
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Neil Desai
GCFA ver 1.0

Part I

Scope

 I will be reviewing a binary parsing utility called strings. The test will be
conducted in a protected environment so that outside interference can be kept to
a minimum. The purpose of this test is to show the usefulness of this utility and
also show what can be expected in terms of information gathering. This utility will
be used on some UNIX C programs that I will write so that we can see not only
the source code, but also the information that is gathered. The tests conducted
will also show that the evidence that is obtained is verifiable and repeatable. The
strings utility is available on both UNIX and Windows. While each version of
strings may have it’s quirks they all still essentially show the same information. It
may just be a difference of the options used when running the strings utility. We
will be running strings –a. This option allows us to look at the entire binary.
 The tests conducted will be limited to an ELF (Executable and Linkable
Format) formatted binary on a Redhat Linux system. The reason that we are
limiting the way that the binary is created is that different binaries formats will
produce different results. We will be able to look at documentation on the ELF
format and other UNIX/LINUX documentation to support our findings on the
output from strings.

Tools Description

 The program that I will be examining will be /usr/bin/strings (NOTE: For
brevity the /usr/bin/strings utility will be referenced as strings for the rest of the
paper regarding this utility). This program is part of the binutils collection of binary
utilities. The strings utility is used to see any printable text within a binary file.
Like most UNIX utilities there are many options that can be used with it, but we
will only be using the –a option. This will allow the forensic analyst to examine
the entire binary file. Below is an excerpt from the strings man page.

 strings - print the strings of printable characters in files.
 ……..
 `-a'
 `--all'
 `-' Do not scan only the initialized and loaded sections
 of object files; scan the whole files.

 The strings utility will usually be one of the first utilities used in reverse
engineering a file. The file does not have to be a binary though, it can be used on
any file that at a glance does not have any printable text. I will demonstrate the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

usefulness of strings in forensic analysis/reverse engineering on binaries that I
will create so that we can see the source code and compare it to theinformation
we are expecting to get. The version of strings is 2.11.90.0.8 as seen below.

 [root@localhost binary]# strings -v
 GNU strings 2.11.90.0.8
 Copyright 1997, 98, 99, 2000, 2001 Free Software Foundation, Inc. This program is free
 software; you may redistribute it under the terms of the GNU General Public License.
 This program has absolutely no warranty.

This is the default version of strings in Redhat 7.2. The source RPM can be
downloaded from Redhat’s FTP site
(ftp://ftp.redhat.com/pub/redhat/linux/updates/7.2/en/os/i386/SRPMS/binutils-
2.11.90.0.8-12.src.rpm). The strings utility is used to see any printable text that
exists within a file. This will give the analyst a peek into the file to get any clues
as to what the file is and/or does.
 When dealing with an unknown file the forensic analyst must proceed with
caution, even in a “protected environment” (i.e. VMWare in host-only mode).
Usually the first utility that will be run is /usr/bin/file. This utility tells the analyst
the type of file that is being looked at. This utility can be fooled and give false
information. A discussion of this is outside the scope of the file (strings)
being discussed, so we will assume that we are getting correct information from
/usr/bin/file. The file type will determine what steps the analyst takes to deal with
the file.
 If the file were to show up as some type of binary the analyst would need
to get some clues about the binary. Depending on the skill level of the analyst
he/she may take a different approach to analyzing the binary. One approach
would be to load the binary into a disassembler (i.e. IDA Pro, /usr/bin/objdump)
and look at the assembly code output. This requires a lot of skill to reassemble
the binary, so most analysts will opt to use strings to gain information about the
binary before actually disassembling the binary.
 Strings does use some outside libraries if it is not statically compiled. This
can be seen from the output of /usr/bin/ldd. The reason that we used /usr/bin/ldd
is so that we could see not only the direct dependencies, but also the indirect
dependencies. We can see that strings uses the following shared libraries:
/usr/lib/libbfd-2.11.90.0.8.so, /lib/i686/libc.so.6, /lib/libdl.so.2, /lib/ld-linux.so.2
(indirectly). We also see that /usr/lib/libbfd-2.11.90.0.8.so and /lib/libdl.so.2 are
dependent on /lib/i686/libc.so.6. We see that /lib/i686/libc.so.6 is dependent on
/lib/ld-linux.so.2.

 [root@localhost tools]# /usr/bin/ldd -v /usr/bin/strings
 libbfd-2.11.90.0.8.so => /usr/lib/libbfd-2.11.90.0.8.so
 (0x4001e000)
 libdl.so.2 => /usr/lib/libbfd-2.11.90.0.8.so (0x40077000)
 libc.so.6 => /lib/i686/libc.so.6 (0x4007b000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Version information:
 /usr/bin/strings:
 libc.so.6 (GLIBC_2.1.3) => /lib/i686/libc.so.6
 libc.so.6 (GLIBC_2.1) => /lib/i686/libc.so.6
 libc.so.6 (GLIBC_2.0) => /lib/i686/libc.so.6
 /usr/lib/libbfd-2.11.90.0.8.so:
 libc.so.6 (GLIBC_2.1.3) => /lib/i686/libc.so.6
 libc.so.6 (GLIBC_2.2.3) => /lib/i686/libc.so.6
 libc.so.6 (GLIBC_2.1) => /lib/i686/libc.so.6
 libc.so.6 (GLIBC_2.0) => /lib/i686/libc.so.6
 /lib/libdl.so.2:
 libc.so.6 (GLIBC_2.1.3) => /lib/i686/libc.so.6
 libc.so.6 (GLIBC_2.1) => /lib/i686/libc.so.6
 libc.so.6 (GLIBC_2.2) => /lib/i686/libc.so.6
 libc.so.6 (GLIBC_2.0) => /lib/i686/libc.so.6
 /lib/i686/libc.so.6:
 ld-linux.so.2 (GLIBC_2.1.1) => /lib/ld-linux.so.2
 ld-linux.so.2 (GLIBC_2.2.3) => /lib/ld-linux.so.2
 ld-linux.so.2 (GLIBC_2.1) => /lib/ld-linux.so.2
 ld-linux.so.2 (GLIBC_2.2) => /lib/ld-linux.so.2
 ld-linux.so.2 (GLIBC_2.0) => /lib/ld-linux.so.2

 To document what these files are we will start by looking at the naming
structure for these files. Shared object files have two names, the soname
(Shared Object name) and the real name. The files will usually be prefixed with
lib followed by the name of the library, then the “so.” (note the dot at the end of
so) and then the major version number. The real name is the actual file name
that contains the compiled code for the library. Now that we know the naming
convention for the files we will find out what each one of them does and/or is.
The file libc.so.6 is a symbolic link to libc-2.2.4.so. The file libc-2.2.4.so is the C
shared library for the 2.2.4 kernel. The file ld-linux.so.2 is a symbolic link to ld-
2.2.4.so. The file ld-2.2.4.so is a run time link editor. The file libbfd-2.11.90.0.8.so
is the library for the “Binary File Descriptor” version 2.11.90.0.8. The bfd provides
a common interface to an object file. The file libdl.so.2 is a symbolic link to libdl-
2.2.4.so. The file libdl-2.2.4.so is used for dynamic linking. I was not able to find
more information about the file libdl-2.2.4.so. Strings can be compiled statically
so that it can be run from a floppy or CDROM without interacting with these
operating systems shared object libraries. This has been done on different
versions of strings for different distributions of forensic toolkits.

Test Apparatus

To analyze the strings utility we will use the same system that we used for the
second part of the practical:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1. Windows 2000 SP1: This workstation has ActiveState’s
PERL 5.6.0, UltraEdit32 7.10a, 3Cdaemon v2/rev10 (FTP
server), SecureCRT 3.3.2, VMWare 3.1.1 build 1790 and
Cygwin 1.3.10 installed on it.

2. Redhat 7.2 (VMWare, host-only mode): I choose to install
everything. Mac_daddy.pl was also installed on the
system. Mac_daddy.pl is a PERL script written by Rob Lee
(http://www.incident-response.org/mac_daddy.html) which
will show a user the MACTimes of files and directories.

 The reason that I choose to install Redhat in a VMWare session is
because VMWare is a virtual machine this offers me the ability to use a second
system for the analysis without the cost of a second system. U.S. government
agencies have looked into VMWare because of it’s security in providing multiple
virtual machines within a single physical machine. When VMWare is used in a
host-only mode for network connectivity the VMWare session is only able to
connect to the host machine. The IP addresses that are assigned are part of the
192.168.x.x private address space. The host machine also has a second
interface (virtual) that connects to the VMWare session. This way even if the host
is connected to another network the VMWare session can only talk with the host
machine. We will connect to the VMWare session with SecureCRT 3.3.2 using
the SSHv2 protocol. SecureCRT is a client application that supports terminal
emulation through SSH. SecureCRT provides us with logging capabilities so that
we can log all commands and output from the commands.

