
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Roger Hiew

Date Submitted: February 28, 2005

Analysis of an unknown USB JumpDrive image

GIAC Certified Forensic Analyst (GCFA)
Practical Assignment Version 2.0 (Nov 18 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.2

Abstract

This practical assignment completes one of the requirements for the SANS GIAC
Certified Forensic Analyst (GCFA) certification. The assignment is primarily divided into
three sections.

The first section details the forensic investigation process used to determine the
contents on the USB JumpDrive. The process includes determining the files on the
USB JumpDrive, recovering files that were deleted on the USB JumpDrive, and finally
analyzing the purpose of these files.

The second section describes the legal issues based on information discovered from
this investigation. The section provides the Canada Laws that have been violated.

The third section provides recommendations as to what should occur after this
investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.3

Notation

Many of the forensic analysis in this assignment involve Linux commands. All of these
commands are presented in 11 point Courier font, using the following format:

[root@LinuxForensics gcfa]# command arg … arg
result

Where:

root is the current user.•

LinuxForensics is the name of the Forensics workstation.•

gcfa is the folder where the analysis is being done.•

command is the Linux command.•

arg … arg are the list of arguments or options that are passed to the •
command.

result is the information that is returned after the command has been run.•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

Acronyms

USB Universal Serial Bus

FAT File Allocation Table

MD5 Message Digest 5

TCP Transmission Control Protocol

UDP User Datagram Protocol

MAC Modified, Accessed, Changed

NTFS New Technology File System

UFS Unix File System

DOS Disk Operating System

GIF Graphic Interchange Format

GUI Graphical User Interface

SYN Synchronize

ACK Acknowledge

FIN Finish

EOF End of File

ICMP Internet Control Message Protocol

PING Packet Internet Groper

DLL Dynamic Link Libraries

API Application Programming Interface

ADSI Active Directory Services Interfaces

COM Component

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

SDK Software Development Kit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

Table of Contents

Abstract 2
Notation 3
Acronyms 4
List of Figures 6
List of Tables 8
Analysis of an unknown USB JumpDrive Image 9

Introduction 9
Executive Summary 9
Examination Details 10

Validate and Uncompress USB JumpDrive Image 10
Extracting Partitions 12
Forensic analysis on the Primary Table partition 14
Forensic analysis on the unallocated partition 15
Examination of the DOS FAT16 partition 16
Recovery and Analysis of the deleted files 19

Windump.exe 19
_ap.gif 24
_apture 29
WinPCap_3_1_beta_3.exe 34
Conclusions 47

Image Details 48
Forensic Details 52

WinPcap_3_1_beta_3.exe Program Analysis 54
WinDump.exe Program Analysis 57

Program Identification 66
Legal Implications 71
Recommendations 74
Additional Information 77
List of References 78

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

List of Figures

Figure 1 – Uncompress the USB JumpDrive Image using unzip 11
Figure 2 – File type classification of the USB JumpDrive Image 11
Figure 3 – Rename USB JumpDrive Image file extension 11
Figure 4 – MD5 hash of the USB JumpDrive Image 12
Figure 5 – File type classification on the USB JumpDrive Image 12
Figure 6 – Partitions on USB JumpDrive image 12
Figure 7 – Extracting the primary table partition 13
Figure 8 – Extracting the unallocated partition 14
Figure 9 – Extracting the FAT16 partition 14
Figure 10 – File type classification on the primary table partition 14
Figure 11 – Strings output for the primary table partition 15
Figure 12 – Khexedit of the unallocated partition 16
Figure 13 – Fls and Mactime of the FAT16 partition 17
Figure 14 – Timeline of the FAT16 image 18
Figure 15 – Fsstat of the FAT16 image 20
Figure 16 – Istat on inode address 12 of the FAT16 image 21
Figure 17 – Istat on inode address 12 of the FAT16 image 22
Figure 18 – Dcfldd of the WinDump.exe file 23
Figure 19 – File type classification of the WinDump.exe file 23
Figure 20 – MD5 hash of the downloaded WinDump.exe file 24
Figure 21 – Istat on inode address 16 of the FAT16 image 24
Figure 22 – Istat on inode address 17 of the FAT16 image 25
Figure 23 – Dcfldd of the _ap.gif file 25
Figure 24 – Khexdit of the recovered _ap.gif file 26
Figure 25 – Khexdit of the modified _ap.gif file 27
Figure 26 – File type classification on the _ap.gif file 28
Figure 27 – The Map 28
Figure 28 – Rename of the _ap.gif file to map.gif 28
Figure 29 – Istat on inode address 15 of the FAT16 image 29
Figure 30 – Dcfldd of the _apture file 30
Figure 31 – File type classification of the _apture file 30
Figure 32 – Rename of the _apture file to capture 31
Figure 33 – Ethereal of the capture file 31
Figure 34 – The TCP Data Stream 33
Figure 35 – Istat on inode address 10 of the FAT16 image 35
Figure 36 – Dcfldd of the WinPcap_3_1_beta_3.exe file 36
Figure 37 – MD5 hash of the downloaded WinPcap_3_1_beta_3.exe file 36
Figure 38 – Khexedit of the partially recovered WinPcap_3_1_beta_3.exe file 37
Figure 39 – Khexedit of the downloaded WinPcap_3_1_beta_3.exe file 38
Figure 40 – Khexedit of the “pasted” WinPcap_3_1_beta3.exe file 39
Figure 41 – The end of file (EOF) of the downloaded WinPcap_3_1_beta_3.exe file 40
Figure 42 – The end of file (EOF) of the recovered WinPcap_3_1_beta_3.exe file #1 41
Figure 43 – The end of file (EOF) of the recovered WinPcap_3_1_beta_3.exe file #2 42

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

Figure 44 – The complete recovered WinPcap_3_1_beta_3.exe file 43
Figure 45 – MD5 hash of the complete recovered WinPcap_3_1_beta_3.exe file 44
Figure 46 – Mounting the FAT16 image 44
Figure 47 – Files on the FAT16 image 45
Figure 48 – File type classification of the files on the FAT16 image 45
Figure 49 – The her.doc document 45
Figure 50 – The properties of the her.doc document 46
Figure 51 – The hey.doc document 46
Figure 52 – The coffee.doc document 47
Figure 53 – File listing of the FAT16 image 48
Figure 54 – File listing of the recovered files 48
Figure 55 – The MD5 hashes of the her.doc file 48
Figure 56 – The MD5 hashes of the hey.doc file 48
Figure 57 – The MD5 hashes of the coffee.doc file 49
Figure 58 – The MD5 hashes of the WinDump.exe file 49
Figure 59 – The MD5 hashes of the map.gif file 49
Figure 60 – The MD5 hashes of the capture file 49
Figure 61 – The MD5 hashes of the WinPcap_3_1_beta_3.exe file 49
Figure 62 – Timeline of the FAT 16 image 50
Figure 63 – The dirty word list 51
Figure 64 – MD5 Hash of the WinDump and WinPcap programs 54
Figure 65 – Strace output for WinPcap installation 54
Figure 66 – Strace output “winpcap.txt “ file 55
Figure 67 – Strace output for WinDump capture 57
Figure 68 – Ping 192.168.2.1 (Gateway) 58
Figure 69 – MD5 hash of the windump-capture file 58
Figure 70 – MD5 verification of the windump-capture file 58
Figure 71 – Ethereal of the windump-capture file 59
Figure 72 – Khexedit of the windump-capture file #1 62
Figure 73 – Khexedit of the windump-capture file #2 63
Figure 74 – Compile the release version of WinDump 67
Figure 75 – Compiling WinDump (Release version) 67
Figure 76 – The compiled WinDump program (Release version) 67
Figure 77 – MD5 hash of the compiled WinDump program (Release version) 68
Figure 78 – Testing the compiled WinDump program (Release version) 68
Figure 79 – The WinDump capture file 68

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

List of Tables

Table 1 – Deleted files 19
Table 2 – WinPcap.txt Strace Output #1 55
Table 3 – WinPcap.txt Strace Output #2 56
Table 4 – WinPcap.txt Strace Output #3 56
Table 5 – Strace output for WinDump program #1 60
Table 6 – Strace output for WinDump program #3 61
Table 7 – Strace output for WinDump program #4 61
Table 8 – Strace output for WinDump program #5 62
Table 9 – Strace output for WinDump program #6 63
Table 10 – Strace output for WinDump program #7 64
Table 11 – Strace output for WinDump program #8 64
Table 12 – Strace output for WinDump program #9 65

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

Analysis of an unknown USB JumpDrive Image

Introduction

On October 29th 2004, Leila Conlay (an employee at CC Terminals) made an official
complaint on Robert Lawrence (another employee) to the corporate security office. Ms.
Conlay’s complaint stated that Mr. Lawrence has been harassing her. He also made
numerous attempts to meet her during and outside of work hours. Ms. Conlay also
stated that Mr. Lawrence has contacted her through her personal email address. On
the evening of October 28th 2004, Ms. Conlay was having coffee with a friend at a
secluded location when Mr. Lawrence suddenly appeared. Upon receiving this
complaint, the corporate security office ordered an investigation on Mr. Lawrence. After
hours of search of Mr. Lawrence’s cubicle, Mark Mawer (the security administrator at
CC Terminals) found a USB JumpDrive. This USB JumpDrive was entered into
evidence as follows:

Tag #: USBFD-64531026-RL-001•
Description: 64M Lexar Media JumpDrive•
Serial #: JDSP064-04-5000C•
Image: USBFD-64531026-RL-001.img•
MD5: 338ecf17b7fc85bbb2d5ae2bbc729dd5•

The purpose of this practical assignment is to analyze this USB JumpDrive image and
determine how Robert Lawrence had used it.

Executive Summary

A forensic analysis of the USB JumpDrive found in Robert Lawrence’s cubicle has
revealed clear evidence to suggest that Robert Lawrence obtained Leila Conlay’s
personal information without her consent. This information was obtained by using a
network wiretap program to intercept Leila Conlay’s private email conversations.

Through the use of this network wiretap program, Mr. Lawrence was able to intercept
an email conversation between Ms. Conlay and her friend. From this network wiretap,
Mr. Lawrence was able to obtain Ms. Conlay’s and her friend’s personal email
addresses. Mr. Lawrence was also able to obtain the time and location of the planned
meeting between Ms. Conlay and her friend. Since Ms. Conlay did not give Mr.
Lawrence the consent to wiretap, Mr. Lawrence through his actions has violated the
Invasion of Privacy Law in Canada [33].

Forensic analysis tools were used to establish a timeline surrounding the actions of Mr.
Lawrence. The timeline shows that Mr. Lawrence had deleted a total of four files on the
USB JumpDrive. The deleted files include a network wiretap program, a program that
contains libraries for the network wiretap program and the wiretap network capture file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

This wiretap network capture file contained the actual email conversation between Ms.
Conlay and her friend. It is believed that Mr. Lawrence deleted these files in an attempt
to conceal the fact that he had downloaded, installed and used a network wiretap
program. Mr. Lawrence also deleted a fourth file. This fourth file contained a map of the
meeting location between Ms. Conlay and her friend.

There were three other files on the USB JumpDrive. These files contained the email
messages that were sent by Mr. Lawrence to Ms. Conlay and his emails were
becoming more aggressive over time. The contents of these email messages revealed
that Ms. Conlay repeatedly rejected Mr. Lawrence’s attempts to meet with her outside
of work hours. Mr. Lawrence however ignored Ms. Conlay’s rejection and he continued
to pursue her. At one point, Mr. Lawrence went so far as to threaten the possibility of
harming Ms. Conlay. Through this action, Mr. Lawrence has violated the Canadian
harassment laws, which state that it is an indictable offence if anyone knowingly utters
a threat to cause bodily harm to another person. This offence is liable to imprisonment
[35].

