
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

SANS GCFA Practical Assignment
Version 1.5

Author: Chris Russel
November, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 2

Contents
PART ONE – ANALYZE AN UNKNOWN IMAGE...4

SCENARIO INTRODUCTION...4
EXAMINATION DETAILS ..4

Timeline ..4
Forensics Equipment and Tools..5
Methodology...6

IMAGE DETAILS ...6
Verification of Image Integrity..6
Image Analysis ...7
Metadata Analysis..8
Timeline Analysis ...9
Recovering Deleted Files...12
Unallocated Space Analysis ..13
File Content Analysis...14

PROGRAM IDENTIFICATION AND FORENSIC DETAILS ..15
Unknown Binary File Analysis..15
Search for Code..16
Running Camouflage ...16
Comparison of Binary Files ..18
Usage of the Camouflage Program ..19
Decryption and Examination of Policy File Contents...20

SUMMARY AND CONCLUSION ...23
LEGAL IMPLICATIONS ..24

Theft ..24
Copyright..24
Mischief and Unauthorized Use..24

ADDITIONAL INFORMATION ..25

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 3

PART TWO – FORENSIC ANALYSIS OF A SYSTEM..26
INTRODUCTION...26
SYNOPSIS OF CASE FACTS ...26

Incident Background and Response Measures...26
System Placement Within the Network ...27
Target System Description...29
Hardware Seized..29
Chain of Custody..30

IMAGE MEDIA ..30
Imaging Procedure and Verification..30

Step One – Attaching the Disk .. 31
Step Two – Checksum of Original Disk .. 31
Step Three – Copy Disk Image and Integrity Verification .. 31
Note on Swap Space... 32

MEDIA ANALYSIS OF SYSTEM ...32
Tools..32
Comparison with Original Operating System Software..33

Using Native Package Management Tools... 33
Examination of /etc ..34
Start-up Files and Processes...34
Setuid/Setgid Files..37

TIMELINE ANALYSIS..38
System Installation and Updates...38
MAC Time Analysis..40

RECOVER DELETED FILES ...43
STRING SEARCH ...46

Keywords and Search Procedure..46
CONCLUSIONS ..47

Synopsis of Intruder Activity ...47
Method of Compromise..51
Summary ...51

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 4

PART ONE – ANALYZE AN UNKNOWN IMAGE

Scenario Introduction
As a computer investigation consultant, I have been hired by Ballard Industries to
investigate evidence related to suspected industrial espionage. Recently, a competitor has
begun manufacturing a fuel cell design that was once unique to Ballard, and was selling
directly to many of Ballard’s previous clients. It is suspected that the competitor, Rift
Inc., somehow obtained copies of Ballard’s customer database as well as proprietary
engineering information related to the design and manufacturing of a certain fuel cell
Ballard produces. An extensive investigation turned up only a single lead; a floppy disk
was taken out of the Ballard R&D labs against company policy. I have been asked to
examine the contents of the disk and provide a report.

Note: The floppy disk image was downloaded from the SANS website as filename:
v1_5.gz, it has been renamed for the purposes of this scenario to l-260404-RJL1.img.gz.
No other changes have been made.

Examination Details

Timeline
On the morning of 27 April 2004 I was contacted by the security administrator of Ballard,
David Keen, for the purposes of aquiring my services for an examination of electronic
evidence. At approximately 3pm on 27 April 2004 I signed a consultant agreement with
Ballard which included the provision that I was to keep in confidence all details of the
incident and any further information uncovered during my examination, with the
resulting report to be provided to the security administrator.
After signing the agreement, at approximately 3:15pm, the known details of the incident
were related to me:
During an investigation by Ballard into suspected industrial espionage, it was determined
that Robert John Leszczynski, Jr. attempted to take a floppy disk out of the Ballard R&D
labs at approximately 4:45pm on 26 April 2004. As this is against company policy, the
security guard on duty seized the disk from Mr. Leszczynski’s briefcase. According to
procedure, the floppy disk was passed to the security administrator, David Keen.
The disk appears to contain documents regarding various Ballard policies, however due
to its suspicious nature I have been asked to perform a detailed examination of the disk
and establish if there is anything else on the disk and how it may have been used by Mr.
Leszcznski.

The materials related to the incident were provided to me as follows:

• The floppy disk itself

• A CDROM (CD-R) containing the following files:
“fl-260404-RJL1.img.gz”

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 5

“fl-260404-RJL1.img.md5”

• Chain of custody form with the following information:
Evidence Tag #: fl-260404-RJL1
Description: 3.5 inch TDK floppy disk
Image filename: fl-260404-RJL1.img.gz
MD5 checksum:
d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img
David Keen also kept an identical copy of the CDROM with his notes.

After receiving the materials I returned to my lab to begin the examination.

Forensics Equipment and Tools
The following is a summary of the lab equipment and tools used in the investigation:
Forensics Workstation

Hardware: x86 architecture clone
Operating System: Debian GNU/Linux with 2.6 kernel
Software:

VMware Workstation 4.5 - provides a virtual machine environment.
Sleuthkit 1.71 - A development of The Coroner’s Toolkit (a set of UNIX
forensics tools by Wietse Venema and Dan Farmer) which has a number
of additional capabilities, including the ability to understand FAT and
NTFS filesystems. Sleuthkit tools are developed and maintained by Brian
Carrier.
Autopsy 2.02 - A web-based interface to Sleuthkit tools which allows
easier examination of some of the raw data.

VMware Windows Environment

VMware is important since it provides the virtual machine environment for some aspects
of the examination. In particular it can be used to provide an isolated “sandbox” for
testing the effects of unknown code on a running system. It also allows “snapshots” of the
virtual machine environment for rapid testing and reversing the effects of any changes to
the system, which would take much longer on a real machine.
Certain settings are noteworthy to prevent any unintended interaction outside the vmware
sandbox:

• Network setting is Host-Only – on the Linux host, any packets being sent from
the virtual host (regardless of operating system) will appear on the vmnet1 virtual
adapter, but will go no further unless the Linux host is intentionally set up to do
routing. This makes it simple to monitor any network activity or simulate network
connections with the virtual machine without allowing packets onto a real
network.

• Shared Folders are Disabled – this is a convenience setting which allows windows
virtual hosts to easily share files with the real host. Undesirable in a forensics
environment.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 6

• Floppy Disk set to NOT connect at power on – since we may be using the virtual
floppy, this is to prevent any accidental boot of the virtual machine off an
unknown floppy image during the examination.

Methodology
The first few steps in the examination are outlined below:

• Make working copy of image and verify it is identical to original

• Record general filesystem type and directory information

• Detect deleted files and/or content in unallocated areas

• Review files

• String detection and analysis

• Binary detection and analysis
What is found in the first steps will determine what is done in the advanced stages of the
examination.

Image Details
Verification of Image Integrity

To verify the floppy disk and image file are identical, md5sums are calculated for both
Note: for the purposes of this assignment, the image file is connected to the VMware
floppy disk, and will show as /dev/fd0 in the linux virtual environment. This is to
demonstrate that in a real investigation, the actual floppy disk would be used for direct
comparison with the image file.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 7

Figure 1 – MD5 Sum of Floppy Disk and Image File
As the screenshot shows, the MD5 sums match. The MD5 also agrees with the number
David Keen entered on the chain of custody form, and can therefore be accepted to be an
identical digital copy. The floppy disk is now filed in the locked evidence drawer. All
further examination will use the image file instead to avoid damaging the original
evidence.
Image Analysis
Without making any assumptions about the disk image, we’ll start with the UNIX file
command which should give us an accurate starting point.
% file fl-260404-RJL1.img
fl-260404-RJL1.img: x86 boot sector, code offset 0x3c, OEM-ID " mkdosfs", root
entries 224, sectors 2872 (volumes <=32 MB) , sectors/FAT 9, serial number
0x408bed14, label: "RJL ", FAT (12 bit)

It appears to be an MSDOS formatted floppy, using the FAT-12 filesystem. Now that we
know the filesystem, further information can be obtained using the Sleuthkit fsstat
command:
% fsstat -f fat12 fl-260404-RJL1.img
FILE SYSTEM INFORMATION
--
File System Type: FAT

OEM Name: mkdosfs
Volume ID: 0x408bed14
Volume Label (Boot Sector): RJL
Volume Label (Root Directory): RJL

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 8

File System Type Label: FAT12

Sectors before file system: 0

File System Layout (in sectors)
Total Range: 0 - 2871
* Reserved: 0 - 0
** Boot Sector: 0
* FAT 0: 1 - 9
* FAT 1: 10 - 18
* Data Area: 19 - 2871
** Root Directory: 19 - 32
** Cluster Area: 33 - 2871

META-DATA INFORMATION
--
Range: 2 - 45426
Root Directory: 2

CONTENT-DATA INFORMATION
--
Sector Size: 512
Cluster Size: 512
Total Cluster Range: 2 - 2840

FAT CONTENTS (in sectors)
--
105-187 (83) -> EOF
188-250 (63) -> EOF
251-316 (66) -> EOF
317-918 (602) -> EOF
919-1340 (422) -> EOF
1341-1384 (44) -> EOF
This listing confirms the filesystem type, and shows the volume label “RJL” which are
the initials of the individual the disk belonged to. It also shows an overview of the
content in the FAT (File Allocation Table); it appears there are 6 files with allocated
blocks. Potentially noteworthy: All of the allocated blocks are contiguous, but the first
one starts at sector 105. Since the data area of the disk (not including the root directory)
starts at sector 33, there is very likely a deleted file(s) in the unallocated sectors 33-104.
Metadata Analysis

