
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

1

GCFA
Certification

Practical Assignment 2.0

Michael Halm
March 1, 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

2

Table of Contents
Table of Contents 2
Bookkeeping 3
Summary Findings 4
Methodology 5
Fsstat 7
Timeline Creation and Analysis 8
Strings 11
File Listing 11
Recovering Files from the Image 12
her.doc 13
hey.doc 13
coffee.doc 13
WinPcap_3_1_beta_3.exe 14
_apture 17
_ap.gif 18
WinDump.exe 18
Recommendations 20
Investigation Round 2 20
SNMP packets 23
Recommendations, Round 2 24
References……………………………………………………………………………..29
For Further Information……………………………………………………………….29
Appendix A, Contents of Timeline.all………………………………………………..29

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

3

Bookkeeping

This investigation was conducted primarily on a Gateway laptop with 500
MB RAM. The operating system was Fedora Core 3. Aside from standard Linux
command line utilities such as file and strings, most of the tools used were
from The Sleuthkit, which is available at http://www.sleuthkit.org/. Autopsy was
installed, but because the image being investigated was so small and simple it
was never used.

I have followed some formatting conventions for clarity’s sake. Very short
command line strings may be in quotation marks –“c:\>md5sum file.doc.” These
were entered into the text of this document manually. Most command line input
and output is in text boxes. In all cases, these were copied directly from the
terminal window. During an investigation, it is my habit to use a terminal window
with a large buffer and copy everything from this window into a text file. I find this
more dependable than counting on my memory or notes alone.

The contents of text documents, when not in an image of a screenshot,
are in courier new font, 10 points. Command line tools I used are in bold
type - strings, md5sum. Special attention should be given to the names of files
extracted or recovered from the USB image. Some of them have common
generic names such as “map” and “capture.” Sometimes I must compare these
files to other files of the same name. Throughout this document when I am
referring to a file extracted or recovered from the USB image, the filename will
be underscored. If the word is not underscored, then it is either a file not
obtained from the USB drive, or it is not being used as a filename at all.

At times it was necessary to test code on a Windows box. For this
purpose a generic PC was installed with a fresh copy of Windows XP, patched
up to date, with no extra software installed aside from Antivirus. This same box
was used to perform test captures of network traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

4

Summary Findings

Leila Conlay has complained of receiving a series of increasingly
disturbing e-mails from Robert Lawrence. In addition he turned up in a coffee
shop under circumstances which warranted an investigation by corporate
security. Corporate security gave me a USB drive to examine in support of their
investigation. So what does the content of the USB drive have to do with the
complaint?

First there are three Word documents on the drive which seem to contain
the bodies of the e-mails Leila received. The first, written on the morning of
Monday, Oct 25th, is friendly in tone. The second, written the next morning, is
defensive. The third document, written on Thursday evening, is creepy and
threatening. Hidden data that MS Word embeds in documents shows that these
were written using a copy of MS Word registered to Robert Lawrence.

Examination of the USB drive also found four deleted files, three of which
were recoverable. Two of these files were programs which together enable the
user of a Windows computer to perform a wiretap of network communications.
These programs were used to intercept communications that Leila Conway sent
on Thursday Oct 28, including an e-mail, and store it in a capture file. This
capture file was also recovered from the USB drive. In the intercepted e-mail,
Leila arranges to meet a friend at a coffee shop. The final deleted file on the
USB drive is a map showing the location of this coffee shop.

The evidence suggests but does not prove that Robert Lawrence is
responsible for all of these files, and that he is guilty of performing an illegal
wiretap, and that he used the information thus gathered to intrude on Leila
Conlay's date at the coffee shop.

However, there are a number of problems and inconsistencies with this
theory. None are fatal to it, but further investigation is necessary.

Finally, there is evidence suggestive, but not conclusive that an attempt
was made to tamper with the router in the sales office.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

5

Methodology

I downloaded the gzipped file GCFAPractical2.0-USBImageAndInfo.zip.gz
from the SANS web site. I ran gunzip -l on the archive to find out what files it
contained and also as a preliminary check that the download was successful.
The archive contained a single zipped file – GCFAPractical2.0-
USBImageAndInfo.zip. I extracted the zip file. I then ran unzip on the file, but got
an error message.

I ran the file program on GCFAPractical2.0-USBImageAndInfo.zip. File is
a program that reads a file's header and footer and compares them to a rather
extensive database of known file forms. It is a good first step when attempting to
identify an unknown file, or finding out why a “.zip” file won't unzip. File gave the
following output: “GCFAPractical2.0-USBImageAndInfo.zip: x86 boot sector. “

This suggested that the file was the disk image. I ran md5sum on the file.
The resultant hash was identical to the hash given in at the end of the case
synopsis, as seen in this screenshot:

This is a good time for a quick explanation of md5sums - what they are
and why we use them. The md5sum algorithm is described in detail in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

6

RFC1321.1 It was created to confirm the identity of files for digital commerce.
The algorithm divides the file into portions, performs complex one-way
mathematical functions on the portions of the file and recombines the results to
create a digital “signature” for the file. The likelihood of two files having identical
md5sum signatures is sufficiently remote (264) that US courts have accepted
matching md5sum signatures as proof that two files are identical. For this
reason, the first procedure with any file that may be evidence is to take an
md5sum of the file. The last procedure in examining such a file is to take
another md5sum and compare it to the first. Altering a single bit of the file will
result in the sums not matching. If the sums match, we know we have not
inadvertently altered the evidence.

GCFAPractical2.0-USBImageAndInfo.zip is the disk image. It is the
entire contents of the physical hard drive (including areas that contain no files)
copied bit by bit and stored as a file. However, computers do not store files
directly on a raw disk. First they create a section or sections (partitions) on the
raw disk and prepare these partitions (format them) to store files. Our next step
is to identify and extract any data partitions in this raw image for examination.
Mmls is a program that will examine a physical disk or raw disk image and
identify the types and locations of partitions. Mmls must be told to search for
partitions of a given type (operating system). If you tell it to search for partitions
of an operating system for which no partitions are present it will simply return an
error message. Given the prevalence of Windows, especially on business
workstations, I will try DOS first.

Here at the most basic level of organization, the disk is simply measured
into sectors – physical portions of the disk able to hold, in this case, 512 bytes
of data. The image has a DOS (FAT16) partition on sectors 32-121950. We can
ignore the Primary Table and unallocated space unless we find evidence that
someone with very sophisticated technical knowledge and tools had something
to hide there. Any files stored on this disk should be within the DOS FAT16
partition.