Environmental Conditions

 The tool was tested in a VMWare session of Redhat Linux 7.2. The
VMWare session was set up to use host-only mode for the networking
configuration. This was the safest way to reverse engineer the binary. The binary
has no connection to the Internet and at worst it destroys the VMWare session.
Since the VMWare session is setup in host-only mode the only device that can
interact with the Linux workstation would be the host that the VMWare session is
running in.

Description of the Procedures

 As noted in the previous section we will be testing strings on a RedHat
Linux 7.2 server that was listed in out “Test Apparatus” section of the practical.
The RedHat server will be accessed via SSH2 using SecureCRT on the host
workstation. All the output will be captured to a local log file and then copied to
this document.
 To see what the strings utility will show about a binary I will be writing
some simple programs and compiling them. This way we know what is in the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

source code and what information we should look for in the output from strings –
a. To limit the outside influence of other utilities, the binaries will not be stripped
or altered in any way after the compilation process. Because of this we will get a
lot of information, most of which is useless to us.
 To make sure that anyone wanting to repeat this process can do so I will
provide the version numbers of the software and the MD5 checksums. Normally
the version number would be sufficient, but since this is a forensic validation of a
tool I will use /usr/bin/md5sum to get the MD5 checksum of the binary. We will
run all the binaries using the full path to the tool or utility. This will ensure that the
correct binary is run.
 We are going to use /usr/bin/gcc version 2.96 20000731 (Red Hat Linux
7.1 2.96-98) to compile all the C source code.

 [root@localhost mac_daddy]# /usr/bin/gcc -v

Reading specs from /usr/lib/gcc-lib/i386-redhat-linux/2.96/specs
gcc version 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
[root@localhost mac_daddy]# /usr/bin/md5sum /usr/bin/gcc
f5c6d63e2d510d47138dbd90ea0c2591 /usr/bin/gcc

 [root@localhost mac_daddy]# /usr/bin/md5sum /usr/lib/gcc-lib/i386-redhat-
 linux/2.96/specs
 922b60125245fb15b076d39e52ac6616 /usr/lib/gcc-lib/i386-redhat-linux/2.96/specs
 [root@localhost mac_daddy]#

 Since /usr/bin/gcc gets it’s version information from /usr/lib/gcc-lib/i386-
redhat-linux/2.96/specs I documented the md5checksum’s of the two files. The
version of strings is 2.11.90.0.8.

 [root@localhost mac_daddy]# /usr/bin/strings -v

GNU strings 2.11.90.0.8
Copyright 1997, 98, 99, 2000, 2001 Free Software Foundation, Inc.
This program is free software; you may redistribute it under the terms of
the GNU General Public License. This program has absolutely no warranty.

 [root@localhost mac_daddy]# /usr/bin/md5sum /usr/bin/strings
 bd0918cb5176465ff833294d66c4815a /usr/bin/strings

[root@localhost mac_daddy]#

 We will be using the bash shell that comes with Redhat 7.2. This version
of the bash shell is 2.05.8(1).

 [root@localhost mac_daddy]# /bin/bash --version

GNU bash, version 2.05.8(1)-release (i386-redhat-linux-gnu)
Copyright 2000 Free Software Foundation, Inc.
[root@localhost mac_daddy]# /usr/bin/md5sum /bin/bash
d8868bcb4d60e19ba915c87b27757574 /bin/bash
[root@localhost mac_daddy]#

The C source code will be edited with /usr/bin/vim version 5.8.7.

[root@localhost root]# /usr/binvim --version

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

VIM - Vi IMproved 5.8 (2001 May 31, compiled Aug 7 2001 10:32:34)
Included patches: 2-7
Compiled by bhcompile@stripples.devel.redhat.com, with (+) or without (-):
+autocmd -browse ++builtin_terms +byte_offset +cindent +cmdline_compl
+cmdline_info +comments +cryptv +cscope +dialog_con +digraphs +emacs_tags +eval
+ex_extra +extra_search +farsi +file_in_path -osfiletype +find_in_path +fork()
-GUI -hangul_input +insert_expand +langmap +linebreak +lispindent +menu
+mksession +modify_fname +mouse +mouse_dec +mouse_gpm +mouse_netterm
+mouse_xterm +multi_byte +perl +python +quickfix +rightleft +scrollbind
+smartindent -sniff +statusline +syntax +tag_binary +tag_old_static
-tag_any_white -tcl +terminfo +textobjects +title +user_commands +visualextra
+viminfo +wildignore +wildmenu +writebackup -X11 -xfontset -xim
-xterm_clipboard -xterm_save
 system vimrc file: "/usr/share/vim/vim58/macros/vimrc"
 user vimrc file: "$HOME/.vimrc"
 user exrc file: "$HOME/.exrc"
 fall-back for $VIM: "/usr/share/vim"
Compilation: gcc -c -I. -Iproto -DHAVE_CONFIG_H -O2 -march=i386 -mcpu=i686 -
Wall -fno-strict-aliasing -I/usr/local/include -I/usr/lib/perl5/5.6.0/i386-linux/CORE -
I/usr/include/python1.5
Linking: gcc -rdynamic -o vim -lncurses -lgpm -rdynamic -L/usr/local/lib
/usr/lib/perl5/5.6.0/i386-linux/auto/DynaLoader/DynaLoader.a -L/usr/lib/perl5/5.6.0/i386-
linux/CORE -lperl -ldl -lm -lcrypt /usr/lib/python1.5/config/libpython1.5.a -lieee -ldl -
lpthread -lm
[root@localhost root]# /usr/bin/md5sum /usr/bin/vim
4a5bb867c8fbec274cb90fb0ba7c7a2f /usr/bin/vim
[root@localhost root]#

 I will use the command /usr/bin/vim test.c to start the editing of the files
and I will save the files by using the commands “[ESC]:wq!”.
 Each time a piece of source code is written I will use the /bin/cat command
to show the source code. This is easier than attempting to show the output from
/usr/bin/vim. The version of /bin/cat that we will use is 2.0.14.

[root@localhost mac_daddy]# /bin/cat --version
cat (textutils) 2.0.14
Written by Torbjorn Granlund and Richard M. Stallman.

Copyright (C) 2001 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.
[root@localhost mac_daddy]# /usr/bin/md5sum /bin/cat
30bef954ee5b8df11101aa1d7ba531fd /bin/cat
[root@localhost mac_daddy]#

 I will also use the /usr/bin/objdump utility. This will allow us to disassemble
the binary and look at specific parts of the binary.

[root@localhost tools]# /usr/bin/objdump -V

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GNU objdump 2.11.90.0.8
Copyright 1997, 98, 99, 2000, 2001 Free Software Foundation, Inc.
This program is free software; you may redistribute it under the terms of
the GNU General Public License. This program has absolutely no warranty.
[root@localhost tools]# /usr/bin/md5sum /usr/bin/objdump
c32907f70f89eab4bcbd48aa4692907e /usr/bin/objdump

 [root@localhost tools]#

 I will first write a simple “Hello World” program. This will allow us to look at
one of the most basic programs. From there I will edit the test.c C source code
file and add other pieces of information that are commonly found in programs.
We will limit our testing to following items:

1. Basic printf function.
2. Comments within the C source code.
3. The #define preprocessor.
4. Global variables, integer arrays, and character arrays.
5. Local variables, integer arrays, and character arrays.
6. The process of taking a C source code file and making it an executable.
7. What the C source code looks like when converted to assembly language.

 To see everything that strings can find within a binary we would have to
look at all the system calls and functions available to the C language in the Linux
environment. This task would take a few months to complete and is outside the
scope of this project.
 I have come up with a process for forensic analysts to find things that I
have not directly discussed in regards to the information gathered by strings. By
looking at the assembly output of an ELF binary (objdump –D elfbinaryfile (where
elfbinaryfile is the ELF binary file that the analyst wants to disassemble)) we can
see the system calls being made (int $0x80). By looking at the value in the eax
register just before the int $0x80 system call and cross referencing it will the
information in /usr/include/asm/unistd.h we can find out what system calls are
being made. We can then write small pieces of code using those system calls
can examine them with the strings utility to find out what information about the
system calls we can find with the strings utility.
 Before I start writing the test programs we need some background
information on the binary compiling process and the tools that we will be using to
document and verify the information. When writing a program we will start out
with a basic ACSII text file containing instructions formatted for the C
programming language. The C programming language is considered a high level
language. We will save our C source code as files that will have the “.c” file
extension (minus the quotes). When gcc sees a file with this extension it
assumes that the file is a C source code file.
 Below I list the steps that the C source code will take to be compiled into a
ELF formatted binary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 1. Start out with the C source code (ASCII Text file).
 2. The C source code will be fed to the compiler, gcc.
 3. The compiler will then turn the C source code into assembly
 language.
 4. The assembler, as, will take the assembly language and create the
 object code.
 5. The linker, ld-2.2.4.so, will take the object code and create the final
 binary.

