
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.1

Analysis of an Unknown Floppy Image and a Hacked
Server

GIAC Certified Forensic Analyst (GCFA)
Practical Assignment

Version 1.5 (April 30, 2004)
Author: Nihar S. Khedekar

Submitted on: 1st November 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.2

Abstract

Robert Leszczynski, a designer at Ballard Industries attempted to take a floppy
outside the R&D Labs of the company. A forensic examination of this floppy has
to be performed to find its capabilities, content, purpose and possible use. First
part of the paper describes the situation and complete analysis in detail, in a
view to understand the concepts of Forensic analysis and develop a forensic
report.
Draupadi, a Linux server, used as a web-server and a mail server was
compromised in the month of August, 2004. The attack was identified only
when a rootkit installed was easily detected in normal day to day activity. The
system was immediately put out of service and all data transfered to another
machine.
The second part of the paper describes the forensic analysis performed on the
hard disk image of this machine. The aim of the analysis was to dig out the
procedure that led to the compromise of the system.
The paper was written as an assignment for the Track-8 GIAC Certified
Forensic Analyst training program conducted by GIAC. Basic understanding
about the usage(commands, piping, redirection etc) of bash and GNU/Linux is
expected from the reader.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.3

TABLE OF CONTENTS
Abstract 2
Introduction 4
Legend 4
Tools Used 4

PART I 6
Case description 6
Examination Details 6
Time-Line Analysis 17
Image Details 19
Forensic Details 21
Program Identification 21
Legal Implications 23
Additional Information 24

PART II 25

FORENSIC INVESTIGATION OF A HACKED SERVER 25

Synopsis of the Case Facts 25
Verification 25
System Description 26
Hardware 26
Image Media 26
Media Analysis 28
Timeline Analysis 45
String Search 47
Conclusions 47
References 49

APPENDIX A 50

File-System Basics 50
The Slueth Kit 50
Command used to generate MAC Times 51
Linux commands 52

APPENDIX B 53

APPENDIX C 54

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

Introduction

Forensics is not just analysis of data but its a process of gathering evidence,
preserving it, analyzing it and generating a detailed report on the findings. Each
investigation and analysis is unique in its own way. To make sure that nothing is
missed out during the analysis, a flow is defined that helps to follow a
systematic approach to the problem at hand.
In a broad sense the forensic analysis goes the following phases.

Information gathering. This part covers aspects related to evidence collection, 1.
integrity verification and maintaining the chain of custody
Analysis. This part describes the actual analysis in detail addressing the 2.
issues related to media analysis, time-line analysis without breaking the
chain of custody and recording each and every action of the analysis.

Media Analysis: Analysis of the found image.(a)
Time line analysis: Analysis of the timestamps found on all the (b)

files in that image.
Inferences. All that the analysis opened up.3.
Report. The most important aspect of a forensic analysis is reporting the 4.
findings.

The machine used for forensic analysis was a Acer Veriton 7600G, loaded with
GNU/Linux-2.6.5-1.358smp, Fedora Core II. The hardware configuration is as
follows:
512 MB RAM, Dual processor, Intel(R) Pentium(R) 4 CPU 2.80GHz, with 512KB
cache, clocked at 2793.845MHz each, 81964 MB HDD

Legend

All content shown in Courier is the copy-paste of the command run on the
console, along with its output. All command names followed by a parenthesis,
enclosing a section name indicate that the information about this command was
obtained from that section of the manual page documentation available with the
GNU/Linux distribution of Fedora Core II. A brief introduction of all commands
used is available in Appendix A.

eg. md5sum(1); Section 1 of the man page.

Tools Used

The complete examination was performed using The Slueth Kit(TSK) and
Autopsy Forensic Browser. As per the website, both are open source digital
forensics tools from Brian Carrier that run on Unix systems. TSK contains a set
of utilities that can be used to read file-system images. A brief easy to
understand explanation of each utility is available in the Appendix A. If you are
naive to Forensics and File Systems, its worth spending a few moments reading
Appendix A. The Autopsy Browser provides a web-based interface to all these
TSK utilities.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

There were also other Linux based utilities that were used, dcfldd(1), nc(1),
strings(1), grep(1), mount(8), md5sum(1), ls(1), gunzip(1), head(1), tail(1),
cat(1), diff(1), file(1), KHexEdit and certainly bash(1). A brief introduction to
these utilities has been added in Appendix A. Process Explorer and Task
Manager were used on Windows.
And finally, although it may not be called a tool, something that certainly played
an important role in the analysis and findings was www.google.com, a search
engine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

1 http://www.giac.org/GCFA_assignment.php

PART I
ANALYSIS OF AN UNKNOWN FLOPPY IMAGE

Case description1

Robert John Leszczynski, Jr., is employed by Ballard Industries, a designer of
fuel cell batteries which produces specialized batteries used around the world
by thousands of companies. Robert is assigned as the lead process control
engineer for the project.
After several successful years of manufacturing and distributing a relatively new
fuel cell battery, which is used in many applications, Ballard industries notices
that many of their clients are no longer re-ordering from them.
After making several calls the vice president of sales determines that one of
Ballard's major competitors, Rift, Inc., has been receiving the new orders for the
same fuel cell battery which was once unique to Ballard. A full blown
investigation ensues.
The investigation has not turned up very much. It is apparent that Rift, Inc.
somehow has received proprietary information from Ballard industries. Ballard
industries keeps a customer database of all its clients and it is feared that that
information somehow got out along with other proprietary data.
The only thing out of the ordinary that has turned up is a floppy disk that was
being taken out of the R&D labs by Robert Leszczynski on 26 April 2004 at
approximatley 4:45 pm MST, which is against company policy. The on staff
security guard seized the floppy disk from Robert's briefcase and told Robert he
could retrieve it from the security administrator.
This part of the paper contains analysis of the floppy disk and provides a report
to David Keen, the security administrator.

Examination Details

The image was downloaded from http://www.giac.org/gcfa/v1_5.gz and
decompressed using gunzip(1). Following was the information regarding the
image that was provided on the website.
Tag# fl-260404-RJL1
3.5 inch TDK floppy disk
MD5: d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img
fl-260404-RJL1.img.gz
[root@agdrd19 downloads]# gunzip -t v1_5.gz
[root@agdrd19 downloads]# gunzip -N v1_5.gz
[root@agdrd19 downloads]#
No errors were detected while decompressing the downloaded file. gunzip(1)
was also run with the -t option to perform a integrity test of the compressed file.
The -N option ensured that the original file name and time stamp is restored

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

if present.
A cryptographic hash was obtained using md5sum(1) and checked with the one
mentioned on the website information. It was found to be matching, and so it
can be confirmed that the download was proper and verifies the integrity of the
image. This hash will now be considered as a baseline signature for all future
integrity checks.
[root@agdrd19 sans]# md5sum fl-260404-RJL1.img
d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img
[root@agdrd19 sans]#

The above output also confirms that the chain of custody has not been broken.
The file(1) command was run on the downloaded image to learn more
information about it. The command attempts to determine the file type, and
perform three tests, viz FileSystem test, magic number test and language test,
in that order. More details about find(1) can be obtained from the manual page.

[root@agdrd19 sans]# file fl-260404-RJL1.img
fl-260404-RJL1.img: x86 boot sector, code offset 0x3c, OEM-ID " mkdosfs", root
entries 224, sectors 2872 (volumes <=32 MB) , sectors/FAT 9, serial number
0x408bed14, label: "RJL ", FAT (12 bit)
[root@agdrd19 sans]#
From the output its clear that the floppy was formatted with a FAT12 file system,
with 9 clusters used to take up one FA Table.
To know further details about the file-system and the data on the image, the
command `fsstat' was run. This utility is a part of The Slueth Kit.
[root@agdrd19 sans]# fsstat -f fat12 fl-260404-RJL1.img
FILE SYSTEM INFORMATION
--
File System Type: FAT

OEM Name: mkdosfs
Volume ID: 0x408bed14
Volume Label (Boot Sector): RJL
Volume Label (Root Directory): RJL
File System Type Label: FAT12

Sectors before file system: 0

File System Layout (in sectors)
Total Range: 0 - 2871
* Reserved: 0 - 0
** Boot Sector: 0
* FAT 0: 1 - 9
* FAT 1: 10 - 18
* Data Area: 19 - 2871
** Root Directory: 19 - 32
** Cluster Area: 33 - 2871

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

META-DATA INFORMATION
--
Range: 2 - 45426
Root Directory: 2

CONTENT-DATA INFORMATION
--
Sector Size: 512
Cluster Size: 512
Total Cluster Range: 2 - 2840

FAT CONTENTS (in sectors)
--
105-187 (83) -> EOF
188-250 (63) -> EOF
251-316 (66) -> EOF
317-918 (602) -> EOF
919-1340 (422) -> EOF
1341-1384 (44) -> EOF
[root@agdrd19 sans]#

The information doesn't exhibit any abnormalities. However the command has
helped us know some important information related to the image.

Each cluster is of 512 bytes, which is the same as the sector size. This 1.
indicates that each cluster will correspond to just one sector.
We have a total of 2872 clusters, ie total space of 2872 * 512 = 1470464 2.
(1436 Kb) This indicates that the floppy has 4Kb of waste space. This could
be because of bad sectors. A normal floppy has 2880 Clusters (1440Kb)

Now that the integrity had been verified and the filesystem known, the image
was mounted using the loopback option provided with mount(8). To make sure
that the analysis does not modify the image, the image was mounted with the
following options:

ro: READ ONLY

noatime: DONT PERMIT ANY CHANGES IN ACCESS TIME STAMP

noexec: DENY ANY EXECUTION OF BINARIES

nodev: IGNORE ANY DEVICE FILES(character/block special)

The first two options were used to make sure that the image was not tampered
in any case. The option noexec was used to avoid any accidental execution of
binaries on the image, that could spoil the forensic system itself. And the nodev
option to avoid usage of any device files of at all present on the image.
[root@agdrd19 sans]# mount fl-260404-RJL1.img floppy-image/ -o
ro,loop,noatime,noexec,nodev
[root@agdrd19 sans]# ls floppy-image/ -s
total 640
-rwxr-xr-x 1 root root 22528 Apr 23 2004 Acceptable_Encryption_Policy.doc
-rwxr-xr-x 1 root root 42496 Apr 23 2004 Information_Sensitivity_Policy.doc

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

-rwxr-xr-x 1 root root 32256 Apr 22 2004 Internal_Lab_Security_Policy1.doc
-rwxr-xr-x 1 root root 33423 Apr 22 2004 Internal_Lab_Security_Policy.doc
-rwxr-xr-x 1 root root 307935 Apr 23 2004 Password_Policy.doc
-rwxr-xr-x 1 root root 215895 Apr 23 2004 Remote_Access_Policy.doc
[root@agdrd19 sans]#

After a successful mount, a simple ls(1) showed that the files,
"Password_Policy.doc" and "Remote_Access_Policy.doc" are larger than the
other files(10 times!). This was noted, for further analysis. Also two files
“Internal_Lab_Security_Policy1.doc” and “Internal_Lab_Security_Policy.doc”
were observed to differ in size.
The next command to be run was `fls', to list all the available as well as deleted
files in the image. It showed an interesting result:
[root@agdrd19 sans]# fls -f fat12 fl-260404-RJL1.img
r/r 3: RJL (Volume Label Entry)
r/r * 5: CamShell.dll (_AMSHELL.DLL)
r/r 9: Information_Sensitivity_Policy.doc (INFORM~1.DOC)
r/r 13: Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
r/r 17: Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
r/r 20: Password_Policy.doc (PASSWO~1.DOC)
r/r 23: Remote_Access_Policy.doc (REMOTE~1.DOC)
r/r 27: Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
r/r * 28: _ndex.htm
[root@agdrd19 sans]#

It shows that two files, CamShell.dll and Index.htm were deleted. To find out
what were the contents of these files, the command `dls' was run on the image
to analyze the deleted data of the file.
[root@agdrd19 sans]# dls -f fat12 fl-260404-RJL1.img | less
<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">

<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflas
h.cab#version=6,0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality
VALUE=high>
<PARAM NAME=bgcolor VALUE=#CCCCCC> <EMBED src="ballard.swf"
quality=high
bgcolor=#CCCCCC WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

2 MST = -700 => 25200 secs; IST(Indian Std Time) = +5:30 => 19800 secs; 45000 = 25200 +
19800.

</OBJECT>
</center>
</BODY>
</HTML>
--- Followed by some binary data ---
It showed an HTML header of some deleted file. The HTML text showed a file
named "ballard.swf". This string was searched in the image using grep(1) and
the offset was obtained.
[root@agdrd19 sans]# grep ballard.swf fl-260404-RJL1.img -ba
17265: <PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality
VALUE=high> <PARAM NAME=bgcolor VALUE=#CCCCCC> <EMBED
src="ballard.swf" quality=high bgcolor=#CCCCCC WIDTH="800"
HEIGHT="600" NAME="ballard" ALIGN=""
[root@agdrd19 sans]#
To find the file's inode number(using `ifind') the block number would be
necessary. The block number was obtained as follows:
BlockNumber = offset / BlockSize
=> BlockNumber = 17265 / 512
=> BlockNumber = 33
The `ifind' gave an interesting result. It showed two inodes for the same block.
[root@agdrd19 sans]# ifind -f fat12 fl-260404-RJL1.img -ad 33
5
28
[root@agdrd19 sans]#
`icat' could be used to find out what these deleted files actually contained. But
before that it would be interesting to know more information about these inodes.
The command `istat' was run on the image to find out detailed information of the
inodes. The timezone of the incident location is MST which demands a skew of
450002 seconds. Since FAT12 doesn't store last accessed time, but only the
date, the change shown by skew should be neglected.
[root@agdrd19 sans]# istat -s 45000 -f fat12 fl-260404-RJL1.img 5
Directory Entry: 5
Not Allocated
File Attributes: File, Archive
Size: 36864
Num of links: 0
Name: _AMSHELL.DLL

Adjusted Directory Entry Times:
Written: Sat Feb 3 07:14:16 2001
Accessed: Sun Apr 25 11:30:00 2004
Created: Sun Apr 25 21:16:18 2004
Directory Entry Times:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

Written: Sat Feb 3 19:44:16 2001
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:46:18 2004

