
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Lessons from a Linux
Compromise

GCFA

Practical Assignment

Version 2.0

Option 2

April 13, 2005

John Ritchie
Security 508: System

Forensics, Investigation
and Response – San

Francisco, CA.
November 18-23, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Abstract

This paper describes the forensic analysis of a Linux web server that had been
in use at an agency within our organization when it was attacked and fully
compromised. Although the intruder installed many tools to help him or her
attack and compromise other systems, he or she was prevented from leveraging
the server to spread within the agency network by the effective reaction on the
part of agency technical staff, who detected the intrusion and quarantined the
compromised server before the attacker was able to do further damage. I
analyzed the system with the dual goals of completing my GCFA certification
and fostering inter-agency cooperation and education; I was allowed to use the
system with the understanding that I will share findings and methodology with my
partner agency personnel.

 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Table of Contents

Abstract...1
Table of Contents..2
Document Conventions...3
Executive Summary... ..4
Synopsis of Case Facts...5
System Description...6
System Hardware..6
Image Media..7
Media Analysis..9

Description of Analysis System...9
Description of Tools Used..10

Media Analysis Methods..11
Preparation For Autopsy..11
Creation of a VMware Image..14

Media Analysis Performed...16
Analysis Using Autopsy..16
Log Analysis...24
Analysis On the Running System...25
Analysis of RST.b...27

Timeline Analysis..30
Timeline Evidence of a Compromise...30
Timeline Evidence, Post-compromise...36
Other Timeline Details...40

Deleted File Recovery...42
String Searches...46
Conclusions...50
Additional Information.. ..52
References..53
Appendices... ...54

Appendix A – Forensics Letter of Agreement..54
Appendix B – Chain of Custody Form...55
Appendix C – Tools Created For GCFA..57

groupgrep.sh Listing...57
mkautfromgrep.pl Listing..58
filefind.pl Listing.. ..59

2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Document Conventions

When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented this way include the following:

computer output The results of a command and other computer output
are in this style

tool name References in narration to operating system
commands or forensic tools used are represented in
this style

cross-reference A cross reference to another section of this paper will
be represented in this style.

In accordance with the Administrivia for this practical assignment and per
agreement with the agency whose server I'm analyzing, all references to the real
organization name and real data will be masked. In referring to the agency, I will
call it “Agency X,” and references to Agency X personnel will be in the form
“Agency Tech 1,” “Agency Tech 2,” or “agtech1” and “agtech2” when displaying
file ownerships. All Agency X external IP addresses will be masked using the
172.16.60.0/24 private IP range. Additionally, Agency X internal IP addresses
will also be masked using the 192.168.0.0/16 private IP range.

All references to my own agency have been changed to “Agency Y.”

 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Executive Summary

In January of 2005, a web server suspected of having been compromised many
months before was forensically examined. The forensic examination consisted
of making exact copies of the web server's disk storage and combing through
those copies to discover hidden and illegitimate files and directories on the
server to recover deleted files and to construct a time line of activity on the
server. Where ever possible, external firewall and externally-stored system logs
were examined and interviews were conducted with Agency X personnel to
corroborate the evidence.

Evidence gathered on the web server (“web1”) shows that it had been attacked
from a specific host on the Internet in April 2004 and had been compromised
using a flaw in the software used to encrypt the web services it provided. It was
revealed from system logs and examination of the timeline of events that the
intruder had quickly gained full administrative control of the machine.

Analysis of the file system and forensic examination of findings on the file
system shows that the intruder had successfully replaced system software with
tools designed to hide their activity on the system, to erase activity on the
system, to monitor login activity on the system and capture passwords, to give
them uncontrolled network access to the system, to trap unwary system
administrators into granting access to other systems under their control, and to
attack other systems. In short, the intruder had completely subverted the server
and was in a position to gain information about, and launch attacks against, the
agency network the server was placed on.

Although the intruder had gained complete control of web1, they weren't
completely successful in their overall attack. There is evidence that some of
their tools had not been built successfully and that some had not functioned
correctly once installed. One of the tools they installed may have caused the
system to become unstable; log file analysis shows that it had crashed and
rebooted several times after it was compromised.

Interviews with Agency X system administrators reveal that these problems
brought the attack to their attention. The system administrators determined that
the machine had been compromised and disconnected it from the network,
eliminating most of its usefulness as an attack vector. They effectively halted the
compromise within hours of the initial attack.

Agency X system administrators didn't have the training to do the careful, in-
depth forensic examination that is necessary to discover the attacker's activities
without damaging the evidence. Examination of the system clearly shows many
of the activities of the post-compromise investigations that Agency X personnel
performed, some of which muddies the evidence left by the actual intruder.
There is also evidence that the post-compromise investigations caused
additional system damage and had the potential to worsen the compromise,
possibly even spread it to other Agency X systems.

4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

In accordance with my agreement with Agency X, I will use this practical
assignment as a teaching tool for incident response and forensic techniques to
more safely and effectively respond to future compromises. Together we will
develop some “lessons learned” from this incident that our whole organization
can use.

Synopsis of Case Facts

The machine that I analyzed for this exercise was a test/development web server
for another agency (Agency X) within our organization. According to discussions
with Agency Tech 1, the agency deployed this web server primarily to test
Apache and the RSA web agent. On the morning of April 6th, 2004, the server
came under attack and was compromised. As a result of the compromise, the
machine crashed or was rebooted. When Agency Tech 1 investigated, there
were some system commands that were failing or acting strangely. This
prompted further investigation and, at around 12:30 PM on the 6th, the server
was determined to have been compromised and its access to the outside
network was terminated.

Once Agency Tech 1 had determined that the machine had probably been
compromised it was decided that it would need to be rebuilt to be of further use,
and, in May of 2004, the server was powered off and stored until a rebuild could
take place. Between that time and September 2004 the server was occasionally
booted using a Knoppix CD to take part in network tests but wasn’t booted from
the hard drive until September 1st, 2004 when Agency Tech 1 took a final copy of
the drive so the server could be rebuilt. That still hadn't happened in December
of 2004, when Agency X allowed me to use the server for the purposes of my
GCFA practical assignment.

My being allowed to analyze the machine is unusual within our organization and
this exercise is being used as a cooperative precedent to further one of the goals
of my office: that of developing an inter-agency Incident Response Team. This
cooperative effort is helping our organization learn several things about inter-
agency cooperation for response to an incident. I was allowed to analyze the
server on the conditions that I maintain secrecy of agency data and that I share
my findings with agency personnel for educational purposes. There are some
incidentals as well, such as developing guidelines for inter-agency secrecy
agreements and the development of a Chain of Custody form (Appendix B).

Using this practical assignment as an educational piece presents some
challenges. The assignment clearly states that findings and conclusions should
be written such that they could be used in court and scrutinized by opposing
council, but that writing style may be counter to an educational writing style.
Another challenge is that one may wish to present more details about a
procedure when writing educationally than is necessary to fulfill the practical
assignment. In cases where there's a potential conflict in writing purpose I've
created “educational footnotes” to separate purely educational content from the
practical assignment body.

5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

System Description

The system in question is a dual-processor Intel-based workstation-turned-server
on which Agency X had installed Redhat Linux. Agency X built the machine as a
test/development/learning environment for Apache and the RSA web agent. The
system is running Redhat Linux 7.3 kernel 2.4.18-3smp, Apache 1.3.26
configured with mod_ssl 2.8.7, mod_rsawebagent 5.2.0 and OpenSSL/0.9.6.
Other software installed and running included webmin and OpenSSH version
3.1p1. The system was positioned in an Agency X internal network behind an
Agency X firewall with a NATted private (RFC 1918) address. The firewall rule
set allowed only port 443 (https) connections from outside to the web server but
allowed outgoing port 80 (http) and port 25 (smtp) connections from the server to
outside. The server was configured to send syslog output to an Agency X syslog
server as well as to store it locally.

System Hardware

Tag #: SoOESO2005_01-01
Description: Dell Precision 210 workstation/server, model # WCM. Custody of
this server was given to me by the State of Oregon Agency X for forensic
analysis. Refer to Forensics Letter of Agreement (Appendix A) and Chain of
Custody Form (Appendix B).
Serial #: UMG10D
Agency X inventory #: X123X-27675
Detailed Description: Computer system with dual 450 Mhz. Intel CPUs (each
identified with a tag as "5137P RDJD"), internal CDROM reader, Make: NEC,
Model # CDR-1901A, Serial # 9189114S115, internal 3.5" high density floppy
drive, Make: Sony, Model # MPF920-F, Serial # 12591-8CS-0NLF, internal
Quantum Fireball lct 30.0 GB drive (see Tag # SoOESO2005_01-02).
System motherboard provides built-in sound, USB, keyboard and mouse, two
serial and one parallel port and a 10/100 Ethernet port.
The system has the following detachable internal hardware cards:
one PCI Ethernet card, Make: unidentified, Model #: 100TX,
Serial #: 00D0B720E422 and
one graphics adapter, Make: Diamond Multimedia, Model: Fire GL 1000 AGP
graphics adapter card, Serial # 0691200176090

System memory consists of:

2 - 32Mb PC-100 SDRAM sticks, Make: CMI, Model #: 464S2TG8-K,
Serial #: unidentified
1 - 128 Mb PC-100 stick, Make: unidentified, Model #: MH16S72BAMD-8,
Serial #: unidentified

for a total system memory of 192 Mb.

6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

I have assigned a distinct tag number to the hard drive of the system because it
may be desirable to detach the hard drive from the system for forensic analysis.

Tag #: SoOESO2005_01-02
Description: Quantum Fireball lct 30.0 GB hard drive with Agency X-attached
label
Make #: Quantum Fireball lct
Model: 30.0 GB AT hard drive, Part #: LB30A011 Rev 01-A
Serial #: 176491530427 TAZXX
Agency X label: WEB1.AgencyX 192.168.200.14 172.16.60.6

Image Media

The first step to take when performing forensic analysis of a hard drive is to
obtain an exact copy of the drive to do analysis on. Doing so allows one to work
with the information on the drive without risk that the original copy will be altered.

In order to prove that one is working with an exact copy of the information on the
hard drive it is necessary to obtain a digital signature of the original information
on the hard drive and be able to prove that copies of that information have the
same digital signature. The common practice for doing this is to obtain an MD5
hash from the information on the hard drive, then make an exact copy of the
information and obtain an MD5 hash from the copy to prove it's the same as the
original.

I used the following techniques for obtaining an exact copy of the hard drive from
the server web1.

First, I booted web1 and entered the BIOS menu and changed the BIOS to boot
from the CDROM drive first. I then inserted a bootable Helix CD and rebooted
the machine.

Once the system had booted from the Helix CD I configured web1's network
interface and made it a member of the network that I had my forensic
workstation on and tested connectivity.

To save the results of the initial MD5 hash of web1's hard drive, I used netcat to
direct output from the md5sum tool to be transported over the network to my
forensic workstation where it could be stored. I used netcat (“nc” in the output
below) to transparently and efficiently move data between web1 and my forensic
workstation.

On my forensics workstation (named “aardvark”, with IP address 192.168.2.1) I
did:

ritchiej@aardvark:~/projects/GCFA> nc -l -p 33333 > md5sums.txt

Illustration 1: netcat listener output redirected to md5sums.txt

7

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This caused netcat to listen on port 33333 and directed the output to the file
md5sums.txt.

On web1 I did:

Doing this makes md5sum take the digital hash of the primary (only) IDE drive
and direct output, via netcat, to the IP address of my forensics workstation
(192.168.2.1) on port 33333.

After the process finished I examined the file md5sums.txt on aardvark:

This shows that the MD5 hash of the information on the IDE hard drive /dev/hda
on web1 was “133d5db8c5b52d3567e2d1f9f9918ec5”.

Once I'd obtained the MD5 hash of the original hard drive information I made an
exact copy of the drive to my forensics workstation. I again used netcat to
efficiently transfer the information over the network between web1 and aardvark.

On aardvark:

I established a netcat listener on port 33333 again and directed the output to the
file “web1.img”.

On web1:

I used dcfldd to make a copy of the IDE hard drive device (“if=/dev/hda”).
Specifying the “hashwindow=0” parameter caused dcfldd to do an MD5 hash of
the total data it processed. This gave me an integrity check against the original
saved MD5 hash I took of the hard drive before beginning analysis. I specified
the IDE drive device /dev/hda as the input to this command and piped the
output, via netcat, to port 33333 of my forensics workstation 192.168.2.1.

Once the process was done, the MD5 hash output from dcfldd showed the
same value as that of the original check:

root@ttpy0[~]# md5sum /dev/hda | nc -w 3 192.168.2.1 33333

Illustration 2: piping md5sum via netcat to aardvark

ritchiej@aardvark:~/projects/GCFA> cat md5sums.txt
133d5db8c5b52d3567e2d1f9f9918ec5 /dev/hda

Illustration 3: MD5 hash of system harddrive

ritchiej@aardvark:~/projects/GCFA> nc -l -p 33333 > web1.img

Illustration 4: redirection of netcat output to an image file

root@ttpy0[~]# dcfldd if=/dev/hda hashwindow=0 | nc -w 3 192.168.2.1
33333

Illustration 5: dcfldd copy of hard drive piped to netcat

8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

To confirm that the digital copy of the hard drive had been transported and
stored without errors I did an additional MD5 hash of the image stored on my
forensics workstation. I did an md5sum and concatenated the output of that
sum into the file where I'd stored the MD5 hash of the original hard drive to make
it simple to compare:

The display of the file “md5sums.txt” demonstrates that the MD5 hash for the
original hard drive, /dev/hda, is the same as the digital copy on my forensics
workstation, “web1.img:”

Media Analysis

Description of Analysis System

The forensic analysis system I used for this assignment consisted of a Dell
Latitude D400 notebook computer with a 1.7 Ghz. CPU, 2 Gigabytes of RAM, an
external DVD CDRW and an internal 40 Gigabyte hard drive. Additional
hardware was an Iomega 250 Gigabyte USB hard drive, of which only half was
available for use, and an Hitachi 40 Gigabyte IDE hard drive attached via an
IDE/USB adapter. Given the need to cryptographically protect the massive
amounts of data this exercise generated (Appendix A – Requirement 2), the
external USB drive and the slow CPU were suboptimal and meant long waiting
times to process data.