 By default when running the /usr/bin/gcc complier it will take the C source
code and compile it into a ELF formatted binary. There are options for
/usr/bin/gcc so that we can create just the assembly language of a C program (-S
option) or create an object file (-c option). From the assembly language file or the
object file we can use /usr/bin/as or /usr/bin/ld, respectively, to create the final
binary. We will need to understand the layout of the ELF binary so that we know
what information we can get and from where we will be getting it.
 The main thing that we need to understand is that certain data will only be
seen when the executable is ran. To see what the binary stores we will look at
the output from /usr/bin/objdump (NOTE: For the rest of the presentation we will
refer to /usr/bin/objdump as objdump). We will assume that objdump has all
ready been proven forensically sound so that we can rely on the output from it.
 The ELF binary is made up of a number of different sections used by the
systemi. The most useful sections for us will be .comment, .rodata, .data, and
.text. The .comment section will contain version control information. The .rodata
section will contain read-only information. The .data section will contain initialized
data. The .text section will contain the actual program code.

Criteria for Approval

 The strings utility should show us printable strings within binary files as
well as parts of the source code and information about what was used to compile
it (i.e. /usr/bin/gcc, cc), operating system it was compiled on (Redhat Linux,
Mandrake Linux) and what libraries are a part of the binary. From the output that
we will show we will be able see that the information is repeatable and verifiable.
 The strings utility will be executed from the command line or shell. On a
Unix/Linux system the forensic analyst will execute strings via the full path,
/usr/bin/strings. For forensic purposes all command will be executed via the full
path to ensure that the correct binary is run.
 The strings utility does use some system files as can be seen below:

i Executable and Linkable Format (ELF) version 1.1 page 14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 [root@localhost tools]# /usr/bin/ldd /usr/bin/strings
 libbfd-2.11.90.0.8.so => /usr/lib/libbfd-2.11.90.0.8.so
 (0x4001e000)
 libdl.so.2 => /lib/libdl.so.2 (0x40077000)
 libc.so.6 => /lib/i686/libc.so.6 (0x4007b000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

 More detailed information about the dependencies are contained in the
“Tools Description” portion of the forensic tool validation part of the practical. If
the strings utility has write access to the file being examined then the atime of the
binary would change. To show this we are going to use the Linux /bin/date
command and mac_daddy.pl (a PERL script, written by Rob Lee, for showing the
MACTimes of files). First we will compile a binary with /usr/bin/gcc. The binaries
MACTimes should all be the same. We will confirm this with mac_daddy.pl. The
strings utility does not alter the actual binary. We will prove this will the help of
/usr/bin/md5sum. The test will be conducted on a regular partition so that we can
see if the strings utility alters a file’s metadata or content.
The first test we will conduct is to prove that strings only changes the atime of the
binary.

[root@localhost mac_daddy]# /bin/date
Tue Oct 15 08:48:09 EDT 2002
[root@localhost mac_daddy]# /usr/bin/gcc -o/usr/tools/tools/test /usr/tools/tools/test.c
[root@localhost mac_daddy]# /bin/date
Tue Oct 15 08:48:27 EDT 2002
[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/tools/
[root@localhost mac_daddy]# Oct 15 2002 05:58:38 1475 m.. -rw-r--r-- root root
/usr/tools/tools/test.c
Oct 15 2002 07:53:55 1475 ..c -rw-r--r-- root root /usr/tools/tools/test.c
Oct 15 2002 08:48:25 14520 mac -rwxr-xr-x root root /usr/tools/tools/test
 1475 .a. -rw-r--r-- root root /usr/tools/tools/test.c

 [root@localhost mac_daddy]# /usr/bin/strings -a /usr/tools/tools/test >output
 [root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/tools/
[root@localhost mac_daddy]# Oct 15 2002 05:58:38 1475 m.. -rw-r--r-- root root
/usr/tools/tools/test.c
Oct 15 2002 07:53:55 1475 ..c -rw-r--r-- root root /usr/tools/tools/test.c
Oct 15 2002 08:48:25 14520 m.c -rwxr-xr-x root root /usr/tools/tools/test
 1475 .a. -rw-r--r-- root root /usr/tools/tools/test.c
Oct 15 2002 08:49:10 14520 .a. -rwxr-xr-x root root /usr/tools/tools/test

 From the above output we can clearly see that strings only changes the
atime of the binary. The reason that the atime is changes is because strings has
to access/read the file in order to find the printable characters. When the file is
read the atime changes.
 Next we will check the integrity of the binary before and after the strings
utility is run on it.

 [root@localhost mac_daddy]# /usr/bin/md5sum /usr/tools/tools/test

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 1a80f714206216c542917d1591a440c9 /usr/tools/tools/test
 [root@localhost mac_daddy]# /usr/binstrings -a /usr/tools/tools/test >ouput
 [root@localhost mac_daddy]# /usr/bin/md5sum /usr/tools/tools/test
 1a80f714206216c542917d1591a440c9 /usr/tools/tools/test
 [root@localhost mac_daddy]

 From the above information we can see that the strings utility does not
change any of the data within the binary.
 Even though the strings utility changes the atime of a file it is still a very
valuable tool in a forensic investigation. The strings utility will rarely be used on a
live system. Most of the time it will be used on an image of the hard drive. In this
case the forensic analyst would mount the hard drive as read only. This can be
done within the OS or with special hardware. Since the information will be read
only strings will not be able to change the atime of the binary.
 The strings utility will provide the forensic analyst a high level overview of
the binary. The information gathered during this analysis could save the forensic
analyst a lot of time and reverse engineering as we will see in the next section.
 If the file is encrypted then there might not be much useful information
gathered by strings, but currently there are not many attackers encrypting their
binaries. Most attacks will just strip the binaries to lessen the footprint, which also
makes it harder to disassemble. The stripping process does not make it
impossible for someone to gain valuable information via strings, just harder to
reverse engineer.

Data and Results

 The first program that I will write is a simple executable that prints “Hello
world” to the screen. I will then compile it with /usr/bin/gcc and then use strings -a
on the complied binary.

 [root@localhost tools]# /bin/cat test.c

 int main()
 {
 printf("Hello world\n");
 return(0);
 }

 [root@localhost tools]# /usr/bin/gcc -o test test.c
 [root@localhost tools]# /usr/bin/strings -a test

/lib/ld-linux.so.2
__gmon_start__
libc.so.6
printf
__cxa_finalize
__deregister_frame_info
_IO_stdin_used
__libc_start_main

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

__register_frame_info
GLIBC_2.1.3
GLIBC_2.0
ÉÃÿ5
éàÿÿÿÿ%,
éÐÿÿÿÿ%0
éÀÿÿÿÿ%4
é°ÿÿÿÿ%8
é ÿÿÿ
äðPTRhÀ
QVh`
è«ÿÿÿô
åSPè
]üÉÃ
Éuê¸
è ÿÿÿ
èËþÿÿ
èÉþÿÿ
øÿuôX[]ÃU
åSRè
è×þÿÿ
]üÉÃ
Hello world
ÿÿÿÿ
ÿÿÿÿ
þÿÿo
ÿÿÿo
ðÿÿor
init.c
/usr/src/build/40453-i386/BUILD/glibc-2.2.4/csu/
/usr/bin/gcc2_compiled.
int:t(0,1)=r(0,1);-2147483648;2147483647;
char:t(0,2)=r(0,2);0;127;
long int:t(0,3)=r(0,3);-2147483648;2147483647;
unsigned int:t(0,4)=r(0,4);0000000000000;0037777777777;
long unsigned int:t(0,5)=r(0,5);0000000000000;0037777777777;
long long
int:t(0,6)=@s64;r(0,6);01000000000000000000000;0777777777777777777777;
long long unsigned int:t(0,7)=@s64;r(0,7);0000000000000;01777777777777777777777;
short int:t(0,8)=@s16;r(0,8);-32768;32767;
short unsigned int:t(0,9)=@s16;r(0,9);0;65535;
signed char:t(0,10)=@s8;r(0,10);-128;127;
unsigned char:t(0,11)=@s8;r(0,11);0;255;
float:t(0,12)=r(0,1);4;0;
double:t(0,13)=r(0,1);8;0;
long double:t(0,14)=r(0,1);12;0;
complex int:t(0,15)=s8real:(0,1),0,32;imag:(0,1),32,32;;
complex float:t(0,16)=r(0,16);8;0;
complex double:t(0,17)=r(0,17);16;0;
complex long double:t(0,18)=r(0,18);24;0;
__builtin_va_list:t(0,19)=*(0,20)=(0,20)
../include/libc-symbols.h
/usr/src/build/40453-i386/BUILD/glibc-2.2.4/build-i386-linux/config.h

