
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.

Forensic Analysis of a System

GIAC Certified Forensic Analyst (GCFA)
Practical Assignment

Version 1.5
with Option 1 – Forensic Analysis on a System

Mark Read

29th November 2004

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 2 -

Table Of Contents

Part 1 – Analyze an Unknown Image..3

Introduction ...3
Forensic Workstation and Tools..3
Analysis Of Image...4

Verification of provided image..4
Initial Analysis of Image...5
Timeline Analysis...6
Recovering Deleted Files...10
Analysing the contents of a file ..13
Using Camouflage...19
Recovering hidden files ...24

Conclusion and recommendations ..28
Legal discussion surrounding the theft of information and use of
Steganography..30
References..32

Part 2 – Forensic Analysis On A System ..34
Introduction ...34
Forensic Workstation and Tools..36
Incident Response and Seizure of Evidence...37
Acquiring the disk image ...38
Producing a Timeline...41
Timeline Analysis ..43
Log File Analysis ...49
File System Analysis ...60
Recovering deleted files..65
strings Analysis ...73
Conclusion and Timeline of Activities..76
References..78

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 3 -

Part 1 – Analyze an Unknown Image

Introduction
For this part of the practical assignment an image of a floppy disk is provided
which potentially contains evidence linking the suspect, Robert John
Leszczynski, Jr who works for Ballard Industries, with leaking confidential data to
a competitor, Rift Inc.
The objective of this part of the assignment is to analyze the floppy disk image
using forensically sound methods and tools in order to uncover any evidence
linking Robert Leszczynski with leaking the confidential data.
The timeline information already provided is that the floppy disk was seized by
security while being taken out of the R&D labs at Ballard Industries on 26th April
2004 at approximately 4:45pm MST.

The chain of custard form which is provides is as follows:

• Tag# fl-260404-RJL1
• 3.5 inch TDK floppy disk
• MD5: d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img
• fl-260404-RJL1.img.gz

Forensic Workstation and Tools
The forensic workstation used to conduct the investigation consisted of the
following:

• Compaq Evo N410c
• Linux Operating system – RedHat Enterprise Linux ES Release 3
• VMWare virtual machine running Microsoft Windows XP SP2

The tools used to carry out the investigation were:

• The Sleuthkit (TSK) version 1.72
Available from http://www.sleuthkit.org/sleuthkit/
Previously known as TASK (The @stake Sleuth Kit)

• Standard Linux base OS commands.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 4 -

Analysis Of Image

Verification of provided image
As provided in the assignment directions, the image to be analysed was
downloaded from the GIAC website, http://www.giac.org/gcfa/v1_5.gz
The filename of the downloaded file, v1_5.gz, does differ from the filename
detailed on the chain of custard form provided, fl-260404-RJL1.img.gz
In the real world this could suggest that the chain of custody is incorrect or not
complete. Since this is a theoretical assignment we shall note the slight
inconsistency and proceed to verifying that it is actually the same file despite the
name.

The file was decompressed using the gunzip utility, and the md5sum command
provided the md5 checksum1 of the file.
The checksum as shown in Figure 1 is the same as detailed on the chain of
custody form, thus indicating that it is the same file.

Chain of Custody MD5 checksum:
MD5: d7641eb4da871d980adbe4d371eda2ad fl-260404-RJL1.img

Figure 1 - MD5 checksum of the floppy image

1 MD5 is a one-way hashing algorithm designed to give a unique, consistent and condensed output of a
given input.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 5 -

Initial Analysis of Image
In order to determine which type of filesystem we are dealing with, the file
command was used against the image file. The file command analyses the
header of the given file in order to determine what type of file it is.

[root@localhost working]# file v1_5
v1_5: x86 boot sector, system mkdosfs, FAT (12 bit)

The image was then mounted so we can browse the filesystem on the forensic
workstation. To do this the mount command was used. Details of the switches
passed are also described.

[root@localhost working]# mount -o ro,loop v1_5 /mnt/floppy

-o Specifies there are options to follow
ro Mount as read-only, so the image cannot be modified.
loop Use the loop device2.
v1_5 Our image file we wish to mount
/mnt/floppy The mount point where we can access it on our filesystem

Performing a directory listing of our mounted image provides the following list of
files. The dates associated with each file details the last modify time.

[root@localhost working]# ls -l /mnt/floppy
total 640
-rwxr-xr-x 1 root root 22528 Apr 23 2004
Acceptable_Encryption_Policy.doc
-rwxr-xr-x 1 root root 42496 Apr 23 2004
Information_Sensitivity_Policy.doc
-rwxr-xr-x 1 root root 32256 Apr 22 2004
Internal_Lab_Security_Policy1.doc
-rwxr-xr-x 1 root root 33423 Apr 22 2004
Internal_Lab_Security_Policy.doc
-rwxr-xr-x 1 root root 307935 Apr 23 2004
Password_Policy.doc
-rwxr-xr-x 1 root root 215895 Apr 23 2004
Remote_Access_Policy.doc

On the face of it, it looks like the contents of the floppy disk is just policy
documents. Opening the files in a standard word processor confirms this. From
the details specified in the original timeline, the floppy disk was seized from Mr
Leszczynski on 26th April which indicates these files were possibly last written
approx 3-4 days prior.
Documents such as these also contain metadata that provide details of the
original author, company, and in some instances also record who has viewed or
modified the document. Upon examination of the metadata within these

2 The loop device allows you to mount an image of a file system stored as a standard file as though it was
an external disk.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 6 -

documents nothing of great significance was found. All documents with the
exception of two were attributed to Ballard Industries, Inc. as being the authoring
company. Password_Policy.doc and Remote_Access_Policy.doc were attributed
to Cisco Systems, Inc.
While much of the metadata can be viewed by simply viewing Properties within
the application itself, further information can be obtained by using a hex editor -
which we'll see in action later. In this instance though, no further information was
available.

Timeline Analysis
The next stage is to generate a timeline so we can see some specifics on when
the files on disk were actually created, as well as last modified and accessed.
To do this involves a two stage process.
Firstly, we will use the fls tool to compile data about the files on the floppy image,
and then secondly use the mactime tool, to take the output of fls and put it into a
readable timeline format. Both the fls and mactime tools are part of The Sleuthkit

So, first, let’s run the fls tool. Details of the switches passed are described
below.

[root@localhost working] fls -f fat12 -m / -r v1_5 > timeline.fls

-f fat12 Specifies the filesystem. This was previously determined

using file command3.
-m / Output in mactime format and put a / before every name
- r Recurse directories
v1_5 The image we wish to analyse
> timeline.fls The output file storing the results

The timeline.fls file produced contains details of every file, including deleted ones
(subject to there still being an entry in the FAT table for it of course), on the
image. We specify the –m switch so that it outputs in a format that we can then
read into the mactime tool.

0|/Internal_Lab_Security_Policy1.doc(INTERN~1.DOC)|0|13|33279|-/-
rwxrwxrwx|1|0|0|0|32256|1082908800|1082622666|1082943982|512|0

I’ve included a single line from the timeline.fls file generated as a result of
running the command. As you can see, the format isn’t the easiest to read,
unless of course you’ve can convert Epoch time format (the number of seconds
since January 1st 1970) to real life time format in your head.

3 To determine the exact parameter to pass, the fls command was run with the --help parameter and a list of
available file systems and the appropriate parameters to pass were listed.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 7 -

To convert it into a more readable format, the mactime tool is used. This will also
separate the modify, access and create times into separate lines and sort into
time and date order for you as well.

[root@localhost working]# mactime -b timeline.fls > timeline.mac

-b Specifies the location of the “body” file to read in, which

contains the raw data.
timeline.fls The body file
> timeline.mac The output file that will store the results

Once run, we then end up with the timeline.mac file which is our timeline in a
more readable format.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 8 -

Figure 2 – Timeline of the floppy image

Sat Feb 03 2001 19:44:16 36864 m.. -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
Thu Apr 22 2004 16:31:06 33423 m.. -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
 32256 m.. -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
Fri Apr 23 2004 10:53:56 727 m.. -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)
Fri Apr 23 2004 11:54:32 215895 m.. -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)
Fri Apr 23 2004 11:55:26 307935 m.. -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)
Fri Apr 23 2004 14:10:50 22528 m.. -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
Fri Apr 23 2004 14:11:10 42496 m.. -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc (INFORM~1.DOC)
Sun Apr 25 2004 00:00:00 0 .a. -/-rwxrwxrwx 0 0 3 /RJL (Volume Label Entry)
Sun Apr 25 2004 10:53:40 0 m.c -/-rwxrwxrwx 0 0 3 /RJL (Volume Label Entry)
Mon Apr 26 2004 00:00:00 22528 .a. -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
 42496 .a. -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc (INFORM~1.DOC)
 215895 .a. -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)
 32256 .a. -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
 307935 .a. -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)
 36864 .a. -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
 33423 .a. -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
 727 .a. -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)
Mon Apr 26 2004 09:46:18 36864 ..c -/-rwxrwxrwx 0 0 5 /CamShell.dll (_AMSHELL.DLL) (deleted)
Mon Apr 26 2004 09:46:20 42496 ..c -/-rwxrwxrwx 0 0 9 /Information_Sensitivity_Policy.doc (INFORM~1.DOC)
Mon Apr 26 2004 09:46:22 32256 ..c -/-rwxrwxrwx 0 0 13 /Internal_Lab_Security_Policy1.doc (INTERN~1.DOC)
Mon Apr 26 2004 09:46:24 33423 ..c -/-rwxrwxrwx 0 0 17 /Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
Mon Apr 26 2004 09:46:26 307935 ..c -/-rwxrwxrwx 0 0 20 /Password_Policy.doc (PASSWO~1.DOC)
Mon Apr 26 2004 09:46:36 215895 ..c -/-rwxrwxrwx 0 0 23 /Remote_Access_Policy.doc (REMOTE~1.DOC)
Mon Apr 26 2004 09:46:44 22528 ..c -/-rwxrwxrwx 0 0 27 /Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
Mon Apr 26 2004 09:47:36 727 ..c -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 9 -

The timeline is formatted as follows.
First column contains the date and time that refers to the change, whether it be
modify, access, create, or any combination of all three.
The second column shows the size of the file on disk.
The third column details as to what the entry relates to.
 m Modified

a Access
c Create

Modify means the last time the file was written to.
Access refers to the time at which the file itself was last read in some form. This
may just be the header, not necessarily the entire file. This time being updated is
subject to the media being writable though. If the floppy disk is write protected,
then this is not updated.
Create relates to last time the directory entry was updated. A create time could
be updated as a result of a file being renamed for example, as well as its original
creation of course.
The fourth column displays the permissions of the file. This is split in to three
sections, owner; group; and the world. Each section contains a placeholder for
three settings, (r)ead, (w)rite, and e(x)ecute. As an example, a file which has all
permissions for the owner, only read permissions for the group, and only execute
permissions for everyone else would look like rwxr----x.
The fifth column details the owner, and sixth details the group.
Seventh column provides the directory entry or inode number.
And the final column is the filename itself.
Since the image is of a FAT12 filesystem the permissions and user/group
information is not applicable as they are not supported by this format.

What immediately jumps out at you is that the last access time for all files is dead
on midnight on Monday April 26th. This could be quite legitimate, but does not
feel quite right. Also the modify time for all files is before the create time. That’s
also a little strange. A possible explanation for this is that the floppy disk was
used in two different computers where the clock on each differs quite
significantly. It could also be that all of the files were renamed. Another
explanation is that the MAC times have been tampered with, so information on
the timeline should not be taken as gospel. The volume label was also changed
to RJL, which coincidentally are also the initials of Robert John Leszczynski. If
there is something on this disk that is incriminating and in the letters do relate to
your initials initials, would you really be changing the label of the disk so that
people can trace it back to you?

Apart from the policy documents which we previously viewed, there are two
additional files to include that have since been deleted, CamShell.dll and
_ndex.htm.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 10 -

Recovering Deleted Files
Being that so far we’ve not yet actually found anything interesting within the live
content on the disk image, let’s see if we can recover the two deleted files.

Looking at the timeline in figure 2, the column immediately preceding the
filename is the directory entry number, or inode. The directory entry contains
information about the file, but more importantly it contains information on where
the file is physically on the disk. In the case of _ndex.htm this number is 28.

Mon Apr 26 2004 09:47:36 727 ..c -/-rwxrwxrwx 0 0 28 /_ndex.htm (deleted)

Before we go any further, for our own information let’s take a look at some more
details about our two deleted files. We will use the TSK istat tool in order to view
all details regarding a directory entry. Let’s start with _ndex.htm.

[root@localhost working]# istat -f fat12 v1_5 28

-f fat12 Specifies the image is a fat12 filesystem
v1_5 Our image
28 The directory entry number

Directory Entry: 28
Not Allocated
File Attributes: File, Archive
Size: 727
Num of links: 0
Name: _ndex.htm

Directory Entry Times:
Written: Fri Apr 23 10:53:56 2004
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:47:36 2004

Sectors:
33

Recovery:
33 34

From the information above, we can see that the file occupies sectors 33 and 34.
To actually recover the file we’ll use the TSK icat tool, which will work this
information out for itself. We just need to provide the directory entry number.

[root@localhost working]# icat -r -f fat12 v1_5 28 > deleted/_ndex.htm

-r Specifies that the file is to be recovered. Without this, only

the first sector would be outputted.
-f fat12 Specifies that the image is a fat12 filesystem
v1_5 The floppy image
28 The directory entry number

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 11 -

deleted/_index.htm The output file, where the contents of the recovered file will
be stored.

The deleted/_index.htm is then viewed, which gives us...

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">

<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflas
h.cab#version=6,0,0,0"
 WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
 <PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality VALUE=high>
<PARAM
NAME=bgcolor VALUE=#CCCCCC> <EMBED src="ballard.swf" quality=high
bgcolor=#CCCCCC WIDTH="800" HEIGHT="600" NAME="ballard" ALIGN=""
 TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>
</OBJECT>
</center>
</BODY>
</HTML>

A pretty standard HTML file. Nothing special.
Just in case we need to recover this file again and prove that it is the same one,
let’s perform a MD5 hash of it.

[root@localhost deleted]# md5sum _ndex.htm
17282ea308940c530a86d07215473c79 _ndex.htm

Let’s now look at the other file, CamShell.dll. From the timeline information we
can see that it is directory entry number 5. Here’s what istat tells us about it.

[root@localhost working]# istat -f fat12 v1_5 5
Directory Entry: 5
Not Allocated
File Attributes: File, Archive
Size: 36864
Num of links: 0
Name: _AMSHELL.DLL

Directory Entry Times:
Written: Sat Feb 3 19:44:16 2001
Accessed: Mon Apr 26 00:00:00 2004
Created: Mon Apr 26 09:46:18 2004

Sectors:
33

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 12 -

Recovery:
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88
89 90 91 92 93 94 95 96
97 98 99 100 101 102 103 104

First two sectors are 33 and 34, the same as _ndex.htm. Since the modify time
of _index.htm is later than CamShell.dll then there is a very high probability
(subject to the mac times being correct) that the first two sectors of CamShell.dll
have been overwritten by _ndex.htm. Given that we’ve also successfully
recovered _ndex.htm then it is pretty much a certainty.
We’ve essentially lost those two sectors. Not the end of the world though as
there may be useful information within the remaining content that we can use to
proceed further.