The analysis system was running SuSE Linux Professional 9.2, selected
because of SuSE's broad software offering which includes critical forensics tools
such as NTFS and cryptographic filesystem support, khexedit, ethereal and also
because it was a new release at the time and had broad driver support for the
Dell D400 notebook.

Illustration 6: dcfldd of disk image showing MD5 hash

ritchiej@aardvark:~/projects/GCFA> cat md5sums.txt
133d5db8c5b52d3567e2d1f9f9918ec5 /dev/hda
133d5db8c5b52d3567e2d1f9f9918ec5 web1.img

Illustration 8: MD5 hash of harddrive and image of harddrive

ritchiej@aardvark:~/projects/GCFA> md5sum web1.img >> md5sums.txt

Illustration 7: concatenation of disk image MD5 hash to md5sums.txt file

9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Description of Tools Used

Software used in the analysis efforts included the following:
● VMware Workstation 4.5.2, VMware, Inc. (http://www.vmware.com) – used to

build a copy of web1 for forensic and testing purposes.
● cryptographic filesystem, using loopfs, bundled with SuSE 9.2 – because of

the data protection requirements of Agency X (see Appendix A – Forensics
Letter of Agreement, requirement 2), it was necessary to ensure that data
from the compromised system could not be forensically recovered in case of
theft or loss, and it was necessary to allow for easy data erasure at the end of
this project. In order to do this, I allocated half of the external USB hard drive
to a single file, which I encrypted using the cryptographic file system and
mounted using the loopback file system. I stored all copies of web1 disk data
on that file system.

● Helix 1.5, e-fense Inc. (http://www.efense.com/helix/index2.html) - I used this
bootable forensics CD any time I needed work with the compromised web
server or the VM I made from it. It allowed me to maintain data integrity by not
booting from the hard drive and it gave me a full, statically-compiled forensics
laboratory to analyze the system with.

● Autopsy Browser 2.03 (http://www.sleuthkit.org/autopsy/) - I used Autopsy
both for its automation of forensics functions but also because of its
organizational capabilities. I found it much easier to manage the forensic data
and notes as a case within Autopsy than I would have without it.

● Sleuthkit 1.73 (http://www.sleuthkit.org/sleuthkit/index.php) - I used the
Sleuthkit because it has most of the analysis tools I needed. I used the tools
bundled in Autopsy and I used the following components of the Sleuthkit
individually as well:

● mmls – the tool of choice for printing partition information from a disk
image.

● istat – lists detailed information about specific inodes.
● dstat – lists detailed information about file fragments.
● ifind – finds the inode associated with a specific allocated file fragment
● ffind – finds the filename associated with an allocated inode.

● ethereal 0.10.6, bundled with SuSE 9.2 - used to monitor attempted network
traffic from the VM instance of the compromised machine.

● dcfldd 1.0, Free Software Foundation – A tool for doing data block copying.
Like the Unix command “dd,” makes binary duplicate copies but has added
features like built-in MD5 hash functionality (using the “hashwindow”
parameter) and a progress indicator. The MD5 hash functionality is useful for
verifying forensic integrity as part of the copying process.

● khexedit 0.8.5, bundled with SuSE 9.2 – KDE tool used to edit binary files and
to examine files at a binary level.

● foremost 0.69, written by Kris Kendall and Jesse Kornblum. - A tool for
categorizing and extracting data from a disk image. Useful for “mass
undeletion” of files, but it can be extremely greedy for disk space.

● lazarus, part of The Coroner's Toolkit by Dan Farmer - Another tool for
categorizing and extracting data from a disk image. Lazarus will categorize

10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

data on a block-by-block level. Although it is much slower than foremost, it is
also much less greedy for disk space.

● I used many tools and commands bundled with the Linux operating system
during the course of this investigation. Below are some that had forensic
significance:

● fdisk – displays the partition table of the target hard drive.
● file – identifies file types and summary information about files.
● sudo – allows elevation of privileges as necessary, helping protect the

forensics workstation from inadvertent damage.
● md5sum – generates MD5 hashes of data.
● strings – displays text (ASCII) strings from within a file.
● ls -latr – directory listing command, sorted by reverse time order.

Useful for finding files or directories with odd modification times.

Media Analysis Methods

I used two main methods for direct media analysis of the suspect system: I used
Autopsy's File Browsing Mode (available under the “File Analysis” tab), and I
made copies of the file system and browsed the file system directly. Each
method had its advantages.

Autopsy's File Browsing Mode presents a view of the file system that includes
deleted files and the File Browsing mode is closely tied with Autopsy's other
forensic capabilities such as string searches, deleted file recovery and its ability
to quickly view or export files. Autopsy can also be used to generate MD5
hashes of entire directories, facilitating proof of retention of forensic integrity.

Direct examination of the file system using Unix directory navigation and
commands, on the other hand, is much more intuitive for the experienced Unix
user and it allows the use of powerful Unix commands to examine the file
system. However, because the file systems on the disk images weren't
unmounted cleanly, it was necessary to create an analysis copy of the images
that could be mounted, examined, then reverted to their original state to maintain
their forensic integrity. I accomplished this by using VMware and creating a
virtual machine (VM) for filesystem analysis; the description of this process is
included below.

Preparation For Autopsy

In order to prepare a case within Autopsy it was necessary to segment the raw
disk image (procured in Image Media) into actual disk volumes. I used the
following procedure to “chop up” the disk and prepare it for Autopsy.

After copying the hard drive image to my forensics workstation I had used fdisk
to display the hard drive volume characteristics. As before, I had piped the
output from fdisk, via netcat, to my forensics workstation. The output from
fdisk is:

11

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Although fdisk gave me useful information such as how big the drive is and how
many volumes are on the drive with their size and name, it wasn't the best tool
for the job of cutting up a drive because it doesn't succinctly describe the exact
start and size of each partition of the drive. The tool for this is mmls. Using
mmls, I listed the partition table of the disk image I had created:

This tells us that the first partition starts in the 64th 512-byte sector and how
many sectors long each partition is. Using this information I was able to extract
parts of the drive image into individual partitions. I used dcfldd to extract the
first partition (hda1), then checked my work with file:

Note the MD5 hash of “57e85461e3ab45fa32ef6afea4a1898e”.

Using file told me that I had a valid filesystem of type “ext3,” but it also told me
that the filesystem needed journal recovery. This means that it was probably not
unmounted cleanly the last time the machine was shut down.

ritchiej@aardvark:/forensics/GCFA> mmls -t dos web1.img
DOS Partition Table
Units are in 512-byte sectors

 Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000001 0000000062 0000000062 Unallocated
02: 00:00 0000000063 0000096389 0000096327 Linux (0x83)
03: 00:01 0000096390 0057850064 0057753675 Linux (0x83)
04: 00:02 0057850065 0058621184 0000771120 Linux Swap /
Solaris x86 (0x82)

Illustration 10: mmls listing of disk image partition table

Disk /dev/hda: 30.0 GB, 30020272128 bytes
255 heads, 63 sectors/track, 3649 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/hda1 * 1 6 48163+ 83 Linux
/dev/hda2 7 3601 28876837+ 83 Linux
/dev/hda3 3602 3649 385560 82 Linux swap

Illustration 9: fdisk output from raw disk device /dev/hda

ritchiej@aardvark:/forensics/GCFA> dcfldd if=web1.img of=web1_hda1.img
bs=512 count=96327 skip=63 hashwindow=0
96256 blocks (47Mb) written.
Total: 57e85461e3ab45fa32ef6afea4a1898e
96327+0 records in
96327+0 records out

ritchiej@aardvark:/forensics/GCFA> file web1_hda1.img
web1_hda1.img: Linux rev 1.0 ext3 filesystem data (needs journal
recovery)

Illustration 11: extraction of hda1 using dcfldd and check with file command

12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

I used the same methods to extract both the swap partition and the hda2
partitions.* Their respective MD5 hashes were:
“f94362f83caa6c7ba7a4fc73be704426” and
“7acde451e7cfd7bd844344861878f282.” Doing file on the hda2 partition
indicated that it, too, needed journal recovery.

Before loading the partitions into Autopsy it is necessary to determine their
mount points within the original system. Normally this could be achieved by
using the loopback filesystem, mounting each partition image in read-only mode,
and examining the contents to determine where on the file system that partition
belongs. Mounting the partition read-only would allow analysis of the media
without damaging its forensic integrity. However, since each of the file systems
was corrupted (they needed journal recovery), it wasn't possible to mount them
in read-only mode because journal recovery couldn't happen without write
access to the file system. Allowing journal recovery would damage the forensic
integrity of the image. I demonstrated this by copying the smaller of the two
partitions and doing test mount commands with it.

I first confirmed that I had an exact copy of the image:

I then attempted to mount the image read-only onto the /mnt mount point using
the loopback filesystem:

After that failed, I tried again, leaving the “ro” option off of the mount command.
There were no errors and the partition mounted successfully.

I was then able to examine the /mnt directory and determine that this partition
was originally the /boot partition for the system. This meant that the hda2
partition was almost certainly the root (/) partition, as it turned out to be. I

* I used the following dcfldd command line for extraction of the swap partition: “dcfldd
if=web1.img of=web1_swap.img bs=512 count=771120 skip=57850065 hashwindow=0”; for
the hda2 partition I used: “dcfldd if=web1.img of=web1_hda2.img bs=512 count=57753675
skip=96390 hashwindow=0”. The “skip” number for each of these was taken from the “start”
value provided by mmls and the “count” is the “length” value from mmls.

ritchiej@aardvark:/forensics/GCFA> md5sum web1_hda1.img
57e85461e3ab45fa32ef6afea4a1898e web1_hda1.img
ritchiej@aardvark:/forensics/GCFA> cp web1_hda1.img test.img
ritchiej@aardvark:/forensics/GCFA> md5sum test.img
57e85461e3ab45fa32ef6afea4a1898e test.img

Illustration 12: confirmation of copy integrity

ritchiej@aardvark:/forensics/GCFA> sudo mount -o loop,ro,nodev,noexec
test.img /mnt
mount: wrong fs type, bad option, bad superblock on /dev/loop2,
 or too many mounted file systems
 (could this be the IDE device where you in fact use
 ide-scsi so that sr0 or sda or so is needed?)

Illustration 13: unsuccessful read-only mount of partition image

13

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

unmounted the test partition image and confirmed that its MD5 hash had
changed, and I did a file command to see that the filesystem had been repaired:

Once I had determined the mount points of the two file system images I was able
to import them into Autopsy and use Autopsy's “File Browsing Mode” to
navigate through the file system and analyze it.

Creation of a VMware Image

My analysis of the filesystem media was hampered because I couldn't mount the
disks read-only and directly navigate the filesystem without forensically altering
the data. Although I could have copied the data into another image file and
mounted and repaired that filesystem I didn't have enough free disk space to
support another full copy. Instead, I created a copy of the filesystem within
VMware, which allowed me to utilize VMware's filesystem compression and
maintain a forensically correct copy at the same time. Also, using VMware's
“Revert” functionality, I could make changes to the filesystem if necessary, then
revert it back to be a forensically correct image copy.

The following figure illustrates the creation of a VM within VMware from a disk
image while maintaining forensic integrity:

ritchiej@aardvark:/forensics/GCFA> sudo umount /forensics/GCFA/test.img
ritchiej@aardvark:/forensics/GCFA> md5sum test.img
0b01f01966d7387649bd32442df57d5a test.img
ritchiej@aardvark:/forensics/GCFA> file test.img
test.img: Linux rev 1.0 ext3 filesystem data
ritchiej@aardvark:/forensics/GCFA> md5sum web1_hda1.img
57e85461e3ab45fa32ef6afea4a1898e web1_hda1.img

Illustration 14: confirmation of changed repaired filesystem

14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This is essentially the reverse of the process I used to create a copy of the
original disk image. I created a VM within VMware, booted the VM using Helix
and configured the network. I then piped the image across the network using
netcat to dcfldd, which wrote the image onto the VM disk, maintaining its
forensic integrity as shown by the MD5 hash I took of the image when finished:
“133d5db8c5b52d3567e2d1f9f9918ec5”. Because of compression the new
image only used approximately 16 gigabytes of hard drive space.

Once the image had been copied to the VM I shut the VM down and took a
snapshot of it using VMware's “snapshot” feature. After doing that I was able to
examine the hard drive image using either Helix or by booting the machine and
logging in, then restore the forensic integrity by using the VMware “Revert”
feature to revert the hard drive back to its original state. I tested this technique
by rebooting the VM from the installed copy of the server (which involved
repairing the filesystem) and creating a test file on that server filesystem. I shut
the VM down, “reverted” it, and booted it with Helix and performed an MD5 hash
of the hard drive. The following snapshot shows the result of that md5sum:

The hard drive for the VM was reverted to its original state as can be seen
because its MD5 hash was the same as that of the original hard drive.

Illustration 16: md5sum after VM filesystem change and revert

15

Illustration 15: Creation of a VM from a disk image

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Media Analysis Performed

Analysis Using Autopsy

I didn't do much direct inspection of the file system and operating system
components as part of the media analysis except to follow up on clues provided
by other elements of the forensic investigation such as the timeline or string
searches. I did do some cursory looking through system directories early in the
investigation, though, scanning for clues.