To get a quick, readable, overview of what is on the disk without actually mounting it, we
use the Sleuthkit fls command to list all directory entries, which will include entries left
over from deleted files.
% fls -f fat12 -r fl-260404-RJL1.img
r/r 3: RJL (Volume Label Entry)
r/r * 5: CamShell.dll (_AMSHELL.DLL)
r/r 9: Information_Sensitivity_Policy.doc (INFORM~1.DOC)
r/r 13: Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
r/r 17: Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
r/r 20: Password_Policy.doc (PASSWO~1.DOC)
r/r 23: Remote_Access_Policy.doc (REMOTE~1.DOC)
r/r 27: Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 9

r/r * 28: _ndex.htm
In the FAT filesystem, when files are deleted, typically the first character of the directory
entry is replaced with an underscore. There are 2 directory entries (_AMSHELL.DLL and
_ndex.htm) that refer to deleted files and 6 files still allocated.
To verify the directory information, we can mount the disk image under Linux in read-
only mode and list the files using regular system commands. The mount command uses
“ro” to ensure nothing is accidentally modified within the disk image. The “noatime” tells
the system not to update access timestamps on any of the files – this is redundant when
used with the ro flag but is a habit. VFAT is the Linux nomeclature for the family of FAT
filesystems. The disk image contents will be available in /mnt.
mount -o ro,noatime,loop -t vfat fl-260404-RJL1.img /mnt
ls -l /mnt
total 640
 22 -rwxr--r-- 1 root root 22528 2004-04-23 14:10
Acceptable_Encryption_Policy.doc*
 42 -rwxr--r-- 1 root root 42496 2004-04-23 14:11
Information_Sensitivity_Policy.doc*
 32 -rwxr--r-- 1 root root 32256 2004-04-22 16:31
Internal_Lab_Security_Policy1.doc*
 33 -rwxr--r-- 1 root root 33423 2004-04-22 16:31
Internal_Lab_Security_Policy.doc*
301 -rwxr--r-- 1 root root 307935 2004-04-23 11:55
Password_Policy.doc*
211 -rwxr--r-- 1 root root 215895 2004-04-23 11:54
Remote_Access_Policy.doc*
Note that the user and group ownership and permission bits are substituted by the Linux
filesystem driver; the FAT filesystem has no concept of ownership and very limited
permission flags which cannot be translated to UNIX permissions. Ownership will be the
same default settings for all files in the mount.
We calculate the MD5s of the files and copy them off the image for future reference, if
needed. We do not need it mounted for any further analysis.
md5sum /mnt/*
f785ba1d99888e68f45dabeddb0b4541 /mnt/Acceptable_Encryption_Policy.doc
99c5dec518b142bd945e8d7d2fad2004
/mnt/Information_Sensitivity_Policy.doc
e0c43ef38884662f5f27d93098e1c607
/mnt/Internal_Lab_Security_Policy1.doc
b9387272b11aea86b60a487fbdc1b336 /mnt/Internal_Lab_Security_Policy.doc
ac34c6177ebdcaf4adc41f0e181be1bc /mnt/Password_Policy.doc
5b38d1ac1f94285db2d2246d28fd07e8 /mnt/Remote_Access_Policy.doc
cp /mnt/* .
umount /mnt
Timeline Analysis

The FAT filesystem does have the capability to record the usual access timestamps (last
written/modified, last access, creation), however there are some caveats, as mentioned in
the Sleuthkit FAT implementation notes:

• Last written times are required and are accurate to the second

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 10

• Last access time is optional and is only accurate to the day (time will always be
00:00:00)

• Creation time is optional but is accurate to the tenth of a second
To gather the timeline information, the Sleuthkit fls command is used, this time with the
–m option to print the output with the MAC timestamps. According to standard
procedure, we also add the output of the ils command, which gathers more information
on unallocated inodes (presumedly belonging to deleted files). Due to the simplistic way
FAT deals with metadata there are no inodes, only directory entries indexed by starting
cluster. Since fls can already detect deleted files from the directory entries, we expect ils
to show the same information for deleted files.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 11

[icarus:~/evidence]# fls -f fat12 -m / -r fl-260404-RJL1.img > body
[icarus:~/evidence]# ils -f fat12 -m fl-260404-RJL1.img >> body
[icarus:~/evidence]# mactime -b body 01/01/1970
Sat Feb 03 2001 19:44:16 36864 m.. -rwxrwxrwx 0 0 5 <fl-260404-RJL1.img-_AMSHELL.DLL-dead-5>
 36864 m.. -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
Thu Apr 22 2004 16:31:06 32256 m.. -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
 33423 m.. -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
Fri Apr 23 2004 10:53:56 727 m.. -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)
 727 m.. -rwxrwxrwx 0 0 28 <fl-260404-RJL1.img-_ndex.htm-dead-28>
Fri Apr 23 2004 11:54:32 215895 m.. -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)
Fri Apr 23 2004 11:55:26 307935 m.. -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)
Fri Apr 23 2004 14:10:50 22528 m.. -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
Fri Apr 23 2004 14:11:10 42496 m.. -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc (INFORM~1.DOC)
Sun Apr 25 2004 00:00:00 0 .a. -/-rwxrwxrwx 0 0 3 /RJL (Volume Label Entry)
Sun Apr 25 2004 10:53:40 0 m.c -/-rwxrwxrwx 0 0 3 /RJL (Volume Label Entry)
Mon Apr 26 2004 00:00:00 215895 .a. -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)
 33423 .a. -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
 36864 .a. -rwxrwxrwx 0 0 5 <fl-260404-RJL1.img-_AMSHELL.DLL-dead-5>
 307935 .a. -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)
 22528 .a. -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
 42496 .a. -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc (INFORM~1.DOC)
 727 .a. -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)
 36864 .a. -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
 32256 .a. -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
 727 .a. -rwxrwxrwx 0 0 28 <fl-260404-RJL1.img-_ndex.htm-dead-28>
Mon Apr 26 2004 09:46:18 36864 ..c -rwxrwxrwx 0 0 5 <fl-260404-RJL1.img-_AMSHELL.DLL-dead-5>
 36864 ..c -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
Mon Apr 26 2004 09:46:20 42496 ..c -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc (INFORM~1.DOC)
Mon Apr 26 2004 09:46:22 32256 ..c -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
Mon Apr 26 2004 09:46:24 33423 ..c -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
Mon Apr 26 2004 09:46:26 307935 ..c -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)
Mon Apr 26 2004 09:46:36 215895 ..c -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)
Mon Apr 26 2004 09:46:44 22528 ..c -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
Mon Apr 26 2004 09:47:36 727 ..c -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)
 727 ..c -rwxrwxrwx 0 0 28 <fl-260404-RJL1.img-_ndex.htm-dead-28>

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 12

Another limitation of FAT is that the timestamps are simply written to disk as string with
date, hour, minute, etc., not using a universal epoch starting point such as UNIX. This
means that we need to know the timezone of the system the disk was used in to verify the
times, even if the clock on the computer is set correctly. Of course, in this case we do not
know what system it was used in (although it seems highly likely to be a computer in
Ballard R&D). Ballard security will need to check what the time settings on those
systems are (including to check the timezone is set correctly) to determine if these
timestamps can be considered accurate.
Assuming that the timestamps are accurate, it can be seen that all the files were copied to
the floppy disk on the morning of 26 April 2004, starting at 9:46:18am. All the document
files and the camshell.dll file appear to have been copied over together, at the timestamps
are only seconds apart. The number of seconds between them roughly correlates to the
size of the files and the time it takes for a 3.5 inch floppy disk to write data. The
index.htm file is nearly a minute later which implies there was some delay (of less than a
minute) in the copying of that file compared to all the others.

The last write time of the volume label indicates when the disk was formatted, the
previous day, Sunday 25 April 2004 10:53:40am. Ballard security will have to check if
Mr. Leszczynski was at work on Sunday, otherwise it is likely the disk was formatted on
his home computer or other non-company system.
The last write time of the rest of the files indicates all the files except camshell.dll had
been worked on the previous Thursday and Friday.
Since the create times are later than the modification times, these files were probably last
written to on a computer’s hard disk or other media (Thursday and Friday), and then
copied to the floppy on the monday. The exception is the camshell.dll file which was
created in 2001.

Recovering Deleted Files
We also need to get copies of the deleted files (CAMSHELL.DLL and index.htm). icat
can be used to extract them, provided no other files have written over the clusters that
were allocated to the files originally. Istat is used to determine where on disk the files are
located and if there is any overlap with other deleted files.
istat -f fat12 fl-260404-RJL1.img 5
Directory Entry: 5
Not Allocated
File Attributes: File, Archive
Size: 36864
Num of links: 0
Name: _AMSHELL.DLL

Directory Entry Times:
Written: Sat Feb 3 19:44:16 2001
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:46:18 2004

Sectors:
33

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 13

Recovery:
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104
istat -f fat12 fl-260404-RJL1.img 28
Directory Entry: 28
Not Allocated
File Attributes: File, Archive
Size: 727
Num of links: 0
Name: _ndex.htm

Directory Entry Times:
Written: Fri Apr 23 10:53:56 2004
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:47:36 2004

Sectors:
33

Recovery:
33 34
Note the highlighted “recovery” sectors. The index.htm file is written over the first 2
sectors of the CamShell.dll file and then deleted, about 1 minute after CamShell.dll is
copied to the floppy disk and deleted. Therefore, the start of the CamShell.dll file is not
recoverable, but the rest of it is.
Icat is used to recover the files to the extent possible:
icat -f fat12 -r fl-260404-RJL1.img 5 > CamShell.dll
icat -f fat12 -r fl-260404-RJL1.img 28 > index.htm
File sizes of the resultant files agree with the FAT directory entries:
36864 CamShell.dll
727 index.htm
Again, the first 727 bytes of the resultant CamShell.dll will be the same as the index.htm
file.

Unallocated Space Analysis
To ensure nothing is missed on the disk surface we look at unallocated sectors.
According to the disk FAT (from earlier fsstat), sectors 1385 to the end of the disk are not
allocated by any directory entry, including deleted ones. This surface can be examined
with dd or dls to see if there is any interesting content – dls is the easier of the two for
this type of search since it will automatically skip allocated blocks:
dls –f fat12 fl-260404-RJL1.img 1385- | sum
00000 744

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 14

The UNIX sum command shows the sum of all the bytes read by the program and the
number of 1k blocks read. It clearly shows the entire remainder of the disk (744k) is zero-
bytes.

Another command will search the slack space. With only 6 allocated files and 512 bytes
blocks, there cannot be more than 3k bytes in total. It can be extracted with the dls
command –s option:
dls -s -f fat12 fl-260404-RJL1.img | sum
00000 2
Neither the unallocated or the slack space are of any interest. It is possible there is
something in the slack space of the two deleted files, in fact in the slack space of the
index.htm is some of the CamShell.dll file as we have already determined. At the end of
the CamShell.dll file there is 512 - (36864 mod 512) = 18 bytes of slack space.

dd and tail are an easy way to extract this data. The skip argument is used to specific
which sector we want.dd
dd if=fl-260404-RJL1.img bs=512 skip=104 count=1 | tail –c 18 |
hexcat
1+0 records in
1+0 records out
512 bytes transferred in 0.000102 seconds (5020383 bytes/sec)
00000000 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................
00000010 - 00 00 ..
The data is all zero. It is clear that the unallocated space and slack space were not used to
hide any data. We now focus on the highly suspicious camshell.dll file and document
files.

File Content Analysis
One curiosity is the existence of the two files with the same/similar name:
Thu Apr 22 2004 16:31:06 32256 m.. -/-rwxrwxrwx 0 0 13
/Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
 33423 m.. -/-rwxrwxrwx 0 0 17
/Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
These files are also the first of the document files to be last written. They have the same
last written timestamp (to the second), which suggests that some automated process was
used to create them. The differences between the two files may be instructive in the
examination of the others.