[root@localhost working]# icat -r -f fat12 v1_5 5 > deleted/CamShell.dll

And let’s not forget to perform a MD5 hash of the partially recovered file.

[root@localhost deleted]# md5sum CamShell.dll
6462fb3acca0301e52fc4ffa4ea5eff8 Camshell.dll

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 13 -

Analysing the contents of a file
strings is a standard Linux command that allows for the extraction of consecutive
ASCII characters from a binary file. By default, 4 or more consecutive ASCII
characters will be returned. Essentially the purpose of this tool is to return
content that could potentially be a word that may mean something when read by
a person.

So, let’s run strings against the file we have just recovered.

[root@localhost deleted]# strings CamShell.dll

Unfortunately in this instance no ground-breaking information was returned. As
suspected, the HTML code from the recovered _ndex.htm file was included that
took up the first two sectors. Other than that there was nothing really my more
that gives any more clues, except the following line.

C:\My Documents\VB Programs\Camouflage\Shell\IctxMenu.tlb

The name of the package that this dll was part of (if indeed it is a dll, as we’re
purely going by the filename at this point) is possibly called Camouflage and is a
Visual Basic app. Essentially though, other than a potential name there was
nothing more of any value. Searching the Internet for the term “camouflage” as
suspected returned a lot of unrelated results.
The next step is to use a hex editor and see if we can spot anything else that
could give us something more to go on.

After scrolling through the contents manually, some interesting information
showed its head. Starting at address location 0000:7240 (HEX), we see the
following.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 14 -

Figure 3 - Screenshot from a hex editor displaying the contents of recovered file CamShell.dll.

From this we can procure the following information.
Comments http://www.camouflage.freeserve.co.uk
CompanyName Twisted Pear Productions
FileDescription Keeps files containing sensitive information safe from prying
eyes
ProductName Camouflage

First step then is to visit the advertised website to see if we can get more
information on this. Unfortunately that appears to be a dead link as that
subdomain did not exist.
Performing an Internet search using Google4 for the terms “twisted pear
productions” and “camouflage”, however, did returned some results.
The website at http://camouflage.unfiction.com/ entitled “Camouflage Home Page
– Hide your files!” looks like it may be the answer we’re looking for.

4 Google is a popular Internet search engine. http://www.google.com

“Camouflage allows you to hide files by scrambling them and then attaching
them to the file of your choice. This camouflaged file then looks and behaves
like a normal file, and can be stored, used or emailed without attracting
attention.”.

 – Taken from the Overview page on the Camouflage website

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 15 -

We're not 100% though that this is the same site as was originally hosted at the
address found within the file. A search for
http://www.camouflage.freeserve.co.uk at the Wayback Machine5 allows us to
see the site again in all its glory. Viewing an archived copy from March 14th 2003
the page looks exactly the same as the current live at
http://camouflage.unfiction.com/.

The Camouflage program uses a process called Steganography which is the
science of hiding information within information.
A paper written by Joshua Silman entitled Steganography and Steganalysis: An
Overview6 gives a very good introduction to this process and the techniques used
to detect its existence. Examples such as invisible ink and microdots were
classic examples where information was hidden using this method so as to not
give away its existence.
In the computer age this technique is still alive and well, but instead information is
being electronically hidden, the most common method being the hiding of
whatever you want to hide within standard image files.

Before we proceed any further though we need to ensure that the package here
contains the CamShell.dll file that we have found and it is in fact the same file.
We shall therefore download and install the file.

Once installed a file called CamShell.dll is found in the c:\program
files\Camouflage directory. This file is copied over to our analysis workstation
and a MD5 hash is created of it.

[root@localhost working]# md5sum CamShell.dll
4e986ab0909d2946bed868b5f896906f CamShell.dll

At this stage to confirm that the deleted file we recovered and the one that was
just installed as part of the Camouflage package are the same we would simply

5 The Way Back Machine (http://www.waybackmachine.org) is an archive of practically every website
visitble on the internet with snapshots taken over time. With it you can view the contents of an archived
website from any point in its history.
6 Steganography and Steganalysis: An Overview; Joshua Silman;
http://www.sans.org/rr/whitepapers/stenganography/553.php

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 16 -

perform a MD5 hash of the recovered file and then compare the two.
Unfortunately since the first two sectors of the recovered CamShell.dll file were
overwritten by _ndex.htm this is not possible. We will have to take another
approach.

Opening the recovered and new CamShell.dll files side by side in hex editors, a
quick glance through gives the impression that the two files are the same. For
the time being, therefore, that is what we shall assume.
This being the case, if we were to take a copy of the first two sectors from the
new CamShell.dll file and then pasted them over the first two sectors of the
recovered CamShell.dll file, then in theory we should end up with two files exactly
the same. And to prove this we can then perform the MD5 hash check.

Firstly, in order to find out exactly how much we need to copy from the beginning
of the new CamShell.dll file we need to know what 2 sectors actually equates to.

To provide more detailed information on the filesystem, the TSK fsstat tool is
used against the image. The –f switch is used to specify the filesystem type,
fat12.

[root@localhost working]# fsstat -f fat12 v1_5
FILE SYSTEM INFORMATION
--
File System Type: FAT

OEM Name: mkdosfs
Volume ID: 0x408bed14
Volume Label (Boot Sector): RJL
Volume Label (Root Directory): RJL
File System Type Label: FAT12

Sectors before file system: 0

File System Layout (in sectors)
Total Range: 0 - 2871
* Reserved: 0 - 0
** Boot Sector: 0
* FAT 0: 1 - 9
* FAT 1: 10 - 18
* Data Area: 19 - 2871
** Root Directory: 19 - 32
** Cluster Area: 33 - 2871

METADATA INFORMATION
--
Range: 2 - 45426
Root Directory: 2

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 512

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 17 -

Total Cluster Range: 2 - 2840

FAT CONTENTS (in sectors)
--
105-187 (83) -> EOF
188-250 (63) -> EOF
251-316 (66) -> EOF
317-918 (602) -> EOF
919-1340 (422) -> EOF
1341-1384 (44) -> EOF

From this we can see that the sector size of the disk image is 512 bytes. As we
want the first two sectors that means we need the first 1024 bytes.

Since we are now dealing with two files of the same name, to avoid confusion the
copy we recovered from the floppy image will be renamed as r_camshell.dll, and
the copy of the new file that was installed as part of the Camouflage package will
be renamed as n_camshell.dll. This in no way affects our original image.

So that we are clear where we’re starting from, a MD5 checksum is performed on
both files.

[root@localhost working]# md5sum n_camshell.dll
4e986ab0909d2946bed868b5f896906f n_camshell.dll
[root@localhost working]# md5sum r_camshell.dll
6462fb3acca0301e52fc4ffa4ea5eff8 r_camshell.dll

The two files are then opened up in khexedit, a hex editor. The first 1024 bytes
from n_camshell.dll is then copied into the clipboard.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 18 -

Figure 4 - Selection of first 1024 bytes in khexedit

The first 1024 bytes of the r_camshell.dll file is then deleted and the contents of
the clipboard is pasted in its place.

The r_camshell.dll file is then saved and a MD5 checksum is performed on the
new file.

[root@localhost working]# md5sum r_camshell.dll
4e986ab0909d2946bed868b5f896906f r_camshell.dll

The MD5 checksum of the recovered file (r_camshell.dll) now matches that of the
one that was installed as part of the Camouflage package (n_camshell.dll).
We now have confirmation that the original recovered file belongs to the
Camouflage package that we downloaded.
There is a fairly high chance that the innocent looking policy documents on the
disk may contain slightly more than previously though.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 19 -

Using Camouflage

Once Camouflage is installed, an option is added
to the right-click menu within Windows Explorer on
a Microsoft Windows system that permits for you
to Camouflage or Uncamouflage a file.
To perform the required action, simply select a file,
right-click the mouse, and then select the
appropriate option.

To demonstrate how Camouflage works, we are
going to take a jpg image file, a plain text file, and
camouflage one inside the other. Since one file

will be hidden inside another, it is advisable that a binary file is used as the one
that will be doing the hiding, otherwise you’ll end up with your “hidden” file
appearing as gobbledygook when you open it up in something like notepad.

Figure 6 - image1.jpg

Figure 7 - document1.txt

The first step is to select document1.txt, which is the file we wish to hide within
image1.jpg and select Camouflage from the right-click menu.
A window appears asking for confirmation that the file we have selected is the
one we wish to hide.

Figure 5 - Right-Click menu in
Explorer

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 20 -

After selecting the obligatory Next > button, we’re then asked which file we’d like
to use as camouflage. In our case, we select image1.jpg.

The next stage is to specify the output file, which is the the file which will hide our
secret message. We will call it outimage.jpg

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 21 -

The final stage is to specify a password. One does not have to be given, but
since we’re going to the trouble of trying to hiding something it sort of makes
sense to do so.

And we’re done.
If we now open up outimage.jpg in a image viewer we’ll see that it looks exactly
the same as the original image1.jpg. No sign of the hidden document!

Figure 8 - outimage.jpg

 Whilst the images themselves look no different, if we compare the file sizes of
the two images, well see that outimage.jpg is approximately 1k larger than
image1.jpg. This is because of course it now also has the contents of
document1.txt inside it as well.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 22 -

Figure 9 - File sizes of original and camouflaged files

Now we have a text document hidden within an image, let’s extract it so that we
can read our secret message.

We right click this time on the generated outimage.jpg file and select
Uncamouflage from the menu. This then presents us with a request for a
password.
This does not necessarily mean that the file has some hidden content in it. This
prompt will appear if you attempt to uncamouflage any file.

Upon entering the correct password, details of the hidden contents of the file are
shown. In this instance we can see that the original image1.jpg is there along
with the file we hid, document1.txt.

Clicking Next > then prompts for a location to save the two files.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 23 -

We give a location, click Finish and the job is done. We’ve now successfully
extracted the original image1.jpg and the hidden text document, document1.txt.

Figure 10 - The extracted hidden file, document1.txt

Job done! We can now see our secret message.
What exactly does it do to the file though? In order to see what is happening
under the hood, let’s view the original image1.jpg and the generated
outimage.jpg files in a hex editor.

Figure 11 - image1.jpg

Figure 12 - outimage.jpg

Up until location 2308 both files are exactly the same. At this address, the
image1.jpg file ends, but the outimage.jpg still contains data right through until
location 3287. The content of this addition data is unreadable and contains no
“English” words. We can safely assume that this is our document1.txt, but has
been encrypted or scrambled in some way.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 24 -

The same applies to other file types tested. The hidden file is appended in all
cases using the Camouflage application. Depending upon the file type, and
whether there is any defined structure that is consistent at the end of the file, it
may be possible to tell whether any additional data has been hidden by viewing it
in this way. In instances where you could not normally detect the end of a file,
then it may not be as easy.

Recovering hidden files
The documents from the floppy image were transferred to our Windows XP
VMWare session and the uncamouflage process was run against them. No
password was specified when prompted.
This resulted in only one success. The file Internal_Lab_Security_Policy.doc had
an additional file, Opportunity.txt, camouflaged within it.

Figure 13 - Camouflaged files within Internal_Lab_Security_Policy.doc

The Opportunity.txt file was extracted and viewed. The results can be seen
below.

Original File Internal_Lab_Security_Policy.doc
Camouflage Password: <none>
Extracted Files: MD5 Checksum
Internal_Lab_Security_Policy.doc e0c43ef38884662f5f27d93098e1c607
Opportunity.txt 3ebd8382a19c88c1d276645035e97ce9

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 25 -

The contents of the file appears to be a note from Robert J. Leszczynski detailing
that he is willing to provide more information for a price and that he has also
provided the person to which this note is addressed a sample of a Client
Authorized Table database and latest schematics which are not available.
The contents of the note suggest that the database and schematics may also be
camouflaged somewhere on the disk. The ‘They are available as we discussed –
“First Name”’ comment could be a hint as to the password used for additional
camouflaged files.

Following this lead, attempts to uncamouflage the other files on the disk using a
series of anticipated passwords was performed.
Firstly, it was suspected that “First Name” may be Mr Leszczynski’s first name,
Robert. This password provided no results.
It was then noted that the filenames used for the documents on the disk
consisted of more than one word, or name. Passwords which consisted of the
first word of the document file name were used, which did produce results from
two of the files.

Original File Password_Policy.doc
Camouflage Password: Password
Extracted Files: MD5 Checksum
Password_Policy.doc e5066b0fb7b91add563a400f042766e4
PEM-fuel-cell-large.jpg 5e39dcc44acccdca7bba0c15c6901c43

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 26 -

pem_fuelcell.jpg 864e397c2f38ccfb778f348817f98b91

Hydrocarbon%20fuel%20cell%20page2.jpg 9da5d4c42fdf7a979ef5f09d33c0a444

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 27 -

Original File Remote_Access_Policy.doc
Camouflage Password: Remote
Extracted Files: MD5 Checksum
Remote_Access_Policy.doc 2afb005271a93d44b6a8489dc4635c1c
CAT.mdb 869ff6b71c7be3eb06b6635c864b1

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 28 -

Conclusion and recommendations
Information which could prove to be very useful to a competitor was found on the
floppy disk that Mr Leszczynski was attempting to take off of the premises.
Together with that information a note was also found detailing that further
information was available at a price, leaving no doubt that this information was
being sold. Furthermore, it is obvious that attempts were made to conceal this
information by the use of Steganography.
No conclusive proof could be found that this information had been provided to
Rift Inc., nor that it was Mr Leszczynski that provided it. There are a number of
unanswered questions that could possibly cast doubt on the guilt of Mr
Leszczynski.
The floppy disk was seized from Mr Leszczynski’s briefcase after the information
had already been leaked. The timeline, if it is to be believed, shows that the
information uncovered was written to disk several days prior. If this is the case,
then why has Mr Leszczynski left it to now to attempt to remove the disk from the
premises?
From the original report we already know that this information has already been
leaked, which suggests that the contents of the disk have already been removed
from the premises once in order to hand it over to the competitor. That being the
case, why would Mr Leszczynski risk bringing it back onto the premises? More
importantly, why would he take the further risk of sneaking the disk back out
again without concealing any new information on it. This is of course assuming
the evidence found on the disk is the same information that is believed to have
been leaked to the competitor – this therefore needs to be verified. There is of
course also the possibility that the Mr Leszczynski is planning to provide this
information to another company as well and this was not actually destined for Rift
Inc.
As the disk contains incriminating evidence, why would Mr Leszczynski change
the volume name on the disk to his initials?
Based on this I would say there are enough questions to start believing that there
is a possibility that it was not Mr Leszczynski who leaked the information. This,
however, is only a hunch and nothing should be decided without hard evidence.
Moving forward, in order to hopefully obtain more conclusive evidence I would
suggest that any PCs used by Mr Leszczynski are examined to see if the
Camouflage program is, or was ever installed, and if the operating system
supports it determine whether it was installed using Mr Leszczynski’s user
account.
If there are any audit logs of who has accessed the policy documents that were
found on the floppy disk from their original stored location, whether it be on an
internal website or from a file server, then these should be examined to possibly
highlight any other potential suspects.
If any audit logs of Internet activity are kept, these should be examined to see if
anybody has visited the Camouflage website in the past.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 29 -

