
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 1

GIAC Certified Forensic Analyst
Practical assignment

(GCFA)
v1.5

Slade Griffin

“I have no desire to make mysteries, but it is impossible at the moment of action to
enter into long and complex explanations. “

Sherlock Holmes

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 2

Abstract... 3
Part 1- Analyze an unknown image.. 4

Executive Summary: ... 5
Examination Details... 5
Forensic Detail and Program Identification .. 19
Examination Conclusion.. 31
Legal Implications.. 31

Part 2–Option 1: Perform Forensic Analysis on a System 33
Synopsis... 33
System Details .. 34
Hardware Seizure ... 35
Image Media... 36
Media Analysis.. 38
Timeline Analysis... 40
Recover Deleted Files ... 42
Conclusion... 44

Appendices ... 46
Appendix A .. 46
Appendix B .. 51
Appendix C .. 55
Appendix D .. 56
References .. 57

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 3

Abstract

This document has been completed to demonstrate the “necessary knowledge,
skills, and abilities to handle advanced incident handling scenarios, conduct
formal incident investigations, and carry out forensic investigation of networks
and hosts.” for the GIAC Certified Forensic Analyst (GCFA) certification.
The requirements for this certification are stated on the GIAC website,
http://www.giac.org/GCFA.php .

 Part one contains forensics analysis for an unknown image prepared as a
report. The report outlines the steps taken, programs utilized and the functions
of those programs. Part one will successfully demonstrate the candidate’s ability
to perform forensic analysis, and the understanding of the forensics process and
programs.

 Part two of this report contains a real world example of the forensics
analysis process. This example is an ongoing investigation involving over 40
major research institutions. These institutions include universities and
government installations. It is an ongoing investigation that has spanned more
than 10 months. This analysis will detail the candidate’s forensics analysis and
involvement with this case.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 4

Part 1- Analyze an unknown image

 Ballard Industries, Inc

confidential

Memo
To: Mr. David Keen, Security Administrator

From: Slade E. Griffin, Forensic Analyst

Date: February 9, 2005

Re: Floppy #fl-260404-rjl1

Mr. Keen:

This memo is to inform you that the Information Security Office’s analysis of
floppy disk #fl-260404-rjl1 is complete. Forensic analysis of the disk was
performed and the report is ready for you review. The report includes
detailed findings of the contents and purpose of those contents on the
seized floppy disk.

Please contact our department either in person or with a representative of
your office to retrieve the floppy disk and chain of custody document. In the
event that additional information is needed, I can be reached via voice at 4-
1234 or e-mail security@ballard.com .

(enclosure)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 5

Executive Summary:

 On 26 April 2004 1645 MST, a floppy disk was seized by an authorized
member of the physical security department. Mr. Robert Leszczynski, lead
process control engineer, was removing the disk in question from the research
and development lab. Mr. David Keen, Information Security Officer for Ballard
Industries, has requested a complete analysis of the seized item. Mr. Keen
explained that there has been a decline in both new and customer re-orders
pertaining to the company’s unique fuel cells. Internal investigations have
determined that one of our rival companies has been receiving orders for the
same fuel cell.

 It is also a violation of company policy to remove media, floppy disks, CDs,
disk drives, and hard copy from the R&D labs. Mr. Keen turned over a single
floppy disk and chain of custody with the following information:

TAG# fl-260404-RJL1
3.5 inch TDK floppy disk
MD5: d7641eb4da871d980adbe4d371eda2ad (file: fl-260404-RLJ1.img)
fl-260404-RJL1.img.gz

 The analysis will focus on the contents of the floppy and how Mr.
Leszczynski might have used the contents.

Examination Details

Upon receipt of the floppy disk from Mr. Keen, the suspect disk was logged into
custody in the forensics lab. Once the disk was logged in this room, it was
placed in a locked cabinet with a key held by only two individuals in the
Information Security Office. Each time the disk was removed from the locked
cabinet, it will be logged out on a separate accountability sheet maintained in the
cabinet itself.

Once the disk was logged in, the write protection tab was engaged to prevent
data from being written to the mediai. After engaging the write protect feature of
the diskette it was placed in the drive of the forensic workstation. Our forensic
workstation is a dual 2.8 GHz with 6 gigabytes of RAM and 1.8 terabytes of disk
space. The operating system for the unit is Hat Enterprise 3.0 update 2; the
system remains air-gapped from the production network to prevent contamination.

Before mounting the image I verified the type of evidence using the “file”
command. The file command is run to verify whether an object is a file or
directory, and what type of file you are dealing with. The output follows:

file v1_5.gz

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 6

v1_5.gz: x86 boot sector, system mkdosfs, FAT (12 bit)

The italicized output indicates that this is a floppy disk created with the mkdosfs
command in Linux/Unix with x86 hardware. A comprehensive description of the
utilization of this command can be found at the following referenceii. In addition,
the file command reveals the type of filesystem that allowed me to mount the
image in Autopsy. To maintain the integrity of the floppy disk it was mounted
with the read only command as follows.

 # mount –r –t vfat /dev/fd0 /mnt/floppy

The command mount was used with the following instructions. The –r indicates
read only, this will prevent data from being written to the file should the hardware
function, mentioned previously, fail. The –t command tells the operating system
which filesystem is on the media, vfat is the Linux equivalent of the dos FAT that
was revealed when “file” was run. The next portion of the command is which
device is being mounted. The device /dev/fd0 is the floppy drive of the forensic
workstation, and the destination command of /mnt/floppy is where our evidence
will be until we take an image. An image is an exact bit-by-bit copy of the original
media. A complete description of the mount command is detailed at
linuxvalley.itiii. Once the disk was mounted I retrieved an image of the disk to
perform forensics. This keeps the disk sanitary during the analysis process. The
following details how the disk was imaged once the floppy was mounted.

The main objective was to get a sanitary image of the floppy onto our forensics
system. The following command was used to obtain our forensically sound
image of the floppy disk. The built-in utility ddiv was used to create our forensic
image, the exact command follows:

dd if=/dev/fd0 of=/evidence/gcfa/v1_5.gz

The dd command is instructed to obtain the media located on /dev/fd0 as the
input file, or if=. The next argument after the space is to provide the output file,
or of=. In this instance, the output was stored in the directory /evidence on the
forensic workstation. This is the directory on the forensics workstation where
evidentiary images are stored. Once I had the image, I needed to verify that it
was still intact forensically. To ensure this, I revisited the evidence tag:

TAG# fl-260404-RJL1
3.5 inch TDK floppy disk
MD5: d7641eb4da871d980adbe4d371eda2ad (file: fl-260404-RLJ1.img)
fl-260404-RJL1.img.gz

The relevant portion for this procedure is to verify the md5sumv that is listed on
the evidence tag. The md5sum is a one-way algorithm created by Professor
Ronald L. Rivest of MIT. It is the de facto standard for creating a 128-bit

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 7

“fingerprint”. To verify the md5sum of the image taken against the md5sum
provided by Mr. Keen the following command was issued:

#md5sum v1_5.gz

For evidentiary purposes, a screen shot was taken and the output follows.

Figure 1

Figure 1 displays a good match, meaning that the image has not been altered
since Mr. Keen generated the original md5sum. The md5sum of this file will be
verified and noted each time the image is moved to provide a sound chain of
custody. If the file were altered at any time or in any way, the md5 values would
not match. For example if even one character is modified, the md5sum will
change. For verification, the file command was again issued on the new image
file.

#file v1_5.gz
v1_5.gz: x86 boot sector, system mkdosfs, FAT (12 bit)

The md5sum matches and the file type remains consistent. The ISO now
maintains a forensically sound copy of the floppy disk. The disk was then placed
and logged back in the physical evidence locker mentioned in the first paragraph
of the examination details.

At this point the analysis of the created image began. I used two tools,
Autopsy/Sleuthkitvi and AccessData’s Forensic Toolkitvii (FTK). Autopsy is a free,
open-source tool, and FTK was chosen for redundancy. This will allow for easy
replication of results and verification if this incident is escalated into the criminal
category. I utilized the two environments for verification and comparison of the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 8

findings detailed in this report. For purposes of discussion and length only the
operations of Autopsy and Sleuthkit will be discussed in the report; however
evidentiary displays from FTK will be used.

The next step after image creation and verification was bringing the image into
the program I wanted to use. Using Autopsy, the following steps were taken and
detailed; create a new case, assign the investigators, create the host file, add an
image and then create a timeline. Autopsy performed an md5sum on the image
as it is imported into the program, this function verifies once again that the files
has not been altered.

Figure 2

Figure 2 displayed an accurate md5sum according to the evidence tag and my
own md5 check; the other displayed information was added manually as the
image was imported. When I created and added the image I symlinked or moved
the files. This action prevents multiple copies from being created on the
forensics workstation. When the image was imported into Autopsy, some
important functions are taking place besides the md5sum. Once the image was
moved and the md5sum finished, I needed to create a data file. Creating a data
file was done by selecting the “File Activity Timelines” from the host manager
menu within Autopsy. Creating the data file was the first step to creating a
timeline. I selected the floppy image, and instructed Autopsy to gather allocated,
unallocated and unallocated Metadata. This tells Autopsy to collect every bit of
data on the disk for analysis. The body file name field is merely a label for
reference and I left it named body. I also instructed the program to generate an
md5sum on the body file once it was created, this will alert me if it is tampered
with. As stated before Autopsy is merely an interface for the Sleuthkit.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 9

Figure 3
The Web browser interface is telling the Sleuthkit to run the following commands:

Running fls -r -m on images/v1_5.gz
Running ils -m on images/v1_5.gz

The command fls searches inode, or disk clusters and displays the data that was
stored there. The switch –r instructs the program to look recursively through
directories, or drill down. The switch –m is an instruction to display the output in
MACtime format. The command ils stands for Inode Lister it will be used to look
for possible deleted data, and recover it. The switch –m also instructs ils to
display the output in MACtime format. MAC stands for Modified Accessed and
Changed, viewing when these actions took place on a particular directory or file
lends relevance to your findings by displaying when certain events took place.
After the inodes were searched and the deleted data was recovered, I then
created the actual timeline.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 10

Figure 4

Figure 4 is the screen that was displayed after the body file was created this
allows you to select the previously generated body file, and specific dates if you
know approximately, when an incident occurred. Mr. Keen advised our office of
when the disk was seized, but I did not want to perform a narrow search from the
beginning so I left the start and end dates set to none. This performed timeline
creation on the entire contents of the floppy image. An md5sum was also run on
the output file of timeline.txt.