[root@LinuxForensics giac]# mmls -t dos GCFAPractical2.0-USBImageAndInfo.zip
DOS Partition Table
Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000001 0000000031 0000000031 Unallocated
02: 00:00 0000000032 0000121950 0000121919 DOS FAT16 (0x04)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

7

DD is a tool that will copy all or part of a physical disk or disk image bit by
bit, sector by sector. Copy or backup commands generally operate at the file
level – they copy file by file. It is important for investigative purposes to copy
every single bit in a partition including, and perhaps especially, those that are
not part of a file. We have to tell dd what sectors to copy and what size those
sectors are. We also have to tell it where to copy from and where to store the
copied sectors. The bs=512 switch tells dd that sectors are 512 bytes in length.
Skip=32 tells it not to copy the first 32 sectors (sectors 0 through 31). Count tells
it how many sectors to copy. We gather all this information directly from the
output of mmls. Input file (if) will be GCFAPractical2.0-USImageAndInfo.zip and
we will call the destination file (of) usbpart.img. Immediately after making the
image, we will run an md5sum on it, so we can verify that none of our
subsequent procedures alters the evidence.

This resulting image file is an image of a dos16 formatted partition. Formatting a partition creates a blank table of contents or index so that an ope

T
h
i
s
r
e
s

ulting image file is an image of a dos16 formatted partition. Formatting a
partition creates a blank table of contents or index so that an operating system
can store and retrieve files. For a DOS partition, this index is called the File
Allocation Table or FAT. Each entry in the table contains certain information.
The first byte of data for an unused table entry is a digital marker indicating that
this table entry is available to be used. A used table entry will start with the
name of the file it is indexing. The first letter of the file's name will overwrite the
“available” marker for that table entry. The table entry will also indicate the
length of the file, the physical location (block numbers) of the file on the disk and
the date and time the file was created, last read and last modified.

We have tools which allow us to mount this file just as we would a
partition on a physical disk. However, then the operating system normally would
alter the file access times every time we access one of the files in the partition.
For our purposes, we want at the least to record these access times before we
risk changing them. Instead of mounting the file as a file system, we can use
tools which have the capability internally to parse the data structures on a fat16
partition. The Sleuthkit supplies us with a number of tools that are specifically
designed to examine such images and understand their file structure without the
need to mount the partition and risk altering any data. In fact, mmls is from the
Sleuthkit.

Fsstat is also from the Sleuthkit. It will give us some basic info about the

[root@LinuxForensics giac]# dd if=GCFAPractical2.0-USBImageAndInfo.zip bs=512 skip=32
count=121919 of=usbpart.img
121919+0 records in
121919+0 records out
[root@LinuxForensics giac]# md5sum usbpart.img
5f830a763e2144483f78113a8844ad52 usbpart.img

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

8

file system which may be important. Here is a portion of the output from fsstat;

We can see that the metadata (FAT) entries number from 2 - 1942530
and that the first entry in the file table, number 2, is the root directory. We also
see that content is currently stored in three blocks that fill consecutively sectors
511 through 630.

Timeline Creation

Next we will create a timeline of file activity on this partition. This will
require four steps. FAT records the dates each file was created, as well as the
last times it was modified or accessed (Modified Accessed Created = MAC
times). We will use fls to copy these timestamps from the files in the image.
Likewise, ils can parse all the meta data (file table) and gather the timestamps
from deleted files. (When a file is deleted from a DOS partition, normally all that
is actually lost is the first letter of the filename. It is overwritten with the
“available” marker. The rest of the filename, the time stamps, the file length and
the physical location of the beginning of the file data remain intact until that
particular table entry is over-written to store a new file.) With both of these tools,
we use the -f switch to tell the tool what type of partition to parse and the -m
switch to tell them to save the time stamps in a format that is useful for creating
a timeline. We then use the cat command to concatenate the two output files
from fls and ils into a single file. Mactime takes the info from this file, and sorts
all the timestamps in ascending order, so we get a chronological record of all

METADATA INFORMATION
--
Range: 2 - 1942530
Root Directory: 2

CONTENT INFORMATION
--
Sector Size: 512
Cluster Size: 1024
Total Cluster Range: 2 - 60705

FAT CONTENTS (in sectors)
--
511-550 (40) -> EOF
551-590 (40) -> EOF
591-630 (40) -> EOF

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

9

fil
e
a
ct
iv
it
y

– creation, access and modifications – on the partition.

The full contents of the timeline.all file is included as an appendix. Here is
a portion of it.

The timeline is very small and consists of about three pages of output just
like this sample. It is not as difficult to decipher as it may seem. You simply
have to know how to reduce and possibly reformat the output to boil it down to
the useful information. The first portion of each entry is a date and time. This is
followed by a column that contains the file size, and a column for the type of
entry – modified, accessed or created.

The last two columns are the file table entry number and the filename.
The remaining middle columns contain access rights, user and group names.
The columns are in the output because mactime was originally written for Unix
file systems. None of these attributes are actually recorded in a FAT system. In
order to keep the format of its output consistent, mactime reports default values
in these columns. They do not represent information present in the FAT and can
be ignored.

The second two entries in the above sample have an access time of
midnight (00:00). This is another anomaly resulting from the fact that mactime
was written for Unix and used here on a FAT partition. We will consider these
also as spurious entries since our knowledge of this case so far does not give
us any reason to believe that relevant file system activity took place at midnight.

There are two kinds of duplicate entries in the timeline. Mactime reports
twice for deleted files. You see this above with two entries for file table entry 12,
one named <usbpart.img-_INDUMP.EXE-dead-12> and the other /WinDump.exe
(_INDUMP.EXE) (deleted). From the file table entry number, you can see that

[root@LinuxForensics giac]# fls -f fat16 -m / -r usbpart.img>usbpart.fls
[root@LinuxForensics giac]# ils -f fat16 -m usbpart.img>usbpart.ils
[root@LinuxForensics giac]# cat usbpart.?ls>usbpart.mac
[root@LinuxForensics giac]# mactime -b usbpart.mac>timeline.all

Tue Oct 26 2004 08:48:10 19968 m.. -/-rwxrwxrwx 0 0 4
/hey.doc
Wed Oct 27 2004 00:00:00 0 .a. -rwxrwxrwx 0 0 12
<usbpart.img-_INDUMP.EXE-dead-12>

450560 .a. -/-rwxrwxrwx 0 0
12 /WinDump.exe (_INDUMP.EXE) (deleted)

485810 .a. -/-rwxrwxrwx 0 0 7
/WinPcap_3_1_beta_3.exe (_INPCA~1.EXE) (deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

10

these are the same file. Mactime does this with deleted files.

Sometimes we have two separate file table entries for the same file. For
instance, Winpcap appears at number 7 in the file table and also at number 10.
This double entry will also show up in other file commands that parse the FAT. It
is a result of the way Windows XP saves files. For command line copies or drag
and drop operations, Windows XP will create a single entry in the FAT. But
when a file is saved from the “File, save” menu in an application, Windows XP
makes two entries in the FAT. One is a zero length file with no associated data
blocks, and the other entry is a normal file table entry2. On our partition, file table
entries at 7, 12 and 16 are zero length duplicate entries.

Finally, it is useful to know that when a file is first created in a file table,
the attributes for created and modified are both set. So the first time a file
appears in a timeline, there are two entries within a few seconds of each other
for created time and modified time.