If CCTV exists in the Lab it should be examined at around the times indicated by
the timeline that the files were written to see if there is any footage of anybody
using and then concealing a floppy disk, or generally looking suspicious.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 30 -

Legal discussion surrounding the theft of information and use of
Steganography
The evidence uncovered was attempted to be concealed using a method called
Steganography. This does raise the question as to whether any crime was
actually committed by concealing stolen information in this way, and if so what
the legal consequences are under UK law.
Let’s first look at what crime has been committed. Confidential company
information was removed from the premises. While this in itself is not breaking
any laws, since information is not a physical item and as such is therefore not
classed as theft in the traditional sense, most if not all companies will have
policies in place to ensure company confidential data remains safe, and
acknowledgment of these policies will be written into employees contracts.
A Computer Weekly article written by Bill Goodwin in March 20037 highlights this
exact issue and how the police are powerless to take any action due to the
outdated computer crime laws. As quoted by Detective Sergeant Santorelli, a
senior investigator at The Computer Crime Unit, "We are talking about a huge
amount of money being made by people stealing networked data. It is just an
anachronism that stealing data is not illegal. The bottom line is that if someone
phones up and says my database has been stolen, I can only refer them to a civil
remedy."
The only action companies can take is to pursue the civil action route; the
employee is dismissed from their job for gross misconduct and a claim for
damages is made against them.
The Computer Misuse Act 19908 does provide laws against the unauthorised
access to data. Deliberately and knowingly accessing data that you are not
permitted to is classed as an offence under section 1 of the act which carries a
punishment of no more than 6 months in prison, a fine not exceeding level 5
(currently £5,000 at time of writing9) on the standard scale, or both. If it can be
proved that the person who stole the data was not authorised to access that data
in the first instance, then a criminal offence would have been committed.
Does the fact that Steganography was used provide a legal case at all though?
The answer is simple, no. There is no evidence under UK law that the use of
Steganography itself breaks any laws. The fact that it was used to conceal the
information being stolen though does enhance the case and can rule out any
claims that the data was accidentally left on the disk, etc. Using a case of
shoplifting as an example, a person leaving a store with the stolen article in their
hand could claim that they quite legitimately forgot they were carrying it and
depending upon other evidence could talk their way out of it and may not be
charged. If the person left with the article tucked inside their coat or concealed
using any other method then they could not claim such innocence. Under the
eyes of the law an offence was committed in both instances, but one would be
seen more favourable than the other.

7 http://www.computerweekly.com/articles/article.asp?liArticleID=119870&liFlav
8 http://www.hmso.gov.uk/acts/acts1990/Ukpga_19900018_en_1.htm
9 http://www.cjsonline.gov.uk/offender/community_sentencing/fine/

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 31 -

The use of Steganography does lead however to an interesting slant on how the
Regulation Of Investigatory Powers Act 200010 would be viewed in this instance.
In instances where encrypted material is discovered as part of an investigation,
under the RIPA Act authorities are permitted to insist that the key is provided in
order to unlock the encryption and provide the unencrypted data. Failure to
provide the key to the “protected data” could result in a prison sentence not
exceeding two years, a fine or both upon conviction.
Any data hidden by use of Steganography would also be classed as “protected
data” under this act, and as the key to unlock the data must be provided upon
request. The problem is that encryption and Steganography differ in quite a
significant way.
The purpose of encrypting data is to ensure it is secure. It is similar to data being
place within a locked safe. The safe does not need to be hidden in order to keep
the data secure.
The purpose of using Steganography is to ensure that data remains hidden. It is
similar to data being hidden under the floorboards or under a mattress. Hiding it
in these locations does not make the data secure, it purely aids in it not being
discovered in the first place.
In the instance of the safe, you are required to provide the key to unlock it. In the
instance of hiding under the floorboards, it has to be found before any request to
unlock it is given.
What happens in instances where the authorities have proof that Steganography
has been used but cannot find or detect the files being used as the
“camouflage”? If the Steganography method used to hide the data is good and
cannot be detected using known methods of Steganalysis, then a request to
provide the key to unlock it cannot be made.
Understandably, the use of Steganography is becoming increasingly popular with
criminals wishing to hide their crimes or evidence of crimes, and has become a
major concern for the authorities. An example of which is highlighted in an article
written by Declan McCullagh for Wired entitled "Bin Laden: Steganography
Master? "11 In it he describes how terrorists are using Steganography to hide
maps and photographs of targets.

10 http://www.legislation.hmso.gov.uk/acts/acts2000/20000023.htm
11 "Bin Laden: Steganography Master?" - http://www.wired.com/news/print/0,1294,41658,00.html

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 32 -

References
"Camouflage Home Page - Hide your files!".
URL: http://camouflage.unfiction.com/Overview.html (22nd November 2004)

Silman, Joshua. "Steganography and Steganalysis: An Overview". 1.2f. August
2001. URL: http://www.sans.org/rr/whitepapers/stenganography/553.php (22nd
November 2004)

Goodwin, Bill. "Police hamstrung by UK's outdated computer laws".
ComputerWeekly.com 6th March 2003. URL:
http://www.computerweekly.com/articles/article.asp?liArticleID=119870&liFlav
(22nd November 2004)

McCullagh, Declan. "Bin Laden: Steganography Master?". Wired News 7th
February 2001. URL: http://www.wired.com/news/print/0,1294,41658,00.html
(22nd November 2004)

Her Majesty's Stationary Office . "Computer Misuse Act 1990". 29th June 1990.
URL: http://www.hmso.gov.uk/acts/acts1990/Ukpga_19900018_en_1.htm (22nd
November 2004)

Criminal Justice System. "Fines". Community Sentencing.
URL: http://www.cjsonline.gov.uk/offender/community_sentencing/fine/ (22nd
November 2004)

Her Majesty's Stationary Office. "Regulation of Investigatory Powers Act 2000
Chapter 23" .Regulation of Investigatory Powers Act 2000. 28th July 2000.
URL: http://www.legislation.hmso.gov.uk/acts/acts2000/20000023.htm (22nd
November 2004)

Google. "Google" URL: http://www.google.com (22nd November 2004)

Internet Archive. "Wayback Machine" URL: http://www.waybackmachine.org
(22nd November 2004).

RedHat, Inc. "RedHat Linux". URL: http://www.redhat.com (22nd November
2004)

Hewlett Packard. "Compaq". URL: http://www.compaq.com (22nd November
2004)

Carrier, Brain. "The Sleuthkit". 1.72. September 7th 2004.
URL: http://www.sleuthkit.org/sleuthkit/ (22nd November 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 33 -

@stake, Inc. "The @stake Sleuth Kit". URL: http://www.atstake.com (22nd
November 2004)

Global Information Assurance Certification. "GIAC". URL: http://www.giac.org
(22nd November 2004)

VMWare, Inc. "VMWare" URL: http://www.vmware.com (22nd November 2004)

Microsoft Corporation. "Microsoft Windows". URL: http://www.microsoft.com
(22nd November 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 34 -

Part 2 – Forensic Analysis On A System
Option 1

Introduction
The second part of the practical assignment is to perform a forensic analysis of a
live system that has been compromised and is in an unknown state to the
investigator.
In order to obtain such a system to investigate, a honeypot12 was created. Due
to lack of hardware, the honeypot itself was installed within a VMWare13 virtual
machine on a PC running Microsoft Windows XP SP2 as the host operating
system.
The operating system used for the honeypot was a RedHat Linux 6.2 build with
“everything14” installed.
On Thursday November 4th 2004 the unpatched honeypot was placed on an
isolated network connected to the internet via an ADSL line. Since network
address translation was taking place on the ASDL router, configuration changes
were made to ensure that all traffic for all ports were routed to the IP address of
the honeypot.
The default Apache test page was presented to anybody connecting to the
machine via HTTP, which in itself is usually an open invitation to be hacked as it
suggests the box probably hasn’t been configured as well as it should.
An script was written to automatically check the default page served by the
Apache server to detect any changes, and would alert in the instance of it being
defaced. A network sniffer was also put in place to monitor for outbound SYN
packets which would highlight any traffic originating from the server. In this
instance there should be little or no outbound traffic originating from the server,
so monitoring for this activity should give a clear sign should somebody have
compromised the box and is now attempting to communicate with the outside
world.
For 9 days no unusual events were observed, a number of ident request were
seen to originate from the honeypot which is a normal for when an smtp session
is established. On Saturday November 13th at 18:51 GMT an active FTP session
was observed with the data channel originating from the server. At 21:50 GMT a
change was detected on the default web page. At 22:30 GMT the change was
confirmed as a defacement, as shown below.

12 A honey pot is a sacrificial computer system that is designed to be compromised by hackers in order to
study their methodologies.
13 VMWare is a product originally made by VMWare Inc (http://www.vmware.com) that allows for a
virtual operating system to be run while the primary operating system is available for use. VMWare virtual
machines are completely segregated from the host, although a path between the two may be established
through configuration options within the software.
14 During installation the user is given a choice of what packages should be installed. An alternative option
that is given is to install absolutely everything.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 35 -

Since the server had no active logged in console or legitimate remote telnet
sessions, a conscious decision was made to pull the mains power and treat this
as a dead system. Logging into the server in order to capture volatile data such
as active network connections and live memory could risk evidence being
destroyed, either by the normal login process touching files which would
therefore change the MAC15 times, or by the possibility of something being added
by the attacker to the login script of active accounts that could cause damage to
the system upon a successful login.

Please note that the IP addresses detailed in this report relating to those
used by the hacker have been modified so as to protect the guilty.
To ensure consistency and accuracy of any investigation based upon IP
address, the substitute addresses are within the same original subnet and
therefore relate to the same service provider.

15 MAC - Modify, Access and Create times. A record is kept about the last time these activities took place
for every file on the system.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 36 -

Forensic Workstation and Tools

The forensic workstation used to conduct the instigation consisted of the
following:

• Compaq Evo N410c
• Linux Operating system – RedHat Enterprise Linux ES Release 3

The tools used to carry out the investigation were:

• The Sleuthkit (TSK) version 1.72
Available from http://www.sleuthkit.org/sleuthkit/
Previously known as TASK (The @stake Sleuth Kit)

• Knoppix STD (Security Toolkit Distribution) v0.1b
Knoppix is a bootable cd contain a linux distribution allowing you to
perform many tasks without requiring a hard disk.
The original Knoppix distribution is available from http://www.knoppix.org
Knoppix STD is available from http://www.knoppix-std.org

• Standard Linux base OS commands.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 37 -

Incident Response and Seizure of Evidence
Incident Number: fi1001
Date: 13th November 2004
Time: 22:30 GMT
Location: Home premises of Mark Read

Items seized:
fi1001-01 Non-branded PC Tower
fi1001-02 Fujitsu hard disk drive

Model: MPF3204AH
Serial: NO.01149072

VMWare image details:
Location: d:\RedHat6.2\RedHat6.2.vmx
Size: 4GB
SHA1 Hash of drive image: Unavailable
Partitions: sda1 Linux Partition

SHA1 Hash:
5e9d839848ca63f42788fcac5e53d7d2b7f9a7b3

sda2 Extended Partition
SHA1 Hash:
70cc8b5c0282e5114fd3f3688571d9623bdf7214

sda5 Swap Partition
SHA1 Hash not available

Chain of custody:
13th November 2004
22:40 GMT

Mark Read
Acquisition of vmware image.
Seizure of Items.

Case background:
Microsoft Windows XP SP2 primary operating system running RedHat Linux 6.2
virtual server using VMWare software.
RedHat Linux 6.2 server web server home page defaced on 13th November 2004
at approximately 21:50 GMT

Action taken:
PC powered off by removing mains cable. Image taken of VMWare virtual disk
on site. PC seized, bagged and tagged.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 38 -

Acquiring the disk image
As no equipment was available to provide a disk to disk copy of the evidence the
PC was powered back on. As it was the virtual server within the VMWare
session that was compromised, booting the host operating system of Microsoft
Windows XP was deemed safe.
The compromised guest VMWare operating system would have to be booted to
enabled access to the virtual drive in order to obtain an image copy. So as not to
alter anything on the disk image, the VMWare session was booted from a
Knoppix STD CDROM. During the boot sequence the bios configuration was
accessed to ensure that the CDROM was the primary boot device before the
hard disk itself.

To ensure that the integrity of the disk can be left without any doubt, a hash of
the disk image needed to be established.
The preferred method of doing this is using the md5sum tool which will produce a
unique MD5 hash value attributed to the disk image. Unfortunately it was
discovered that the version of the md5sum tool distributed with the Knoppix STD
cdrom was flawed.
A known bug exists with old versions of md5sum whereby it cannot cope with
performing a hash of a file larger than 2GB. The resulting output upon attempting
is a report of "Success" instead of the hash itself.
To save messing around, the sha1sum tool which also existed on the Knoppix
STD cdrom was chosen to produce the hash instead. sha1sum is similar to
md5sum, except it uses the sha1 algorithm instead of md5. While sha1 is
believed to be better, md5 is traditionally still used as it is considered the
standard.

Using sha1sum, a sha1 hash was produced of the sda drive. The drive image
was then copied across the network to the forensic workstation using the dd tool.
Once the copy was complete sha1sum was run against the copy and the two
hashes were compared. They did not match.
There have been no known reports that booting from and acquiring disk images
using Knoppix touches the physical disk, which is one explanation of why the two
checksums did not match, so this had to be investigated further.
sha1sum was run a further two times against /dev/sda and in both instances the
sha1 hash that was produced differed. It was now important to discover what
was changing.
Using the fdisk command, details of the drive geometry was obtained.

root@0[forensics]# fdisk -l /dev/sda
Device Boot Start End Blocks Id System
/dev/sda1 * 1 505 4056381 83 Linux
/dev/sda2 506 522 136552+ 5 Extended
/dev/sda5 506 522 136521 82 Linux Swap

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 39 -

There were 3 partitions listed with the Linux Swap being part of the Extended
partition as the start and end blocks of sda2 and sda5 are the same.
sha1sum was run against each partition in turn to obtain a unique sha1 hash.
When it was run against /dev/sda5 an error was produced. Running md5sum
also produced an error.

root@0[forensics]# sha1sum /dev/sda5
sha1sum: /dev/sda5: Input/output error

root@0[forensics]# md5sum /dev/sda5
error processing /dev/sda5: failed in buffer_read(fd): mdfile:
Input/output error

sha1sum was run again against all partitions and it was found that the hash for
sda1 and sda2 had not changed, but again an error was produced when run
against sda5.
It is safe to say that the contents of sda1 and sda2 had not changed, and it is the
error that is being produced by sda5 that is causing the inconsistency.
No explanation can be given for the strange results on this that are being
produced from this partition.

To be sure, sha1sum was run once more, and the resulting hashes recorded.

root@0[forensics]# sha1sum /dev/sda1
5e9d839848ca63f42788fcac5e53d7d2b7f9a7b3 /dev/sda1

root@0[forensics]# sha1sum /dev/sda2
70cc8b5c0282e5114fd3f3688571d9623bdf7214 /dev/sda2

Using the dd tool, copies of sda1, sda2 and sda5 were made across the network
to the forensic workstation. To do this, the following commands were run.