While browsing the /usr/bin/ directory with Autopsy I could see several (17)
entries with no data other than an inode number and file dates of 12/31/1969.
This file date corresponds to the Unix “epoch,” or date from which time is
measured in Unix and, since file dates in Unix are stored internally as the
number of seconds since that epoch, this indicates that the internally-stored
value is zero for these files. File size, UID and GID are also zeros. Here's a
snapshot of these null entries:

Also present in the /usr/bin/ directory were hundreds of deleted files like the
following:

These deleted files were all kinds of utilities. It appears that there may have
been significant file deletion activity occurring in the /usr/bin/ directory at the time
the system was last shut down. This is further evidence of file system corruption
as initially indicated by the “file” commands done on the volume images,
discussed above in Preparation for Autopsy.

I used Autopsy's file browsing feature to examine many files and directories
while following up on clues. I either viewed the files directly within Autopsy's
“File Analysis” section by clicking on the file and viewing it, or I viewed the file,
then exported it from there by clicking the Export button. In order to ensure that
forensic integrity was maintained after the file was exported, I would select
“Generate MD5 List of Files” button from the directory listing screen from which I

Illustration 17: null inode entries in /usr/bin

Illustration 18: deleted file entries in /usr/bin

16

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

wanted to export one or more files. This would produce the following screen in a
separate browser window:

The contents of the browser window could then be saved off to a signature listing
file. After extraction and analysis of a file from the forensic image I could
compare MD5 signatures of the extracted file with the signatures stored for that
directory and ensure that my analyses hadn't changed the subject file. Here's an
example with the recovered /bin/ps file, saved to my forensics workstation as
web1_hda2.img-bin.ps, and the md5 signatures for the /bin directory, saved as
the autopsy-web1_hda2.img-bin.md5 file:

I browsed and viewed the following files and directories using Autopsy:

● /usr/local/games directory and /usr/local/games/.sniffer file. This file shows
root password changes, scp transactions to other machines (including the
username and password on the remote system), telneting to a network switch
device (including the username and password), and changing agadmin1's
password.

● /etc directory and files in it: /etc/hosts to determine the system IP address;
/etc/syslog.conf to confirm that syslog information was being sent to an
AgencyX remote log server 192.168.200.3;
/etc/redhat-release to confirm that the system was running Redhat 7.3.

● /etc/sysconfig/console directory and the files found there: default.netstat,
default.ps, default.syslog, default.ls and default.socklist.

Illustration 19: MD5 hash values produced for a directory by Autopsy

ritchiej@aardvark:/forensics/GCFA/web1/output/recovered> md5sum
web1_hda2.img-bin.ps
433b55d0fc16252023f5e8b04918614f web1_hda2.img-bin.ps
ritchiej@aardvark:/forensics/GCFA/web1/output/recovered> grep ps
autopsy-web1_hda2.img-bin.md5
433b55d0fc16252023f5e8b04918614f ps

Illustration 20: checking forensic integrity of recovered ps file

17

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

● /etc/rc.d/init.d system startup directory and many of the files there, including
the /etc/rc.d/init.d/functions file that had been altered to cause startup of some
of the rootkit tools upon system reboot.

● /root, the root user's home directory and recovered the /root/.bash_history
and /root/chkroot.out files. These files helped determine what actions Agency
X personnel had taken in response to the system compromise.

Using Autopsy I browsed and recovered each of the files installed during the
rootkit build, shown in the timeline starting at Tue Apr 06 2004 08:31:55. I
examined each of these files using strings and in some cases I referred to other
sources for information; below is a list of each of them and what they do:

/bin/ps: strings examination of this binary reveals the hard-coded value of
“/etc/sysconfig/console/default.ps” within the file; this appears to use that file as a
configuration file to hide certain commands from being displayed by the “ps”
command.

/etc/sysconfig/console/default.ps: Configuration file for /bin/ps. This contains
the following lines:

/bin/netstat: strings examination of this binary reveals the hard-coded value of
“/etc/sysconfig/console/default.netstat” within it; this binary appears to use that
file as a configuration file to hide network connections from being displayed
when the netstat command is used.

/etc/sysconfig/console/default.netstat: Configuration file for /bin/netstat. This
contained the following lines:

/bin/ls: Presumably trojaned copy of the “ls” command. Examination of this file
using strings does not reveal the presence of the
“/etc/sysconfig/console/default.ls” string.

3 slice
3 vadim
3 tcpd
3 kernel
3 stealth
3 ettercap

Illustration 21: contents of /etc/sysconfig/console/default.ps

1 194.102
3 101
3 112233
4 6660
4 6666
4 6667
4 6668
4 6669
4 7000
4 101

Illustration 22: contents of /etc/sysconfig/console/default.netstat

18

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/etc/sysconfig/console/default.ls: Presumably a configuration file for /bin/ls.
Since /bin/ls makes no reference to this file it's unclear how it would be read.
This contained the following lines:

/bin/socklist: This showed up in the timeline with a modification and creation
time during the rootkit build. Comparing the /bin/socklist Perl script recovered
from the compromised machine and a clean one from my forensics workstation
shows no differences. This file appears not to be trojaned.

/etc/sysconfig/console/default.socklist: Presumably a configuration file for
/bin/socklist. Since the /bin/socklist script makes no reference to this file it's
unclear how this configuration file would be read. Since /bin/socklist reads its
values from the /proc filesystem it's possible that some other utility uses this
configuration file to alter what's displayed by the /proc filesystem. This contained
the following lines:

/sbin/syslogd: Presumably a trojaned copy of syslogd, this binary shows a
creation time entry in the timeline at the time of the rootkit build. Doing strings
examination of the file does not reveal the presence of the
“/etc/sysconfig/console/default.syslog” string within the file.

/etc/sysconfig/console/default.syslog: Presumably a configuration file for
/sbin/syslogd to control which strings would not be logged by it. Since that
binary contained no reference to this file it's unclear how this configuration file
would be read. This contained the following lines:

psybnc
banner
tcp.log
psybnc.conf
wp
shad
tcpd
mech.set
mech.pid
mech.session
ftpusers-
identd
kernel
ettercap
Collected

Illustration 23: contents of /etc/sysconfig/console/default.ls

101
112233
nfsd
kernel

Illustration 24: contents of /etc/sysconfig/console/default.socklist

19

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/usr/bin/slice: This binary was created at the time of the rootkit install. strings
examination reveals that it is probably a Denial-of-Service attack tool. The
“usage” section shows:

/usr/bin/clean: A bash shell script that goes through log files in /var/log and
removes values from them. The value to be “cleaned” is supplied on the
command line.

/usr/bin/chsh: The system timeline shows this binary with a modification and
creation time updated during the rootkit build. A strings examination of the
binary doesn't reveal anything obviously suspect that isn't consistent with
functionality that chsh would normally have. The binary is setuid root on the
system.

/usr/bin/vadim: According to strings examination, this binary appears to be an
attack tool capable of spoofing the source IP address. In her GCIH Practical
Assignment, Heather Larrieu calls this a “DoS” (Larrieu, p. 9)

www.geocities.com/ixiondark
194.102
kernel
sshd
syslog
klogd
net-pf-10
modprobe
operator
games
promiscuous
PF_INET
60G
nix
dem

Illustration 25: contents of /etc/sysconfig/console/default.syslog

Usage: %s <target> <clones> [-fc] [-d seconds] [-s packetsize] [-a
srcaddr] [-l lowport] [-h highport] [-incports] [-sleep ms] [-syn[ack]]
 target - the target we are trying to attack.
 clones - number of attacks to send at once (use -f for more
than 6).
 -f - force usage of more than 6 clones.
 -c - class C flooding.
 -d seconds - time to flood in seconds (default 200, use 0 for no
timeout).
 -s size - packet size (default %d, use 0 for random packets).
 -a srcaddr - the spoofed source address (random if not specified).
 -l lowport - start port (1 if not specified).
 -h highport - end port (65335 if not specified).
 -incports - choose ports incremental (random if not specified).
 -sleep ms - delay between packets in miliseconds (0=no delay by
default).
 -syn - use SYN instead ACK.
 -synack - use SYN|ACK.

Illustration 26: strings from /usr/bin/slice

20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/usr/bin/stealth: This binary may be an attack tool. Not much information about
what the tool does is available using strings:

Since the binary was not stripped after linking, one can also glean information
about its build environment from the strings output. Amongst lots of C
declarations we see that this binary appears to have been built on a Mandrake
Linux system, using GCC 2.95.2, and we can see the names of some of the
source code files that were used to build the binary:

Larrieu refers to an “st” tool as a “stealth DDoS”, or distributed denial-of-service
tool (Larrieu, p. 9).

/usr/bin/wp: Analysis of strings output from this file indicates that it was a
wiping utility for cleaning user entries out the utmp, wtmp and lastlog log files:

/sbin/init: strings output from this file indicates that it is almost certainly a
version of the SucKIT kernel rootkit:

USAGE: wipe [u|w|l|a] ...options...
UTMP editing:
 Erase all usernames : wipe u [username]
 Erase one username on tty: wipe u [username] [tty]
WTMP editing:
 Erase last entry for user : wipe w [username]
 Erase last entry on tty : wipe w [username] [tty]
LASTLOG editing:
 Blank lastlog for user : wipe l [username]
 Alter lastlog entry : wipe l [username] [tty] [time] [host]
 Where [time] is in the format [YYMMddhhmm]

Illustration 29strings from /usr/bin/wp

Stealth > %s: port %d
Stealth > Non-existant host: %s
twitch@Stealth: This tool is extremely dangerous. Use at your own risk!
Usage: st-kill <host> <port>

Illustration 27: "usage" strings from /usr/bin/stealth

/usr/lib/gcc-lib/i586-mandrake-linux/2.95.2/include/stddef.h
initfini.c
init.c
crtstuff.c
stealth.c

Illustration 28: compile information strings from /usr/bin/stealth

21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:./bin
:/usr/local/games:/usr/local/games/bin
PS1=\[\033[1;30m\][\[\033[0;32m\]\u\[\033[1;32m\]@\[\033[0;32m\]\h \
[\033[1;37m\]\W\[\033[1;30m\]]\[\033[0m\]#
Can't open a tty, all in use ?
Can't fork subshell, there is no way...
BD_Init: Starting backdoor daemon...
FUCK: Can't allocate raw socket (%d)
HOME=/usr/local/games
HISTFILE=/dev/null
SHELL=/bin/bash
TERM=linux
pqrstuvwxyzabcde
0123456789abcdef
/dev/ptmx
/dev/pty
/dev/tty
/dev/null
/bin/sh
Can't execve shell!
FUCK: Can't fork child (%d)
Done, pid=%d
/usr/local/games/.rc
use:
%s <uivfp> [args]
u - uninstall
i - make pid invisible
v - make pid visible
f [0/1] - toggle file hiding
p [0/1] - toggle pid hiding
FUCK: Failed to uninstall (%d)
Suckit uninstalled sucesfully!
FUCK: Failed to hide pid %d (%d)
FUCK: Failed to unhide pid %d (%d)
Failed to change %s hiding (%d)!
Detected version: %s
Pid %d is hidden now!
Pid %d is visible now!
file
%s hiding is now %s!
__kmalloc
/dev/kmem
RK_Init: idt=0x%08x,
sct[]=0x%08x,
FUCK: Can't find kmalloc()!
kmalloc()=0x%08x, gfp=0x%x
FUCK: Out of kernel memory!
Done, %d bytes, base=0x%08x
FUCK: Can't open %s for read/write (%d)
FUCK: IDT table read failed (offset 0x%08x)
FUCK: Can't find sys_call_table[]
FUCK: Can't read syscall %d addr
Z_Init: Allocating kernel-code memory...
core
/sbin/initsk12
FUCK: Got signal %d while manipulating kernel!
0123456789abcdefghijklmnopqrstuvwxyz
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
<NULL>

22

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Comparison of these strings with SucKIT source code (version 1.1c) found on
Phrack (sd and devik, section 9) show many similarities; differences being
attributable to version differences – note the “1.3b” above, a possible version
number. According to Rik Farrow (Farrow, p. 13) and sd and devik (sd and
devik, section 2), SucKIT manipulates the /dev/kmem device, giving it direct
access to kernel memory. It uses this access to hide information about intruder
activities and establish a backdoor to the system. According to strings output,
/sbin/init referred to the /usr/local/games/.sniffer file where username/password
information was stored from ssh and telnet sessions, and the strings “login,”
“telnet,” “ssword,” “passwd,” etc., also support the conclusion that it was
monitoring kernel memory for authentication-associated activity by applications
and logged that information into the .sniffer file.

Placement of the SucKIT rootkit as a trojaned /sbin/init file would give it total
control of the system upon system startup and upon runlevel changes, ensuring
that control could be maintained between system boots.

/sbin/initsk12: According to strings analysis, this appears to be the original
system /sbin/init binary. Installation of the SucKIT rootkit may have moved the
original file to this location so that the trojaned /sbin/init could execute it to
perform “init” functions. lsof output from the compromised system (Illustration
35) shows that initsk12 is running as PID 1 which would normally be the “init”
process on a Linux machine.

/usr/sbin/kernel: According to strings analysis of the binary and lsof, netstat
and ps output from the running system, this appears to be a copy of an SSH
daemon listening on port 101. It appears to use the file /etc/kernel_config as an
sshd_config file. Examining the contents of that file confirm that it's configured to
use port 101.

/dev/null
1.3b
sk12
/usr/local/games/.sniffer
/proc/
/proc/net/
socket:[
/sbin/init
/sbin/initsk12
login
telnet
rlogin
rexec
passwd
adduser
mysql
ssword:

Illustration 30: strings output from /sbin/init

23

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Log Analysis

I had two sources of log information to work with when investigating the system:
off-system logs stored on a syslog server, and log files that Agency Tech 1 had
archived to examine as part of his determination of whether the server had been
compromised. The former were provided to me by Agency Tech 1 but the latter I
found on the server in the file /var/log/backup/web1-logs-20040406.tar,
which contained copies of many system log files. I extracted the log file
manually from my VM of the system by using netcat and piping it to my forensics
workstation. The following screen shots show that I maintained forensic integrity
of this file.