If we remove from our timeline.all file only the output in the categories
listed above, we get this reduced timeline which is very easy to interpret.

Reduced Timeline
Mon Oct 25 2004 08:32:06
19968 ..c 3 /her.doc

Tue Oct 26 2004 08:48:06
19968 ..c 4 /hey.doc

Wed Oct 27 2004 16:23:54
485810 ..c 10 /WinPcap_3_1_beta_3.exe (_INPCA~1.EXE)
(deleted)

Wed Oct 27 2004 16:24:04
450560 ..c 14 /WinDump.exe (_INDUMP.EXE) (deleted)

Thu Oct 28 2004 11:08:24
53056 ..c 15 /_apture (deleted)

Thu Oct 28 2004 11:11:00
53056 m.. 15 /_apture (deleted)

Thu Oct 28 2004 11:17:44
8814 ..c 17 /_ap.gif (deleted)

Thu Oct 28 2004 19:24:46
19968 ..c 18 /coffee.doc

We see that seven files have been created on this partition in four days.
One of the files was modified a few minutes after creation and four of the files
were deleted. Now we will examine those files.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

11

Strings

Before we extract individual files from the image, we will run strings against it.
Strings will output all instances on the image where four or more printable
characters occur consecutively. Most files, even if they are not text files or
documents, contain some bits of text. These bits can help us identify the nature
of an unknown file. By running strings against the entire image, we will gather
evidence from unallocated space as well as currently allocated files. Even if a
file from this image is deleted and unrecoverable, the strings output can give us
evidence from any portions of it that have not been overwritten. If the fls
command had shown many files and/or a lot of file writing and deletions, we
would simplify our results by running strings separately on the unallocated
space and then on individual files we need to examine in more depth. On this
small partition, a single file with all the text on the partition should be
manageable. I will use the –radix option to have strings output the location of
each string to aid in associating text strings with their corresponding files. This
location will be in the form of a six digit number in the left column. The strings
output is saved to a file for use later.

File Analysis

Fls will produce a list of file entries in a directory. If the -r switch is used,
fls will run through all child directories of the starting directory. If we don't
designate a starting directory, it will start from the root. So if we use –r and
specify no directory, we get a list of all files in all directories. It will also list
deleted files as long as their file table entry has not been reused.

We see that there are three Word documents and several deleted files on
the drive. (The files with an asterisk * are deleted files) You will notice that the
first character in the name of some of the deleted files is an underscore.

[root@LinuxForensics giac]# fls -rp -f fat16 usbpart.img
r/r 3: her.doc
r/r 4: hey.doc
r/r * 7: WinPcap_3_1_beta_3.exe (_INPCA~1.EXE)
r/r * 10: WinPcap_3_1_beta_3.exe (_INPCA~1.EXE)
r/r * 12: WinDump.exe (_INDUMP.EXE)
r/r * 14: WinDump.exe (_INDUMP.EXE)
r/r * 15: _apture
r/r * 16: _ap.gif
r/r * 17: _ap.gif
r/r 18: coffee.doc

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

12

Remember that deleting a file in a FAT partition overwrites the first letter of the
filename. In some cases, fls has provided us with a reasonable guess at the
first letter of a deleted file's name.

The first number in each line of this output is the number of the file table
entry. Remember that fsstat showed us earlier that the file table started with 2,
and that 2 is the root directory entry. The table entries are created in
chronological order. In a very simple file system such as this, where there are
no subdirectories and very little deletion and overwriting, the numbers of the file
table entries give us a pretty good chronology of file activity. This chronology
agrees with the timeline we created earlier. Several files were made, some of
them deleted, and then one more created. Chances are excellent that all or all
but one of the deleted files have not yet been overwritten and can be recovered.

One more item of interest in the output is the fact that three files have two
entries each. The files are WinPcap_3_1_beta_3.exe (_INPCA~1.EXE) at file table 7
and 10, WinDump.exe (_INDUMP.EXE) at file table 12 and 14, and _ap.gif at file table
16 and 17. We know that Windows XP creates such entries when a file is
created from within an application using the “File, save” command2. These three
files were saved from within an application on a Windows XP system.

Extracting and recovering files from the image is done with icat. Icat
takes a storage device and inode number (on a FAT partition, it takes the file
table entry number) as input and returns the file associated with that entry if it is
recoverable. The file table entry numbers we get from the output of the fls
command. Here are the commands used to extract the files from usbpart.img,
including one typo.

You will notice that the command for extracting an existing file (icat –r) is
identical to the command for recovering a deleted file. Remember, unless the
file data was overwritten, all that is lacking in the file table entry is the first letter
of the filename. We have to supply the names of the files we are saving. I take

[root@LinuxForensics giac]# icat -r -f fat16 usbpart.img 15 >capture
[root@LinuxForensics giac]# icat -f fat16 usbpart.img 3 >her.doc
[root@LinuxForensics giac]# icat -f fat16 usbpart.img 4 >hey.doc
[root@LinuxForensics giac]# icat -f fat16 usbpart.img 18 >coffee.doc
[root@LinuxForensics giac]# icat -r -r fat16 usbpart.img 10 >winpcap.exe
icat: extXfs_open: open fat16: No such file or directory
[root@LinuxForensics giac]# icat -r -f fat16 usbpart.img 10 >winpcap.exe
[root@LinuxForensics giac]# icat -r -f fat16 usbpart.img 14 >windump.exe
[root@LinuxForensics giac]# icat -r -f fat16 usbpart.img 17 >map.gif

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

13

the liberty of naming _apture and _ap.gif capture and map.gif, respectively.

I also took md5sums of all the files. The hash for windump.exe will be
useful when we attempt to confirm the identity of that executable.

All three Word documents contain short messages. All the messages are
consistent with e-mails that Leila Conlay claims she received from Robert
Lawrence. Why do we find e-mails as Word documents? Word is the default e-
mail editor for Microsoft Outlook as well as several other e-mail programs.
However, e-mail programs do not normally save Word copies of the e-mails to
disk. One possibility is that these documents were created in Word first and the
messages copied into e-mail. There are other theories possible that would meet
the facts. For now, we note that this is not expected behavior.

her.doc
The first document, her.doc, contains the message:

Hey I saw you the other day. I tried to say "hi", but you
disappeared??? That was a nice blue dress you were wearing. I heard
that your car was giving you some trouble. Maybe I can give you a
ride to work sometime, or maybe we can get dinner sometime?

Have a nice day

hey.doc
The second document, hey.doc contained:

Hey! Why are you being so mean? I was just offering to help you out
with your car! Don't tell me to get lost! You should give me a
chance. I'm a nice guy just trying to help you out, just because I
think you're cute doesn't mean I'm weird. Perhaps coffee would be
better, when would be a good time for you?

coffee.doc
And coffee.doc:

Hey what gives? I was drinking a coffee on thursday and saw you stop
buy with some guy! You said you didn't want coffee with me, but
you'll go have it with some random guy??? He looked like a loser!
Guys like that are nothing but trouble. I can't believe you did this
to me! You should stick to your word, if you're not interested in
going to coffee with me then you shouldn't be going with anyone! I
heard rumors about a "bad batch" of coffee, hope you don't get any...