On the Knoppix booted VMWare session:
root@0[forensics]# dd if=/dev/sda1|nc 172.26.1.103 2001 -w 3 &
root@0[forensics]# dd if=/dev/sda2|nc 172.26.1.103 2002 -w 3 &
root@0[forensics]# dd if=/dev/sda5|nc 172.26.1.103 2005 -w 3 &

On the forensic workstation:
[root@localhost fi1001]# nc -l -p 2001 > fi1001.sda1.dd &
[root@localhost fi1001]# nc -l -p 2002 > fi1001.sda2.dd &
[root@localhost fi1001]# nc -l -p 2005 > fi1001.sda5.dd &

dd is a tool used to make bit copies (exact) of files, disks and partitions. As the
copy needs to end up on a the forensic workstation for analysis, it is used in
combination with the netcat tool, or nc for short.
Netcat is often referred to as the Swiss Army knife of tools as it is very powerful
and offers many options. In this instance the output of dd was piped to nc in
order to transfer data across the network to the forensic workstation.
On the forensic workstation three instances of netcat (nc) were set up listening
on tcp ports 2001, 2002 and 2003. Whatever was received on each of these

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 40 -

ports was then copied out into individual files; fi1001.sda1.dd for port 2001,
fi1001.sda2.dd for port 2002, and fi1001.sda5.dd for port 2005.
On the source PC, the output of dd was piped to netcat (nc) which was then
instructed to send that data to 172.26.1.103 on either port 2001 for /dev/sda1,
2002 for /dev/sda2 and 2005 for /dev/sda5.

Once the copy was complete, sha1sum was run against the newly acquired
images on the forensic workstation and compared to those obtained from the
compromised machine. With the exception of sda5, since an original hash could
not be obtained, they matched.

[root@localhost image]# sha1sum *
5e9d839848ca63f42788fcac5e53d7d2b7f9a7b3 fi1001.sda1.dd
70cc8b5c0282e5114fd3f3688571d9623bdf7214 fi1001.sda2.dd
6b7a273cc143e13021250b25cbeedf995b9c6128 fi1001.sda5.dd

It should therefore be noted that any data used as evidence obtained from the
Linux Swap partition cannot be guaranteed to be exactly the same as it is on the
original evidence as a hash could not be produced.

The PC containing the compromised VMWare session was then powered off and
tagged as evidence. From this point onward the original evidence was not
needed any further, and all work was carried out on the working copies of the
partitions acquired on the forensic workstation.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 41 -

Producing a Timeline
The next stage was to generate a timeline so specifics on when the files on disk
were actually created can be seen, as well as last modified and accessed.
To do this was a two stage process. Firstly, the fls tool was used to compile data
about the files on the sda1 partition image, and then secondly the mactime tool
was used to take the output of fls and put it into a readable timeline format. Both
the fls and mactime tools are part of the The Sleuthkit.
Since the fls tool requires a filesystem type to be specified, this had to be
identified first using the file command, which was passed the image of the sda1
partition as a parameter16.

[root@localhost fi1001]# file fi1001.sda1.dd
fi1001.sda1.dd: Linux rev 1.0 ext 2 filesystem data (mounted or unclean)

The original sda1 partition was identified as a linux ext 2 filesystem. fls was then
run.

[root@localhost fi1001]# fls -f linux-ext2 -m / -r fi1001.sda1.dd >
timeline.sda1.fls

-f Specifies the filesystem. This was previously determined

using file command.
-m / Output in mactime format and put a / before every name
- r Recurse directories
fi1001.sda1.dd The image we are interrogating
> timeline.sda1.fls The output file

The timeline.fls file produced contained details of every file, including deleted one
(subject to there still being an entry in the inode table for it of course), on the
system. The –m switch is specified so that it outputted in a format that can then
read into the mactime tool which then formatted the data into a more readable
format.

[root@localhost fi1001]# mactime -b timeline.sda1.fls >
timeline.sda1.mac

-b Specifies the location of the “body” file to read in, which

contains the raw data.
timeline.sda1.fls The file containing the output from the previous fls

command.
> timeline.sda1.mac The output file

16 Running the command with --help provides a list of supported file systems and the parameter to be
passed for each one.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 42 -

Once run, the timeline.sda1.mac file contained the timeline in a more readable
format.

Since the timeline contains an entry for every single file on the partition, it has
been included within a separate document - (MD5:
5596485e4266fa07f5713533a0978c1e) . Any significant references will be
reproduced in this report.

Reading the timeline
The timeline is formatted as follows.
First column contains the date and time that refers to the change, whether it be
modify, access, or create, or any combination of all three.
The second column shows the size of the file on disk.
The third column details as to what the entry relates to.
 m Modified

a Access
c Create

Modify means the last time the file was written to.
Access refers to the time at which the file itself was last read in some form. This
may just be the header, not necessarily the entire file.
Create relates to last time the directory entry was updated. A create time could
be updated as a result of a file being renamed for example, as well as its original
creation of course.
The fourth column displays the permissions of the file. This is split in to three
sections, owner; group; and the world. Each section contains a placeholder for
three settings, (r)ead, (w)rite, and e(x)ecute. As an example, a file which has all
permissions for the owner, only read permissions for the group, and only execute
permissions for everyone else would look like rwxr----x.
The fifth column details the owner, and sixth details the group.
Seventh column provides the directory entry or inode number.
And the final column is the filename itself.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 43 -

Timeline Analysis
By analysing the timeline, a picture of the activity that took place on the system
can be built up. It should be realised that times indicated within the timeline are
the last times the activity occurred. The access time for a file, for example, is the
last time the file was accessed. It is not possible to determine any times prior
that the file was also accessed.
For this reason, while a timeline can be very useful, a lot of analysis is open to
interpretation and does not always give a full picture of all activity.

The earliest timestamp recorded on the timeline dates back to April 1985. It may
have been an old version of RedHat that was installed, but it's not that old and
this is not an indication that it was actually installed in 1985.
During the base build, files are copied across onto the new machine from the
source media and the original MAC times are kept as is. By studying the files
and the dates recorded it can be safely assumed that anything up until November
3rd 2004 does not have correct MAC times associated with the files.
A good indication as to when a Linux operating system was installed is to look for
the creation of a large number of devices. Since devices are machine dependant
they are created fresh during the installation.
Looking at the timeline, a large number of files were created in /dev stating on
November 3rd 2004 at 14:36:08. A good one to look for and which is on every
single system is /dev/null. On this image it is shown as being created at
14:36:22.
There was also absolutely no activity between March 10th 2000 and November
3rd 2004, which is quite a large amount of time for nothing to have happened, so
that also suggests that November 3rd is the correct date.
The installation appears to have finished at 15:26:53 as that marks the end of the
consecutive activity and no more is recorded until 05:08:19 the next day.
The following activity seems to indicate the last time the system was booted. At
05:08:25 a number of files in /etc/rc3.d17 were last accessed, and 05:08:50 the
last access time of /etc/rc.d/rc.local18 is recorded. All these files are generally
accessed as part of the boot sequence, but of course this is not conclusive. A
number of other files that are typically only used when the system is loading also
have their last access time at around this time, which enhances the evidence that
these times are as a result of a system boot.
Since there is no activity between what has been recognised as activity during
installation and activity during booting this also suggests that the system has only
ever been booted once.
There is a large time gap between 05:13:21 and 20:15:56, so this would mark the
end of the system being booted.

17 The /etc/rc directories contain links to the start-up scripts of services which are run when the system is
booted.
18 The /etc/rc.d/init.d file is read during boot-up and commands within it are executed.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 44 -

Sat Dec 16 1989
A number of files within subdirectories of the ch0pper home directory are seen.
Obviously these times are not accurate and may be a result of MAC time
tampering, but more likely due to them being extracted from a tar file and the
original attributes being retained.

Sat Dec 16 1989 19:21:07
5212 m.. -/-r--r--r-- 1000 101 379369
/home/ch0pper/lrk5/sniffer/libpcap-0.4/SUNOS4/nit_if.o.sparc
Sat Dec 16 1989 19:21:14
4267 m.. -/-r--r--r-- 1000 101 379370
/home/ch0pper/lrk5/sniffer/libpcap-0.4/SUNOS4/nit_if.o.sun3
Wed Mar 21 1990 10:21:26
5291 m.. -/-r--r--r-- 1000 101 379368
/home/ch0pper/lrk5/sniffer/libpcap-0.4/SUNOS4/nit_if.o.sun4c.4.0.3c

The reference to lrk5 suggests that the files are part of the lrk5 rootkit. Further
references to files located within the lrk5 directory under ch0pper are seen within
the timeline with old and inaccurate modify times.

Sat Nov 06 2004
Two deleted files with recorded last access times of 12:08:46. The name of the
directory they are located in is t0rnkit2 which is the name of another rootkit,
bringing the total number of rootkits possibly installed on this system to at least 2.
Again, this is also within the ch0pper home directory tree.

Sat Nov 06 2004 12:08:46
197184 .a. -/-r-sr-xr-x 501 501 493481
/home/ch0pper/t0rnkit2/in.rshd (deleted-realloc)
7804 .a. -/-rwxr-xr-x 501 501 493479
/home/ch0pper/t0rnkit2/in.fingerd (deleted-realloc).

The (deleted-realloc) reference indicates that the file has been deleted.

Sun Nov 07 2004
At 17:48:00 last access times of .bash_profile, .bashrc and .bash_history in
/home/test/ are recorded. This is closely followed by access of .bash_logout and
modify/create times of .bash_history being updated. This suggests that the
account test logged in at 17:48:00 and logged out at 17:48:51.
Between these times, the access time for /usr/bin/uptime was updated. The
uptime command displays details about how long a system has been running, the
number of logged in users, and the current load on the server.

Sun Nov 07 2004 17:48:00
230 .a. -/-rw-r--r-- 500 500 84729 /home/test/.bash_profile
124 .a. -/-rw-r--r-- 500 500 84730 /home/test/.bashrc
73 .a. -/-rw------- 500 500 84734 /home/test/.bash_history
Sun Nov 07 2004 17:48:21
2836 .a. -/-r-xr-xr-x 0 0 246052 /usr/bin/uptime

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 45 -

Sun Nov 07 2004 17:48:51
24 .a. -/-rw-r--r-- 500 500 84728 /home/test/.bash_logout
73 m.c -/-rw------- 500 500 84734 /home/test/.bash_history

Sat Nov 13 2004 – 19:37
Modify and Create time for /home/ch0pper/Desktop changed. Various other files
within /home/ch0pper are seen with create and modify times set at this time. As
many of the files are typically created by default whenever a new account is
created, this indicates that not only was the ch0pper user created at this time, but
also it was created using normal methods such as with the useradd command,
and not created manually by editing and creating files.

Sat Nov 13 2004 19:37:21
4096 m.c d/drwxr-xr-x 501 501 445180
/home/ch0pper/Desktop
24 mac -/-rw-r--r-- 501 501 477950
/home/ch0pper/.bash_logout
124 m.c -/-rw-r--r-- 501 501 477952
/home/ch0pper/.bashrc
230 m.c -/-rw-r--r-- 501 501 477951
/home/ch0pper/.bash_profile

Last access time for /usr/sbin/useradd is updated which confirms that useradd
was used to create the user and the associated files/directories. Additionally,
/etc/group has modify and create times set.

Sat Nov 13 2004 19:37:21
53200 .a. -/-rwxr-xr-x 0 0 49314 /usr/sbin/useradd
527 m.c -/-rw-r--r-- 0 0 198599 /etc/group

Access time on /usr/bin/passwd is updated. This command is used for the
updating of a users password. Since /etc/passwd and /etc/shadow modify times
are then subsequently updated this shows that a password was changed.

Sat Nov 13 2004 19:37:39
12244 .a. -/-r-s--x--x 0 0 247434 /usr/bin/passwd
Sat Nov 13 2004 19:38:02
919 m.c -/-rw-r--r-- 0 0 199499 /etc/passwd
Sat Nov 13 2004 19:38:03
814 m.c -/-r-------- 0 0 199506 /etc/shadow

Sat Nov 13 - 20:21
A deleted file within /home/ch0pper is recorded as last accessed. Listing makes
reference to t0rnkit2/keffimap.

Sat Nov 13 2004 20:21:28
478312 .a. -/-rwxr-xr-x 501 501 493484
/home/ch0pper/t0rnkit2/keffimap (deleted-realloc)

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 46 -

Sat Nov 13 – 20:43
Modify and Create time set on /home/ch0pper/t0rnkit.tar. From the filename this
suggests this is the source archive for the t0rn rootkit, and it was created on this
system at this time.
At 20:52:55, several files were created under the /home/ch0pper/t0rnkit2
directory, which could be as a result of the t0rnkit.tar archive being extracted. As
the last access time of t0rnkit.tar is at 20:52:56 this would be very probable.

Sat Nov 13 2004 20:43:48
1407746 m.c -/-rw-r--r-- 501 501 477955
/home/ch0pper/t0rnkit.tar
Sat Nov 13 2004 20:52:55
18 ..c -/-rw-r--r-- 501 501 379019
/home/ch0pper/t0rnkit2/dev/.1addr
20 ..c -/-rw-r--r-- 501 501 379021
/home/ch0pper/t0rnkit2/dev/.1proc
Sat Nov 13 2004 20:52:56
1407746 .a. -/-rw-r--r-- 501 501 477955
/home/ch0pper/t0rnkit.tar

At 20:56:03 the modify and create time on /var/log/xferlog is updated. This log
file records details of ftp transfers. At the same time modify and create times on
lrk5.tar.src.tar.tar in /home/ch0pper are changed. This file is likely to be the
source tar archive for the lrk5 rootkit, and the update of the xferlog points to it
being uploaded via ftp.

Sat Nov 13 2004 20:56:03
211 m.c -/-rw------- 0 0 232210 /var/log/xferlog
3301054 m.c -/-rw-r--r-- 501 501 477957
/home/ch0pper/lrk5.src.tar.tar

At 20:56:11 the directory /dev/sdc0 is created, which indicates that the installation
of a rootkit has occurred. Rootkits typically will try and hide themselves within the
/dev directory as there is an awful lot in there and quite frankly it’s a good place
to hide. A number of other files are then seen to be created under this directory,
including a file called t0rnsniff which is likely to be associated with a packet
sniffer.

Sat Nov 13 2004 20:56:11
4096 m.c d/drwxr-xr-x 0 0 117502 /dev/sdc0
3215 ..c -/-rwxr-xr-x 501 501 493477
/dev/sdc0/.nfs01/hidemodule.c
407450 ..c -/-rwx--x--x 501 501 493473
/dev/sdc0/.nfs01/sshbd.tgz
4096 m.c d/drwxr-xr-x 0 0 461566 /dev/sdc0/.nfs01
2749 ..c -/-rwxr-xr-x 501 501 493476
/dev/sdc0/.nfs01/phide.tgz
9361 ..c -/-rwxr-xr-x 501 501 493489
/dev/sdc0/.nfs01/t0rnsniff

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 47 -

The create times of a number of core system binaries such as ls, ps, netstat are
then changed. The following binaries are now likely to be trojan versions
designed to provide a backdoor into the system and hide the presence of the
rootkit and anything that may raise suspicion.