Figure 5

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 11

Figure 5 displays the summary of the timeline’s information. The timeline
displays several dates which were reviewed newest to oldest in this report.
Timelines are especially useful when given an approximate date to work from, as
stated before I named the output timeline.txt here is what I found. I knew the disk
was seized on 26 April 2004 1645 MST. This was the time I focused on and then
moved backwards. Here is the timeline:

Sat Feb 03 2001 19:44:16 36864 m.. -/-rwxrwxrwx 0 0 5 a:\/CamShell.dll (_AMSHELL.DLL) (deleted)
36864 m.. -rwxrwxrwx 0 0 5 <v1_5.gz-_AMSHELL.DLL-dead-5>
Thu Apr 22 2004 16:31:06 32256 m.. -/-rwxrwxrwx 0 0 13 a:\/Internal_Lab_Security_Policy1.doc
(INTERN~1.DOC)
33423 m.. -/-rwxrwxrwx 0 0 17 a:\/Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
Fri Apr 23 2004 10:53:56 727 m.. -rwxrwxrwx 0 0 28 <v1_5.gz-_ndex.htm-dead-28>
727 m.. -/-rwxrwxrwx 0 0 28 a:\/_ndex.htm (deleted)
Fri Apr 23 2004 11:54:32 215895 m.. -/-rwxrwxrwx 0 0 23 a:\/Remote_Access_Policy.doc
(REMOTE~1.DOC)
Fri Apr 23 2004 11:55:26 307935 m.. -/-rwxrwxrwx 0 0 20 a:\/Password_Policy.doc (PASSWO~1.DOC)
Fri Apr 23 2004 14:10:50 22528 m.. -/-rwxrwxrwx 0 0 27 a:\/Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)
Fri Apr 23 2004 14:11:10 42496 m.. -/-rwxrwxrwx 0 0 9 a:\/Information_Sensitivity_Policy.doc
(INFORM~1.DOC)
Sun Apr 25 2004 00:00:00 0 .a. -/-rwxrwxrwx 0 0 3 a:\/RJL (Volume Label Entry)
Sun Apr 25 2004 10:53:40 0 m.c -/-rwxrwxrwx 0 0 3 a:\/RJL (Volume Label Entry)
Mon Apr 26 2004 00:00:00 32256 .a. -/-rwxrwxrwx 0 0 13 a:\/Internal_Lab_Security_Policy1.doc
(INTERN~1.DOC)
727 .a. -rwxrwxrwx 0 0 28 <v1_5.gz-_ndex.htm-dead-28>
727 .a. -/-rwxrwxrwx 0 0 28 a:\/_ndex.htm (deleted)
36864 .a. -rwxrwxrwx 0 0 5 <v1_5.gz-_AMSHELL.DLL-dead-5>
36864 .a. -/-rwxrwxrwx 0 0 5 a:\/CamShell.dll (_AMSHELL.DLL) (deleted)
22528 .a. -/-rwxrwxrwx 0 0 27 a:\/Acceptable_Encryption_Policy.doc (ACCEPT~1.DOC)
215895 .a. -/-rwxrwxrwx 0 0 23 a:\/Remote_Access_Policy.doc (REMOTE~1.DOC)
33423 .a. -/-rwxrwxrwx 0 0 17 a:\/Internal_Lab_Security_Policy.doc (INTERN~2.DOC)
307935 .a. -/-rwxrwxrwx 0 0 20 a:\/Password_Policy.doc (PASSWO~1.DOC)
42496 .a. -/-rwxrwxrwx 0 0 9 a:\/Information_Sensitivity_Policy.doc (INFORM~1.DOC)
Mon Apr 26 2004 09:46:18 36864 ..c -/-rwxrwxrwx 0 0 5 a:\/CamShell.dll (_AMSHELL.DLL) (deleted)
36864 ..c -rwxrwxrwx 0 0 5 <v1_5.gz-_AMSHELL.DLL-dead-5>
Mon Apr 26 2004 09:46:20 42496 ..c -/-rwxrwxrwx 0 0 9 a:\/Information_Sensitivity_Policy.doc
(INFORM~1.DOC)
Mon Apr 26 2004 09:46:22 32256 ..c -/-rwxrwxrwx 0 0 13 a:\/Internal_Lab_Security_Policy1.doc
(INTERN~1.DOC)
Mon Apr 26 2004 09:46:24 33423 ..c -/-rwxrwxrwx 0 0 17 a:\/Internal_Lab_Security_Policy.doc
(INTERN~2.DOC)
Mon Apr 26 2004 09:46:26 307935 ..c -/-rwxrwxrwx 0 0 20 a:\/Password_Policy.doc (PASSWO~1.DOC)
Mon Apr 26 2004 09:46:36 215895 ..c -/-rwxrwxrwx 0 0 23 a:\/Remote_Access_Policy.doc
(REMOTE~1.DOC)
Mon Apr 26 2004 09:46:44 22528 ..c -/-rwxrwxrwx 0 0 27 a:\/Acceptable_Encryption_Policy.doc
(ACCEPT~1.DOC)
Mon Apr 26 2004 09:47:36 727 ..c -/-rwxrwxrwx 0 0 28 a:\/_ndex.htm (deleted)
727 ..c -rwxrwxrwx 0 0 28 <v1_5.gz-_ndex.htm-dead-28>

Figure 6

Figure 6 displays the timeline output in a standard text editor, instead of using the
web browser window. Of particular interest are the deleted items, I took note of
these immediately, and made notes in my investigator’s log. The investigator’s
log will be available only internally, or by subpoena if necessary. Autopsy and
TSK have provided valuable data already displaying items that were deleted or
removed from the disk. For verification, I have also included the output from FTK.
The screenshot I have inserted also details other recovered data, however we
are going to note that the same files are displayed as deleted. The screenshot is
broken into two separate images, figures 7 and 8, to display all available
information.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 12

Figure 7

Figure 6 is the first half of the screen after importing the image. In addition to
confirming the deleted files and MACtimes, FTK is displaying that CamShell.dll is
a hypertext document rather than a dll. In the MS-Windows environment a dll is
defined as “a file containing a collection of Windows functions designed to perform a
specific class of operations. Most DLLs carry the .DLL extension, but some Windows
DLLs, such as Gdi32.exe, use the .EXE extension. Functions within DLLs are called
(invoked) by applications as necessary to perform the desired operation.”viii This
definition states that a dll is used to run a program, further investigation will be
needed on the specific file to determine what the program identity and function
are. It has automatically recovered slack space, displays relevant file system
information, recovers deleted files where it can, and it will also check extensions.
Slack space is the space between the end of a file and the end of the cluster
where the file sits. Slack space may contain the remnants of deleted files so
recovering it can be very useful during an investigation. This is a comprehensive
list of all files in the image. AccesData maintains a database of “Known File
Formats”, or a KFF database. It looks through files to see if the extensions have
been altered. This is why CamShell.dll is in red.

Figure 8

Two files were deleted on the same day the disk was seized, and one appears to
have been altered according to the KFF maintained by FTK. Another suspicious
fact displayed in Figures 6 and 7 are extremely large file sizes of at least two files
which appear to be MS-Word Documents. These file sizes were the next note in
my investigator’s log. Having completed the timeline verification with FTK, and
also having seen some new information, I then proceeded with the investigation

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 13

using Autopsy and TSK. I first wanted to view the contents of the floppy in the
Autopsy Forensic Browser.

Figure 9

Figure 8 is the User interface displaying graphically the contents of our floppy
image based on the creation of the body and timeline files. I noted that dates,
times, and files matched up with FTK’s output. Starting from the top of this
screen, I first reviewed _ndex.htm. The first character being replaced with the
underscore is indicative of the Microsoft Windows deletion process, the contents
of the html code are displayed below:

<HTML>
<HEAD>
<meta http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<TITLE>Ballard</TITLE>
</HEAD>
<BODY bgcolor="#EDEDED">

<center>
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0"
WIDTH="800" HEIGHT="600" id="ballard" ALIGN="">
<PARAM NAME=movie VALUE="ballard.swf"> <PARAM NAME=quality VALUE=high> <PARAM NAME=bgcolor
VALUE=#CCCCCC> <EMBED src="ballard.swf" quality=high bgcolor=#CCCCCC WIDTH="800" HEIGHT="600"
NAME="ballard" ALIGN=""
TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer"></EMBED>
</OBJECT>
</center>
</BODY>
</HTML>

This is standard HTML code on a web page named “ballard” with an embedded
ShockWave Flash movie. It does not display any particularly useful information; I
did note the file’s size and MACtimes as I proceed to the next deleted file. The
second file was identical to _ndex.htm yet appeared to be quite a bit larger. To

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 14

see what was causing the file to be so large I viewed it in the Autopsy Forensic
Browser First. The initial output below the HTML code was not human readable.
To correct this I ran the UNIX command strings, strings displays a list of every
character it can find when executed against a specific file. In this case it is
apparent why FTK mistook the .dll for an html file. The displayed contents
beneath the html code display the instructions for a dll, in addition to the
instructions, some clues about that dll are revealed.

Figure 10

For verification, the output from FTK for the file camshell.dll is displayed:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 15

Figure 11

This is the exact same code that was seen in the deleted _ndex.html file
displayed in Autopsy. Furthermore, the output of the dll instructions is also
identical. To further review the dll instructions, I have excerpted the relevant
pieces. These pieces allowed me to use the internet as a resource to discover
the identity and purpose of the program that used the dll. This will be my
keyword, or dirty word list.

ll\SheCamouflageShell
VB5! .
\AC:\My Documents\VB
Programs\Camouflage\Shell\CamouflageShell.vbp

CamouflageShell NewFolder RegOpenKeyEx
ExplorerNameCamouflage ExplorerNameUncamouflage
C:\WINDOWS\SYSTEM\MSVBVM60.DLL\3
Camouflage.exe http://www.camouflage.co.uk

Figure 12

This was enough of a foundation to begin researching this piece of software.
The camshell.dll was moved to a sterile system in the forensics lab and I
attempted to execute or open the .html file. Observing the running processes
and md5sums of critical operating system binaries it did not appear to cause any
problems or execute any programs. This html code being identical in each file,
the relevant pieces of the dll, and the exportation of the file were noted in my log.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 16

I now referred back to the timeline for comparison of the dll files code, and the
deletion of the aforementioned files.