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

../sysdeps/gnu/_G_config.h

../sysdeps/unix/sysv/linux/bits/types.h

../include/features.h

../include/sys/cdefs.h

../misc/sys/cdefs.h
/usr/lib//usr/bin/gcc-lib/i386-redhat-linux/2.96/include/stddef.h
size_t:t(8,1)=(0,4)
__u_char:t(4,1)=(0,11)
__u_short:t(4,2)=(0,9)
__u_int:t(4,3)=(0,4)
__u_long:t(4,4)=(0,5)
__u_quad_t:t(4,5)=(0,7)
__quad_t:t(4,6)=(0,6)
__int8_t:t(4,7)=(0,10)
__uint8_t:t(4,8)=(0,11)
__int16_t:t(4,9)=(0,8)
__uint16_t:t(4,10)=(0,9)
__int32_t:t(4,11)=(0,1)
__uint32_t:t(4,12)=(0,4)
__int64_t:t(4,13)=(0,6)
__uint64_t:t(4,14)=(0,7)
__qaddr_t:t(4,15)=(4,16)=*(4,6)
__dev_t:t(4,17)=(4,5)
__uid_t:t(4,18)=(4,3)
__gid_t:t(4,19)=(4,3)
__ino_t:t(4,20)=(4,4)
__mode_t:t(4,21)=(4,3)
__nlink_t:t(4,22)=(4,3)
__off_t:t(4,23)=(0,3)
__loff_t:t(4,24)=(4,6)
__pid_t:t(4,25)=(0,1)
__ssize_t:t(4,26)=(0,1)
__rlim_t:t(4,27)=(4,4)
__rlim64_t:t(4,28)=(4,5)
__id_t:t(4,29)=(4,3)
__fsid_t:t(4,30)=(4,31)=s8__val:(4,32)=ar(4,33)=r(4,33);0000000000000;0037777777777
;;0;1;(0,1),0,64;;
__daddr_t:t(4,34)=(0,1)
__caddr_t:t(4,35)=(4,36)=*(0,2)
__time_t:t(4,37)=(0,3)
__useconds_t:t(4,38)=(0,4)
__suseconds_t:t(4,39)=(0,3)
__swblk_t:t(4,40)=(0,3)
__clock_t:t(4,41)=(0,3)
__clockid_t:t(4,42)=(0,1)
__timer_t:t(4,43)=(0,1)
__key_t:t(4,44)=(0,1)
__ipc_pid_t:t(4,45)=(0,9)
__blksize_t:t(4,46)=(0,3)
__blkcnt_t:t(4,47)=(0,3)
__blkcnt64_t:t(4,48)=(4,6)
__fsblkcnt_t:t(4,49)=(4,4)
__fsblkcnt64_t:t(4,50)=(4,5)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

__fsfilcnt_t:t(4,51)=(4,4)
__fsfilcnt64_t:t(4,52)=(4,5)
__ino64_t:t(4,53)=(4,5)
__off64_t:t(4,54)=(4,24)
__t_scalar_t:t(4,55)=(0,3)
__t_uscalar_t:t(4,56)=(0,5)
__intptr_t:t(4,57)=(0,1)
__socklen_t:t(4,58)=(0,4)
../linuxthreads/sysdeps/pthread/bits/pthreadtypes.h
../sysdeps/unix/sysv/linux/bits/sched.h
__sched_param:T(10,1)=s4__sched_priority:(0,1),0,32;;
_pthread_fastlock:T(9,1)=s8__status:(0,3),0,32;__spinlock:(0,1),32,32;;
_pthread_descr:t(9,2)=(9,3)=*(9,4)=xs_pthread_descr_struct:
__pthread_attr_s:T(9,5)=s36__detachstate:(0,1),0,32;__schedpolicy:(0,1),32,32;__sched
param:(10,1),64,32;__inheritsched:(0,1),96,32;_
_scope:(0,1),128,32;__guardsize:(8,1),160,32;__stackaddr_set:(0,1),192,32;__stackaddr
:(0,19),224,32;__stacksize:(8,1),256,32;;
pthread_attr_t:t(9,6)=(9,5)
pthread_cond_t:t(9,7)=(9,8)=s12__c_lock:(9,1),0,64;__c_waiting:(9,2),64,32;;
pthread_condattr_t:t(9,9)=(9,10)=s4__dummy:(0,1),0,32;;
pthread_key_t:t(9,11)=(0,4)
pthread_mutex_t:t(9,12)=(9,13)=s24__m_reserved:(0,1),0,32;__m_count:(0,1),32,32;__
m_owner:(9,2),64,32;__m_kind:(0,1),96,32;__m_lock:
(9,1),128,64;;
pthread_mutexattr_t:t(9,14)=(9,15)=s4__mutexkind:(0,1),0,32;;
pthread_once_t:t(9,16)=(0,1)
_pthread_rwlock_t:T(9,17)=s32__rw_lock:(9,1),0,64;__rw_readers:(0,1),64,32;__rw_writ
er:(9,2),96,32;__rw_read_waiting:(9,2),128,32;__
rw_write_waiting:(9,2),160,32;__rw_kind:(0,1),192,32;__rw_pshared:(0,1),224,32;;
pthread_rwlock_t:t(9,18)=(9,17)
pthread_rwlockattr_t:t(9,19)=(9,20)=s8__lockkind:(0,1),0,32;__pshared:(0,1),32,32;;
pthread_spinlock_t:t(9,21)=(0,1)
pthread_barrier_t:t(9,22)=(9,23)=s20__ba_lock:(9,1),0,64;__ba_required:(0,1),64,32;__b
a_present:(0,1),96,32;__ba_waiting:(9,2),128,3
2;;
pthread_barrierattr_t:t(9,24)=(9,25)=s4__pshared:(0,1),0,32;;
pthread_t:t(9,26)=(0,5)
wchar_t:t(11,1)=(0,3)
wint_t:t(11,2)=(0,4)
../include/wchar.h
../wcsmbs/wchar.h
../sysdeps/unix/sysv/linux/i386/bits/wchar.h
__mbstate_t:t(13,1)=(13,2)=s8__count:(0,1),0,32;__value:(13,3)=u4__wch:(11,2),0,32;__
wchb:(13,4)=ar(4,33);0;3;(0,2),0,32;;,32,32;;
_G_fpos_t:t(3,1)=(3,2)=s12__pos:(4,23),0,32;__state:(13,1),32,64;;
_G_fpos64_t:t(3,3)=(3,4)=s16__pos:(4,54),0,64;__state:(13,1),64,64;;
../include/gconv.h
../iconv/gconv.h
:T(17,1)=e__GCONV_OK:0,__GCONV_NOCONV:1,__GCONV_NODB:2,__GCONV_N
OMEM:3,__GCONV_EMPTY_INPUT:4,__GCONV_FULL_OUTPUT:5,__GCONV_ILLEG
AL_
INPUT:6,__GCONV_INCOMPLETE_INPUT:7,__GCONV_ILLEGAL_DESCRIPTOR:8,__
GCONV_INTERNAL_ERROR:9,;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 :T(17,2)=e__GCONV_IS_LAST:1,__GCONV_IGNORE_ERRORS:2,;
__gconv_fct:t(17,3)=(17,4)=*(17,5)=f(0,1)
__gconv_init_fct:t(17,6)=(17,7)=*(17,8)=f(0,1)
__gconv_end_fct:t(17,9)=(17,10)=*(17,11)=f(0,20)
__gconv_trans_fct:t(17,12)=(17,13)=*(17,14)=f(0,1)
__gconv_trans_context_fct:t(17,15)=(17,16)=*(17,17)=f(0,1)
__gconv_trans_query_fct:t(17,18)=(17,19)=*(17,20)=f(0,1)
__gconv_trans_init_fct:t(17,21)=(17,22)=*(17,23)=f(0,1)
__gconv_trans_end_fct:t(17,24)=(17,25)=*(17,26)=f(0,20)
__gconv_trans_data:T(17,27)=s20__trans_fct:(17,12),0,32;__trans_context_fct:(17,15),3
2,32;__trans_end_fct:(17,24),64,32;__data:(0,19
),96,32;__next:(17,28)=*(17,27),128,32;;
__gconv_step:T(17,29)=s56__shlib_handle:(17,30)=*(17,31)=xs__gconv_loaded_object:
,0,32;__modname:(17,32)=*(0,2),32,32;__counter:(0,1
),64,32;__from_name:(4,36),96,32;__to_name:(4,36),128,32;__fct:(17,3),160,32;__init_fc
t:(17,6),192,32;__end_fct:(17,9),224,32;__min_
needed_from:(0,1),256,32;__max_needed_from:(0,1),288,32;__min_needed_to:(0,1),32
0,32;__max_needed_to:(0,1),352,32;__stateful:(0,1),3
84,32;__data:(0,19),416,32;;
__gconv_step_data:T(17,33)=s36__outbuf:(17,34)=*(0,11),0,32;__outbufend:(17,34),32,
32;__flags:(0,1),64,32;__invocation_counter:(0,1)
,96,32;__internal_use:(0,1),128,32;__statep:(17,35)=*(13,1),160,32;__state:(13,1),192,6
4;__trans:(17,28),256,32;;
__gconv_info:T(17,36)=s8__nsteps:(8,1),0,32;__steps:(17,37)=*(17,29),32,32;__data:(17
,38)=ar(4,33);0;-1;(17,33),64,0;;
__gconv_t:t(17,39)=(17,40)=*(17,36)
_G_iconv_t:t(3,5)=(3,6)=u44__cd:(17,36),0,64;__combined:(3,7)=s44__cd:(17,36),0,64;_
_data:(17,33),64,288;;,0,352;;
_G_int16_t:t(3,8)=(0,8)
_G_int32_t:t(3,9)=(0,1)
_G_uint16_t:t(3,10)=(0,9)
_G_uint32_t:t(3,11)=(0,4)
_IO_stdin_used:G(0,1)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
01.01
01.01
01.01
01.01
01.01
01.01
.symtab
.strtab
.shstrtab
.interp
.note.ABI-tag
.hash
.dynsym
.dynstr