Sectors:
33

Recovery:
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104
[root@agdrd19 sans]# istat -s 45000-f fat12 fl-260404-RJL1.img 28
Directory Entry: 28
Not Allocated
File Attributes: File, Archive
Size: 727
Num of links: 0
Name: _ndex.htm

Adjusted Directory Entry Times:
Written: Thu Apr 22 22:23:56 2004
Accessed: Sun Apr 25 11:30:00 2004
Created: Sun Apr 25 21:17:36 2004
Directory Entry Times:
Written: Fri Apr 23 10:53:56 2004
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:47:36 2004

Sectors:
33

Recovery:
33 34
[root@agdrd19 sans]#
The output showed that there were two DELETED files. This is confirmed
because `istat' showed the inodes as `Not Allocated'.
`ffind' was used to find out the filenames of these inodes.
[root@agdrd19 sans]# ffind -af fat12 fl-260404-RJL1.img 28
* /_ndex.htm
[root@agdrd19 sans]# ffind -af fat12 fl-260404-RJL1.img 5
* /CamShell.dll (_AMSHELL.DLL)
[root@agdrd19 sans]#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

The information given by istat also indicates that the file `CamShell.dll' may not
be recovered completely. This is because the first two sectors have been
overwritten by the file `index.htm'. Moreover six sectors following the first two
contain ZEROes. This could be some deliberate attempt to destroy evidence.
Both the files were recovered using the `icat' tool available.
[root@agdrd19 sans]# icat -r -f fat12 fl-260404-RJL1.img 28 | tee
analysis/recovered/index.htm
<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">

<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflas
h.cab#version=6,0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality

VALUE=high> <PARAM
NAME=bgcolor VALUE=#CCCCCC> <EMBED src="ballard.swf" quality=high
bgcolor=#CCCCCC WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash"

PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>
</OBJECT>
</center>
</BODY>
</HTML>
[root@agdrd19 sans]# icat -r -f fat12 fl-260404-RJL1.img 28 >
analysis/recovered/CamShell.dll
[root@agdrd19 sans]#

INDEX.HTM
Although index.htm was recovered completely, its
not yet clear what was it used for. Apart from
embedding a Flash/Shockwave object, named,
ballard.swf the file doesn't seem to cause any
suspicion. There is infact a file ballard.swf
available on the web[10].

CAMSHELL.DLL
The second deleted file is certainly a cause for concern. CamShell.dll is a
windows based dinamically linked library that is used by a program called
Camouflage. Camouflage is a tool used for steganography. Its a windows based

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

3 http://camouflage.unfiction.com/
4 http://www.tranceaddict.com/forums/archive/topic/79627-1.html

tool, that can hide one file of any type into another(called carrier) without
causing any difference in the normal behaviour of the carrier file. The embedded
file can be conveniently extracted from the carrier, again using Camouflage.
Moreover Camouflage is also capable of scrambling the data before embedding
it into the file. Also it can protect the extraction with a password.
CamShell.dll was assumed to be a Dynamically Linked library based on its file
extension. However its important to confirm this. Since the head part of the file
was overwritten with index.htm, the tail end of CamShell.dll was of primary
importance. The software, Camouflage was downloaded from the web. Its freely
available for download at (Freeware License) 3

Some web-blogs4 mentioned Camouflage being used to distributed MP3s and
to contain Backdoor/Virus/Trojan.
This required utmost care while installation and usage. However the blogs also
mentioned that the Trojans are deployed only when the MP3 are used. This
could very well be true, and at the same time could also mean that Camouflage
as a software was harmless but was improperly used by those embedding mp3
files using it. This was exactly what was quoted on the webpage.
The program was installed using normal user privileges. Process Explorer was
used to monitor file operations of the program. At the end of installation, a time
stamp based query was run to find all the files that were modified in the system
by the installation. Nothing suspicious was found. The installation was assumed
to be clean.
To confirm the validity of CamShell.dll as a Dynamically Linked Library, the file
had to be compared with the newly downloaded one. But since the CamShell.dll
recovered from the floppy was corrupted, that corrupted part was replaces using
same part from the newly downloaded file to generate NewCamShell.dll. All this
was done using tail(1), head(1), diff(1) and cat(1).
[root@agdrd19 sans]# file analysis/recovered/CamShell.dll
analysis/recovered/CamShell.dll: HTML document text
[root@agdrd19 sans]# file downloaded/CamShell.dll
downloaded/CamShell.dll: MS-DOS executable (EXE), OS/2 or MS Windows
[root@agdrd19 sans]# head -c 4096 downloaded/CamShell.dll >
analysis/NewCamShell.dll
[root@agdrd19 sans]# du -b analysis/recovered/CamShell.dll
36864 analysis/recovered/CamShell.dll
[root@agdrd19 sans]# tail -c `echo "36864 - 4096" | bc`
analysis/recovered/CamShell.dll >> analysis/NewCamShell.dll
[root@agdrd19 sans]# file analysis/NewCamShell.dll
analysis/NewCamShell.dll: MS-DOS executable (EXE), OS/2 or MS Windows
[root@agdrd19 sans]# diff -s analysis/NewCamShell.dll
downloaded/CamShell.dll
Files analysis/NewCamShell.dll and downloaded/CamShell.dll are identical
[root@agdrd19 sans]#

The above test considered sufficient to guarantee that the file CamShell.dll

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

5 http://www.blackhat.com/presentations/
6 http://www.guillermito2.net/stegano/camouflage

recovered from the floppy was indeed a Dynamically Linked Library that resided
on the floppy some moment in time.
The presence of CamShell.dll and abnormal file sizes, pointed to the floppy
containing some hidden data. Camouflage was run on the files that were larger
in size compared to others viz “Password_Policy.doc” and
“Remote_Access_Policy.doc”. The results weren't heartening. The software said
that there was a password used whiled hiding, or there may not be any files
embedded at all!

But, file-sizes being 10 times the other similar files, certainly gave an indication
that these files had to be steganographed. A quick strings(1) on the image gave
out something interesting - “pwReserved”. It was immediately tried out on the
files, but it didn't work! Apart from this, there was not anything much suspicious
or something demanding attention.
The next approach was to look for cracking Camouflage's password. A google
search for `detect crack camouflage password' resulted in a pdf5 document on
explaining steganographic methods and various detection techniques. The
slides also pointed to another link6 that explained the password recovery
mechanism for files steganographed using Camouflage. Apparently,
Camouflage stored the passwords in the carrier itself. Its very interesting and
relatively simple technique to recover the password. The technique has been
explained in Appendix B. It was a very exciting read and has showed an
approach to password cracking. Its also worthwhile to note that there are
softwares on the web that are widely used despite of their incompetence.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

The password cracking mechanism was attempted to recover the password
from the file “Remote_Access_Policy.doc”.

50 F0 17 4D 78 C3
XOR 02 95 7A 22 0C A6
= 52 65 6D 6F 74 65

[root@agdrd19 sans]# echo -e "\x52\x65\x6D\x6F\x74\x65"
Remote
[root@agdrd19 sans]#
This password did work on “Remote_Access_Policy.doc”, and Camouflage
unwrapped a file CAT.mdb hidden in the document. CAT.mdb was a file
containing a small database of client information, apparently of Ballard
Industries.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

Looking at the relationship between the password and filename, the password
for the file “Password_Policy.doc” was guessed as `Password'. Some images
referring to the design of Proton Exchange Membrane Fuel Cell were found
hidden within the document. The following files were recovered.

Hydrocarbon%20fuel%20cell%20p1.
age2.jpg
PEM-fuel-cell-large.jpg2.
pem_fuelcell.gif3.

Next the software openned up “Internal_Lab_Security_Policy.doc”. The result
was good to look at. Camouflage detected an embedded file named,
“Opportunity.txt”. The file contained interesting information.

I am willing to provide you with more information for a price. I
have included a sample of our Client Authorized Table database.
I have also provided you with our latest schematics not yet
available. They are available as we discussed - "First Name".
My price is 5 million.

Robert J. Leszczynski

The contents clearly indicated that Leszczynski did indulge into unfair activities.
The second last line - They are available as we discussed - “First Name” -
seemed to have some hidden message. The phrase “First Name” must have
been a hint for the recipients to guess passwords.
With this analysis the following inferences can be made.

Mr. Leszczynski, tried to leak important information that seems proprietary 1.
and confidential of Ballard Industries, with an unfair intention to gain
monetary benefits. Irrespective of the technical information being proprietary
or not, the Client Database is very important for Ballard Industries, and the
consequences of this information leak could be devastating, as Ballard
Industries could loose its invaluable clientèle, and finally loose market.
The latest schematics that Leszczynski attempted to leak, though seem to be 2.

1. 3Hydrocarbon fuel
cell page2.jpg

1. 2pem_fuecell.gif

1. 1PEM-file-cell-large.jpg

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

7 http://www.lazarus.org/

of the new design, may not be considered proprietary until anyone qualified
by Ballard Industries guarantees so. Moreover the image pem_fuelcell.gif is
publicly available on the web[9].
Although he made an attempt to leak information, the seizure of floppy 3.
indicates that the attempt was not successful. However the very attempt by
Mr. Leszczynski to smuggle information, indicates that he is in touch with
some people willing to pay for this information. Mr. Leszczynski can prove to
be an important link to reach such people.

Tools like sorter and lazarus7 were run on the image. But there was nothing
much suspicious about the content. Nothing more than what was already found
was revealed. Following is the output generatred by lazarus:
T....Hh....!!!!!!!!!Tttt.....Tttt.....Tttt.....Tt..Tttt.....XxxxAaaaaaaaAaaaaaTt..Tttt.....Xxxx
xXxxxxxxxTt..Tt..........
The presence of sound media`!' arouses a doubt that it could be the
shockwave/flash file that we were looking for, but a quick look at the location
shows that the media file is located at sector 30, which according to FAT12 is
the root directory! The another presence of media is at sector 47, which is a part
of the deleted file “CamShell.dll”. Again this possibilty is ruled out because, a
md5sum check with the downloaded CamShell.dll showed that the files were
same.

Time-Line Analysis

The Autopsy Forensic Browser (Version: 2.01) was used to generate time-lines
for the floppy's image. The time line generated can be found as a separate file
along with this submission.
When files are copied from a machine to the floppy, the modification time
stamp of the file remains whatever was before copying. Since an access is
made during copy, the access time stamp changes. The created times stamp
shows when the file was created on the floppy. An examination of the time-line
has led to the following conclusions:

The files were copied from the machine to the floppy on Apr 25th 2004 1.
between, Sun Apr 25 2004 21:16:18 and Sun Apr 25 2004 21:17:44.
There were no changes made in the files after they were copied on the 2.
floppy.
The floppy seems to have been formatted on the Sat Apr 24 2004 22:23:40 3.
This was inferred from the time-line entry:
Sat Apr 24 2004 22:23:40 0 m.c-/-rwxrwxrwx 003 RJL (Volume Label Entry)
The time-stamps also indicate that Mr. Leszczynski did all this activities after 4.
office hours.
The times indicate that all files except index.htm were copied together; ie 5.
Selected together, and then placed on floppy. This is because of very minor
difference in their creation timestamps. There is a delay of about minute after
that last of these files(Acceptable_Encryption_Policy.doc) was created and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

index.htm. This indicates that index.htm was copied separately.
The file, index.htm has a later creation time stamp than CamShell.dll. This, 5.
and inference in point 5 could mean that CamShell.dll was deleted, and then
index.htm was copied on the floppy. This could have caused index.htm being
written on the sectors earlier occupied by CamShell.dll before being deleted.
The fact that FAT12 searches for free sectors from the start also supports the
above theory. This seems to be the reasons why the first sector of
CamShell.dll contained html text.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

Image Details

List of all files in the image: The following list generated using `fls' show two 1.
deleted files.
[root@agdrd19 sans]# fls -f fat12 fl-260404-RJL1.img
r/r 3: RJL (Volume Label Entry)
r/r * 5: CamShell.dll (_AMSHELL.DLL)
r/r 9: Information_Sensitivity_Policy.doc (INFORM~1.DOC)
r/r 13: Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
r/r 17: Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
r/r 20: Password_Policy.doc (PASSWO~1.DOC)
r/r 23: Remote_Access_Policy.doc (REMOTE~1.DOC)
r/r 27: Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
r/r * 28: _ndex.htm
[root@agdrd19 sans]#
True name of the program used: Camouflage.2.

File/MAC Time information from the image and their sizes (bytes): The local 3.
timezone being IST, a skew of 45000 seconds is needed to obtain time
stamps in MST. The following command(Explaination available in Appendix
A) gave time-stamps of all the files as well as their size(shaded) in bytes.
Time stamps are Modified, Accessed and Change in that order.
[root@agdrd19 sans]# fls -f fat12 -l -zMST -s 45000 fl-260404-RJL1.img | sed
's/) /)\n /g'
r/r 3: RJL (Volume Label Entry)

2004.04.24 22:23:40 (MST)
2004.04.24 00:00:00 (MST)
2004.04.24 22:23:40 (MST)

 0 0 0
r/r * 5: CamShell.dll (_AMSHELL.DLL)

2001.02.03 07:14:16 (MST)
2004.04.25 00:00:00 (MST)
2004.04.25 21:16:18 (MST)

 36864 0 0
r/r 9: Information_Sensitivity_Policy.doc (INFORM~1.DOC)

2004.04.23 01:41:10 (MST)
2004.04.25 00:00:00 (MST)
2004.04.25 21:16:20 (MST)

 42496 0 0
r/r 13: Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)

2004.04.22 04:01:06 (MST)
2004.04.25 00:00:00 (MST)
2004.04.25 21:16:22 (MST)

 32256 0 0
r/r 17: Internal_Lab_Security_Policy.doc (INTERN~2.DOC)

2004.04.22 04:01:06 (MST)
2004.04.25 00:00:00 (MST)
2004.04.25 21:16:24 (MST)

 33423 0 0
r/r 20: Password_Policy.doc (PASSWO~1.DOC)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

2004.04.22 23:25:26 (MST)
2004.04.25 00:00:00 (MST)
2004.04.25 21:16:26 (MST)

 307935 0 0
r/r 23: Remote_Access_Policy.doc (REMOTE~1.DOC)

2004.04.22 23:24:32 (MST)
2004.04.25 00:00:00 (MST)
2004.04.25 21:16:36 (MST)

 215895 0 0
r/r 27: Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)

2004.04.23 01:40:50 (MST)
2004.04.25 00:00:00 (MST)
2004.04.25 21:16:44 (MST)

 22528 0 0
r/r * 28: _ndex.htm 2004.04.22 22:23:56 (MST)

2004.04.25 00:00:00 (MST)
2004.04.25 21:17:36 (MST)

 727 0 0
[root@agdrd19 sans]#
File Owners: Since FAT12 doesn't support users, file owners cannot be 4.
specified.
MD5 Hashes. Again the same variable AllInodes was reused once again, but 5.
a new variable AllFiles was used. The following screen shot shows the
filename followed by its md5 hash.