These are pieces of what appear to be a Visual Basic script or program that was
written in VB according to our timeline at 0946 on 4/26/04. Looking at the
deleted _ndex.htm file I see its creation time as 0947 on the same day. I went to
Googleix to investigate MSVBVM60.DLL\3. I am going to assume that the \3 is a
further instruction and just look up the file. Below is an interesting description
from liutilitiesx:

DLL File: msvbvm60 or msvbvm60.dll
DLL Name: VB Virtual Machine

Description:
msvbvm60.dll is a module for the Microsoft Visual Basic virtual machine.

Part Of: Visual Basic
System DLL: No
Common Errors: File Not Found, Missing File, Exception Errors

The output from liutilities confirms the program was coded with Visual Basic.
Microsoft, In their quest to make things more accessible to everyone, sometimes
automates or scripts functions within their platform. This automation can have
security implications. I also used Google to research the \3 instruction at the end
of the msvbm execution. I got many references to sluggish systems and
spyware cleaning. Not seeing what I needed from Google, I questioned an
application developer. Here is what he says

“u can put it in ur website and it will install itself.. looks like a vb script.. camoflages(spelled wrong) itself and hides in user
home directory (like mydocuments).. it uses the VB file "C:\WINDOWS\SYSTEM\MSVBVM60.DLL\3", the \3 is 'numeric tail'
-> this slows the system down.. basically to disarm the anti-virus agent.. list of dll's that it uses:

ole32.dll - normal

shell32.dll - normal

advapi32.dll - normal

CamShell.dl - makes it invisible

“

After further investigation, I also believe the \3 to be a normal instruction during
the install of a program that will make system calls to certain dll files. Past
experience locating similar deleted files and now, discovering the camshell.dll
code was simply hidden under the padding of the HTML code led me back to
Google to discover the purpose of the program and its identity. If a dll was
intentionally hidden under some HTML, this would allow someone to get the code
in and out of the building had the physical security agents not been alert.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 17

Regardless of the reason for placing the html over the top of the dll. discovering
the program’s identity and purpose became paramount.

Using the terms extracted in figure 11, I began to research the possible meaning
of camshell.dll. I searched Google for camshell.dll, and received the following
hits.

Figure 13

Research conducted on those web pages led to a further discovery of the actual
software and its purpose. This website was a web forum where users were
discussing the use of a piece of software called Camouflage. The word
camouflage was used many times in figure 11, and I considered this to be no
coincidence. The web link in figure 11 was no longer active, further research into
the code revealed in figure 9 yielded additional information that also proved
useful. I noted that there appears to be extensive garbled output at the bottom of
figure 9. At this point I decide to open the suspect file, camshell.dll, in a
hexadecimal editor. Hex editors as they are often called, allow you to more
easily view data that may not normally human readable. A hex editor can
sometimes help you view previously unreadable data. Below is the non-readable
portion at the end of figure 9. Expressed in the contents are several clues that
enabled me to determine the identity, and later the purpose, of the program that
uses camshell.dll. These clues were pivotal pieces evidence during the forensic
analysis.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 18

Figure 14

Figure 14 displays a web address and the copyright information for this piece of
software. The web address was no longer available but the words “camouflage”
and “twisted pear productions” were vital. I again used Google to extract a more
legible shot of the text revealed by the hex editor. This search revealed
numerous references to the author of the Camouflage software, and the
software’s intended purpose. In addition I was able to obtain a working copy of
the software which I downloaded to a non-forensics workstation in the lab. The
definition and purpose of Camouflage are listed below

Hide files from prying eyes
Derek Mason, Twisted Pear Productions

Camouflage v1.0.4 - These days companies are given more power to monitor e-mails and to examine your personal
files. And with more and more malicious "spy" software being widely used, you need to be sure that files containing
sensitive information are kept safe from prying eyes. Electronic privacy is no longer guaranteed - who knows who

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 19

might be intercepting your e-mails or scanning your hard drive without your knowledge or consent? But now you can
"camouflage" your sensitive files to prevent unauthorized discovery. E-mail anything you like without your attached
files being revealed! Hide your most secret files with Camouflage. Camouflage allows you to hide files by scrambling
them and then attaching them to the file of your choice. This camouflaged file then looks and behaves like a normal
file, and can be stored, used or e-mailed without attracting attention. For example, you could create a picture file
that looks and behaves exactly like any other picture file but contains hidden encrypted files, or you could hide a
file inside a Word document that would not attract attention if discovered. Such files can later be safely
extracted. For additional security you can password your camouflaged file. This password will be required when
extracting the files within. You can even camouflage files within camouflaged files. Camouflage was written for use
with Win95/98/ME/NT/2000, and is extremely easy to install and use; 1399149 bytes

Figure 15

Figure 15 is describing a process called steganography. Steganography is
defined as “The practice of hiding one piece of information inside of another. The most
common example is watermarking.” xi. Mr. Leszczynski is the lead process control
engineer and has access to many different types of data. I will focus the
remainder of my forensic efforts here as I try to reveal the use of this piece of
software. In addition, I will attempt to prove that this is the exact same piece of
software used.

Forensic Detail and Program Identification

Google revealed that a current page containing Camouflage could be found here:
http://camouflage.unfiction.com/ . This web address was opened and the main
page states that it is maintained by the author of the Camouflage software.
There do seem to be legitimate uses for the software such as digital
watermarking. I downloaded and installed the product on a non-sterile
workstation that does not interact with our forensics workstations. Camouflage is
an easy to use, powerful, and dangerous steganography tool. Steganography
has almost no legitimate use within the confines of the Ballard industries network.
I took this opportunity to successfully “steg” a picture within another file. Beyond
installing itself like a normal program, it embeds itself in the Windows shell
allowing right-click functionality and has a simple wizard GUI to step you through
the use of this simple piece of software. In order to determine if this software
was used, I performed forensic verification of a file I noticed on the non-sterile
workstation.

Figure 16

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 20

The camshell.dll, and the program path match the forensic output displayed
previously. In addition to having the same name, the timestamp matches the
time and date given in figures 7 and 8. Having a similarly named file, and the
same program path were not enough to establish that this is the exact same
program. In order to prove this I needed to verify using md5sum. In order to
achieve this I needed to check the camshell.dll that was just installed, against the
camshell.dll that had the HTML code placed on top of it. The first step was to
view both in a hex editor since I knew that the camshell.dll that was seized had
been altered. Using a forensics CD I ran md5sum against the camshell.dll that
was installed on our non-sterile workstation. I used static binaries that are stored
on a forensics CD named Helixxii, this useful collection of utilities is maintained by
Drew Fahey.

Figure 17

Figure 16 is the first of four different md5Ssums I will perform during the
verification process. With an md5 created it was now safe to move this file to my
sterile Linux workstation for further verification. The file was placed on a
previously unused floppy and copied to the forensics workstation. Now that I
have them both on the same system, I wanted to view them both in a hex editor
side by side. This will allow me to prove not only that both files are identical, how
one was altered, and that this is without a doubt the exact
same program. Because the _ndex.htm file output and the beginning of the
camshell.dll are identical I first want to redisplay that side by side. Figure 17
below shows the code is indeed identical.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 21

Figure 18
Figure 18 displays that they are identical until the very end, where camshell.dll,
on the left, keeps going. What I will do here is copy from the highlighted portion
of camshell.dll back to the beginning of the file. This removal represents the
entire contents of _ndex.htm, which is displayed on the right. I am displaying that
this amount of the file is what overwrote the original code which should indeed
give us a good md5. I then performed an md5sum on the seized camshell.dll.
First I exported the file from autopsy to the /root directory on the forensics
workstation and named verify1.

Figure 19

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 22

 Figure 19’s md5sum does not match the md5sum taken on our windows
machine. Next, I looked at the camshell.dll that was installed on the windows
workstation in a hex editor.

Figure 20

Figure 20 is the header from the camshell.dll that we installed on our windows
machine. Viewing the _ndex.htm in a hex editor revealed that the HTML code
ended at hexadecimal offset 0000:02d6. Knowing the stopping point of the
original HTML code allows me to remove that amount of data from the recovered
camshell.dll, floppy image, and compare it to the created camshell.dll,
camouflage install. I removed all data prior to 0000:02d6 from the camshell.dll I
recovered from the seized floppy. This file was named seizedcamshell. This
data is the HTML code previously displayed in figure 17. I then opened the
camshell.dll created by Camouflage during its install and performed the same
procedure, removing all data prior to 0000:02d6. This wipes out the exact same
amount of data. This file was named installedcamshell. With the files now saved,
I performed an md5 fingerprint.

Figure 21

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 23

Figure 21 shows that if that exact amount of data is removed then the files are
identical. For further verification I inserted the data prior to offset 0000:02d6 from
the seized camshell.dll into the now blank header of installedcamshell. I named
the original seized camshell with the html code intact reccam, and the installed
camshell.dll with the inserted HTML code installedcamshell1.

Figure 22

Figures 21 and 22 successfully demonstrate that camshell.dll from the floppy
image, and camshell.dll from the installed software are identical. Beyond the
md5 fingerprint the timeline activity from figures 9 and install information from
figure 15 both display identical dates and times. The identity of the program has
been revealed, and earlier I discussed the program’s ease of use in hiding a file
within another file. To determine whether or not it was used I decided to look
more closely at the documents from the seized floppy. I needed to look closely
at the documents contained on the seized floppy’s image. At this point it became
necessary to run strings against every file located on the disk. The relevant
discovery and output follows.