The above is the MD5 hash of the file as it existed on the filesystem (mounted as
/mnt from the Helix-booted VM), and this is the MD5 hash of the file after
recovery to my forensics workstation:

Most of the log entries I used (Timeline Evidence of a Compromise) are taken
from the off-system logs, but one file that was included in the tar-file was a copy
of the “wtmp” file; the file that records logins and reboots. This file didn't have
much information in it, but I was able to see reboot times recorded there using
last which was useful for helping determine the timeline of activities:

Illustration 31: md5sum of web1-logs-20040406.tar file on filesystem

ritchiej@aardvark:/forensics/GCFA/web1/output/recovered> md5sum
web1_hda2.nc-var.log.backup.web1-logs-20040406.tar
f7b91df7e6e8814b4ed1865b944feedb web1_hda2.nc-var.log.backup.web1-
logs-20040406.tar

Illustration 32: md5sum of web1-logs-20040406.tar file after recovery

ritchiej@aardvark:/forensics/GCFA/web1/output/recovered/var_log_backup>
last -f wtmp
agtech1 pts/0 192.168.38.25 Tue Apr 6 10:38 gone - no
logout
root tty1 Tue Apr 6 09:50 - 10:25
(00:34)
reboot system boot 2.4.18-3smp Tue Apr 6 09:35
(340+07:43)
reboot system boot 2.4.18-3smp Tue Apr 6 09:33
(340+07:44)
reboot system boot 2.4.18-3 Tue Apr 6 09:30
(00:00)
reboot system boot 2.4.18-3smp Tue Apr 6 09:26
(00:04)

Illustration 33: output of last command on recovered wtmp file

24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Examination of the log files yielded several other things useful to the case as
well. Within the maillog log file I found evidence of email sent from the machine
as part of the compromise that included a recipient address (Timeline Evidence
of a Compromise).

Looking through recovered Apache logs and the off-system logs showed me that
the attack came from 211.55.78.25, which, according to whois data provided by
the Korean Network Information Center (KRNIC), is a Korean IP address:

Analysis On the Running System

In addition to examining the VM disk image and manually exporting files to my
forensics workstation I also booted the VM directly to its installed operating
system. Doing this allowed me to forensically examine the running compromised
system and it allowed me to get information about the running programs on the
system. Since I had recovered the root password from the
/usr/local/games/.sniffer file where it had been captured by the intruder, logging
in to the system as root was no problem. I could then use the Helix CD to
examine the system using uncorrupted binaries.

Information I gathered from the running system included doing a “uname -a” to
confirm the kernel version (2.4.18-3smp).

Running lsof from the Helix CD produced useful information. Note the initsk12
program running instead of /sbin/init, the /usr/sbin/kernel program running using
libcrypt and listening on “hostname” (“hostname” is the /etc/services translation

Illustration 34: information about 211.55.78.25 provided by KRNIC

25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

for port 101), and the /bin/mktemp program with /dev/hdx1 open and a protocol
socket that lsof can't identify:

The output of “ps auxwwe” tells us that the /usr/sbin/kernel process may be using
/etc/kernel_config as a configuration file:

The output of “netstat -na” confirms that something is listening on port 101:

In order to determine what version of OpenSSL that the apache module mod_ssl
had been compiled with, I altered the ServerSignature directive to “On” within the
Apache configuration file httpd.conf to display version numbers within the
Apache logs, and restarted the webserver. I was then able to examine the web
server log file error.log to get version information:

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
initsk12 1 root cwd DIR 3,2 4096 2 /
initsk12 1 root txt REG 3,2 26920 245597 /
sbin/initsk12
kernel 664 root txt REG 3,2 630693 376367 /
usr/sbin/kernel
kernel 664 root mem REG 3,2 89547 130819 /lib/ld-
2.2.5.so
kernel 664 root mem REG 3,2 89424 130836 /
lib/libnsl-2.2.5.so
kernel 664 root mem REG 3,2 23575 130830 /
lib/libcrypt-2.2.5.so
kernel 664 root mem REG 3,2 11174 130870 /
lib/libutil-2.2.5.so
kernel 664 root mem REG 3,2 1401027 3433924 /
lib/i686/libc-2.2.5.so
kernel 664 root 0u CHR 1,3 66861 /dev/null
kernel 664 root 3u IPv4 1046 TCP *:hostname
(LISTEN)
mktemp 1254 root cwd DIR 3,2 4096 3482977 /bin
mktemp 1254 root rtd DIR 3,2 4096 2 /
mktemp 1254 root txt REG 3,2 8332 3482981 /
bin/mktemp
mktemp 1254 root 5u REG 3,2 0 70776 /dev/hdx1
mktemp 1254 root 6u sock 0,0 3423 can't
identify protocol

Illustration 35: lsof output from the running system

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 664 0.0 0.5 1844 632 ? S 09:05 0:00 /
usr/sbin/kernel -f /etc/kernel_config PWD=/usr/sbin
CONSOLE=/dev/console PREVLEVEL=N CONFIRM= runlevel=3 OLDPWD=/
LANG=en_US.iso885915 SHLVL=2 previous=N HOME=/ TERM=linux
PATH=/usr/sbin RUNLEVEL=3 INIT_VERSION=sysvinit-2.84 _=/usr/sbin/kernel

Illustration 36: ps output from the running system

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State
tcp 0 0 0.0.0.0:101 0.0.0.0:* LISTEN

Illustration 37: netstat output from the running system

26

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Analysis of RST.b

I also used the VM to study the RST.b trojan/virus on the system. I wanted to
test the reported infection behavior of the trojan. In order to do this, I booted the
VM from the Helix CD and mounted the VM disk from the /mnt mount point on
the Helix system. I configured the network for the Helix-booted system so that
the default route sent network traffic via my forensics workstation, and I started
ethereal on the forensics workstation to monitor all network traffic coming from
the VM. I then set up a test root infection. The following screen shots illustrate
this experiment:

I first copied a clean, uninfected ELF-format binary from the Helix distribution to
/tmp. The md5sum and the strings commands illustrate its beginning state. I
did an ls of /dev/hdx* to show that the files were not present on the running
system. I did a strings command on an RST.b-infected binary on the
compromised system's disk, /mnt/bin/chmod; this illustrates the presence of the
“telcom69” string within that binary. I then executed, as root, the infected binary
from within the directory that I'd copied the clean binary to (/tmp).

The instant I executed the /mnt/bin/chmod command, the following warning
popped up from VMware:

Illustration 39: virus/trojan infection experiment

Illustration 38: extract from Apache startup log

27

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

After clicking “OK,” ethereal registered network traffic from the experimental VM.
Continuing on with the experiment, doing an md5sum of the test binary /tmp/ls
shows that the binary is changed. Doing a strings on that binary shows that it
now has the “telcom69” string within it. Doing a directory listing of /dev/hdx*
showed the presence of the semaphore files /dev/hdx1 and /dev/hdx2 on the test
system.

Examination of the ethereal output shows us (after an initial ARP request and
reply) that the experimental machine attempted to establish an http connection
with 207.66.155.21:

Running lsof on the experimental system showed:

Illustration 40: VMware promiscuous mode warning box

Illustration 42: lsof output from newly-infected VM

Illustration 41: ethereal capture of http connection attempt to 207.66.155.21

28

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The /mnt/bin/chmod command had the file /dev/hdx2 open, had a socket open of
an unidentifiable (by lsof) protocol, and had an attempted connection to
207.66.155.21 in state SYN_SENT.

This experiment proved that the trojan present in the binaries of the
compromised system would, upon initial infection of a new ELF-executable by
the root user, place the semaphore files in the /dev directory, attempt to set the
system network interface into promiscuous mode, and attempt to make an http
connection to a remote IP address.

Exhaustive analysis of the trojan's behavior could have been performed (i.e.
running strace on it, setting up a destination webserver with the correct IP to
allow and capture the full TCP connection, or even disassembling the
executable) but I felt that the characteristics of the trojan matched those of the
RST.b trojan already analyzed and described by Ryan Russell (Russell, “RST.b”)
and “lockdown” (lockdown, “RST-b commented asm dump”) closely enough to
assume that they're the same. My tests did reveal the target IP address of the
http connection attempt so I did some more research on that instead.

According to whois data acquired from http://www.ratite.com, the IP address
207.66.155.16 is allocated to Bondo and Remer:

Geobytes (geobytes, inc., “IP Address Locator tool”) locates the IP address in
Seattle Washington, and provides the following map to its location:

Illustration 43: whois listing for 207.66.155.16

Illustration 44: map showing location of 207.66.155.16,
provided by Geobytes, Inc.

29

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Searching for “Bondo and Remer” on Google yielded quite a few results which
confirmed that it is an advertising agency in Seattle and provided their address
and telephone number. I did not pursue the information further because there is
little point in contacting them for what was probably a hacked machine back
when this version of RST.b was released.

Timeline Analysis

One of the first and most important forensic tasks to perform when analyzing a
potentially compromised system is to build a timeline of activity from the
filesystem being analyzed. This will help pinpoint changes and activity on the
filesystem.* Other data sources that contribute to the timeline include data from
system and off-system logs and interviews conducted with people relevant to the
case.

Based on interviews with Agency Tech 1, I knew that the subject machine was
suspected of having been compromised on or around April 6th, 2004 and that it
had not used much since that incident. I knew that it had been shut down on
September 2nd, 2004 for the final time. Given those dates, it was relatively easy
to browse through the timeline until I found evidence of a system compromise.

Timeline Evidence of a Compromise

Analysis of the timeline shows what appears to be the beginning of an attack
and root compromise of the system; starting at Tue Apr 06 2004 08:29:57 and
ending at Tue Apr 06 2004 08:30:09 there are hundreds of file creations by
user/group “apache/apache,” for example:

These entries correspond with entries stored on the Agency X log server that
start and end at approximately the same times:

* To someone familiar with the operating system and its normal operations, timeline analysis
can be a relatively quick way to determine if something is abnormal on a suspect machine.
This is especially true if you have some idea of what time a potential incident occurred.

Tue Apr 06 2004 08:29:57 864 m.c -/-rw-r--r-- apache apache
311562 /etc/httpd/rsawebagent/data13071.shm

Illustration 45: apache file creation example

30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

These OpenSSL errors can be indicative of an OpenSSL buffer overflow attack
(Larrieu, p. 37), (Carrier), (Behounek). A detailed description of one OpenSSL
buffer overflow attack that produces these log messages is available in Heather
Larrieu's GCIH practical assignment “A J0k3r Takes Over” (Larrieu, p. 11-14+).

At the tail end of the SSL attack there are the following entries in the timeline:

These “user 1001” files may be the remains of a tar-file package that the intruder
downloaded to leverage “apache” access to gain “root” access. The fact that
they are showing a userid of 1001 instead of translating to an actual username
indicates that they are files that were created on another system that had a
userid of 1001 on it but there's no userid of 1001 on this system. This is a typical

syslog-bootlog-20040406:Apr 6 08:30:03 192.168.200.14 httpd[12090]:
[error] mod_ssl: SSL handshake failed (server web1.agencyX:443, client
211.55.78.25) (OpenSSL library error follows)
syslog-bootlog-20040406:Apr 6 08:30:03 192.168.200.14 httpd[12091]:
[error] mod_ssl: SSL handshake failed (server web1.agencyX:443, client
211.55.78.25) (OpenSSL library error follows)
syslog-bootlog-20040406:Apr 6 08:30:03 192.168.200.14 httpd[12771]:
[error] mod_ssl: SSL handshake failed (server web1.agencyX:443, client
211.55.78.25) (OpenSSL library error follows)
syslog-bootlog-20040406:Apr 6 08:30:04 192.168.200.14 httpd[12772]:
[error] OpenSSL: error:1406908F:SSL
routines:GET_CLIENT_FINISHED:connection id is different
syslog-bootlog-20040406:Apr 6 08:30:06 192.168.200.14 httpd[12092]:
[error] OpenSSL: error:0306C072:bignum routines:bn_expand2:bignum too
long
syslog-bootlog-20040406:Apr 6 08:30:07 192.168.200.14 httpd[12092]:
[error] OpenSSL: error:140BB004:SSL
routines:SSL_RSA_PRIVATE_DECRYPT:nested asn1 error

Illustration 46: excerpt of OpenSSL error messages

Tue Apr 06 2004 08:31:32 0 .a. -rw-r--r-- 1001 users
2551850 <web1_hda2.img-dead-2551850>
 0 .a. -rwxr-xr-x root users
1488976 <web1_hda2.img-dead-1488976>
 0 .a. -rw-r--r-- 1001 users
2551852 <web1_hda2.img-dead-2551852>
 0 .a. -rw-r--r-- 1001 users
2551851 <web1_hda2.img-dead-2551851>
 0 .a. -rwxr-xr-x root users
1488974 <web1_hda2.img-dead-1488974>
 0 .a. -rw-r--r-- 1001 users
3124170 <web1_hda2.img-dead-3124170>
 0 .a. -rw-r--r-- 1001 users
2551847 <web1_hda2.img-dead-2551847>
 0 .a. -rw-r--r-- 1001 users
3124171 <web1_hda2.img-dead-3124171>
 0 .a. -rw-r--r-- 1001 users
2551853 <web1_hda2.img-dead-2551853>
 0 .a. -rw-r--r-- 1001 users
2551848 <web1_hda2.img-dead-2551848>
etc...

Illustration 47: "user 1001" timeline evidence of a tar file

31

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

appearance of a tar archive built on one system and unpacked on another
system.

The next entries in the timeline are very suspicious; neither of these root-owned
files should be showing a create-time entry here:

I was unable to determine why these files had updated modification and/or
creation times; examination of the files didn't reveal anything out of the ordinary.