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

.gnu.version

.gnu.version_r

.rel.dyn

.rel.plt

.init

.plt

.text

.fini

.rodata

.data

.eh_frame

.ctors

.dtors

.got

.dynamic

.sbss

.bss

.stab

.stabstr

.comment

.note
ÿÿÿo
þÿÿo
initfini.c
/usr/bin/gcc2_compiled.
call_gmon_start
init.c
crtstuff.c
__DTOR_LIST__
completed.1
__do_global_dtors_aux
__EH_FRAME_BEGIN__
fini_dummy
object.2
frame_dummy
init_dummy
force_to_data
__CTOR_LIST__
__do_global_ctors_aux
__CTOR_END__
__DTOR_END__
__FRAME_END__
test.c
_DYNAMIC
__register_frame_info@@GLIBC_2.0
_fp_hw
_init
__deregister_frame_info@@GLIBC_2.0
_start
__bss_start
main
__libc_start_main@@GLIBC_2.0
data_start

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

printf@@GLIBC_2.0
_fini
__cxa_finalize@@GLIBC_2.1.3
_edata
_GLOBAL_OFFSET_TABLE_
_end
_IO_stdin_used
__data_start
__gmon_start__

 Because the binary was not stripped before strings was run there is a lot
of debugging information that is seen by strings –a. Since this is a test of the
strings utility I will not use /usr/bin/strip to modify the binary to create a smaller
binary and lessen the output from strings –a.
 From the output of the test.c C source code file we can see that there is
not much to the program. From the output of stings we can see that the binary
was compiled with /USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1
2.96-97), /lib/ld-linux.so.2 and libc.so.6. We can also see the output (Hello world)
from out printf statement, printf statement itself and the ELF sections (i.e.
.comment, .rodata). Using this information we can determine what type of system
the binary was compiled on. The string “test.c” also tells us the name of the
original C source code.
 The compiler information, ELF headers and linker information is part of the
binary, original source code file name and printf fuction are all part of the final
binary.
 To see where the compiler version information came from we will use
objdump. We will run objdump with the –j and –s options. The –j option will allow
us to view only the section name that we want to look at. From the
documentation of the ELF binary format we know that we want to look at the
.comment section. The –s option lets us look at off the header information that
we want to look at.

[root@localhost tools]# /usr/bin/objdump -j .comment -s test

test: file format elf32-i386

Contents of section .comment:
 0000 00474343 3a202847 4e552920 322e3936 .GCC: (GNU) 2.96
 0010 20323030 30303733 31202852 65642048 20000731 (Red H
 0020 6174204c 696e7578 20372e31 20322e39 at Linux 7.1 2.9
 0030 362d3937 29000047 43433a20 28474e55 6-97)..GCC: (GNU
 0040 2920322e 39362032 30303030 37333120) 2.96 20000731
 0050 28526564 20486174 204c696e 75782037 (Red Hat Linux 7
 0060 2e312032 2e39362d 39372900 00474343 .1 2.96-97)..GCC
 0070 3a202847 4e552920 322e3936 20323030 : (GNU) 2.96 200
 0080 30303733 31202852 65642048 6174204c 00731 (Red Hat L
 0090 696e7578 20372e31 20322e39 362d3938 inux 7.1 2.96-98
 00a0 29000047 43433a20 28474e55 2920322e)..GCC: (GNU) 2.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 00b0 39362032 30303030 37333120 28526564 96 20000731 (Red
 00c0 20486174 204c696e 75782037 2e312032 Hat Linux 7.1 2
 00d0 2e39362d 39382900 00474343 3a202847 .96-98)..GCC: (G
 00e0 4e552920 322e3936 20323030 30303733 NU) 2.96 2000073
 00f0 31202852 65642048 6174204c 696e7578 1 (Red Hat Linux
 0100 20372e31 20322e39 362d3938 29000047 7.1 2.96-98)..G
 0110 43433a20 28474e55 2920322e 39362032 CC: (GNU) 2.96 2
 0120 30303030 37333120 28526564 20486174 0000731 (Red Hat
 0130 204c696e 75782037 2e312032 2e39362d Linux 7.1 2.96-
 0140 39372900 97).

 From the above output we can see the version of gcc that was used to
compile the binary. To see the ELF header information we will use objdump with
the –h option. This will print out summary information about the section headers.

[root@localhost tools]# /usr/bin/objdump -h test

test: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
 0 .interp 00000013 080480f4 080480f4 000000f4 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 1 .note.ABI-tag 00000020 08048108 08048108 00000108 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 2 .hash 00000034 08048128 08048128 00000128 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 3 .dynsym 00000080 0804815c 0804815c 0000015c 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .dynstr 00000095 080481dc 080481dc 000001dc 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 5 .gnu.version 00000010 08048272 08048272 00000272 2**1
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 6 .gnu.version_r 00000030 08048284 08048284 00000284 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 7 .rel.dyn 00000008 080482b4 080482b4 000002b4 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 8 .rel.plt 00000028 080482bc 080482bc 000002bc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 9 .init 00000018 080482e4 080482e4 000002e4 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 10 .plt 00000060 080482fc 080482fc 000002fc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 11 .text 00000160 08048360 08048360 00000360 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 12 .fini 0000001e 080484c0 080484c0 000004c0 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 13 .rodata 00000015 080484e0 080484e0 000004e0 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 14 .data 00000010 080494f8 080494f8 000004f8 2**2
 CONTENTS, ALLOC, LOAD, DATA
 15 .eh_frame 00000004 08049508 08049508 00000508 2**2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 CONTENTS, ALLOC, LOAD, DATA
 16 .ctors 00000008 0804950c 0804950c 0000050c 2**2
 CONTENTS, ALLOC, LOAD, DATA
 17 .dtors 00000008 08049514 08049514 00000514 2**2
 CONTENTS, ALLOC, LOAD, DATA
 18 .got 00000024 0804951c 0804951c 0000051c 2**2
 CONTENTS, ALLOC, LOAD, DATA
 19 .dynamic 000000c8 08049540 08049540 00000540 2**2
 CONTENTS, ALLOC, LOAD, DATA
 20 .sbss 00000000 08049608 08049608 00000608 2**0
 CONTENTS
 21 .bss 00000018 08049608 08049608 00000608 2**2
 ALLOC
 22 .stab 000007a4 00000000 00000000 00000608 2**2
 CONTENTS, READONLY, DEBUGGING
 23 .stabstr 00001983 00000000 00000000 00000dac 2**0
 CONTENTS, READONLY, DEBUGGING
 24 .comment 00000144 00000000 00000000 0000272f 2**0
 CONTENTS, READONLY
 25 .note 00000078 00000000 00000000 00002873 2**0
 CONTENTS, READONLY

From the above output we can see the header names that are part of this binary.
To find out were the linker information is kept we will look at the interpreter,
.interp, section of the ELF binary. This will show us the path to the name of the
programs interpreter.