I started with the first file displayed in the forensic browser displayed in figure 8.
These documents appear to be copies of several internal Ballard industries
policies. The list of files on the floppy image is as follows:

1. _ndex.html (deleted)
2. Acceptable_Encryption_Policy.doc (intact)
3. CamShell.dll (deleted)
4. Information_Sensitivity_Policy.doc (intact)
5. Internal_Lab_Security_Policy.doc (intact)
6. Internal_Lab_Security_Policy1.doc (intact)

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 24

7. Password_Policy.doc (intact)
8. Remote_Acess_Policy.doc (intact)

Files 1 and 3 have been sufficiently analyzed, the remainder of my forensic effort
will focus on the other documents contained on the seized floppy. Files 2 and 4
display no unusual attributes when viewed in either their native format, Microsoft-
Word, or when strings is run against them. Document 5 displayed extended
characters after the normal MS-Office end of file registration tags. Document 6,
which has a remarkably similar name, has no such extended characters.
Documents 7 and 8 displayed significantly more extended characters, in addition
to having file sizes that are disproportionate for a text document of that length. A
sample of the extended characters follows:

Microsoft Word 10.0
Ballard
Cisco Systems, Inc.
Remote Access Policy
Title
Microsoft Word Document
MSWordDoc
Word.Document.8
Remote Access Policy
Normal.dot
Microsoft Word 10.0
Ballard
O6pQ
gW^b!
)AqXSh]
"`LJ
\N>)x)
NNVs
ZKfqjj
(J$?
nQh`n
;pt]`

Figure 23

Knowing the purpose of the Camouflage program and having found extended
data appended to three of the recovered documents, it is reasonable to assume
that Camouflage was used to embed data inside these files. In order to prove
this I exported the files from the floppy image and moved them to the workstation
where I installed Camouflage. Before moving the files, an md5sum was
performed, and the non-sterile workstation was air-gapped from the Ballard
network. Once the files were copied to the Windows workstation, md5
verification was performed. Being only somewhat familiar with the operation of
the program, I performed some research on the use of steganography tools and,
in particular, the use of Camouflage. I found an excellent articlexiii that described
the software and its use in detail. Following my research I proceeded to
uncamouflage the suspect files

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 25

Figure 24

Figure 24 displays the two documents with extremely large file sizes. Performing
a right-click and selecting Uncamouflage will display the following dialog box.

Figure 25

Figure 25 is displayed whether or not there is an actual password according to
the research I performed.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 26

Figure 26

Figure 26 demonstrates my attempts at guessing the password incorrectly. At
this point I referred to the frequently asked questions, FAQ, portion of the
author’s web site.

10. I've forgotten my password and can't uncamouflage a file. What can I do?

Camouflage always asks you for a password whether the file is camouflaged or not, or whether it is a camouflaged
file with a password or not. This is because Camouflage doesn't give the game away that a file may be camouflaged.
For security reasons we cannot release a program to reveal passwords in camouflaged files. If you forget your
password we can't usually help you.
Be careful when typing in passwords - check your CAPS LOCK because Camouflage passwords are case-sensitive.

The Author is stating that the password is encrypted and that they probably
cannot help. Proprietary encryption is usually fairly simple, I Camouflaged two
unrelated files and examined how the program stores and “encrypts the
password. I used no password on one file, and viewed the output with a hex
editor. I then did the same thing with the password aaa, and viewed the output.
The next step was to increment the password, by either character or number of
characters, e.g. aab or aaaa. Having done this I see that it stores the password
in the same place every time but it is also definitely scrambled or “encrypted.”
Many companies that make up their own encryption do very simple bit inversion,
or sometimes they will think of a simple algorithm like +3 -2 +4 and just keep
following that.

Here is a shot of one or two increments.

Figure 27

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 27

The left was when I used a and the right was when b was used. Performing this
numerous times with different permutations revealed the encryption algorithm.
The Algorithm is attached as Appendix A. I decided to take a closer look at all of
the documents to make sure I had not missed anything. Looking at our main
screen in Autopsy tells me a couple of things about two very similar files. Here is
the screen:

Figure 28

Figure 28 shows that they were written to the disk within two seconds of each
other, but Microsoft’s file naming abbreviation shows that Policy1 was actually
the original file. It is also obvious that the newer file is slightly bigger than the
original. I decided to see if it was camouflaged the same way. Viewing this
document in a hex editor, and comparing it with the broken encryption algorithm
revealed this file used no password.

Figure 29

Figure 29 was revealed when a blank password was used. Opportunity.txt was
embedded within the document. Clicking next produced the following dialog box,
where I chose the directory to save the embedded or hidden file.

Figure 30

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 28

Selecting the “Finish” button extracts both the hidden Opportunity.txt, and the
document to the selected directory. The output of Opportunity.txt follows:

 “I am willing to provide you with more information for a price. I have included a sample of our Client Authorized
Table database. I have also provided you with our latest schematics not yet available. They are available as we
discussed - "First Name".
My price is 5 million.

Robert J. Leszczynski”

Figure 31

Figure 31 reveals the intentions of Mr. Leszczynski, it also speaks of providing
schematics of a “not yet available” device. The next sentence speaks of how
they are available with the words First Name in quotations. “First Name” is
referring to the first name of the documents that have objects embedded or
“stegged” within them. This was determined both by breaking the password
algorithm, and by performing the uncamouflage process.

 When Uncamouflaged the Password_Policy document revealed several
items.

Figure 32

Figure 32 displays trade secrets embedded in a policy document. These
Pictures are of a formula, and two graphical representation of a PEM fuel cell.
Mr. Leszczynski was in possession of detailed diagrams of proprietary products
which were hidden inside of regular policy documents. These pictures would let
a competitor’s engineers duplicate our product very easily. Screenshots of the
revealed documents and images follow.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 29

Figure 33

Figure 34

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 30

Figure 35

Using the naming scheme utilized by Mr. Leszczynski, the password “Remote”
was used when uncamouflaging the Remote_Access_Policy document. A single
file was revealed, the screenshot follows.

Figure 36

The database revealed in figure 36 contains a list of clients with phone numbers
and accounts.

Figure 37

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 31

Figure 37 displays the most recent client list that was obtained. Mr. Leszczynski
used Camouflage to hide Ballard Industries trade secrets with the intention of
selling them to our competitor. Furthermore, he attempted to remove a client list
to enhance the competition’s ability to steal Ballard Industries active clients.

Examination Conclusion

Based on recent events, loss of sales and clients purchasing from Rift inc., it was
reasonable to assume that corporate espionage had taken place. The
Information Security Office has verified in this report that Mr. Leszczynski
intended to sell Ballard’s proprietary information. It is also reasonable to assume
that Mr. Leszczynski is responsible for the events pertaining to our recent loss of
customers. System Administrators throughout Ballard industries need to check
for the presence of camshell.dll or Camouflage on their Windows based systems.
All systems should be searched for CamShell.dll, and the ISO notified if it is
found. Additional research revealed that even if the software is uninstalled, the
registry keys remain. Having installed and removed the software in the forensics
lab a comprehensive list of instructions is being prepared for Ballard personnel.
In addition, I suggest the ISO perform forensics on any machine Mr. Leszczynski
had direct access to, and possibly any machines in spaces he has accessed
recently. These steps are necessary to adequately pursue the containment,
eradication and recovery phases of an incident. The Incident response
Procedure for Ballard industries should be invoked to provide full authority for the
ISO to continue this investigation. Mr. Leszczynski’s work computer and home
computer should also be analyzed to determine the extent of the damage. It may
be necessary for his home machine to be analyzed by members of local law
enforcement since it may be privately owned.

Legal Implications

The Legal implications section of this report is not intended as legal advice. This
section details the policy and procedure violations discovered during the forensic
analysis process. In addition to Ballard Industries policy and procedure violations,
it is possible that several laws were broken. According to the very documents Mr.
Leszczynski was hiding the proprietary information in he is subject to termination
and criminal/civil action. His employment can be terminated for using weak
passwords on all of his stolen/stegged files. Mr. Leszczynski violated the
password policy on all three files. Section 5.0 of each policy states, “Any
employee found to have violated this policy may be subject to disciplinary action,
up to and including termination of employment.” According to the Information
Sensitivity Policy, he is subject to civil and criminal proceedings based on
company policy. The Acceptable Use Policy from this company states the
following:

Abuse of policies or standards, abuse of IT resources, or abuse of other sites through the use of IT resources may
result in termination of access, disciplinary review, expulsion, termination of employment, legal action, and/or other

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 32

appropriate disciplinary action. Notification will be made to the appropriate office (e.g., appropriate office for student
conduct matters, Human Resources, General Counsel, the police department with campus jurisdiction) or local and
federal law enforcement agencies.

The definition of what’s acceptable is located in the same document.

(a) No one shall knowingly or willingly interfere with the security mechanisms or integrity of IT resources. Users shall
not attempt to circumvent data protection schemes or exploit security loopholes.
(b) No one shall knowingly create, install, exec, or distribute any malicious code or another surreptitiously destructive
program on any IT resource, regardless of the result.

In addition to violating company policy the following laws may have been broken:

The Federal Computer Fraud & Abuse Act
18 U.S.C. §1030(a)(2) & (c)(2)(B)(i)-(ii)

Criminal Copyright Laws Violations
18 U.S.C. 2319 & 17 U.S.C. 506a

Criminal Trade Secrets Violations
18 U.S.C. 1831, 1832

Ballard Industries must demonstrate loss of revenue totaling $5,000 to report
these losses as a felony. Based on the broad definition of “protected” computer
in The Federal Computer Fraud and Abuse Act, we can show that he intended to
defraud Ballard Industries of its proprietary design information and perhaps affect
interstate commerce. For federal prosecution the current minimum dollar value
needs to total $75,000. The ISO believes that Ballard industries has potentially
lost millions of dollars over the life of the products currently in use. These
thresholds having been met, I would advise turning this report over to a legal
representative to pursue compensation from Mr. Leszczynski, and perhaps Rift
inc..

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 33

Part 2–Option 1: Perform Forensic Analysis on a
System

A Touch of Superiority in Linux

I have a great story to tell about some systems that are being attacked/hacked
and what I am doing in conjunction with other campuses and law enforcement to
catch the person who is doing it.

Synopsis

Over the past several months, the Information Security Office has been noticing
an increase in compromises and we do not think it is simply because the
students have returned from their summer hiatus. Perhaps the most interesting
thing about this increase is that it affects only Unix/Linux platforms. Talk about a
group of Sysadmins who have become overconfident and have so loved telling
MS users “If you would just run a secure OS…”. I have actually been waiting for
a couple of years to see something like this. It is interesting that it finally
happened, but more interesting what is happening.