The next entries in the timeline clearly show that the intruder has root access.
He or she began to compile programs and install them into system directories
with root privileges:

There are many lines of updated access times of linux C-language header files
in /usr/include, mixed with updated modification times of root-owned system
binaries such as /bin/ps and /usr/bin/vadim. This appears to be compilation and
installation of a rootkit. Also present at this time are many “dead” inodes, which
are indications of deleted files where no trace of the original filename exists.
Depending upon the file permissions and ownership, one can make assumptions
about what they are. If they're root-owned with execute permissions of “r-xr-xr-x”
they may be compiled executables being staged for placement. If they're root-
owned with permissions of “rw-r--r--” they may be source code files or temporary
configuration files. If they're owned by user 1001 with only the access times
updated they may be source code for the executable that's being compiled at
that stage.

Tue Apr 06 2004 08:31:52 260616 ..c -/-rwxr-xr-x root root
376340 /usr/sbin/sshd
 1192 m.c -/-rwxr-xr-x root root
3515688 /etc/rc.d/init.d/syslog

Illustration 48: suspicious file creations in timeline

Tue Apr 06 2004 08:31:55 2391 .a. -/-rw-r--r-- root root
2126365 /usr/include/linux/file.h
 6346 .a. -/-rw-r--r-- root root
2126600 /usr/include/linux/proc_fs.h
 995 .a. -/-rw-r--r-- root root
2126715 /usr/include/linux/uio.h
 628 .a. -/-rw-r--r-- root root
311020 /usr/include/asm/ipcbuf.h
 83 .a. -/-rw-r--r-- root root
2126325 /usr/include/linux/dcache.h
 88620 m.. -/-r-xr-xr-x root root
3483022 /bin/ps
 1506 .a. -/-rw-r--r-- root root
2126599 /usr/include/linux/prefetch.h
 0 m.c -rw-r--r-- 1001 users
3124171 <web1_hda2.img-dead-3124171>
 3984 m.c -/-rwxr-xr-x root root
330137 /usr/bin/vadim

Illustration 49: first evidence in timeline of intruder as root: compiling the rootkit

32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

System files modified or new files created during this rootkit build include:

Refer to the Media Analysis Performed for an analysis of each of these files.

One can tell the new files from replacement files because new files have both
the modification and creation times set at the same time in the timeline, whereas
replacements for existing files only show a modification time at this point in the
timeline; a few seconds later we see the creation times for system binary
replacement files. An example of this is /bin/ps with a modification time of Tue
Apr 06 2004 08:31:55 but a creation time of Tue Apr 06 2004 08:32:06. I'm
unsure why that is so, but it seems to be a reliable indicator of new versus
changed files during this rootkit installation.

Again placing externally-saved syslog entries into this timeline gives us another
clear indicator that the intruder has achieved root access at this point:

These are two log entries from sendmail indicating that root (ctladdr=root) sent
an email of size 1775 bytes to sflavius2002@yahoo.com and that it was
successfully delivered to mx2.mail.yahoo.com. This is almost certainly a
notification email that the root compromise was successful with some system
information. It also proves that the Agency X firewall allowed outgoing SMTP
connections from web1.

syslog-maillog-20040406:Apr 6 08:32:12 192.168.200.14 sendmail[14483]:
i36FW7F14483: from=root, size=1775, class=0, nrcpts=1,
msgid=<200404061532.i36FW7F14483@web1.agencyX>, relay=root@localhost
syslog-maillog-20040406:Apr 6 08:32:58 192.168.200.14 sendmail[14487]:
i36FW7F14483: to=sflavius2002@yahoo.com, ctladdr=root (0/0),
delay=00:00:47, xdelay=00:00:46, mailer=esmtp, pri=31775,
relay=mx2.mail.yahoo.com. [64.156.215.5], dsn=2.0.0,
stat=Sent (ok dirdel)

Illustration 51: syslog entries from email to sflavius2002@yahoo.com

33

/bin/ps
/usr/bin/vadim (new)
/etc/sysconfig/console/default.ps (new)
/etc/sysconfig/console/default.syslog (new)
/etc/sysconfig/console/default.socklist (new)
/etc/sysconfig/console (a new directory)
/usr/bin/stealth (new)
/bin/netstat
/etc/sysconfig/console/default.netstat (new)
/usr/bin/slice (new)
/etc/sysconfig/console/default.ls (new)
/usr/bin/clean (new)
/usr/bin/chsh
/bin/socklist
/usr/bin/wp (new)

Illustration 50: files modified or added in rootkit build at 08:31:55

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The rootkit festivities continue:

Starting at Tue Apr 06 2004 08:35:04, it appears that the attacker performed
another SSL-based attack on the system. From the system timeline we see the
same pattern of many apache-owned file creations:

These also have the accompanying off-site log entries:

They are also followed by a lot of “dead” inodes, both root-owned and “user
1001” file:

Tue Apr 06 2004 08:35:05 0 .a. -/-rw-r--r-- apache apache
311730 /etc/httpd/rsawebagent/data14517.shm (deleted)
 0 .a. -rw-r--r-- apache apache
311729 <web1_hda2.img-dead-311729>
 0 .a. -rw-r--r-- apache apache
311730 <web1_hda2.img-dead-311730>
 0 .a. -/-rw-r--r-- apache apache
311729 /etc/httpd/rsawebagent/data14516.shm (deleted)
etc...

Illustration 53: evidence of second web attack

syslog-bootlog-20040406:Apr 6 08:35:11 192.168.200.14 httpd[13079]:
[error] mod_ssl: SSL handshake timed out (client 211.55.78.25, server
web1.agencyX:443)
syslog-bootlog-20040406:Apr 6 08:35:11 192.168.200.14 httpd[13083]:
[error] mod_ssl: SSL handshake timed out (client 211.55.78.25, server
web1.agencyX:443)
etc...

Illustration 54: second wave of OpenSSL attacks

Tue Apr 06 2004 08:34:23 26920 m.c -/-rwxr-xr-x root root
245597 /sbin/initsk12
 0 .a. -rwxr-xr-x root root
245381 <web1_hda2.img-dead-245381>
 31380 mac -/-rwxr-xr-x root root
245598 /sbin/init
 8192 m.c d/drwxr-xr-x root root
245282 /sbin
 26920 m.c -/-rwxr-xr-x root root
245597 /etc/sysconfig/network.lock (deleted-realloc)
 31380 mac -/-rwxr-xr-x root root
245598 /etc/sysconfig/static-routes.lock (deleted-realloc)
 10302 .a. -/-rw--w--w- root root
884259 /usr/local/games/.sniffer

Illustration 52: more timeline evidence of rootkit installation

34

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This last set of “user 1001” and root file entries show the modification and
creation time updates for the inodes corresponding to the entries at Tue Apr 06
2004 08:31:32 and for the rootkit build of Tue Apr 06 2004 08:31:55. Since
these inodes do not point to actual files (they're “dead”) then these
modification/creation times indicate that these files that were last accessed at
08:31:32 are being deleted now, at 08:43:13. The intruder may be cleaning up
some of the rootkit build files and directories.

These cleanup lines are followed by more signs of root activity:

After the last spate of root activity, the next set of timeline entries of interest are:

These entries last for many pages and show the access times left on kernel
modules when the machine was booted using the 2.4.18-3 kernel. This can be
confirmed against the last output referred to in Illustration 33, above (Media
Analysis Performed). Note that the boot immediately following this reboot
does not leave this type of trace in the timeline:

Tue Apr 06 2004 08:43:13 0 m.c -rwxr-xr-x root root
1488973 <web1_hda2.img-dead-1488973>
 0 m.c -rwxr-xr-x root users
1488978 <web1_hda2.img-dead-1488978>
 0 m.c -rw-r--r-- 1001 users
2551850 <web1_hda2.img-dead-2551850>
 0 m.c -rwxr-xr-x 1001 users
1488971 <web1_hda2.img-dead-1488971>
 0 m.c -rw------- 1001 users
1129223 <web1_hda2.img-dead-1129223>

Illustration 55: "user 1001" file modification/creation times

Tue Apr 06 2004 08:44:13 0 mac -rwxr-xr-x root root
884260 <web1_hda2.img-dead-884260>
 0 mac -/-rwxr-xr-x root root
884260 /usr/local/games/sk (deleted)
 0 mac -/-rwxr-xr-x root root
884260 /usr/local/games/httpd (deleted)
 4096 m.c d/drwxr-xr-x root root
883010 /usr/local/games
Tue Apr 06 2004 08:53:13 0 m.c -/---------- root root
70776 /dev/hdx1
 0 m.c -/---------- root root
70784 /dev/hdx2

Illustration 56: more root activity, RST.b semaphore activity

Tue Apr 06 2004 09:30:40 375704 .a. -/-rw-r--r-- root root
1847837 /lib/modules/2.4.18-3/kernel/drivers/atm/idt77252.o
 198876 .a. -/-rw-r--r-- root root
1226422 /lib/modules/2.4.18-3/kernel/drivers/addon/qla2200/qla2300.o
 70673 .a. -/-rw-r--r-- root root
735874 /lib/modules/2.4.18-3/kernel/drivers/addon/e1000/e1000.o

Illustration 57: system boot into 2.4.18-3 kernel at 09:30:40

35

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

This is because the system was booted into the 2.4.18-3smp kernel at a later
date, thus overwriting all the access times on those kernel module files. This
later date was the last time the system was booted, at Wed Sep 01 2004
13:08:25, as can be seen from the timeline:

Likewise, the system boots seen in the last output (Illustration 33) at Tue Apr
06 2004 09:26, 09:33 and 09:35 are completely masked by later boot activity
except for sparse timeline entries that might point to them:

Timeline Evidence, Post-compromise

After the system boot at 09:30 on April 6, 2004, there is no further evidence of
intruder activity on the system but there are lots of traces of Agency X
investigations of the intrusion.

From 09:54 to 10:20 or so there were several login attempts and successes via
SSH by Agency X personnel. The only sign of this activity in the system timeline

Tue Apr 06 2004 09:33:43 477 m.c -/-rw-r--r-- root root 21
/boot/kernel.h
 22 m.c l/lrwxrwxrwx root root 29
/boot/System.map -> System.map-2.4.18-3smp

Illustration 58: system boot into 2.4.18-3smp kernel at 09:33:43

Wed Sep 01 2004 13:08:25 87988 .a. -/-rw-r--r-- root root
2125782 /lib/modules/2.4.18-
3smp/kernel/drivers/addon/bcm5700/bcm5700.o
 27870 .a. -/-rw-r--r-- root root
1161013 /lib/modules/2.4.18-3smp/kernel/abi/sco/abi-sco.o
 36179 .a. -/-rw-r--r-- root root
2158478 /lib/modules/2.4.18-3smp/kernel/drivers/addon/cipe/cipcb.o

Illustration 59: last system boot using 2.4.18-3smp kernel

Tue Apr 06 2004 09:26:53 0 m.c -rw-r--r-- root root
1489016 <web1_hda2.img-dead-1489016>

Tue Apr 06 2004 09:33:43 477 m.c -/-rw-r--r-- root root 21
/boot/kernel.h
 22 m.c l/lrwxrwxrwx root root 29
/boot/System.map -> System.map-2.4.18-3smp
 0 m.c -rw-r--r-- root root
1489014 <web1_hda2.img-dead-1489014>

Tue Apr 06 2004 09:35:08 0 m.c -rw-r--r-- root root
1489013 <web1_hda2.img-dead-1489013>
 0 mac -rw-r--r-- root root
196864 <web1_hda2.img-dead-196864>

Illustration 60: possible traces of 09:33 and 09:35 system boots

36

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

is the creation of a backup SSH “known_hosts” file, indicating modification of
root's host key file:

There are lots of log entries from the syslog server covering this activity:

At 10:42:26, an Agency X administrator backed up a lot of log files into
/var/log/backup, then tarred them into a tar-file and deleted them. There are
hundreds of lines in the timeline like these:

Tue Apr 06 2004 10:22:19 665 m.c -/-rw-r--r-- root root
1161432 /root/.ssh/known_hosts~
 4096 m.c d/drwx------ root root
1161421 /root/.ssh

Illustration 61: timeline evidence of Agency X personnel logins

37

syslog-auth-20040406:Apr 6 09:54:52 192.168.200.14 sshd[14889]: Could
not reverse map address 192.168.38.25.
syslog-auth-20040406:Apr 6 09:54:54 192.168.200.14 sshd(pam_unix)
[14889]: authentication failure; logname= uid=0 euid=0 tty=NODEVssh
ruser= rhost=192.168.38.25 user=agtech1
syslog-auth-20040406:Apr 6 09:54:57 192.168.200.14 sshd[14889]: Failed
password for agtech1 from 192.168.38.25 port 3699 ssh2
syslog-auth-20040406:Apr 6 09:57:39 192.168.200.14 sshd(pam_unix)
[14889]: 1 more authentication failure; logname= uid=0 euid=0
tty=NODEVssh ruser= rhost=192.168.38.25 user=agtech1
syslog-auth-20040406:Apr 6 09:58:09 192.168.200.14 sshd[14900]: Failed
password for root from 192.168.38.25 port 3700 ssh2
syslog-auth-20040406:Apr 6 09:58:11 192.168.200.14 sshd[14900]: ROOT
LOGIN REFUSED FROM 192.168.38.25
syslog-auth-20040406:Apr 6 10:00:08 192.168.200.14 sshd(pam_unix)
[14905]: authentication failure; logname= uid=0 euid=0 tty=NODEVssh
ruser= rhost=192.168.200.3 user=root
syslog-auth-20040406:Apr 6 10:00:09 192.168.200.14 sshd[14915]:
Accepted password for agtech2 from 192.168.38.132 port 40326 ssh2

Illustration 62: syslog entries of Agency X login attempts

Tue Apr 06 2004 10:42:26 0 .a. -/-rw-r--r-- root root
3369468 /var/log/backup/dmesg.gz (deleted)
 0 .a. -/-rw-r--r-- root root
3369504 /var/log/backup/rpmpkgs.gz (deleted)
 0 .a. -rw-r--r-- root root
3369466 <web1_hda2.img-dead-3369466>
 645120 m.c -/-rw-r--r-- root root
3369560 /var/log/backup/web1-logs-20040406.tar
Tue Apr 06 2004 10:42:39 0 m.c -rw-r--r-- root root
3369476 <web1_hda2.img-dead-3369476>
 0 m.c -/-rw-r--r-- root root
3369528 /var/log/backup/secure.7.gz (deleted)
 0 m.c -/-rw-r--r-- root root
3369524 /var/log/backup/secure.3.gz (deleted)

Illustration 63: creation of syslog backup tar file

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

At Apr 06 2004 13:03:38, root downloaded a Tripwire 2.3.7 package into Agency
Tech 1's home directory and at 15:35:32 he unpacked it:

The next day, April 7th, Agency Tech 1 downloaded chkrootkit-0.40, unpacked it,
then compiled it as root. Here are extracts:

You can tell that Agency Tech 1 downloaded the file because the chkrootkit.tar
file is owned by agtech1. The unpacked files are owned by userid/group
“1000/1000” which is not unusual for an unpacked tar-file. The compile is
indicated by line after line of access times on system C-header files and link
libraries. It can be seen that the compile was done as root because the resulting
binaries (ifpromisc, chkproc, etc.) are owned by root even though they are
placed in agtech1-owned directories.