[root@localhost tools]# /usr/bin/objdump -j .interp -s test

test: file format elf32-i386

Contents of section .interp:
 80480f4 2f6c6962 2f6c642d 6c696e75 782e736f /lib/ld-linux.so
 8048104 2e3200 .2.
[root@localhost tools]#

 From the above output we can see that /lib/ld-linux.so is the name of the
interpreter for this binary.
 Why is there so much output for such a simple program? Simple. Most of
the information is added during the linking phase. Most of the information is
related to the libc library. We will take a look at an the object file that is created
from the test.c C source code file. An object file is the output of the assembly
language after it is compiled by the assembler but before it is linked to any
libraries.

 [root@localhost tools]# /bin/cat test.c

 int main()
 {
 printf("Hello world\n");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 return(0);
 }

 [root@localhost tools]# /usr/bin/gcc -c test.c

[root@localhost tools]# /usr/bin/strings -a test.o
èüÿÿÿ
01.01
Hello world
GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
.symtab
.strtab
.shstrtab
.text
.rel.text
.data
.bss
.note
.rodata
.comment
 test.c
gcc2_compiled.
main
printf
[root@localhost tools]#

 From the above output we can see how small the actual program is before
it is linked to libc. We are also able to more clearly see the information that we
retrieved from the final binary.
 I will add some comments to the test.c program and recompile it to see
what our output will look like.

 [root@localhost tools]# /bin/cat test.c

 /*This is a test
 of the strings

binary parsing
utility*/

int main()
{
printf("Hello world\n");
return(0);
}

[root@localhost tools]# /usr/bin/gcc -o test test.c

[root@localhost tools]# /usr/bin/strings -a test
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
printf
__cxa_finalize

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

__deregister_frame_info
_IO_stdin_used
__libc_start_main
__register_frame_info
GLIBC_2.1.3
GLIBC_2.0
ÉÃÿ5
éàÿÿÿÿ%,
éÐÿÿÿÿ%0
éÀÿÿÿÿ%4
é°ÿÿÿÿ%8
é ÿÿÿ
äðPTRhÀ
QVh`
è«ÿÿÿô
åSPè
]üÉÃ
Éuê¸
è ÿÿÿ
èËþÿÿ
èÉþÿÿ
øÿuôX[]ÃU
åSRè
è×þÿÿ
]üÉÃ
Hello world
ÿÿÿÿ
ÿÿÿÿ
þÿÿo
ÿÿÿo
ðÿÿor
init.c
/usr/src/build/40453-i386/BUILD/glibc-2.2.4/csu/
/usr/bin/gcc2_compiled.
int:t(0,1)=r(0,1);-2147483648;2147483647;
char:t(0,2)=r(0,2);0;127;
long int:t(0,3)=r(0,3);-2147483648;2147483647;
unsigned int:t(0,4)=r(0,4);0000000000000;0037777777777;
long unsigned int:t(0,5)=r(0,5);0000000000000;0037777777777;
long long int:t(0,6)=@s64;r(0,6);01000000000000000000000;0777777777777777777777;
long long unsigned int:t(0,7)=@s64;r(0,7);0000000000000;01777777777777777777777;
short int:t(0,8)=@s16;r(0,8);-32768;32767;
short unsigned int:t(0,9)=@s16;r(0,9);0;65535;
signed char:t(0,10)=@s8;r(0,10);-128;127;
unsigned char:t(0,11)=@s8;r(0,11);0;255;
float:t(0,12)=r(0,1);4;0;
double:t(0,13)=r(0,1);8;0;
long double:t(0,14)=r(0,1);12;0;
complex int:t(0,15)=s8real:(0,1),0,32;imag:(0,1),32,32;;
complex float:t(0,16)=r(0,16);8;0;
complex double:t(0,17)=r(0,17);16;0;
complex long double:t(0,18)=r(0,18);24;0;
__builtin_va_list:t(0,19)=*(0,20)=(0,20)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

../include/libc-symbols.h
/usr/src/build/40453-i386/BUILD/glibc-2.2.4/build-i386-linux/config.h
../sysdeps/gnu/_G_config.h
../sysdeps/unix/sysv/linux/bits/types.h
../include/features.h
../include/sys/cdefs.h
../misc/sys/cdefs.h
/usr/lib//usr/bin/gcc-lib/i386-redhat-linux/2.96/include/stddef.h
size_t:t(8,1)=(0,4)
__u_char:t(4,1)=(0,11)
__u_short:t(4,2)=(0,9)
__u_int:t(4,3)=(0,4)
__u_long:t(4,4)=(0,5)
__u_quad_t:t(4,5)=(0,7)
__quad_t:t(4,6)=(0,6)
__int8_t:t(4,7)=(0,10)
__uint8_t:t(4,8)=(0,11)
__int16_t:t(4,9)=(0,8)
__uint16_t:t(4,10)=(0,9)
__int32_t:t(4,11)=(0,1)
__uint32_t:t(4,12)=(0,4)
__int64_t:t(4,13)=(0,6)
__uint64_t:t(4,14)=(0,7)
__qaddr_t:t(4,15)=(4,16)=*(4,6)
__dev_t:t(4,17)=(4,5)
__uid_t:t(4,18)=(4,3)
__gid_t:t(4,19)=(4,3)
__ino_t:t(4,20)=(4,4)
__mode_t:t(4,21)=(4,3)
__nlink_t:t(4,22)=(4,3)
__off_t:t(4,23)=(0,3)
__loff_t:t(4,24)=(4,6)
__pid_t:t(4,25)=(0,1)
__ssize_t:t(4,26)=(0,1)
__rlim_t:t(4,27)=(4,4)
__rlim64_t:t(4,28)=(4,5)
__id_t:t(4,29)=(4,3)
__fsid_t:t(4,30)=(4,31)=s8__val:(4,32)=ar(4,33)=r(4,33);0000000000000;0037777777777;
;0;1;(0,1),0,64;;

__daddr_t:t(4,34)=(0,1)
__caddr_t:t(4,35)=(4,36)=*(0,2)
__time_t:t(4,37)=(0,3)
__useconds_t:t(4,38)=(0,4)
__suseconds_t:t(4,39)=(0,3)
__swblk_t:t(4,40)=(0,3)
__clock_t:t(4,41)=(0,3)
__clockid_t:t(4,42)=(0,1)
__timer_t:t(4,43)=(0,1)
__key_t:t(4,44)=(0,1)
__ipc_pid_t:t(4,45)=(0,9)
__blksize_t:t(4,46)=(0,3)
__blkcnt_t:t(4,47)=(0,3)
__blkcnt64_t:t(4,48)=(4,6)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

__fsblkcnt_t:t(4,49)=(4,4)
__fsblkcnt64_t:t(4,50)=(4,5)
__fsfilcnt_t:t(4,51)=(4,4)
__fsfilcnt64_t:t(4,52)=(4,5)
__ino64_t:t(4,53)=(4,5)
__off64_t:t(4,54)=(4,24)
__t_scalar_t:t(4,55)=(0,3)
__t_uscalar_t:t(4,56)=(0,5)
__intptr_t:t(4,57)=(0,1)
__socklen_t:t(4,58)=(0,4)
../linuxthreads/sysdeps/pthread/bits/pthreadtypes.h
../sysdeps/unix/sysv/linux/bits/sched.h
__sched_param:T(10,1)=s4__sched_priority:(0,1),0,32;;
_pthread_fastlock:T(9,1)=s8__status:(0,3),0,32;__spinlock:(0,1),32,32;;
_pthread_descr:t(9,2)=(9,3)=*(9,4)=xs_pthread_descr_struct:
__pthread_attr_s:T(9,5)=s36__detachstate:(0,1),0,32;__schedpolicy:(0,1),32,32;__sched
param:(10,1),64,32;__inheritsched:(0,1),96,32;_