/usr/sbin/in.inetd /usr/bin/top / bin/netstat
/bin/login /usr/sbin/in.rshd /usr/bin/rlogin
/usr/sbin/smbd /usr/bin/du /bin/ls
/bin/ps /usr/sbin/in.fingerd /usr/sbin/imapd
/usr/sbin/named /usr/sbin/rpc.mountd

Since there was a lot of access activity taking place in the /home/ch0pper/t0rnkit2
directory while these new binaries were being written, it appears that the t0rnkit
rootkit was successfully installed.
The last access time on /home/ch0pper/t0rnkit2/t0rn, which is the installation
script for the t0rn rootkit is also recorded.

Sat Nov 13 2004 20:56:12
6889 .a. -/-rwxr-xr-x 501 501 493475
/home/ch0pper/t0rnkit2/t0rn

Sat Nov 13 2004 - 20:49
File under the ch0pper home directory called ch0pper.sh is created, modified and
accessed. This file should be investigated further in order to identify the
contents.

Sat Nov 13 2004 20:49:11
26 ma. -/-rwxr-xr-x 501 501 477959 /home/ch0pper/ch0pper.sh
Sat Nov 13 2004 20:49:18
26 ..c -/-rwxr-xr-x 501 501 477959 /home/ch0pper/ch0pper.sh

Sat Nov 13 2004 - 21:37
/home/ch0pper/lrk5 directory is created and a lot of create and access activity in
the /home/ch0pper/lrk5 directory is observed. Likely cause is the extraction of
the lrk5.src.tar.tar archive that was previously observed being created at
20:56:03

Sat Nov 13 2004 21:37:07
4096 ..c d/drwxr-xr-x 1000 101 428798 /home/ch0pper/lrk5

Sat Nov 13 2004 - 21:39
Last access time for /usr/bin/make is set. make is typically used when compiling
new packages, and will most probably have been used when compiling the
rootkits. Since there is no evidence of any binaries being created after this time,
and the last create time of key binaries that are usually overwritten by rootkits

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 48 -

such as ls, ps, etc remain at the time when the t0rnkit was installed it is likely that
whatever was being "made" failed.

Sat Nov 13 2004 21:39:13
111472 .a. -/-rwxr-xr-x 0 0 247217 /usr/bin/make

Sat Nov 13 2004 - 21:48
The modify and create times for /home/httpd/html/index.html are set, which is the
default Apache test page which is served. It is known that this page was defaced
by the attacker, and the create and modify times set suggest that this is when it
occured.

Sat Nov 13 2004 21:48:57
2579 m.c -/-rw-r--r-- 0 0 82110
/home/httpd/html/index.html

After this time there are a large number of access times updated on a wide
variety of files, but no significant modify or create times are observed. This would
therefore mark the end of changes to the system by the attacker.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 49 -

Log File Analysis
Since a rootkit has been installed, it should also be noted that some will modify
system log files in order to hide any evidence that an attacker has entered the
system. This is typically done by examining the current IP address and removing
any entries from log files that make reference to that IP address.

In order to view the log files the filesystem was mounted on the forensics
workstation as read only to ensure that no modification of the image could take
place.

[root@localhost fi1001]# mkdir /dev/fi1001
[root@localhost fi1001]# mount -o ro,loop fi1001.sda1.dd /mnt/fi1001

-o Specifies there are options to follow
ro Mount as read-only.
loop Use the loop device19
fi1001.sda1.dd Our image file we wish to mount
/mnt/fi1001 The mount point where we can access it on our filesystem

First port of call was the /var/log/messages20 file.

In it a number of interesting entries were discovered.

Nov 13 19:37:21 localhost useradd[16153]: new group: name=ch0pper,
gid=501
Nov 13 19:37:21 localhost useradd[16153]: new user: name=ch0pper,
uid=501, gid=5
01, home=/home/ch0pper, shell=/bin/bash
Nov 13 19:37:21 localhost useradd[16153]: add `ch0pper' to group `root'
Nov 13 19:37:21 localhost useradd[16153]: add `ch0pper' to shadow group
`root'
Nov 13 19:38:03 localhost PAM_pwdb[16154]: password for (ch0pper/501)
changed by
 ((null)/0)

At 19:37:21 on November 13th several entries were found detailing the creation of
a new user called ch0pper, who's name has already been previously highlighted
on the defacement itself, not to mention also having two rootkits in his/her home
directory.
The log also shows the ch0pper user being added to the root group. At 19:38:03
the password for the user was changed. This matches with a one second
difference the entry in the timeline highlighting /etc/password being modified.

At 19:38:32 and 20:21:47 user ch0pper is recorded logging into the system.

19 The loop device allows you to mount an image of a file system stored as a standard file as though it was
an external disk.
20 most applications will tend to write general log file entries to /var/log/messages

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 50 -

Nov 13 19:38:32 localhost PAM_pwdb[16156]: (login) session opened for
user ch0pper by (uid=0)
Nov 13 20:21:47 localhost PAM_pwdb[16228]: (login) session opened for
user ch0pper by (uid=0)

Taking a look at /var/log/secure showed the following two entries related to
ch0pper which also provides us with a source ip address.

Nov 13 19:38:32 localhost login: LOGIN ON 0 BY ch0pper FROM
81.146.41.184
Nov 13 20:21:47 localhost login: LOGIN ON 1 BY ch0pper FROM
81.146.45.181

From this it can be seen that ch0pper has logged in from two different IP
addresses, 81.146.41.184 and 81.146.45.181
Performing a lookup on these addresses in the RIPE21 database provides the
following information.

whois -h whois.ripe.net 81.146.41.184
% This is the RIPE Whois tertiary server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/db/copyright.html

inetnum: 81.146.24.0 - 81.146.73.255
netname: REMOTE-INTERNET-COMPLETE
descr: BT WebPort Complete
descr: Broadband
country: GB
admin-c: MK3517-RIPE
tech-c: RJD2-RIPE
status: ASSIGNED PA
remarks: Please send abuse
notification to abuse@bt.net
mnt-by: BTNET-MNT
mnt-lower: BTNET-MNT
mnt-routes: BTNET-MNT
changed: preston.dialip@bt.com
20030924
source: RIPE

route: 81.128.0.0/11
descr: BT Public Internet Service
origin: AS2856
mnt-by: BTNET-MNT
changed: support@bt.net 20030615
source: RIPE

person: Mark Kendall
address: pp 411/A4
address: Anzani House
address: Trinity Avenue
address: Felixstowe
address: Suffolk
address: IP11 4XB
address: U.K.

whois -h whois.ripe.net 81.146.45.181
% This is the RIPE Whois tertiary server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/db/copyright.html

inetnum: 81.146.24.0 - 81.146.73.255
netname: REMOTE-INTERNET-COMPLETE
descr: BT WebPort Complete
descr: Broadband
country: GB
admin-c: MK3517-RIPE
tech-c: RJD2-RIPE
status: ASSIGNED PA
remarks: Please send abuse
notification to abuse@bt.net
mnt-by: BTNET-MNT
mnt-lower: BTNET-MNT
mnt-routes: BTNET-MNT
changed: preston.dialip@bt.com
20030924
source: RIPE

route: 81.128.0.0/11
descr: BT Public Internet Service
origin: AS2856
mnt-by: BTNET-MNT
changed: support@bt.net 20030615
source: RIPE

person: Mark Kendall
address: pp 411/A4
address: Anzani House
address: Trinity Avenue
address: Felixstowe
address: Suffolk
address: IP11 4XB
address: U.K.

21 The RIPE database contains details of who owns what IP addresses within Europe and the Middle East
(other areas are also covered, but these are the main regions). Three other databases exist; ARIN, APNIC
and LACNIC which hold IP address information for other parts of the world.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 51 -

phone: +44 1394 601 589
fax-no: +44 1394 273 463
e-mail: mark.kendall@bt.com
nic-hdl: MK3517-RIPE
changed: preston.dialip@bt.com
20030320
source: RIPE

person: Bob Dootson
address: pp HWC473
address: Virtual Postbox (HOM-NZ)
address: PO Box 200
address: London
address: N18 1ZF
address: U.K.
phone: +44 1977 597630
fax-no: +44 1943 468450
e-mail: bob.dootson@bt.com
nic-hdl: RJD2-RIPE
changed: preston.dialip@bt.com
20030320
source: RIPE

phone: +44 1394 601 589
fax-no: +44 1394 273 463
e-mail: mark.kendall@bt.com
nic-hdl: MK3517-RIPE
changed: preston.dialip@bt.com
20030320
source: RIPE

person: Bob Dootson
address: pp HWC473
address: Virtual Postbox (HOM-NZ)
address: PO Box 200
address: London
address: N18 1ZF
address: U.K.
phone: +44 1977 597630
fax-no: +44 1943 468450
e-mail: bob.dootson@bt.com
nic-hdl: RJD2-RIPE
changed: preston.dialip@bt.com
20030320
source: RIPE

Records for both IP addresses are identical, and both IP addresses do fall within
the IP address range specified by the inetnum field on both.

inetnum: 81.146.24.0 - 81.146.73.255

The description given within each record shows that the IP addresses are owned
by BT and suggests that they are provided for use by Broadband customers.
It is common for a Broadband customer to be provided with a different IP address
whenever their connection is reset, either from the remote end or because of
their local router/modem being reset.
This being the case it suggests that sometime between 19:38:32 and 20:21:47
the internet connection used by ch0pper was reset, and both IP addresses
recorded are the same individual. Going forward this should be remembered, as
connections from the attacker may not be just limited to these two listed IP
addresses.
A court order being presented to BT requesting user information on these
connections will provide details of the actual person responsible, or at least the
person who pays for the broadband account.

A further search of /var/log/secure and /var/log/messages was performed and
compared for any IP address within the established range. On November 10th at
04:16:33 a telnet connection was observed and at 04:16:52 a failed login attempt
was recorded originating from 81.146.25.222. No user name was provided.
The reason for the 19 second gap between the two entries could be a result of
either a slow system, or it took 19 seconds for the person connecting to enter a
username and password.
Please the note the following key is used when referring log file entries.
[1] refers to an entry in /var/log/secure
[2] refers to an entry in /var/log/messages

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 52 -

[1] Nov 10 04:16:33 localhost in.telnetd[12440]: connect from
81.146.25.222
[2] Nov 10 04:16:52 localhost login: FAILED LOGIN 1 FROM 81.146.25.222
FOR , User not known to the underlying authentication module

Starting at 07:12:14 on November 13th and going through until 07:12:54 around
60 failed login attempts for root from 81.146.41.184 were recorded.

[1] Nov 13 07:12:06 localhost in.telnetd[15384]: connect from
81.146.41.184
[2] Nov 13 07:12:14 localhost login[15396]: FAILED LOGIN 1 FROM
81.146.41.184 FOR root, Authentication failure
.
.
.
[1]
Nov 13 07:12:06 localhost in.telnetd[15384]: connect from 81.146.41.184
Nov 13 07:12:07 localhost in.telnetd[15385]: connect from 81.146.41.184
Nov 13 07:12:07 localhost in.telnetd[15386]: connect from 81.146.41.184
Nov 13 07:12:07 localhost in.telnetd[15387]: connect from 81.146.41.184
Nov 13 07:12:07 localhost in.telnetd[15394]: connect from 81.146.41.184
Nov 13 07:12:07 localhost in.telnetd[15393]: connect from 81.146.41.184
Nov 13 07:12:07 localhost in.telnetd[15392]: connect from 81.146.41.184
Nov 13 07:12:07 localhost in.telnetd[15391]: connect from 81.146.41.184
Nov 13 07:12:07 localhost in.telnetd[15390]: connect from 81.146.41.184

Due to the frequency of the telnet connections and the subsequent reported
failures, amounting to several each second, it is presumed that this is a result of
an automated brute force attack as a human is physically not able to type this
fast.
The reason the brute force attack only lasted a short amount of time is because
the telnet service reported at 07:12:48 in /var/log/messages it was going to cease
accepting connections due to being overloaded.

[2] Nov 13 07:12:48 localhost inetd[530]: telnet/tcp server failing
(looping or being flooded), service terminated for 10 min.

There are no successful login attempts recorded, so it is clear the attempt to
brute force the root password was not successful.
Between 18:41:24 and 19:28:43 several ftp connects were observed.

On the first connection, ftp login using user root failed.

[1] Nov 13 18:41:24 localhost in.ftpd[15946]: connect from 81.146.41.184
[2] Nov 13 18:42:49 localhost ftpd[15946]: PAM-listfile: Refused user
root for service ftp

An attempt to log in using a user account that did not exist on the system was
then recorded. Unfortunately in instances where the user account is not valid,
the passed credentials are not logged.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 53 -

[1] Nov 13 18:50:41 localhost in.ftpd[15950]: connect from 81.146.41.184
[2] Nov 13 18:51:02 localhost PAM_pwdb[15950]: check pass; user unknown

At 18:51:35 there was a successful anonymous ftp login. During an anonymous
login the user is asked to give their email address as the password for auditing
purposes. Of course there is nothing to prevent a fake address being given, and
even during legitimate anonymous logins most of the Internet population never
do give their real email address. In this instance, the email address
fred@fred.com was passed.

[1] Nov 13 18:51:35 localhost in.ftpd[15951]: connect from 81.146.41.184
[2] Nov 13 18:51:49 localhost ftpd[15951]: ANONYMOUS FTP LOGIN FROM
81.146.41.184 [81.146.41.184], fred@fred.com

A number of further anonymous ftp logins were observed, each time the email
address fred@fred.com22 was given as the password.
Examining the /var/log/xferlog log file gave no more indications as to what
happened during the logged in anonymous ftp sessions, although the entire
contents of the log contained just two lines.

Sat Nov 13 20:43:48 2004 306 81.146.45.181 1407746
/home/ch0pper/t0rnkit.tar b _ i r ch0pper ftp 0 * c
Sat Nov 13 20:56:03 2004 596 81.146.45.181 3301054
/home/ch0pper/lrk5.src.tar.tar b _ i r ch0pper ftp 0 * c

This shows how the root kits were transferred to the compromised system then.
t0rnkit was transferred at 20:43:48 on Saturday November 13th 2004.
lrk5 was transferred by the ch0pper user at 20:56:03 also on Saturday November
13th 2004.
Again note that the IP address recorded was 81.146.45.181, whereas the
anonymous ftp logins were from 81.146.41.184.

A look at the /var/log/httpd/access.log and /var/log/httpd/error.log files showed if
there were any accesses by the attacker to the http web server, and there was.
From the timestamps on the log entries it was clear that the majority of the
requests being made were via an automated tool as there were several a
second. A browse through the entries also showed that the requests were for
common vulnerable scripts or files that could either be used to gain entry to the
system or provide more information. None of these scripts or files existed on the
system, so would have not presented a potential route.