At this time it appears that the ELF binaries in the
/home/agtech1/chkrootkit-0.40 directory became infected with the
RST.b virus/trojan, as discussed in Media Analysis Performed. An indication
of this is the access times on the RST.b semaphore files /dev/hdx1 and

Tue Apr 06 2004 13:03:38 3224386 m.c -/-rwxrw-r-- agtech1 agtech1
2993354 /home/agtech1/tripwire-2.3-47.bin.tar.gz
Tue Apr 06 2004 13:04:16 4096 ..c d/drwxr-xr-x root root
2878364 /home/agtech1/tripwire-2.3/bin
Tue Apr 06 2004 15:35:32 21 ..c -/-rwxr-xr-x root root
2878375 /home/agtech1/tripwire-2.3/ChangeLog
 3957 ..c -/-rwxr-xr-x root root
3385481 /home/agtech1/tripwire-2.3/man/man8/twintro.8
 5221 ..c -/-rwxr-xr-x root root
2878377 /home/agtech1/tripwire-2.3/README

Illustration 64: unpacking Tripwire

38

Wed Apr 07 2004 15:05:14 153600 m.c -/-rwxr-xr-x agtech1 agtech1
2993355 /home/agtech1/chkrootkit.tar
Wed Apr 07 2004 15:05:35 1323 ..c -/-r--r--r-- 1000 1000
2846166 /home/agtech1/chkrootkit-0.40/README.chklastlog
 7191 ..c -/-r--r--r-- 1000 1000
2846168 /home/agtech1/chkrootkit-0.40/check_wtmpx.c
 552 ..c -/-r--r--r-- 1000 1000
2846174 /home/agtech1/chkrootkit-0.40/chkrootkit.lsm

Wed Apr 07 2004 15:06:34 8886 .a. -/-rw-r--r-- root root
2927524 /usr/include/bits/siginfo.h
 1952 .a. -/-rw-r--r-- root root
311059 /usr/include/asm/sigcontext.h
 2833 .a. -/-rw-r--r-- root root
2927522 /usr/include/bits/sigaction.h
 3483 .a. -/-rw-r--r-- root root
2927525 /usr/include/bits/signum.h

Wed Apr 07 2004 15:07:15 8756 m.c -/-rwxr-xr-x root root
2846182 /home/agtech1/chkrootkit-0.40/ifpromisc
Wed Apr 07 2004 15:08:12 10764 m.c -/-rwxr-xr-x root root
2846179 /home/agtech1/chkrootkit-0.40/chkproc

Illustration 65: chkrootkit unpack and build by root

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/dev/hdx2 that correspond to the chkrootkit build in the timeline:

At Wed Apr 07 2004 15:08:22 the file /root/chkroot.out was produced.

From Wed Apr 07 2004 15:43:48 to Wed Apr 07 2004 16:00:39 there are
thousands of lines of systematically updated access times on much of the file
system including /usr/sbin, /sbin, /usr/bin, /usr/lib, /lib and /usr/libexec/webmin.
One possible explanation for this can be found by looking at a section of root's
“.bash_history file”, condensed below:

This tells us that the root user was in the / (root) directory and did a recursive
search on all files looking for files containing the string “ifpromisc.” This type of
recursive command opens each file and examines it, which would cause this
type of systematic update of the access times on the file system.

We can correlate the .bash_history entries with the timeline because the
command “strings wp > wp.strings” can be seen in the system timeline by
locating the creation date of the file /bin/wp.strings:

This demonstrates that these recursive searches are located before Apr 07 2004
18:05:39 in the timeline.

Wed Apr 07 2004 15:08:14 0 .a. -/---------- root root
70784 /etc/rc.d/rc5.d/S08ipchains.lock (deleted-realloc)
 0 .a. -/---------- root root
70784 /dev/hdx2
 0 .a. -/---------- root root
70776 /dev/hdx1
 0 .a. -/---------- root root
70776 /etc/rc.d/rc5.d/S98wine.lock (deleted-realloc)
 20553 .a. -/-rwxr-xr-x root root
65419 /dev/MAKEDEV

Illustration 66: timeline activity on RST.b semaphore files

cd /etc
[section removed]
cd ..
grep ifpromisc * -r
[section removed]
strings wp > wp.strings

Illustration 67: excerpt from root's .bash_history file showing recursive file reads from / directory

Wed Apr 07 2004 18:05:39 1112 m.c -/-rw-r--r-- root root
330140 /usr/bin/wp.strings
 61440 m.c d/drwxr-xr-x root
root 327041 /usr/bin
 6100 .a. -/-rwxr-xr-x root
root 328822 /usr/bin/wp

Illustration 68: timeline location of creation of the wp.strings file found in root's .bash_history file

39

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Other Timeline Details

Other facts that may be gleaned from the system timeline include the system
build date, the date the system was last used and dates for software installs.
Timeline evidence can also be used to deduce network firewall configuration.

The following timeline entries show the system build date:

These show that inode 1 of /dev/hda2 and the /lost+found directory were created
at Mon Dec 08 2003 04:57:47, followed by inode 1 of /dev/hda1 and the
/boot/lost+found directory at 04:57:59. This indicates that the initial system build
started on December 8th, 2003 at 04:57:47 because this is the create date on
root disk volume.*

The following excerpt from the timeline shows the installation of webmin:

* These dates were buried about 40% of the way through the system timeline, after entries for
packaged system software loaded on the system. I found them by searching for the first
creation date stamp in the timeline, which was Dec 08 2003 04:47:47. A quick way to find this
was by using less and entering the search expression “/^.{36}c” from the beginning of the file.
This will jump to the first line that has a “c” in the 37th position on the line.

Mon Dec 08 2003 04:57:47 16384 m.c d/drwx------ root root 11
/lost+found
 0 mac ---------- root root 1
<web1_hda2.img-alive-1>
Mon Dec 08 2003 04:57:59 0 mac ---------- root root 1
<web1_hda1.img-alive-1>
 12288 m.c d/drwx------ root root 11
/boot/lost+found
Mon Dec 08 2003 04:58:00 4096 mac d/drwxr-xr-x root root
130817 /proc
 4096 mac d/drwxr-xr-x root root
32705 /boot
 4096 mac d/drwxr-xr-x root root
98113 /dev/pts

Illustration 69: timeline entries showing system creation date

40

Tue Dec 23 2003 13:03:26 7762218 m.c -/-rw------- root root
213135 /tmp/Rsndk46c (deleted-realloc)
 7762218 m.c -/-rw------- root root
213135 /root/webmin-1.121-1.noarch.rpm
Tue Dec 23 2003 13:03:30 0 .a. -rwx------ root root
2878420 <web1_hda2.img-dead-2878420>
Tue Dec 23 2003 13:03:54 4096 m.c d/drwxr-xr-x root root
2485519 /etc/pam.d
 1183 ..c -/-rwxr-xr-x root root
3515872 /etc/rc.d/init.d/webmin
 18 m.c l/lrwxrwxrwx root root
3532848 /etc/rc.d/rc0.d/K10webmin -> /etc/init.d/webmin
 101 ..c -/-rw-r--r-- root root
2485902 /etc/pam.d/webmin

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

We're tipped off by the appearance of the webmin rpm file at Tue Dec 23 2003
13:03:26 but the actual install starts at 13:03:54 with the creation of the pam
entries and the startup scripts in /etc/rc.d/init.d with soft links from the various rc
directories. Beginning at 13:03:55 there's a long series of /usr/libexec/webmin
file creations.

The system was last used on September 2nd, 2004. At Thu Sep 02 2004
11:52:21 we see the “shutdown” command being run:

The last time stamp in the timeline file is at Thu Sep 02 2004 11:52:29.

We can find lots of timeline evidence of the root user browsing the Internet in the
timeline, similar to these entries:

Although we could reconstruct the root user's browsing activities from their web
browser cache, more pertinent to our current investigation is that this web
browsing activity demonstrates that the server has open access to the Internet
through the Agency X firewall on port 80.

Thu Sep 02 2004 11:52:21 14952 .a. -/-rwxr-xr-x root root
245387 /sbin/shutdown
 0 mac -/-rw-r--r-- root root
2455617 /var/run/shutdown.pid (deleted)

Illustration 71: timeline evidence of final system shutdown

Fri Jan 02 2004 11:42:46 291 m.c -/-rw------- root root
2322927 /root/.netscape/cache/16/cache3FF5C9B600F7295.gif
 637 m.c -/-rw------- root root
2322915 /root/.netscape/cache/16/cache3FF5C9B60027295.js
 1661 m.c -/-rw------- root root
2322917 /root/.netscape/cache/16/cache3FF5C9B60047295.gif

Illustration 72: timeline evidence of root web browsing activities

41

 18 m.c l/lrwxrwxrwx root root
3564971 /etc/rc.d/rc2.d/K74nscd -> /etc/init.d/webmin (deleted-
realloc)
 18 m.c l/lrwxrwxrwx root root
3548945 /etc/rc.d/rc1.d/K74nscd -> /etc/init.d/webmin (deleted-
realloc)
 18 m.c l/lrwxrwxrwx root root
3564971 /etc/rc.d/rc2.d/S99webmin -> /etc/init.d/webmin
 18 m.c l/lrwxrwxrwx root root
3581215 /etc/rc.d/rc3.d/S99webmin -> /etc/init.d/webmin
 18 m.c l/lrwxrwxrwx root root
3548945 /etc/rc.d/rc1.d/K10webmin -> /etc/init.d/webmin
 101 ..c -/-rw-r--r-- root root
2485902 /etc/pam.d/webmin;3fe8adab (deleted-realloc)
 18 m.c l/lrwxrwxrwx root root
70858 /etc/rc.d/rc5.d/S99webmin -> /etc/init.d/webmin
Tue Dec 23 2003 13:03:55 1326 ..c -/-rw-r--r-- root root
916528 /usr/libexec/webmin/at/lang/hu

Illustration 70: timeline evidence of webmin installation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Deleted File Recovery

Since the system under investigation used ext3 file systems, recovery of deleted
files was difficult: “When EXT3FS was introduced, the behavior changed and
now all links are wiped. This makes file recovery MUCH harder” (SANS Institute,
p. 114). Although the link between the file name and the inode number still
existed in many cases, the links between the inode and the data block on disk
had all been reset on deleted files. This meant that, in some cases, I could see
file names with inode numbers that I wanted to recover but the inodes all pointed
to disk fragment “0” so there was no association to where the data had
previously been stored on the drive.

Because the link between file name/inode and the data blocks had been reset
and I couldn't correlate recovered data blocks with file names, I was also unable
to determine and prove exactly when recovered files were deleted. Not knowing
the file name of a recovered data block meant that I couldn't locate it on the
system timeline, and not knowing which inode had pointed to a recovered data
block meant that I couldn't get deletion information from the inode. The only
method of determining these associations was by deduction.

I used a couple of methods to find and recover deleted files: I did string searches
on unallocated disk areas, then used Autopsy to examine and recover relevant
data blocks, and I used foremost to do mass file recovery from unallocated
space, then attempted to identify the resulting recovered files. I'll describe each
of these two methods below.

The primary method I used to recover files was using Autopsy, since I was
using that tool to view most of the string search results (as described in String
Searches). Refer to this screen capture for the following discussion:

Illustration 73: Autopsy Keyword Search screen

42

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Examining a string search result I selected the “Ascii” view of Fragment 5115087
and viewed that data block. Since it looked like something I wanted to recover I
selected “Export Contents” and saved it off to the file
web1_hda2.img-Fragment5115087.raw. Because this fragment appeared to
occur in the middle of the file, I used the “Previous” and “Next” buttons to view
preceding and following sequential data blocks, which contained more of the file.
I exported each of the preceding and following blocks until I had the beginning
and the end of the file, fragments 5115085 and 5115090, respectively. The
beginning of the file was recognizable to someone familiar with the C
programming language and the end of the file was recognizable because the text
contents of the file stopped and the rest of the block (the slack space) was filled
with ASCII 0 (“null”) characters.

Once I had exported all data blocks for the file I combined them into one file,
(“file1.out”) using cat*:

In order to remove the ASCII “null” slack space from the end of the file I opened
the file with khexedit, went to the end of the file and selected all the “null”
characters following the last text to the end of the file and deleted them:

I then saved the edited file without the trailing null characters.