The results of this forensic analysis have produced sufficient evidence to warrant a
legal action against Mr. Lawrence if this is the action Ms. Conlay wishes to pursue.
Furthermore, it would be within the rights of CC Terminals to discipline Mr. Lawrence.

Examination Details

The file GCFAPractical2.0-USBImageAndInfo.zip was downloaded from the SANS
portal website. The cryptographic MD5 one-way hash of this image is
338ecf17b7fc85bbb2d5ae2bbc729dd5 (also obtained from the SANS portal website).

The MD5 hash of a file is essentially a digital fingerprint of the file. The MD5 hash is
calculated from a complex mathematical algorithm and is 128-bit in length. The MD5
hash is also known as a one-way hash, which denotes that the calculated MD5 hash of
a file can never be reversed to obtain the original data. Furthermore, “no two different
files can create the same hash” [1]. The MD5 hash is important as it can be entered
into evidence and can be used to prove if a file has been tampered with. Thus, the MD5
hash is often used to verify the integrity of files. In this forensic analysis, the md5sum
utility was used to calculate the MD5 hash.

The forensic analysis machine used was an IBM S50 Thinkcentre desktop computer.
The Redhat Fedora Core 2 Linux operating system was installed on this computer. The
operating system was fully patched. The SANS Track 8 Linux forensic tools were
installed on this computer. Since the content of the USB JumpDrive image was still
unknown, the forensic machine was not connected to the network.

Validate and Uncompress USB JumpDrive Image

The first step was to copy the downloaded file to the forensic machine via a Sandisk
512MB JumpDrive. The next step was to uncompress the file GCFAPractical2.0-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

USBImageAndInfo.zip. The downloaded file was assumed to be a zip file because of
the .zip file extension. Therefore, the unzip utility was used. This unzip utility will
uncompress any file that has been compressed with the zip utility.

Figure 1 – Uncompress the USB JumpDrive Image using unzip

Figure 1 shows that the result of the unzip process. The result indicated that the
downloaded file might be corrupted or it might not be a zip file, ie the file extension was
labelled incorrectly.

The file utility was used to examine this file further. The file utility determines the file
type by looking at the file header and then comparing it to the list of known file types.

Figure 2 – File type classification of the USB JumpDrive Image

The file utility indicated that the downloaded file was a gzip file. The next step was to
change the existing file extension to a gzip extension with the mv utility and use the
gunzip utility to uncompress the downloaded file.

Figure 3 – Rename USB JumpDrive Image file extension

The uncompressed file name was “GCFAPractical2.0-USBImageAndInfo”. This was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

the USB JumpDrive image file. The md5sum utility was used to obtain the MD5 hash
of this uncompressed file. The MD5 hash was then compared to the one that was
entered into evidence (338ecf17b7fc85bbb2d5ae2bbc729dd5).

Figure 4 – MD5 hash of the USB JumpDrive Image

The MD5 hash was identical, and so it was confirmed that this was the correct image
file to be examined. The next step was to use the file utility to determine the file type of
this image file.

Extracting Partitions

Figure 5 – File type classification on the USB JumpDrive Image

The file command was then used, and indicated that this image file was formatted by a
x86 machine. The mmls utility was used next.

The mmls utility reads an image file and returns the primary, extended and logical
partitions that have been allocated to the image file. It also returns the location and size
of these partitions. The mmls utility was run with the -t dos option. This option
specifies the operating system used to create the partitions.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

Figure 6 – Partitions on USB JumpDrive image

The information gathered from the mmls utility (Figure 6) indicated that there were
three existing partitions: the Primary Table, an unallocated partition and a DOS FAT16
partition. All three partitions were extracted using the dcfldd utility for examination.

The dcfldd utility is used to create an image of a harddrive or partition. It can also be
used to extract partitions or files from an image. The dcfldd utility is similar to the dd
utility with the exception that the dcfldd utility provides a percentage completion status
during the imaging process and the dcfldd utility can calculate the MD5 hash of the
created or extracted image file.

To extract the partitions from the USB JumpDrive image, the dcfldd utility was run on
each partition with 7 options:

if – this option specifies the input image file, partition or harddrive devices that •
the dcfldd utility will be imaging.
bs – this option specifies the block size.•
skip – this option specifies the starting point of the imaging process.•
count – this option specifies the length (in blocks) to copy.•
hashwindow – this option specifies the amount of data that must be processed •
before creating a MD5 hash. The hashwindow=0 invokes the dcfldd utility to
create the MD5 hash of the image once the imaging process has completed.
hashlog – this option specifies the name of the file that the dcfldd utility will use •
to store the MD5 hash.
of – this option specifies the output image file name.•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

Figure 7 – Extracting the primary table partition

Figure 7 shows the command that was used to extract the primary partition and the
MD5 hash of the primary partition.

Figure 8 – Extracting the unallocated partition

Figure 8 shows the command that was used to extract the unallocated partition and the
MD5 hash of the unallocated partition.

Figure 9 – Extracting the FAT16 partition

Figure 9 shows the command that was used to extract the FAT16 partition and the
MD5 hash of the FAT16 partition.

Forensic analysis on the Primary Table partition

The file utility was used to determine the file type of the primary table partition.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

Figure 10 – File type classification on the primary table partition

Figure 10 shows that this is the boot sector partition. “A file system boot sector is the
first physical sector on a logical volume. In the case of hard drives, the first sector is
referred to as the Master Boot Record and contains a partition table which describes
the layout of the logical partition on that hard drive” [2].

The strings utility was used to examine the partition further. The strings utility parses
through a file or image and outputs any readable string. If the file or image is unknown,
the readable strings can provide hints as to what is on the image or file. This utility was
run with the following option:

-a – this option extracts all the readable strings in the file•

Figure 11 – Strings output for the primary table partition

Figure 11 shows the strings utility output. It was concluded that this partition was just
the boot sector partition and that it did not contain anything worth examining further.

Forensic analysis on the unallocated partition

This unallocated partition should contain no data since the mmls utility classified it as
unallocated. The khexedit utility was used to confirm that this partition contained no
information. The khexedit utility opens any file and displays the content of the file in
hexadecimal format.
[root@LinuxForensics gcfa]# khexedit usbimage-unallocated

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

Figure 12 – Khexedit of the unallocated partition

Figure 12 shows that the unallocated partition was filled with all “00”s. The “00”s
indicated that there was no data on this partition.

Examination of the DOS FAT16 partition

According to the mmls utility, this is a DOS FAT16 partition and should contain data
that will need to be examined. Therefore, the first step of this examination was to
obtain the timeline.

Every file in the Windows or Unix file system has a last modified time, the last
accessed time and the last time the content of the inode was changed. These

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

timestamps are also known as the MAC timeline – the modified, accessed and
changed times). The inode of a file contains information such as the MAC times, the
file size, the user ID and group ID of this file, the file type, the inode address and the
permission of the file. The MAC timeline is extremely valuable as it provides an
accurate representation of the events that have occurred in a file system. The MAC
timeline is usually obtained first in order to avoid any accidental modification of any of
the timestamps. For example, if a file is accessed accidentally, this will change the last
accessed time and therefore, the timeline will not be accurate.

The fls utility can extract the MAC timeline of an image. In addition to that, it can also
extract other inode information such as the inode numbers, the name of the file, the
permission, the size, the owner and the group of all the files, including the deleted files.
The fls utility was run with the following options (Figure 13):

-f – this option specifies the image file system type (eg. FAT16, NTFS, Linux •
ext2, Linux ext2, Solaris UFS, etc).
-m / – this option invokes the fls utility to obtain the MAC. The / indicates that the •
fls utility will start the operation at the root of the partition.
-r – this option indicates that the fls utility will traverse through all the child •
folders.

The mactime utility takes the results from the fls utility and chronologically sorts the
events based on the MAC time so that the timestamps are in readable format. The
mactime utility was run with the following option (Figure 13):

-b – this option indicates the fls timeline output file.•

Figure 13 – Fls and Mactime of the FAT16 partition

Figure 13 shows the sorted timeline was written to the file “timeline.mac”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

Figure 14 – Timeline of the FAT16 image

Figure 14 shows the timeline extracted by the fls utility. The first 5 columns represented
the time, in day of the week, month, date of the month, year, and time. The 6th column
shows the file size. The 7th column shows the MAC flag to indicate which MAC times
were associated with each file. The 8th column shows the file permission. The 9th and
10th columns show the user and the group IDs. The 11th column shows the inode
address and the 12th column shows the file name. The file names appended with
“(deleted)” in the 11th column signify that these files were deleted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

According to the timeline, there were 4 deleted files:

No. Deleted File Name Inode Addresses
1 WinDump.exe 12 and 14
2 _ap.gif 16 and 17
3 _apture 15
4 WinPcap_3_1_beta_3.exe 7 and 10
Table 1 – Deleted files

Recovery and Analysis of the deleted files

In order to move forward in the investigation, the 4 deleted files (Table 1) had to be
recovered. The content and program identification of these files would be used to
provide hints as to why they existed on this partition and why they were deleted from
this partition.

Windump.exe

The WinDump.exe file was recovered using the following procedures:

First, the fsstat utility was used. The fsstat utility provides information such as the file
system type, file volume name, data content, sector size, etc on the image file. This
information does vary between file systems, for example, the result of fsstat on a
FAT16 file system is different from a Linux EXT3 file system. The fsstat utility was run
with the following option:

-f – this option specifies the image file system type (eg. FAT16, NTFS, Linux •
ext2, Linux ext2, Solaris UFS, etc).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

Figure 15 – Fsstat of the FAT16 image

The istat utility was used to extract the inode information based on the inode address.
There were two inode addresses (Table 1) associated with the WinDump.exe file. The
first inode address 12 was tested. The istat utility was run with the following options:

-f – this option specifies the image file system type (eg. FAT16, NTFS, Linux •
ext2, Linux ext2, Solaris UFS, etc).

This shows the file system type of
this image file.

This shows the size of this image
file (121919 sectors).

This shows the size of each
sector (block) 512 bytes.

This section shows the content on
this image. There were three files
on this image.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

Figure 16 – Istat on inode address 12 of the FAT16 image

Figure 16 shows that the file recovery of the inode address 12 was not possible. The
second inode address 14 was tested next.

This shows the inode address 14.

This shows the inode address was not
allocated. Therefore, the file associated
with this inode address was deleted.

This shows the file size (in
bytes).

This shows the name of
the file that was associated
with this inode address.

This section shows the
blocks that this file had
occupied.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

Figure 17 – Istat on inode address 12 of the FAT16 image

Figure 17 shows that file recovery for inode address 14 was possible. Figure 17 also
shows the starting and ending blocks of this file (1541 and 2420). Thus, the
“windump.exe” file contained 880 blocks (the number of blocks from 1521 to 2420).
The size of the file was 450560 bytes. With this information, the dcfldd utility was used
to extract this file from the image.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

Figure 18 – Dcfldd of the WinDump.exe file

Figure 18 shows the first recovered “WinDump.exe” file. The size of the recovered file
matched the file size indicated from the timeline and the istat utility in Figure 17. The
MD5 hash of this recovered file will be used later in the investigation to locate this file
on the Internet.

Figure 19 – File type classification of the WinDump.exe file

The file extension indicated that the “WinDump.exe” was an executable file. To verify
the file classification, the file utility was used. Figure 19 confirmed that the recovered
“WinDump.exe” file was a DOS or Windows executable file.

At this point of the examination, the assumption was that the “WinDump.exe” might be
a Windows version of the tcpdump utility. The tcpdump utility is a Linux sniffer. It is
used to capture (intercept) network packets on a network segment. The next step was
to use the Google search engine to find a copy of “WinDump.exe”. “WinDump.exe”
was used as the search parameter in the Google search engine. The search led to a
site http://windump.polito.it/install/default.htm. This site contains the WinDump.exe
version 3.8.3 beta executable file and the source code (as of January 3, 2005). Both of
these files were downloaded and copied to the /gcfa/verify folder of the Linux forensic
machine.