Keywords. Dirty Word List: Ballard, Rift, money, secrets, confidential, battery, 5.
batteries , fuel cell, design, competitors, clients, proprietary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

Forensic Details

The forensic analysis done so far has proved fruitful, and has resulted in the
following conclusions:

Mr. Leszczynski tried to smuggle files outside the R&D Labs using the 1.
software Camouflage
Camouflage is a program used for steganography. The program is used to 2.
embed one file into another(called carrier), without affecting the normal
operation of the carrier. Detailed discussion on Camouflage is available in the
section “Examination Details” and Appendix B of this paper.
Although the file CamShell.dll has a later Accessed Time-Stamp(Sun Apr 25 3.
2004), it has not been used on either of the files available on the floppy
image. Thats because, none of the files have a modification time-stamp later
than Apr 25 2004. However it could be very well possible that the file was
used to generate a different file that might be residing on Mr. Leszczynski
machine. Limiting the search to the Steganographed files found in the floppy,
its concluded that the program Camouflage was last used on Thu Apr 22
2004 23:25:26, which is the latest modification time of one of the
Steganographed files- Password_Policy.doc.

Program Identification

Earlier analysis could recover the hidden files that Mr. Leszczynski tried to
smuggle outside the R&D Lab. However to prove that it was the same program
that he used to embed the files, it was necessary that the same operation be
redone, and shown to generate identical output. To do this, the extracted files
were re-hid in the same document file. However the resultant carrier document
generated did not match the ones found in the evidence. Multiple attempts to
Camouflage files, showed that every time Camouflage generated a different
output. Three files were created, Password_Policy.doc,
Password_PolicyAE1.doc and Password_PolicyAE3.doc, all embedded with
the same files – Hydrocarbon%20fuel%20cell%20page2.jpg, PEM-fuel-cell-
large.jpg and pem_fuelcell.gif.
[root@agdrd19 reCamouflaged]# md5sum *
2663555ac1576b12b5e563ba2644c59e Password_PolicyAE1.doc
006e0398339cf6e5644fd6d5214b2ebd Password_PolicyAE3.doc
ac34c6177ebdcaf4adc41f0e181be1bc Password_Policy.doc
[root@agdrd19 reCamouflaged]#
Camouflage when used, also stores the timestamps of the files that are being
hid. This causes the new carrier file generated to have a different signature
everytime.
This can be proved by extracting files from the evidence, and looking for the
times stamps of the files embedded within.
To retain the time-stamps of the extracted files, they were directly extracted onto
a floppy using Camouflage. This made sure that the File System data
structures of the extracted files remained the same. The following screen shot
shows it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

To make sure that the time stamps stay
intact while embedding the files, the floppy
was made Write-protected, by opening the
Write-Protect window. The floppy was once
again put back into the Windows machine
and Camouflage was tried. Camouflage
could not perform the operation and failed
with an error(Shown in the adjacent screen
shot). A simple right click on the files and
selecting “Camouflage” failed with error!
Perhaps Camouflage needs write access to
the directory where it reads the data. This
behavior of the software may not let us prove
that it was the same program that Mr.
Leszczynski use. Had it been possible to do
something similar to mount's -o noatime in
Windows, it would have been possible to
verify the claims.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

8 http://www.mit.gov.in/itbillonline/it_framef.asp

Legal Implications

Though it was not possible to prove that Camouflage was the same program
that Robert Leszczynski used to hide the files, he still did try to smuggle
information outside the R&D Lab.
However, until and unless it cannot be ascertained that the information
Leszczynski attempted to leak is in fact confidential information(Minimal
Sensitivity, More Sensitive or Most Sensitive), he may not be convicted of
violating Information Sensitivity Policy of the company.
If the policy documents found in the floppy are to be believed, Robert
Leszczynski, could be found violating the Information Sensitivity Policy.
According to the Section 3.3; Policy-Most Sensitive of the Information Sensitivity
Policy followed by Ballard Industries, Robert is liable to face Penalty for
deliberate or inadvertent disclosure, which implies up to and including
termination, possible civil and/or criminal prosecution to the full extent of the
law.
But before Robert could be found guilty it is important to ascertain the
documents to be confidential. If the documents retrieved hidden within the files
in the floppy are declared as “technical information integral to the success of the
company”, the content will be tagged “Most Sensitive”. According to the same
document found in the floppy, its clearly mentioned in Section 3.3, “Most
Sensitive” documents need not be explicitly marked so. As per section 2.0 of the
same document it’s the responsibility of the user to use common sense
judgment in securing Ballard Industries Confidential information to the proper
extent. If an employee is uncertain of the sensitivity of a particular piece of
information, he/she should contact their manager.
The technique used by Leszczynski to transfer documents outside the R&D
Labs does not follow any of the procedures mentioned in the electronic
distribution techniques specified by the document. This itself is a policy violation
by Leszczynski, provided the policy documents found in the floppy are correct.
Finally, if Leszczynski is to be penalized for violating Ballard Industries’ Policy,
as per section 4.0 of the Information Sensitivity Policy, he will be subject to
disciplinary action, up to and including termination of employment.
According to the § 728 of the THE INFORMATION TECHNOLOGY ACT, 2000
(No. 21 of 2000), MINISTRY OF LAW, JUSTICE AND COMPANY AFFAIRS,
India, Robert Leszczynski is liable to Penalty for breach of confidentiality and
privacy. Robert Leszczynski is liable to be punished for with imprisonment for a
term, which may extend to two years, or with fine, which may extend to one lakh
rupees (Rupees One Hundred Thousand), or with both.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

Additional Information

Numerous references played an important role in the complete life cycle of the
analysis.

Website dedicated to open-source software development for detection of [1]
Steganography: http://www.outguess.org.
A SANS paper, titled, Stegonagraphy: The Ease of Camouflage on the [2]
ease if usage of Camouflage, a windows based steganographic tool.
http://www.sans.org/rr/papers/20/762.pdf
This is where the steganographic software, Camouflage was downloaded [3]
from. http://camouflage.unfiction.com/
Official website for TSK and Autopsy: http://www.sleuthkit.org/[4]
The website that explained cracking the password for Camouflage. A [5]
good website in itself, it helped in learning password cracking approach
too. http://www.guillermito2.net/stegano/camouflage/index.html,
http://www.guillermito2.net/stegano/
An enlightening presentation on the concepts Steganography and [6]
Steganalysis. http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-
raggo/bh-us-04-raggo-up.pdf
The HoneyNet Challengers, whose solutions were invaluable in the [7]
analysis: http://www.honeynet.org/scans/scan24/sol/dennis/index.htm,
http://www.honeynet.org/scans/scan26/sol/nick/
The publicly available pem_fuelcell.gif image[8]
http://www.ballard.com/be_informed/media_resources/image_gallery/cate
gory/Technology
http://www.ballard.com/resources/animations/animations/FuelCellShort/ba[9]
llard.swf; The link that showed where ballard.swf was located:
http://www.overgrow.com/edge/showthread/t-539698.html
http://www.rtems.com/ml/rtems-users/2003/july/msg00149.html[10]
Time zone codes and the offsets. http://atm.geo.nsf.gov/ieis/time.html[11]
Case description in PART I http://www.giac.org/GCFA_assignment.php[12]
The lazarus utiltity http://www.lazarus.org[13]
http://www.mit.gov.in/itbillonline/it_framef.asp[14]
And finally, http://www.google.com[15]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

9All names(except the names used by the attacker) and have been replaced by fictitious ones,
to preserve privacy.

PART II

FORENSIC INVESTIGATION OF A HACKED SERVER

Synopsis of the Case Facts

Software Techniques Ltd9. used Draupadi, a Linux box as a web server as well
as mail server. The organization, based in Bangalore, India, had nearly a fifty
employees working in their office at Bangalore. All the users had accounts on
Draupadi, and used it for their regular mail interactions. Software Techniques
Ltd. also used Draupadi to host its website. All the system administration was
handled by a team of three, led by Mr. K. Arjuna.
On 5th of August 2004 a regular user, Karan, working after office hours, noticed
a change in behavior of some programs. Simple utilities like ls and telnet were
giving problems. Unfortunately no-one from the system administration was
around at this time. When Karan called up Arjuna, Karan was instructed to
disconnect the machine from the network. All this happened around 10 pm IST.
The next day, Arjuna performed a minimal incident handling procedure and got
the system back into the network. Draupadi was still not accessible from the
Internet though. Finally after a few days, Arjuna transferred all the data from
Draupadi to another machine, and stopped using this Linux Box.
The system was kept down before being handed over to a team comprising of
Me, Pramod Pawar and Vijay Kumar V K – all Track 8, GCFA participants – to
perform forensic analysis. Due to some administrative constraints, Mr. Arjuna
denied permanent custody of the machine. However, we were permitted to
image the partitions of the system.
This paper is a compilation of the analysis that I performed on the system.
Although the images were handed over to a team as such, the paper comprises
of my personal analysis and findings.

Verification

Draupadi was kept down for a long period of time(8-10 weeks) after the
incident. In such a scenario the incident has mainly been verified based on
interviews. Further analysis has helped verifying the incident.
When Karan called up Arjuna late that night, it was evident to Arjuna that
Draupadi was compromised, and a rootkit must have been deployed. On his
return to office the next morning, during the examination of the system, Arjuna
made the following observations:

There were some new users(ids: ravi, diva and ro) added to the system. All of 1.
them had their home directories in /home/. This was contrary to Software
Technique's regular practice of creating user home directories in /home/<dept-
name>/login-id, these users had their directories in /home/login-id.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.26

The ACLs of the router were empty! This was one of the most astonishing 2.
facts of the case. Unfortunately, the router didn't maintain any logs.
Few suspicious processes named “superwu” were running on the system.3.

System Description

Draupadi was a Linux box loaded on an Siemens machine running Redhat 7.1,
with a 2.4.2-2 kernel. The machine was used as a web as well as mail server
with around fifty users logging into it daily. Apart from checking mails, this
server was also host to some minor software development activities by the staff.
Web content was shtml/html/php. No other server side scripting was supported.
The web link was a 2MBPS leased line connectivity. The machine was
protected from the Internet cloud by a Cisco 2600 series router, with very strict
ACLs. No ports other than 80(http) and 25(smtp) were open for this machine.
Draupadi also ran ssh, telnet, sftp and ftp daemons. However the access was
restricted to the private IP Addresses only.

Hardware

Draupadi had the following configuration:
Siemens PRIMERGY-400,
Intel Pentium II Processor, clocked at 396.826 Mhz.,
256 MB RAM.
4x4Gb SCSI HDD, FUJITSU MAB3045SC.
CDROM Drive: SIEMENS STM/L S1.
Tape Drive(Sequential access): SONY SDT-7000.
1.44M Floppy Drive(/dev/fd0).
No hardware was permitted to be acquired as evidence. Following the best
evidence rule, images of the media were obtained, details in next section.

Image Media

Due to some administrative and privacy constraints, Arjuna denied permanent
custody of the machine and restricted us from imaging few of the sensitive
partitions. Following the best evidence rule, we retorted to obtaining images of
hard-disk partitions using dcfldd(1) and nc(1).
Since Draupadi was out of network, we transfered images onto the forensic
analysis machine using a cross-cable, and tagged the images. The following
output shows the md5 hashes taken on Draupadi. We had to use Knoppix,
because Helix wouldn't detect the SCSI hard disks! Since dcfldd wasn't
available, it was obtained from the network.
root@1[draupadi-knoppix]# ./dcfldd bs=10M if=/dev/sda7 hashwindow=0
hashlog=sda7.md5 | nc 172.16.xx.xx 20017 -w 5
A sequence of such commands were run on Draupadi to image it. Finally we
had all the md5 hashes stored in files, named with the respective device name.
root@1[draupadi-knoppix]# grep . *md5
sda1.md5:Total: 661a4f317ce620e2f49de820a5d04257

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.27

sda10.md5:Total: 6b7bbf152e11e6f346357dc42c838d89
sda5.md5:Total: 22b2939c417e2f0333bf41dde891ebbf
sda7.md5:Total: 56a125d04fa2ea3beb9c355921ef9bda
sda8.md5:Total: cba7fada45bcaa8d0402cdd7d484c10b
sda9.md5:Total: debf77cc75c0e48ceb1274f9160d3abc
sdb1.md5:Total: b2ec6a068f2c57495a9ad39f1223c60d
sdc1.md5:Total: fe3df9d054d76fefd3d038d1d604256b
sdc6.md5:Total: cfa9ce8308700f2ebfdef2424445a3cc
root@1[draupadi-knoppix]#
To make sure that these hashes were not lost, we also transfered all this
hashes to the forensic machine. All the transferred partitions were checked for
correctness by calculating their md5 cryptographic hash.
[root@agdrd19 analysis]# md5sum images/*
661a4f317ce620e2f49de820a5d04257 sda1-dd
6b7bbf152e11e6f346357dc42c838d89 sda10-dd
22b2939c417e2f0333bf41dde891ebbf sda5-dd
56a125d04fa2ea3beb9c355921ef9bda sda7-dd
cba7fada45bcaa8d0402cdd7d484c10b sda8-dd
debf77cc75c0e48ceb1274f9160d3abc sda9-dd
b2ec6a068f2c57495a9ad39f1223c60d sdb1-dd
fe3df9d054d76fefd3d038d1d604256b sdc1-dd
cfa9ce8308700f2ebfdef2424445a3cc sdc6-dd
[root@agdrd19 analysis]#

All these hashes were
added into Autopsy
while importing
images. The adjacent
screen shot shows all
the images that were
imported into Autopsy.