Using the strings command on both of them, it appears that the readable text is simply the
Ballard policy. A copy of the actual policy would be useful to compare with to see if
either file is original. Using the UNIX head command I compare the first 32256 bytes of
the larger file to the entire smaller one:
[icarus:~/evidence]% cat Internal_Lab_Security_Policy1.doc | md5sum
e0c43ef38884662f5f27d93098e1c607 -
[icarus:~/evidence]% head -c 32256 Internal_Lab_Security_Policy1.doc |
md5sum
e0c43ef38884662f5f27d93098e1c607 -

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 15

The MD5s match, indicating the content is identical except for the last 33423 – 32256 =
1167 bytes. We use the UNIX command
tail -c 1167 Internal_Lab_Security_Policy.doc | strings
It appears to be unreadable binary. Viewing with the hexcat command
tail -c 1167 Internal_Lab_Security_Policy.doc | hexcat
00000000 - 20 00 b9 28 c4 01 60 38 b8 73 75 29 c4 01 e0 36
.•(ƒ.`8•su)ƒ..6
00000010 - 98 ba b9 28 c4 01 30 ff 7b 7f 38 01 00 00 4b b5
.••(ƒ.0.{.8...Kµ
00000020 - 1b 4f 2c d1 7d 8d 8d a6 d1 02 00 1b f1 93 e9 17
.O,—}...—.......
00000030 - 25 25 92 92 10 74 d4 4c b8 5e eb 40 93 94 c2 94
%%...t‘L•^.@..¬.
00000040 - 22 a0 27 6e 6f ae 9e f5 6e 0f 59 00 4d 6f 3b ff
".'noÆ..n.Y.Mo;.
(continues…)
shows that approximately the first third of the extra bytes are indeed binary and do not
have any obvious pattern or meaning. The final two-thirds of the bytes are almost entirely
character 0x20, or the ASCII “space” character. The first part could be encrypted content,
but the non-random remaining part appears mostly content-free.
Next step is to look at camshell.dll.

Program Identification and Forensic Details
Unknown Binary File Analysis

First, running CamShell.dll through strings -10 shows some familiar identifiers:
… (deleted)
GC:\WINDOWS\SYSTEM\MSVBVM60.DLL\3
FIShellExtInit
C:\My Documents\VB Programs\Camouflage\Shell\IctxMenu.tlb
…(more)
__vbaStrVarCopy
__vbaAryUnlock
__vbaFreeStr
__vbaFreeObj
CamShell.dll
DllCanUnloadNow
DllGetClassObject
DllRegisterServer
DllUnregisterServer
stdole2.tlbWWW
IctxMenu.tlbWW
1CamouflageShellW
_ShellExtWWWd
… (etc)
“vba” strings are Microsoft Visual Basic functions which are part of the dll, which is a
clue how this file was made, not to mention the full path indicated above.
“CamouflageShell” seems to indicate the real name of the program as it is similar to the

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 16

filename. “ShellExtWWW” may imply that this program somehow hooks into web
browsing functionality.
Search for Code
A google search for “Camouflage Shell” does not turn up any computing-related items.
“camshell.dll” turned up only a single link. “camouflage dll” turned up several, including
this site:
http://camouflage.unfiction.com/
The overview includes a useful description:

What is Camouflage?

Camouflage allows you to hide files by scrambling them
and then attaching them to the file of your choice.
This camouflaged file then looks and behaves like a
normal file, and can be stored, used or emailed
without attracting attention.

For example, you could create a picture file that
looks and behaves exactly like any other picture file
but contains hidden encrypted files, or you could hide
a file inside a Word document that would not attract
attention if discovered. Such files can later be
safely extracted.

For additional security you can password your
camouflaged file. This password will be required when
extracting the files within.
You can even camouflage files within camouflaged
files.

Camouflage was written for use with Windows 95,
Windows 98, Windows ME, Windows NT and Windows 2000,
and is simple to install and use.

There is no source code on the site, but there is an EXE installer for download. After
downloading this, we copy it along with the CamShell.dll from the floppy image to our
VMware environment for further study.
Running Camouflage
Our objective is to install Camouflage while monitoring what changes are made to the
system. First we save the VMware snapshot, then run Winalysis and take a snapshot
within that program.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 17

Figure 2 – Winalysis snapshot of changes after Camouflage install
Although there are 871 registry changes, there are only 3 file changes in the windows
directories. Investigating those shows a new file:
C:\WINDOWS\System32\MSCOMCTL.OCX
Also Camouflage has installed itself in the “Program Files” directory. Viewing this
shows the CamShell.dll file which has a file size identical to the CamShell.dll found on
the floppy disk.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 18

Figure 3 – CamShell.dll after Camouflage Installation
Comparison of Binary Files
The new CamShell.dll file is transferred back to the Linux environment for comparison
with the version on the floppy disk. MD5 sums show they do not match (as expected
since the index.htm file overwrote the first 727 bytes of the copy on the floppy disk).
However, if the first 727 bytes are ignored for the comparison (36864 – 727 = 36137
bytes), the MD5 sums match.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 19

Figure 4 – CamShell.dll MD5s
If these files were not the same binary it would be nearly impossible for the MD5s to
match perfectly on the last 36137 bytes, not to mention having the same filename and file
size. There is no doubt CamShell.dll on the floppy disk is a component of the same
Camouflage program as I downloaded from the Internet.
Usage of the Camouflage Program
The Camouflage program was written specifically to hide data inside benign-looking
files, including JPEG image files and Microsoft Word documents. This would perfectly
serve Mr. Leszczynski’s interest in smuggling proprietary Ballard information out of the
R&D labs.
Camouflage is a steganographic tool, which is capable of hiding any arbitrary data file
into other common file types, including JPG images and Microsoft Word documents.
As a steganographic tool, Camouflage is not sophisticated. It works by simply appending
an encrypted form of the additional data to the end of the file. This does not cause any
problem with those file formats since they have internal structure delimiters that will
prevent an image viewer or word processor program from trying to display the hidden
data. This is a rather weak method of steganography since it is simple to detect the
presence of this type of file addition if you know what to look for, for example by
checking for data after the end-of-image delimeter in a JPEG file. Other forms of
steganography such as modifying the least significant bits in an image are far more
difficult to detect.
Further research using Google shows some evidence of a weakness in the way
Camouflage hides data. A search for “Camouflage steganography” immediately shows a
link of interest:
http://www.guillermito2.net/stegano/camouflage/

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 20

This web page, by “Guillermito”, describes an analysis of Camouflage’s data hiding
technique in detail; including the weak method used by Camouflage to embed the
password and hidden data, and how to extract that data. From the description, the
“encryption” used by Camouflage is simple XOR of the data and a fixed key which is
part of the program. It is out of the scope of this paper to include a large discussion of
cryptography – interested readers can refer to Bruce Schneier’s “Applied Cryptography”.
In short, XOR with a never-reused key is considered a “one-time pad” form of encryption
which is difficult to break. Reusing the same key for every document makes this a
“many-time pad” which can be easily cracked via a known-plaintext attack. However,
even more simple than determining the entire encryption key, we can just decrypt the
password since it is stored along with the document and encrypted the same way. After
that, we can let Camouflage decrypt the rest itself.
Decryption and Examination of Policy File Contents

The password is stored at a fixed offset from the end of the file, at -275 bytes. Checking
the Internal_Lab_Security_Policy.doc shows it is all 0x20 characters (ASCII space
character), which means no password is set. As shown in Figure 5, using the
“uncamouflage” option reveals hidden files in the document.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 21

Figure 5 – “Uncamouflage” Success
The file “opportunity.txt” contains the text:

I am willing to provide you with more information for a price. I have included
a sample of our Client Authorized Table database. I have also provided you with
our latest schematics not yet available. They are available as we discussed - "F
irst Name".
My price is 5 million.

Robert J. Leszczynski

The other files appear to be password protected. Again, looking at the location of the
password in the other files (-275 byte offset from end) reveals the encrypted form of the
password:
50f0 174d 78c3 2020 2020 2020
It is apparent the first 6 characters are the encrypted password, and all that is left is to
XOR that value with the hard-coded string the camouflage program uses, as documented
in the article mentioned above:

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 22

0295 7A22 0CA6 14E1
The operations to find the password are shown below:

Filename Camouflage password string

Remote_Access_Policy.doc
 50f0 174d 78c3 2020 2020 2020
XOR 0295 7A22 0CA6 14E1
 = 5265 6d6f 7465
 R e m o t e

Acceptable_Encryption_Policy.doc None, no data hidden

Password_Policy.doc
 52f4 0951 7bc9 6685 2020 2020
XOR 0295 7A22 0CA6 14E1
 = 5061 7373 776f 7264
 P a s s w o r d

Information_Sensitivity_Policy.doc None, no data hidden

Internal_Lab_Security_Policy.doc None, no data hidden

In these files there is an Access MDB file with customer data, and 3 image files including
diagrams and a scanned page of notes regarding fuel cell design.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 23

Figure 6 – Hidden documents

Summary and Conclusion
It appears Mr. Leszczynski is the data leak. From the Opportunity.txt file, he admits
having provided information in the past, and a willingness to provide more such as has
been recovered from the floppy disk. The information includes customer data and fuel
cell design information taken from the Ballard R&D lab. If the security department had
not noticed the policy violation of taking the floppy disk out of the lab and had not
investigated it properly, this data theft would have gone unnoticed.
Although the security department showed vigilance, the system administrators of the
R&D systems could have helped prevent this by locking down the configuration of all
computers in the lab. Steps that could have mitigated this, or at least provide a chance of
detection include:

• Disallow administrator logins to the R&D computers. This would prevent
installation of any software which hooks into the system such as Camouflage
does.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 24

• Configure software restriction policies on the systems to prevent any unauthorized
programs from being run on the system. This can be done by using path rules to
allow windows and pre-installed software to run as expected, but deny any user-
writable access to those paths, and restrict any other path from running code.

• Install host-based intrusion detection software such as Tripwire that can detect
modifications to the system and automatically report suspicious activity to
security.

Meanwhile all systems with confidential/proprietary data on them should be checked for
the program used by Mr. Leszczynski. Camouflage is easy to detect by looking for the
camshell.dll file anywhere in the system, and by default it is installed in “Program Files”.

Legal Implications
Discussion of the legal implications of this case will pertain to the jurisdiction of Ontario,
Canada.
Theft
Although the use of steganographic software alone is not considered a crime, the actions
allegedly taken by Mr. Leszczynski to use the Steganographic software for the purposes
of stealing confidential information would be considered theft under the Criminal Code
of Canada.
Section 322 of the Criminal Code deals with theft, and defines two possible charges:
Theft over $5000 and theft under $5000. The only difference is the value of the property
involved and the potential sentences. Theft of under $5000 can result in a maximum
sentence of 2 years in prison. Theft over $5000 can result in a maximum sentence of 10
years in prison (Section 334). In this case, the company would certainly qualify this data
theft under the latter charge.
Since the Criminal Code is written in a general fashion to apply widely to various issues,
there is no written distinction between data which is property and any other type of
property theft.

Copyright
Intellectual Property may also be covered under the Copyright Act, although the penalty
would not be as great.
Stealing proprietary data and design blueprints, computer code, or other corporate
information, potentially including the customer database (if the company has been able to
copyright the presentation of that data, not the customer information) could be
considered a copyright violation. This is a still-emerging area of law, particularly when
dealing with computer data and databases. Since the idea of theft still carries with it the
concept of the owner being deprived of something, copying a database or information file
may not always be considered theft provided the owner has not actually lost anything
from their copy. In this case, the theft could also be interpreted as a violation of the
Copyright Act (Section 42). This act includes penalties of up a $1,000,000 fine and 5
years in prison for copyright violations.
Mischief and Unauthorized Use

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 25

Finally, an additional consideration which may also apply, particularly if there is no
evidence of data theft, but only misuse of the computer, is Section 342.1 – Unauthorized
Use of Computer. This is a recent addition to the Criminal Code which is mainly intended
to address computer viruses and computer intrusions. As such, it applies when the
computer misuse is for the purposes of Mischief (Section 430). Mischief covers any
unauthorized attempt or success in modifying or destroying data, and/or adversely
affecting the operation of computer systems. The maximum sentence is 10 years in
prison.