The md5sum utility was used next to calculate the MD5 hash of the downloaded
“WinDump.exe” file. The MD5 hash of this file would then be compared to the MD5
hash of the recovered “WinDump.exe” from the unknown USB JumpDrive image. The
result would indicate if both files were the same file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

Figure 20 – MD5 hash of the downloaded WinDump.exe file

The MD5 hash of the downloaded “WinDump.exe” file (Figure 20) matched the MD5
hash of the recovered “WinDump.exe” file (Figure 18). It was concluded that the
recovered “WinDump.exe” file was a Windows sniffer. At this point of the investigation,
it was assumed that Mr. Lawrence had used the WinDump program to capture
network packets. However, it was still unknown as to why he chose to initiate this
action.

_ap.gif

The next step in the investigation was to recover the “_ap.gif” file. The same recovery
procedures were used. There were two inode addresses that were associated to this
file (Table 1). The inode address 16 was tested first.

Figure 21 – Istat on inode address 16 of the FAT16 image

Figure 21 shows that the file recovery of the inode address 16 was not possible. The
second inode address 17 was tested next.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.26

Figure 22 – Istat on inode address 17 of the FAT16 image

Figure 22 shows that the file recovery for the inode address 17 was possible. This
figure also showed the starting and ending blocks of this file (2525 and 2542). Thus,
this file contained 18 blocks (the number of blocks from 2525 to 2542). The size of the
file was 8814 bytes. With this information, the dcfldd utility was used to extract this file
from the image.

Figure 23 – Dcfldd of the _ap.gif file

Figure 23 shows that the recovered file size did not match the file size indicated from
the istat utility (Figure 22) and the timeline (Figure 14). This was due to the fact that the
actual file “_ap.gif” required only 17.21484375 blocks (the actual size of the “_ap.gif”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.27

8814 bytes divided by the block size 512 bytes). However, it required a total of 18
blocks to contain this file because each block is 512 bytes. Therefore, 18 blocks were
extracted by the dcfldd utility (18 blocks multiple by 512 bytes = the size of the
“_ap.gif” file 9216 bytes). Thus, the actual blocks required by the file were subtracted
from the number of blocks extracted to give the blocks that were not used by the
_ap.gif file (18 - 17.21484375 = 0.78515625). This result was multiplied by the block
size (512 bytes) to obtain the unused space in bytes (0.78515625 * 512 = 402 bytes).

The khexedit utility was used to remove the unused space in the “_ap.gif” file.

[root@LinuxForensics gcfa]# khexedit _ap.gif

Figure 24 – Khexdit of the recovered _ap.gif file

The highlighted area that contained “00” was deleted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.28

The unused space was located at the end of the file. Each hexidecimal digit represents
4 bits of data. Therefore, 2 hexidecimal digits represent 1 byte of data since 8 bits
equals 1 byte. Therefore, the total number of hexidecimal digits deleted from the
“_ap.gif” file was 804. The file was saved after the modification. Figure 25 shows that
the modified _ap.gif file was 8814 bytes.

Figure 25 – Khexdit of the modified _ap.gif file

This indicates the
size of the file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.29

The file extension of the “_ap.gif” indicated that it was a GIF file. The file utility was
used to verify this.

Figure 26 – File type classification on the _ap.gif file

The file utility in Figure 26 confirmed that the “_ap.gif” file was a GIF file. The xview
utility was used next to view the “_ap.gif”.

Figure 27 – The Map

Figure 27 shows that the “_ap.gif” file was a map. It was assumed that Mr. Lawrence
had used http://www.mapblast.com to locate the address “Hollywood & McCa”.
However, the cross street “McCa” was unknown at this point. It was concluded that the
actual name of the “_ap.gif” was “map.gif” thus the file was renamed to “map.gif”.

Figure 28 – Rename of the _ap.gif file to map.gif

It was concluded at this point of the investigation that Mr. Lawrence had some interest
in this location. However, the reason for his interest was still unknown.

This is a map indicator. The
“McCa” street was unknown
as the map did not show the
entire street name.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.30

_apture

The next step in the investigation was to recover the “_apture” file. There was only one
inode address 15 associated (Table 1) to this file therefore the istat utility was run on
this inode address.

Figure 29 – Istat on inode address 15 of the FAT16 image

Figure 29 shows that file recovery for inode address 15 was possible. Figure 29 also
shows the starting and ending blocks of this file (2421 and 2524). Thus, this file
contained 104 blocks (the number of blocks from 2421 to 2524). The size of the file
was 53056 bytes. With this information, the dcfldd utility was used to extract this file
from the image.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.31

Figure 30 – Dcfldd of the _apture file

Figure 30 shows the recovered file size did not match the file size indicated by the istat
utility and the timeline. The same procedures that were used to determine and delete
the unused space for the file “map.gif” were used again. The actual file “_apture”
requires only 103.625 blocks (the actual size of the _apture 53056 bytes divided by the
block size 512 bytes). However, it required a total of 104 blocks to contain this file
because each block is 512 bytes. Therefore, 104 blocks were extracted by the dcfldd
utility. The actual blocks required by the file were subtracted from the number of blocks
extracted to give the bocks that were not used by the “_apture” file (104 - 103.625 =
0.375). This result was then multiplied by the block size (512 bytes) to obtain the
unused space in bytes (0.375 * 512 = 192 bytes).

The khexedit utility was used next to remove the unused space. The total number of
hexadecimal digits (192 bytes multiple by 2 = 384) was deleted from the “_apture” file.
The file was saved after the modification. The size of the “_apture” file after the
modification was 53056 bytes.

The file utility was used to determine the file type of the “_apture” recovered file.

Figure 31 – File type classification of the _apture file

Figure 31 shows that the “_apture” file was a tcpdump capture file. The file was
renamed to “capture” as showed in Figure 32.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.32

Figure 32 – Rename of the _apture file to capture

The ethereal utility was used to further examine this “capture” file. Ethereal is a GUI
based network sniffer, which can be used to capture network packets on a network
segment. It also contains options to allow a particular TCP data stream to be followed,
filtering by destination or source addresses, filtering by particular TCP or UDP port
numbers, displaying the captured data and many capabilities to analyze captured
network packets. The ethereal utility can also read tcpdump network captures. Figure
33 shows the capture file in the ethereal utility.

[root@LinuxForensics gcfa]# ethereal capture

Figure 33 – Ethereal of the capture file

The first step in the analysis of the capture file was to change the time format. The
initial time format was based on the seconds since the beginning of the capture. The
time format was changed to date and time of the day. Immediately, it was concluded
that that this network capture started on October 28th 2004 at 11:10:54 am.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.33

The next step was to investigate each TCP data streams to determine what information
was captured. A TCP data stream consists of the following:

A TCP session 3-way handshake to establish the TCP session between the •
client and the server. This 3-way handshake is as follow:

The client sends a SYN packet to the server.o
The server responds with a SYN, ACK packet to the client.o
The client responds with an ACK packet to the server.o

Data that is passed in this session.•
A TCP session completion to indicate that the TCP session between the client •
and the server is finished. This TCP session completion is as follow:

The client sends a FIN, ACK packet to the server.o
The server responds with an ACK packet to the client.o

The ethereal utility can follow the TCP data stream by first looking for the TCP session
3-way handshake. The TCP session 3-way handshake indicates the beginning of a
TCP data stream. Once the 3-way handshake has completed, the ethereal utility looks
at the TCP Protocol data. The TCP Protocol data contains information such as the
source port and destination port, the actual data payload, and the Sequence Number,
Acknowledge Number and the Next Sequence Number. Therefore, each TCP packet
(other than the initial handshake and session completion) has a sequence number that
represents this TCP packet, an Acknowledge number that acknowledges the previous
TCP packet, and a Next Sequence Number that indicates the next TCP packet. With
this information, the ethereal utility can follow a particular TCP stream and display the
data inside this TCP stream.

The first packet was highlighted using the right-click mouse button and the “Follow
TCP Stream” option was selected.

This shows that
the external host of
this TCP session
is the
www.hotmail.com
email service.

This reveals the
actual content of the
email.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.34

Figure 34 – The TCP Data Stream

The examination of the TCP stream (Figure 34) concluded with the following:
This was a network capture of a Hotmail session. Hotmail is a Microsoft product •
that provides web-based email services.
The highlighted area in Figure 34 showed the activity of the current mailbox •
“curmbox”. This highlighted area is displayed below:

curmbox=F000000001&HrsTest=&_Hmaction=Send&FinalDest=&subaction=&plai
ntext=&login=flowergirl96&msg=&start=&len=&attfile=&attlistfile=&eurl=&type=&sr
c=&ref=&ru=&msghrid=b16479b18beec291196189c78555223c_1098692452&RTE
bgcolor=&encodedto=SamGuarillo@hotmail.com&encodedbcc=&deleteUponSend
=0&importance=&sigflag=&newmail=new&to=SamGuarillo@hotmail.com&cc=&bc
c=&subject=RE%3A+coffee&body=Sure%2C+coffee+sounds+great.++Let%27s+m
eet+at+the+coffee+shop+on+the+corner+Hollywood+and+McCadden.++It%27s+a
+nice+out+of+the+way+spot.%0D%0A%0D%0ASee+you+at+7pm%21%0D%0A%
0D%0A-Leila

The current mailbox information showed the following:
This person was sending an email. •
This person’s hotmail login name was “flowergirl96”. Therefore, her email •
address was flowergirl96@hotmail.com
The recipient of this message was SamGuarillo@hotmail.com•
The subject of this message was “RE: coffee”•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.35

The body of this message was:•
“Sure, coffee sounds great. Let’s meet at the coffee shop on the corner

Hollywood and McCadden. It’s a nice out of the way spot. See you at 7pm.
–Leila”.
The body of the message was littered with these %3A, %2C, %27, %0D, %0A. •
The % indicates Unicode and they translate as follows [3]:

3A is : (colon)o
2C is , (comma)o
27 is ‘ (??) o
0D is an empty spaceo
0A is an empty spaceo

The flowergirl96 and SamGuarillo@hotmail.com were added to the dirty word list. The
dirty word list is a list that contains interesting strings that can be used at a latter time
to search through an image file using the strings utility. The dirty word list usually
grows in size as the investigation progresses.

At this point of the investigation, the following can be concluded:
From the tcpdump capture, Mr. Lawrence was able to determine Ms. Conlay’s •
email address. This would explain how he was able to send emails to Miss
Conlay’s personal email address.
Mr. Lawrence was also able to determine Ms. Conlay and Mr. Guarillo’s meeting •
time and location. This would also explain the existence of the map.gif file,
which correctly displayed the meeting location (Hollywood and McCadden).

The rest of the capture file was analyzed and there was no interesting information that
could be gathered from it.

WinPCap_3_1_beta_3.exe

The next step was to recover the last deleted file. From the timeline (Figure 14), the file
name of this deleted file was “WinPCap_3_1_beta_3.exe” and the inode addresses 7
and 10 (Table 1) were associated with this file. The istat utility was used to determine
more information on the inode addresses 7 and 10. The results indicated that the data
associated with inode addresses 7 and 10 were not recoverable. However, the inode
address 10 did provide some valuable information that could be used to extract some
portion of this file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.36

Figure 35 – Istat on inode address 10 of the FAT16 image

Figure 35 shows that the file may have occupied the blocks 591 and above. However,
the fsstat result from Figure 15 shows that blocks 591 to 630 had already been
allocated. Therefore, it was concluded a new file had overwritten some parts of the
blocks that were occupied by the “WinPcap_3_1_beta_3.exe” file. Therefore, a partial
recovery of this file was attempted. The actual file size was known to be 485810 bytes
(the file size was gathered from the istat result in Figure 35 and the timeline in Figure
14). Thus, a total of 948.84765625 blocks were needed to contain this file (485810/512
= 948.84765625). The file system requires a multiple of 512 bytes blocks to store a file.
Therefore, this number was rounded up to 949. The dcfldd utility was used to extract
this file. The starting block was set to 630 because there was already a file that
occupied blocks 591 to 630. This was determined from the fsstat results shown in
Figure 15. The file that occupied blocks 591 to 630 was “coffee.doc”. This was
determined by using the istat utility on the “coffee.doc” inode address 18. The
“coffee.doc” used a total of 39 blocks (the file size 19968 bytes divided by 512 bytes =
39 blocks). These 39 blocks must be subtracted from the total number of blocks
required for the “WinPcap_3_1_beta_3.exe” file to obtain the remaining size in blocks
(949 - 39 = 910).