[root@LinuxForensics giac]# md5sum windump.exe
79375b77975aa53a1b0507496107bff7 windump.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

14

In every document MS Word creates, it embeds the identity of the
registered owner (the person identified when the copy of Word was first
installed). The information can be changed, but it is not visible when the
document is opened in Word and therefore most users are unaware of its
existence. However, the strings utility or a hex editor will reveal it.

All three of these documents list Robert Lawrence as the registered user.
This does not by itself prove that Robert Lawrence authored these documents.
But a quick check of the computers at CC Terminals will reveal which computer
lists Robert Lawrence as the registered user of Word. With this knowledge and
the timestamps of the files, we will know exactly when and where these files
were created. A screenshot of the owner data from her.doc, as seen in
khexedit, is shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

15

WinPcap_3_1_beta_3.exe

The file WinPcap_3_1_beta_3.exe could not be recovered. Icat, in fact,
returned a 0 byte file. We can use the ils tool to list the file table entries to find
out why. Here is a partial result of the output using ils to list the file table
information for deleted files.

Earlier, fls showed us that WinPcap_3_1_beta_3.exe was stored both at
file table entry 7 and file table entry 10. We see here that the file length for table
entry 7 (which I have marked in bold type) is zero. The second entry, 10, has a
documented length of 485,810 bytes and is stored on disk beginning at block 42
(also marked in bold type). We would normally expect to find the body of this file
starting at this location. But the file was deleted. On Thursday evening, Oct 28,
coffee.doc was created. Here is the ils output for that file:

root@LinuxForensics giac]# ils -f fat16 usbpart.img
class|host|device|start_time
ils|LinuxForensics|usbpart.img|1107382205
st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_mode|st_nlink|st_size|st_block0|st_block1
7|f|0|0|1098919436|1098860400|1098919434|100777|0|0|0|0
10|f|0|0|1098919430|1098946800|1098919434|100777|0|485810|42|0
12|f|0|0|1098919446|1098860400|1098919444|100777|0|0|0|0

18|a|0|0|1099016688|1098946800|1099016686|100777|1|19968|42|0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

16

The beginning block for file table entry 18 (coffee.doc) is block 42. So the
data for coffee.doc has overwritten at least the beginning part of the
WinPcap_3_1_beta_3.exe file. However, coffee.doc was only 19,968 bytes in
length, so most of the WinPcap_3_1_beta_3.exe file was not overwritten. If we
have an idea what the WinPcap_3_1_beta_3.exe file was, and we are able to
obtain another copy of it, we can run strings against the copy. We can compare
this result to the file we saved earlier containing the strings from the entire USB
image file. If we find significant matches, it is almost certainly the same file.

A quick Google search for “winpcap” gives us www.winpcap.polito.it, a
page on the website of the Politecnico di Torino. The winpcap home page says
“WinPcap is an open source library for packet capture and network analysis for
the Win32 platforms. It includes a kernel-level packet filter, a low-level dynamic
link library (packet.dll), and a high-level and system-independent library..,”3 At
this point in time, the currently available version of WinPcap is 3.1 beta 4. Beta
3 has not yet been posted in the archive section of the site and is thus currently
unavailable.

However, we can still download the code for beta 4, run strings against it,
and compare the output against the strings output from our USB image. We
would not expect to find exact matches, given that these are two different
versions of the program. But if we find a significant portion of strings output that
mostly agrees, we will have very strong evidence that
WinPcap_3_1_beta_3.exe was, in fact the same program. Here is a screen
shot comparing a portion of the strings output from the downloaded winpcap
beta 4 installer to strings found on the USB image. There is, in fact a much
longer section of almost identical output. Remember, the extra column of six
digit numbers on the right panel are radix “addresses” of these strings in the
image – not part of the data itself.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

17

WinPcap_3_1_beta_3.exe does seem to be the same program as the
winpcap installer from the winpcap.polito.it site. Can we tell if the file was
actually run? The executable file is actually an installer for the driver and dll's in
the package. If we find these dll's, or any of the registry entries that the installer
makes on a computer we will know that the installer was run. The files are
wpcap.dll, wanpacket.dll and packet.dll and are installed in the
\Windows\System32 directory.

Winpcap does not offer any features directly accessible to a user. The
dll's offer a programming interface through which other programs can call upon
the functions of the packet driver. So in a practical sense, we don’t have to even
find out if the installer was run. By itself, it offers no functions to the user.

_apture

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

18

Next we will examine the _apture file. Running file against capture (we
will refer to this file as capture going forward) we get:

File identifies this as a capture file created by a program called tcpdump.
Tcpdump is a unix utility for capturing network traffic. Why does file identify
capture as a tcpdump capture file? We were expecting this file to be identified
as a Windump capture file.

Windump is a win32 port of tcpdump by researchers at the Politecnico di
Torino in Italy. The user's manual for Windump is, in fact, the tcpdump man
pages with an addendum for the Windows-specific features of windump.
Perhaps capture files created by Windump have a header similar enough that
the file utility will identify them as tcpdump capture files. We will test this
hypothesis when we examine the Windump.exe file.

If capture is a network capture file created either by tcpdump or
Windump, we will be able to open it with Ethereal. Ethereal does open the file
and it does indeed contain network traffic. The first fact that is obvious in looking
at the traffic in the capture file is that it is very targeted. Only traffic to or from
192.168.2.104 is represented. If this should turn out to be the network address
of the PC on which Windump was installed, then this capture file represents no
illegal activity (though the act of installing a sniffer -or any unauthorized program
– may violate company policy). But if the address should turn out to belong to
anyone else, then an illegal wiretap has been performed.

We will highlight the first packet in the capture and right click and select
“Follow TCP Stream.” It is common for computer, when communicating over a
network, to be carrying on multiple digital sessions (or “conversations”)
simultaneously. Each conversation is broken up into small parts. The parts
(packets) are numbered and sent separately, then reassembled in order at the
other end. In a capture such as this, the packets from multiple conversations are
mixed together and making sense of them is difficult. When we tell Ethereal to
follow a tcp stream, we are instructing it to take all the packets representing a
single session and reassemble them. The first stream represented in this
capture represents a connection to a Hotmail e-mail server. Here is a portion of
that stream.