[Sat Nov 13 07:34:01 2004] [error] [client 81.146.41.184] File does not
exist: /home/httpd/html/.DS_Store
[Sat Nov 13 07:34:02 2004] [error] [client 81.146.41.184] File does not
exist: /home/httpd/html/.FBCIndex

22 fred@fred.com is a common address used as an example, like test@test.com and
someone@somewhere.com. It is unlikely to be the actual email address of the attacker.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 54 -

[Sat Nov 13 07:34:04 2004] [error] [client 81.146.41.184] File does not
exist: /home/httpd/html/admin.cgi
[Sat Nov 13 07:34:06 2004] [error] [client 81.146.41.184] File does not
exist: /home/httpd/html/docs/
[Sat Nov 13 07:34:07 2004] [error] [client 81.146.41.184] File does not
exist: /home/httpd/html/index.html.ca
[Sat Nov 13 07:34:08 2004] [error] [client 81.146.41.184] File does not
exist: /home/httpd/html/index.html.cz.iso8859-2

The first entry from one of the already identified IP addresses in
/var/log/httpd/access.log on the 13th November is at 07:25:14 and is not a valid
http request that would be sent from a normal web browser as it is just "get" and
does not contain any details as to the protocol used or what page is being
requested. This request was typed by hand, and was an attempt to try to
determine what version of web server is running

81.146.41.184 - - [13/Nov/2004:07:25:14] "get" 501 -

At this stage, however, there is no evidence of how the attacker gained entry to
the system, only that he/she did.
Each user has a history file located within their home directory which contains a
complete audit of all commands typed. Since the default shell on Linux is bash,
this file is typically called .bash_history.
A .bash_history file was found in /home/ch0pper, and contains a list of all
commands the attacker typed while on the system. This gives a great insight into
what has occurred, and when compared with the file timeline a possible date and
time some of the commands were typed can be estimated.
Below is a listing of the .bash_history file for the ch0pper user along with
comments on what may be occurring.

Command Time Comments
exit Since exit appears as the first

command typed, there are two
possibilities. The first is that
immediately after the attacker gained
access to the system using the
ch0pper account they exited, or that
any previous commands within the
history file have been erased.

cd /var/www/html Change of directory to /var/www/html.
Newer versions of apache invite the
admstrators to store all web content
under this directory. Since this is an
old version of Apache, the default
directory is actually /home/httpd/html.
Changing to this directory was
therefore unsuccessful as the
directory did not exist on this system

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 55 -

cd /var/www As /var/www/html did not exist, the
attacker attempted to change to
/var/www instead. Again, this would
have failed.

cd / Change to the root directory.
ls Perform a directory listing.
locate -u Locate (or slocate) is used to find files

within the system. slocate uses a
database in order to provide quick
searching, and this database is
updated by providing the -u switch.

locate index.htm* Attacker attempts to locate the
index.htm file. Since subsequent
commands do not suggest the
attacker is heading towards the
location of this file, it can be assumed
that the use of locate failed to provide
the information needed.

cd /etc/ Change to the /etc directory
ls htt* List all files beginning with htt
more php3.ini List the contents of the php3.ini file.

Since the previous ls actually listed
the contents of the httpd directory and
not the current one, this operation
failed.

pwd Display what the current directory is
ls | more Perform a directory listing
more httpd* 13 Nov

19:53
List the contents of all files starting
with httpd

cd httpd Change into the httpd directory
ls Perform a directory listing
cd conf Change into the conf directory
ls Perform a directory listing
more httpd.conf List the contents of the httpd.conf file.

This is the main Apache configuration
file and within it would be listed
details of where the web root is, and
therefore details of where the main
index.html file is.

ls Perform a directory listing
pwd Display what the current directory is
cd .. Change back one directory to

/etc/httpd
ls Perform a directory listing
more php3.ini 13 Nov

19:56
List the contents of the php3.ini file.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 56 -

ls Perform a directory listing
pwd Display what the current direcotry is
find / -name *.htm* -print Find all files with a .htm extension.

Since the attacker is now doing
search for html files it seems that they
did not find the information they were
looking for in the httpd.conf file.

cd /home/httpd/html Change to /home/httpd/html directory.
This is where the default index.html
file is located, so the previous find
command was successful in providing
the information the attacker required.

ls Perform a directory listing
more index.html List the contents of the index.html file,

which is the default Apache test page
that is being presented to visitors.

cp index.html index.sav Make a copy of the index.html file and
save it as index.sav.
This is very strange. The only
instance where somebody makes a
backup copy of a file is if they plan to
replace any changes they make with
the original again. If you are planning
to deface a website, why would you
need to make a backup of the original
source file?
index.sav does not appear on the
timeline, and has not been recovered
as a deleted file, so this suggests that
the copy operation may have failed.

ls -la Perform a directory listing, listing all
files including hidden

chmod 777 index.html Change the permissions on
index.html to be full to owner, group
and world.

ls -la Perform a directory listing
pwd Display what the current directory is
ls /etc/wu* Perform a directory listing of anything

starting with wu in /etc/

It is known that a rootkit has been installed, and the index.html file was modified,
but there is no evidence of this within the .bash_history file of ch0pper.

Looking at the contents of the .bash_history file for the root user gave the
following. Since the root user is legitimate and would have been used by the
system administrator it is unclear however which commands were actually typed

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 57 -

by the attacker. As this is a honeypot though, it is known what commands have
been typed by legitimate users.

Command Time Comments
ifconfig Display details about the network

configuration of the system
shutdown -h now Shutdown the system. Since the system

was still running this was probably not
typed by the attacker.

date Display the date and time
date -s 20:15 Set the time
exit exit
cd /home/ch0pper Change to the ch0pper directory. Since

this directory did not exist before the
attack, this is likely to be the first
command typed by the attacker

cd t0rnkit2/ Change into the t0rnkit2 directory. In
order to create the t0rnkit2 directory in
the first place the tar archive would have
to be extracted. There is no evidence of
the command used to perform that
operation.

./t0rn 13th Nov
20:56

Run the t0rn installation script.

fingerd Run the finger daemon.
id Display details of the current user.
/sbin/in.fingerd This file does not exist on this system
cd .. Change back a directory to

/home/ch0pper
ls Perform a directory listing
tar -zxvf lrk5.src.tar.tar 13th Nov

21:37
Extract the lrk5.src.tar.tar file

cd lrk5 Change into the lrk5 directory that was
created as a result of the extraction

ls Perform a directory listing
./configure Run the configure script. This prepares

for the installation.
./configure -n 13th Nov

21:37
Run the configure script with the -n flag.

more README 13th Nov
21:41

List the contents of the README file.
Reading a README file is an indication
that the attacker was not confident with
the task he/she was performing, and
required help.

make all install Run the make command to install the
rootkit.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 58 -

ls Perform a directory listing
make Run make to prepare for installation
make install 13th Nov

21:39
Run make install

cd .. Change back a directory to
/home/ch0pper

ls Perform a directory listing
cd t0rnkit2 Change into the t0rnkit2 directory
ls Perform a directory listin
who Run who to display who is on the system
more README 13th Nov

21:41
View the README file

ls Perform a directory listing
cd t0rn Attempt to change into the t0rn directory.

Since t0rn in /home/ch0pper/t0rnkit2 is
actually a file and not a directory, the
command would have failed.

cd .. Change back a directory to
/home/ch0pper/

cd .. Change back a directory to /home/
ls Perform a directory listing
cd htppd Change into the htppd directory. This

directory does not exist, and is likely a
typo.

cd httpd Change into the /home/httpd directory
ls Perform a directory listing
cd html Change into the /home/httpd/html

directory.
ls Perform a directory listin
vi index.html Edit the index.html file. This will most

probably be where the file was modified
in order to deface the website.

vi index.html 13th Nov
21:48

Edit the index.html file again.

ls /home/ch0pper Perform a directory listing of
/home/ch0pper

nc -vv -l -p 9999 -e
/home/ch0pper/ch0pper.s
h

 Run a netcat listener on port 9999 and
after a connection run
/home/ch0pper/ch0pper.sh
Upon running this on another system
using the version of nc on the RedHat
6.2 system it was found that nc
immediately returned with no output - it
did not execute as anticipated

nc -vv -l -p 9999 & 13th Nov
21:50

Run a netcat listener on port 9999 and
run in background

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 59 -

ps -aux | more Display a process listing. The attacker
was probably checking to ensure that
netcat was still running

exit Exit
locate in.amqd Locate the in.amqd file. in.amqd is part

of the t0rn rootkit. A search on Google
for this file will bring back results
referencing the t0rn rootkit.

locate -u Update the locate database. Since the
previous command is run again after the
update, it looks like locate failed to locate
in.amqd.
The timeline did indicate that there was a
lot of access activity towards just before
the system was bought down, which may
have been generated by the use of this
command.

locate in.amqd 13th Nov
22:14

Locate the in.amqd file again

exit Exit.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 60 -

File System Analysis
It is known that from the evidence collected so far that the attacker created a user
account. Examining the /etc/passwd file this confirms that the account still exists.

ch0pper:x:501:501::/home/ch0pper:/bin/bash

The account has a user and group identifier of 501. Examining the timeline again
this information can be used to list all files where either the user or group of
ch0pper is classed as the owner.
It is also known that a home directory was also created, as this is where the
rootkits were stored.

[root@localhost ch0pper]# pwd
/mnt/fi1001/home/ch0pper
[root@localhost ch0pper]# ls -l
total 4624
-rwxr-xr-x 1 snort snort 26 Nov 13 20:49 ch0pper.sh
drwxr-xr-x 5 snort snort 4096 Nov 13 19:37 Desktop
drwxr-xr-x 21 1000 101 4096 Aug 12 1999 lrk5
-rw-r--r-- 1 snort snort 3301054 Nov 13 20:56 lrk5.src.tar.tar
drwx------ 3 snort snort 4096 Nov 13 20:56 t0rnkit2
-rw-r--r-- 1 snort snort 1407746 Nov 13 20:43 t0rnkit.tar

In the directory listing displayed above of /home/ch0pper you can see that the
owner and group are recorded as being "snort". This is incorrect. It must be
remembered that this is a mounted filesystem and it is being viewed as an
extension of the current filesystem of the forensics analysis machine.
On the forensics anaysis workstation snort has a user identifier of 501, which is
the same as the user ch0pper on the compromised system.
The lrk5 directory, however, has an owner of 1000 and a group of 101. The
reason the number identifiers are showing for this directory is because a uid of
1000 and gid of 101 do not exist on the forensic workstation. Examining
/etc/passwd and /etc/group on the compromised system also shows that the uid
and gid do not exist on that system either. This suggests that the directory and
files contained within were created by a user that either no longer exists, or that
when the files were extracted from the tar file the user attributes remained the
same as they were from the original machine the tar file was created on.
Studying the date, Aug 12 1999, it is clear that the file attributes have been
carried across from another system.

In the ch0pper home directory it can be seen that the original tar files of the two
downloaded rootkits are still there.

-rw-r--r-- 1 snort snort 3301054 Nov 13 20:56 lrk5.src.tar.tar
-rw-r--r-- 1 snort snort 1407746 Nov 13 20:43 t0rnkit.tar

By referring back to the timeline that was produced, we can gather more
information.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 61 -

Sat Nov 13 2004 20:56:03
3301054 m.c -/-rw-r--r-- 501 501 477957
/home/ch0pper/lrk5.src.tar.tar

Sat Nov 13 2004 21:37:06
3301054 .a. -/-rw-r--r-- 501 501 477957
/home/ch0pper/lrk5.src.tar.tar

Sat Nov 13 2004 20:43:48
1407746 m.c -/-rw-r--r-- 501 501 477955
/home/ch0pper/t0rnkit.tar

Sat Nov 13 2004 20:52:56
1407746 .a. -/-rw-r--r-- 501 501 477955
/home/ch0pper/t0rnkit.tar

The create and modify times of both files correspond with that reported by the
normal directory listing, but the last time the files were access can now be seen.
These times do not give any details as to when the installation script for each
rootkit was run, just a suggestion as to when the tar file was possibly extracted.

Looking inside the lrk5 directory, again the timestamps show dates as far back as
November 24th 1998. Locating some of these files on the timeline gives the
following information.

Thu Aug 12 1999 07:00:26
1664 m.. -/-rw-r--r-- 1000 101 428801
/home/ch0pper/lrk5/bindshell.c

Sat Nov 13 2004 21:37:02
1664 .ac -/-rw-r--r-- 1000 101 428801
/home/ch0pper/lrk5/bindshell.c

Sat Nov 13 2004 21:37:06
247 ..c -/-rwxr-xr-x 1000 101 428850
/home/ch0pper/lrk5/configure

Sat Nov 13 2004 21:37:40
247 .a. -/-rwxr-xr-x 1000 101 428850
/home/ch0pper/lrk5/configure

Tue Nov 24 1998 12:27:05
3591 m.. -/-rw-r--r-- 1000 101 428802
/home/ch0pper/lrk5/fix.c

Sat Nov 13 2004 21:37:02
3591 .ac -/-rw-r--r-- 1000 101 428802
/home/ch0pper/lrk5/fix.c

From this more realistic times can be seen. Rather than way back in the 90s, the
files were created at around 21:37 on November 13th 2004. This coincides with
the last access time of lrk5.src.tar.tar

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 62 -

To confirm that the two files that were found are tarballs of the rootkits they claim
to be, an attempt to locate the same files on the internet using a standard search
engine was made.

A copy of the LRK5 rootkit was found within the AntiServer "Rootkit Download
Area" at http://www.antiserver.it/backdoor-rootkit. While the filename published
here, lrk5.src.tar.gz is slightly different from lrk5.src.tar.tar, once downloaded and
md5 checksums compared, they were found to be the same and confirms that
the file on the compromised system is the advertised LRK5 rootkit.

[root@localhost fi101]# md5sum lrk5.src.tar.gz
e18b708650f7dc4cca447df33d09740f lrk5.src.tar.gz

[root@localhost ch0pper]# md5sum lrk5.src.tar.tar
e18b708650f7dc4cca447df33d09740f lrk5.src.tar.tar

Unfortunately it was not possible to find a file on the Internet that matched the
md5 checksum of t0rnkit.tar file found on the system. Examining the contents of
the tar archive though, in particular the README file, it advertises itself as being
t0rnkit version 2.0.

It was highlighted within the timeline that files were created under /dev/sdc0.
Upon examining this directory, only one directory was found under this called
.nfs01. The full-stop at the beginning of the name marks this as a hidden
directory and would ensure that it's existence would not be shown by a nornal ls
directory listing, unless the -a flag was provided.
Under the .nfs01 directory a number of files were discovered, which on first
glance would appear to belong to the rootkit. t0rnsniff as its name suggests is
possibly a sniffer component.

[root@localhost .nfs01]# ls -l
total 484
-rwxr-xr-x 1 snort snort 3215 Sep 14 1999 hidemodule.c
-rwxr-xr-x 1 snort snort 46726 Sep 10 1999 in.identd
-rwxr-xr-x 1 snort snort 2749 Sep 14 1999 phide.tgz
-rwxr-xr-x 1 snort snort 1345 Sep 9 1999 sauber
-rwx--x--x 1 snort snort 407450 Sep 14 1999 sshbd.tgz
-rwxr-xr-x 1 snort snort 6232 Sep 9 1999 t0rnparse
-rwxr-xr-x 1 snort snort 9361 Sep 9 1999 t0rnsniff

The file ch0pper.sh within the /home/ch0pper was highlighted when analysing the
timeline. Upon examination the file was simple shell script that when run will give
an interactive bash shell.

