeared to be protected with a password in
Camouflage.

Figure 11 – Camouflage Password Challenge Screen

This meant that I couldn’t open them and see what was inside unless I was able to
guess the password. Several tries using both blank and obvious passwords
(“Leszczynski”, “ballard”, “fuel cell” etc.) came up with nothing except the error window
shown above. Camouflage didn’t even do me the courtesy of telling me that my
password was incorrect; I could have specified the wrong password, or the file could
not have been modified by Camouflage. I returned to my Google search page and
noted that the second item down seemed more promising:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 18 of 63

Figure 12: Second Google response for search on steganography and camouflage

A website run by “Guillermito”12 contains an overview of steganography in general, and
specific information on the various steganographic programs available. One of these
pages pays specific attention to Camouflage so I read with interest what he had to say.

Camouflage apparently utilizes a rather weak form of cryptography to hide its
passwords. Cryptography is the science of scrambling information so it is only
readable by those who have the correct key. Guillermito did a character-by-character
analysis of several “camouflaged” files, viewing the data using a viewer based on the
hexadecimal numbering system (known as a “hex editor.”) Since files of the same type
tend to have the same structure (components start and end at the same place with the
same hex values) Guillermito reviewed several .JPG picture files that had been given
(a) No password, (b) a password of four characters, and (c) a password consisting of
the letter “a” repeated 255 times. He found the precise point in each file where the
password was stored in an encrypted format. He also guessed (correctly) that the
password had been stored and encrypted by using a mathematical operation known as
exclusive or, or XOR. XOR compares two numbers, in this case the password and a
never-changing set of numbers specified by Camouflage’s authors. If the numbers are
the same, XOR records a zero; if the numbers are different, XOR records a 113. By
using the 255-character password and the XOR function, Guillermito was able to
determine the never-changing set of numbers, and thus could derive any password
from its corresponding encrypted form.

Having read about this simple method of deriving passwords, I was heartened to see
that Guillermito did me the favor of programming a simple application (“Camouflage
Password Finder” 14) that would do the calculation for me automatically. I downloaded

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 19 of 63

the program and returned to the file Analysis section of Autopsy. Now that I had a program
that could determine whether the files on the floppy were “camouflaged” I had to extract
the files from the floppy image. Fortunately, Autopsy eases this process by use of the
“Export File” function. I was quickly able to bring out each file (even the deleted ones)
into individual files that Windows could read.

I installed Guillermito’s program on my Windows XP computer, reasoning that I would
do the actual extraction of hidden files (if there were any) on the old Windows 2000
box, so if an extracted file tried to do damage I could simply erase the hard drive and
reinstall without losing anything important. I tried the first file that had been extracted,
the _ndex.htm file, with disappointing results:

Figure 13: Camouflage Password Finder output for _ndex.htm

It was likely that this file did not contain a password, or was not even “camouflaged.”
Undaunted, I went back to the file listings and looked at the file sizes. I noted that only
two of the files were over 100 kilobytes in size, and therefore the two of these would be
the most likely location for hidden data, unless Camouflage included some sort of file
compression, and I knew from John Bartlett’s writing that this was not the case15. I
instructed “Camouflage Password Finder” to look in the “Password_Policy” document,
and this time was rewarded with a positive result:

Figure 14: Camouflage Password Finder output for Password_Policy.doc

I was also able to extract the password “Remote” for the file
Remote_Access_Policy.doc. None of the other files appeared to have passwords. I
moved over to the Windows 2000 system, right-clicked on the Remote_Access_Policy
document, chose “Uncamouflage” from the resulting menu, entered the password I
retrieved above, and had to restrain my shout of joy lest it wake up the neighbors:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 20 of 63

Figure 15 – Camouflage file extraction screen

Mr. Leszczynski seems to have been busy, to say the least – I found not only this .mdb
(Microsoft Access Database) file, but also three graphic files from the Password_Policy
document – one a reproduction of an article on fuel cells from the March 16, 2000
issue of the magazine Nature, and two diagrams of fuel cell Proton Exchange
Membrane. The .mdb file is apparently a listing of some of Ballard’s clients, and
userIDs and passwords for them, possibly to get into a Ballard system:

Figure 16 – Microsoft Access database apparently of Ballard client names

The most damning piece of evidence against Mr. Leszczynski, however, came when I
ran the “Camouflage Password Finder” against the extracted
“Internal_Lab_Security_Policy.doc” file. It showed no password at all, and sure
enough, when I simply hit “Enter” at the Camouflage password request window, it
opened up a file called “Opportunity.txt”, the contents of which are reproduced below:

I am willing to provide you with more information for a price.
I have included a sample of our Client Authorized Table database.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 21 of 63

I have also provided you with our latest schematics not yet
available. They are available as we discussed - "First Name".
My price is 5 million.

Robert J. Leszczynski

We can see from this message that Mr. Leszczynski’s intentions are clear, as well as
his asking price.

To further match the downloaded Camouflage program with the remnant of the one on
Mr. Leszczynski’s floppy, I utilized a hex-editing program called “WinHex.”16 Since the
_amshell.dll file appear to have been overwritten by the also-deleted _ndex.htm file on
the floppy, the files would not match unless I could locate a common starting point
between them. I was able to do so, and thus on both files I deleted all the data
previous to these common points. I then re-saved the files under separate names
(Camshell.dll and Camshell2.dll) and compared them to one another, as shown below:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 22 of 63

Figure 17 – Edited Camshell.dll files within WinHex editor

The files appeared to match exactly, but I needed to prove this. Fortunately, “WinHex”
also contains an option that will calculate both MD5 fingerprints and another, more
sophisticated fingerprint, Secure Hash Algorithm 1 (SHA-1.)17 I therefore calculated the
MD5 and SHA-1 fingerprints for both files and compared them, noting that they were

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 23 of 63

now exactly the same:

Figure 18 – MD5 and SHA-1 calculations for the Camshell.dll and Camshell2.ddl files

I can thus conclude that Mr. Leszczynski used the Camouflage program to hide 5 files
inside 3 of the files contained on the floppy. These 5 files, especially the offer
message shown above, prove that Mr. Leszczynski was in the process of selling
Ballard’s industrial secrets to another organization.

Legal Implications
With only the information contained on this floppy disk, it is not possible to prove that
Mr. Leszczynski executed the Camouflage program on any system at Ballard.
Although the .dll file appears on the floppy, Mr. Leszczynski could claim he used it on
his home machine, and the execution of Camouflage on a private machine is not in
and of itself illegal. However, with a cursory review of the system registries at Ballard
(including the one assigned to Mr. Leszczynski), we should get a good idea of which
systems he touched and what information he may have compromised. Additionally,
other security systems present at Ballard should provide corroborating evidence of Mr.
Leszczynski’s actions. These include workstation and network access logging, firewall
logs, and physical security measures such as badge-swipe logs and security camera
records.

Depending on whether the recipient of Mr. Leszczynski’s message (likely Rift, Inc. but
not provable with the information on the floppy) is a foreign or domestic entity, Mr.
Leszczynski has violated either Title 18 U.S.C. §1831 (Economic Espionage)18 or Title
18 U.S.C. §1832 (Theft of Trade Secrets.)19 The text of the two codes is similar. If Mr.
Leszczynski:

Intending or knowing that the offense will benefit any foreign government, •
foreign instrumentality, or foreign agent (§1831) or
With intent to convert a trade secret, that is related to or included in a product •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 24 of 63

that is produced for or placed in interstate or foreign commerce, to the economic
benefit of anyone other than the owner thereof, and intending or knowing that
the offense will, injure any owner of that trade secret (§1832)
Knowingly•

Steals, or without authorization appropriates, takes, carries away, or 1.
conceals, or by fraud, artifice, or deception obtains such information;
Without authorization copies, duplicates, sketches, draws, photographs, 2.
downloads, uploads, alters, destroys, photocopies, replicates, transmits,
delivers, sends, mails, communicates, or conveys such information;
Receives, buys, or possesses such information, knowing the same to have 3.
been stolen or appropriated, obtained, or converted without authorization;
Attempts to commit any offense described in paragraphs (1) through (3); or 4.
Conspires with one or more other persons to commit any offense described 5.
in paragraphs (1) through (3), and one or more of such persons do any act to
effect the object of the conspiracy,

he's in for some jail time (15 years maximum under §1831, 10 years maximum under
§1832) and a hefty fine ($500,000 maximum under §1831, unspecified under §1832.)