_scope:(0,1),128,32;__guardsize:(8,1),160,32;__stackaddr_set:(0,1),192,32;__stackaddr:
(0,19),224,32;__stacksize:(8,1),256,32;;

pthread_attr_t:t(9,6)=(9,5)
pthread_cond_t:t(9,7)=(9,8)=s12__c_lock:(9,1),0,64;__c_waiting:(9,2),64,32;;
pthread_condattr_t:t(9,9)=(9,10)=s4__dummy:(0,1),0,32;;
pthread_key_t:t(9,11)=(0,4)
pthread_mutex_t:t(9,12)=(9,13)=s24__m_reserved:(0,1),0,32;__m_count:(0,1),32,32;__m
_owner:(9,2),64,32;__m_kind:(0,1),96,32;__m_lock:

(9,1),128,64;;
pthread_mutexattr_t:t(9,14)=(9,15)=s4__mutexkind:(0,1),0,32;;
pthread_once_t:t(9,16)=(0,1)
_pthread_rwlock_t:T(9,17)=s32__rw_lock:(9,1),0,64;__rw_readers:(0,1),64,32;__rw_write
r:(9,2),96,32;__rw_read_waiting:(9,2),128,32;__

rw_write_waiting:(9,2),160,32;__rw_kind:(0,1),192,32;__rw_pshared:(0,1),224,32;;
pthread_rwlock_t:t(9,18)=(9,17)
pthread_rwlockattr_t:t(9,19)=(9,20)=s8__lockkind:(0,1),0,32;__pshared:(0,1),32,32;;
pthread_spinlock_t:t(9,21)=(0,1)
pthread_barrier_t:t(9,22)=(9,23)=s20__ba_lock:(9,1),0,64;__ba_required:(0,1),64,32;__ba
_present:(0,1),96,32;__ba_waiting:(9,2),128,3

2;;
pthread_barrierattr_t:t(9,24)=(9,25)=s4__pshared:(0,1),0,32;;
pthread_t:t(9,26)=(0,5)
wchar_t:t(11,1)=(0,3)
wint_t:t(11,2)=(0,4)
../include/wchar.h
../wcsmbs/wchar.h
../sysdeps/unix/sysv/linux/i386/bits/wchar.h
__mbstate_t:t(13,1)=(13,2)=s8__count:(0,1),0,32;__value:(13,3)=u4__wch:(11,2),0,32;__
wchb:(13,4)=ar(4,33);0;3;(0,2),0,32;;,32,32;;

_G_fpos_t:t(3,1)=(3,2)=s12__pos:(4,23),0,32;__state:(13,1),32,64;;
_G_fpos64_t:t(3,3)=(3,4)=s16__pos:(4,54),0,64;__state:(13,1),64,64;;
../include/gconv.h
../iconv/gconv.h
:T(17,1)=e__GCONV_OK:0,__GCONV_NOCONV:1,__GCONV_NODB:2,__GCONV_NO
MEM:3,__GCONV_EMPTY_INPUT:4,__GCONV_FULL_OUTPUT:5,__GCONV_ILLEGA
L_

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

INPUT:6,__GCONV_INCOMPLETE_INPUT:7,__GCONV_ILLEGAL_DESCRIPTOR:8,__
GCONV_INTERNAL_ERROR:9,;

 :T(17,2)=e__GCONV_IS_LAST:1,__GCONV_IGNORE_ERRORS:2,;
__gconv_fct:t(17,3)=(17,4)=*(17,5)=f(0,1)
__gconv_init_fct:t(17,6)=(17,7)=*(17,8)=f(0,1)
__gconv_end_fct:t(17,9)=(17,10)=*(17,11)=f(0,20)
__gconv_trans_fct:t(17,12)=(17,13)=*(17,14)=f(0,1)
__gconv_trans_context_fct:t(17,15)=(17,16)=*(17,17)=f(0,1)
__gconv_trans_query_fct:t(17,18)=(17,19)=*(17,20)=f(0,1)
__gconv_trans_init_fct:t(17,21)=(17,22)=*(17,23)=f(0,1)
__gconv_trans_end_fct:t(17,24)=(17,25)=*(17,26)=f(0,20)
__gconv_trans_data:T(17,27)=s20__trans_fct:(17,12),0,32;__trans_context_fct:(17,15),32
,32;__trans_end_fct:(17,24),64,32;__data:(0,19

),96,32;__next:(17,28)=*(17,27),128,32;;
__gconv_step:T(17,29)=s56__shlib_handle:(17,30)=*(17,31)=xs__gconv_loaded_object:,
0,32;__modname:(17,32)=*(0,2),32,32;__counter:(0,1

),64,32;__from_name:(4,36),96,32;__to_name:(4,36),128,32;__fct:(17,3),160,32;__init_fct
:(17,6),192,32;__end_fct:(17,9),224,32;__min_

needed_from:(0,1),256,32;__max_needed_from:(0,1),288,32;__min_needed_to:(0,1),320
,32;__max_needed_to:(0,1),352,32;__stateful:(0,1),3

84,32;__data:(0,19),416,32;;
__gconv_step_data:T(17,33)=s36__outbuf:(17,34)=*(0,11),0,32;__outbufend:(17,34),32,3
2;__flags:(0,1),64,32;__invocation_counter:(0,1)

,96,32;__internal_use:(0,1),128,32;__statep:(17,35)=*(13,1),160,32;__state:(13,1),192,64
;__trans:(17,28),256,32;;

__gconv_info:T(17,36)=s8__nsteps:(8,1),0,32;__steps:(17,37)=*(17,29),32,32;__data:(17,
38)=ar(4,33);0;-1;(17,33),64,0;;

__gconv_t:t(17,39)=(17,40)=*(17,36)
_G_iconv_t:t(3,5)=(3,6)=u44__cd:(17,36),0,64;__combined:(3,7)=s44__cd:(17,36),0,64;_
_data:(17,33),64,288;;,0,352;;

_G_int16_t:t(3,8)=(0,8)
_G_int32_t:t(3,9)=(0,1)
_G_uint16_t:t(3,10)=(0,9)
_G_uint32_t:t(3,11)=(0,4)
_IO_stdin_used:G(0,1)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
01.01
01.01
01.01
01.01
01.01
01.01
.symtab
.strtab
.shstrtab
.interp
.note.ABI-tag
.hash

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

.dynsym

.dynstr

.gnu.version

.gnu.version_r

.rel.dyn

.rel.plt

.init

.plt

.text

.fini

.rodata

.data

.eh_frame

.ctors

.dtors

.got

.dynamic

.sbss

.bss

.stab

.stabstr

.comment

.note
ÿÿÿo
þÿÿo
initfini.c
/usr/bin/gcc2_compiled.
call_gmon_start
init.c
crtstuff.c
__DTOR_LIST__
completed.1
__do_global_dtors_aux
__EH_FRAME_BEGIN__
fini_dummy
object.2
frame_dummy
init_dummy
force_to_data
__CTOR_LIST__
__do_global_ctors_aux
__CTOR_END__
__DTOR_END__
__FRAME_END__
test.c
_DYNAMIC
__register_frame_info@@GLIBC_2.0
_fp_hw
_init
__deregister_frame_info@@GLIBC_2.0
_start
__bss_start
main

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

__libc_start_main@@GLIBC_2.0
data_start
printf@@GLIBC_2.0
_fini
__cxa_finalize@@GLIBC_2.1.3
_edata
_GLOBAL_OFFSET_TABLE_
_end
_IO_stdin_used
__data_start
__gmon_start__

 The comments that were added to test.c did not show up in our output
from strings –a. The reason for this is that the compiler does not include the
comments when compiling the C source code into assembly language and
therefore it will not be present in the final binary produced by the linker. To verify
this we will create just the assembly language code for test.c.

 [root@localhost tools]# /bin/cat test.c

 /*This is a test
 of the strings

binary parsing
utility*/

int main()
{
printf("Hello world\n");
return(0);
}

[root@localhost tools]# /usr/bin/gcc -S test.c
[root@localhost tools]# /bin/cat test.s
 .file "test.c"
 .version "01.01"
/usr/bin/gcc2_compiled.:
 .section .rodata
.LC0:
 .string "Hello World\n"
.text
 .align 4
.globl main
 .type main,@function
main:
 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 subl $12, %esp
 pushl $.LC0
 call printf
 addl $16, %esp
 movl $0, %eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 leave
 ret
.Lfe1:
 .size main,.Lfe1-main
 .ident "/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)"

 In the above assembly language code we don’t see any reference to the
comment that we added. Since this would be the fist step in the compilation of
the binary and we know that it does not exist in the assembly language code we
can conclude that /usr/bin/gcc does not process the comments.
 Next we will include some static information in the C code. We will use the
#define preprocessor, global variables and arrays and local variables and arrays.
We will give define each piece of static information differently so that we can be
sure of what we are seeing. We will also define two separate pieces of static
date, one for integers and one for characters.