[root@LinuxForensics giac]# file capture
capture: tcpdump capture file (little-endian) - version 2.4 (Ethernet, capture length 4096)
[root@LinuxForensics giac]#

new&to=SamGuarillo@hotmail.com&cc=&bcc=&subject=RE%3A+coffee&body=Sure%2C+coffee+sounds+great.++Let%27s+meet+at+the+coffee+shop+on+the+corner+Hollywood+and+McCadden.++It%27s+a+nice+out+of+the+way+spot.%0D%0A%0D%0ASee+you+at+7pm%21%0D%0A%0D%0A-
LeilaHTTP/1.1 100 Continue

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

19

The intended recipient of this e-mail is the owner of the
SamGuarillo@hotmail.com account. The note is signed by “Leila.” We know that
Leila Conway arranged to meet a friend for coffee Thursday evening. Robert
Lawrence's unlikely appearance at that same “out of the way” coffee shop at the
same time precipitated Leila's complaint to corporate security. This e-mail
appears to be when the meeting was arranged.

_ap.gif

File reveals map.gif to be a gif image file. This is no surprise. Opening the
file in a viewer reveals it to be a map showing the location of the coffee shop at
Hollywood and McCadden. The file was present on Lawrence's usb drive after
Leila's e-mail , but before the 7 PM meeting at the coffee shop. This suggests
that Mr Lawrence did in fact read the e-mail and did not show up at the coffee
shop by chance.

WinDump.exe

The WinDump.exe file recovered from the USB drive was 450,560 bytes
in length. WinDump.exe can be downloaded from the Politecnico di Torino web
site. A copy of Windump.exe downloaded from this site is also 450,560 bytes in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

20

length. Running strings against the recovered WinDump.exe and the
downloaded WinDump.exe produces identical results, a portion of which are
viewable in this screenshot.

Comparing the checksums also provides identical results.

So the checksums are identical. In addition, we have identical lengths,
names and strings files for these two files. They are the same program. But we
will perform a few more tests. We installed WinPcap 3 beta 4 to an XP
computer and copied the _inDump.exe file recovered from the USB drive to that
computer, renaming the file WinDump.exe. Opening a cmd prompt in that
directory we were able to run WinDump with the results expected from the
manual at http://windump.polito.it/docs/manual.htm. “WinDump.exe -D” returned
a list of the network adapters on the computer. We then ran “WinDump.exe -i 2 -
w testcap” to produce a capture file. This created a capture file called testcap.
Running file against testcap told us that this was a tcpdump capture file. This is
what also what file told us about the _apture file that was on the USB drive. So
we have confirmed our hypothesis that a capture file from Windump will have a
header identifying it as a tcpdump capture file.

There is no reasonable doubt that the _inDump.exe file on the usb drive is
WinDump.exe developed by the Politecnico, that WinPcap was installed on a
Windows computer and that electronic communications from Leila Conway's
computer were intercepted and recorded to the _apture file using the WinDump
.exe program. These were stored on a USB drive alongside files that were
created using Robert Lawrence's copy of MS Word. That USB drive was found
in Robert Lawrence's cubicle the next day.

Recommendations

At this point in the investigation process, I prefer to review a bit. Are there
any anomalies in the evidence? Do I have any nagging questions? How clear is
the evidence and my reading of it? What would a creative defense attorney do
with this evidence?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

21

In this case, there are a few questions in my mind. First, whoever
downloaded and ran Windump, created the capture file, and read the e-mail in
the captured packets had more technical skill and knowledge than I would
expect from a sales associate. So the question bothers me – why didn't this
person run a wipe utility on the USB drive. Someone with that level of
knowledge would surely know how easy it is to recover deleted files on a FAT
partition. Perhaps when someone is committing a crime, he/she could get
anxious and make simple mistakes they would not normally make. This is may
be the explanation.

However, the mere existence of these files is a problematical. Several e-
mail applications can be configured to use Word as the e-mail editor. However
none of them will by default save a Word copy of the e-mail at all, much less
save it to a USB drive. They will save the e-mail itself in the mailbox. It is
possible to open Word and compose a message and then copy the message
into the e-mail and then save the now useless Word document to the hard drive
and then copy the file to the USB drive. But this is quite a bitq of extra work for
such short messages as these. It is only worth the effort if Word is not your
default editor but you intend to use special formatting or features, such as
tables, that are not available in your e-mail editor. No such features are present
in these messages. Again, this question is not fatal to the theory that these
represent e-mails that Robert Lawrence sent. But it is unnecessarily
complicated, and that bothers me.

Investigation Round 2

The next question goes back to the examination of the capture file. After
opening the capture file in Ethereal, at one point I sorted the packets by IP
address, in order to see how many external hosts were represented. Right at the
top were several SNMP packets. Why would a workstation be receiving SNMP
packets? Well the packets were actually broadcast – sent to all workstations on
the subnet. This explains why these packets were received by a sales
representative's workstation. Here is the screenshot of these packets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

22

How did these packets end up here in this capture file? Some discussion
is necessary at this point on the mechanics behind networks and captures. The
vast majority of business workstations are connected to an ethernet network by
means of cables leading back to a hub or switch. A switch keeps track of which
computers are connected to each port. When packets come in for a computer,
the switch sends the packet back out on the port connecting to that computer
and only on that port. (The only exception is broadcast packets, which are
general packets addressed to everyone. These are, of course, sent out on all
ports.) Now when you send any kind of packets over a hub, on the other hand,
the hub sends those packets out every other port on the hub. On a hub, all traffic
to anybody is repeated to everybody.

So why don't users connected to a hub see everyone's communications?
Normally, a network card on a computer will automatically disregard any
packets addressed to other computers. It listens for packets addressed to itself
or to the broadcast address, and does not “accept delivery” of other packets.
One of the capabilities that winpcap adds to a Windows PC is the ability to put
the network card in promiscuous mode. In this mode, the card will accept all the
traffic it sees, whatever the address on the packets. A sniffer program such as
Windump can have the network card pass through all those packets for
examination. In a switched environment, a network card in promiscuous mode
would still see only packets meant for its own computer – a switch will only
send traffic your way if it belongs to you. But on a hub, with a network card in
promiscuous mode, you can see all the network traffic for all computers
attached to the same hub.

The default mode for windump is to collect all traffic. However, this does
not seem to be what we see in the capture file. All the packets in the capture file

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

23

are those that would have been received by Leila's computer – they are either
broadcast packets or packets specifically addressed from or to her computer.

To use windump to capture traffic addressed to and from a single
computer you must use the host argument as in:

T
h i
s c
ommand will capture from interface number 2 (-i 2) all packets addressed to or
from the computer called LinuxForensics and save the packets to a file called
capture. But there is a problem. This command cannot create the capture file on
the USB drive.

With every network sniffer that I have used, using such a switch filters the
traffic and discards every packet unless the source or destination address
matches LinuxForensics' address. The command does not actually catch ALL of
the traffic that LinuxForensics' NIC will accept. LinuxForensics will also accept
broadcast packets. On broadcast packets, the source address will be the
address of the originating device. The destination address will be either an IP
address in the form x.x.x. 255 or a hardware address, ff:ff:ff:ff:ff:ff not the specific
address of the receiving computer. So windump, if it acts like every other sniffer,
would catch broadcast packets originating from LinuxForensics, but not any that
are going to LinuxForensics. Broadcast packets originating with LinuxForensics
would have its address in the source address field. Broadcast packets
originating somewhere else but “heard” by LinuxForensics will not have the
target address in either field and should not show up. In other words, the first six
packets shown in the illustration above should not be there.