A group of four people from our Information Security Office was asked to attend a
security briefing at a federal government facility. We walked in, exchanged
hellos, and were then told of an ongoing problem where someone was
compromising super-computing centers and government facilities almost at will.
Worse than that was the taunting e-mail from the victims own server with a list of
IP addresses he “owned”. We were then given a list of our systems that had
been affected. Oh well, that is not embarrassing! As a college campus, we often
fight the perception of tighter security restricting academic freedom, or the ability
to perform research so we know we are a good target. The systems that were
compromised were all UNIX/Linux systems, and several of them had great
system administrators. Several portions of the ongoing investigation are
sensitive but I believe I can provide enough forensic detail to show what is being
done even though the perpetrator has been identified but not yet arrested. We
went through several machines at the beginning before we were able to establish
the hacker’s pattern. The following pages will detail how we have “fingerprinted”
his actions and are now prepared to help track what he does when the attacks
happen here.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 34

System Details

The machine I am using was acquired from a department with several thousand
students, and hundreds of employees. This machine was a departmental web,
file, and mail server with 70 GB of drive space running Red Hat 7.3. In addition
to serving the population while they are on campus, they are tasked with
providing these services as their constituents travel. This means the machine
must maintain a public IP address, as the current staff cannot adequately train its
personnel to insist on secure services. Red Hat 7.3 is quite old and outdated;
often system administrators will become comfortable with an operating system or
service and continue to use it despite it being vulnerable. The machine had only
two partitions of linux-ext3 they were / and /home. Slash is 7.5 GB, and the rest
was in /home. I will attach relevant screen shots after the system description.
The system is connected to our network via 100mb CAT5 with a public IP
address. The system administrator has at least two other major responsibilities
besides managing this aging server. Having multiple job titles is a philosophical
change we are pushing for. I remember when it was perfectly acceptable to be a
part time network/system administrator. There are still a lot of companies who
want their “security administrator” to also be the network person, and maybe the
applications person. These days, there is no way to keep up with the constant
barrage of application, server upgrades and vulnerabilities. We believe this
department, and hopefully others, will soon be employing someone full time in
the system administrator capacity. The following diagram demonstrates how this
server is connected to our network.

Figure 38

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 35

Hardware Seizure

The Information Security Office makes a practice of seizing the computer tower
or rack mount chassis for incidents that involve servers. This is especially true if
the system in question contains any confidential information such as SSN, credit
card numbers, FERPAxiv, HIPAAxv, or GLBAxvi information. The Central
Information Technology department has enough other servers and drive space
on campus to give administrators a safe place to maintain their data while we are
in possession of their machine. This provides a more efficient solution when
RAID arrays are employed, or if the server has several hard disks in it. The
system was “live” when it was encountered it so the disk imaging happened
immediately. This step will be detailed in the section titled image details.
Hardware is seized until multiple copies or disk images can be created, this done
to prevent the rebuilding of machines by system administrators. Because
machines are in short supply for smaller departments, sysadmins attempt to
return them to production status rapidly. Below is a sample of the evidence tag
collected from this system. In addition to the evidence tag, I will attach a chain of
custody as Appendix C without the identifying information.

Tag #: 503116
Description: Dell Power Edge 2300 running Red Hat Linux 7.3
3 SCSI HDDS w/ 36.4G each and 1 Ethernet card
Serial number verified against asset tag

Figure 39

The tag number matches the inventory number of that particular machine. It is
beneficial for our office to tie the evidence tag to the actual inventory maintained
by another office. This reduces our administrative overhead and allows for some
built-in redundancy. This allows the Information Security Office to have a
separate group that can verify what hardware was seized against a proprietary
asset tag. The proprietary asset tag inventory contains the packing slip, or a
copy, which contains items such as hard drive serial numbers and MAC
addresses from Ethernet cards.

The location of the victim machine, including the Ethernet port number, is noted
when filling out the description portion of the chain of custody paperwork. This
allows me to cross reference the system owner with the networking group who
has their own database of all port numbers on campus. This is another way to
make sure all of the data is accurate and double or triple checked by different
groups of people. One of the other nice things about different groups owning
these inventories and databases is that they can provide me with forensic
evidence without having to be brought into the investigation. This helps keep
only the people who need to know closest to the evidence further preventing
contamination.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 36

Image Media

I used dd to create the image of the media, I have found that the Helix CD
provided in class and also found at Drew Fahey’s websitexvii is absolutely the
best tool out there. The built in ability to use Netcat in the grab function is both
convenient, and forensically sound. This tool is cross-platform compatible and
capable of taking a live or dead image. This machine had been removed from
our network by removing the network cable. This is common practice among
system administrators who learn their system has been compromised. As stated
before, this image was live, so the CD was placed in the drive and the static
binaries used to perform the following functions. Static binaries are important
when making this case; I couldn’t use anything on the compromised system
since it could contaminate the evidence. This particular hacker likes to Trojan
some interesting things, and I feel it is best to consider nothing on the victim
machine usable as I collected my evidence. After placing the Helix CD in the
drive and mounting it, I created an image, transferred the image across the
network, and “fingerprinted” the image with an MD5sum. The commands were
as follows:

mount

fdisk -l

These commands were used to determine how the drive partitions were
structured.

md5sum /dev/sda6
(wait wait wait)

This command created an md5sum of the / partition of the raid array.

md5sum /dev/sda7
(go home take a nap)

This command created an md5sum of the /home partition of the raid array, these
were the only two partitions on the machine. The network cable was plugged in
and the interface enabled. Next I created the actual image using dd as follows:

dd if=/dev/sda6 | /mnt/cdrom/Static-Binaries/linux_x86/nc xxx.xxx.xxx.xxx 221

This command created a bit image of the drive and sent it to my forensics
workstation (xxx.xxx.xxx.xxx) on tcp port 221. I used dd to ensure a complete re-
creation of every bit on the drive. On the remote forensics workstation, I ran the
following command to create a netcat listener.

nc –l –p 221 > sda6slash
for the first partition

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 37

nc –l –p 221 > sda7home
for the /home partition

The same was done for the other partition on the drive:
dd if=/dev/sda7 | /mnt/cdrom/Static-Binaries/linux_x86/nc xxx.xxx.xxx.xxx 221

 After the creation/transmission of the image, I needed to make sure nothing was
“altered” as it traversed our network.

Figure 40 md5sum for the first partition.

Figure 41 md5sum for the second partition

Figure 42 Autopsy displaying the md5 for /dev/sda6.

Figure 43 Autopsy displaying md5 for /dev/sda7.

I checked the md5s every time I opened the case or moved the image at all. As
long as the md5 doesn’t change, the evidence has not been altered. As you can
see, I have chosen to use Autopsy for this investigation. I am more familiar with
Autopsy and I prefer to work in Linux for the speed and flexibility. Now that I
had a good image on my forensic system, I wanted the victim machine off the
network and stored until I am finished. This is always my recommendation to the
system owner, but in the end it is a business decision and I leave it up to them
whether or not to rebuild and return the machine to service. My recommendation
was to re-install the operating system, and apply our operating system hardening
procedures before it was given a public IP address. If we keep the machine,
hardware is maintained in an access controlled room that is also under video
surveillance. There is a 24x7 operations center directly across the hall to assist
with the physical security of seized evidence. Paper files are maintained in a
locked inventoried cabinet, with only members of the Information Security Office

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 38

possessing keys. The investigator or any member of the Information Security
Office can provide a viable chain of custody for any seized evidence in addition
to displaying if a copy of any paperwork was created.

Media Analysis

For analysis, I am going to use Autopsy and TSKxviii developed by Brian Carrier.
Autopsy leaves the image in a “clean” space. The images for Autopsy sit in their
own directory logs, reports, and the actual forensic tools stay in their own
directories and make no modifications to the actual dd image. This fact can be
verified by using the md5sum command at any time against your images. You
can, and should, check the md5 randomly to ensure your images have not been
tampered with.

This is the most heavily deleted area in the image; from here, I extracted some
key words to search and narrow my focus just a little. It was noted later in the
actual investigation that this user account appeared on some machines in other
departments. According to the system administrator this is a normal user with no
special permissions who never causes problems. This user’s name was
scattered throughout different directories and also appeared in areas that only
the root, or superuser, account should have access to.

I also want to see what programs are executing on startup and what’s living in
/etc. This step will help to establish how the hacker or hackers maintain access
after the machine is compromised. Finding this can also assist you in locating
the original compromise in many operating systems. As I looked through
/etc/rc.d I saw this deleted entry.

Figure 44

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 39

Someone deleted sshd, but according to the startup processes ssh was still
available when the machine started. This daemon, or service, being deleted at
some point yet still available is not a good sign. Nothing else in the startup
appeared abnormal. It runs httpd, sshd, and a few other normal processes.
Another deleted file I found in the aforementioned user’s home directory is called
Ettercapxix. Ettercap is a program that allows you to sniff a switched network. It
does this by ARP poisoningxx your switch. This lets the hacker pretend to be the
local network’s gateway. In essence, you become the path to the internet or
network for any user connected to that device. After finding Ettercap I performed
a search using the strings search. I found Ettercap in /var/tmp/Ettercap-0.6.b
and once inside that directory I found a file containing several employees’
usernames and passwords for a variety of different systems both on and off
campus. We currently do not require the use of secure protocols, but this
incident is changing that. Besides usernames and passwords, I was noticed our
public read write string for all of our network devices in the same file. I cannot
show a screen shot of the directory, it would require obfuscating too much data to
make it worth while. What I can say is that I see the 28th of the month a lot again.
This person has collected enough usernames and passwords that we could be in
serious trouble. In the same directory there was another file that was titled
ssh.passwords. Ninety-percent of all users on this campus use insecure
protocols when authenticating to machines around campus. The other ten
percent use SSH so if it has been trojaned our perpetrator will have a good
collection. This is one of the reasons not to trust anything on a victim machine.
If I had chosen not to respond in person, but had instead used SSH my account
information would have been compromised just like everyone else. The next
step was to check the /var/log directory and check wtmp. I found a critical piece
of evidence when I looked in that directory. I see files named wtmp, wtmp.1 and
wtmp.2. The most interesting thing is that wtmp.2 was deleted.

The last modified time was very near the 28th, close enough to make me really
zero in on that area of the timeline. Before that though I want to read through
these files and see who is logging on from where. We can do this because the
metadataxxi is intact. I can take that inode number and start looking around at
other nearby inodes since this one has not yet been overwritten. To sum up so
far, I noticed that user oleg2 was deleting a lot of information; much of the
deleting appears to be files created on the 28th of the month in question. Some
of the things modified/deleted were sshd and Ettercap. Ettercap was found to be
intact but buried in an obscure directory. Ettercap had been collecting
information, and the filename suggests it was all collected on the 28th. Now I dug
into the wtmp files to find out where oleg2, and other users, like to log in from.
The wtmp of a very busy machine can be extremely large, and have hundreds or
even thousands of login entries. I used the Unix command grep to pull out the
relevant entries but there was still a lot of information. The command grep is a
search command that looks for matching text. This can be used on files,

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 40

directories, and even running processes. The user in question tended to log in
from a workstation registered to him, sometimes a cable connection from his
house, and once from a machine in a different department. The login from the
external department occurred very near the 28th. I now wanted to focus more on
this user, and the days near the 28th. From past experience with older Linux
systems, I like to run strings against certain binaries. The two binaries I am
going to focus on are the ssh daemon, because it was deleted once, and
/sbin/init. Init is the process upon which every other process is dependant.
Since the machine was not running any abnormal processes when it was starting
up means we need to check closely the process that controls all other processes,
/sbin/init. The init file was full of foul language and terminology, this is evidence
of the suckit rootkitxxii. I now needed to check the MACtimes for init and try to
find out how and when suckit was installed.