Additional Information
For further information on the topics in this paper, the following sources are
recommended:

Forensics Tools VMware Virtual Machine Software, http://www.vmware.com/

Sleuthkit & Autopsy Forensics Analysis, http://www.sleuthkit.org/

Winalysis, http://www.winalysis.com/

Cryptography Schneier, Bruce. “Applied Cryptography, 2nd ed.” Wiley & Sons,
Inc. 1996.

Steganography Cole, Eric. “Hiding in Plain Sight”. Wiley & Sons, Inc. 2003.

Provos, Niels. “Defeating Statistical Steganalysis”.
http://niels.xtdnet.nl/stego/

Provos, Niels. “OutGuess – Universal Steganography”.
http://www.outguess.org/

Host-based
Intrusion Detection

Tripwire. http;//www.tripwiresecurity.com/

Camouflage Guillermito. “Easily Breaking a Very Weak Steganography
Software: Camouflage”.
http://www.guillermito2.net/stegano/camouflage/index.html

Legal Implications Criminal Code of Canada,
http://laws.justice.gc.ca/en/c-46/42686.html

Canadian Copyright Act,
http://laws.justice.gc.ca/en/C-42/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 26

PART TWO – FORENSIC ANALYSIS OF A SYSTEM

Introduction
This paper discusses the investigation conducted by the author in late July-August 2002
as part of the incident response process of the Information Security group of a University.
For the purposes of this assignment, significant additional research and expansion has
been done to further explore some of the technical details of this case.

Synopsis of Case Facts

Incident Background and Response Measures
Security incidents on a large and active University network are sometimes difficult to
spot due to the diverse and unpredictable nature of network traffic considered “normal”
in a University environment. This incident investigation resulted from unusual network
activity logged by the University intrusion detection system (IDS). The IDS uses Snort as
the detection engine, and has visibility of all network traffic between the Internet gateway
router and the core switches via a tap device installed on the wire.

The University has an “open network” policy, meaning all network traffic is allowed
unless specifically denied, and there is no gateway firewall. This results in a high volume
of inbound attacks that penetrate the perimeter and would be detected by the IDS. The
vast majority of these attacks are ineffective and responding to all of them would be
impossibly time-consuming and pointless in general. Experience has shown that some of
the most useful IDS signatures in this environment are those which have been inverted so
they look for outbound attacks – usually indicating a compromised system. Responding
to these alerts can help prevent a single intrusion from being used as a springboard for
internal attacks. This incident investigation was started as a result of an alert on one such
rule: near midnight, July 26th, 2002, an alarm event was recorded regarding access from
outside the University to an SSH (Secure Shell) daemon running on a non-standard port.
The following morning, a network scan was done of the system to confirm the existence
of the rogue SSH daemon and a notification was sent to the technical contact, in this case
the I.T. support group for the faculty of science. They in turn were able to determine the
system owner and reported this to the central I.T. security group. At this point, as they
were first on the scene and did not heed the request to not interact with the suspect
system, they attempted several impromptu investigative searches and general poking
around the system before the security investigator could get there to look at the system
systematically. Due to the additional activity, the investigation was made substantially
more difficult, particularly in relation to file activity timelines.
After I.T. security arrived, a brief interview with the system owner quickly determined
that the rogue SSH daemon was indeed not intentional and the system was likely
compromised. The system was an SGI Indy workstation running IRIX, the SGI flavour of
UNIX. Its current primary purpose was for reading email and web browsing, and was not
deemed essential.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 27

Typical first-responder activity of a compromised system would include recording output
of run-time status commands such as ps, but unfortunately the local technical support had
already rebooted the system into a diagnostic mode known as the IRIX miniroot.

Rather than continuing the on-site investigation using the limited resources available, the
system was seized in order to perform a more detailed analysis with the security group’s
equipment.

System Placement Within the Network
This system was placed on the main University academic network, meaning there were
limited network-based access controls to prevent attacks on the system from outside the
University network. A rough sketch of the network layout is below – the target system
under investigation is listed as “Desktop PC”.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 28

Figure 7 - Network Placement of Compromised PC

As this diagram shows, no firewall device is between the target system and the Internet.
That said, certain ports and protocols were filtered at the gateway router using ACLs
(access control lists) to provide some protection against common vulnerabilities.
According to the known configuration at the time of this incident the ports blocked
inbound and outbound in this manner included Windows networking protocol-related
ports and a few specific others such as LPR (UNIX printing protocol). However, no
ACLs would have affected the most common services and vulnerabilities that may have
been present on the target UNIX system. Ports and protocols that were fully accessible
from anywhere in the world, each containing well-known potential vulnerabilities
include:

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 29

• Remote UNIX command-line access protocols:

o Telnet
o RSH, Rlogin, Rexec (Remote Shell, Login, Execute)
o SSH (Secure Shell)

• FTP (File Transfer Protocol)
• RPC (Remote Procedure Call)
• NFS (Network File System)

At this time, an intrusion detection system was deployed by tapping into the Ethernet
cable between the core switches and the gateway router, and therefore had visibility of all
network traffic inbound and outbound to the Internet.

Regardless of this, we need to consider all possible vulnerable points of entry to the
system as the intrusion could have occurred from within the University network itself,
where there are no access controls or other restrictions on network activity.

Target System Description
The system is a 1994-era SGI Indy workstation.
It is running IRIX, SGI’s proprietary UNIX flavour, version 6.5.3 according to the uname
output:
uname –aR
IRIX hostname 6.5 6.5.3m 10151452 IP22
The system has one internal hard disk 1GB in size, and an external 2GB hard disk as well
as an external CDROM unit. The main unit, external disk, external CDROM, keyboard,
and mouse were seized for further investigation.
The system was used to a greater extent at one time as a file server for some other
workstations in the physics department, although that function no longer appears in
current use. The only user is the owning professor who uses it mainly for email and web
browsing.
A network scan of the system before it was disconnected showed it was running the full
range of services normally present in a default IRIX installation. This includes RPC
(needed for NFS), telnet, ftp, etc. Most of these services are not needed for current use,
although the telnet and ftp services are occasionally used by the professor when he is
away and needs to access data on the system. The professor has not heard of SSH or the
security problems inherent with telnet and FTP. Notably, SSH was never installed on the
system, so there was no legitimate SSH daemon at all.

Hardware Seized
The hardware seized is as in the picture below: The main SGI Indy CPU box, including
internal hard disk, as well as an external hard disk and enclosure, and external CDROM
and enclosure (external enclosures are not pictured).

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 30

Chain of Custody
The owning professor volunteered the system to the care of the I.T. security group for the
purposes of the investigation and signed a chain of custody form with the following
details:

Tag #IS070201 SGI Indy workstation SN#I418508, containing: 64MB RAM,

1GB internal SCSI drive, 3.5 inch floppy drive
Tag #IS070202 Connor CFP1080S 1.06GB SCSI disk SN#184-001062

 Tag #IS070203 SGI External SCSI CDROM drive, SN#67846

 Tag #IS070204 External SCSI hard drive enclosure containing 2GB disk. OSS

(“Open Storage Systems, Inc.”) enclosure. SN#108-23

All hardware was taken directly to the I.T. security evidence and investigation area,
which is within a locked storage room/office. Two members of the security group carry
the only keys. Additionally, the lock to the room is not part of the building master set,
therefore the room is not accessible to caretaking staff or others with master keys.

Image Media

Imaging Procedure and Verification
To make a bit-copy of the disk image, the disks are physically removed from the system
and attached to the forensic workstation. Since attempting serious analysis of the images
within an IRIX environment would be too limiting, the forensics workstation is a Debian
Linux system. Fortunately the Linux kernel contains support for the SGI disklabel
(partition structure) and both SGI filesystems: EFS and XFS.
It turns out the internal disk was disconnected and unused (apparently bad) – attempts to
have the disk be recognized by the SCSI controller failed. The running system was
completely located on the external 2GB disk. All further work deals with this external
disk.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 31

Step One – Attaching the Disk
Imaging the disk is accomplished by using a SCSI controller attached to the forensics
workstation. The read-only (a.k.a. WP, write protect) jumper is set before attaching and
booting the forensics system, which boots off an IDE disk. The Linux system recognizes
the disk as /dev/sda.

Step Two – Checksum of Original Disk
The SGI disklabel is simplified by Linux to be simply numbered starting from 1.
Therefore the single active partition on the disk (not including swap) is /dev/sda1. Before
any other action, we use the md5sum command to get the following result for the initial
MD5 checksum:
[icarus:/arc/x]# md5sum /dev/sda1
cc6c4b7de08c554a550d78d3b92c0d49 /dev/sda1

Step Three – Copy Disk Image and Integrity Verification
The partition /dev/sda1 is copied to files by using the UNIX dd command as seen in the
screenshot below. The md5sum command is again used on both the image file and the
raw partition to show:

1) The image file and raw partition have identical checksums, indicating the contents
of both are identical.

2) The checksum also matches the original raw partition checksum, indicating it has
not been changed by the imaging process.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 32

Figure 8 – Imaging/MD5 sum of Media

Note on Swap Space
As mentioned previously, the local system support personnel had booted to the IRIX
“miniroot” to do some investigation of their own before the system was seized.
Unfortunately, the miniroot creates a temporary bootable system within the swap area of
the system disk, effectively erasing any evidence which may have been present there.
Since the swap area was completely overwritten it was not considered for further
analysis.

Media Analysis of System

Tools
The forensics workstation is a Debian Linux system. Some of the work must be done on
an actual IRIX system as well, and fortunately we have access to such a system other
than the one we are investigating. Most of the analysis is done with typical UNIX file
tools as well as some IRIX-specific commands. Detailed timeline analysis is done with
elements of The Coroners Toolkit1.
Unfortunately, there are few forensic tools available for working with XFS filesystems.
Even the ability to read XFS volumes requires an SGI IRIX system, or a recent Linux
system with XFS compiled into the kernel. Linux has many more useful tools in general
and makes a better platform for examining XFS than even a real IRIX system. Due to this
lack of tools which understand the XFS filesystem, we are forced to perform the analysis

1 The Coroner’s Toolkit (TCT), http://www.porcupine.org/forensics/tct.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 33

on a mounted volume. Fortunately, this is extremely simple in Linux as it can perform
“loopback” mounts of the disk image file without modifying the contents in any way.
The command below is used to mount the disk image on /target:
mount –o ro,loop,noatime,noexec,nodev sda1_xfs.dd /target
The meaning of the mount command options are as follows:

• ro = read-only, prohibit any modification of the contents

• loop = this is a loopback mount (e.g. treat file as if it were raw disk)

• noatime = do not update access times, redundant with ro, but force of habit

• noexec = do not permit execute permission bit to be set on any file, to avoid
accidentally running programs from the disk image. Despite the fact the target is
IRIX and the forensic workstation host is Linux, this is not redundant since shell
or perl-language scripts would likely work just as well in either operating system.