To verify this, I set up a test network consisting of two computers
attached to a hub. On one computer, I installed winpcap and downloaded
Windump. I ran Windump with the arguments listed above. On the second,
LinuxForensics, I opened a web browser and opened a few pages. After a few
minutes I had captured some three thousand packets. I opened the capture file
in Ethereal. I sorted the packets by address and found, as I expected, that all the
packets had LinuxForensics' address in either the source or the destination
address. There were broadcast packets originating from LinuxForensics, but
none that LinuxForensics was receiving from other devices.

Of course, there are ways to produce the kind of capture file seen above.
One way is to use a more complex command: “c:\>windump –i 2 host
LinuxForensics or dst broadcast”

And there are a number of other, still more complicated ways to achieve
the same result. But there is no reason for an eavesdropper to go to the effort to

C:\ > windump -i 2 -w capture host LinuxForensics

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

24

add this extra complexity. If the eavesdropper is experienced, he would know
that there is nothing of interest in these extra packets. If he/she is inexperienced,
it would require extra research and probably some trial and error to get it right.
And remember, we are talking about a suspect who was flustered enough to
make no effort to effectively wipe the deleted files. Yet this same person, at
almost at the same moment, has the presence to correctly add unnecessary
switches to the command line? It doesn’t seem to add up.

At this point, another question starts to bother me. My test capture of web
surfing on the LinuxForensics laptop produced over three thousand packets in
just a few minutes. The capture file from the USB drive has only one hundred
and thirteen packets. As capture files go, this one is very small. It is a
remarkable coincidence that Robert Lawrence would find anything of interest in
such a small capture. Another small problem? Maybe, maybe not. How
accurately could Robert Lawrence gage the moment at which Leila would start
sending e-mail as opposed to performing other activities on her computer? In
fact, the time stamps on the packets in the capture file confirm that this file
represents a capture lasting less than one second!

The SNMP packets present, to my mind, another serious problem. It is
not so much that it would be odd for someone wiretapping another person's
computer to have made the effort to capture these packets. It is a much bigger
problem that they were created and sent out in the first place. SNMP is a
protocol designed to remotely monitor and control network devices, such as
routers and switches. An SNMP trap is an event occurring on a monitored
device that triggers it to send a notification – an SNMP trap packet - usually to a
network control application or to a logging server. The important point is that
SNMP traps don't just happen. They must be configured in the device, and part
of that configuration is telling the device where to send the trap packets. While it
might be technically possible to configure a device to send traps to the
broadcast address, it simply isn't done. You don't want these packets going to
just anybody – only to your Network Operations Center. These trap packets
often contain information that would be useful to a hacker. If you go to the
trouble of configuring SNMP traps, you make sure to send them to the correct
address. Yet you can see that these packets are addressed to 192.168.2.255,
broadcast to everybody on the 192.168.2.x subnet. Simple carelessness or
overwork or any explanation I can imagine does not account for the existence of
these packets.

Another interesting thing we notice about these packets is that they seem
to appear right after the computer makes a connection to a new outside
address. And part of the content of the packet is this computer's address and
the address of the server it connects to. This sort of information might be logged
if this device were performing Network Address Translation (and we know that
some device on this network was performing NAT). But, of course, there still
would be no conceivable reason why we would instruct the router to send these

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

25

packets to the broadcast address, and some very good reasons why we would
never send them there.

Another problem with these packets is that the read community string is
“public.” The read community string is a sort of password used by SNMP
indicating that the requestor is allowed to read information from the device.
“Public” is the default read string on many devices. This string should have been
replaced with a more secure string, but this precaution is sometimes neglected.
SNMP managed devices will also have a write community string that allows the
requestor to write to the device – in effect to issue commands on the device.

All these packets contain the string “enterprises.3955.1.1.0.” We can
Google this string and hope we get some hits. Eureka! I was simply hoping to
find out what vendor was identified by this string. The vendor is Linksys. But we
got more than that. There are several online discussions about this string dating
as far back as 2002. Apparently, some Linksys Cable/DSL routers had a bug in
the firmware. Linksys apparently did not respond to any inquiries about the
problem, but some enterprising customers did some tests of their own.3

Sending an SNMP query to one of these routers using read string “public”
causes it to error, sending out lots of SNMP packets to the broadcast address
on every interface. Worse still, once the router was sending out these packets, it
was possible to write to the device even if it had been configured to accept no
write commands from that interface (a common security precaution). In effect,
with practice, someone could learn to take control of one of these routers and
reconfigure it. The packets that these routers would send out in response to this
bug looked very much like our six extra packets from the capture file.

Eventually, Linksys came out with a firmware upgrade that fixed this
problem on the WAN interface – the interface that would face the outside world.
But I was unable to discover if this problem still exists on the inside interface(s).
At any rate, it is not at all uncommon for firmware in such devices to go years
without an upgrade. Linksys is a brand aimed at the SOHO – Small Office Home
Office – market. Usually these are for home use or for small businesses or
small branch offices. In this situation there is rarely a staff person with the
responsibility to keep the network infrastructure maintained. The device is set up
and forgotten until the users report a problem.

Can we show that the router in our office was a Linksys? In a word, yes.
The SNMP packets showed a source MAC address of 00:0c:41:50:29:2c. The
first half of a MAC address is a vendor code. The vendor code in this case
belongs to Linksys. The presence of a Linksys Cable/DSL router suggests that
this is a small branch separate from the main company offices. So even two
years after a patch was released, it is conceivable that it had not been applied.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

26

Recommendations, Round 2

So what do we have? Six packets more than we wanted. The six SNMP
packets indicate that the router is broadcasting information to everybody in the
sales office and very likely to a large segment of public addresses out its wan
interface. These broadcasts are most likely the result of someone sending an
SNMP query to the router that activated a serious security vulnerability.

The company should immediately investigate ids records, firewall, router
and server logs to discover, if possible, how long the router has been in this
state and whether this vulnerability has been leveraged to gain access to any
sensitive corporate data. It should also audit security procedures. Specifically,
the vulnerability in this router has been known for over two years. Why was no
fix or workaround employed? Why didn't network services know that one of their
routers was broadcasting SNMP traps?

This investigation should include logs of all VPN links to other vendors
and customers. Were any sales associates making connections to partners that
are unusual? Criminals are well aware that businesses usually give a number of
vendors and customers tunnels to access necessary resources within the
secure corporate network. A criminal will look for weak links in the networks of
major vendors and customers of the company they are targeting. If these
packets represent the presence of a determined hacker, he may actually be
after one of our vendors or customers.

The case of Robert Lawrence and Leila Conlay must also be handled. At
the moment, the digital evidence is inconclusive. Both employees should be
placed on administrative leave immediately and all access to corporate
information systems suspended while the wiretapping investigation proceeds. In
many corporations, this is standard procedure when a claim of sexual
harassment has been lodged.