[root@localhost ch0pper]# cat ch0pper.sh
#!/bin/bash
/bin/bash -i

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 63 -

From the evidence witnessed so far, it is unlikely that any form of time attributes
have been tampered with. If this is the case, and the timeline is to be believed,
then no start-up scripts appear to have been modified. To be sure though, the
following files were manually viewed and analysed. Nothing was found to be out
of the ordinary.

/etc/rc.d/rc.local Run during startup
/etc/rc.d/init.d/* All files within this directory are startup

scripts for installed services.
/etc/rc.d/rc3.d/*
/etc/rc.d/rc5.d/*

These directories contain links to other
script files. They define what should be
run during startup.

/root/.bashrc
/root/.bash_profile
/root/.bash_logout

Scripts that are run during login and
logout for root.

Furthermore, the filesystem was examined for suid and sgid files.

[root@localhost fi1001]# find /mnt/fi1001 -perm -004000 -o -perm -002000
-type f -ls > /home/forensic/fi1001/suid.txt
[root@localhost fi1001]# cat /home/forensic/fi1001/suid.txt
459025 4 -rwxr-sr-x 1 root root 3860 Mar 9 2000
./sbin/netreport
 68283 32 -rwxr-sr-x 1 root games 29704 Feb 8 2000
./usr/X11R6/bin/xbill
245887 8 -r-xr-sr-x 1 root tty 6128 Mar 7 2000
./usr/bin/wall
246395 32 -rwxr-sr-x 1 root uucp 30352 Feb 28 2000
./usr/bin/gkermit
246440 40 -r-xr-s--x 1 root games 40112 Feb 11 2000
./usr/bin/gataxx
246441 24 -r-xr-s--x 1 root games 20692 Feb 11 2000
./usr/bin/glines
246442 72 -r-xr-s--x 1 root games 67468 Feb 11 2000
./usr/bin/gnibbles
246443 80 -r-xr-s--x 1 root games 76508 Feb 11 2000
./usr/bin/gnobots2
246444 56 -r-xr-s--x 1 root games 52464 Feb 11 2000
./usr/bin/gnome-stones
246445 76 -r-xr-s--x 1 root games 71296 Feb 11 2000
./usr/bin/gnomine
246446 28 -r-xr-s--x 1 root games 25908 Feb 11 2000
./usr/bin/gnotravex
246447 236 -r-xr-s--x 1 root games 234072 Feb 11 2000
./usr/bin/gtali
246448 24 -r-xr-s--x 1 root games 24028 Feb 11 2000
./usr/bin/gturing
246449 48 -r-xr-s--x 1 root games 48316 Feb 11 2000
./usr/bin/iagno
246450 48 -r-xr-s--x 1 root games 45476 Feb 11 2000
./usr/bin/mahjongg
246451 24 -r-xr-s--x 1 root games 21140 Feb 11 2000
./usr/bin/same-gnome

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 64 -

246574 76 -r-xr-sr-x 1 news news 73144 Mar 3 2000
./usr/bin/inews
247219 36 -rwxr-sr-x 1 root man 36192 Mar 1 2000
./usr/bin/man
247292 172 -rwxr-sr-x 1 root uucp 168080 Mar 7 2000
./usr/bin/minicom
247519 12 -rwxr-sr-x 1 root mail 11620 Feb 8 2000
./usr/bin/lockfile
247606 24 -rwxr-sr-x 1 root slocate 24272 Feb 4 2000
./usr/bin/slocate
247609 48 -rwxr-s--- 1 news news 47536 Feb 8 2000
./usr/bin/slrnpull
247875 12 -rwxr-sr-x 1 root tty 8328 Mar 7 2000
./usr/bin/write
262666 16 -rwxr-sr-x 1 root mail 15280 Feb 22 2000
./usr/lib/emacs/20.5/i386-redhat-linux-gnu/movemail
 49334 8 -rwxr-sr-x 1 root utmp 6096 Feb 25 2000
./usr/sbin/utempter
 49624 12 -rwxr-sr-x 1 root utmp 8792 Feb 22 2000
./usr/sbin/gnome-pty-helper
 50766 28 -rwxr-sr-x 1 root lp 25064 Feb 15 2000
./usr/sbin/lpc

Any files with the suid bit set will run under the context of the defined owner when
executed. Similarly, with the sgid bit set the file to run under the context of the
group. These files can be identified by the use of s where the x (eXecute)
placeholder is within the permissions field.
Some programs may need this in order to fulfil their purposes. For example, it
may need to have complete access to the entire file system or be able to kill off
other users processes.
There is, however, a danger with running programs with elevated privileges, as if
there is any weakness that can be exploited then an attack could use it elevate
their own privileges.
Taking the ch0pper.sh script we have just found as an example, which is
currently owned by ch0pper. When run by a user, this will just provide a normal
bash shell with exactly the same privileges as the user currently has. If,
however, the attacker had managed to change the owner of ch0pper.sh to root
and set the suid bit, then when run this would have provided the user with a bash
shell with same privileges as root.
From the list of files produced that had either the suid or sgid bit set, none were
found to run under the context of root when executed.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 65 -

Recovering deleted files
From analysis of the timeline a number of files marked as deleted were
highlighted. Deleted files quite often contain valuable information that an
unskilled hacker assumes has gone forever, yet they often can aid in providing a
clearer picture as to what has happened on a system.

A list of deleted inodes can be obtained by using the ils tool.

[root@localhost recovered]# ils -r -f linux-ext2
../../image/fi1001.sda1.dd
class|host|device|start_time
ils|localhost|../../image/fi1001.sda1.dd|1101009733
st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_dtime|st_mod
e|st_nlink|st_size|st_block0|st_block1
1|a|0|0|1099463058|1099463058|1099463058|0|0|0|0|0|0
84811|f|0|0|1100353737|1100353673|1100353737|1100353737|100600|0|12288|1
72395|172396
84812|f|0|0|1100353642|1100353673|1100353737|1100353737|100644|0|2576|17
2403|0
199486|f|0|50|1100345883|1100345883|1100345883|1100345883|100600|0|6|408
299|0
199509|f|0|50|1100345841|1100345841|1100345841|1100345841|100600|0|6|408
291|0
199511|f|0|50|1100345841|1100345841|1100345841|1100345841|100600|0|6|408
292|0
199513|f|0|50|1100345841|1100345841|1100345841|1100345841|100600|0|6|408
294|0
199514|f|0|0|1100345841|1100345882|1100345882|1100345882|100644|0|919|40
8296|0
199515|f|0|0|1100345841|1100345883|1100345883|1100345883|100400|0|769|40
8298|0
215852|f|0|21|1100289728|1100355268|1100355277|1100355277|100640|0|85037
0|439298|439299
215855|a|0|0|1099771323|1099771323|1099771323|0|100644|0|0|0|0
245895|f|0|0|952479772|1100350476|1100350571|1100350571|100755|0|43024|4
92694|492695
245905|f|0|0|952479772|952479772|1100350571|1100350571|100755|0|24752|49
2753|492754
246047|f|0|0|952452206|1100350291|1100350571|1100350571|100555|0|60080|4
93159|493160
246051|f|0|0|952452206|952452206|1100350571|1100350571|100555|0|34896|49
3183|493184
247381|f|0|0|952425102|952425102|1100350571|1100350571|100755|0|66736|51
2316|512317
247553|f|0|0|952425189|952425189|1100350571|1100350571|104755|0|10256|51
5210|515211
247843|a|0|0|952424984|1100348494|1100350571|0|100755|0|20452|518593|518
594
362839|f|0|0|1099466794|1099466794|1099466794|1099466794|100644|0|218|77
2645|0
412498|f|0|0|1100350561|1100350561|1100350636|1100350636|100600|0|0|0|0
412499|f|0|0|1100350636|1100350561|1100350636|1100350636|100600|0|482|82
9305|0

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 66 -

478003|f|501|501|1100355971|1100355971|1100355971|1100355971|100600|0|0|
0|0

-f ext2 Specifies the filesystem. This was previously

determined using file command.
-r Display removed inodes
../../image/fi1001.sda1.dd Location of the image.

The first column provides the inode numbers of the deleted files. Using the inode
number, an associated filename can be obtained using the ffind tool.

84811|f|0|0|1100353737|1100353673|1100353737|1100353737|100600|0|12288|1
72395|172396

[root@localhost recovered]# ffind -f linux-ext2
../../image/fi1001.sda1.dd 84811
* /home/httpd/html/.index.html.swp

-f ext2 Specifies the filesystem. This was previously

determined using file command.
../../image/fi1001.sda1.dd Location of the image.
84811 The inode number

Taking inode 84811 as an example, using ffind it is shown that the filename
associated with this inode was /home/httpd/html/.index.html.swp

Furthermore, deleted files may be recovered by using the icat tool and passing it
the inode number of the file that needs to be recoved.

[root@localhost recovered]# icat -f linux-ext2
../../image/fi1001.sda1.dd 84811 > index.html.swp

-f ext2 Specifies the filesystem. This was previously

determined using file command.
../../image/fi1001.sda1.dd Location of the image.
84811 The inode number
> index.html.swp The name of the recovered file.

Since the task of obtaining a filename and recovering the file has to be done on
an inode by inode basis, the following perl script was quickly written in order to
automate the task.
The script uses the ils tool to list all deleted inodes. The output is then parsed to
leave only the inode number, to which a filename if any is obtained using the ffind
tool. These details are written out to a log file called recovered.list for later
review. The deleted file itself is then recovered and written out to disk. If a
filename was available that the resulting file will be called the same as the
original, including the path, but with /'s replaced by ~'s. If no filename was
available, then the filename of the recovered file will be the inode number.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 67 -

#!/usr/bin/perl
File recovery script
Written by Mark Read
Version 0.1 November 2004

open(FILELIST,">recovered.list");
open(ILS,"ils -r -f linux-ext2 ../../image/fi1001.sda1.dd|");
while(<ILS>){
 $filename="[none]";
 ($inode,$dump)=split(/\|/,$_);
 if($inode > 0){
 open(FFIND,"ffind -f linux-ext2
../../image/fi1001.sda1.dd $inode|");
 while(<FFIND>){
 $filename=$_;
 }
 chomp($filename);
 if($filename eq "inode not currently used"){
 $saveas=$inode;
 }else{
 $saveas=substr($filename,2,length($filename)-2);
 $saveas=~tr /\//~/;
 }

 print FILELIST "$inode - $filename\n";

 system("icat -f linux-ext2 ../../image/fi1001.sda1.dd
$inode > $saveas");
 }
}
close(FILELIST);

exit;

After running the script, a total of 22 deleted files were recovered, although only
10 had associated filenames.
The contents of the generated recovered.list file was as follows:

1 - inode not currently used
84811 - * /home/httpd/html/.index.html.swp
84812 - * /home/httpd/html/index.html~
199486 - * /etc/shadow.lock
199509 - inode not currently used
199511 - * /etc/shadow.lock
199513 - inode not currently used
199514 - inode not currently used
199515 - inode not currently used
215852 - * /var/lock/makewhatis.lock
215855 - * /var/lock/httpd.lock.621
245895 - inode not currently used
245905 - inode not currently used
246047 - inode not currently used
246051 - inode not currently used
247381 - inode not currently used

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 68 -

247553 - inode not currently used
247843 - inode not currently used
362839 - * /var/tmp/rpm-tmp.88454
412498 - * /var/spool/mqueue/qfUAA16390
412499 - * /var/spool/mqueue/xfUAA16390
478003 - * /home/ch0pper/.Xauthority-c

Performing a directory listing provided a list of following recovered files.

-rw-r--r-- 1 root root 0 Nov 21 13:09 1
-rw-r--r-- 1 root root 6 Nov 21 13:09 199509
-rw-r--r-- 1 root root 6 Nov 21 13:09 199513
-rw-r--r-- 1 root root 919 Nov 21 13:09 199514
-rw-r--r-- 1 root root 769 Nov 21 13:09 199515
-rw-r--r-- 1 root root 43024 Nov 21 13:09 245895
-rw-r--r-- 1 root root 24752 Nov 21 13:09 245905
-rw-r--r-- 1 root root 60080 Nov 21 13:09 246047
-rw-r--r-- 1 root root 34896 Nov 21 13:09 246051
-rw-r--r-- 1 root root 66736 Nov 21 13:09 247381
-rw-r--r-- 1 root root 10256 Nov 21 13:09 247553
-rw-r--r-- 1 root root 20452 Nov 21 13:09 247843
-rw-r--r-- 1 root root 6 Nov 21 13:09 ~etc~shadow.lock
-rw-r--r-- 1 root root 0 Nov 21 13:09
~home~ch0pper~.Xauthority-c
-rw-r--r-- 1 root root 2576 Nov 21 13:09
~home~httpd~html~index.html~
-rw-r--r-- 1 root root 12288 Nov 21 13:09
~home~httpd~html~.index.html.swp
-rw-r--r-- 1 root root 767 Nov 21 13:09 recovered.list
-rwxrwxrwx 1 root root 692 Nov 21 13:09 undelete.pl
-rw-r--r-- 1 root root 0 Nov 21 13:09
~var~lock~httpd.lock.621
-rw-r--r-- 1 root root 850370 Nov 21 13:09
~var~lock~makewhatis.lock
-rw-r--r-- 1 root root 0 Nov 21 13:09
~var~spool~mqueue~qfUAA16390
-rw-r--r-- 1 root root 482 Nov 21 13:09
~var~spool~mqueue~xfUAA16390
-rw-r--r-- 1 root root 218 Nov 21 13:09 ~var~tmp~rpm-
tmp.88454

Using the file command it can now be seen what type of files have been
recovered

[root@localhost recovered]# file *
1: empty
199509: data
199513: data
199514: ASCII text
199515: ASCII text
245895: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.0.0, dynamically linked (uses
shared libs), stripped

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 69 -

245905: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.0.0, dynamically linked (uses
shared libs), stripped
246047: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.0.0, dynamically linked (uses
shared libs), stripped
246051: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.0.0, dynamically linked (uses
shared libs), stripped
247381: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.0.0, dynamically linked (uses
shared libs), stripped
247553: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.0.0, dynamically linked (uses
shared libs), stripped
247843: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.0.0, dynamically linked (uses
shared libs), stripped
~etc~shadow.lock: data
~home~ch0pper~.Xauthority-c: empty
~home~httpd~html~index.html~: data
~home~httpd~html~.index.html.swp: data
recovered.list: ASCII text
undelete.pl: perl script text executable
~var~lock~httpd.lock.621: empty
~var~lock~makewhatis.lock: data
~var~spool~mqueue~qfUAA16390: empty
~var~spool~mqueue~xfUAA16390: ASCII text
~var~tmp~rpm-tmp.88454: ASCII text

Some of the files recovered had a size of zero bytes, so could not be analysed
further. Those files where file reported them as being ASCII were viewed using a
standard text editor.
199514 and 199515 contained copies of the current /etc/passwd and /etc/shadow
files. Performing a MD5 hash of 199514 and /etc/passwd on the compromised
server showed them to be the same.