* Because I had named the files with sequential names by block number they were reassembled
in the correct order, otherwise my cat statement would have to reflect the correct order.

ritchiej@aardvark:/forensics/GCFA/web1/output/recovered> cat
web1_hda2.img-Fragment511508[5-9].raw web1_hda2.img-Fragment5115090.raw
> file1.out

Illustration 74: concatenation of file fragments into one file using cat

Illustration 75: khexedit deletion of trailing null slack space

43

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Using these methods, I was able to recover what appears to have been source
code files for the “adore” kernel module rootkit. I found a set of consecutive
unallocated file blocks (fragments 5115084 through 5115099) that, when
recovered, constituted a Makefile that describes the adore package contents, 6
C source code files, two C header files identifiable as adore.h and libinvisible.h
by their #ifndef and #define precompiler directives, and a shell script used to
determine kernel version and modify the Makefile. Without finding and
downloading an exact copy of the adore package I couldn't identify all of the files
with certainty; although I can identify a C source code file I can't tell which one of
several that it could be. Also, according to the Makefile, there should be seven
C source code files and I was only able to find and recover six. Following is the
Makefile:

Because there is no connection remaining between the file blocks and their
names or inodes I can only make deductions about when the files may have
been deleted. Given that there were at least 12 files as part of the adore
package and that they were almost certainly brought onto the system as part of a
tar archive that had been built elsewhere and they were probably deleted all at
once, one possibility is that these files were part of the “user 1001” package that
was brought in as part of the system compromise (see discussion under
Timeline Evidence of a Compromise). If that is the case, then these files were
deleted at Tue Apr 06 2004 08:43:13 because that's when their inode entries'
modification and creation dates are found in the timeline:

all: adore ava cleaner

adore: adore.c
 rm -f adore.o
 $(CC) -c -I/usr/src/linux/include $(CFLAGS) adore.c -o adore.o

ava: ava.c libinvisible.c
 $(CC) $(CFLAGS) ava.c libinvisible.c -o ava

dummy: dummy.c
 $(CC) -c -I/usr/src/linux/include $(CFLAGS) dummy.c

rename: rename.c
 $(CC) -c -I/usr/src/linux/include $(CFLAGS) rename.c

module.o: module.c
 $(CC) -c -fPIC -I/usr/src/linux/include $(CFLAGS) module.c

cleaner: cleaner.c
 $(CC) -I/usr/src/linux/include -c $(CFLAGS) cleaner.c
clean:
 rm -f core ava *.o

Illustration 76: adore Makefile

44

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Because the ext3 filesystem preserves the actual deletion time of the file we can
gather additional information directly from the inode using istat:

Other tools I used or considered for recovery of deleted files included foremost
and lazarus. Although I recovered thousands of deleted files and file fragments
using foremost, I didn't have enough disk space to do a full recovery of
unallocated space on the system because foremost is very greedy with disk
space. As already discussed, it's not enough to just recover the files from
unallocated space, one must also manually examine and identify them, a
process that could take weeks. Since I was already locating files by using string
searches against unallocated disk space I didn't feel the results of manual
examination would justify the time. I decided not to use lazarus for the same
reasons.

Tue Apr 06 2004 08:43:13 0 m.c -rwxr-xr-x root root
1488973 <web1_hda2.img-dead-1488973>
 0 m.c -rwxr-xr-x root users
1488978 <web1_hda2.img-dead-1488978>
 0 m.c -rw-r--r-- 1001 users
2551850 <web1_hda2.img-dead-2551850>
 0 m.c -rwxr-xr-x 1001 users
1488971 <web1_hda2.img-dead-1488971>
 0 m.c -rw------- 1001 users
1129223 <web1_hda2.img-dead-1129223>
 0 m.c -rwxr-xr-x root root
1129224 <web1_hda2.img-dead-1129224>
 0 m.c -rw-r--r-- 1001 users
2551844 <web1_hda2.img-dead-2551844>
 0 m.c -rw-r--r-- 1001 users
2551853 <web1_hda2.img-dead-2551853>
 0 m.c -rw-r--r-- 1001 users
2551848 <web1_hda2.img-dead-2551848>
etc....

Illustration 77: timeline evidence of "user 1001" file deletion

ritchiej@aardvark:/forensics/GCFA> istat -f linux-ext3 web1_hda2.img
1488973
inode: 1488973
Not Allocated
Group: 91
uid / gid: 0 / 0
mode: -rwxr-xr-x
size: 0
num of links: 0

Inode Times:
Accessed: Tue Apr 6 08:31:55 2004
File Modified: Tue Apr 6 08:43:13 2004
Inode Modified: Tue Apr 6 08:43:13 2004
Deleted: Tue Apr 6 08:43:13 2004

Illustration 78: istat output showing file deletion time

45

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

String Searches

String searches were critical for the recovery of evidence in this investigation. I
located several important deleted files through the use of keyword searching and
then subsequently recovered them. String searches were also critical in locating
previously undiscovered allocated files that had been installed by the intruder on
the system.

I didn't perform many interactive serial string search exercises with Autopsy on
my overloaded equipment before I decided to hack together some command-line
tools to do searches in batch mode overnight. I wrote three tools (groupgrep.sh,
mkautfromgrep.pl and filefind.pl) to facilitate batch string searches with output
suitable for manual and Autopsy examination of the results. See Appendix C
for descriptions and listings.

Early in the investigation I encountered the file /usr/local/games/.sniffer. Using
“.sniffer” as a string search led me to Fragment 495501, which was allocated to
inode 245598, pointed to by the file /sbin/init.

In addition to the detailed analysis of /sbin/init in Media Analysis Performed, the
strings in /sbin/init (Illustration 30) gave me several pieces of information such
as other pathnames to look for (/sbin/initsk12 and /usr/local/games/.rc), and
additional keywords to add to my dirty word list. Keywords I added were
“FUCK,” “backdoor,” “initsk12” and “Suckit.”

Doing a string search for “backdoor” yielded 395 instances in the root disk
image. Elimination of the many valid files containing the term led to the
discovery and recovery of deleted source code for the “adore” rootkit. That
process is described above in the Deleted File Recovery section.

I searched for “knoppix” in swap space to determine what impact, if any, Agency
X had had on the machine by occasionally booting it from a Knoppix CD after
they semi-retired it. I found 219 instances of “knoppix” on the swap partition.
Although Helix is a modified version of Knoppix, it “has been modified very
carefully to NOT touch the host computer in any way and it is forensically sound.
Helix wil [sic] not auto mount swap space, it will also not auto mount any found
devices” (e-fense, “Helix home page”). Therefore, these instances are signs of
other, non-Helix, Knoppix activities.

I searched for “i36FW7F14483” (the sendmail ID) and “sflavius,” (refer to
Illustration 51) trying to locate and recover sendmail queue files for the email
sent to sflavius2002@yahoo.com ostensibly notifying of root access gained. I
was only able to find and recover a copy of the original syslog file containing the
log entry. I also searched for “sflavius2002” on Google without result.

46

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The following search strings were all found in some piece of evidence and added
to the dirty word list in hopes of uncovering more evidence*:

● psybnc – first encountered in /etc/sysconfig/console/default.ls but found
nowhere else.

● vadim – It turns out that Vadim is a common name. I found lots of files
but no new malicious ones.

● FUCK – I didn't find anything useful but this word is more common in
an open-source system than I expected.

● suckit – first encountered in /sbin/init file but found nowhere else.
● 60G – first encountered in /etc/sysconfig/console/default.syslog. Too

generic of a search term and I got far too many findings.
● ettercap – first encountered in /etc/sysconfig/console/default.ls. Using

this search term I discovered the altered /etc/rc.d/init.d/functions
system file.

● ftpusers- - first encountered in /etc/sysconfig/console/default.ls. I found
an unidentified, unallocated file fragment that matches the end of the
/etc/rc.d/init.d/functions shell script.

● ixiondark – first encountered in /etc/sysconfig/console/default.syslog
but found nowhere else, including on Google.

RST.b string searches

Media examination revealed that Agency Tech 1 made private copies of the “ls,”
“netstat” and “ps” commands. When I did strings commands against each of
these files I found identical suspect strings:

Many of these strings are distinctive enough to search via Google. Findings on
Google led me to believe that these binaries were infected with the “Root Shell
Trojan” RST.b. Details of that search and its results are provided in the Media
Analysis section of this paper, but the portion of the tale relating to media string
searches is that once I had determined that there was a possible virus infection

* There were many instances during the investigation where findings in one area of inquiry
fueled findings in another. One example of this is the location of “.sniffer” in the timeline, which
led to a string search that located /sbin/init, which yielded the dirty word “backdoor” that led to
finding the adore source code.

47

DOM`
/bin/sh
xxxxyyyyzzzz
Y[XXXXXX
GET /~telcom69/gov.php HTTP/1.0
ppp0
eth0
h/bin
snortdos
tory
/dev/hdx

Illustration 79: strings output from ls, netstat and ps

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

on the system it became useful to find each and every infected file. I searched
for and identified the string “telcom69” in the following system files:

Some of these files are hard-links of each other (for example /var/ftp/bin/ls and
/bin/ls) but knowing the extent of the trojan-infected files gives us information
about the spread of the trojan and about problems that were being experienced
on the system.

I also searched for “telcom69” in the system swap partition to determine if there
were fragments of memory swapped out from active trojaned processes. I found
six instances of “telcom69” in swap and was able to positively identify two of
them. The first one appears to be /bin/mail:

48

/etc/httpd/rsawebagent/acestatus
/etc/httpd/rsawebagent/acetest
/etc/httpd/rsawebagent/generateDomainSecret
/home/agtech1/chkrootkit-0.40/chkpro
/home/agtech1/chkrootkit-0.40/chklastlog
/home/agtech1/chkrootkit-0.40/chkwtmp
/home/agtech1/chkrootkit-0.40/ifpromisc
/home/agtech1/chkrootkit-0.40/chkproc
/home/agtech1/chkrootkit-0.40/chkdirs
/home/agtech1/chkrootkit-0.40/check_wtmpx
/home/agtech1/chkrootkit-0.40/strings
/home/agtech1/ls
/home/agtech1/netstat
/home/agtech1/ps
/bin/ping
/bin/mail
/bin/mktemp
/bin/mt
/bin/hostname
/bin/ls
/bin/setserial
/bin/ed
/var/ftp/bin/cpio
/bin/cp
/bin/dd
/bin/ln
/bin/mkdir
/bin/mknod/bin/chgrp
/bin/chmod
/bin/chown
/bin/df
/var/ftp/bin/ls
/bin/mv
/bin/gawk-3.1.0

Illustration 80: files containing "telcom69" string

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The second one appears to be /bin/awk:

No clear conclusions could be drawn about what the other four instances of
“telcom69” found within swap space were.

i686./bin/mail.-s.LogWatch for
web1.agencyX.root.PWD=/.LOGWATCH_DEBUG=0.LOGWATCH_TEMP_DIR=/tmp.secure_
ip_lookup=0.named_ip_lookup=0.MAILTO=root.LOGWATCH_DATE_RANGE=yesterday
.PRINTING=.LOGNAME=root.SHLVL=3.ftpd_ignore_unmatched=0._=/bin/mail.LOG
WATCH_DETAIL_LEVEL=0.SHELL=/bin/bash.ignore_services=sshd.HOME=/.PATH=/
sbin:/bin:/usr/sbin:/usr/bin./bin/mail.....options ...]
 mail [-iInNv] -f [name]
 mail [-iInNv] [-u user]
.....................You must specify direct recipients with -s, -c, or
-b.
.........Cannot give -f and people to send to.

Illustration 81: /bin/mail process in swap

i686.awk.-v.progname=/etc/cron.daily/0anacron.progname {
 print progname ":\n"
 progname="";

 }
 { print; }.

PWD=/.MAILTO=root.LOGNAME=root.SHLVL=2.SHELL=/bin/bash.HOME=/.PATH=/sbi
n:/bin:/usr/sbin:/usr/bin._=/bin/awk./bin/awk.....

Illustration 82: /bin/awk process in swap

49

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Conclusions

On Tuesday, April 6th, 2004, starting at 08:29:57, the web server “web1” was
attacked from the Korean IP address 211.55.78.25. The attacker gained access
to the system using an exploit against the server's vulnerable version (0.9.6) of
OpenSSL (CERT Coordination Center). The attack quickly gained access to
web1's file system and had gained root access by 08:31:55. Although there is
no evidence of exactly how the intruder gained root access, web1 was running a
Linux kernel version (2.4.18-3smp) that was vulnerable to the “ptrace” bug (Red
Hat Network, “RHSA-2003-098”), for which exploit tools existed to gain root
access from an unprivileged account (Larrieu, p. 21-24), (Carrier), (Behounek).

Once the intruder had gained root access to web1, he or she compiled and
installed many rootkit tools. Tools found on the system included trojan
replacements for system tools (ls, netstat, ps, init, etc.) to hide intruder activity,
tools to allow backdoor SSH access to the system (/usr/sbin/kernel), and tools to
monitor and alter kernel memory, allowing capturing login and password-
changing information (SucKIT). The intruder also installed the RST.b virus/trojan
to the system but it's not clear to what purpose; one possibility is that it was in
the hope that the virus would be spread to other systems. To ensure that control
could be maintained between reboots, the intruder altered system startup scripts
to cause the rootkit tools to be started if the system was booted and the SucKIT
kernel rootkit was trojaned as the /sbin/init file. The intruder also installed tools
to attack other systems and was well placed to leverage their access on this
machine to compromise other systems on Agency X' network.

Not all that the intruder did appears to have been successful. I found most of the
source code for the adore kernel module rootkit but there was no trace of the
compiled binaries for it. Introduction of the RST.b virus/trojan may have added
to the instability of the server; the virus may have been in the process of
infecting binaries in the /usr/bin directory when it was last shut down, causing the
many deleted files and the unclean unmount of the system disks. Also, the
intruder's activities on the system caused it to reboot several times, possibly as a
result of instabilities caused by the SucKIT kernel rootkit (Farrow, p. 13). After
the server rebooted, no further evidence is found of the intruder.