For now, neither Robert nor Leila needs to know that anything more than
sexual harassment is being investigated. It is very possible that a person who
can install and run a packet sniffer with apparently little or no difficulty also has
the skills to eliminate or obfuscate digital evidence. This must be prevented.
Both of their PC's should be thoroughly and carefully examined for evidence that
winpcap was installed as well as for other inappropriate activity.

Why do I suggest both computers be searched? Well, at the outstart, this
looked like a very simple case. Robert Lawrence allowed infatuation to become
obsession and allowed obsession to lead him over the line that separates
acceptable behavior from unacceptable behavior both socially and legally.

But even at the beginning there were little problems with this theory.
Enough little problems have added up to merit considering other explanations

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

27

for the evidence. Here are some of the problems:
I am not a psychologist, but a progression from acting cordial to defensive to

threatening within the course of four days seems unlikely. Isn't this awfully
fast? Not a big problem in my mind, but still a problem.
Why wasn't the USB drive wiped clean of evidence? Someone who can sniff

packets is almost certainly aware how easy it is to recover deleted files from
a FAT16 partition. Wiping the drive or simply throwing it out would have been
effective and simple methods to keep these files from being discovered.
How did our wiretapper manage to capture an e-mail of interest when he/she

only captured one hundred and thirteen packets? This is extremely unlikely.
Yes, this could be part of a larger capture that was filtered. In fact, it probably
was. But then the question becomes, why were these captures stored
somewhere else and only the small portion of capture traffic that incriminated
Robert Lawrence copied to the USB drive?
Why were the SNMP packets present in the capture file? If these packets

were intercepted via remote sniffing, these represent still another instance
where Robert Lawrence went to more work and more complexity than was
necessary for no apparent reason.
Why were the Word documents created in the first place? It would have been

so much simpler and quicker to create these short, simple messages within
the e-mail program itself. And why copy the documents to the USB drive?
This is a whole series of actions which are of no apparent benefit to the
sender of the e-mails. The only effect these actions have that differs from the
effect of writing the e-mails in the normal manner is that they deposited
evidence that incriminates Robert Lawrence on the USB drive.
Why were these files, and only these files, placed on the USB drive in the first

place. Why not download winpcap only onto the hard drive of the computer
on which it would be installed? The same with windump? Why copy the
capture file to the USB drive? Why copy the map.gif file? It is a very simple
map. If was hardly likely that a person would need a copy of the map to find
this coffee shop. But if they did need it, the natural action would be to print a
copy directly from the web page. Again, saving this file to the USB drive
requires extra steps from Robert Lawrence with no apparent benefit.

However, I must admit that none of these objections, nor the sum of
them, entirely disproves the theory we started with – that all these files were
copied to this drive by Robert Lawrence. However, there is a possible scenario
which does not suffer any difficulty from these anomalies. In fact, it predicts
them.

Suppose that Leila Conlay has some reason to wish Robert Lawrence
fired from his job. She could have orchestrated the whole chain of events. It
would be simple to adjust her copy of MS Word to show Robert Lawrence as
the registered user. She could have created the Word documents. She could
have sniffed her own e-mail to Sam. She could have invited Robert to coffee
Thursday evening in terms that would guarantee at least an uncomfortable

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

28

situation when she was already there with someone else. She could have saved
all the pertinent files to a USB drive and placed the drive in Robert's cubicle
before contacting corporate security.

How does this theory fit the evidence? Well all of the actions that were
problems if the files were placed there by Robert Lawrence are completely
compatible with this theory, and in fact are necessary for its success:

The short timeline is not a problem.•
You might expect files on the USB drive to be deleted, but care would be •
taken to make sure at least most of them are recoverable. Therefore no
unnecessary files would be added, only those that incriminate Robert.
The capture file has been edited down to contain less than one second of •
activity. Once he had found the interesting packets, Robert would have
had no reason to save this portion of the traffic as a separate file in a
separate location. Leila, however, would want an investigator to find the
interesting packets easily. She would also want to edit out as many
unnecessary packets as possible, just in case any of them are
inconsistent with the theory that Robert sniffed them.
If Leila sniffed her own traffic, the SNMP packets would be captured •
unless extra command arguments were added to exclude them. Robert
would not catch them unless he added extra arguments.
The “e-mails” would show up as Word documents if Leila were •
manufacturing evidence. In this case, creating Word documents that
implicate Robert is much easier than spoofing his return address on an e-
mail.
Of course, you would save all the incriminating files to a place where you •
could plant them as evidence. You would not have any reason to save
any extra files to the USB drive. In fact, you would avoid it for fear of
overwriting deleted files meant to be discovered or accidentally saving a
file that points to yourself as the owner.

Ockham’s razor says that, other things being equal, the simpler
solution to a problem will be the correct solution. We have several
instances in which the simpler solution is that Leila created this
“evidence.”

The evidence fits this theory well enough that it ought to be
investigated, if only to rule it out. The company has a stake in identifying
the culprit correctly. This is a person with hacking skills, no scruples
regarding lawbreaking and access to sensitive company data. The
potential to harm or embarrass the company is significant.

The problem with the router may or may not be related to the
twisted relationship of our two sales associates. It may represent an

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

29

automated scan which was never followed up, a full-fledged attack that
may not even be aimed at CC Terminals, or just a faulty router. The
attacker might be internal or external. But it has the potential to be much
more damaging to the company than the sexual harassment complaint. It
should be investigated diligently. If there are router, firewall or ids logs for
the branch office, they should be examined for the original attack against
the router, unusual connections to the sales office and outside
connections that correspond chronologically to connections opened to
corporate headquarters or partners.

In the present security climate, a Linksys router simply is not an
acceptable choice for a branch office of a corporation. It should be
replaced with a device that has more robust security and management
features.

The legal implications of this case may differ depending on who is
the culprit. But for practical purposes the actions of the company will
almost certainly be the same. The infractions by either Robert or Leila do
not justify the expense to the company and the possible publicity that
would result from prosecution. The offending employee will be
terminated. Under Nevada law, no cause need be given, nor should be
given. The employee’s file will simply be marked “no rehire.” Once this is
done, there is no danger of the company being embroiled in an action
over hostile work environment since the offending employee was fired.
The threat of prosecution under the wiretap statue, 18 U.S.C. 2511, can
be held to discourage any acts of retaliation by the fired employee against
the company.