As shown in the next
screen shot, Autopsy
verified all the images
to pass the
cryptographic hash
test.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.28

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.29

Media Analysis

According to all the information acquired from Karan, other users and Arjuna, it
was evident that there had to be a rootkit installed on the machine. The first
thing that came to my mind was to look out for modification and access time
stamps.
However I changed my mind and thought of doing the inode-number test
first(explained later). I prefer noting down what things come to my mind,
generate a check list, and tick them one by one with the shortest, simplest,
quickest and the most effective one first. Its rather amusing how simple
commands always turn out to be the quick evidence collectors.
Keeping this in mind I prepared a plan for my analysis. I would go through these
one at a time, noting things on my way and avoid going wayward, as I often do.

Mount the images and do a quick and simple find(1) and ls(1) tricks to look 1.
out for bits and pieces of evidence.
By the time find(1) is doing its job, examine the /etc/passwd file and find 2.
about the newly added users Arjuna told about.
Get back with Autopsy and then check out some important timelines(will be 3.
explained in detail in the next section dedicated only to Time-Line analysis).
Look out for all the deleted files in the suspicious user directories.4.

QUICK FIND(1) AND LS(1) TRICKS
All the image files were mounted at a convinient location
“/root/analysis/images/testmounts” in the forensic analysis machine, from where
i ran my favourite sequence of commands. Care was taken during mounting to
make sure that the images stay intact. I did this by mounting with the options:

ro: READ ONLY

noatime: DONT PERMIT ANY CHANGES IN ACCESS TIME STAMP

noexec: DENY ANY EXECUTION OF BINARIES

nodev: IGNORE ANY DEVICE FILES(character/block special)

The first two options were used to make sure that the image was not tampered
in any case. The option noexec was used to avoid any accidental execution of
binaries on the image, that could spoil the forensic system itself. And the nodev
option to avoid usage of any device files of at all present on the image.

find -name '...*' -exec ls -ld --quoting-style=locale '{}' \; >
/root/searches/dot-dot-dot &

Aim: To look out for all the files that started with three dots! Hardly do users
create files or directories with such names.
How? find(1) seems to find almost anything you ask it to. The -name option
specifies what name to look for. I passed '...*' indicating dot-dot-dot followed by
anything. Then I asked find(1) to execute ls -l command on the file-path that it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.30

finds. The -exec option specifies so. The two curly braces are special for find.
During execution, these get replaced by the file-path. The -l option of ls asks ls
to list details of the filenames passed and the option –quoting-style=locale
makes sure that filenames like “... ” are not missed out. And finally all the
output was redirected to /root/searches/dot-dot-dot, with the search put into
background. By putting it into background, I can proceed with my other
searches. I can then go back at leisure and analyze the outputs generated.
Sample Output: Note the back-tick and single-quote surrounding the filename.
-rw------- 1 509 300 715 Apr 5 2004 `./sdb1-dd/shakuni/duryodhan/...'

find -name superwu > /root/searches/superwu &

Next one had to be a search for the suspicious process found running.
My next aim was to find out what all things did the new users deploy all around
the system. No matter what I do later, this search output will certainly be helpful.
To do a uid based search, I needed to find the uid from /etc/passwd. This is
where Autopsy helped. A quick visit to /, etc, passwd showed the following file
contents
ravi:x:50101:50101:Ravi-Shadanah:/home/ravi:/bin/bash
duryodhan:x:50102:321:Duryodhan:/home/shakuni/duryodhan:/bin/bash
diva:x:50103:321::/home/diva:/bin/bash
ro:x:50104:50104::/home/ro:/bin/bash

find -uid 50103 > /root/searches/uid-diva &

find -uid 50101 > /root/searches/uid-ravi &

find -uid 50104 > /root/searches/uid-ro &

These commands would search for all the files owned by the user diva, ravi and
ro.
From the contents of /etc/passwd, it seems as if the attacker was cautious
while adding a new account. She made sure that the account had all the
information filled. After a while, she might have noticed that she has been gone
undetected and must have become careless. This can be inferred because the
next id added was added without a username. She must have simply run the
command useradd(8). This gave me sufficient reason to find out WHEN this
was done last. Autopsy again, for ease of use, straight forward, reliable and
predictable behavior! Autopsy showed that the file /usr/sbin/useradd was last
accessed on Aug, 5th 2004, at 10:19 am. This meant that the user ro was added
the very day the attacker was detected.
Next on the list of small tricks was sequence of inode numbers using ls(1).
The check had to be performed in three phases: Binaries, Libraries and then
configuration files. In the directory, “/root/analysis/images/testmounts” I
prepared links to all the mount points.
[root@agdrd19 testmounts]# ls -lGg | grep ^l
lrwxrwxrwx 1 8 Oct 17 21:43 boot -> sda1-dd/
lrwxrwxrwx 1 8 Oct 17 21:44 home -> sdb1-dd/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.31

lrwxrwxrwx 1 9 Oct 17 21:43 slash -> sda10-dd/
lrwxrwxrwx 1 8 Oct 17 21:44 tmp -> sda9-dd/
lrwxrwxrwx 1 8 Oct 17 21:43 usr -> sda5-dd/
lrwxrwxrwx 1 8 Oct 17 21:44 usr-local -> sda8-dd/
lrwxrwxrwx 1 8 Oct 17 21:45 var -> sdc1-dd/
lrwxrwxrwx 1 8 Oct 17 21:46 var-www -> sdc6-dd/
[root@agdrd19 testmounts]#
To check for inodes out of sequence, the following command was run:
[root@agdrd19 bin]# pwd
/root/analysis/images/testmounts/usr/bin

[root@agdrd19 bin]# ls -i | sort -n | less

ls with the option -i lists the inodes before the filename. This output when given
to sort with the option -n gets its sorted numerically. During installation, files are
normally installed at the same tine, and so get sequence of inodes. In case any
of these files are newly created, the new file will get an inode number that is out
of sequence. Sorting the files based on inode number lets us pick out files like
these.
Output of the above command did not show any abnormalities in either of the
following directories:
/root/analysis/images/testmounts/usr/bin,
/root/analysis/images/testmounts/usr/sbin,
/root/analysis/images/testmounts/slash/bin
/root/analysis/images/testmounts/slash/sbin
To look out for the setuid files, the following command was run:

find -perm +6000 -ls > /root/searches/setuid-files &

find with the -perm option searhes for files that have atleast ONE of the bits set
as specified by the number. As per the man page of chmod(1), the first digit
selects the set user ID (4) and set group ID (2) and sticky (1) attributes. The
second digit selects permissions for the user who owns the file: read (4),
write (2), and execute (1); the third selects permissions for other users in the
file's group, with the same values; and the fourth for other users not in the file's
group, with the same values.
To look for setuid files, the first digit should look for setuid(4) and setgid(2) =>
2+4 = 6. Since rest of the bits can be ignored, the rest three digits were left
zero.
[root@agdrd19 testmounts]# find -perm +6000 -ls > /root/searches/setuid-files
[root@agdrd19 testmounts]#
Next test was to check the modification time stamps of the files in the same
directories. To do that I executed a simple command:
[root@agdrd19 bin]# pwd
/root/analysis/images/testmounts/slash/bin

[root@agdrd19 bin]# stat * | grep Modify | grep 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.32

[root@agdrd19 bin]# cd ../../usr/bin/
[root@agdrd19 bin]# pwd
/root/analysis/images/testmounts/usr/bin

#[root@agdrd19 bin]# stat * | grep Modify | grep 2004
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-08-06 00:55:56.000000000
Modify: 2004-08-09 04:24:40.000000000
Modify: 2004-07-26 05:07:12.000000000
Modify: 2004-08-05 09:51:00.000000000
Modify: 2004-08-09 04:24:40.000000000
[root@agdrd19 bin]# pwd
/root/analysis/images/testmounts/usr/bin
[root@agdrd19 bin]#
The command stat(1) shows statistics of files, including the timestamps. All
other files in this directory had timestamps in 2001 and 2002. With so many
files to search from, it was necessary to put a filter, and thats why i diud a grep
for 2004.
There were two files shown modified on 26th of July, and 9th of Aug. If I can see
the time stamps of the suspicious users home directory, I could get an idea of
the duration from when Draupadi compromised. There were files with the same
creation times in the home directory of the user ravi – the first suspicious user
added.
[root@agdrd19 Desktop]# pwd
/root/analysis/images/testmounts/home/ravi/Desktop
[root@agdrd19 Desktop]# stat Autostart

File: `Autostart' -> `../.kde/Autostart'
Size: 17 Blocks: 0 IO Block: 4096 symbolic link

Device: 702h/1794d Inode: 441677 Links: 1
Access: (0777/lrwxrwxrwx) Uid: (0/ root) Gid: (0/ root)
Access: 2004-08-08 08:41:23.000000000
Modify: 2004-07-26 05:22:16.000000000
Change: 2004-07-26 05:22:16.000000000
[root@agdrd19 Desktop]#
To check which files were having such a weird modification timestamp, I
executed the following command. The command egrep is an extended grep
where you can have some complex regular expressions to search for. In the
following command, egrep looks for the filename or modify time stamps. This
output is again sought for 2004 and if found 1 line before to it is shown. This is
what -B option does.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.33

[root@agdrd19 bin]# stat * | egrep 'Modify: |File:' | grep '2004' -B1
File: `a2ps'

Modify: 2004-08-09 04:24:40.000000000
--

File: `fax2ps'
Modify: 2004-08-09 04:24:40.000000000
--

File: `grops'
Modify: 2004-08-09 04:24:40.000000000
--

File: `ksymoops'
Modify: 2004-08-09 04:24:40.000000000
--

File: `oldps'
Modify: 2004-08-09 04:24:40.000000000
--

File: `pbmtolps'
Modify: 2004-08-09 04:24:40.000000000
--

File: `pdftops'
Modify: 2004-08-09 04:24:40.000000000
--

File: `pfbtops'
Modify: 2004-08-09 04:24:40.000000000
--

File: `pnmtops'
Modify: 2004-08-09 04:24:40.000000000
--

File: `procmail'
Modify: 2004-08-06 00:55:56.000000000
--

File: `pstops'
Modify: 2004-08-09 04:24:40.000000000
--

File: `rem'
Modify: 2004-07-26 05:07:12.000000000
--

File: `strings '
Modify: 2004-08-05 09:51:00.000000000
--

File: `tiff2ps'
Modify: 2004-08-09 04:24:40.000000000
[root@agdrd19 bin]#
There we go. The output has nicely caught two files: `rem' and `strings '. Thanks
to the quoting style used by stat(1), we can see there is a space followed after
strings. A web search for such a small word like rem would be futile, and so will
be for strings. But before setting out to dig out what these binaries are doing
here, and their intentions, I decided to find some more things elsewhere too.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.34

This is the list of directories I decided to look for trouble.
/usr/bin1.
/usr/sbin/2.
/bin3.
/sbin4.
/usr/local/bin5.
/usr/local/sbin6.
/usr/lib7.
/lib8.
/usr/local/lib9.

Unfortunately, the Change time-stamps for all the files were in a sequence,
starting with 7th of August. This was because Mr. Arjuna used a crude data
transfer mechanism. The file transfer was done by creating a archive first and
then transferring it using ftp.
Getting back to the checklist. /usr/bin and /bin, /sbin and /usr/sbin were clean.
Here is the output: No output infact!
[root@agdrd19 bin]# cd ../../slash/bin/
[root@agdrd19 bin]# stat * | egrep 'Modify: |File:' | grep '2004' -B1
[root@agdrd19 bin]# cd ../../slash/sbin/
[root@agdrd19 sbin]# stat * | egrep 'Modify: |File:' | grep '2004' -B1
[root@agdrd19 sbin]# cd ../../usr/sbin/
[root@agdrd19 sbin]# stat * | egrep 'Modify: |File:' | grep '2004' -B1
Still clear. Next was /usr/local/bin
[root@agdrd19 bin]# pwd
/root/analysis/images/testmounts/usr-local/bin
[root@agdrd19 bin]# stat * | egrep 'Modify: |File:' | grep '2004' -B1

File: `backup'
Modify: 2004-05-05 00:19:39.000000000
--

File: `core'
Modify: 2004-08-08 01:30:14.000000000

File: `icheckd'
Modify: 2004-01-08 03:59:06.000000000 -0500
--

File: `sweep'
Modify: 2004-01-08 03:59:06.000000000 -0500
[root@agdrd19 bin]#
All files except the core file had safe time-stamps. A did a simple gdb core core
to check what caused the core file, and it said it was because of the command
`w’. This must have been Arjuna trying to do `w’ that caused this. This prompted
me to deploy another find!
[root@agdr19 testmounts]# find -name core > /root/searches/cores
[root@agdr19 testmounts]# pwd
/root/analysis/images/testmounts
[root@agdr19 testmounts]#
/usr/local/sbin was empty. There was something real interesting at /usr/lib.
/usr/lib/libc was found to be modified. I had heard about glibc, but whats this
libc? Again somemore real good information!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.35

[root@agdrd19 lib]# stat * | egrep 'Modify: |File:' | grep '2004' -B1
 File: `libc'

Modify: 2004-08-05 09:51:00.000000000
[root@agdrd19 lib]#
/lib also proved to be interesting!
[root@agdrd19 lib]# stat * | egrep 'Modify: |File:' | grep '2004' -B1

File: `security'
Modify: 2004-08-05 09:50:51.000000000
[root@agdrd19 lib]# pwd
/root/analysis/images/testmounts/slash/lib
[root@agdrd19 lib]#
Next came /usr/local/lib. Although a little suspicious, but clear nevertheless.
[root@agdrd19 lib]# pwd
/root/analysis/images/testmounts/usr-local/lib
[root@agdrd19 lib]# stat * | egrep 'Modify: |File:' | grep '2004' -B1 | sed 's/-
0400//g'

File: `libsavi.so.2' -> `libsavi.so.3.2.07.040'
Modify: 2004-01-08 03:59:10.000000000 -0500

File: `libsavi.so.3' -> `libsavi.so.3.2.07.040'
Modify: 2004-01-08 03:59:06.000000000 -0500