I did this by taking a closer look at the timeline, the text file generated by Autopsy
was over 100 megabytes. This is an abnormally large timeline, which is
evidence of the machine having been in service for a long time. I will show the
most relevant pieces I found, and I will attach a good bit of what it contains. The
operating system appears to have been installed quite awhile ago, and was not
patched or updated near as often as it should have been As stated previously
this machine was in high demand by this department. It was used everyday by
many people, and provided many services.

Timeline Analysis

The timeline for this investigation was created as the image was being imported
into Autopsy. The timeline was generated using the following steps in the
Autopsy Forensic Browser. During the case creation Autopsy is instructing the
Sleuthkit to run commands. The same commands that recover deleted
information from available inodes, ils and fls, also output their findings in
MACtime format when the –m switch is used. By default Autopsy instructs
Sleuthkit to use the –m switch which outputs the data in MACtime format. The
commands ils and fls search allocate, unallocated, and unallocated metadata in
the image’s inodes. The output is a “body” file, then since the output was
generated in MACtime format, I tell Autopsy to generate an actual readable
timeline. This allowed me to view the Modified, Accessed and Changed times of
files and directories. Below are the most relevant excerpts from the timeline.

Sat Aug 28 2004 02:09:20
10080 m.. -/-rwxr-xr-x root/w root 866429 /usr/lib/apache/mod_rootme.soxxiii

The mod_rootme alerted me to a possible vulnerability in the version of the
Apache web server. Four seconds later I noticed another entry that seemed
suspicious

Sat Aug 28 2004 02:09:24

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 41

 0 .a. -/-rw-r--r-- root/w root 892930 /etc/httpd/conf/httpd.conf~ (deleted).

Httpd.conf is the configuration file for the web server. Altering, or in this case
deleting, this file can grant you additional permissions and control over this
service. The speed with which the httpd.conf file was deleted after the exploit
indicated that I was seeing a scripted action.

I used Google to perform some research on the file mod_rootme.so. A well
known hacker site provided the following description:

mod_rootme is a very cool module for the Apache 1.3 series that sets up a backdoor
inside of Apache where a simple GET request will allow a remote administrator the
ability to grab a root shell on the system without any logging.

This would indicate that the compromised system had been running a vulnerable
version of Apache. Navigating to the directory where Apache was installed
revealed that it was indeed running the 1.3 series which is vulnerable to this
exploit. A few seconds after those entries user oleg2 accessed and changed
his .bash history. This is where the operating system was storing the commands
executed by this user.

97 .ac -/-rw------- oleg2 users 1591311 /home/oleg2/.bash_history
42116 .ac -/-rw-r--r-- root/w root 75829 /usr/lib/cracklib_dict.pwi
828363 .ac -/-rw-r--r-- root/w root 75828 /usr/lib/cracklib_dict.pwd
1024 .ac -/-rw-r--r-- root/w root 75967 /usr/lib/cracklib_dict.hwm

These files were also created in rapid succession. The hacker had root and was
loding dictionaries in order to crack user’s passwords should it become
necessary to retain access in the future.

Sat Aug 28 2004 02:18:54 689038 m.c -/-rw-r--r-- root/w root 12292 /var/tmp/ettercap-
0.6.b.tar.gz
Sat Aug 28 2004 02:18:57
 3893 .ac -/-rw-r--r-- 1000 users 727159 /var/tmp/ettercap-0.6.b/src/include/ec_gtk.h
 1874 ..c -/-rw-r--r-- 1000 users 256141 /var/tmp/ettercap-
0.6.b/src/ec_dissector_nntp.c
 365 ..c -/-rw-r--r-- 1000 users 1880190 /var/tmp/ettercap-
0.6.b/plugins/imp/Makefile.in
 529 ..c -/-rw-r--r-- 1000 users 1880181 /var/tmp/ettercap-
0.6.b/plugins/Makefile.in
 6722 .ac -/-rw-r--r-- 1000 users 596097 /var/tmp/ettercap-
0.6.b/src/missing/include/if_arp.h
 6438 ..c -/-rw-r--r-- 1000 users 256128 /var/tmp/ettercap-
0.6.b/src/ec_dissector_bgp.c

The above excerpt shows Ettercap being loaded and extracted onto the
computer about one minute later. The timeline was more than 500 pages long,
and I was unable to ascertain when the operating system was installed. For this
investigation that was not very useful. There was no evidence of any significant
operating system or major updates until one day after the system administrator

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 42

was contacted by the Information Security Office. The Sysadmin then made a
major update to the system. Timeline output verification follows:

Wed Sep 08 2004 07:17:40 17 .a. -/lrwxrwxrwx root/w root 616734 /usr/lib/kde2-compat/lib/libkdesu.so.1 ->
libkdesu.so.1.0.0
 15 .a. -/lrwxrwxrwx root/w root 32868 /lib/libanl.so.1 -> libanl-2.2.5.so
 15 .a. -/lrwxrwxrwx root/w root 393431 /usr/lib/kde1-compat/lib/libkfm.so.2 -> libkfm.so.2.0.0
 23 .a. -/lrwxrwxrwx root/w root 616768 /usr/lib/kde2-compat/lib/libkmedia2_idl.so.0 ->
libkmedia2_idl.so.0.0.0
 13 .a. -/lrwxrwxrwx root/w root 32873 /lib/libm.so.6 -> libm-2.2.5.so
 19 .a. -/lrwxrwxrwx root/w root 32888 /lib/libthread_db.so.1 -> libthread_db-1.0.so
 24 .a. -/lrwxrwxrwx root/w root 616700 /usr/lib/kde2-compat/lib/libartsflow_idl.so.0 ->
libartsflow_idl.so.0.0.0
 16 .a. -/lrwxrwxrwx root/w root 616676 /usr/lib/kde2-compat/lib/libDCOP.so.1 ->
libDCOP.so.1.0.0
 31 .a. -/lrwxrwxrwx root/w root 616730 /usr/lib/kde2-compat/lib/libkdeprint_management.so.0
-> libkdeprint_management.so.0.0.1
 22 .a. -/lrwxrwxrwx root/w root 32828 /lib/libnss_compat.so.2 -> libnss_compat-2.2.5.so
 15 .a. -/lrwxrwxrwx root/w root 616752 /usr/lib/kde2-compat/lib/libkio.so.3 -> libkio.so.3.0.0
 19 .a. -/lrwxrwxrwx root/w root 616804 /usr/lib/kde2-compat/lib/libmcop_mt.so.0 ->
libmcop_mt.so.0.0.0
 17 .a. -/lrwxrwxrwx root/w root 393429 /usr/lib/kde1-compat/lib/libkfile.so.2 -> libkfile.so.2.0.0
 17 .a. -/lrwxrwxrwx root/w root 32885 /lib/libpthread.so.0 -> libpthread-0.9.so
 19 .a. -/lrwxrwxrwx root/w root 393421 /usr/lib/kde1-compat/lib/libjscript.so.2 ->
libjscript.so.2.0.0

This was the first of several screens of data that detail the system undergoing the
only major update I could find in the timeline. This happened after the sysadmin
was instructed to not change anything on the machine.

Recover Deleted Files

The first thing I like to do with Autopsy is recover the deleted files in the file
analysis window. The deleted files are actually recovered when the case is being
created, and the image I created in the previous section is being imported into
the program. The deleted files are recovered when the Autopsy Forensic
Browser instructs Sleuthkit to run commands “under the hood.” The commands
that are most critical when importing the image are ils and fls. The command fls
searches inode, or disk clusters and displays the data that was stored there, and
the command ils stands for Inode Lister it will be used to look for possible deleted
data, and recover it. These two commands are how I recovered deleted data,
providing that the deleted area has not yet been overwritten with new data. As I
stated previously this image is very large, as I examined the deleted files I
noticed a particular home area that is missing a lot of data. Because of the size
of the image and the fact that it was so highly used it was necessary to try and
zero in on certain deleted areas. I chose to look for dense concentrations of
deleted data, either based on the date deleted or the location the files were
deleted from.

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 43

Figure 45

Several files appear to have been deleted on the 28th of the month and all most
of the deletion is in this user’s home directory. Autopsy can either show the
investigator all of the deleted files on one page, or they can be displayed where
they were last residing. Figure 44 is a display of deleted files that have been
recovered, and are being displayed where they last resided. The image and
amount of deleted files made it nearly impossible to use the function Autopsy
provides of sorting all deleted files to one screen. This was inconvenient, but
ended up having little effect on the overall analysis. Having used Autopsy to sort
Sleuthkit’s recovery of the deleted files I proceeded to the analysis of the actual
media. At this point the recovery work was done, but the analysis needed to be
included with other portions to make them relevant.

Searches

Performing searches on such a large image allowed me to parse through an
enormous amount of data quite rapidly. The timeline and media analysis
portions gave me several terms and phrases to search for. I used the keywords,
rootme and cracklib to perform strings and grep searches throughout the image.
The Autopsy Forensic Browser provides a user-friendly interface in which to run
strings and grep searches. The ability to run these searches was especially
beneficial during the media analysis section when I discovered the presence of
Ettercap. It was again beneficial after finding the apache exploit I could then
grep search throughout the entire image for other occurrences of those exploits.
This particular hacker likes to collect as many usernames and passwords as
possible so that he can exploit as many machines and accounts as possible.
This allows you to retain access in case you exploit is discovered and cleaned up.
That is the only reason to run crack programs against /etc/passwd and
/etc/shadow when you are already root. I decided to run johnxxiv against the
unshadowed /etc/passwd and /etc/shadow files. I found a lot of default system
passwords, and many plain dictionary words. To see exactly what has been
trojaned I want to run chkrootkit, and get a comprehensive listing. Based on
other information collected I also want to take a look at that other system on
campus where I saw oleg2 log in from. I can also now use the terms Ettercap,
oleg2, and the script names I found to conduct keyword searches on the images I

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 44

took. The oleg2 account was targeted because that user was very busy. The
accessing of Oleg2’ bash history in the timeline analysis portion must have
shown the hacker that this person was on the system often, and was quite busy
while logged in. This makes that account and that home area an excellent place
to store files and a good account to run commands from. The bash history can
only hold a certain amount of data and is constantly being overwritten as new
data is being added.