This shows the file size.

This shows the file name.

This shows the file name
might have occupied these
sectors previously.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.37

Figure 36 – Dcfldd of the WinPcap_3_1_beta_3.exe file

Figure 36 shows the partial file that was extracted by dcfldd utility. The next step was
to look for a copy of this file on the Internet. The Google search engine was used and
the “WinPcap_3_1_beta_3.exe” string was entered into search field. A copy of the
“WinPcap_3_1_beta_3.exe” was downloaded from this site:
http://www.oltenia.ro/download/pub/windows/network%20tools/ethereal/

This downloaded file was copied to the /gcfa/verify folder. The md5sum utility was
used to calculate the MD5 hash of this file.

Figure 37 – MD5 hash of the downloaded WinPcap_3_1_beta_3.exe file

The size of the downloaded file (Figure 37) was exactly the same as the file size
obtained from the istat utility (Figure 35) and the timeline (Figure 14). It was assumed
at this point that the partially recovered file was the same file as the downloaded file.
Since the downloaded file was the complete file, it would contain the missing data that
could be used to complete the partially recovered file. Therefore, the plan was to
rebuild the partially recovered file by obtaining the missing parts from the downloaded
file. Once the missing parts were copied into the partially recovered file, the md5sum
utility would be used to calculate the MD5 hash of this new recovered file. The MD5
hash would then compared to the MD5 hash of the downloaded file.

The first step was to use the khexedit utility to load both the downloaded and the
recovered files.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.38

Figure 38 – Khexedit of the partially recovered WinPcap_3_1_beta_3.exe file

The first 5 bytes of the file shown in Figure 38 were “49 ac 0a 73 22”. These 5 bytes
will be used later to determine how much data must be extracted from the downloaded
“WinPcap_3_1_beta_3.exe” file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.39

Figure 39 – Khexedit of the downloaded WinPcap_3_1_beta_3.exe file

The first 5 bytes “49 ac 0a 73 22” of the partially recovered file were entered in the find
field in the Khexedit of the downloaded WinPcap_3_1_beta. This was done to locate
the starting point of the partially recovered file in this downloaded file. Once the first 5
bytes were located, the data prior to these 5 bytes were highlighted (this data was
assumed to be the missing data from the partially recovered file). The Khexedit copy
function in the edit menu was selected. This highlighted data would be pasted into the
partially recovered file as shown in Figure 40.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.40

Figure 40 – Khexedit of the “pasted” WinPcap_3_1_beta3.exe file

Figure 40 shows the recovered file after pasting the highlighted data in Figure 39.

Since the size of this file was not the same size as the downloaded file, it was
assumed that there was additional unnecessary data at the end of the recovered file.

The size of this file was not the correct
size.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.41

Figure 41 – The end of file (EOF) of the downloaded WinPcap_3_1_beta_3.exe file

Figure 41 shows the end of the downloaded file. The last 6 bytes of this file are “47 49
50 45 4e 44”. These 6 bytes would be used to locate the EOF of the recovered file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.42

Figure 42 – The end of file (EOF) of the recovered WinPcap_3_1_beta_3.exe file #1

The last 6 bytes “47 49 50 45 4e 44” of the downloaded file were used to locate the
EOF of the recovered file. Figure 42 showed the EOF of the recovered file. The data
after the “47 49 50 45 4e 44” were 00s.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.43

Figure 43 – The end of file (EOF) of the recovered WinPcap_3_1_beta_3.exe file #2

Figure 43 shows that the unnecessary data (00’s) were highlighted and deleted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.44

Figure 44 – The complete recovered WinPcap_3_1_beta_3.exe file

The size of the file showed the correct size (485810
bytes).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.45

The md5sum utility was used to calculate the MD5 hash of the complete recovered file.
This MD5 hash was then compared to the MD5 hash of the downloaded file to verify if
they are the same file.

Figure 45 – MD5 hash of the complete recovered WinPcap_3_1_beta_3.exe file

Figure 45 shows that the MD5 hash of the complete recovered file matched the MD5
hash of the downloaded file. This demonstrated that the partially recovered
“WinPcap_3_1_beta_3.exe” file from the USB JumpDrive image was in fact the
downloaded “WinPcap_3_1_beta_3.exe”.

A further investigation of the purpose of the WinPcap_3_1_beta_3.exe from
http://windump.polito.it/ revealed that WinPcap contained libraries that are required by
WinDump to capture network packets.

Finally, the 3 files that were not deleted were examined. In order to do this, the mount
utility was used to mount extracted FAT16 partition on /mnt/usb. The mount utility was
run with the following option:

-o ro,noexec,noatime,loop•
the -o indicates options and these options used were as follow:o

ro - this instructs the mount utility to mount the image in read-§
only mode.
noexec - this option does not permit executables on the §
image to be run.
noatime - this option does not change the accessed time on §
all the file in the image.
loop - this option mounts an image on a loop device.§

Figure 46 – Mounting the FAT16 image

The ls utility was used to list the files on the FAT16 patition. The ls utility was run with
the options:

l - this option lists the files long format (ie the owners, groups, time, •
permissions are listed)
t - this option sorts the files based on the last modification file (starting with •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.46

the last modified file – descending order)
r - this option reverse the sorted order, ie (list the files that were edited the •
earliest – ascending order).

Figure 47 – Files on the FAT16 image

The existence of these 3 files validated the timeline gathered from the fls utility. The
timeline (Figure 14) indicated that 3 files were not deleted. The ls listing also indicates
that the “her.doc” file was last modified on Oct 25 at 9:32am, the “hey.doc” file was
modified on Oct 26 at 9:38am and the “coffee.doc” file was edited at Oct 28 at 20:24.

Figure 48 – File type classification of the files on the FAT16 image

Figure 48 shows that these files were Microsoft Office documents. These documents
were therefore loaded into Microsoft Word.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.47

Figure 49 – The her.doc document

Figure 50 – The properties of the her.doc document

Figure 50 shows that the owner of the “her.doc” file was Robert Lawrence.

Figure 51 – The hey.doc document

Again, the properties of the “hey.doc” file showed that Robert Lawrence was the owner.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.48

Figure 52 – The coffee.doc document

The properties of the “coffee.doc” file also showed that Robert Lawrence was the
owner.

Conclusions

To summarize, the examination of the unknown USB image confirmed Ms. Conlay’s
harassment claim. The examination showed that Mr. Lawrence had installed a network
sniffer (WinDump). He also installed WinPcap, which is a set of libraries that permits
WinDump to capture packets. He used the sniffer to capture network packets to and
from Ms. Conlay’s PC. This explains how Mr. Lawrence was able to obtain Ms.
Conlay’s private email address and how he was able to discover the meeting location
and time between Ms. Conlay and her friend. Mr. Lawrence even tried to delete certain
files to conceal his actions. The properties of the 3 files that were not deleted show that
Mr. Lawrence was the owner. The content of the documents were the emails that Mr.
Lawrence had sent to Ms. Conlay and these emails showed that Mr. Lawrence was
becoming increasingly aggressive.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.49

Image Details

There were three Microsoft Office documents on this USB JumpDrive image. The
properties of these documents show that Robert Lawrence was the owner.

Figure 53 – File listing of the FAT16 image

There were three files that were recovered completely. The fourth file
“WinPcap_3_1_beta_3.exe” had to be rebuilt as it was only partially recovered.

Figure 54 – File listing of the recovered files

Figure 55 – The MD5 hashes of the her.doc file

Figure 56 – The MD5 hashes of the hey.doc file

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.50

Figure 57 – The MD5 hashes of the coffee.doc file

Figure 58 – The MD5 hashes of the WinDump.exe file

Figure 59 – The MD5 hashes of the map.gif file

Figure 60 – The MD5 hashes of the capture file

Figure 61 – The MD5 hashes of the WinPcap_3_1_beta_3.exe file

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.51

Figure 62 – Timeline of the FAT 16 image

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.52

The following is the screen capture of the dirty word list.

Figure 63 – The dirty word list

These key words were obtained
from the Timeline.

These key words were obtained
from the network capture.

These key words were obtained
from the WinDump.exe
program.

These key words were obtained
from the
WinPcap_3_1_beta_3.exe
program.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.53

Forensic Details

The investigation revealed that Mr. Lawrence used the “WinDump.exe” 3.8.3 beta and
the “WinPcap_3_1_beta_3.exe” executable programs.

The “WinDump.exe” is a network wiretap program that captures network packets on a
network segment and saves this capture to a file. Therefore, if the usernames,
passwords, email conversation, etc are transmitted across a network segment, the
WinDump.exe will be able to capture all this information. The “WinDump.exe” program
is based on the Linux version of tcpdump utility. This program was accessed on Oct 27
2004 at 00:00:00 and again on Oct 28 2004 at 00:00:00.

The “WinPcap_3_1_beta_3.exe” is an executable program that installs the libraries that
are required by WinDump.exe to capture network packets. “It includes a kernel-level
packet filter, a low-level dynamic link library (packet.dll), and a high-level and system-
independent library (wpcap.dll, based on libpcap version 0.6.2). The packet filter is a
device driver that adds to Windows 95, 98, ME, 2000, and XP the ability to capture and
send raw data from a network card, with the possibility to filter and store in a buffer the
captured packets. Packet.dll is an API that can be used to directly access the functions
of the packet driver, offering a programming interface independent from the Microsoft
OS. Wpcap.dll exports a set of high level captures primitives that are compatible with
libpcap, the well-known Unix capture library. These functions allow to capture packets
in a way independent from the underlying network hardware and operating system” [4].

Mr. Lawrence first used the “WinPcap_3_1_beta_3.exe” to install the libraries that were
required by WinDump. He then used the “WinDump.exe” program to capture the
network activities initiated by Ms. Conlay. This was evident as there was a WinDump
capture file with information on a particular network session between Ms. Conlay’s PC
and www.hotmail.com (an email service). Mr. Lawrence was able to analyze this
WinDump capture file and find Ms. Conlay’s private email address, and the meeting
time and location with her friend. Mr. Lawrence then used http://www.mapblast.com to
determine the meeting location. It was also apparent that Mr. Lawrence knew that he
had violated his company’s policies because he deleted the capture file, the WinDump
and WinPCap programs once he had finished analyzing the capture file. This was
probably done in an attempt to conceal his activities.

The “WinDump.exe”, “WinPcap_3_1_beta_3.exe”, WinDump capture file, and map of
the meeting location were recovered using the following methods:

The FAT16 logical partition was extracted using the dcfldd utility.•
The fls and the mactime utilities were used to gather the timeline of this FAT16 •
logical partition. The timeline showed the four deleted files (WinDump.exe,
WinPcap_3_1_beta_3.exe, _ap.gif and _apture) and their associated inode
addresses. The timeline also indicated when the “WinDump.exe” and the
“WinPcap_3_1_beta_3.exe” were last run.
The four files were deleted, thus their inode addresses were changed from •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.54

allocated to not allocated. However, the actual data associated with the files
were still on the partition. The istat utility was then used to extract inode
information such as the file name, file size and the blocks that the file occupies.
With this information, the dcfldd utility was used to extract the four deleted files.