File: `libsavi.so.3.2.07.040'
Modify: 2004-01-08 03:59:06.000000000 -0500
[root@agdrd19 lib]#
So the final checklist for investigation:
“/usr/lib/libc”
“/bin/rem“
“/bin/strings “
“/usr/local/bin/core”
To probe more into the details of the binaries I tested them first with file(1) and
then using strings(1). rem turned out to be a log remover! Seems like the
attacker was all set to take over the machine! Here is the output of the
[root@agdrd19 bin]# strings rem
<skipped>
close
GLIBC_2.0
PTRh$
Usage: %s account
Log Cleaner by ^Sang^^pRaBu^, Copyright(c) 2002
#1 - Check log...
/var/log/wtmp

Can't find record from %s ...
Found %d record(s) for user %s

#2 - Cleaning Up....
You cannot delete %d records if only %d

exist.
Trouble cleaning up %s.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.36

Cleaning up %d record(s) from %s ... OK
/var/run/utmp
/var/log/lastlog

Cleaning up %s ... OK
Cleaning up /var/log/messages ... OK

echo >/var/log/messages
Cleaning up /var/log/secure ... OK

echo >/var/log/secure
Cleaning up /var/log/maillog ... OK

echo >/var/log/maillog
Cleaning up /var/log/xferlog ... OK

echo >/var/log/xferlog
#3 - Successfull Cleaning up...
[root@agdrd19 bin]#
Next to be checked was “strings ”. Running 'strings' on 'strings ' sounds
interesting, and it did turn out interesting too! 'strings ' was in-fact the original
string program, and the original was replaced by the new one! This must have
been reflected in the change time stamps, which were not preserved properly.
Since 'strings ' was the original, the next thing that came to my mind was too
look for the modified program strings which must have been part of the rootkit.
[root@agdrd19 bin]# strings './strings'
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
strcpy
printf
fgets
__cxa_finalize
system
feof
malloc
__deregister_frame_info
setgid
strcmp
sprintf
fclose
fopen
_IO_stdin_used
__libc_start_main
strlen
setuid
__register_frame_info
GLIBC_2.1.3
GLIBC_2.1
GLIBC_2.0
PTRh`
QVh0
$Id: lsof v2.11 Exp $
[1;33m%s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.37

/bin/su -
/usr/lib/libc/libah
egrep
%s|%s
%sps
%s %s
/usr/bin/strings' '
%s%s | /bin/egrep -v "%s"
[root@agdrd19 bin]#
From the output it seems as if the program is trying to hide (grep -v) a file
”/usr/lib/libc/libah”. This also points to the earlier output which detected a
directory called /usr/lib/libc.
Examining the contents of /usr/lib/libc/ I found just one file called libph. It would
have been interesting to see which program was accessing this file at the time
of detection.
[root@agdrd19 libc]# ls -a
. .. libph
[root@agdrd19 libc]# cat libph
sendmail
eof
all
v
vadimI
sl2
sl3
slice
stream
stealth
startwu
superwu
7350wurm
x2
pscan
scan
r00t
php
[root@agdrd19 libc]# pwd
/root/analysis/images/testmounts/usr/lib/libc
[root@agdrd19 libc]#

OUTPUT FROM THE FINDS
All the output from the finds was stored in /root/search/
List of all the setuid/ setgid programs on the machine
[root@agdrd19 searches]# cat setuid-files
44231 65 -rwsr-xr-x 1 root root 65203 Mar 22 2001 ./sda10-dd/bin/mount
44232 34 -rwsr-xr-x 1 root root 33555 Mar 22 2001 ./sda10-dd/bin/umount
44247 24 -rwsr-xr-x 1 root root 22871 Jan 16 2001 ./sda10-dd/bin/su

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.38

12115 25 -r-sr-xr-x 1 root root 23719 Apr 7 2001 ./sda10-dd/sbin/pwdb_chkpwd
12116 25 -r-sr-xr-x 1 root root 24207 Apr 7 2001 ./sda10-dd/sbin/unix_chkpwd
12148 14 -rwxr-sr-x 1 root root 12919 Apr 7 2001 ./sda10-dd/sbin/netreport
32772 48 -rwsr-xr-x 1 root root 46523 Apr 4 2001 ./sda5-dd/bin/at
32828 44 -rwxr-sr-x 1 root kmem 44435 Feb 4 2001 ./sda5-dd/bin/man
32833 176 -rwxr-sr-x 1 root 14 176083 Feb 23 2001 ./sda5-dd/bin/minicom
32908 792 -rws--x--x 2 root root 803851 Mar 23 2001 ./sda5-dd/bin/suidperl
32908 792 -rws--x--x 2 root root 803851 Mar 23 2001 ./sda5-dd/bin/sperl5.6.0
32919 20 -rwxr-sr-x 1 root man 19883 Jan 6 2001 ./sda5-dd/bin/lockfile
32964 24 -rwsr-xr-x 1 root root 23091 Feb 5 2001 ./sda5-dd/bin/rcp
32966 20 -rwsr-xr-x 1 root root 19603 Feb 5 2001 ./sda5-dd/bin/rlogin
32967 20 -rwsr-xr-x 1 root root 16555 Feb 5 2001 ./sda5-dd/bin/rsh
33003 44 -rwsr-xr-x 1 root root 43347 Mar 9 2001 ./sda5-dd/bin/chage
33005 44 -rwsr-xr-x 1 root root 44987 Mar 9 2001 ./sda5-dd/bin/gpasswd
33017 36 -rwxr-sr-x 1 root fax 33267 Feb 26 2001 ./sda5-dd/bin/slocate
33141 24 -r-s--x--x 1 root root 22295 Jul 12 2000 ./sda5-dd/bin/passwd
33744 24 -rws------ 1 root root 21807 Apr 8 2001 ./sda5-dd/bin/chfn
33745 24 -rws--x--x 1 root root 21359 Apr 8 2001 ./sda5-dd/bin/chsh
33763 16 -rws------ 1 root root 14219 Apr 8 2001 ./sda5-dd/bin/newgrp
33774 20 -rwxr-sr-x 1 root tty 17451 Apr 8 2001 ./sda5-dd/bin/write
33805 204 -rwsr-xr-x 1 root root 204231 Apr 8 2001 ./sda5-dd/bin/ssh
33821 32 -rwsr-xr-x 1 root root 30071 Mar 8 2001 ./sda5-dd/bin/crontab
34122 16 -rwsr-xr-x 1 root root 16059 Apr 3 2001 ./sda5-dd/bin/kcheckpass
34131 68 -rwxr-sr-x 1 root root 64159 Apr 3 2001 ./sda5-dd/bin/kdesud
34289 40 -r-sr-x--- 1 root proxy 37971 Feb 14 2001 ./sda5-dd/bin/inndstart
34315 68 -r-sr-x--- 1 uucp proxy 62701 Feb 14 2001 ./sda5-dd/bin/rnews
34328 36 -r-sr-x--- 1 root proxy 34323 Feb 14 2001 ./sda5-dd/bin/startinnfeed
35385 92 ---s--x--x 1 root root 89779 Feb 23 2001 ./sda5-dd/bin/sudo
37189 24 -rwsrwxrwx 1 root root 24073 Jul 26 05:07 ./sda5-dd/bin/rem

129699 20 -rws------ 1 root root 18256 Dec 1 2000 ./sda5-dd/sbin/traceroute
129700 8 -rwxr-sr-x 1 root voice 6584 Jul 13 2000 ./sda5-dd/sbin/utempter
133773 424 -r-sr-xr-x 1 root root 426587 Aug 28 2003 ./sda5-dd/sbin/sendmail
130034 12 -rwxr-sr-x 1 root voice 9180 Mar 16 2001 ./sda5-dd/sbin/gnome-pty-

helper
130303 8 -rwsr-xr-x 1 root root 6392 Apr 7 2001 ./sda5-dd/sbin/usernetctl
130408 24 -rws--x--x 1 root root 20696 Feb 14 2001 ./sda5-dd/sbin/userhelper
132505 12 -r-s--x--- 1 root 48 10976 Mar 29 2001 ./sda5-dd/sbin/suexec
33878 8 -rws--x--x 1 root root 6040 Mar 30 2001 ./sda5-dd/X11R6/bin/Xwrapper

523304 20 ---x--s--x 1 501 500 17814 Oct 23 2003 ./sdb1-
dd/sysadmin/Access_Logs/access-date.exe

295546 20 ---s--x--x 1 1054 300 17717 Aug 5 2003 ./sdb1-
dd/spc/vimala/setids/access.exe

457862 4 drwxr-sr-x 2 root staff 4096 Mar 21 1999 ./sdb1-dd/ftp/pub
165141 8 -r-sr-xr-x 1 root root 5432 Mar 2 2001 ./sdb1-dd/gotcha/testme
131336 4 drwxr-sr-x 2 root root 4096 Mar 22 2001 ./sdc1-dd/ftp/pub
[root@agdr19 searches]# cat setuid-files | sed 's/ */ /g'
44231 65 -rwsr-xr-x 1 root root 65203 Mar 22 2001 ./sda10-dd/bin/mount
44232 34 -rwsr-xr-x 1 root root 33555 Mar 22 2001 ./sda10-dd/bin/umount
44247 24 -rwsr-xr-x 1 root root 22871 Jan 16 2001 ./sda10-dd/bin/su
12115 25 -r-sr-xr-x 1 root root 23719 Apr 7 2001 ./sda10-dd/sbin/pwdb_chkpwd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.39

12116 25 -r-sr-xr-x 1 root root 24207 Apr 7 2001 ./sda10-dd/sbin/unix_chkpwd
12148 14 -rwxr-sr-x 1 root root 12919 Apr 7 2001 ./sda10-dd/sbin/netreport
32772 48 -rwsr-xr-x 1 root root 46523 Apr 4 2001 ./sda5-dd/bin/at
32828 44 -rwxr-sr-x 1 root kmem 44435 Feb 4 2001 ./sda5-dd/bin/man
32833 176 -rwxr-sr-x 1 root 14 176083 Feb 23 2001 ./sda5-dd/bin/minicom
32908 792 -rws--x--x 2 root root 803851 Mar 23 2001 ./sda5-dd/bin/suidperl
32908 792 -rws--x--x 2 root root 803851 Mar 23 2001 ./sda5-dd/bin/sperl5.6.0
32919 20 -rwxr-sr-x 1 root man 19883 Jan 6 2001 ./sda5-dd/bin/lockfile
32964 24 -rwsr-xr-x 1 root root 23091 Feb 5 2001 ./sda5-dd/bin/rcp
32966 20 -rwsr-xr-x 1 root root 19603 Feb 5 2001 ./sda5-dd/bin/rlogin
32967 20 -rwsr-xr-x 1 root root 16555 Feb 5 2001 ./sda5-dd/bin/rsh
33003 44 -rwsr-xr-x 1 root root 43347 Mar 9 2001 ./sda5-dd/bin/chage
33005 44 -rwsr-xr-x 1 root root 44987 Mar 9 2001 ./sda5-dd/bin/gpasswd
33017 36 -rwxr-sr-x 1 root fax 33267 Feb 26 2001 ./sda5-dd/bin/slocate
33141 24 -r-s--x--x 1 root root 22295 Jul 12 2000 ./sda5-dd/bin/passwd
33744 24 -rws------ 1 root root 21807 Apr 8 2001 ./sda5-dd/bin/chfn
33745 24 -rws--x--x 1 root root 21359 Apr 8 2001 ./sda5-dd/bin/chsh
33763 16 -rws------ 1 root root 14219 Apr 8 2001 ./sda5-dd/bin/newgrp
33774 20 -rwxr-sr-x 1 root tty 17451 Apr 8 2001 ./sda5-dd/bin/write
33805 204 -rwsr-xr-x 1 root root 204231 Apr 8 2001 ./sda5-dd/bin/ssh
33821 32 -rwsr-xr-x 1 root root 30071 Mar 8 2001 ./sda5-dd/bin/crontab
34122 16 -rwsr-xr-x 1 root root 16059 Apr 3 2001 ./sda5-dd/bin/kcheckpass
34131 68 -rwxr-sr-x 1 root root 64159 Apr 3 2001 ./sda5-dd/bin/kdesud
34289 40 -r-sr-x--- 1 root proxy 37971 Feb 14 2001 ./sda5-dd/bin/inndstart
34315 68 -r-sr-x--- 1 uucp proxy 62701 Feb 14 2001 ./sda5-dd/bin/rnews
34328 36 -r-sr-x--- 1 root proxy 34323 Feb 14 2001 ./sda5-dd/bin/startinnfeed
35385 92 ---s--x--x 1 root root 89779 Feb 23 2001 ./sda5-dd/bin/sudo
37189 24 -rwsrwxrwx 1 root root 24073 Jul 26 05:07 ./sda5-dd/bin/rem

129699 20 -rws------ 1 root root 18256 Dec 1 2000 ./sda5-dd/sbin/traceroute
129700 8 -rwxr-sr-x 1 root voice 6584 Jul 13 2000 ./sda5-dd/sbin/utempter
133773 424 -r-sr-xr-x 1 root root 426587 Aug 28 2003 ./sda5-dd/sbin/sendmail
130034 12 -rwxr-sr-x 1 root voice 9180 Mar 16 2001 ./sda5-dd/sbin/gnome-pty-

helper
130303 8 -rwsr-xr-x 1 root root 6392 Apr 7 2001 ./sda5-dd/sbin/usernetctl
130408 24 -rws--x--x 1 root root 20696 Feb 14 2001 ./sda5-dd/sbin/userhelper
132505 12 -r-s--x--- 1 root 48 10976 Mar 29 2001 ./sda5-dd/sbin/suexec
33878 8 -rws--x--x 1 root root 6040 Mar 30 2001 ./sda5-dd/X11R6/bin/Xwrapper

523304 20 ---x--s--x 1 501 500 17814 Oct 23 2003 ./sdb1-
dd/sysadmin/Access_Logs/access-date.exe

295546 20 ---s--x--x 1 1054 300 17717 Aug 5 2003 ./sdb1-
dd/spc/vimala/setids/access.exe

457862 4 drwxr-sr-x 2 root staff 4096 Mar 21 1999 ./sdb1-dd/ftp/pub
165141 8 -r-sr-xr-x 1 root root 5432 Mar 2 2001 ./sdb1-dd/gotcha/testme
131336 4 drwxr-sr-x 2 root root 4096 Mar 22 2001 ./sdc1-dd/ftp/pub
[root@agdrd19 searches]#
None of the files are seen modified in 2004.
[root@agdrd19 searches]# cat dot-dot-dot
-rw-r--r-- 1 500 300 1584 1999-12-17 00:50 ./sdb1-
dd/spc/patil/.enlightenment/...e_session-XXXXXX