The results of some of the searches performed are discussed in the media
analysis section of this paper.

Conclusion

When the Information Security Office went to investigate that machine prior to
this machine being finished we couldn’t believe what we found. Linux/UNIX
machines all over the campus are hacked in a similar manner. This hacker has
some interesting techniques that allow us to “fingerprint” his/her actions. They
have Ettercap hidden with a trojaned sshd running. Almost all of them have the
suckit rootkit as evidenced in /sbin/init. It has been determined by the consortium
I am participating with that this person is using our campus as “throw away” hosts.
We are a hop, and a good one, for him/them to acquire higher profile targets.
The fact that we are a throw away host is evidenced by the fact that usernames
and passwords are collected, yet data is never altered or destroyed. This allows
him to have thousands of legitimate usernames and passwords to hundreds of
different machines. Even if we found all of the machines and rebuilt the entire
OS he could still SSH into any one of them. We would have to eradicate every
trace and simultaneously have 25,000 people change their passwords. The
hacker leaves other interesting clues, such as sometimes wtmp files are deleted,
and other times they are not. This would tend to point towards there possibly
being more than one hacker. So far this person or group of people has used the
exact same tools on every machine. Things are not always in the same place,
but some things are always the same. The hacker is very agile once he is on a
system, he/she gives all scripts and tools a one character name allowing for
great speed in compromising a system or network. A colleague from another
compromised campus related that the hacker once started a talk session with
him and was actively hacking the system as he taunted the sysadmin. This was
particularly impressive since the sysadmin claimed he could touch type about 80
words per minute and he could not keep up with this hacker. Another colleague
from a different location watched as the hacker entered a new system that was
set as a trap and had it successfully compromised within 15 seconds and had
moved on to the next target. The honey pot machine was also running an
innocuously named script that was almost immediately discovered and
terminated by the hacker. The script was designed to transfer all keystrokes to a
remote location. The hacker or group of hackers has another identifying
trademark; he/they seem completely unaware of some other aspects of
computing and networking. For example he seems to have no knowledge of the

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 45

concept of syslog and syslogd, or the ability to passively sniff a network from a
span port. Those two factors are what have allowed us to gain the most ground
on an otherwise very impressive perpetrator. Stolen accounts and the presence
Ettercap are also viable fingerprints. The amount of stolen accounts makes this
hacker very difficult to track. With thousands of possibly compromised accounts
the hacker or hackers no longer have to use an exploit to gain access to systems
on our campus. The can make legitimate logins to several systems. To mitigate
this particular problem, a plan is in the works to have more than 25,000 users
change their passwords. These new passwords will also have to meet strength
checking requirements. In addition to all new passwords, insecure protocols will
soon be removed from the network. These are two major steps towards a good
defense in depth policy that should help to secure the information technology
resources on this campus.

In all more than 15 machines at this location have been successfully
compromised by this hacker or group of hackers. Every new compromised
machine is now considered part of this case unless it can be ruled out. We have
been working closely with law enforcement and they now know whom this person
is and expect an arrest within weeks

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 46

Appendices

Appendix A

Lame Camouflage Password Scheme
A A A A A A A A
43 D4 3B 63 4D E7 55 A0

B B B B B B B B
40 D7 38 60 4E EF 56 A3

C C C C C C C C
41 D6 39 61 4F E5 57 A2

D D D D D D D D
46 D1 3E 66 48 E2 50 A5

E E E E E E E E
47 D0 3F 67 49 E3 51 A4

F F F F F F F F
44 D3 3C 64 4A EO 52 A7

G G G G G G G G
45 D2 3D 65 4B E1 53 A6

H H H H H H H H
4A DD 32 6A 44 EE 5C A9

I I I I I I I I
4B DC 33 6B 45 EF 5D A8

J J J J J J J J
48 DF 30 68 46 EC 5E AB

K K K K K K K K
49 DE 31 69 47 ED 5F AA

L L L L L L L L
4E D9 36 6E 40 EA 58 AD

M M M M M M M M
4F D8 37 6F 41 EB 59 AC

N N N N N N N N
4C DB 34 6C 42 E8 5A AF

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 47

O O O O O O O O
4D DA 35 6D 43 E9 5B AE

P P P P P P P P
52 C5 2A 72 5C F6 44 B1

Q Q Q Q Q Q Q Q
53 C4 2B 73 5D F7 45 B0

R R R R R R R R
50 C7 28 70 5E F4 46 B3

S S S S S S S S
51 C6 29 71 5F F5 47 B2

T T T T T T T T
56 C1 2E 76 58 F2 40 B5

U U U U U U U U
57 C0 2F 77 59 F3 41 B4

V V V V V V V V
54 C3 2C 74 5A F0 42 B7

W W W W W W W W
55 C2 2D 75 5B F1 43 B6

X X X X X X X X
5A CD 22 7A 54 FE 4C B9

Y Y Y Y Y Y Y Y
5B CC 23 7B 55 FF 4D B8

Z Z Z Z Z Z Z Z
58 CF 20 78 56 FC 4E BB

a a a a a a a a
63 F4 1B 43 6D C7 75 80

b b b b b b b b

c c c c c c c c

d d d d d d d d

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 48

66 F1 1E 46 68 C2 70 85

e e e e e e e e
67 F0 1F 47 69 C3 71 84

f f f f f f f f

g g g g g g g g

h h h h h h h h

i i i i i i i i

j j j j j j j j

k k k k k k k k

l l l l l l l l

m m m m m m m m
6F F8 17 4F 61 CD 79 8C

n n n n n n n n

o o o o o o o o
6D FA 15 4D 63 C9 7B 8E

p p p p p p p p

q q q q q q q q

r r r r r r r r
70 e7 08 5O 7E D4 66 93

s s s s s s s s

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 49

71 E6 09 51 7F D5 67 92

t t t t t t t t
76 E1 OE 56 78 D2 60 95

u u u u u u u u

v v v v v v v v

w w w w w w w w
75 E2 0D 55 7B D1 63 96

x x x x x x x x

y y y y y y y y

z z z z z z z z

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 50

8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9

.

! ! ! ! ! ! ! !

? ? ? ? ? ? ? ?

1 2 3 4 5 6 7 8
P a s s w o r d
52 F4 09 51 7B C9 66 85 -3jpg

1 2 3 4 5 6
R e m o t e
50 F0 17 4D 78 C3 –Access database with list of clients

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 51

Appendix B

Timeline excerpts

91181 m.c -/-rw-r--r-- root/w root 12460 /var/tmp/taperaSXULm
(deleted-realloc)
31 m.c -/-rw-r--r-- root/w root 12457 /lib/modules/2.4.18-
3smp/modules.generic_string
147 m.c -/-rw-r--r-- root/w root 12462 /lib/modules/2.4.18-
3smp/modules.ieee1394map
8257 m.c -/-rw-r--r-- root/w root 12459 /var/tmp/taperIQ9NJH (deleted-
realloc)
31 m.c -/-rw-r--r-- root/w root 12457 /var/tmp/taper11DvVK (deleted-
realloc)
4920 .a. -/-rw-r--r-- root/w root 1022124 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_red.o
15556 .a. -/-rw-r--r-- root/w root 211109 /lib/modules/2.4.18-
3smp/kernel/net/wanrouter/wanrouter.o
5244 .a. -/-rw-r--r-- root/w root 1022126 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_tbf.o
6988 .a. -/-rw-r--r-- root/w root 1022121 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_gred.o
7144 .a. -/-rw-r--r-- root/w root 1022127 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_teql.o
93938 m.c -/-rw-r--r-- root/w root 12456 /lib/modules/2.4.18-
3smp/modules.dep
6228 .a. -/-rw-r--r-- root/w root 1022112 /lib/modules/2.4.18-
3smp/kernel/net/sched/cls_fw.o
8544 .a. -/-rw-r--r-- root/w root 1022117 /lib/modules/2.4.18-
3smp/kernel/net/sched/cls_u32.o
4092 .a. -/-rw-r--r-- root/w root 1022122 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_ingress.o
93938 m.c -/-rw-r--r-- root/w root 12456 /var/tmp/taperGbGYOZ
(deleted-realloc)
29 m.c -/-rw-r--r-- root/w root 12461 /var/tmp/taperTaybgc (deleted-
realloc)
166259 .a. -/-rw-r--r-- root/w root 1050772 /lib/modules/2.4.18-
3smp/kernel/net/tux/tux.o
29 m.c -/-rw-r--r-- root/w root 12461 /lib/modules/2.4.18-
3smp/modules.parportmap
60957 m.c -/-rw-r--r-- root/w root 12458 /var/tmp/taperaS8d0v (deleted-
realloc)
99566 .a. -/-rw-r--r-- root/w root 266324 /lib/modules/2.4.18-
3smp/kernel/net/sunrpc/sunrpc.o
60401 .a. -/-rw-r--r-- root/w root 1020025 /lib/modules/2.4.18-
3smp/kernel/net/rose/rose.o

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 52

8257 m.c -/-rw-r--r-- root/w root 12459 /lib/modules/2.4.18-
3smp/modules.isapnpmap
18296 .a. -/-rw-r--r-- root/w root 1022118 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_cbq.o
7584 .a. -/-rw-r--r-- root/w root 1022116 /lib/modules/2.4.18-
3smp/kernel/net/sched/cls_tcindex.o
24 m.c -/-rw-r--r-- root/w root 12463 /var/tmp/taperbHkObR (deleted-
realloc)
6752 .a. -/-rw-r--r-- root/w root 1022119 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_csz.o
147 m.c -/-rw-r--r-- root/w root 12462 /var/tmp/taperQGRnJ1 (deleted-
realloc)
6168 .a. -/-rw-r--r-- root/w root 1022125 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_sfq.o
24 m.c -/-rw-r--r-- root/w root 12463 /lib/modules/2.4.18-
3smp/modules.pnpbiosmap
91181 m.c -/-rw-r--r-- root/w root 12460 /lib/modules/2.4.18-
3smp/modules.usbmap
60957 m.c -/-rw-r--r-- root/w root 12458 /lib/modules/2.4.18-
3smp/modules.pcimap
8392 .a. -/-rw-r--r-- root/w root 1022115 /lib/modules/2.4.18-
3smp/kernel/net/sched/cls_rsvp6.o
5796 .a. -/-rw-r--r-- root/w root 1022123 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_prio.o
7192 .a. -/-rw-r--r-- root/w root 1022120 /lib/modules/2.4.18-
3smp/kernel/net/sched/sch_dsmark.o
8588 .a. -/-rw-r--r-- root/w root 1022113 /lib/modules/2.4.18-
3smp/kernel/net/sched/cls_route.o
8196 .a. -/-rw-r--r-- root/w root 1022114 /lib/modules/2.4.18-
3smp/kernel/net/sched/cls_rsvp.o