Whether Mr. Leszczynski actually executed Camouflage or any other program on a
Ballard system is irrelevant. Mr. Leszczynski’s “opportunity” message makes it clear
he intended to benefit someone other than the owner of the trade secrets (Ballard) and
his hefty asking price ensures he knew the exposure of such information would hurt
Ballard. The trade secrets relate to a product produced for interstate commerce (the
different state locations of Ballard’s clients in the .mdb file prove that.) By mere dint of
his having the confidential information on his person as he walked out the door,
combined with the effort to hide it in Word documents, Mr. Leszczynski falls under the
“without authorization appropriates, takes, carries away, or conceals, or by fraud,
artifice, or deception obtains such information” part of item one. Claiming he did not
know that the floppy and files contained proprietary information would easily be proven
false by the “opportunity” letter. Given these facts, the US Government would have a
good case against him (not mention a subsequent civil suit brought by Ballard against
Mr. Leszczynski and his intended recipient, most likely Rift, Inc.)

Additional Information
The following sources used in my research and training should provide additional
information for interested readers. Additionally, I would encourage the reader to the
“Works Cited” section at the end of this document.

The Honeynet Project. Know Your Enemy: Learning About Security Threats, 2nd1.
Edition. Boston: Addison-Wesley, 2004.
Le, Tien. Destegging tutorial. 2002. URL:2.
http://www.unfiction.com/dev/tutorial/steg.html (4 November 2004).
Abzug, Mordechai T. Unofficial MD5 Page. URL: 3.
http://userpages.umbc.edu/~mabzug1/cs/md5/md5.html (4 November 2004).

Part 2, Option 1 – Perform Forensic Analysis on a System

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 25 of 63

Verification
Synopsis of Case Facts
In order to satisfy the requirements of Part 2, Option One of the GCFA practical, I
needed to analyze a possibly compromised system in an unknown state. On Tuesday,
October 26, I deliberately set a system to be compromised. Such a system is
commonly known as a honeypot, in that it is set up to observe the actions of an
intruder as s/he cases the joint, determines how to break in, compromises the system,
and sets up the system for his/her own nefarious purposes. My system was
compromised less than 24 hours later. Once I had discovered the compromise, I made
the decision to immediately remove power from the system to ensure the intruder did
not use my system to attack other computers. Unfortunately, this limited the types of
tools I could use on the system as many forensics tools for the Windows platform
depend there being a “live” system for them to interact with. I could not make my
system “live” again without rebooting it, the process of which would have altered
information on the hard drive.

During the time I had the “honeypot” up and running, I utilized the honeypot to access
the web interface on the IPCop box, and to check the operation and configuration of the
“honeypot” itself. On reflection, this might not have been the best idea, as my logons
and interactions were now contained within the system that I was trying to examine.
However, in real life people often cannot afford the luxury of leaving an Internet-facing
system completely alone, and so I worked to identify and separate the changes made
by myself from those made by my assailant.

System Description
Describe the system(s) you will be analyzing
My system setup consisted of the following:

One Gateway 2000 minitower computer, 500 mHz Intel Pentium III processor, •
128MB RAM, 10/100mBps Ethernet network card, running the Windows 2000
Advanced Server operating system, to serve as the honeypot. This computer
had previously been my father’s personal PC; to ensure no data remained on
the disk that might interfere with the investigation, I used a program called
“Darik’s Boot and Nuke” (DBAN)20 which allowed me to boot the computer to a
CD and wipe out the hard drive using one of several different methods. Since
the only person performing a forensic examination on this computer was myself,
I chose the simplest method, which writes a “0” over every portion of the hard
drive:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 26 of 63