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.40

-rw-r--r-- 1 500 300 1142 1999-12-17 00:50 ./sdb1-
dd/spc/patil/.enlightenment/...e_session-XXXXXX.clients.0
-rw-r--r-- 1 500 300 0 1999-12-17 00:50 ./sdb1-
dd/spc/patil/.enlightenment/...e_session-XXXXXX.snapshots.0
-rw-r--r-- 1 501 300 1584 2000-07-07 11:59 ./sdb1-
dd/spc/rk/.enlightenment/...e_session-XXXXXX
-rw-r--r-- 1 501 300 0 2000-07-07 11:59 ./sdb1-
dd/spc/rk/.enlightenment/...e_session-XXXXXX.snapshots.0
-rw-r--r-- 1 501 300 1142 2000-07-07 11:59 ./sdb1-
dd/spc/rk/.enlightenment/...e_session-XXXXXX.clients.0
-rw------- 1 509 300 715 2004-04-05 10:44 ./sdb1-dd/spc/srinivas/...
-rw-r--r-- 1 1003 321 362 2003-04-24 03:25 ./sdb1-
dd/shakuni/shree/doc/metadata/...txt
-rw-r--r-- 1 1052 321 105 2003-09-12 03:43 ./sdb1-
dd/shakuni/shikha/proj/...proc
-rw-r--r-- 1 1050 505 359 2003-04-24 05:45 ./sdb1-
dd/pt/rpreddy/public-html/metadata/...txt
drwxr-xr-x 5 50103 321 4096 2004-08-01 07:17 ./sdb1-
dd/diva/.kde/tmp/var/...
[root@agdrd19 searches]#
The output shows that there are a few files with the name “…” in some of the
users directories. But there is one suspicious file(a directory) residing in the
home directory of the user diva. This was noted, for further analysis
Next was the file superwu
[root@agdrd19 searches]# cat superwu

./sda10-dd/lib/security/www/superwu
[root@agdrd19 searches]#
There seems to be a file named superwu in a very peculiar location: /lib!! (sda10
was /). I immediately used the file command to find what it was:
[root@agdr19 testmounts]# file ./sda10-dd/lib/security/www/superwu
./sda10-dd/lib/security/www/superwu: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), statically linked, corrupted section header size
[root@agdr19 testmounts]#
The output of the file command shows that it was an executable. Being a 32-bit
on Intel 80386 gives a hint it must have been compiled on a Linux machine.
Going ahead with the search for user files, starting with the user ro:
[root@agdrd19 searches]# cat uid-ro
./sdb1-dd/ro
./sdb1-dd/ro/.bash_logout
./sdb1-dd/ro/.bash_profile
./sdb1-dd/ro/.bashrc
./sdb1-dd/ro/Desktop
./sdb1-dd/ro/Desktop/kontrol-panel
./sdb1-dd/ro/Desktop/.directory
./sdb1-dd/ro/Desktop/Linux Documentation
./sdb1-dd/ro/Desktop/www.redhat.com
./sdb1-dd/ro/Desktop/Printer
./sdb1-dd/ro/.kde

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.41

./sdb1-dd/ro/.kde/Autostart

./sdb1-dd/ro/.kde/Autostart/.directory

./sdb1-dd/ro/.emacs

./sdb1-dd/ro/.screenrc
[root@agdrd19 searches]#
The output does not show any un-nerving fact, and it looks more like a default
content of a home directory of a newly added user. This output also helps to
guarantee the fact that the user ro was added only few hours before being
detected.
Next was the user ravi:
[root@agdr19 searches]# cat uid-ravi
./sdb1-dd/ravi
./sdb1-dd/ravi/.bash_logout
./sdb1-dd/ravi/.bash_profile
./sdb1-dd/ravi/.bashrc
./sdb1-dd/ravi/Desktop
./sdb1-dd/ravi/Desktop/kontrol-panel
./sdb1-dd/ravi/Desktop/.directory
./sdb1-dd/ravi/Desktop/Linux Documentation
./sdb1-dd/ravi/Desktop/www.redhat.com
./sdb1-dd/ravi/Desktop/Printer
./sdb1-dd/ravi/.kde
./sdb1-dd/ravi/.kde/Autostart
./sdb1-dd/ravi/.kde/Autostart/.directory
./sdb1-dd/ravi/.kde/.var
./sdb1-dd/ravi/.kde/.var/ps
./sdb1-dd/ravi/.kde/.var/ps/lang
./sdb1-dd/ravi/.kde/.var/ps/lang/english.lng
./sdb1-dd/ravi/.kde/.var/ps/daemon
./sdb1-dd/ravi/.kde/.var/ps/ps
./sdb1-dd/ravi/.kde/.var/ps/mkconf
./sdb1-dd/ravi/.kde/.var/ps/log
./sdb1-dd/ravi/.kde/.var/ps/log/ps.log
./sdb1-dd/ravi/.kde/.var/ps/log/USER1.TRL
<SOME MORE FILES IN LOG>
./sdb1-dd/ravi/.kde/.var/ps/help/ADDLOG.TXT
./sdb1-dd/ravi/.kde/.var/ps/help/DELLOG.TXT
./sdb1-dd/ravi/.kde/.var/ps/help/LISTLOGS.TXT
./sdb1-dd/ravi/.kde/.var/ps/help/DCCSENDME.DEU
<LOT MORE FILES IN HELP>
./sdb1-dd/ravi/.kde/.var/ps/ps.pid
./sdb1-dd/ravi/.kde/.var/ps/daemon.old
./sdb1-dd/ravi/.emacs
./sdb1-dd/ravi/.screenrc
./sdb1-dd/ravi/.ispoof
./sdb1-dd/ravi/.oidentd.conf
./sdb1-dd/ravi/.bash_history
./sdc1-dd/spool/mail/ravi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.42

10 http://psybnc.cynapses.org/?lang=en&show=oidentd

[root@agdr19 searches]#
Apart from showing a bad and hidden directory name(./sdb1-dd/ravi/.kde/.var), it
showd that the user ravi had downloaded a utility named ps. His idea must have
been to overwrite the ps that is already present on the system. The ps.pid must
have been to store the id of some daemon that the ps would hide. Also there
was another file called /.oidentd.conf which sounds like some configuration file
of some daemon. A web search revealed that this was a configuration file for
oidentd10: As per the website, oidentd is a comfortable identd deamon, which
makes it possible to spoof identd requests. It is supported by many bouncers
like psybnc. Spoof means that it is for each user possible to send his own ident
back.
This is above all an advantage for the quakenet, because there is a trust limited
to 4 idents.
Analysing for the user diva, the following results were seen:
[root@agdr19 searches]# cat uid-diva
./sdb1-dd/diva
./sdb1-dd/diva/.bash_logout
./sdb1-dd/diva/.bash_profile
./sdb1-dd/diva/.bashrc
./sdb1-dd/diva/Desktop
./sdb1-dd/diva/Desktop/kontrol-panel
./sdb1-dd/diva/Desktop/.directory
./sdb1-dd/diva/Desktop/Linux Documentation
./sdb1-dd/diva/Desktop/www.redhat.com
./sdb1-dd/diva/Desktop/Printer
./sdb1-dd/diva/.kde
./sdb1-dd/diva/.kde/Autostart
./sdb1-dd/diva/.kde/Autostart/.directory
./sdb1-dd/diva/.kde/tmp
./sdb1-dd/diva/.kde/tmp/var
./sdb1-dd/diva/.kde/tmp/var/...
./sdb1-dd/diva/.kde/tmp/var/.../Unreal3.1.3
./sdb1-dd/diva/.kde/tmp/var/.../Unreal3.1.3/CVS
<LOT MORE FILES INDICATING INSTALLATION OF THE COMPLETE
SOFTWARE!>
./sdb1-dd/diva/.kde/tmp/var/.../services
./sdb1-dd/diva/.kde/tmp/var/.../services/services
./sdb1-dd/diva/.kde/tmp/var/.../services/listnicks
./sdb1-dd/diva/.kde/tmp/var/.../services/listchans
./sdb1-dd/diva/.kde/tmp/var/.../services/languages
./sdb1-dd/diva/.kde/tmp/var/.../services/languages/cat
./sdb1-dd/diva/.kde/tmp/var/.../services/exception.db
./sdb1-dd/diva/.kde/tmp/var/.../.sh
./sdb1-dd/diva/.kde/tmp/var/.../epona-1.4.14
./sdb1-dd/diva/.kde/tmp/var/.../epona-1.4.14/BUGS
<MANY MORE FILES, AGAIN A COMPLETE SOFTWARE INSTALLATION>
./sdb1-dd/diva/.emacs

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.43

11 http://www.epona.org/
12 http://www.unrealircd.com/

./sdb1-dd/diva/.screenrc

./sdb1-dd/diva/.bash_history
[root@agdr19 searches]#
Again the user diva contained two software, epona-1.4.14 and Unreal3.1.3
installed in the directory ./sdb1-dd/diva/.kde/tmp/var/.../. Both the softwares are
related to IRC, Internet Relay Chat. Epona11 is a set of services for IRC networks
that allows users to manage their nicks and channels in a secure and efficient
way, and administrators to manage their network with powerful tools.
Unreal3.1.3 is a an IRC Daemon named UnrealIRCd12.
The next approach was look for all the logs of the system. To know whats
happening in the security logs, I did a grep –v 172.16 to avoid all the logs that
were from the internal IP address. On 5th of August there were attempts being
made to log into the server using ssh. The user tried was test/guest. The
remote ip, in such a case plays a vital role in identifying the attacker. The
following logs obtained from /var/log/secure.2 file show the following output
Directory: /var//log/
Image: images/sdc1-dd Meta: 98497

r / r secure.2
2004.08.05 23:24:36 (IST)
2004.08.09 13:37:24 (IST)

2004.10.26 11:01:21 (IST)
27011 0 0 98590y
The above file secure.2 contained following important ips:
Aug 4 08:49:36 draupadi xinetd[679]: START: telnet pid=17700
from=193.109.122.10

Aug 5 19:47:30 draupadi sshd[6394]: input_userauth_request: illegal user test
Aug 5 19:47:30 draupadi sshd[6394]: Failed password for illegal user test from
210.201.0.61 port 54499 ssh2
Aug 5 19:47:31 draupadi sshd[6394]: Received disconnect from 210.201.0.61:
11: Bye Bye
Aug 5 19:47:34 draupadi sshd[6411]: input_userauth_request: illegal user
guest
Aug 5 19:47:34 draupadi sshd[6411]: Failed password for illegal user guest
from 210.201.0.61 port 54509 ssh2
Aug 5 19:47:34 draupadi sshd[6411]: Received disconnect from 210.201.0.61:
11: Bye Bye

Aug 5 20:19:00 draupadi xinetd[679]: START: telnet pid=11261
from=193.109.122.13

Aug 5 21:58:27 draupadi sshd[19651]: Did not receive identification string from
81.18.78.97.
I searched these IP addressses on the web. And found them to belonging to a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.44

13 APNIC is one of four Regional Internet Registries currently operating in the world. It provides
allocation and registration services which support the operation of the Internet globally. It is a
not-for-profit, membership-based organisation whose members include Internet Service
Providers, National Internet Registries, and similar organisations. APNIC represents the Asia
Pacific region, comprising 62 economies. http://www.apnic.net/

14 The RIPE NCC is an independent, not-for-profit membership organisation that supports the
infrastructure of the Internet through technical co-ordination in its service region. The most
prominent activity of the RIPE NCC is to act as the Regional Internet Registry (RIR) providing
global Internet resources and related services (IPv4, IPv6 and AS Number resources) to
members in the RIPE NCC service region. http://www.ripe.net/

location in Netherlands APNIC13 didn’t have Information about the IP's seen in
secure logs But RIPE14 did!
It was an IP from Netherlands, New Zealand
inetnum: 193.109.122.0 - 193.109.122.255
netname: BIT-IRC-1
descr: BIT proxyscan PI space
country: NL
route: 193.109.122.0/24
descr: route object for 193.109.122.0/24
origin: AS12859
notify: scancomplaints@bit.nl
mnt-by: BIT-MNT
changed: scancomplaints@bit.nl 20020122
source: RIPE

person: Sabri Berisha
address: Postbus 536
address: 6710 BM EDE
address: The Netherlands
phone: +31 318 695917
e-mail: scancomplaints@bit.nl
nic-hdl: SB825-RIPE
mnt-by: BIT-MNT
changed: scancomplaints@bit.nl 20020122
source: RIPE
Searching for the user ravi, I came across a peculiar file in his account directory.
File: /home//ravi/.kde/.var/.sh
Image: images/sdb1-dd Meta: 441687
This file contains the log for the irc daemon the attacker was running!
Referring to the earlier search result that showed me a directory named “…”, I
checked up the same file and its presence on the timeline. The timeline showed
that this directory was being used by the user diva for running an IRC Server

superwu
This was one thing that could never be neglected. Arjuna had noticed a process
named superwu running on the system. It was a command top(1) that showed
him the process. Unfortunately no other information was available on the run
time capabilities of the process. Earlier find had showed the program being in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.45

15 http://www.psychoid.net/psybnc.html
16 gzip is a gnu[10] implementation of a file compressor that reduces files by using Lempel-Ziv

coding (LZ77)
17 tar is an archiving program designed to store and extract files from an archive file known as a

tarfile.

the directory, “/root/analysis/images/testmounts/sda10-dd/lib/security/www”.
The directory name itself is peculiar, but easily ignored by a casual viewer.
A study of this directory revealed a bouncer. A bouncer is a program that works
similar to a proxy. It accepts connections from one location and forwards the
connection to anther location. A bouncer can be used to hide one’s true IP
address. One can connect to a bouncer and ask it to forward connection to
another destination. The destination will in turn get the source address as that of
the bouncer. Bouncers can be used to perform attacks on the system by hiding
one’s location. The attacked machine will see the attack being happening from
the address of the bouncer.
The directory contained a bouncer named, psybnc15. The boucer software was
found in a hidden directory named “.bash”. The attacker got this software by
means of a gzipped16 tar17 archive.
[root@agdr19 www]# tar -ztf bnc.tgz
.bash/
.bash/key/
.bash/key/psybnc.cert.pem
.bash/key/psybnc.key.pem
.bash/key/psybnc.req.pem
.bash/log/
.bash/log/INFO
.bash/log/USER1.LOG
.bash/log/USER1.TRL
.bash/log/psybnc.log
<some more files related to psybnc bouncer software>
[root@agdr19 www]#
A simple search for the two keywords “sniff” and “promisc” showed presence of
two executables that would attempt to sniff packets from the network. The
output is discussed in the section, String Search later in this paper.
This directory also contained a file named, firewall. The find(1) command
revealed this to be a bash script. Following is the output of the command file
and the contents of the script.
[root@agdr19 www]# file firewall
firewall: Bourne shell script text executable