When the machine rebooted, it brought itself to the attention of the Agency X
staff. Agency staff logged onto the machine and were able to determine that
something was wrong with it. After initial investigations, they isolated the server
from the network and spent a few days trying to determine exactly what had
happened on it before retiring the server from service. Agency X staff acted
quickly and made good decisions that stopped further intrusion into the server or
its network, which the presence of passwords captured by the SucKIT kernel
rootkit would have enabled if the intruder had been allowed to return.

Agency X personnel's investigations were not without impact to later forensic
examination, however. Because clean, uninfected media were not used during
those initial investigations, system damage was caused by further proliferation of
the RST.b virus/trojan. Also, some of the intruder's activities were obscured by

50

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the initial investigations. One clear example of this is found on the system
timeline where file searching activities after the system compromise have reset
MAC times to later values, masking changes that the intruder may have made. It
is probable that Agency X activities also caused reallocation of inode and file
sectors, overwriting data left by the intruder and making recovery of information
more difficult.

This forensic investigation will have been successful if it helps teach Agency X
personnel better response techniques and improves my organization's overall
ability to protect itself against, and respond quickly and correctly to, a system
compromise incident. It will have been doubly successful if it clearly
demonstrates my understanding of the forensic investigation techniques taught
in the SANS System Forensics, Investigation & Response track.

51

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Additional Information

I used many sources of information while investigating this incident. Here is a
listing of those sources and why they were important.

http://www.google.com – Google, font of all information. I used Google searches
to locate almost all of the following sources.

http://www.honeynet.org/scans/scan29/sol/wbehounek/ and
http://www.sleuthkit.org/case/sotm_29/ - Two analyses of the Honeynet Project
Scan of the Month #29 by Wolfgang Behounek and Brian Carrier, respectively.
The case in the Scan of the Month #29 was very similar to the case I
investigated and the attacker in that case used many of the same tools and
techniques as the one I was investigating. I was able to learn from their
investigations and they helped me draw the conclusions I did. They also both
illustrate good forensic technique and reporting.

http://www.giac.org/practical/GCIH/Heather_Larrieu_GCIH.pdf – This paper,
submitted by Heather Larrieu for a GCIH practical assignment, contains detailed
descriptions of how a particular exploit against weaknesses in OpenSSL works
and of how a "ptrace" vulnerability exploit works. It also describes some of the
rootkit tools that I encountered.

http://www.cert.org/advisories/CA-2002-23.html and
http://rhn.redhat.com/errata/RHSA-2003-098.html – these two pages describe
the OpenSSL vulnerability and the “ptrace” kernel vulnerability that the server I
was investigating was susceptible to. They include which versions of the
software are vulnerable and what the fixes are.

http://www.security-focus.com/archive/100/247640 – A discussion of the RST.b
Root Shell Trojan, variant “b.” This includes an analysis of the RST.b virus/trojan
and describes the author's attempt to contact the administrators of the system
that RST.b connects to. This article includes a copy of the analysis, available at
http://www.lockeddown.net/rst-expl.txt, and it refers to a GDB disassembly of the
virus available at http://www.lockeddown.net/rst-variant.txt.

For tracking location of IP addresses discovered during the course of this
investigation I used:

http://www.ratite.com/whois/whois.html – A global whois search tool,

http://whois.nic.or.kr/english/index.html – KRNIC, a Korean Internet Registry
where I located Korea-based IP addresses,

http://www.geobytes.com/IpLocator.htm – Geobytes, Inc. IP Address Map lookup
service. Given an IP address, this tool will display a map showing where it's
located. According to the site, they use BGP router data and “seed data” from
web browsing customer responses that locate IP addresses to specific locations,
in addition to WHOIS data.

52

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References

Behounek, Wolfgang. “Honeynet Scan of the Month 29 Challenge.” September
2003. 3 April 2005.
<http://www.honeynet.org/scans/scan29/sol/wbehounek/>.

Carrier, Brian. “Honeynet Project – Scan of the Month #29.” September/October
2003. 3 April 2005. <http://www.sleuthkit.org/case/sotm_29/>.

CERT Coordination Center. “CERT Advisory CA-2002-23 Multiple Vulnerabilities
in OpenSSL.” 30 July, 2002. 3 April 2005.
<http://www.cert.org/advisories/CA-2002-23.html>.

e-fense, Inc. “Chain of Custody.” 29 Oct. 2003. 8 Jan. 2005.
<http://www.efense.com/Chain of Custody.pdf>.

e-fense, Inc. “Helix home page.” 2004. 3 April 2005.
<http://www.efense.com/helix/index2.html>.

Farrow, Rik. “Musings.” ;login:. April 2005: 11-14.

geobytes, inc. “IP Address Locator Tool.” 22 March 2005.
<http://www.geobytes.com/IpLocator.htm>.

Larrieu, Heather M. “A J0k3r Takes Over.” 7 October 2003. 1 Jan. 2005
<http://www.giac.org/practical/GCIH/Heather_Larrieu_GCIH.pdf>.

lockdown. “RST-b commented asm dump.” 19 December 2001. 11 Jan. 2005.
<http://www.lockeddown.net/rst-variant.txt>.

Red Hat Network. “RHSA-2003:098-24 – Updated 2.4 kernel fixes vulnerability.”
17 March, 2003. 3 April 2005. <http://rhn.redhat.com/errata/RHSA-2003-
098.html>

Russel, Ryan. “RST.b.” Security Focus FOCUS-VIRUS Archive. 28 December
2001. 3 April 2005. <http://www.security-focus.com/archive/100/247640>.

SANS Institute. Track 8 – System Forensics, Investigation & Response. Volume
8.1. SANS Press, Nov. 18, 2004.

sd and devik. “Linux on-the-fly kernel patching without LKM.” Phrack. Issue 58,
28 December 2001. 3 April 2005.
<http://www.phrack.org/show.php?p=58&a=7>.

53

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendices

Appendix A – Forensics Letter of Agreement

January 6, 2005

This is an agreement between the Agency Network Technical Services Unit of
the Oregon Agency X and John Ritchie, Information Security Technician at the
Oregon Agency Y. Agency X has agreed to loan a Dell dual 450 CPU with IDE
service tag # uyq0d, Agency X inventory number X123X-27675 with Red Hat OS
installed and primary installed services of Apache and RSA agent to John for the
purposes of completing a forensics analysis of the system for use in his GIAC
Certified Forensic Analyst Practical Assignment.

The GIAC Certified Forensic Analyst Practical assignment requires the following:
[GCFA assignment not replicated in accordance with Administrivia]

John agrees to the following Agency X requirements for utilizing the system for
this purpose:

1. John will sign the Agency X Secrecy Agreement and abide by all state
and federal laws regarding disclosure of sensitive information.

2. Any copies of the system will be either encrypted, burned or government
wiped 7 times using a tool such as DD. We are open to a discussion of
possible long term retention in a secured storage facility once we know
more about what may be on the machine.

3. The Agency X Information Security Officer, Information Security Tech,
and Disclosure Officer will all review John’s paper prior to submission to
GIAC.

4. John will work with Agency X' Network staff to share his findings and
methods so they may learn from this process.

5. The data may be kept and utilized for up to six months beginning on
January 6, 2005.

The following parties agree to these requirements.

__________________________ _________________________________
Agency X Security Officer, ISO John Ritchie
Agency X Agency Y
January 6, 2005 January 6, 2005

54

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix B – Chain of Custody Form

ESO Case #: SoOESO2005_01

Page: 1 of 2 pages.

Chain of Custody

Item #: SoOESO2005_01-
01

Description: Dell Precision 210 workstation, Agency X inventory # X123X-
27675.

Make: Dell Precision 210 Model #: WCM Serial #: UMG10D

Date/Time Released By Received By Reason
Date
1/7/2005

Name/Agency
Agency Tech 2/
Agency X

Name/Agency
John Ritchie / Agency Y

Time
12:20 PM

Signature Signature

For the purpose of forensic
analysis for GCFA practical
assignment.

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Form design based on e-fense Chain of Custody form http://www.efense.com/Chain of Custody.pdf

55

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

ESO Case #: SoOESO2005_01

Page: 2 of 2 pages.

Chain of Custody

Item #:
SoOESO2005_01-02

Description:
Quantum Fireball lct 30.0 GB hard drive contained in Dell Precision 210
workstation (Item # SoOESO2005_01-02) labeled as WEB1.AgencyX

Make:
Quantum Fireball lct

Model #:
30.0 GB AT hard drive, Part #
LB30A011 Rev 01-A

Serial #:
176491530427 TAZXX

Date/Time Released By Received By Reason
Date
1/7/2005

Name/Agency
Agency Tech2/
Agency X

Name/Agency
John Ritchie / Agency Y

Time
12:20 PM

Signature Signature

For the purpose of forensic
analysis for GCFA practical
assignment.

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Date Name/Agency Name/Agency

Time Signature Signature

Form design based on e-fense Chain of Custody form http://www.efense.com/Chain of Custody.pdf

56

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix C – Tools Created For GCFA

These tools are “quick-n-dirty” but they helped me a lot. Using a combination of
the output from filefind.pl to perform batch-mode string searches and Autopsy to
keep track of and view unallocated blocks, I was able to process string searches
much more efficiently than I otherwise would have been able to.

groupgrep.sh – takes an input file of search strings and digs them out of the
disk image ASCII strings file. Uses sub-scripts to generate Autopsy-ready string
search results and to automate associating matching file fragments with file
names.

mkautfromgrep.pl – converts grep results to a file format that Autopsy uses.

filefind.pl – uses the Sleuthkit tools dstat, ifind, ffind and istat to attempt to
find the filename associated with a disk block number if the block is allocated to
a file.

groupgrep.sh Listing

#!/bin/sh
groupgrep.sh - given an input file of strings to search for, this
shell script
does a single grep for all the keywords in one pass through the
"strings" file
then it separates the output into individual autopsy-format files.
Calls
tool mkautfromgrep.pl to convert grep output into autopsy-form
results.
Calls tool filefind.pl to generate file information about findings.

TOOLDIR=/home/ritchiej/priv/projects/GCFA/tools

file containing strings to search for
INFILE=$TOOLDIR/wordsearch.in

gigantic strings output from disk image
ASCFILE=/forensics/GCFA/web1/output/web1_hda2.img.asc

where does this go; I put it into autopsy's output directory
OUTDIR=/forensics/GCFA/web1/output

output file of all grep results
GREPFILE=$OUTDIR/grep_results.allwords

COUNT is incremental starting point for autopsy's string search
results filename:
e.g. "images-web1_hda2.img-3.srch" Set this to one bigger than the
previous highest
result number
COUNT=3

57

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

first grep for all the words so we don't have to read through the
giganti-file more than once
echo "Starting mega-grep at `date`"
grep -i -f $INFILE $ASCFILE > $GREPFILE

now cut the big grep results files into little ones and process them
further
for i in `cat $INFILE`
do

echo "Starting $i at `date`"
grep -i $i $GREPFILE > $OUTDIR/grep_results.$i
echo " mkautfromgrep.pl on $i (search count $COUNT) at

`date`"
$TOOLDIR/mkautfromgrep.pl $OUTDIR/grep_results.$i $OUTDIR/images-

web1_hda2.img-${COUNT}.srch $i
echo " filefind.pl on $i at `date`"
$TOOLDIR/filefind.pl $OUTDIR/images-web1_hda2.img-${COUNT}.srch >

$OUTDIR/files_containing_${i}.txt
COUNT=`expr $COUNT + 1`

done

mkautfromgrep.pl Listing

#!/usr/bin/perl -w

###
takes raw grep output (grepping from strings file)
and builds an autopsy search file out of it
####################

use strict;

blocksize (bytes/block)
my $b_size = 4096;

unless ((scalar @ARGV) == 3)
{

print "Requires 3 args: infile, outfile, searchterm\n";
exit;

}

unless (open INFILE, "$ARGV[0]")
{

die "Can't open $ARGV[0] for reading: $!";
}

unless (open OUTFILE, ">$ARGV[1]")
{

close INFILE;
die "Can't open $ARGV[1] for writing: $!";

}

my $searchterm = $ARGV[2];

my @infile = (<INFILE>);
close INFILE;

58

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

my $lines = scalar @infile;

print OUTFILE "$lines||$searchterm|ascii\n";

foreach (@infile)
{

/^\s*(\d+) (.*)/;

my $byte = $1;
my $string = $2;

get only up to 5 characters on each side of search term
$string =~ s/.*?(.{0,5}$searchterm.{0,5}).*/$1/i;
my $offset = $byte % $b_size;

my $block = ($byte - $offset) / $b_size;
print OUTFILE "$block|$offset|$string\n";

}

close OUTFILE;

filefind.pl Listing

#!/usr/bin/perl -w
##
perl script to automate finding filename from block number.
input is an autopsy-generated textfile that shows block number
of matching string.
#####

use strict;

directory where sleuthkit lives
my $sk_dir = '/usr/local/bin/sleuthkit/bin';
image that we're digging through
my $image = '/forensics/GCFA/web1/images/web1_hda2.img';

read textfile in as file parameter
my @results = (<>);

get rid of the first one
shift @results;

chomp @results; # get rid of newlines

my $old_b_num = 0;
foreach (@results)
{

get block number of result
my $b_num = (split /\|/, $_)[0];
next if ($b_num == $old_b_num);
$old_b_num = $b_num;
now get the stats for this fragment
my @dstat = `$sk_dir/dstat -f linux-ext3 $image $b_num`;

59

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

if (grep /^Allocated/, @dstat)
{

get inode number from block number
my @ifind = `$sk_dir/ifind -f linux-ext3 -d $b_num $image`;
chomp @ifind;
get filename from inode number
my @ffind = `$sk_dir/ffind -f linux-ext3 -a $image $ifind[0]

`;
chomp @ffind;
print "Block $b_num is file: $ffind[0]\n";
my @istat = `$sk_dir/istat -f linux-ext3 $image $ifind[0]`;
chomp @istat;
foreach (@istat)
{

print "\t$_\n";
}

}
else
{

print "$b_num not allocated\n";
}

}

60