[root@localhost recovered]# md5sum 199514
77a8ce86989c34594927f0cc31ce6914 199514
[root@localhost recovered]# md5sum /mnt/fi1001/etc/passwd
77a8ce86989c34594927f0cc31ce6914 /mnt/fi1001/etc/passwd

The hashes of 199515 and /etc/shadow did not match however, and on closer
inspection the difference observed was that in the recovered file no password
existed for the ch0pper user.

199515:
ch0pper:!!:12735:0:99999:7:::

/mnt/fi1001/etc/shadow:
ch0pper:1sOx.mMEL$ravPj3S5/0x40UoNHJzWM0:12735:0:99999:7:-1:-
1:134540332

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 70 -

Using the istat tool, further information can be obtained. Here we see the file was
deleted at 19:38:03 on Saturday November 13th 2004, and therefore record that
the password was changed at this time.

[root@localhost recovered]# istat -f linux-ext2
../../image/fi1001.sda1.dd 199515
inode: 199515
Not Allocated
Group: 12
uid / gid: 0 / 0
mode: -r--------
size: 769
num of links: 0

Inode Times:
Accessed: Sat Nov 13 19:38:03 2004
File Modified: Sat Nov 13 19:37:21 2004
Inode Modified: Sat Nov 13 19:38:03 2004
Deleted: Sat Nov 13 19:38:03 2004

Direct Blocks:
408298

For binary files, the strings tool was used. When strings is run given a filename
as an input, it will output any content that has 423 or more consecutive ASCII
characters, which in some instances can display words and sentences.

From the output obtained from strings being run against each file in turn, many of
the executable files recovered appeared to be versions of the key binaries that
were replaced by the rootkit. The output produced "help text" that is usually
generated when the help or incorrect command line parameters are passed. By
picking up on certain keywords and recognising some of the paramters described
can provide details as to what it was originally.
The following, for example, was produced from the strings output run against file
245895. When this is compared with the output of running ls --help, the two are
similar.

Usage: %s [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuSUX nor --sort.
 -a, --all do not hide entries starting with .
 -A, --almost-all do not list implied . and ..
 -b, --escape print octal escapes for nongraphic
characters
 --block-size=SIZE use SIZE-byte blocks
 -B, --ignore-backups do not list implied entries ending with ~
 -c with -lt: sort by, and show, ctime (time of
last
 modification of file status
information)

23 4 is the default value, and may be changed by passing further commandline parameters.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 71 -

 with -l: show ctime and sort by name
 otherwise: sort by ctime
 -C list entries by columns

What is not clear is whether the binary files recovered are the originals that were
installed with the operating system, or whether these are Trojan copies.
http://www.knowngoods.org hosts a database containing the md5 and sha1
hashes of original files. By comparing the md5 hashes of the recovered files
against this database it proved that they are original unaltered copies.
Nothing of any significance was found. A summary of the files recovered can be
found below.

199509 data Empty
199513 data Empty
199514 ASCII /etc/passwd file
199515 ASCII /etc/shadow file
245895 ELF File: /bin/ls

MD5: 5ec59b9c05706b4ce65adf44d0d3ab24
SHA-1: b1ce95da83b29dabd01ffbf695542cbf12e8df77
Size: 43024 (bytes)
Platform: Linux RedHat 6.2 (i386)

245905 ELF File: /usr/bin/du
MD5: bf0627ce5e90e322d4e32982d231df64
SHA-1: 2354c4afc95f14990521bd0649e949923aa42c47
Size: 24752 (bytes)
Platform: Linux RedHat 6.2 (i386)

246047 ELF File: /bin/ps
MD5: 5e1725f2734365fef9e55398785f3033
SHA-1: 024d5411eae8569404ccbdf9f77bee155ad06869
Size: 60080 (bytes)
Platform: Linux RedHat 6.2 (i386)

246051 ELF File: /usr/bin/top
MD5: 48fbbb48204825866ab3089c2db96e87
SHA-1: d4cd109d90139174304d8c44a1e9039803019e02
Size: 34896 (bytes)
Platform: Linux RedHat 6.2 (i386)

247381 ELF File: /bin/netstat
MD5: f174e862d00d0998c3fa4ccd632019b5
SHA-1: fecef1eb33e7ed16e5a215093287efc586960a04
Size: 66736 (bytes)
Platform: Linux RedHat 6.2 (i386)

247553 ELF File: /usr/bin/rlogin
MD5: 50c83d1390414f16064d3d9bf238bf0c
SHA-1: ac9a97085a783e06e43d09485f8d71407b9493bf
Size: 10256 (bytes)
Platform: Linux RedHat 6.2 (i386)

247843 ELF File: /bin/login
MD5: 9b34aed9ead767d9e9b84f80d7454fc0

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 72 -

SHA-1: 60bd34f7abc3cfda427c43888d1118d65cfc2165
Size: 20452 (bytes)
Platform: Linux RedHat 6.2 (i386)

~etc~shadow.lock data Empty
~home~httpd~html
~index.html~

data Empty

~home~httpd~html
~.index.html.swp

data Backup file for /home/httpd/html/index.html while
being edited by vi

~var~lock~makew
hatis.lock

data Lock file

~var~spool~mque
ue~xfUAA16390

ASCII Email message. Contents not relevent to case

~var~tmp~rpm-
tmp.88454

ASCII Unknown. No useful information.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 73 -

strings Analysis
strings as has been seen previously can be very useful when searching for clues
and evidence. When combined with grep, searches for specific words can be
performed, which can reveal previously hidden information.
It does have its limitations though. strings will not find words within compressed
or encrypted files. It will also not find any words that have other non-ASCII
characters separating any of the letters, for example a null.

The process of searching a disk image using strings, and then finding the original
file is as follows. For this example a search will be performed for the word
"ch0pper" as this is known to exist.

The first stage is to trawl the image and locate any instances of the word
ch0pper. This is done in the first instance using the strings command giving the
image that is to be searched as a parameter. The --radix=d switch will ensure
that the byte offset in decimal within the file will also be included in the output.
As strings will output everything that contains 4 or more consecutive ASCII
characters, the output needs to be filtered so it is therefore then piped through
grep.
grep takes the output from strings and parses it for the occurrence of "ch0pper".
The -i flag tells grep to ignore case and treat upper and lower case letters the
same. The filtered output is then written into the file ch0pper.strings.

[root@localhost fi1001]# strings --radix=d ../image/fi1001.sda1.dd |grep
-i ch0pper > ch0pper.strings

Upon examination of the ch0pper.strings file once the operation is complete, a
number of occurrences can be found.

[root@localhost fi1001]# more ch0pper.strings
706100850 ++++0wN3d bY cH0PpeR+++++
706126199 ++++0wN3d bY cH0PpeR+++++
706141807 ++++0wN3d bY cH0PpeR+++++
1672134656 root:x:0:root,ch0pper
1672135168 ch0pper:x:501:
1672142848 root:::root,ch0pper
1672143275 ch0pper:!::
1672151916 ch0pper:x:501:501::/home/ch0pper:/bin/bash
1672217452 ch0pper:x:501:501::/home/ch0pper:/bin/bash
1672381292 ch0pper:x:501:501::/home/ch0pper:/bin/bash

These entries now need to be seen in context and be mapped to a physical file
on the filesystem. Before this can be done, however manual calculations need to
be performed and the fragment size used needs to be known.
The fsstat tool can be used to obtain this information.

[root@localhost fi1001]# fsstat -f linux-ext2 ../image/fi1001.sda1.dd
|more

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 74 -

FILE SYSTEM INFORMATION
--
File System Type: EXT2FS
Volume Name:
Last Mount: Thu Nov 4 05:08:17 2004
Last Write: Sat Nov 13 22:26:13 2004
Last Check: Wed Nov 3 14:24:15 2004
Unmounted Improperly
Last mounted on:
Operating System: Linux
Dynamic Structure
InCompat Features: Filetype,
Read Only Compat Features: Sparse Super,

META-DATA INFORMATION
--
Inode Range: 1 - 507904
Root Directory: 2

CONTENT-DATA INFORMATION
--
Fragment Range: 0 - 1014094
Block Size: 4096
Fragment Size: 4096

Once the fragment size is know, the fragment number needs to be calculated.
This is done using the following formula.

fragment = (decimal offset in image file) ÷ (fragment size)

The occurrence that looks like it is part of the /etc/group file will be used, the
calculation is performed
1672134656 root:x:0:root,ch0pper
408236 = 1672134656 ÷ 4096

This gives the fragment number.
The ifind tool is then used to locate which inode points to this fragment.

[root@localhost fi1001]# ifind -f linux-ext2 ../image/fi1001.sda1.dd -d
408236
198599

ffind is then used to provide a filename using the inode number produced by ifind
as input.

[root@localhost fi1001]# ffind -f linux-ext2 ../image/fi1001.sda1.dd
198599
/etc/group

Which does indeed lead us back to the /etc/group file.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 75 -

This method was used to search for the following keywords within all images,
including sda5 which was the swap partition (case insensitive):

ch0pper Searching for "ch0pper" may highlight

other files that have been modified.
81.146 The IP addresses used by the attacker

always had 81.146 as the first two octets.
A search may reveal other log files that not
yet been analysed.

172.26.1. If a packet sniffer is running and logging, it
would have most certainly seen traffic on
the local subnet so therefore IP addresses
with these first three octets would have
been recorded in a file. That is assuming
that the log file is in plain text and is not
compressed or encrypted in any way.

None of the above searches revealed anything of interest above and beyond
what has already been discovered. The absence of any interesting results from
the 172.26.1 search has indicated that while a packet sniffer was installed as part
of the rootkit, it appears that it was never run.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 76 -

Conclusion and Timeline of Activities
On Saturday November 13th at 21:48:57 the default web page was defaced. In
the defacement the attacker left details of his/her hacking handle, ch0pper, and
also thanked us for giving him/her wu-ftpd.
The version of wu-ftpd running on the system was 2.6.0. The vulnerability
database at Security Focus24 lists a number of issues with this particular version,
in particular a number25 that could allow for remote execution of arbitrary code on
the system and therefore present an avenue to gain unauthorised entry.
This being the case and the fact that the defacement mentioned the wu-ftp
service, it can be assumed that this was the route in although there is no
evidence to show that this was indeed the method used.
Several anonymous logins were successfully made to the ftp server, but upon
analysing the ftp logs, they only show two events - the uploading of two tar
archives that appear to be rootkits.
Once the attacker had gained access to the system, a user account called
ch0pper was created and added to the root group. Surprisingly, the attacker did
not give the ch0pper user a uid of 0 which would have given it the same
privileges as root.
Version 2 of the t0rnkit was found to be installed, but no evidence of the sniffer
being used could be found. Additionally, it appears the attacker also tried to
install the lrk5 rootkit as well, but unsuccessfully.
The final actions of the attacker were to deface the website itself. As the network
connection for the server was pulled shortly after this no further activity was
recorded.

From the activity observed, it is unclear what the intentions of this attacker were.
The attacker created a normal user account called ch0pper, which also in turn
created a home directory. The presence of a user account such as this, and also
the home directory containing two rootkits is likely to be noticed by a system
administrator in a short amount of time if it is regularly used. The default web
page was also defaced, which is also a good way to alert people to the presence
of a hacker being on the system.
The purpose of a rootkit is to hide any suspicious activity from system
administrators and allow an attacker to gain subsequent entry and use a system
unnoticed. Being that the attacker has been so noisy, what was the point of
installing a rootkit? More to the point, what was the point of attempting to install
two rootkits? After all, the first one appears to have installed successfully.
The fumbling around trying to find the default web page suggests that the
attacker was not very familiar with old linux systems. The failure to give the
ch0pper user root level access once created also shows some immaturity of

24 Security focus hosts a database which holds details about known vulnerabilities within many systems.
http://www.securityfocus.com/bid
25 Vulnerabilities listed for version 2.6.0 of wu-ftpd within the Security Focus vulnerability database24 that
could allow for remote arbitrary code execution have the following BID (Bugtraq ID) numbers: 1387,
3581, 2240, 8668, and 8315.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 77 -

knowledge. Since there was no packet sniffer found to be running and the
accesses of the README files, it would also suggest that the attacker did not
really understand the tools that he/she had installed.
From the activity observed, it appears that ch0pper may be fairly young in
experience when it comes to hacking. He/she saw an opportunity to compromise
a host, did so, and once entry had been gained was unsure as to what to do, nor
how to cover their tracks.

Below is a timeline of activity as generated by the evidence gained.

10th Nov 2004 04:16 Failed telnet login from 81.146.25.222
13th Nov 2004 07:12 Brute force attack from 81.146.41.184. Not successful.

07:25 Manual http connection initiated from 81.146.41.184
07:34 Automated http scan from 81.146.41.184 for vulnerable

scripts or files that could provide useful information
18:41 Failed ftp root login from 81.146.41.184
18:50 Failed ftp login for unknown user from 81.164.41.184
18:51 Successful anonymous ftp login from 81.164.41.184.

fred@fred.com passed as password. Further successful
logins are observed until 19:28

19:37 User ch0pper is created
19:38 User ch0pper logs into system from 81.146.41.184
19:53 Attacker views the Apache configuration file
20:21 User ch0pper logs into system from 81.146.45.181
20:43 t0rnkit.tar is uploaded via ftp
20:49 The ch0pper.sh script that provides an interactive bash shell

is created on the system. It is never used however.
20:52 t0rnkit.tar is extracted
20:56 lrk5.src.tar.tar is uploaded via ftp
20:56 t0rn rootkit is installed
21:37 lrk5.src.tar.tar archive is extracted.

 Configuration script in /home/ch0pper/lrk5 is run.
21:39 Make was run, but failed. Most likely in an attempt to make

the lrk5 rootkit
21:41 README file for t0rn rootkit is viewed.
21:48 Default web page is defaced
21:50 A netcat listener is attempted to be created.
22:14 Locate is run to find in.amqd
22:30 Power cord removed from server.

©
 S

A
N

S
In

st
itu

te
 2

00
5,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005, As part of GIAC practical repository Author retains full rights.
 - 78 -

References

RedHat, Inc. "RedHat Linux". URL: http://www.redhat.com (22nd November
2004)

Hewlett Packard. "Compaq". URL: http://www.compaq.com (22nd November
2004)

Carrier, Brain. "The Sleuthkit". 1.72. September 7th 2004.
URL: http://www.sleuthkit.org/sleuthkit/ (22nd November 2004)

Microsoft Corporation. "Microsoft Windows". URL: http://www.microsoft.com
(22nd November 2004)

VMWare, Inc. "VMWare" URL: http://www.vmware.com (22nd November 2004)

The Apache Software Foundation. "Apache". URL: http://www.apache.org (22nd
November 2004)

"Knoppix Security Tools Distribution". URL: http://www.knoppix-std.org (22nd
November 2004)

"Knoppix". URL: http://www.knoppix.org (22nd November 2004)

@stake, Inc. "The @stake Sleuth Kit". URL: http://www.atstake.com (22nd
November 2004)

Google. "Google" URL: http://www.google.com (22nd November 2004)

RIPE. "Ripe Whois Database". URL: http://www.ripe.net (22nd November 2004)

The Shmoo Group. "Known Goods". URL: http://www.knowngoods.org (22nd
November 2004)

Security Focus. "Security Focus vulnerability database". URL:
http://www.securityfocus.com/bid (22nd November 2004)