[root@agdr19 www]# cat firewall
#!/bin/sh
#!/bin/bash
#
This File Will Block All Existent Ports From 15000 To 65536
Don`t Forget To Modificate My Port If You WIll Use This FireWall
Be Carefuly Use This File Only On Your Risk
File Created By NaRciS

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.46

#

BLK=''
RED=''
GRN=''
YEL=''
BLU=''
MAG=''
CYN=''
WHI=''
DRED=''
DGRN=''
DYEL=''
DBLU=''
DMAG=''
DCYN=''
DWHI=''
RES=''
FIREWALLLOG=/lib/security/www/firewall.log

if [-d /lib/security/www/];then

echo "${DGRN}[-] ${CYN}/lib/security/www/.rd/ ${GRN}Exist Not Creating
${CYN}... ${DGRN}[-]${RES}"
echo
else
echo "${DGRN}[-] ${CYN}/lib/security/www/.rd/ ${RED}Does Not Exist Creating
${CYN}... ${DGRN}[-]${RES}"
echo
mkdir -p /lib/security/www/

fi

if [-f $FIREWALLLOG];then
rm -rf $FIREWALLLOG
touch $FIREWALLLOG
else
touch $FIREWALLLOG

fi

if [-f /sbin/ipchains];then

echo "/sbin/ipchains STATUS : [OK]" >> $FIREWALLLOG
echo "Tring To Start And Aply FireWall Rules For NaRciS Settings" >>
$FIREWALLLOG
echo "${DGRN}[-] ${CYN}Well I Have A Good New : /sbin/ipchains
${GRN}EXISTS${CYN} ... ${DGRN}[-]${RES}"
echo
echo "${DGRN}[-] ${CYN}Tring To Start And Aply FireWall Rules For

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.47

${YEL}NaRciS ${CYN}Settings ... ${DGRN}[-]${RES}"
echo "Displaing Status Of /sbin/ipchains -F Before Installing The FireWall" >>
$FIREWALLLOG
echo
"###
#####" >> $FIREWALLLOG
echo "######################
Status#######################################" >> $FIREWALLLOG
/sbin/ipchains -L -n >> $FIREWALLLOG
echo "########## END Of The Status Before Installing The FireWall
########" >> $FIREWALLLOG
/sbin/ipchains -F >> $FIREWALLLOG
/sbin/ipchains -I input -j DENY -s 0/0 -d 0/0 -p tcp --destination-port 15000:65535
>> $FIREWALLLOG
/sbin/ipchains -I input -j ACCEPT -s 0/0 -d 0/0 -p tcp --sport 216 >>
$FIREWALLLOG
/sbin/ipchains -I input -j ACCEPT -s 0/0 -d 0/0 -p tcp --dport 216 >>
$FIREWALLLOG
/sbin/ipchains -I input -j ACCEPT -s 0/0 -d 0/0 -p udp --sport 216 >>
$FIREWALLLOG
/sbin/ipchains -I input -j ACCEPT -s 0/0 -d 0/0 -p udp --dport 216 >>
$FIREWALLLOG
/sbin/ipchains -I output -j ACCEPT -s 0/0 -d 0/0 -p tcp --sport 216 >>
$FIREWALLLOG
/sbin/ipchains -I output -j ACCEPT -s 0/0 -d 0/0 -p tcp --dport 216 >>
$FIREWALLLOG
/sbin/ipchains -I output -j ACCEPT -s 0/0 -d 0/0 -p udp --sport 216 >>
$FIREWALLLOG
/sbin/ipchains -I output -j ACCEPT -s 0/0 -d 0/0 -p udp --dport 216 >>
$FIREWALLLOG
echo "Displaing Status Of /sbin/ipchains -F After Installing The FireWall " >>
$FIREWALLLOG
echo "######################
Status#######################################" >> $FIREWALLLOG
/sbin/ipchains -L >> $FIREWALLLOG
echo "########## END Of The Status After Installing The FireWall #########"
>> $FIREWALLLOG
echo
"###
#####" >> $FIREWALLLOG
else

echo "/sbin/ipchains STATUS : [FAILED]" >> $FIREWALLLOG
echo "${DGRN}[-] ${CYN}Well I Have A Bad New : /sbin/ipchains
${RED}MISSING${CYN} ... ${DGRN}[-]${RES}"

fi

#
EOF

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.48

#
[root@agdr19 www]#
The script develops a firewall that blocks the ports from 15000 to 65535
There was another tar archive name windmilk.tgz that contained the executable
superwu. It was not possible to determine what the executable superwu did.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.49

Timeline Analysis

Note: Detailed timeline is available separately along with this submission.
I prefer the Autopsy forensic browser for generating timelines. That’s mainly
because of the ease of operation and managing the complete study as such.
Moreover the browser (or server as it should rightly be referred as) also has
facility to make notes which come in very handy during the reporting phase of
the analysis. In my report, I have put in excerpts from the notes that I made on
Autopsy.
I generated the time line for the month of July and August. It shows a steady
activity of the suspicious user ravi from the 26th of July itself.
Mon Jul 26 2004 14:52:16 17 m.c l/lrwxrwxrwx root root 441677

/home/ravi/Desktop/Autostart ->
../.kde/Autostart

The above timeline record shows the date when this account got created.
On the 30th of July the timeline shows the account of user diva being created.
Again this is the first instance of the user CREATING a file. Modification time
stamps can get transferred when the file Is transferred, but the creation time
stamp shows presence on the machine.
Fri Jul 30 2004 12:09:56 4096 m.. d/drwxr-xr-x diva shakuni 49094

/home/diva/Desktop
224 m.. -/-rw-r--r-- diva shakuni 217
/home/diva/.bash_profile

 306 m.. -/-rw-r--r-- diva shakuni 49262
/home/diva/Desktop/.directory

 107 m.. -/-rw-r--r-- diva shakuni 49293
/home/shakuni/golani/1.jpg (deleted-realloc)
280 m.. -/-rw-r--r-- diva shakuni 49297
/home/shakuni/srinivas/public-html/temp/temp
(deleted-realloc)

 280 m.. -/-rw-r--r-- diva shakuni 49297
/home/diva/Desktop/Printer

 4096 m.. d/drwxr-xr-x diva shakuni 221
/home/diva/.kde/Autostart

 4096 m.. -/drwxr-xr-x diva shakuni 49094
/home/shakuni/selva/mail/sudha.lock.108452841
1.22958.draupadi.ncb.ernet.in (deleted-
realloc)
4096 m.. -/drwxr-xr-x diva shakuni 49094
/home/shakuni/selva/mail/
support.lock.1084528416.22958.draupadi.ncb.er
net.in (deleted-realloc)

 24 m.. -/-rw-r--r-- diva shakuni 216
/home/diva/.bash_logout

 3728 m.. -/-rw-r--r-- diva shakuni 226
/home/diva/.screenrc
4096 m.. -/drwxr-xr-x diva shakuni 49094
/home/shakuni/selva/mail/d0253039 (deleted-
realloc)

 80 m.. -/-rw-r--r-- diva shakuni 49290
/home/diva/Desktop/Linux Documentation

 747 m.. -/-rw-r--r-- diva shakuni 224
/home/diva/.emacs

 17 m.c l/lrwxrwxrwx root root 49289
/home/diva/Desktop/Autostart ->
../.kde/Autostar

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.50

The time line also shows that the user diva compiled a code on the Server.
Fri Jul 30 2004 12:29:10 965749 m.. -/-rwx--x--x diva sedb

16743
/home/diva/.kde/tmp/var/.../Unreal3.1.3/usr/i
rcd (deleted-realloc)

39848 m.. -/-rw-r--r-- diva sedb
16742
/home/diva/.kde/tmp/var/.../Unreal3.1.3/usr/z
ip.o

 46496 m.. -/-rw-r--r-- diva sedb
16741
/home/diva/.kde/tmp/var/.../Unreal3.1.3/usr/w
howas.o

965749 m.. -/-rwx--x--x diva sedb
16743
/home/diva/.kde/tmp/var/.../Unreal3.1.3/usr/s
ftp-server

42832 m.. -/-rw-r--r-- diva sedb
16745
/home/diva/.kde/tmp/var/.../Unreal3.1.3/usr/c
hkmatch.o

49880 m.. -/-rw-r--r-- diva sedb
16744
/home/diva/.kde/tmp/var/.../Unreal3.1.3/usr/c
hkcrule.o

Fri Jul 30 2004 12:29:12 0 mac -/-rw------- diva sedb
92 /tmp/tmpf5A22n6 (deleted)

82477 m.. -/-rwxr-xr-x diva sedb
16746
/home/diva/.kde/tmp/var/.../Unreal3.1.3/usr/c
hkconf

 0 mac -rw------- diva sedb 92
<sda9-dd-dead-92>

0 mac -/-rw------- diva sedb
92 /tmp/ccFOMPGc.ld (deleted)

Fri Jul 30 2004 13:13:17 2900 m.. -/-rwx------ diva shakuni
49355
/home/diva/.kde/tmp/var/.../Unreal3.1.3/ircd

The highlighted portion shows that there were some temporary files created to
perform linking. The files were immediately deleted after the linking was done.
The module being compiled was called Unreal3.1.3 which is an irc(Internet
Relay Chat) daemon.
Again on August 1st the attacker compiled another software, epona, version
1.4.14. As per the website, Epona is a set of services for IRC networks that
allows users to manage their nicks and channels in a secure and efficient way,
and administrators to manage their network with powerful tools.
Sun Aug 01 2004 16:49:48 71484 m.. -/-rw-r--r-- diva sedb

458539 /home/diva/.kde/tmp/var/.../epona-
1.4.14/messages.o

Sun Aug 01 2004 16:49:49 59560 m.. -/-rw-r--r-- diva sedb
458540 /home/diva/.kde/tmp/var/.../epona-
1.4.14/misc.o

Sun Aug 01 2004 16:49:51 64704 m.. -/-rw-r--r-- diva sedb
458541 /home/diva/.kde/tmp/var/.../epona-
1.4.14/news.o

Sun Aug 01 2004 16:49:58 142252 m.. -/-rw-r--r-- diva sedb
458542 /home/diva/.kde/tmp/var/.../epona-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.51

1.4.14/nickserv.o
Sun Aug 01 2004 16:50:05 54344 m.. -/-rw-r--r-- diva sedb

458544 /home/diva/.kde/tmp/var/.../epona-
1.4.14/process.o

138752 m.. -/-rw-r--r-- diva sedb
458543 /home/diva/.kde/tmp/var/.../epona-
1.4.14/operserv.o

Sun Aug 01 2004 16:50:15 720378 m.. -/-rwxr-xr-x diva shakuni
458561 /home/diva/.kde/tmp/var/.../epona-
1.4.14/services

Finally the compilation created an executable file named, services.
Based on the earlier media analysis that revealed a bouncer software named,
psybnc, the timeline revealed that the software was used on 5th of August.
Thu Aug 05 2004 20:16:05 206 m.. -/-rw------- root root 22156

/lib/security/www/.bash/log/psybnc.log.old
Thu Aug 05 2004 20:18:56 1578 m.. -/-rw------- root root 22172

/lib/security/www/.bash/motd/USER1.MOTD.old
Thu Aug 05 2004 20:19:17 669 m.. -/-rw------- root root 22158

/lib/security/www/.bash/psybnc.conf.old
Thu Aug 05 2004 20:19:19 669 m.. -/-rw------- root root 22165

/lib/security/www/.bash/psybnc.conf
Thu Aug 05 2004 20:19:32 1525 m.. -/-rw------- root root 22155

/lib/security/www/.bash/log/psybnc.log
Thu Aug 05 2004 20:19:34 1540 m.. -/-rw------- root root 22170

/lib/security/www/.bash/motd/USER1.MOTD

String Search

sniff
A search for the keywords, sniff and promisc in the directory “lib/security/www”
of the compromised machine revealed two files. The output of the grep search
is as follows:
[root@agdr19 www]# egrep -ira 'sniff|promisc' * | strings
read:# Sorts the output from LinSniffer 0.03 [BETA] by Mike Edulla
<medulla@infosoc.com>
read: # The line is one of linsniffs "separator" lines
write:j
Ih8
t(hv
cant get SOCK_PACKET socket
cant get flags
cant set promiscuous mode
[root@agdr19 www]# pwd
/root/analysis/images/testmounts/slash/lib/security/www
[root@agdr19 www]#
It showed two files, read and write that contained these keywords.
The first file, read is a perl script that uses LinSniffer that is a line sniffer. The
second line has an error message saying “cant set promiscuous mode”. This
indicates that the attacker did try to deploy the a packet sniffing code in
draupadi!
Viewing the timestamps of these files reveal that the files were last modified on
the 5th of August. The following output also shows the file, write being last

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.52

modified on the 26th of July. It could be possible that these executables could
have been running on the system at the time of detection. The names, read and
write could easily go unnoticed to an in-experienced eye.