• nodev = ignore the special meaning of device inodes; treat them as normal files

Comparison with Original Operating System Software
A method of determining if any of the operating system programs and/or libraries have
changed after an intrusion is to perform checksums of the files are compare those with
known good originals. In this case, we do not have an original copy of the version of
IRIX used to install this system, however there are some basic tools within the IRIX
package management system which can give us some information about this kind of
change.

Using Native Package Management Tools
“Inst” is the IRIX native software/package management system. All the core operating
system files are part of an inst software package. The inst program itself keeps a database
of what files belong to what package and also keeps some integrity information such as
checksums of the original files which we can use. Other programs related to inst include
“versions” which shows what packages are installed on the system. A lower-level
command is “showfiles” (usually invoked by inst rather than run on its own) which is the
easiest way to get a list of modified files. An example of using this command for this
purpose is:
showfiles ! -c -a ! –w –a -m
This cryptic command is how you tell showfiles to list:

1) Files that are NOT (!) configuration files (-c)

2) AND (-a) NOT (!) files installed by an overlay package (-w)
3) AND (-a) files that have been modified from the checksum stored in the package

database (-m)
We exclude configuration files since it is normal for them to be modified from the
originals. Also we exclude “overlay” files – overlays are special package updates,
typically for security and maintenance patches which are unfortunately not recorded in

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 34

the checksum database, therefore files installed as part of an overlay will show up as
being modified from the original. It will not be possible to tell if those files have been
modified by the overlay or due to the intrusion using this command alone. The resultant
output of this command will be any files from base packages that have been modified or
deleted.
Since IRIX cannot mount disk image files as Linux can, and Linux does not have the
“inst” utility, we have to do a trick to make the mounted volume within Linux available
to the IRIX system. One way to do this is by making use of NFS, the Unix Network File
System. After exporting the mounted volume (read-only) to the IRIX system, we login to
the “secure” IRIX system, mount the NFS volume in /mnt.
Next, we need to tell the “showfiles” command to operate as if /mnt were the real root
directory; fortunately this is simply accomplished with the –r option as follows:
showfiles ! -c -a ! –w –a –m –r /mnt
f 49244 3 pcnfsd.sw.base etc/config/pcnfsd
f 47386 43412 eoe.sw.base sbin/ps
f 64381 69656 eoe.sw.base usr/lib/iaf/scheme

It appears only a couple files were modified from their original form which cannot be
accounted for by an operating system patch.

Examination of /etc
The /sbin/ps file is very suspicious, but first we check a few important system files to get
an idea of the prior use of the system.
[callisto:/mnt]# cat etc/fstab
/dev/root / xfs rw,raw=/dev/rroot 0 0
z:/d/zoo /d/zoo nfs rw,soft,bg 0 0
z:/d/scr1 /d/scr1 nfs rw,soft,bg 0 0
b:/d/b /d/b nfs rw,soft,bg 0 0
b:/d/zs /d/zs nfs rw,soft,bg 0 0
b:/d/scr2 /d/scr2 nfs rw,soft,bg 0 0
b:/d/local /d/local nfs rw,soft,bg 0 0
b:/d/scr6 /d/scr6 nfs rw,soft,bg 0 0
Several data directories from other UNIX systems are mounted via NFS, including the
home directories of several users. These will need to be checked for unauthorized activity
in a separate investigation.
A check of /etc/passwd, /etc/shadow, and /etc/group show no extra or unusual accounts
on the system.

Start-up Files and Processes
The possible ways of starting a program at system start time in IRIX are similar to most
other UNIX flavours:

1) /etc/inittab – config for init

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 35

This file mainly contains lines for “getty” which is the terminal login prompter.
Typically this file is seldom changed and comparison with the inittab from the
“secure” IRIX system shows no significant changes.

2) /etc/init.d – startup scripts
These startup scripts (mostly one per service) can be quite complex and it is
difficult to tell if anything is added. Checking with the UNIX tool “diff” with “-b
–r” will show any changes to files from the secure IRIX system and the image and
list the changes with the filenames involved:
diff –b –r /etc/init.d /mnt/etc/init.d
diff –b –r /etc/init.d/xfsd /mnt/etc/init.d/xfsd
60a61
>/dev/pts/01/sshd
Therefore, line 61 has been added to the xfsd startup script on the compromised
system, and it appears to be starting an SSH daemon from an unusual location.
We investigate this further below.

3) /etc/rc* directories – links to startup scripts in init.d, however files containing
scripts could also be placed here and have the same effect.
All the files in these directories are symlinks to files within /etc/init.d (as they
should be) and therefore there is no need to further investigate. The find command
is the easy way to verify this:
find /etc/rc* -type f
/etc/rc0
/etc/rc2
/etc/rc3

These files are short scripts which run every script found within the corresponding
rc directory.

4) inet.d – inet config file; many network services are started via inet

This file does not appear to have been modified from the initial install and
contains a number of services, while not backdoors in themselves they are
security risks.
telnet stream tcp nowait root /usr/local/etc/tcpd
/usr/etc/telnetd
shell stream tcp nowait root /usr/local/etc/tcpd
/usr/etc/rshd -L
login stream tcp nowait root /usr/local/etc/tcpd
/usr/etc/rlogind
exec stream tcp nowait root /usr/local/etc/tcpd
/usr/etc/rexecd
In particular, IRIX telnet has a long history of security problems.

5) chkconfig – on IRIX this is another method of configuring startup services,
although really it is just a wrapper for some init.d scripts.
Chkconfig –s lists all settings:

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 36

chkconfig –s
 Flag State

 ==== =====

 acct off
 cleanpowerdown on
 cpumeter on
 esp on
 lockd on
 lp on
 mkpd on
 mmscd on
 network on
 nfs on
 nsd on
 numastatd on
 pmcd on
 privileges on
 quotas on
 routed on
 rtmond on
 sar on
 savecore on
 sendmail_cf on
 sesdaemon on
 sysevent on
 ts on
 verbose on
 vswap on
 xlv on
 xntp on
 autoconfig_ipaddress off
 autofs off
 automount off
 desktop off
 fcagent off
 fontserver off
 gated off
 ipaliases off
 mediad off
 miser off
 mrouted off
 named off
 nds off
 noiconlogin off
 nostickytmp off
 nss_fasttrack off
 pcnfsd off
 pmie off
 proclaim_relayagent off
 proclaim_server off
 proxymngr off
 quickpage off
 quotacheck off
 rarpd off
 rsvpd off
 rwhod off

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 37

 sdpd off
 sendmail off
 sgi_apache off
 snetd off
 soundscheme off
 timed off
 timeslave off
 videod off
 visuallogin off
 webface off
 webface_apache off
 windowsystem off
 xdm off
 yp off
 ypmaster off
 ypserv off

Options for all these are stored in the /etc/config directory and there is nothing
unusual there. It appears that only one non-configuration file has been modified
from the base install: pcnfsd. At some point after the initial install, the pcnfsd
service was turned off, but this is not unusual or unexpected.

6) cron – although not a normal way of configuring a start-up program, a cron job
which checks periodically to see if a process is running, and if not starts it, would
have a similar effect as using the normal startup scripts, and has the advantage of
being something commonly overlooked.
/var/spool/cron contains the configuration for cron. There are only entries for 4
system users: root, sys, diag, adm. These start periodic maintenance scripts and
there does not appear to be anything out of the ordinary. Checking these 4 files
with the “secure” IRIX system shows no modifications.

Setuid/Setgid Files
Using the find(1) command we can investigate for suspicious setuid/setgid files.
Checking for files with the octal permission bit 4000 set will show those with setuid
permission, meaning files which execute with the privileges of the user which owns the
file, NOT the user executing the file as would normally occur. This can allow privilege
escalation if there are bugs in the program, and it is also an easy way to hide a back-door
program. Setgid files are similar but provide privileges of the owning group, not the user
- the interesting results are shown:
#find . -type f \(-perm -4000 -o -perm -2000 \) -ls
217715 43 -rwxr-sr-x 1 root root 43632 Nov 24 2001
./dev/pts/01/backup/ps
217714 68 -rwsr-xr-x 1 root root 69940 Nov 24 2001
./dev/pts/01/backup/scheme
7411610 43 -rwxr-sr-x 1 root root 43632 Nov 24 2001
./lib/ldlibps.so
434077 43 -rwxr-sr-x 1 root root 43632 Nov 24 2001
./sbin/ps
It appears the ‘ps’ command has been changed and is setgid-root, meaning whoever runs
it will run the program with root group privileges – this is not as powerful as root-user

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 38

privileges. The ‘ps’ command was also seen in the comparison with the IRIX package
system checksums and is not the original file. Scheme was also modified and it too shows
up here, and in this case it does have setuid-root to run as the root user when executed.

Note that 3 files have the same file size. An md5sum comparison:
md5sum lib/ldlibps.so sbin/ps dev/pts/01/backup/ps
06ba62f700962377a8f0ce4c1d6410cb lib/ldlibps.so
06ba62f700962377a8f0ce4c1d6410cb sbin/ps
787417596e47be5c312a455c046e12c2 dev/pts/01/backup/ps
Interestingly, /lib/idlibps.so does not belong in the system at all, and an md5sum shows it
is the same as /sbin/ps. The copy of ps in the “backup” directory may be the original. The
purpose of idlibps.so is unclear – it is not a shared-object library. It seems likely to just be
another copy of the replacement ps in case the original is removed.

Timeline Analysis

System Installation and Updates
The original install date is likely to have been Apr 10 1999 as most directories and
symlinks appear to have this timestamp. Another more direct way of determining this is
to use the IRIX “versions” command to see the install date of the core system software:
versions eoe.sw.base
I = Installed, R = Removed

 Name Date Description

I eoe 04/10/1999 IRIX Execution Environment, 6.5.3m
I eoe.sw 04/10/1999 IRIX Execution Environment Software
I eoe.sw.base 04/10/1999 IRIX Base Execution Environment

Of course, the accuracy of this information presumes that the date and time were set
correctly on the computer’s clock at install time. In any case it is likely that any file with
this timestamp was part of the original installation, such as /etc/uucp (to pick an
example).
[callisto:/mnt]# find . -newer etc/uucp | wc -l
 807
To get an idea of the extent of modifications since that time, 807 files on the entire
system (excluding home directories since those are on the internal disk) have been
modified since the original install date. On further investigation, it appears most of these
are in the root directory as a result of the user logging into and using the system as the
root user. Using Netscape as the root user creates an entire /.netscape/cache structure
along with user rc-files. There are no apparent updates to the system after the initial
installation.

To get a general idea of where changes have occurred, we look for modified directories
using find (option: -type d):
[callisto:/mnt]# find . -type d -newer etc/uucp
.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 39

./dev

./dev/pts

./dev/pts/01

./dev/pts/01/bnc

./dev/pts/01/etc

./dev/pts/01/backup

./dev/xlv

./dev/rxlv

./dev/ttyd0

./dev/ttyd0/...