The Google search engine was used to locate both the “WinDump.exe” and the
“WinPcap_3_1_beta_3.exe” files.

The “WinDump.exe” was found at http://windump.polito.it/install/default.htm. The
md5sum utility was used to calculate the MD5 hash of this downloaded file. The MD5
hash was then compared to the MD5 of the recovered WinDump.exe file. The MD5
hashes matched. Therefore, it was concluded that the recovered file was the WinDump
3.8.3 beta.

The “WinPcap_3_1_beta_3.exe” was found at
http://www.oltenia.ro/download/pub/windows/network%20tools/ethereal/. Again the
md5sum utility was used to calculate the MD5 hash of this downloaded file. Since the
“WinPcap_3_1_beta_3.exe” could only be partially recovered, the MD5 hash of the
downloaded file could not be used at this moment to match the MD5 hash of the
partially recovered file. Thus, an attempt to restore the partially recovered file into the
complete file was initiated. Both the downloaded and partially recovered
WinPcap_3_1_beta_3.exe files were analyzed using the khexedit utility. Approximately
20% of the data was missing from the partially recovered file when compared to the
downloaded file. Therefore, the missing data was copied from the downloaded file to
the partially recovered file. Once the extra bits at the end of the partially recovered file
were removed, the md5sum utility was used to calculate the MD5 hash of this file. The
MD5 hash matched the MD5 hash of the downloaded “WinPcap_3_1_beta_3.exe” file.
Therefore, it was concluded that the partially recovered file was the WinPcap version
3.1 beta 3.

The “_apture” file was also recovered. The file utility indicated that this was a tcpdump
capture file. The ethereal utility was used to analyze this capture file. Further
investigation on this capture file revealed the personal email address of Ms. Conlay,
her friend and their meeting time and location. It was indicated in Ms. Conlay’s email
that the coffee shop was at an out of the way location. Since Mr. Lawrence had
appeared unexpectedly at the meeting location, it was concluded that he knew about
the meeting time and location. At this point, it was fairly conclusive that Mr. Lawrence
was the person who downloaded the WinDump and the WinPcap programs. He then
ran these programs and analyzed the WinDump captured file in order to determine
where and when Ms. Conlay was meeting her friend. This also explains how Mr.
Lawrence was able to obtain Ms. Conlay’s personal email address.

In order to analyze both the WinPcap and the WinDump programs, a VMware session
of Windows 2000 Professional SP2 was used. The IP address of 192.168.2.1 (the
gateway) was assigned to the VMware and 192.168.2.10 was assigned to the
Windows 2000 Professional SP2. VMware is a program that allows different virtual

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.55

operating systems to exist within an operating system. Thus, a session of Windows
2000 can be run on the Fedora Core 2 Linux operating system. The VMware session
can be configured such that any activities executed in that session will not affect the
main operating system. This is very useful in forensic cases that involve analyzing
unknown programs or potentially malicious programs.

Both the WinPcap and WinDump executable programs were copied to the Windows
2000 VMware session via a floppy to the C:\gcfa folder. The SANS Track 8 Course CD,
which contains the Windows forensic tools, was mounted on the Windows 2000
VMware session on the D:\ drive. The md5sum utility on the SANS CD was used to
verify the MD5 hashes of both the WinPcap and WinDump programs.

Figure 64 – MD5 Hash of the WinDump and WinPcap programs

WinPcap_3_1_beta_3.exe Program Analysis

The WinPcap_3_1_beta_3 program contains the libraries that WinDump requires.
Therefore, it must be installed first. The strace utility was used to monitor the
WinPcap_3_1_beta_3 installation. Strace is a utility that monitors the interactions of a
program and the operating system during the program’s run-time process and writes
the interactions to a trace file. A copy of the strace utility was downloaded from
http://www.bindview.com/Support/RAZOR/Utilities/Windows/strace_readme.cfm and
installed on the C:\gcfa folder. The strace utility was run with the following option:

-o output.txt – This option invokes the strace utility to write the trace to the •
“output.txt” file.

Figure 65 – Strace output for WinPcap installation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.56

No. WinPcap Strace Output
3701 NtCreateFile (0xc0100080, {24, 0, 0x40, 0, 1244476,

"\??\C:\DOCUME~1\WINFOR~1\LOCALS~1\Temp\1P743O63\
WinPcap_3_1_beta_3\splash.bmp"}, 0x0, 128, 1, 1, 96, 0,
0, ... 292, {status=0x0, info=1},) == 0x0

3702 NtSetInformationFile (292, 1244532, 40, Basic, ...
{status=0x0, info=0},) == 0x0

3703 NtClose (292, ...) == 0x0

Figure 66 – Strace output “winpcap.txt “ file

The notepad tool was used to analyze the strace output file “winpcap.txt”. The strace
output “winpcap.txt” file is long, therefore only the pertinent sections of the strace
output file will be displayed and analyzed.

Table 2 – WinPcap.txt Strace Output #1

The definition of the NtCreateFile, NtSetInformationFile, and the NtClose functions
can be found in the MSDN Library. The definitions are listed below:

“The NtCreateFile function either creates a new file or directory, or opens an existing
file, device, directory, or volume…NtCreateFile is equivalent to the ZwCreateFile
function documented in the DDK” [6][7].

The NtSetInformationFile function is equivalent to the ZwSetinformationFile function.
“The ZwSetinformationFile routine changes various kinds of information about a file
object” [8]. In Table 2, if the MAC times of a file are changed, the NtSetInformationFile
with the Basic value will be set. If a file is to be deleted, the NtSetInformationFile with
the Disposition value will be set and the file will be deleted once it is closed with the
NtClose function.

The “winpcap.txt” strace output file contained many temporarily files and folders that
were created during the WinPcap installation but only a few of these files were
analyzed.

The strace output of the “winpcap.txt” in Table 2 indicates that the NtCreateFile
function was first used to create the temporarily file “splash.bmp”. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.57

No. WinPcap Strace Output
14215 NtCreateFile (0xc0100080, {24, 0, 0x40, 0, 17497612,

"\??\C:\WINNT\System32\packet.dll"}, 0x0, 128, 1, 1, 96, 0, 0,
... 328, {status=0x0, info=1},) == 0x0

14216 NtSetInformationFile (328, 17497668, 40, Basic, ...
{status=0x0, info=0},) == 0x0

14217 NtClose (328, ...) == 0x0

No. WinPcap Strace Output
20173 NtOpenFile (0x10080, {24, 0, 0x40, 0, 0,

"\??\C:\DOCUME~1\WINFOR~1\LOCALS~1\Temp\1P743O63\
WinPcap_3_1_beta_3\splash.bmp"}, 7, 2113600, ... 284,
{status=0x0, info=1},) == 0x0

20174 NtQueryInformationFile (284, 1244160, 8, AttributeFlag, ...
{status=0x0, info=8},) == 0x0

20175 NtSetInformationFile (284, 1244208, 1, Disposition, ...
{status=0x0, info=0},) == 0x0

20176 NtClose (284, ...) == 0x0

NtSetInformationFile with the Basic value was used next to indicate the MAC times of
this file were modified. The NtClose function was used to end the file operation.

Table 3 – WinPcap.txt Strace Output #2

Table 3 indicates that the “packet.dll” file was created in the folder
C:\WINNT\System32. Again, the NtSetInformationFile with the Basic value was used
next to indicate the MAC times of this file was modified and the NtClose function was
used to end the file operation.

Table 4 – WinPcap.txt Strace Output #3

Table 4 introduces the functions NtOpenFile and NtQueryInformationFile. The
NtOpenFile function indicated that a particular file is open for file operation [9]. In Table
4, the NtOpenFile function opened the “splash.bmp” file. The NtQueryInformationFile
with the AttributeFlag value returns the attribute of the file, eg if the file is hidden, read-
only, system [10]. The next function NtSetInformationFile with the Disposition value
indicated that this file that will be deleted once the file is closed. The “splash.bmp” file
was deleted after the NtClose function.

The complete analysis of the WinPCap executable program indicates the following:
The npf.sys, packet.dll, wanpacket.dll, wpcap.dll and pthreadVC.dll were •
installed in the C:\WINNT\System32 folder.
The npf_mgm.exe, daemon_mgm.exe, rpcapd.exe, NetMonInstaller.exe, •
Uninstall.exe, and Install.log were installed in the C:\Program Files\WinPcap
folder.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.58

WinDump.exe Program Analysis

Since the MD5 hash of the recovered WinDump program matched the MD5 hash of
the downloaded WinDump program from http://windump.polito.it/install/default.htm,
this program was classified as a known program. Thus, prior to any program analysis,
the function of this program was already known. However, the methodology used for
analyzing an unknown program would consist of using the strace utility to:

monitor what files are installed on the system during the program execution.•
monitor when these files are used during the program execution•
monitor the registry keys that are installed during the program execution•
monitor the network connections the unknown program may have initiated •
during the program execution.

The strace utility was used to monitor the WinDump program with the following
options (Figure 67):

-i2 – This option invokes the WinDump program to use the active network •
interface on the operating system.
-w windump-capture – This option invokes the WinDump program to write the •
output to the “windump-capture” file.

Figure 67 – Strace output for WinDump capture

Once the WinDump program was executed, a PING to 192.168.2.1 (the gateway) was
initiated (Figure 68). This was done to generate network packets so that WinDump can
capture these packets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.59

Figure 68 – Ping 192.168.2.1 (Gateway)

Figure 69 – MD5 hash of the windump-capture file

Figure 69 shows the strace output file “windump.txt”, WinDump capture file “windump-
capture” and the MD5 hash of the “windump-capture” file. The “windump-capture” file
was copied to the Linux Forensics workstation /gcfa folder via a floppy disk.

Figure 70 – MD5 verification of the windump-capture file

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.60

The md5sum utility was used to verify the MD5 hash of the “windump-capture” file. The
file utility was used next to verify that the “windump-capture” was a tcpdump capture
file. The ethereal utility was used next to examine this “windump-capture” file.

Figure 71 – Ethereal of the windump-capture file

Figure 71 shows 4 ICMP Echo requests (from 192.168.2.10 to 192.168.2.1) and 4
ICMP Echo replies (from 192.168.2.1 to 192.168.2.10). This result was expected as
there were 4 PING replies from 192.168.2.1 (showed in Figure 68).

The notepad tool was used to analyze the strace output file “windump.txt”. The
pertinent section of the strace output file “windump.txt” will be displayed and analyzed.

No. “WinDump.txt” Strace Output
97 NtQueryAttributesFile ({24, 0, 0x40, 0, 0, "\??\C:\WINNT\System32\wpcap.dll"}, 1243076,

...) == 0x0
100 NtOpenFile (0x100020, {24, 0, 0x40, 0, 0, "\??\C:\WINNT\System32\wpcap.dll"}, 5, 96, ...

32, {status=0x0, info=1},) == 0x0
…
117 NtQueryAttributesFile ({24, 0, 0x40, 0, 0, "\??\C:\WINNT\System32\packet.dll"}, 1242952,

...) == 0x0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.61

120 NtOpenFile (0x100020, {24, 0, 0x40, 0, 0, "\??\C:\WINNT\System32\packet.dll"}, 5, 96, ...
28, {status=0x0, info=1},) == 0x0

…
144 NtQueryAttributesFile ({24, 0, 0x40, 0, 0, "\??\C:\WINNT\System32\WanPacket.dll"},

1242828, ...) == 0x0
147 NtOpenFile (0x100020, {24, 0, 0x40, 0, 0, "\??\C:\WINNT\System32\WanPacket.dll"}, 5,

96, ... 32, {status=0x0, info=1},) == 0x0
Table 5 – Strace output for WinDump program #1

Table 5 indicates the following:
The WinDump program first checked if the “wpcap.dll”, “packet.dll” and •
“WanPacket.dll” files exist through the use of the NtFsQueryAttributesFile
function. This function determines if a file exists on a file system. This function is
often used because it does not change the last accessed time on the file [11].
The “wpcap.dll”, “packet.dll” and “WanPacket.dll” files are the WinPCap library •
files. These files were installed in the folder “C:\WINNT\System32” during the
WinPcap installation process.
Once these files were located, the strace output showed that the WinDump •
program open these files. This established the WinDump’s reliance on the
WinPcap libraries.