[root@agdr19 www]# stat read
File: `read'
Size: 4060 Blocks: 8 IO Block: 4096 regular file

Device: 700h/1792d Inode: 42245 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2004-08-08 02:10:05.000000000 -0400
Modify: 2004-08-05 09:50:52.000000000 -0400
Change: 2004-08-07 19:46:22.000000000 -0400

[root@agdr19 www]# stat write
File: `write'
Size: 17960 Blocks: 38 IO Block: 4096 regular file

Device: 700h/1792d Inode: 42246 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2004-10-26 01:19:20.000000000 -0400
Modify: 2004-08-05 09:50:52.000000000 -0400
Change: 2004-08-07 19:46:22.000000000 -0400

[root@agdr19 www]#
./susu
A look at the .bash_history of the user ravi revealed that the user was on the
system for a long time. So there were chances that I could find lot of traces of
activities being done by the user. In the history file, there was a line “./susu”. I
did a keyword search for this and found that this was not an executable.
Search for "susu"

Fragment: 640956
Allocated
Group: 19
Hide Meta Data Address
Pointed to by Inode: 49303
Pointed to by file: /home/diva/.kde/tmp/var/.../Unreal3.1.3/ircd.conf
Fragment 640956 (Hex - Ascii)
67: 709 (X:susu1:sus)
68: 715 (usu1:susu2)/home/diva/.kde/tmp/var/.../Unreal3.1.3/ircd.conf

Contents found:
############ X:LINE Die/Restart Password ############
X:susu1:susu2
###

Again this was found in the IRCD daemon logs. The X in the beginning of the
configuration file seems to indicate it as an encrypted password. All other
searches for the word susu resulted in some character combinations, that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.53

18 MIME (Multipurpose Internet Mail Extensions). The Base64 encoding is designed to represent
arbitrary sequences of octets in a form that need not be humanly readable. A 65-character
subset ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per printable
character. As per MIME::Base64(3pm).

looked more like MIME BASE6418 encoding.

Sniffer
A sniffer was found while searching for one. However it was found in one of the
user directories. On asking Mr. Arjuna he confirmed that it was a legitimate
code, and the user too agreed that he had downloaded the code.

Superwu
Detailed analysis on this is available in Media Analysis section.

Conclusions

Examination of the system revealed modified binaries and ircd daemon
deployed by the attacker. The sequence of activities show that the system was
available to the attacker for a long duration of two weeks before being detected.

The attacker seems to be a experienced one and knows where and how to hide
files. The locations /usr/lib/libc, “/usr/bin/strings “ show the attacker’s knowledge
about the system.
The username created for the first time with proper Name shows that she had
his presence of mind in place and was cautious before doing nasty things inside
the server. As she spent time on Draupadi, she realized that her activities are
going un-noticed. That made her careless and made her commit serious
blunders enough to get detected by a simple regular user.

Motive
The presences of two IRC daemons indicate that she did have some more
interests in the machine other than just a compromise. The intention was to run
IRC daemons. There are instance where these daemons were started too.
The attacker did not have intentions to gain information from the server. No
attempts were found to destroy content or search information.
But the presence of a log-eraser “/usr/bin/rem” indicate that she was ready to
erase all logs in case of a tight situation. Being gone undetected for a duration
of nearly two weeks, the attacker was careless enough of not coming to know
that she was spotted. Had she noticed that simple programs like ls are
crashing, she should have cleared all the logs.

What caused the compromise?
Its not clear, how the attacker gained access to Draupadi, not yet. Mr. Arjuna
has a feeling that he might have made a mistake while updating the router
ACLs and might have left the server open in the Internet. This would open all the
services Draupadi was running to be accessible from the Internet, and would
make the server potentially vulnerable to exploits.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.54

References

The link that helped me find out the IP address. [1]
http://www.ripe.net/perl/whois?form_type=simple&full_query_string=&sea
rchtext=193.109.122.10&do_search=Search
The website that gave information about psybnc. [2]
http://www.psychoid.net/psybnc.html
Information about oidentd [3]
http://psybnc.cynapses.org/?lang=en&show=oidentd.
The official website for UnRealIRCD, an IRC Daemon [4]
http://www.unrealircd.com/
All information about epona an extension for IRC daemons [5]
http://www.epona.org/
Asia Pacific Network Information Centre http://www.apnic.net/[6]
The WhoIs search page that identified the IP Address attempting to make [7]
telnet connection to draupadi http://www.ripe.net/perl/whois
Official website for TSK and Autopsy: http://www.sleuthkit.org/[8]
Some very informative and enlightening forensic analysis played important [9]
role in gathering knowledge for this paper. www.honeynet.org
GNU is Not UNIX. A compilation of all the binaries that are found on the [10]
GNU/Linux machine www.gnu.org
All web searches: www.google.com[11]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.55

APPENDIX A
EXPLAINATIONS OF UTILITIES AND COMMANDS

File-System Basics

A file-system is nothing but a data-structure that defines how data(bits and
bytes) can be stored on the hard disks. To let the user use this data structures,
a file-system defines set of functionalities(APIs) that can modify the data
structures and the data, in a consistent and a efficient manner.
Its the file-system that determines how much amount of space is available free
on the computer, and where is it located. Its the file-system again that decides
where and how much amount of space to be allocated for a file of size 23 bytes
and for a 56Mb file. To address different requirements and different working
conditions, there were various file-systems developed over a period of time.
eg.
Consider a Linux server that is being shared by some 10-20 team members of a
department. In such a case, everyone would prefer to store data separately from
one another, grant/restrict access to others. This demands a file-system that
can understand users, and let them control permissions. In that case, we could
use a file-system called ext2 or ext3.
However when the time comes to transfer data on a floppy one cannot assure
that the same user related information will be available at the machine where
the floppy is being taken. This would ask for a file-system that permits access to
everyone! So we have file-systems like VFAT, FAT32 etc.
To let the users organize their files, nearly all file-systems provide a concept
called directory. A directory can be viewed as a collection of files. It contains
nothing but list of files that it contains! Moreover directories can contain sub-
directories too.
To keep a track of which area of the disk is occupied, and by which file, the file-
system maintains its data-structure in a form of inodes and blocks/clusters.
Inodes store information for each file and the address where the data for that file
is stored, where as the cluster information stores how much, what part of area
is free etc. The minimal amount of disk space one can access is called block.
When a file is deleted, the inode that it was using, is simply marked un-used,
and the data it was holding is marked as free! Note that no attempts is made to
erase the content of the file. Only the data-blocks are marked free. At this stage
if the data blocks are re-reads somehow, it WILL be possible to recover the
deleted content!
However, if the data block just marked as free is overwritten by some new file,
then it may not be possible to recover the complete file. Now it depends on the
file-system's algorithm of selecting free blocks, which block is taken for writing
new files.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.56

The Slueth Kit

The Slueth Kit is a compilation of a set of binaries that come in very handy for
reading filesystems. For better usability the commands have been categorized
based on the layers they work on. The utilities being aimed at forensic
investigation, work directly on the device. All the utilities
take the device file name as an argument. One can also use – as its used often -
these binaries work on files that contain disk images. Also all commands
accept the file-system type as an argument.

Content/Data Layer: This layer corresponds to the data-blocks or clusters.
Commands that can read/query this layer start with `d'

dcat : It displays contents of disk blocks on the stdout. One can specify
the block number and get it catted on the screen.

dls : lists contents of deleted blocks(umrm in TCT)
dcalc : maps between dd images and dls
dstat : lists statistics associated with specific disk blocks

File System Layer: All binaries start with `fs'

fsstat : Displays details(certain statistics) about file-system

Meta-Data Layer: All the commands under this category interact with the inode
of the file-system. For the same reason, all names start with `i'

ils : displays inode details.
istat : displays information abt specific inodes
icat : cats information stored on the blocks allocated to an inode. This

can be used to recover files from a disk without even mounting
it!

ifind : search for some inode from an image, based on the
block/content number or filename etc. ifind does not accept
filenames with regular expressions.

Human Interface Layer: Start with `f'. This one starts with f because Human
Interface from the file-system point of view is the file name.

fls : List files just like `ls'
ffind : determine which file has allocated an inode on an image

Media Management Layer: starts wITH `mm'

mmls : displays list of partitions or disk slices etc.

Other tools...
hash database tools,
the `file' tool and `sorter'
timeline tools
eg fls -f fat12 /dev/fd0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.57

The above command will list the contents of the floppy, if there is one in the
drive

Command used to generate MAC Times
fls -f fat12 -l -zMST -s45000 fl-260404-RJL1.img | sed
's/)<CTRL+V,tab>/)\n<CTRL+V,tab>/g'
fls: lists the files from the image.
options used:

-f fat12 : Tells the program that the image, fl-260404-RJL1.img is of a disk
formatted with FAT12 file-system

-l : Give a long listing output. So that we can get the size of the file
-z MST : Use MST as the time-zone specification string.
-s 45000 : Skew the time-stamp readings by 45000 seconds.

The output of this command comes something like this:
r/r * 5: CamShell.dll (_AMSHELL.DLL) 2001.02.03 19:44:16 (IST)
2004.04.26 00:00:00 (IST) 2004.04.26 09:46:18 (IST) 36864 0
This was piped to a sed(1). The sed(1) command,
's/)<CTRL+V,tab>/)\n<CTRL+V,tab>/g' replaces presence of a closing
parenthesis and a tab character with a closing parenthesis, a new-line character
and a tab-character. This was done merely to increase the readability of the
output. Since tab is a special character interpreted by the shell, it has to typed
specially using the escape sequence CTRL+V.

Linux commands

dcfldd(1), nc(1), strings(1), grep(1), mount(8), md5sum(1), ls(1), gunzip(1),
head(1), tail(1), cat(1), diff(1), file(1), KHexEdit and certainly bash(1)
nc (1) - arbitrary TCP and UDP connections and listens. This utililty is called

netcat, and can be used as a simple client server pair to
perform any data transfer.

strings (1) - print the strings of printable characters in files. Very useful to
analyze binary files.

grep (1) - print lines matching a pattern.
mount (8) - mount a file system
md5sum (1) - compute and check MD5 message digest. It calculates the md5

cryptographic hash
ls (1) - list directory contents
head (1) - output the first part of files. One can use the –c option to output

only first few bytes
tail (1) - output the last part of files
cat (1) - concatenate files and print on the standard output
diff (1) - find differences between two files
file (1) - determine file type
bash (1) - GNU Bourne-Again Shell
sed (1) - Sed is a stream editor. One can write substitution commands

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.58

to edit the stream passing through the editor.
stat (1) - display file or filesystem status. The command shows all

details regarding the file including its mac time stamps.
gunzip [gzip] (1) - compress or expand files

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.59

APPENDIX B
CRACKING CAMOUFLAGE PASSWORD

Camouflage is a software used to hide one file into another. This is called
Steganography. Using Camouflage, one can embed any number of files into
another file. eg., one can embed dirty-snaps.zip and last-night.jpg into another
file called MyResume.doc in order to hide them, eventually making them
inaccessible. After embedding the files, MyResume.doc(called the carrier) will
still retain all its earlier capabilities as a MS Word file. The data is appended at
the tail of the document, thereby avoiding any problems the application might
face. Moreover the data is also scrambled so that it could not be detected using
techniques employed by tools like lazarus and sorter. The software also lets the
user protect the embedded files using a password.
The fact that Camouflage stores password in the carrier itself may sound foolish
at first, but, there is more to it. Camouflage stores it into the carrier, but not
before scrambling the password string. Moreover the scrambling generates a
string that is complete binary, eventually saving the password from being
detected by a simple analysis using strings(1).
Camouflage stores the scrambled password at an offset exactly 275 bytes
before the end of file. The scrambled password is of the same length as the
original. The simple technique used by Guillermito lets detect this.
A file is Camouflaged, using a password “aaaa”. It was found that the bytes at
location 275 from the tail were getting modified. Moreover it also showed that
the first four bytes remained the same when the file was Camouflaged using a
password containing more a's. This indicated that there was some hash that
was used to scramble the password. The hash was weak enough, that it would
generate the same result per byte. Its important to note here that the hash was
applied at each byte. This indicated that the hash would be nothing but some
binary operation. The first thing that comes to mind is XOR. Mainly because, its
simple, easy to implement, and equally easy to recover. By trying a long
password containing some 100 a's it was possible to detect the hash used.
Camouflage uses the XOR technique to store passwords. This technique was
cracked by Guillermitto[5]. The XOR hash string so recovered is as follows:

0295 7A22 0CA6 14E1 E1CF BF65 206F 9EB3 9965 4A53 FBF6
7554 AD23 CD7E 9C29 E7FC E2F9 4DD2 424E 06C0 F89A 1C62
3874 2400 55DF 41CB 01A2 B7F3 8F8A DDAC 3383 6029 F378

243E 7AEB D3E4 9D9D 4394 4AC7 456D 2574 EB0B 98C9 7CFC
C8BA 326B 00D3 C5C2 9434 AFB0 E595 7D2A 84A4 5FE5 6E27
2ADB 967E 3E48 3946 CF6F 71AA 3C31 9AA9 9E8F 8973 B339
CA32 D5F0 3159 7C02 2E86 37F9 2B7E 51F2 4181 0CD4 6515
F770 D419 9820 BF20 B855 67CC 8118 8C13 3C63 3C92 11E4

5B1B 0822 604C 4AC5 8AB3 C575 C390 7AF2 B2B6 C8D0 388A
C286 F0AC E9CA 5C4E 3E09 2978 2999 5A84 D5BA 5ED5 927A
38FA D060 ECF5 27BA EEB7 DE9F 9BDE 65D4 7639 769C DA68

8DA8 A0A6 1ED9 DB0F 4DAB 92CD 71

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.60

APPENDIX C
CHAIN OF CUSTODY

Evidence custody form

Case: Draupadi Hack

Chain of Custody

1. Forensic Team
Members

Pramod S. Pawar
Nihar S. Khedekar
Vijay Kumar VK

2. Description of
Evidence

Nine hard disk partition images of the compromised
server Draupadi were obtained.

3. Person receiving
Evidence

Nihar S. Khedekar

4. Case No. Aug-DH-040815
5. Hash values of the

evidence
661a4f317ce620e2f49de820a5d04257 sda1-dd
6b7bbf152e11e6f346357dc42c838d89 sda10-dd
22b2939c417e2f0333bf41dde891ebbf sda5-dd
56a125d04fa2ea3beb9c355921ef9bda sda7-dd
cba7fada45bcaa8d0402cdd7d484c10b sda8-dd
debf77cc75c0e48ceb1274f9160d3abc sda9-dd
b2ec6a068f2c57495a9ad39f1223c60d sdb1-dd
fe3df9d054d76fefd3d038d1d604256b sdc1-dd
cfa9ce8308700f2ebfdef2424445a3cc sdc6-dd

Sr.
No

Date/Time Release by Received by

1. Date: 15th August 2004 Mr. K Arjuna, System
Admininistrator,
Software Techniques
Ltd., Bangalore

Nihar S. Khedekar
CDAC, Bangalore

Time: 17:30:00 IST Sd/- Sd/-