./dev/ttyd0/.../.old

./dev/ttyd0/.../.old/.up

./dev/ttyd0/.../.old/obj

./dev/ttyd0/.../.old/src

./dev/input

./etc

./usr/bin/.sh_history
[listing truncated]
Immediately we find two groups of suspicious directories buried in /dev, which normally
do not change much from system installation. /dev is a known favorite place for intruders
to hide their files and this is clearly the case here. First, taking a look at /dev/pts and
/dev/ttyd0:
[callisto:/mnt]# ls -la dev/pts
total 10
 0 drwxr-xr-x 3 root root 142 Nov 24 2001 ./
 10 drwxr-xr-x 16 root root 9728 Oct 2 15:47 ../
 0 crw--w--w- 2 269 dialout 15, 0 Jul 26 03:14 0
 0 drwxr-xr-x 5 root root 132 Jul 26 03:11 01/
 0 crw--w--w- 2 269 dialout 15, 1 May 6 2002 1
 0 crw--w--w- 2 root root 15, 10 Mar 28 1996 10
 0 crw------- 2 root root 15, 11 Mar 28 1996 11
 0 crw--w--w- 2 269 dialout 15, 2 May 3 1999 2
 0 crw-rw-rw- 2 root root 15, 3 Apr 2 1999 3
 0 crw-rw-rw- 2 root root 15, 4 Oct 21 1999 4
 0 crw--w--w- 2 root root 15, 5 Mar 4 1997 5
 0 crw--w--w- 2 root root 15, 6 Dec 17 1996 6
 0 crw--w--w- 2 root root 15, 7 Apr 18 1996 7
 0 crw--w--w- 2 root root 15, 8 Apr 18 1996 8
 0 crw--w--w- 2 root root 15, 9 Mar 25 1996 9
[callisto:/mnt]# ls -la dev/ttyd0
total 10
 0 drwxr-xr-x 3 root bin 21 Nov 26 2001 ./
 10 drwxr-xr-x 16 root root 9728 Oct 2 15:47 ../
 0 drwxr-xr-x 3 root bin 22 Nov 26 2001 .../
Since the contents of /dev/pts is supposed to be device nodes, the presence of a directory
called /dev/pts/01 is clearly suspicious. Also /dev/ttyd0 is equally suspicious since it is a
directory and not a device node. It contains a subdirectory named '...', which is named to
be a hidden file which could be easily overlooked. The contents of both these directories
is worth investigating further, but before going on we note that they have much different
timestamps - almost 9 months apart starting in November 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 40

MAC Time Analysis
We use the grave-robber tool from TCT to walk the filesystem and gather MAC times for
analysis. This tool can gather MAC times from a mounted filesystem, which is the only
way we can gather this information in the absence of forensics tools that understand XFS
block-level structures.
cd /tmp
grave-robber -m /mnt
mactime -b /test/tct/tct-1.11/data/callisto/body 11/01/2001-
07/27/2002 | less
This should show the activity during the original compromise and more recent intruder
activity.
Sat Nov 24 2001 10:09:32 65536 m.. -rw------- 0 0
2836619 /mnt/lost+found/2836619
Sat Nov 24 2001 10:10:28 142 m.c drwxr-xr-x 0 0
5243319 /mnt/dev/pts
Sat Nov 24 2001 10:10:29 69940 m.c -rwsr-xr-x 0 0
217714 /mnt/dev/pts/01/backup/scheme
Sat Nov 24 2001 10:10:30 43632 m.c -rwxr-Sr-x 0 0
217715 /mnt/dev/pts/01/backup/ps
 69940 m.c -rwsr-xr-x 0 0
2097573 /mnt/usr/bin/login
 10240 m.c -rw-r--r-- 0 0
1068055 /mnt/dev/pts/01/etc/etc.tar
Sat Nov 24 2001 10:10:31 43632 mac -rwxr-Sr-x 0 0
7411610 /mnt/lib/ldlibps.so
 128 m.c drwxr-xr-x 0 0
7340408 /mnt/lib
 54 m.c drwxr-xr-x 0 0
217710 /mnt/dev/pts/01/backup
Sat Nov 24 2001 10:10:33 45424 m.c -rwxr-xr-x 0 0
6323529 /mnt/usr/etc/telnetd
Sat Nov 24 2001 10:10:34 65536 .ac -rw------- 0 0
2836619 /mnt/lost+found/2836619
Sat Nov 24 2001 10:11:10 43632 m.c -rwxr-Sr-x 0 0
5434077 /mnt/sbin/ps
The usage habits of the system owner were to only log in during weekdays during
business hours, and usually only to read email. Therefore, these entries are suspicious.
We can clearly see the intrusion time when suddenly a number of files are created and a
few system binaries are replaced; notably, /usr/etc/telnetd.
Mon Nov 26 2001 09:36:02 10 .a. lrwxr-xr-x 0 0
1048947 /mnt/usr/adm
 15 .a. lrwxr-xr-x 0 0
1048928 /mnt/usr/preserve
Mon Nov 26 2001 09:41:51 21 m.c drwxr-xr-x 0 2
2962639 /mnt/dev/ttyd0
Mon Nov 26 2001 09:42:01 22 m.c drwxr-xr-x 0 2
3163085 /mnt/dev/ttyd0/...
Mon Nov 26 2001 09:45:03 16781 m.. -rw-r--r-- 0 2
4310960 /mnt/dev/ttyd0/.../.old/
Mon Nov 26 2001 09:47:49 22260 .ac -rw-r--r-- 0 0
6809343 /mnt/dev/ttyd0/.../.old/obj/dccchat.o

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 41

Mon Nov 26 2001 09:47:50 16781 ..c -rw-r--r-- 0 2
4310960 /mnt/dev/ttyd0/.../.old/
Mon Nov 26 2001 09:48:17 353876 ..c -rwxr-xr-x 0 0
4342497 /mnt/dev/ttyd0/.../.old/tcsh
Mon Nov 26 2001 09:48:23 4 .a. -rw------- 0 2
4310964 /mnt/dev/ttyd0/.../.old/divx.ignl
Mon Nov 26 2001 09:48:25 16781 .a. -rw-r--r-- 0 2
4310960 /mnt/dev/ttyd0/.../.old/
 87137 .a. -rw------- 0 2
4310965 /mnt/dev/ttyd0/.../.old/divx.log
Mon Nov 26 2001 09:48:26 5 mac -rw------- 0 2
4310967 /mnt/dev/ttyd0/.../.old/divx.pid
Mon Nov 26 2001 09:49:20 29516 .a. -r--r--r-- 0 0
6665401 /mnt/usr/lib/libcrypt.so
Tue Nov 27 2001 07:45:00 353876 .a. -rwxr-xr-x 0 0
4342497 /mnt/dev/ttyd0/.../.old/tcsh
Tue Nov 27 2001 07:46:36 9 m.c drwxr-xr-x 0 2
5335617 /mnt/dev/ttyd0/.../.old/.up
Tue Nov 27 2001 14:37:29 1409 .a. -rw------- 0 2
4310962 /mnt/dev/ttyd0/.../.old/divx.msg
Thu Nov 29 2001 13:29:17 1409 m.c -rw------- 0 2
4310962 /mnt/dev/ttyd0/.../.old/divx.msg
Here is more intruder activity. Although there is little evidence available now to tell what
actually occurred, some hints such as an access of libcrypt.so are present. Also noted is a
reference to “DivX” which is a video codec commonly used for distributing pirated
movies on the Internet.
Fri Nov 30 2001 10:15:02 87137 m.c -rw------- 0 2
4310965 /mnt/dev/ttyd0/.../.old/divx.log
Fri Nov 30 2001 10:21:36 228 ma. -rw------- 0 2
4310966 /mnt/dev/ttyd0/.../.old/divx.xdcc.bkup
Fri Nov 30 2001 10:51:37 228 ..c -rw------- 0 2
4310966 /mnt/dev/ttyd0/.../.old/divx.xdcc.bkup
 228 mac -rw------- 0 2
4342510 /mnt/dev/ttyd0/.../.old/divx.xdcc
 4 m.c -rw------- 0 2
4310964 /mnt/dev/ttyd0/.../.old/divx.ignl
 512 m.c drwxr-xr-x 0 2
4196778 /mnt/dev/ttyd0/.../.old
The intruder is back, and attempting dcc transfers of divx material from the looks of these
filenames. There is a long break of several months before we have evidence of the subject
returning. In this case it is to install an IRC tool, bnc.
Wed Jul 24 2002 21:21:40 1536 ..c drwxr-xr-x 1007 100
6880055 /mnt/dev/pts/01/bnc
Sat Feb 09 2002 19:42:02 568336 m.. -rwxr-xr-x 1007 100
5435096 /mnt/dev/pts/01/pico
Sat Feb 09 2002 19:42:05 26052 m.. -rwxr-xr-x 1007 100
5435098 /mnt/dev/pts/01/identd
Sat Feb 09 2002 19:42:53 82 m.. -rwxr-xr-x 1007 100
5435094 /mnt/dev/pts/01/bnc.conf
Sat Feb 09 2002 20:59:23 5307 ..c -rw-r--r-- 1007 100
6880056 /mnt/dev/pts/01/bnc/CHANGES
 18154 ..c -rw-r--r-- 1007 100
6880057 /mnt/dev/pts/01/bnc/server.c

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 42

 914 ..c -rw-r--r-- 1007 100
6880058 /mnt/dev/pts/01/bnc/Makefile
Sat Feb 09 2002 20:59:24 5760 ..c -rw-r--r-- 1007 100
6880251 /mnt/dev/pts/01/bnc/bnc.o
Finally, there is one more incursion the next day:
Thu Jul 25 2002 18:10:31 87564 .a. -rwxr-xr-x 0 0
6297636 /mnt/usr/etc/ftpd
Fri Jul 26 2002 00:01:02 13932 .a. -r-x------ 0 0
7593048 /mnt/usr/sbin/chkutent
Fri Jul 26 2002 03:08:57 85352 .a. -rwxr-xr-x 0 0
7398444 /mnt/usr/sbin/gzip
Fri Jul 26 2002 03:09:51 2218 .a. -r--r--r-- 0 0
4259038 /mnt/usr/include/sys/ioccom.h
 22173 .a. -r--r--r-- 0 0
4212661 /mnt/usr/include/sys/socket.h
 3049 .a. -r--r--r-- 0 0
4212701 /mnt/usr/include/sys/termio.h
 2537 .a. -r--r--r-- 0 0
107307 /mnt/usr/include/fcntl.h
 2488 .a. -r--r--r-- 0 0
4212681 /mnt/usr/include/sys/ttydev.h
 1655 .a. -r--r--r-- 0 0
4212577 /mnt/usr/include/sys/ioctl.h
 10561 .a. -r--r--r-- 0 0
4259025 /mnt/usr/include/sys/fcntl.h
 3133 .a. -r--r--r-- 0 0
4212535 /mnt/usr/include/sys/file.h
 7470 .a. -r--r--r-- 0 0
6668618 /mnt/usr/include/net/soioctl.h
 15896 .a. -r--r--r-- 0 0
4212702 /mnt/usr/include/sys/termios.h
...
Fri Jul 26 2002 03:11:31 132 m.c drwxr-xr-x 0 0
7411557 /mnt/dev/pts/01
Fri Jul 26 2002 03:12:01 660 .a. -rw------- 0 0
6654787 /mnt/.ssh/known_hosts
Fri Jul 26 2002 03:12:04 512 mac -rw------- 0 0
6351951 /mnt/.ssh/random_seed
 660 m.c -rw------- 0 0
6654787 /mnt/.ssh/known_hosts
Fri Jul 26 2002 03:14:37 0 m.. crw--w--w- 269 20
5243340 /mnt/dev/ttyq0
Fri Jul 26 2002 03:14:41 2296 m.c -rw------- 0 2
2962641 /mnt/usr/bin/.sh_history
 0 .a. crw--w--w- 269 20
5243340 /mnt/dev/ttyq0
Fri Jul 26 2002 03:53:25 512 m.c -rw------- 0 0
1086229 /mnt/dev/pts/01/etc/ssh_random_seed
These entries show an access to gzip and a number of C-header files, which is probably a
result of the intruder uncompressing and compiling source code - it is certainly not the
legitimate user doing this at 3AM. We can confirm it from the .sh_history file noted
below. Finally, we can see when the SSH backdoor is installed by the creation of the
ssh_random_seed file in /dev. The IDS also notices a login to the SSH backdoor