Tue Mar 23 2004 15:24:49 46952 .a. -/-rwxr-xr-x root/w root 63009
/usr/bin/sftp
Tue Mar 23 2004 15:26:14 1970 .a. -/-rw-r--r-- oleg2 users 1914883
/home/oleg2/Build/Makefile.bck
12288 .a. -/-rw------- oleg2 users 1914884
/home/oleg2/Build/.Makefile.swp
Tue Mar 23 2004 15:28:11 12288 .a. -/-rw------- oleg2 users 1916948
/home/oleg2/Build/Source/.ds.swp
Tue Mar 23 2004 15:28:13 20480 .a. -/-rw------- oleg2 users 1916975
/home/oleg2/Build/Source/.sigeom.F.swe
16384 .a. -/-rw------- oleg2 users 1916977
/home/oleg2/Build/Source/.sigeom.F.swc
24576 .a. -/-rw------- oleg2 users 1916974
/home/oleg2/Build/Source/.sigeom.F.swf

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 53

28672 .a. -/-rw------- oleg2 users 1916978
/home/oleg2/Build/Source/.sigeom.F.swb
3536 .a. -/-rw-r--r-- oleg2 users 1916979
/home/oleg2/Build/Source/china_ggckov.F_china
20480 .a. -/-rw------- oleg2 users 1916976
/home/oleg2/Build/Source/.sigeom.F.swd
Tue Mar 23 2004 15:28:14 51299 .a. -/-rw-r--r-- oleg2 users 1916989
/home/oleg2/Build/Source/pmtnew.F~
24576 .a. -/-rw------- oleg2 users 1916982
/home/oleg2/Build/Source/.sigeom.F.swa
48892 .a. -/-rw-r--r-- oleg2 users 1916987
/home/oleg2/Build/Source/pmt20new.F~
12288 .a. -/-rw------- oleg2 users 1916990
/home/oleg2/Build/Source/.singer.F.swp
16384 .a. -/-rw------- oleg2 users 1916984
/home/oleg2/Build/Source/.gustep.F.swp
Tue Mar 23 2004 15:28:15 14587 .a. -/-rw-r--r-- oleg2 users 1916993
/home/oleg2/Build/Source/ed.hup
20480 .a. -/-rw------- oleg2 users 1916994
/home/oleg2/Build/Source/.sigeom.F.swp
24576 .a. -/-rw------- oleg2 users 1916997
/home/oleg2/Build/Source/.sigeom.F.swm
20480 .a. -/-rw------- oleg2 users 1916999
/home/oleg2/Build/Source/.sigeom.F.swl
20480 .a. -/-rw------- oleg2 users 1917001
/home/oleg2/Build/Source/.sigeom.F.swj
24576 .a. -/-rw------- oleg2 users 1917002
/home/oleg2/Build/Source/.sigeom.F.swi
16384 .a. -/-rw------- oleg2 users 1917000
/home/oleg2/Build/Source/.sigeom.F.swk
24576 .a. -/-rw------- oleg2 users 1916995
/home/oleg2/Build/Source/.sigeom.F.swo
20480 .a. -/-rw------- oleg2 users 1916996
/home/oleg2/Build/Source/.sigeom.F.swn
24576 .a. -/-rw------- oleg2 users 1917003
/home/oleg2/Build/Source/.sigeom.F.swh
17 .a. -/lrwxrwxrwx root/w root 743463 /etc/rc.d/rc6.d/K20rusersd -
> ../init.d/rusersd
14 .a. -/lrwxrwxrwx root/w root 743669 /etc/rc.d/rc6.d/K25sshd -
> ../init.d/sshd
18 .a. -/lrwxrwxrwx root/w root 743430 /etc/rc.d/rc6.d/K05keytable -
> ../init.d/keytable
18 .a. -/lrwxrwxrwx root/w root 743466 /etc/rc.d/rc6.d/K30sendmail -
> ../init.d/sendmail
16 .a. -/lrwxrwxrwx root/w root 743464 /etc/rc.d/rc6.d/K20rstatd -
> ../init.d/rstatd

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 54

20 .a. -/lrwxrwxrwx root/w root 743620 /etc/rc.d/rc6.d/K44rawdevices -
> ../init.d/rawdevices
19 .a. -/lrwxrwxrwx root/w root 743453 /etc/rc.d/rc6.d/K00linuxconf -
> ../init.d/linuxconf
13 .a. -/lrwxrwxrwx root/w root 743452 /etc/rc.d/rc6.d/K35smb -
> ../init.d/smb
20 .a. -/lrwxrwxrwx root/w root 743629 /etc/rc.d/rc6.d/K15postgresql -
> ../init.d/postgresql
15 .a. -/lrwxrwxrwx root/w root 743426 /etc/rc.d/rc6.d/K15httpd -
> ../init.d/httpd
19 .a. -/lrwxrwxrwx root/w root 743625 /etc/rc.d/rc6.d/K50snmptrapd -
> ../init.d/snmptrapd
14952 .a. -/-rwxr-xr-x root/w root 45153 /sbin/shutdown
15 .a. -/lrwxrwxrwx root/w root 743429 /etc/rc.d/rc6.d/K45named -
> ../init.d/named
16 .a. -/lrwxrwxrwx root/w root 743621 /etc/rc.d/rc6.d/K50xinetd -
> ../init.d/xinetd
13 .a. -/lrwxrwxrwx root/w root 743482 /etc/rc.d/rc6.d/K10xfs -
> ../init.d/xfs
15 .a. -/lrwxrwxrwx root/w root 743465 /etc/rc.d/rc6.d/K20rwhod -
> ../init.d/rwhod
15 .a. -/lrwxrwxrwx root/w root 743480 /etc/rc.d/rc6.d/K50snmpd -
> ../init.d/snmpd
13 .a. -/lrwxrwxrwx root/w root 743431 /etc/rc.d/rc6.d/K15gpm -
> ../init.d/gpm
13 .a. -/lrwxrwxrwx root/w root 743451 /etc/rc.d/rc6.d/K20nfs -
> ../init.d/nfs
15 .a. -/lrwxrwxrwx root/w root 743461 /etc/rc.d/rc6.d/K15sound -
> ../init.d/sound

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 55

Appendix C

Chain of Custody

CHAIN OF CUSTODY

Tag #: _____________________________________

Description:

__

__

--

Name of Delivering: ___

Signature and Date: _______________________________________ _____________

Name of Receiving: ___

Signature and Date: _______________________________________ _____________

Comments:

__

__

Name of Delivering: ___

Signature and Date: _______________________________________ _____________

Name of Receiving: ___

Signature and Date: _______________________________________ _____________

Comments:

__

__

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 56

Appendix D

Evidence tag example

Tag #:

Description:

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 57

References

i Web definition of write protect. URL:
 http://www.webopedia.com/TERM/w/write_protect.html

ii Unix command definition: mkdosfs, URL:
 http://www.linuxvalley.it/encyclopedia/ldp/manpage/man8/mkfs.msdos.8.php (27 February 1997)

iii Unix Command definition: mount, URL:
 http://www.linuxvalley.it/encyclopedia/ldp/manpage/man8/mount.8.php (14 September 1997)

iv Unix Command definition: dd, URL:
 http://encyclopedia.thefreedictionary.com/Dd%20(Unix)

v Web definition: md5, URL:
 http://isp.webopedia.com/TERM/M/md5.html

vi Software reference: The SleuthKit and Autopsy by Brian Carried. URL:
http://www.sleuthkit.org/

vii Software reference: The Forensic ToolKit by Accessdata, URL:
 http://www.accessdata.com/Product04_Overview.htm?ProductNum=04

viii web definition: dll, URL:
 http://www.pace.ch/cours/glossary.htm

ix Search Engine; URL:
 http://www.google.com

x Specific dll definition: msvbm60.dll, URL:
 http://www.liutilities.com/products/wintaskspro/dlllibrary/msvbvm60/

xi Google search for definition: steganography, URL:
 http://www.google.com/search?hl=en&lr=&oi=defmore&q=define:Steganography

xii Software reference: Helix by Drew Fahey e-fense inc, URL:
 http://www.e-fense.com/helix/

xiii Web reference: steganography and Camouflage by Guillermito URL:
 http://www.guillermito2.net/stegano/camouflage/ (, September 16th 2002)

xiv Web definition: FERPA, URL:
 http://www.chadd.org/webpage.cfm?cat_id=23

xv Web definition: HIPAA, URL:
 http://www.iid.state.ia.us/division/consumer/terms/default.asp#H

xvi Web definition: Gramm-Leach-Bliley Act, URL:
 http://www.wordiq.com/definition/Gramm-Leach-Bliley_Act

xvii Software reference: Helix by Drew Fahey e-fense inc., URL:
http://www.e-fense.com/

©
 S

A
N

S
In

st
itu

te
 2

00

 5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2005 Author retains full rights.
 58

xviii Software reference: The SleuthKit and Autopsy by Brian Carried. URL:
http://www.sleuthkit.org

xix Software reference: Ettercap by Alberto Ornaghi and Marco Valleri, URL:
http://ettercap.sourceforge.net/

xx Web definition: ARP spoofing/poisoning, URL:
http://www.webopedia.com/TERM/A/ARP_spoofing.html

xxi Web definition: Metadata, URL:
http://www.free-definition.com/Metadata.html

xxii The Honeynet Project – Scan of the Month #29 URL:
http://www.sleuthkit.org/case/sotm_29/output/sk.txt

xxiii Exploit definition: Apache mod_rootme, URL:
 http://www.networkscanning.com/Apache-mod-rootme-Backdoor-VSS_13644.html

xxiv Web definition: Password cracker John the Ripper, URL:
 http://www.openwall.com/john/