The following libraries were found throughout the strace output “windump.txt”. These
libraries were opened using the NtOpenFile function.

iphlpapi.dll – This is the IP Helper API. It is used to retrieve network •
configuration settings on a Windows operating system [12].
icmp.dll – This library is used by the PING utility [13]. The PING utility is used to •
determine if a host is on the network.
mprapi.dll – This library is used to configure the Microsoft Windows 2000 •
routers [14].
samlib.dll – This library is used for the Security Authority Manager API [15].•
netapi32.dll – This library is used by applications to access a Microsoft network •
[16].
secur32.dll – This library contains Windows Security functions [17].•
netrap.dll – This is the Net Remote Admin Protocol dynamic link library and this •
library is part of the installation of the Windows 2000 operating system [18].
dnsapi.dll – This is the Domain Name Server API dynamic link library. It is used •
by DNS resolvers to initiate DNS name lookups [19].
activeds.dll – This is the Active Directory Services Interfaces (ADSI) API dynamic •
link library [20].
adsldpc.dll – This is one of the Active Directory Services Interfaces dynamic link •
libraries [21].
rtutils.dll – This is the routing utilities. It is responsible for generating diagnostics •
for the Windows Routing and Remote Access Service components [22].
setupapi.dll – This library is used by installers and setup applications [23]. •
userenv.dll – This library is used to create and manage user profiles [24].•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.62

rasapi32.dll – This library is used to control modem connections [25].•
rasman.dll – This is the Remote Access Server Manager DLL. It is used by •
applications to initiate remote access functions [26].
tapi32.dll – This is the Microsoft Windows Telephony API client DLL [27].•
dhcpcsvc.dll – This is the DHCP Client service DLL. This library is used to •
provide DHCP client services [28].
clbcatq.dll – This library is part of the Windows COM services [29].•

No. “WinDump.txt” Strace Output
3917 NtCreateFile ... 428, {status=0x0, info=0},) == 0x0
3919 NtDeviceIoControlFile (428, 0, 0x0, 0x0, 0x1cf7, 0x0, 0, 26, ...

{status=0x0, info=26}, "N\0P\0F\00\00\00\00\00\00\00\00\03\06\0",
) == 0x0

3921 NtDeviceIoControlFile (428, 0, 0x0, 0x0, 0x80000004,
"\5\1\1\0\4\0\0\0\0\0\0\0\0\0\0", 15, 15, ... {status=0x0,
info=15}, "\5\1\1\0\4\0\0\0\0\2\0\0\0\0\0",) == 0x0

3922 NtDeviceIoControlFile (428, 0, 0x0, 0x0, 0x80000000,
"\17\1\1\0\4\0\0\0\0\2\0\0\0\0\0", 15, 15, ... {status=0x0,
info=15}, "\17\1\1\0\4\0\0\0\0\2\0\0\0\0\0",) == 0x0

3925 NtDeviceIoControlFile (428, 0, 0x0, 0x0, 0x80000000,
"\16\1\1\0\4\0\0\0 \0\0\0\0\0\0", 15, 15, ... {status=0x0,
info=15}, "\16\1\1\0\4\0\0\0 \0\0\0\0\0\0",) == 0x0

3928 NtDeviceIoControlFile (428, 0, 0x0, 0x0, 0x2578, "@B\17\0", 4, 0,
... {status=0x0, info=1000000}, 0x0,) == 0x0

3929 NtDeviceIoControlFile (428, 0, 0x0, 0x0, 0x1cf6, "\200>\0\0", 4,
0, ... {status=0x0, info=16000}, 0x0,) == 0x0

3930 NtDeviceIoControlFile (428, 0, 0x0, 0x0, 0x1cf8,
"\377\377\377\377", 4, 0, ... {status=0x0, info=-1}, 0x0,) == 0x0

3982 NtDeviceIoControlFile (428, 0, 0x0, 0x0, 0x2346,
"\6\0\0\0`\0\0\0", 8, 0, ... {status=0x0, info=8}, 0x0,) == 0x0

Table 6 – Strace output for WinDump program #3

Table 6 shows that the NtCreateFile function was used to create a file with an
associated file handle of 428. The file handle is a number that is assigned to every
created or opened file. The file handle is used because it is easier to reference a file
through the use of a number rather than the use of the filename. The
NtDeviceIoControlFile function [30] was used multiple times to write the data that was
captured from the network device to the file handle 428.

No. “WinDump.txt” Strace Output
3984 NtCreateFile (0x40100080, {24, 24, 0x42, 0, 1244428, "windump-capture"}, 0x0, 128, 3,

5, 96, 0, 0, ... 412, {status=0x0, info=3},) == 0x0
Table 7 – Strace output for WinDump program #4

Table 7 shows that the file “windump-capture” was created because the WinDump
program was run with the “-w” option (show in Figure 67). The file handle 412 was
assigned to this “windump-capture” file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.63

No. “WinDump.txt” Strace Output
3986 NtWriteFile (412, 0, 0, 0, "\324\303\262\241\2\0\4\0\0\0\0\0\0\

0\0\0`\0\0\0\1\0\0\0", 24, 0x0, 0, ... {status=0x0, info=24},)
== 0x0

Table 8 – Strace output for WinDump program #5

Table 8 shows that the NtWriteFile function was used to write the tcpdump file header
(\324\303\262\241\2\0\4\0\0\0\0\0\0) to the file handle 412. The file header is in octal
format. Using the Windows XP calculator tool, the file header was translated to “D4 C3
B2 A1 02 00 04 00 00 00 00 00 00” in hexadecimal format.

Figure 72 shows the khexedit of the “windump-capture” file. The highlighted area
displayed the tcpdump file header in hexadecimal format.

Figure 72 – Khexedit of the windump-capture file #1

No. “WinDump.txt” Strace Output
3988 NtReadFile (428, 0, 0, 0, 256000, 0x0, 0, ... {status=0x0, info

=0}, "",) == 0x0
3989 NtWaitForSingleObject (424, 0, {-10000000, -1}, ...) == 0x102
3990 NtReadFile (428, 0, 0, 0, 256000, 0x0, 0, ... {status=0x0, info

=192},"i\235\325A\270\314\3\0J\0\0\0J\0\0\0\24\0\0\0\0PV\300\0\
10\0\14)\275\343\244\10\0E\0\0<\4\33\0\0\200\1\261J\300\250\2\
12\300\250\2\1\10\0F\\2\0\5\0abcdefghijklmnopqrstuvwabcdefghi\0
\0i\235\325A\12\316\3\0J\0\0\0J\0\0\0\24\0\0\0\0\14)\275\343\244
\0PV\300\0\10\10\0E\0\0<\361=\0\0@\1\4(\300\250\2\1\300\250\2\12
\0\0N\\2\0\5\0abcdefghijklmnopqrstuvwabcdefghi\0\0",) == 0x0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.64

3991 NtWriteFile (412, 0, 0, 0, "i\235\325A\270\314\3\0J\0\0\0J\0\0\
0", 16, 0x0, 0, ... {status=0x0, info=16},) == 0x0

3992 NtWriteFile (412, 0, 0, 0, "\0PV\300\0\10\0\14)\275\343\244\10\
0E\0\0<\4\33\0\0\200\1\261J\300\250\2\12\300\250\2\1\10\0F\\2\0
\5\0abcdefghijklmnopqrstuvwabcdefghi", 74, 0x0, 0, ... {status=
0x0, info=74},) == 0x0

3993 NtWriteFile (412, 0, 0, 0, "i\235\325A\12\316\3\0J\0\0\0J\0\0\0",
16, 0x0, 0, ... {status=0x0, info=16},) == 0x0

3994 NtWriteFile (412, 0, 0, 0, "\0\14)\275\343\244\0PV\300\0\10\10\
0E\0\0<\361=\0\0@\1\4(\300\250\2\1\300\250\2\12\0\0N\\2\0\5\0abc
defghijklmnopqrstuvwabcdefghi", 74, 0x0, 0, ... {status=0x0, nfo
=74},) == 0x0

Table 9 – Strace output for WinDump program #6

Table 9 shows that the NtReadFile function was used to read the data from the file
handle 428 and then NtWriteFile function was used to write the data to the “windump-
capture” file (file handle 412). The same process was repeated again in Table 10,
Table 11 and Table 12.

Figure 73 shows another khexedit of the “windump-capture” file. The highlighted area
in this figure contained the same data that was written by the NtWriteFile function (No.
3992) in Table 8. This confirmed the write process.

Figure 73 – Khexedit of the windump-capture file #2

No. “WinDump.txt” Strace Output

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.65

3996 NtReadFile (428, 0, 0, 0, 256000, 0x0, 0, ... {status=0x0, info
=192},"j\235\325A\350\250\3\0J\0\0\0J\0\0\0\24\0\0\0\0PV\300\0\
10\0\14)\275\343\244\10\0E\0\0<\4\34\0\0\200\1\261I\300\250\2\12
\300\250\2\1\10\0E\\2\0\6\0abcdefghijklmnopqrstuvwabcdefghi\0\0j\
235\325A\211\251\3\0J\0\0\0J\0\0\0\24\0\0\0\0\14)\275\343\244\0PV\
300\0\10\10\0E\0\0<\361>\0\0@\1\4'\300\250\2\1\300\250\2\12\0\0M\\
2\0\6\0abcdefghijklmnopqrstuvwabcdefghi\0\0",) == 0x0

3997 NtWriteFile (412, 0, 0, 0, "j\235\325A\350\250\3\0J\0\0\0J\0\0\0",
16, 0x0, 0, ... {status=0x0, info=16},) == 0x0

3998 NtWriteFile (412, 0, 0, 0, "\0PV\300\0\10\0\14)\275\343\244\10\0E
\0\0<\4\34\0\0\200\1\261I\300\250\2\12\300\250\2\1\10\0E\\2\0\6\0
abcdefghijklmnopqrstuvwabcdefghi", 74, 0x0, 0, ... {status=0x0,
info=74},) == 0x0

3999 NtWriteFile (412, 0, 0, 0, "j\235\325A\211\251\3\0J\0\0\0J\0\0\0",
16, 0x0, 0, ... {status=0x0, info=16},) == 0x0

4000 NtWriteFile (412, 0, 0, 0, "\0\14)\275\343\244\0PV\300\0\10\10\
0E\0\0<\361>\0\0@\1\4'\300\250\2\1\300\250\2\12\0\0M\\2\0\6\0abcde
f
ghijklmnopqrstuvwabcdefghi", 74, 0x0, 0, ... {status=0x0,
info=74},) == 0x0

Table 10 – Strace output for WinDump program #7

No. “WinDump.txt” Strace Output
4002 NtReadFile (428, 0, 0, 0, 256000, 0x0, 0, ... {status=0x0, info=

192},"k\235\325A\350\251\3\0J\0\0\0J\0\0\0\24\0\0\0\0PV\300\0\10\0
\14)\275\343\244\10\0E\0\0<\4\35\0\0\200\1\261H\300\250\2\12\300\
250\2\1\10\0D\\2\0\7\0abcdefghijklmnopqrstuvwabcdefghi\0\0k\235\
325A\200\252\3\0J\0\0\0J\0\0\0\24\0\0\0\0\14)\275\343\244\0PV\300
\0\10\10\0E\0\0<\361?\0\0@\1\4&\300\250\2\1\300\250\2\12\0\0L\\2\0
\7\0abcdefghijklmnopqrstuvwabcdefghi\0\0",) == 0x0