Figure 19 – Darik’s Boot and Nuke Disk Wiping Screen

I then installed Windows 2000 on a 3GB partition so that the amount of
information I would have to review for my forensic examination would be
relatively small. I installed Internet Information Server (IIS) version 5, as I knew
that this application was very vulnerable to hacking attempts and had been the
route for many intrusions on other systems. I named this computer “Bushlinks”
and put up a rudimentary website with links to conservative web addresses,
hoping that the angst surrounding the upcoming election would tempt an
intruder who disagreed with me to come and take over my website. Such
activities are commonly known as “hacktivism.” To avoid arousing suspicion
that this was a honeypot, I installed Microsoft Windows 2000 Service Pack 2. I
hoped that an intruder would think this computer was run by an overworked
administrator who didn’t have time to install the latest Service Pack (4, as of this
writing.) I gave this computer an internal IP address of 192.168.0.3.
One generic-brand minitower computer, 2.4 gHz AMD Athlon, 640MB RAM, •
purchased new from Fry’s Electronics. I erased the preinstalled operating
system with DBAN, and replaced it with the Linux-based IPCop21 operating
system. The purpose of this computer was to act as an intrusion detection (but
not prevention) system and “pass-through” of connections to and from the
Internet by the honeypot box. I gave this computer an internal IP address of
192.168.0.1 (for communicating with the Honeypot) and let my Internet Service
Provider (ISP) provide an external address, which turned out to be 69.163.89.26.
My cable modem, connected to my Internet Service Provider (ISP).•
The Toshiba Satellite P25 laptop computer I had used in Part One, running Red •
Hat Linux 9 and utilizing the security tools from the GCFA class.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 27 of 63

A diagram of the setup is shown below:

Figure 20 – Diagram of honeypot network setup

Connections from the Internet came through the cable modem, were logged (but not
stopped) by the IPCop system, and finally connected to the Honeypot. IPCop normally
serves to block many of the inbound connections from the Internet to a network, as
these connections have the potential to cause harm to the destination computer.
However, since I was deliberately trying to have my computer “hacked” I used IPCop’s
port-forwarding capability. Any inbound connections made to IPCop were simply
forwarded along to the Honeypot; by default, any outbound connections from the
honeypot were simply forwarded to the Internet. The screenshot below demonstrates
the port-forwarding setup:

Figure 21 – IPCop Port Forwarding Rules

Note that all the rules allow connections from “DEFAULT IP” (any address, anywhere)
to 192.168.0.3, the IP address of my Honeypot. Although the 192.168.0.3 address is
not exposed on the Internet, anyone connecting to the external address of my
passthrough / intrusion detection system (69.163.89.26) would instead see the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 28 of 63

Honeypot.

Hardware
My evidence listing follows:
Tag Number Description
001 Gateway 2000 minitower, PIII/500 mHz, Serial # 0016363380
002 IBM 20GB hard drive, Serial # JMYJMFB7330
003 Mitsumi CD-ROM drive, Product # FX4821T
004 CDWriter CD-R/W drive, Product # IDE5224
005 Toshiba floppy drive
006 Ensoniq Audio Controller (sound card)
007 VIA Technologies VT6105 [Rhine-III] Ethernet controller (network

card)

Computer system with an IBM 20GB internal hard drive, a Mitsumi internal CD-ROM
drive, a CDWriter internal CD/RW drive, a Toshiba internal high-density floppy drive,
Ensoniq internal sound card, VIA internal network card. This information was
discovered using the “lshw” utility on the Helix bootable CD.

Evidence Collection
Image Media
To ensure the information on the hard drive remained unaltered as I analyzed, I
decided to make an exact copy (known as an “image”) onto a different hard drive.
However, if I were to boot the Windows 2000 operating system, it would write to the
hard drive multiple times, possibly spoiling my evidence. I once again turned to the
Helix bootable CD, which as noted before does not write to the host system’s hard
drive. Within Helix, I made use of the following utilities:

“dd”, a Linux command-line utility for making exact copies of files or even entire •
hard drives,
“Netcat”, commonly known as the “Swiss Army knife of network utilities”, used •
here to send the output of “dd” over a network connection to another computer,
and
“Grab”. A graphical Helix utility that automates the use of the above two •
programs.