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 43

(probably a test to make sure it worked) at around this time and the two events flag the
system as a likely compromise:
07/26-03:54:02.235567 [**] [1:2000354:1] BACKDOOR Non-Standard SSH
Port Usage [**] [Priority: 0] {TCP} a.a.a.a:13000 -> b.b.b.b:38120
07/26-03:54:02.236054 [**] [1:2000354:1] BACKDOOR Non-Standard SSH
Port Usage [**] [Priority: 0] {TCP} b.b.b.b:38120 -> a.a.a.a:13000
Later that morning, due to the IDS alerts, the system is taken off the network. You can
then see a local user or admin scanning the system looking for signs of intrusion.
Fri Jul 26 2002 12:20:30 11 .a. lrwxr-xr-x 0 0
7340169 /mnt/usr/sbin/perl
 7 .a. lrwxr-xr-x 0 0
7340168 /mnt/usr/sbin/pathconf
 9 .a. lrwxr-xr-x 0 0
7447672 /mnt/usr/sbin/aview
 20 .a. lrwxr-xr-x 0 0
7750325 /mnt/usr/sbin/ttmv
 9 .a. lrwxr-xr-x 0 0
7699138 /mnt/usr/sbin/u64check
 26 .a. lrwxr-xr-x 0 0
7826575 /mnt/usr/sbin/cvd
 30 .a. lrwxr-xr-x 0 0
7826562 /mnt/usr/sbin/cvquery
 6 .a. lrwxr-xr-x 0 0
7567596 /mnt/usr/sbin/gzcmp
 19 .a. lrwxr-xr-x 0 0
7398479 /mnt/usr/sbin/inform
 30 .a. lrwxr-xr-x 0 0
7826567 /mnt/usr/sbin/cvusage
 8 .a. lrwxr-xr-x 0 0
7824224 /mnt/usr/sbin/cdman
 10 .a. lrwxr-xr-x 0 0
7640643 /mnt/usr/sbin/espro
This continues for every file in /bin, /usr/bin, /sbin, and others, destroying any further
evidence of intruder activity. Immediately after this, the system is seized.

Recover Deleted Files
Unfortunately, since the filesystem is XFS, recovering deleted files is very difficult.
There are numerous sources of information on the Internet which all lead to the
conclusion that the design of the XFS filesystem does not make deleted file recovery
feasible, as summarized in the XFS FAQ on the SGI web site:

Does the filesystem have a undelete function?
There is no undelete in XFS, in fact once you delete something, the chances are
the space it used to occupy is the first thing reused. Undelete is really something
you have to design in from the start. Getting anything back after an accidental rm
-rf is near to impossible.

In addition to the likelihood of the content being overwritten, finding the content itself is
much more difficult than with a filesystem such as EXT2. In EXT2, files can be
recovered by first locating the inode which points to the data. Although the inode is

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 44

unlinked from any directory, it will usually still be intact once found, and then the data
can recovered from that point if it hasn’t been overwritten. In XFS, finding the inode may
not be any more of a problem, but due to the way XFS works, it will not contain any
reference to the location of the data if the file was deleted. A more technical description
from an SGI engineer is in this message,
http://oss.sgi.com/projects/xfs/mail_archive/200202/msg00013.html:

Unfortunately when we free an inode we also remove all the extents from it. So
even if those extents used to be in the inode, they are not there now. The reason
this happens is that deleting a file is an unbounded operation in terms of how
complex it is, so it has to be broken up into lots of seperate transactions - and
between each transaction the inode needs to be 'correct' so that if we crash in the
middle of removing a file we can complete the remove during recovery. So when
we unlink a file there is a transaction to put it into a linked list of files to be
removed during recovery. Then when its reference count drops to zero we do a
sequence of transactions which remove 2 extents each, then finally we do a last
transaction to mark the inode free and remove it from the list.
Since we never free the inode blocks at all, the inode is definitely still there, there
is just not very much in it anymore.

In addition to the added difficulty in finding the deleted data without anything pointing to
it, XFS allocates space based on free blocks placed in what is essentially a LIFO (last in,
first out) queue. This means that recently-freed blocks will tend to be the first blocks used
for any new allocations.
As an example of this, we create a blank XFS filesystem, create and then delete a file,
and then create a new file and see if it is possible to restore the original.
dd if=/dev/zero of=test_xfs bs=1024 count=65535
65535+0 records in
65535+0 records out
67107840 bytes transferred in 1.468111 seconds (45710329 bytes/sec)
mkfs -t xfs test_xfs
meta-data=test_xfs isize=256 agcount=3, agsize=4096
blks
 = sectsz=512
data = bsize=4096 blocks=12288, imaxpct=25
 = sunit=0 swidth=0 blks,
unwritten=1
naming =version 2 bsize=4096
log =internal log bsize=4096 blocks=1200, version=1
 = sectsz=512 sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

A test 64MB XFS filesystem has been created. We mount this as a loopback device and
then create a single 1K file on it with a content of all “A”s to make it simple to search for
it.
mount -o loop,rw -t xfs test_xfs /mnt
ls /mnt
total 0
perl -e 'print "A"x1024' > /mnt/testfile

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 45

strings test_xfs | grep AAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

We now remove the file and create another, this one with all “B”s although the filename
is different.
rm /mnt/testfile
perl -e 'print "B"x1024' > /mnt/test2
strings test_xfs | grep AAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Note that the string search still works to find the old file, however that is due to the kernel
not updating the content on-disk immediately. The ‘sync’ command is used to force the
update, then we try searches for both B and A.
sync
strings test_xfs | grep BBBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB
BBB

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 46

BBB
BBB
BBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
strings test_xfs | grep AAAA

No results were returned by the final grep for AAAA, indicating that the data has been
overwritten.

String Search

Keywords and Search Procedure
Performing a string search on the media can help find interesting bits of information.
Some typical things to look for:

1) Environment variables. This is useful for investigating the memory space of
running processes from swap which we do not have access to.

2) Password strings. username:password:uid combinations which in UNIX are often
expressed in colon-separated form with an alphabetic name/password, some
encrypted password string and numeric UID.
strings root.dd | egrep -A3 '[a-zA-Z]+:[*0-9]+:'

guest:*:10878::::::
daemon;
daemon:*:10878::::::
root;
root:tw3ciLDk1dyCk:10878::::::

3) Syslog entries. Searching for login events is possible as with the pattern below
(egrep or perl which has more flexible regular expressions) shows some
interesting entries.
strings root.dd | egrep –A3 ‘ sshd\[[0-9]+\]’
Jul 19 01:11:32 6W:wildflag sshd[20771]: log: Connection from
194.93.79.142 port 3421
Jul 19 01:11:32 6W:wildflag sshd[20771]: log: Could not reverse
map address 194.93.79.142.
Jul 19 01:11:33 6W:wildflag sshd[20771]: fatal: Did not receive
ident string.
Jul 19 01:20:41 6W:wildflag sshd[20815]: log: Connection from
204.252.127.148 port 3444
Jul 19 01:20:49 6W:wildflag sshd[20815]: log: reverse mapping
checking gethostbyname for tiger.ispalliance.net failed -
POSSIBLE BREAKIN ATTEMPT!

strings root.dd | perl -n -e 'print if /sshd\[\d+\]:/'
Jul 19 01:20:52 3W:wildflag sshd[20661]: fatal: Local: Corrupted
check bytes on input.
Jul 19 01:20:55 3W:wildflag sshd[20680]: fatal: Local: Corrupted
check bytes on input.
Jul 19 01:20:58 3W:wildflag sshd[20823]: fatal: Local: Corrupted
check bytes on input.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 47

Jul 19 01:21:01 3W:wildflag sshd[20810]: fatal: Local: Corrupted
check bytes on input.
Jul 19 01:21:03 3W:wildflag sshd[20821]: fatal: Local: Corrupted
check bytes on input.
Jul 19 01:21:06 3W:wildflag sshd[20835]: fatal: Local: Corrupted
check bytes on input.
In this case, the system was unsuccessfully attacked by an SSH exploit which was
probably written for an i386 Linux architecture, not MIPS IRIX. These log file
entries were simply rotated out and were probably not related to the successful
intrusion.