4003 NtWriteFile (412, 0, 0, 0, "k\235\325A\350\251\3\0J\0\0\0J\0\0\0",
16, 0x0, 0, ... {status=0x0, info=16},) == 0x0

4004 NtWriteFile (412, 0, 0, 0, "\0PV\300\0\10\0\14)\275\343\244\10\
0E\0\0<\4\35\0\0\200\1\261H\300\250\2\12\300\250\2\1\10\0D\\2\0\7
\0abcdefghijklmnopqrstuvwabcdefghi", 74, 0x0, 0, ... {status=0x0,
info=74},) == 0x0

4005 NtWriteFile (412, 0, 0, 0, "k\235\325A\200\252\3\0J\0\0\0J\0\0\0",
16, 0x0, 0, ... {status=0x0, info=16},) == 0x0

4006 NtWriteFile (412, 0, 0, 0,
"\0\14)\275\343\244\0PV\300\0\10\10\0E\0\
0<\361?\0\0@\1\4&\300\250\2\1\300\250\2\12\0\0L\\2\0\7\0abcdefghij
k
lmnopqrstuvwabcdefghi", 74, 0x0, 0, ... {status=0x0, info=74},)
== 0x0

Table 11 – Strace output for WinDump program #8

No. “WinDump.txt” Strace Output

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.66

4008 NtReadFile (428, 0, 0, 0, 256000, 0x0, 0, ... {status=0x0,
info=192},

"l\235\325A'\251\3\0J\0\0\0J\0\0\0\24\0\0\0\0PV\300\0\10\0\14)\275
\
343\244\10\0E\0\0<\4\36\0\0\200\1\261G\300\250\2\12\300\250\2\1\10
\
0C\\2\0\10\0abcdefghijklmnopqrstuvwabcdefghi\0\0l\235\325A\314\251
\
3\0J\0\0\0J\0\0\0\24\0\0\0\0\14)\275\343\244\0PV\300\0\10\10\0E\0\
0<\361@\0\0@\1\4%\300\250\2\1\300\250\2\12\0\0K\\2\0\10\0abcdefghi
jk
lmnopqrstuvwabcdefghi\0\0",) == 0x0

4009 NtWriteFile (412, 0, 0, 0, "l\235\325A'\251\3\0J\0\0\0J\0\0\0",
16,
0x0, 0, ... {status=0x0, info=16},) == 0x0

4010 NtWriteFile (412, 0, 0, 0, "\0PV\300\0\10\0\14)\275\343\244\10\0E\
0\0<\4\36\0\0\200\1\261G\300\
250\2\12\300\250\2\1\10\0C\\2\0\10\0abcdefghijklmnopqrstuvwabcdef
ghi", 74, 0x0, 0, ... {status=0x0, info=74},) == 0x0

4011 NtWriteFile (412, 0, 0, 0, "l\235\325A\314\251\3\0J\0\0\0J\0\0\0",
16, 0x0, 0, ... {status=0x0, info=16},) == 0x0

4012 NtWriteFile (412, 0, 0, 0,
"\0\14)\275\343\244\0PV\300\0\10\10\0E\0\0<\361@\0\0@\1\4%\300\250
\2\1\300\250\2\12\0\0K\\2\0\10\0abcdefghijklmnopqrstuvwabcdefghi",
74, 0x0, 0, ... {status=0x0, info=74},) == 0x0

Table 12 – Strace output for WinDump program #9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.67

Program Identification

The WinDump version 3.8.3 beta source code (WDumpSrc.zip) was downloaded from
http://windump.polito.it/install/default.htm. The WinPcap version 3.1 beta 2 source
code (3.1beta2-WpcapSrc.zip) was downloaded from http://windump.polito.it/misc/bin/.
Both of these source codes were uncompressed to the C:\Windump folder on the
Windows 2000 Workstation VMWare image. In order to compile the WinDump, the
WinPcap source code must be in the same root folder as the WinDump source code
[31].

The Microsoft Visual C++ 6.0 Professional Edition compiler (January 2001) was
installed on the Windows 2000 Workstation VMWare image. This compiler was
needed to compile the WinDump source code [31]. Furthermore, the WinDump
readme.w32 file indicates that the November 2001 (or late) edition of the Microsoft
Platform SDK is required. The Windows Server 2003 Platform SDK (February 2003)
was downloaded from
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/psdk-full.htm. This SDK
was installed to the C:\Program Files\Microsoft SDK directory on the Windows 2000
Workstation WMWare image. Once the SDK was installed, the Microsoft Visual C++
6.0 must be configured to use the Microsoft Platform SDK. This configuration was
done in the Microsoft Visual C++ 6.0 tools, options and directories setting.

The WinDump project file was loaded into Microsoft Visual C++ 6.0 compiler as
indicated on the WinDump site [31]. The WinDump project file contains all the source
codes that must be compiled in order to build the WinDump executable file. The
compiler can compile a debug or a release version of the WinDump program:

The debug version of any program is compiled with symbols and no •
optimization. This version of the program is used primarily for debugging
purposes only [32]. The debug version is larger in size than the release version.
The release version of any program is compiled without symbols and it is fully •
optimized [32]. The release version is the final release version of the program.

The Microsoft Visual C++ 6.0 was configured (under the Build option in the menu bar
and Set Active Project Configuration option) to compile the release version WinDump
source code since the objective was to determine if this compiled WinDump was the
same as the one used by Mr. Lawrence.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.68

Figure 74 – Compile the release version of WinDump

Figure 75 – Compiling WinDump (Release version)

Figure 75 shows the Microsoft Visual C++ 6.0 after compiling the WinDump. The
WinDump.exe executable program was built in the
C:\windump\tcpdump\win32\prj\Release folder as shown in Figure 76.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.69

Figure 76 – The compiled WinDump program (Release version)

Figure 77 – MD5 hash of the compiled WinDump program (Release version)

Figure 76 shows that the compiled WinDump program was 442368 bytes in size.
Figure 77 shows the MD5 hash of this compiled program. Both the MD5 hash and the
size of the file were different from the WinDump program that was used by Mr.
Lawrence. However, this does not indicate that the two WinDump programs were
different. If the WinDump program used by Mr. Lawrence was compiled with a different
version of the Microsoft Platform SDK, then different libraries would have been used
and thus the size of the program would be different. Therefore, it was necessary to test
the compiled WinDump program to determine if the output was the same as previous.

The compiled WinDump program was run with the same options as shown in Figure
67.
Again, a PING to 192.168.2.1 (the gateway) was initiated. This was done to generate
network packets so that WinDump can capture these packets.

Figure 78 – Testing the compiled WinDump program (Release version)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.70

Figure 79 – The WinDump capture file

Figure 79 shows the compiled WinDump’s output file “windump-compiled-capture”.
This file was copied to the Linux Forensics machine.

Figure 80 – File type classification on the WinDump capture file

Figure 80 shows that this file was a tcpdump capture file. The Ethereal utility was used
to further analyze this file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.71

Figure 81 – Ethereal of the compiled WinDump capture file

Figure 81 shows that there were 4 ICMP Echo request packets and 4 ICMP Echo reply
packets. This result was the same as the result produced by the WinDump program
used by Mr. Lawrence. Therefore, it was concluded that the compiled WinDump
program was the same as the program used by Mr. Lawrence

The source code for WinPcap_3_1_beta_3.exe could not be found. However, this
program was easily identified because of the file name. The google search engine was
used to locate the file name WinPcap_3_1_beta_3.exe. This file was downloaded from
http://www.oltenia.ro/download/pub/windows/network%20tools/ethereal/. The
downloaded file has the same file size as the one indicated by the timeline in Figure
62. It was determined in the examination details section that the downloaded file was
the same file as the file indicated by the timeline. The strace output in the forensic
details section indicated that this program installed certain libraries. It was also shown
that the WinDump program used these libraries. The WinDump site
http://windump.polito.it/ indicates that the WinDump program requires the WinPcap
libraries to function, thus the WinPcap_3_1_beta_3.exe file was identified.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.72

Legal Implications

It was determined that Mr. Lawrence, a sales representative at his firm, had used a
wiretapping program to intercept an email transaction between Ms. Conlay and her
friend. The purpose of his action was to determine personal information on Ms. Conlay
for personal use. In this particular act, Mr. Lawrence has violated the Invasion of
Privacy Law in Canada. Subsection 184.(1), Chapter C-46 of the Canada Criminal
Code states that [33]:

184. (1) Every one who, by means of any electro-magnetic, acoustic,
mechanical, or other device, wilfully intercepts a private communication is guilty
of an indictable offence and liable to imprisonment for a term not exceeding five
years.

It should be noted that Subsection 184 (1) does not apply if Ms. Conlay had given the
consent to Mr. Lawrence to wiretap her private communication. Subsection 184.(2),
Chapter C-46 states that [33]:

184.(2) Subsection (1) does not apply to

a person who has the consent to intercept, express or implied, of the (a)
originator of the private communication of the person intended by the
originator thereof to receive it;

It was obvious that Ms. Conlay would not have given the consent to Mr. Lawrence, as
the email transaction was a private communication between Ms. Conlay and her friend.

It should also be noted that Subsection 184.(2) (a), Chapter C-46 of the Canada
Criminal Code does not apply to system administrators who are intercepting or
monitoring their network traffic for the purpose of protecting their network from being
used illegally, as indicated by Subsection 184.(2) (e), Chapter C-46 of the Canada
Criminal Code. However, this exception should be used with care, as it does not permit
a system administrator to gain information on individuals for personal use. Since Mr.
Lawrence was a sales representative at his company, he would not fall under this
exception. Furthermore, Mr. Lawrence used the wiretapping program to obtain
information on Ms. Conlay for personal use only.

Subsection 184.(2) (e), Chapter C-46 states that [33]:

184. (2) Subsection (1) does not apply to

(e) a person, or any person acting on their behalf, in possession or control of a
computer system, as defined in Subsection 342.1(2), who intercepts a private
communication originating from, directed to or transmitting through that
computer system, if the interception is reasonably necessary for

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.73

(i) managing the quality of service of the computer system as it relates to
performance factors such as the responsiveness and capacity of the
system as well as the integrity and availability of the system and data, or

(ii) protecting the computer system against any act that would be an
offence under subsection 342.1(1) or 430(1.1).

Subsection 342.1(1), Chapter C-46 states that [34]:

342.1(1) Every one who, fraudulently and without colour of right,

obtains, directly or indirectly, any computer service,(a)

by means of an electro-magnetic, acoustic, mechanical or other device, (b)
intercepts

Subsection 342.1(2), Chapter C-46 defines “computer system” as [34]:

“computer system” means a device that, or a group of interconnected or related
devices one or more of which,

contains computer programs or other data, and(a)

pursuant to computer programs,(b)

performs logic and control, and(i)

may perform any other function;(ii)

Besides violating these laws, it was also shown in the investigation that Mr. Lawrence
had harassed Ms. Conlay. The documents on the USB JumpDrive clearly indicate Ms.
Conlay’s intent of having no relationship with Mr. Lawrence. However, he did not
receive Ms. Conlay’s intent in a welcome manner. He even indicated in one of the
documents that there may have been a bad batch of coffee and sarcastically hoped
that Ms. Conlay did drink not the coffee. This implied that he has the intent to harm Ms.
Conlay. By doing this, Mr. Lawrence has violated Subsection 264.1(1), Chapter C-46 of
the Canada Criminal Code, which states that [35];

264.1 (1) Every one commits an offence who, in any manner, knowingly utters,
conveys or causes any person to receive a threat

to cause death or bodily harm to any person;(a)

to burn, destroy or damage real or personal property; or(b)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.74

to kill, poison or injure an animal or bird that is the property of any person.(c)

(2) Every one who commits an offence under paragraph (1)(a) is guilty of

an indictable offence and liable to imprisonment for a term not exceeding five (a)
years; or

an offence punishable on summary conviction and liable to imprisonment for (b)
a term no exceeding eighteen months.