Further investigation of the possible router hack may uncover
actions the company would wish to prosecute. That would be a new case
to which our only contribution would be six SNMP packets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

30

References

RFC 1321: http://rfc.net/rfc1321.html1)

Brian Carrier: Sleuthkit-users digest, Vol 1 #262, Feb 28, 20052)

www.winpcap.polito.it3)

http://www.governmentsecurity.org/articles/LinksysRouterInformationAcol4)
lection.php

For Further Information

A discussion of what activity is considered sexual harassment and what
companies can do to protect themselves can be found at many places on the
Itnernet, including:
http://www.de.psu.edu/harassment/

An easy to follow explanation of the uses and mechanics of SNMP is at:
http://www.cuddletech.com/snmp_guide.pdf

Most of the tools used in this investigation come from the Sleuthkit. The
Sleuthkit home site is:
http://www.sleuthkit.org/

Appendix A
Contents of Timeline.all

Mon Oct 25 2004 00:00:00 19968 .a. -/-rwxrwxrwx 0 0
3 /her.doc
Mon Oct 25 2004 08:32:06 19968 ..c -/-rwxrwxrwx 0 0
3 /her.doc
Mon Oct 25 2004 08:32:08 19968 m.. -/-rwxrwxrwx 0 0
3 /her.doc
Tue Oct 26 2004 00:00:00 19968 .a. -/-rwxrwxrwx 0 0
4 /hey.doc
Tue Oct 26 2004 08:48:06 19968 ..c -/-rwxrwxrwx 0 0
4 /hey.doc
Tue Oct 26 2004 08:48:10 19968 m.. -/-rwxrwxrwx 0 0
4 /hey.doc
Wed Oct 27 2004 00:00:00 0 .a. -rwxrwxrwx 0 0 12
<usbpart.img-_INDUMP.EXE-dead-12>

450560 .a. -/-rwxrwxrwx 0 0
12 /WinDump.exe (_INDUMP.EXE) (deleted)

 485810 .a. -/-rwxrwxrwx 0 0
7 /WinPcap_3_1_beta_3.exe (_INPCA~1.EXE) (deleted)

0 .a. -rwxrwxrwx 0 0 7
<usbpart.img-_INPCA~1.EXE-dead-7>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

31

Wed Oct 27 2004 16:23:50 485810 m.. -/-rwxrwxrwx 0 0
10 /WinPcap_3_1_beta_3.exe (_INPCA~1.EXE) (deleted)

485810 m.. -rwxrwxrwx 0 0 10
<usbpart.img-_INPCA~1.EXE-dead-10>
Wed Oct 27 2004 16:23:54 0 ..c -rwxrwxrwx 0 0 7
<usbpart.img-_INPCA~1.EXE-dead-7>

485810 ..c -/-rwxrwxrwx 0 0
7 /WinPcap_3_1_beta_3.exe (_INPCA~1.EXE) (deleted)

485810 ..c -rwxrwxrwx 0 0 10
<usbpart.img-_INPCA~1.EXE-dead-10>

485810 ..c -/-rwxrwxrwx 0 0
10 /WinPcap_3_1_beta_3.exe (_INPCA~1.EXE) (deleted)
Wed Oct 27 2004 16:23:56 0 m.. -rwxrwxrwx 0 0 7
<usbpart.img-_INPCA~1.EXE-dead-7>

485810 m.. -/-rwxrwxrwx 0 0
7 /WinPcap_3_1_beta_3.exe (_INPCA~1.EXE) (deleted)
Wed Oct 27 2004 16:24:02 450560 m.. -/-rwxrwxrwx 0 0
14 /WinDump.exe (_INDUMP.EXE) (deleted)

450560 m.. -rwxrwxrwx 0 0 14
<usbpart.img-_INDUMP.EXE-dead-14>
Wed Oct 27 2004 16:24:04 450560 ..c -/-rwxrwxrwx 0 0
14 /WinDump.exe (_INDUMP.EXE) (deleted)

 450560 ..c -rwxrwxrwx 0 0 14
<usbpart.img-_INDUMP.EXE-dead-14>

450560 ..c -/-rwxrwxrwx 0 0
12 /WinDump.exe (_INDUMP.EXE) (deleted)

0 ..c -rwxrwxrwx 0 0 12
<usbpart.img-_INDUMP.EXE-dead-12>
Wed Oct 27 2004 16:24:06 0 m.. -rwxrwxrwx 0 0 12
<usbpart.img-_INDUMP.EXE-dead-12>

450560 m.. -/-rwxrwxrwx 0 0
12 /WinDump.exe (_INDUMP.EXE) (deleted)
Thu Oct 28 2004 00:00:00 53056 .a. -rwxrwxrwx 0 0 15
<usbpart.img-_apture-dead-15>

8814 .a. -/-rwxrwxrwx 0 0
16 /_ap.gif (deleted)

53056 .a. -/-rwxrwxrwx 0 0
15 /_apture (deleted)

 450560 .a. -rwxrwxrwx 0 0 14
<usbpart.img-_INDUMP.EXE-dead-14>

8814 .a. -/-rwxrwxrwx 0 0
17 /_ap.gif (deleted)

19968 .a. -/-rwxrwxrwx 0 0
18 /coffee.doc

485810 .a. -rwxrwxrwx 0 0 10
<usbpart.img-_INPCA~1.EXE-dead-10>

450560 .a. -/-rwxrwxrwx 0 0
14 /WinDump.exe (_INDUMP.EXE) (deleted)

 0 .a. -rwxrwxrwx 0 0 16
<usbpart.img-_ap.gif-dead-16>

485810 .a. -/-rwxrwxrwx 0 0
10 /WinPcap_3_1_beta_3.exe (_INPCA~1.EXE) (deleted)

8814 .a. -rwxrwxrwx 0 0 17
<usbpart.img-_ap.gif-dead-17>
Thu Oct 28 2004 11:08:24 53056 ..c -rwxrwxrwx 0 0 15
<usbpart.img-_apture-dead-15>

53056 ..c -/-rwxrwxrwx 0 0
15 /_apture (deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

32

Thu Oct 28 2004 11:11:00 53056 m.. -/-rwxrwxrwx 0 0
15 /_apture (deleted)

53056 m.. -rwxrwxrwx 0 0 15
<usbpart.img-_apture-dead-15>
Thu Oct 28 2004 11:17:44 0 ..c -rwxrwxrwx 0 0 16
<usbpart.img-_ap.gif-dead-16>

8814 ..c -/-rwxrwxrwx 0 0
17 /_ap.gif (deleted)

8814 ..c -rwxrwxrwx 0 0 17
<usbpart.img-_ap.gif-dead-17>

8814 ..c -/-rwxrwxrwx 0 0
16 /_ap.gif (deleted)
Thu Oct 28 2004 11:17:46 8814 m.. -rwxrwxrwx 0 0 17
<usbpart.img-_ap.gif-dead-17>

 0 m.. -rwxrwxrwx 0 0 16
<usbpart.img-_ap.gif-dead-16>

8814 m.. -/-rwxrwxrwx 0 0
17 /_ap.gif (deleted)

8814 m.. -/-rwxrwxrwx 0 0
16 /_ap.gif (deleted)
Thu Oct 28 2004 19:24:46 19968 ..c -/-rwxrwxrwx 0 0
18 /coffee.doc
Thu Oct 28 2004 19:24:48 19968 m.. -/-rwxrwxrwx 0 0
18 /coffee.doc