I set up Grab to use dd and Netcat and asked it to calculate an MD5 fingerprint, which I
would use after the transfer to compare to the MD5 fingerprint of the image on the
destination computer. I also needed to set up dd and Netcat on the destination
computer to receive the file, which I did at the command line:

[root@LinuxForensics tmp]# nc –l –p 12345 | dd of=image332.dd

The “nc” command is for Netcat; the “-l” option tells Netcat to listen for an incoming
connection, “-p” tells it to listen on a specific port (12345, chosen arbitrarily), and the “|”
(pipe) command tells the computer to send the output of the first command to the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 29 of 63

second command. The “of” option in dd tells the computer to save its output in an
output file, which I named image332.dd (I started the dd operation at 3:32 in the
afternoon.)

Once the systems had been set up on both sides (sender and recipient) I activated
Grab and went to get a glass of water, as the transfer process would take a long time.
Once the transfer had finished, I noted the MD5 calculation created by Grab:

Figure 22 – Grab finishing the file transfer and calculating the MD5 fingerprint (“hash”)

I also confirmed that the file had been received on the Linux side, noting the match of
the number of records:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 30 of 63

[root@LinuxForensics tmp]# nc -l -p 12345 | dd of=image332.dd
4607019+2202594 records in
6297416+0 records out

The final test that the images are identical is the comparison of the MD5 fingerprints. I
ran the “md5sum” utility on the image received on the Linux system:

[root@LinuxForensics root]# md5sum -b image332.dd
cfce5923405881675d9a195922b48d06 *image332.dd

We can see that the MD5 fingerprints from Grab and MD5sum exactly match, and thus
conclude that the image was not altered during the file transfer process.

Operating System – Specific Media Analysis
Media Analysis of System
I used many of the same tools in my analysis of this system that I used in the floppy
image analysis in Part 1. Given that the tools I had used for the floppy analysis were
located on the Helix disk, given that the Helix disk did not allow access to the host
machine’s hard drive, and given that the size of the image (3 gigabytes) necessitated
storing it on the host hard drive, I needed to use a less recent (albeit still useful) version
of Autopsy, version 1.70 (the version used in the GCFA class.) To ensure Autopsy
would not modify the image data as I examined it, I ran both the md5sum and
sha1sum utilities before I got started and after I finished:

[root@LinuxForensics root]# md5sum image332.dd
cfce5923405881675d9a195922b48d06 image332.dd

[root@LinuxForensics root]# sha1sum image332.dd
05fdcc51c1659d3dff55038c0a54624654e8bfb6 image332.dd

A comparison of both outputs showed no alterations to the image file.

As I had installed the system myself, I knew that it used the Windows NT FileSystem
(NTFS), which records more information than the FAT format. Once again, during the
“import” process, Autopsy ran an MD5 calculation on my image, which I confirmed was
the same as the md5sum I had just created by selecting “Image Integrity” from
Autopsy’s Host Manager menu:

Figure 23 – Autopsy confirming MD5 fingerprint of Honeypot image prior to analysis

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 31 of 63

Although I examined various items on the image, I should note at this time that I was
unable to discover the method by which my system had been compromised. Evidence
of the compromise will be provided in the next section, “Timeline Analysis.” However, I
will review the steps I took to analyze the image.

File System Examination – My first step was to directly inspect the file system 1.
for evidence of modification to the operating system, “back doors” (routes that
an intruder would leave in a compromised system to make his or her entry
easier the next time) and “sniffer” programs (applications installed on a
compromised system that examine information being passed along the network
for possible use in compromising other systems.) In Autopsy, I selected “File
Analysis” and visually inspected the file listings in the following directories which
are typically important in a Windows 2000 installation:

Figure 24 – File Listing in C:\Documents and Settings\Administrator

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
Page 32 of 63

Figure 25 – File Listing in C:\Program Files

Figure 26 – File Listing in C:\WINNT

In my examination, I did not find anything out of the ordinary. However, I would
caution that since this file listing is from an image and not a running computer
system, I was unable to do a complete file search.

Internet History Files – I made use of the program “Pasco”22 by the security 2.