In addition to violating laws that can result in imprisonment, Mr. Lawrence may also
have violated company policies. Most companies have acceptable use policies, which
usually define the acceptable and unacceptable use of the computing and network
resources in the company. Therefore, policies such as no unauthorized installation of
software, no unauthorized use of software and no unauthorized wiretapping of the
company’s networks would usually be included in the acceptable use policy. Mr.
Lawrence would have easily violated these policies by installing the WinPCap libraries
and wiretapping the company’s network using WinDump.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.75

Recommendations

The investigation is now complete. The following are some recommendations as to
what should happen next.

It was shown in the investigation that Mr. Lawrence had installed and used a
wiretapping device to intercept an email communication between Ms. Conlay and her
friend. He did this without Ms. Conlay’s or his company’s consent.

The first recommendation is to contact the firewall administrator at CC Terminals for
the firewall logs dating from October 24th 2004 to October 29th 2004. The purpose of
this is to determine two things:

If Mr. Lawrence had download the WinDump and WinPcap programs•
If Mr. Lawrence had visited the http://www.mapblast.com•

If Mr. Lawrence had downloaded the WinDump and WinPcap programs at work, the
firewall logs would indicate these activities. Furthermore, if Mr. Lawrence had visited
the http://www.mapblast.com at work to determine Ms. Conlay’s meeting location, the
firewall logs would also indicate that activity. This information can be used to further
substantiate Mr. Lawrence’s actions.

The second recommendation is to conduct an interview with Mr. Lawrence, the security
administrator, and a HR representative. The purpose of the interview is to obtain a
confession from Mr. Lawrence, stating that he was responsible for the actions
identified in this investigation. In this particular case, the approach of the interview
process will be direct because there is substantial evidence to prove that Mr. Lawrence
had done something unacceptable. The following indicates the interview questions for
Mr. Lawrence and the reasons for the questions:

We found a USB JumpDrive in your cubicle. There were three Microsoft Word 1.
files on this USB Jumpdrive drive and the properties of these files indicate that
you are the owner. Furthermore, these files contain the emails that you had sent
to Ms. Conlay. Ms. Conlay also has copies of these emails in her mailbox.
Therefore, can you confirm that this is your USB JumpDrive?

The purpose of this question is to establish the ownership of this USB •
JumpDrive. By mentioning the contents of the USB JumpDrive and the fact that
Ms. Conlay probably has copies of the emails, it would be difficult for Mr.
Lawrence to deny ownership. The expected answer from Mr. Lawrence would
be “yes”.

How did you find Ms. Conlay’s private email address 2.
flowergirl96@hotmail.com? It is very unlike you could have guessed it.

Mr Lawrence will likely have no answer to this question. Therefore, his likely •

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.76

respond would be “I can’t remember or I don’t know”. The purpose of this
question is to increase the anxiety of this interview process.

Do you know that you can undelete files that have been deleted? We were able 3.
to recover 4 deleted files from your USB JumpDrive. Since this is your USB
JumpDrive, can you please explain what these files are used for?

At this point, Mr. Lawrence will likely claim the fact that he has no knowledge of •
these files. The purpose of this question is to show the ability of the investigation
team who had investigated this incident. Mr. Lawrence should begin to feel
some pressure.

Two of the four recovered files are WinPcap and WinDump. Do you know how 4.
to use WinPcap and WinDump?

Again, Mr. Lawrence will likely continue to deny the fact that he knows how to •
use these two programs. However, the purpose of this question is to disclose
the identification of the two recovered executable programs.

The other recovered file is a WinDump network capture file. This WinDump 5.
network capture file contains an email conversation between Ms. Conlay and
her friend. From this email, we were able to determine the meeting time and
location and Ms. Conlay’s private email address. Is this how you discovered Ms.
Conlay’s private email address? Is this how you were able to discover the
meeting time and location? Would you like to add anything to this?

Without mentioning the last recovered file, there are enough evidences that have •
been presented to cause Mr. Lawrence to confess at this point of the interview
process.

The questions below are likely not necessary. However, to complete the interview
process, these questions should be asked.

The last recovered file is a map of the coffee shop. Did you find the meeting 6.
location through the use of the WinDump program and then use a web-based
map finder to determine the location?

Again, there will have been enough evidence presented that have been •
presented. Mr. Lawrence will have difficulty denying his actions.

Do you know that it is a violation of the company acceptable use policy to use a 7.
network wiretapping program and that the consequence of violating such policy
is termination of employment?

The purpose of this question is to re-iterate the consequence of violating the •
acceptable use policy. Mr. Lawrence would have already understood the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.77

company’s acceptable use policy and that it is in violation of the policy to use a
network wiretapping program. If he did not know of the company’s acceptable
use policy, he would not have concealed his activities. He would not have
deleted those files.

Do you know that according to the Canada Criminal Code, it is illegal to use a 8.
network wiretapping program and that the punishment can be imprisonment?

Do you know that it is in violation of the company’s harassment policy to harass 9.
another individual and that the consequence of this type of actions could be
termination of employment? Do you know that according to the Canada Criminal
Code, it is illegal to harass another individual and that the punishment can be
imprisonment?

The purpose of the questions #8 and #9 is to inform Mr. Lawrence that •
according to the Canada Criminal Code, it is illegal to use a network wiretapping
program and the potential punishment is imprisonment.

It is in the interest of CC Terminal to terminate Mr. Lawrence as an employee
especially given the fact that he may face a lawsuit from Ms. Conlay. It is within the
rights of Ms. Conlay to inform law enforcement of this harassment. The law
enforcement will investigate this incident and will likely require the cooperation of CC
Terminal. Thus, all the evidences collected throughout this investigation will have to be
turned over to the law enforcement using the proper chain of custody process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.78

Additional Information

Stevens, Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley Longman,
1994. This book details the TCP/IP protocol suite. It present information the TCP, UDP,
IP packets are constructed. It is a requirement to understand the TCP/IP protocols in
order to analyze tcpdump network captures.

The http://undocumented.ntinternals.net website provides information on most of the
Windows NT/2000 kernel functions. This information is useful during the analysis of a
strace output. The strace utility, when executed in a Windows NT/2000 environment,
will generate a strace output. The strace output contains many Windows NT/2000
kernel functions.

The http://msdn.microsoft.com/library/ website provides additional information on the
Windows NT/2000 kernel functions.

The http://www.liutilities.com/products/wintaskspro/dlllibrary/ website provides
information on some of the common Windows dynamic link libraries. A program,
during execution, may call other Windows dynamic link libraries. This process is often
seen in the strace output. Therefore, this site provides some definition of these
dynamic link libraries.

The http://laws.justice.gc.ca/en/C-46/index.html website details the Canada Criminal
Code. The information provided at this site is useful as it states what is legal and what
is illegal in the context of invasion of privacy.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.79

List of References

[1] SANS Institute, Track 8 – System Forensics, Investigation, and Response. Volume
8.1. SANS Press, June 29, 2004 (pg19)

[2] “Detailed Explanation of FAT Boot Sector” Microsoft Corporation Help and Support
Library. December 6, 2003 <http://support.microsoft.com/kb/q140418/>.

[3] “Unicode Character Table: Basic Latin” J.R. Graphics. January, 2005
<http://jrgraphix.net/research/unicode_blocks.php>.

[4] “WinPcap Description” WinPcap: the Free Packet Capture Library for Windows
November 04, 2004 <http://winpcap.polito.it/>.

[5] “WinDump 3.8.3 beta download” WinDump: tcpdump for Windows May 15, 2004
<http://windump.polito.it/default.htm>.

[6] “NtCreateFile” Microsoft Corporation MSDN Library. December 2004
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/devnotes/winprog/ntcreatefile.asp>.

[7] “ZwCreateFile” Microsoft Corporation MSDN Library. November 23, 2004
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/kmarch/hh/kmarch/k111_80b1882a-8617-45d4-a783-dbc3bfc9aad4.xml.asp>.

[8] “ZwSetInformationFile” Microsoft Corporation MSDN Library. November 23, 2004
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/kmarch/hh/kmarch/k111_91ac021a-37b3-4d2d-9369-c80659e0dcd7.xml.asp>.

[9] “NtOpenFile” Microsoft Corporation MSDN Library. December 2004
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/devnotes/winprog/ntopenfile.asp>.

[10] “ZwQueryInformationFile” Microsoft Corporation. MSDN Library. November 23,
2004 <http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/kmarch/hh/kmarch/k111_822ab812-a644-4574-8d89-c4ebf5b17ea5.xml.asp>.

[11] Nowak, Tomasz. Undocumented Functions for Microsoft Windows NT/2000.
January 9 2001 <http://undocumented.ntinternals.net/>.

[12] Shreshtha Takshak, and Pradeep Gururani. “Dissecting IP Helper APIs”
DeveloperIQ. November 11, 2004
<http://www.developeriq.com/articles/view_article.php?id=151>.

[13] “INFO: Implementing Internet Pings Using Icmp.dll” Microsoft Corporation Help and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.80

Support Library. February 9, 2000 <http://support.microsoft.com/kb/q170591/>.

[14] “mprapi – mprapi.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/mprapi/>.

[15] “samlib – samlib.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/samlib/>.

[16] “netapi32 – netapi32.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/netapi32/>.

[17] “secur32 – secur32.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/secur32/>.

[18] “netrap – netrap.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/netrap/>.

[19] “dnsapi – dnsapi.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/dnsapi/>.

[20] “activeds – activeds.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/activeds/>.

[21] “Determining the version of ADSI that is installed on your computer” Microsoft
Corporation Help and Support Library. July 13, 2004
<http://support.microsoft.com/kb/216290/EN-US/>.

[22] “rtutils – rtutils.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/rtutils/>.

[23] “setupapi – setupapi.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/setupapi/>.

[24] “userenv – userenv.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/userenv/>.

[25] “rasapi32 – rasapi32.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/rasapi32/>.

[26] “rasman – rasman.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/rasman/>.

[27] “tapi32 – tapi32.dll – DLL Information” Uniblue WinTasks DLL Library. 2005
<http://www.liutilities.com/products/wintaskspro/dlllibrary/tapi32/>.

[28] “dhcpcsvc – dhcpcsvc.dll – DLL Information” Uniblue WinTasks DLL Library. 2005

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.81

<http://www.liutilities.com/products/wintaskspro/dlllibrary/dhcpcsvc/>.

[29] “download clbcatq.dll file information” E-systems Download Center. 2005
<http://www.e-systems.ro/download-dll/clbcatq.dll/>.

[30] “NtDeviceIoControlFile” Ntinternals.net Undocumented functions of NTDLL.
February 11, 2001
<http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20
Objects/File/NtDeviceIoControlFile.html>.

[31] “Compiling WinDump” WinDump: tcpdump for Windows. March 14, 2002
<http://windump.polito.it/docs/compile.htm>.

[32] “Debug and Release Configurations” Microsoft Corporation MSDN Library. 2005
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsdebug/html/_core_Debug_Build_Versus_Release_Build.asp>.

[33] “Interception of Communications, Chapter 46, Section 184”. Canada Criminal
Code <http://laws.justice.gc.ca/en/C-46/42172.html>.

[34] “Unauthorized use of computer, Chapter 46, Section 342.1”. Canada Criminal
Code
<http://laws.justice.gc.ca/en/C-46/42972.html>.

[35] “Uttering Threats, Chapter 46, Section 264.1 (1)”. Canada Criminal Code
<http://laws.justice.gc.ca/en/C-46/42515.html> .