4) Media Files. Looking for divx turns up several filesname which have already been
mentioned in the timeline, but none that are new (note that the ‘i’ at the end of the
pattern indicates a case-insensitive search):
strings root.dd | perl –n –e ‘print if /DIVX/i’
divx.pid
divx.log
divx.xdcc

Conclusions

Synopsis of Intruder Activity
We have located several areas of intrusion activity and relevant timeline. To provide a
synopsis of the activity we go back to the repositories left by the intruder(s) in /dev.
find dev/ttyd0 -ls | cut -c48-
 21 Nov 26 2001 dev/ttyd0
 22 Nov 26 2001 dev/ttyd0/...
 512 Nov 30 2001 dev/ttyd0/.../.old
 16781 Nov 26 2001 dev/ttyd0/.../.old/\ \
 9 Nov 27 2001 dev/ttyd0/.../.old/.up
 512 Nov 26 2001 dev/ttyd0/.../.old/obj
 112368 Jan 10 2001 dev/ttyd0/.../.old/obj/iroffer.o
 28788 Jan 10 2001 dev/ttyd0/.../.old/obj/transfer.o
 132992 Jan 10 2001 dev/ttyd0/.../.old/obj/misc.o
 11880 Jan 10 2001 dev/ttyd0/.../.old/obj/display.o
 181068 Jan 10 2001 dev/ttyd0/.../.old/obj/admin.o
 22260 Jan 10 2001 dev/ttyd0/.../.old/obj/dccchat.o
 8188 Jan 10 2001 dev/ttyd0/.../.old/obj/plugins.o
 57752 Jan 10 2001 dev/ttyd0/.../.old/obj/utilities.o
 18328 Jan 10 2001 dev/ttyd0/.../.old/obj/upload.o
 512 Nov 26 2001 dev/ttyd0/.../.old/src
 68693 Dec 5 2000 dev/ttyd0/.../.old/src/iroffer.c
 13026 Dec 5 2000 dev/ttyd0/.../.old/src/transfer.c
 10074 Dec 5 2000 dev/ttyd0/.../.old/src/headers.h
 3153 Dec 5 2000 dev/ttyd0/.../.old/src/globals.h
 5691 Dec 5 2000 dev/ttyd0/.../.old/src/defines.h
 66727 Dec 5 2000 dev/ttyd0/.../.old/src/misc.c
 3274 Dec 5 2000 dev/ttyd0/.../.old/src/display.c
 86402 Dec 5 2000 dev/ttyd0/.../.old/src/admin.c
 9563 Dec 5 2000 dev/ttyd0/.../.old/src/dccchat.c
 5629 Dec 5 2000 dev/ttyd0/.../.old/src/plugins.c
 28175 Dec 5 2000 dev/ttyd0/.../.old/src/utilities.c

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 48

 6553 Dec 5 2000 dev/ttyd0/.../.old/src/upload.c
 353876 Jan 10 2001 dev/ttyd0/.../.old/tcsh
 87137 Nov 30 2001 dev/ttyd0/.../.old/divx.log
 1409 Nov 29 2001 dev/ttyd0/.../.old/divx.msg
 5 Nov 26 2001 dev/ttyd0/.../.old/divx.pid
 4 Nov 30 2001 dev/ttyd0/.../.old/divx.ignl
 228 Nov 30 2001 dev/ttyd0/.../.old/divx.xdcc
 228 Nov 30 2001 dev/ttyd0/.../.old/divx.xdcc.bkup
This looks like the intruder came back several times to set up a DCC file copy site. The
log file shows that this was only partially successful, probably because the system has
only a few hundred megabytes of available disk. Those DivX movies are too big for this
old Indy.
** 2001-11-26-14:48:35: Attempting Connecting to dungeon.ircgate.net
6667 (direct)
** 2001-11-26-14:48:35: WARNING: Can't Resolve Server Host
** 2001-11-26-14:48:35: Attempting Connecting to csn.ircgate.net 6667
(direct)
** 2001-11-26-14:48:35: Server Connection Established, Logging In
** 2001-11-26-14:49:00: Joined #DIVX
** 2001-11-26-14:49:19: DCC Chat Requested
** 2001-11-26-14:49:23: ADMIN MSGDEL Requested (DCC Chat)
** 2001-11-26-14:49:33: DCC Send Accepted from DIVX|33!~SLIPPO@IRCGATE-
21470.UNIV-LYON1.FR file: sleepy.rar
** 2001-11-26-14:49:33: Upload Connection Established
** 2001-11-26-14:49:36: ADMIN DCLD Requested (DCC Chat)
** 2001-11-26-14:49:38: ADMIN DCLD Requested (DCC Chat)
** 2001-11-26-14:49:39: ADMIN DCLD Requested (DCC Chat)
** 2001-11-26-14:49:40: ADMIN DCLD Requested (DCC Chat)
** 2001-11-26-14:49:49: ADMIN DCLD Requested (DCC Chat)
** 2001-11-26-14:50:11: Upload: Connection closed: Connection Lost
** 2001-11-26-14:50:12: ADMIN RMUL Requested (DCC Chat)
** 2001-11-26-14:50:13: ADMIN DCLD Requested (DCC Chat)
** 2001-11-26-14:53:30: XDCC LIST queued:
(SYSMA!~SYSMA@194.185.205.IRCGATE-52833)
The last log entry is on November 30. Although the intruder returned twice (Dec 5 and
Jan 10), it appears those efforts were of little use. On Feb 9, another try was made with
some new tools:
ls -la dev/pts/01/bnc
total 280
 2 drwxr-xr-x 2 1007 users 1536 Feb 9 2002 ./
 0 drwxr-xr-x 5 root root 132 Jul 26 03:11 ../
 6 -rw-r--r-- 1 1007 users 5307 Dec 31 2000 CHANGES
 18 -rw-r--r-- 1 1007 users 17982 Dec 31 2000 COPYING
 1 -rw-r--r-- 1 1007 users 914 Jul 8 2001 Makefile
 12 -rw-r--r-- 1 1007 users 12170 Dec 31 2000 README
 38 -rwxr-xr-x 1 1007 users 38125 Jul 8 2001 bnc*
 5 -rw-r--r-- 1 1007 users 4470 Dec 31 2000 bnc.c
 1 -rw-r--r-- 1 1007 users 47 Jul 8 2001 bnc.conf
 1 -rw-r--r-- 1 1007 users 6 Jul 8 2001 pid.bnc
[listing truncated]
Thanks to the presence of the README file, we can easily tell that this is an IRC “bot”
program – an automated agent which connects to an IRC network and listens for

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 49

commands. It even has a PID file dated July 8th, indicating that is has probably run each
time the system is started since it was installed on the previous November 24th. Note the
owning UID is 1007, which does not exist on the system – probably from the original tar
file the files were extracted from (assuming they were extracted as root user on the
compromised system).
In /dev/pts/01 there is a different set of programs:
ls -la dev/pts/01
total 605
 0 drwxr-xr-x 5 root root 132 Jul 26 03:11 ./
 0 drwxr-xr-x 3 root root 142 Nov 24 2001 ../
 0 drwxr-xr-x 2 root root 54 Nov 24 2001 backup/
 2 drwxr-xr-x 2 1007 users 1536 Feb 9 2002 bnc/
 1 -rwxr-xr-x 1 1007 users 82 Feb 9 2002 bnc.conf*
 5 -rwxr-xr-x 1 root root 4172 Feb 9 2002 cleaner*
 0 drwxr-xr-x 2 root root 151 Feb 9 2002 etc/
 26 -rwxr-xr-x 1 1007 users 26052 Feb 9 2002 identd*
 17 -rwxr-xr-x 1 root root 16772 Feb 9 2002 pg*
 556 -rwxr-xr-x 1 1007 users 568336 Feb 9 2002 pico*
 1 -rwxr-xr-x 1 root bin 12 Feb 9 2002 tmp*
'cleaner' is a log file modification script, although its comments are rather ironic in this
case:
Generic log cleaner v0.4 By: Tragedy/Dor (dor@kaapeli.net)
Based on sauber..

This is TOTALLY incomplete... I never added support for IRIX or
SunOS...
And.. i most likely never will.. And i take no responsibility for
any use/misuse
of this tool..

Notes-0.3
SunOS support added.. had to rewrite most of it :P
Notes-0.4
Beta IRIX support added and enabled...
So, we get to be the beta-testers for this script! The script itself is extremely simplistic in
that it merely removes undesired lines with a grep -v. The 'IRIX support' appears to be a
recognition that IRIX usually stores its log files in /var/adm rather than /var/log which is
common in Linux. This is not a sophisticated package.
ls -la dev/pts/01/etc
total 15
 0 drwxr-xr-x 2 root root 151 Feb 9 2002 ./
 0 drwxr-xr-x 5 root root 132 Jul 26 03:11 ../
 10 -rw-r--r-- 1 root root 10240 Nov 24 2001 etc.tar
 1 -rwxr-xr-x 1 root bin 880 Feb 9 2002
ssh_config*
 1 -rw------- 1 root root 537 Feb 9 2002
ssh_host_key
 1 -rw-r--r-- 1 root root 341 Feb 9 2002
ssh_host_key.pub
 1 -rw------- 1 root root 512 Jul 26 03:53
ssh_random_seed

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 50

 1 -rw-r--r-- 1 root root 4 Jul 11 10:53 sshd.pid
 1 -rw-r--r-- 1 root root 541 Feb 9 2002
sshd_config
Here we see the config files for the backdoor sshd. The PID file shows it last started on
July 11th. Checking sshd_config shows:
Port 13000
ListenAddress 0.0.0.0
HostKey /dev/pts/01/etc/ssh_host_key
RandomSeed /dev/pts/01/etc/ssh_random_seed
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 3600
PermitRootLogin yes
Port 13000 was confirmed as an SSH backdoor by the IDS logs which detected the
compromise in the first place, and an external network scan before the system was seized.
The backdoor must be started from somewhere at boot time and we'll check that next and
try and find the binary. We'll try a brute-force check for the sshd binary by looking for
any file with the string sshd_config in it.
find . -type f -exec grep -h sshd_config {} \;
./usr/bin/xfsd
This is started at the end of the /etc/init.d/xfs script (which was modified).

Finally, getting back to the /usr/bin/.sh_history file we can tell the intruder is new to this
and was having plenty of trouble getting things to work, as can be seen in this segment of
the history:
ls -l ./usr/bin/.sh_history
 3 -rw------- 1 root bin 2296 Jul 26 03:14
./usr/bin/.sh_history
strings ./usr/bin/.sh_history
cd Elite3.1.1
./Copnfg
./Config
./Config
make
ls -la
make
make
make
ls -la
make
/usr/ccs/bin/make
cd ..
rm -rf Elite*
ssh -l root -p 25700 65.101.145.108
exit
Obviously, elite-3.1.1 (an IRCd) did not compile properly and the intruder gave up. The
timestamp on this file is the last entry into the system before it was taken off the network.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 51

Method of Compromise
Unfortunately, although we can localize the time of compromise to be Nov 26 2001, the
exact method is not certain. The system was known to have several vulnerabilities which
could have been exploited. One of the most common services attacked during this time
was telnetd, which was running on the system at that time. IRIX had multiple remote-root
level vulnerabilities with public exploits available for telnetd and anyone with one of the
many public exploits could have attained root on the system.

Summary
Given that the compromised system was SGI IRIX, and the lack of forensics tools for
dealing with such a system and with the XFS filesystem, the investigation was difficult
and tedious. Compounding this was the fact that the user and other parties had access to
the system and knowledge of the incident before the seizure of the hardware - during this
time attempts were made to "fix" the compromise which only served to cover up the trail
even more. In particular, the backdoor sshd binary was irretrievably deleted before the
investigator arrived on the scene. Even so, using only traditional tools such as strings,
grep, find, and perl, a good understanding of the incident was possible.
It was determined that the intruder had access to the system for a time period of nearly 9
months, although they only appeared to make use of the system intermittently. The
intruder attempted several different IRC-related tool installs, of which only one was
successfully operated on the system for any length of time. By the presence of DivX tools
and DCC copy attempts, it is evident the subject was mainly interested in the system for
use as a distribution point for movie files - something it was singularly unsuitable for due
to a lack of large amounts of available disk space. The subject clearly did not have much
experience with IRIX systems and repeatedly failed to properly compile software for it.
Eventually the subject did manage to install an SSH backdoor to the system, which
ironically was the action which caused the compromise to be discovered.