[root@localhost tools]# /bin/cat test.c

/***********************************
This is a define preprocessor
*statement using characters. *
***********************************/

#define SANS "This_is_a_test"

/**********************************
This is a define preprocessor
*statement using integers. *
**********************************/

#define SANS2 333

/*******************************
Define an integer varable.
*******************************/

int integer_var;

/******************************
Define a character array.
******************************/

char char_array[] = "This is a test of the global char array";

/****************************
Define an integer array.
*This array will hold 4 *
*integers. *
****************************/

int int_array[] = {1, 2, 3, 4,};

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

int main ()
{
 {int test_of_local_variable;
 int test_of_local_array[] = {11,22,33,44};
 char test_of_local_char_array[] ="This is a test of the local char array";

 test_of_local_variable = 222;

 printf("Test of the local character array: %s\n", test_of_local_char_array);
 printf("Test of the local integer variable: %d\n", test_of_local_variable);
 printf("Test of the local integer array %d\n", test_of_local_array);
 }

integer_var = SANS2;
printf("Test of global integer variable: %d\n", integer_var);
printf("Test of the global character array: %s\n", char_array);
printf("Test of define statement: %s\n", SANS);
return(0);
}

[root@localhost tools]# /usr/bin/gcc -otest test.c
[root@localhost tools]# /usr/bin/strings -a test
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
printf
__cxa_finalize
__deregister_frame_info
_IO_stdin_used
__libc_start_main
__register_frame_info
GLIBC_2.1.3
GLIBC_2.0
ÉÃÿ5ø
éàÿÿÿÿ%
éÐÿÿÿÿ%
éÀÿÿÿÿ%
é°ÿÿÿÿ%
é ÿÿÿ
äðPTRhp
QVh`
è«ÿÿÿô
åSPè
]üÉÃ
Éuê¸
è ÿÿÿ
èËþÿÿ
}Ø¾¸
}¨¾À
ó¤ÇEôÞ
E¨Ph
ÿuôh@

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

è}þÿÿ
EØPh
èiþÿÿ
èIþÿÿ
è4þÿÿ
eø _̂]Ã
øÿuôX[]ÃU
åSRè
è'þÿÿ
]üÉÃ
This is a test of the local char array
Test of the local character array: %s
Test of the local integer variable: %d
Test of the local integer array %d
Test of global integer variable: %d
Test of the global character array: %s
This_is_a_test
Test of define statement: %s
This is a test of the global char array
ÿÿÿÿ
ÿÿÿÿ
þÿÿo
ÿÿÿo
ðÿÿor
init.c
/usr/src/build/40453-i386/BUILD/glibc-2.2.4/csu/
/usr/bin/gcc2_compiled.
int:t(0,1)=r(0,1);-2147483648;2147483647;
char:t(0,2)=r(0,2);0;127;
long int:t(0,3)=r(0,3);-2147483648;2147483647;
unsigned int:t(0,4)=r(0,4);0000000000000;0037777777777;
long unsigned int:t(0,5)=r(0,5);0000000000000;0037777777777;
long long

 int:t(0,6)=@s64;r(0,6);01000000000000000000000;0777777777777777777777;
long long unsigned int:t(0,7)=@s64;r(0,7);0000000000000;01777777777777777777777;
short int:t(0,8)=@s16;r(0,8);-32768;32767;
short unsigned int:t(0,9)=@s16;r(0,9);0;65535;
signed char:t(0,10)=@s8;r(0,10);-128;127;
unsigned char:t(0,11)=@s8;r(0,11);0;255;
float:t(0,12)=r(0,1);4;0;
double:t(0,13)=r(0,1);8;0;
long double:t(0,14)=r(0,1);12;0;
complex int:t(0,15)=s8real:(0,1),0,32;imag:(0,1),32,32;;
complex float:t(0,16)=r(0,16);8;0;
complex double:t(0,17)=r(0,17);16;0;
complex long double:t(0,18)=r(0,18);24;0;
__builtin_va_list:t(0,19)=*(0,20)=(0,20)
../include/libc-symbols.h
/usr/src/build/40453-i386/BUILD/glibc-2.2.4/build-i386-linux/config.h
../sysdeps/gnu/_G_config.h
../sysdeps/unix/sysv/linux/bits/types.h
../include/features.h
../include/sys/cdefs.h

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

../misc/sys/cdefs.h
/usr/lib//usr/bin/gcc-lib/i386-redhat-linux/2.96/include/stddef.h
size_t:t(8,1)=(0,4)
__u_char:t(4,1)=(0,11)
__u_short:t(4,2)=(0,9)
__u_int:t(4,3)=(0,4)
__u_long:t(4,4)=(0,5)
__u_quad_t:t(4,5)=(0,7)
__quad_t:t(4,6)=(0,6)
__int8_t:t(4,7)=(0,10)
__uint8_t:t(4,8)=(0,11)
__int16_t:t(4,9)=(0,8)
__uint16_t:t(4,10)=(0,9)
__int32_t:t(4,11)=(0,1)
__uint32_t:t(4,12)=(0,4)
__int64_t:t(4,13)=(0,6)
__uint64_t:t(4,14)=(0,7)
__qaddr_t:t(4,15)=(4,16)=*(4,6)
__dev_t:t(4,17)=(4,5)
__uid_t:t(4,18)=(4,3)
__gid_t:t(4,19)=(4,3)
__ino_t:t(4,20)=(4,4)
__mode_t:t(4,21)=(4,3)
__nlink_t:t(4,22)=(4,3)
__off_t:t(4,23)=(0,3)
__loff_t:t(4,24)=(4,6)
__pid_t:t(4,25)=(0,1)
__ssize_t:t(4,26)=(0,1)
__rlim_t:t(4,27)=(4,4)
__rlim64_t:t(4,28)=(4,5)
__id_t:t(4,29)=(4,3)
__fsid_t:t(4,30)=(4,31)=s8__val:(4,32)=ar(4,33)=r(4,33);0000000000000;0037777777777

 ;;0;1;(0,1),0,64;;
__daddr_t:t(4,34)=(0,1)
__caddr_t:t(4,35)=(4,36)=*(0,2)
__time_t:t(4,37)=(0,3)
__useconds_t:t(4,38)=(0,4)
__suseconds_t:t(4,39)=(0,3)
__swblk_t:t(4,40)=(0,3)
__clock_t:t(4,41)=(0,3)
__clockid_t:t(4,42)=(0,1)
__timer_t:t(4,43)=(0,1)
__key_t:t(4,44)=(0,1)
__ipc_pid_t:t(4,45)=(0,9)
__blksize_t:t(4,46)=(0,3)
__blkcnt_t:t(4,47)=(0,3)
__blkcnt64_t:t(4,48)=(4,6)
__fsblkcnt_t:t(4,49)=(4,4)
__fsblkcnt64_t:t(4,50)=(4,5)
__fsfilcnt_t:t(4,51)=(4,4)
__fsfilcnt64_t:t(4,52)=(4,5)
__ino64_t:t(4,53)=(4,5)
__off64_t:t(4,54)=(4,24)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

__t_scalar_t:t(4,55)=(0,3)
__t_uscalar_t:t(4,56)=(0,5)
__intptr_t:t(4,57)=(0,1)
__socklen_t:t(4,58)=(0,4)
../linuxthreads/sysdeps/pthread/bits/pthreadtypes.h
../sysdeps/unix/sysv/linux/bits/sched.h
__sched_param:T(10,1)=s4__sched_priority:(0,1),0,32;;
_pthread_fastlock:T(9,1)=s8__status:(0,3),0,32;__spinlock:(0,1),32,32;;
_pthread_descr:t(9,2)=(9,3)=*(9,4)=xs_pthread_descr_struct:
__pthread_attr_s:T(9,5)=s36__detachstate:(0,1),0,32;__schedpolicy:(0,1),32,32;__sched

 param:(10,1),64,32;__inheritsched:(0,1),96,32;_
_scope:(0,1),128,32;__guardsize:(8,1),160,32;__stackaddr_set:(0,1),192,32;__stackaddr

 :(0,19),224,32;__stacksize:(8,1),256,32;;
pthread_attr_t:t(9,6)=(9,5)
pthread_cond_t:t(9,7)=(9,8)=s12__c_lock:(9,1),0,64;__c_waiting:(9,2),64,32;;
pthread_condattr_t:t(9,9)=(9,10)=s4__dummy:(0,1),0,32;;
pthread_key_t:t(9,11)=(0,4)
pthread_mutex_t:t(9,12)=(9,13)=s24__m_reserved:(0,1),0,32;__m_count:(0,1),32,32;__

 m_owner:(9,2),64,32;__m_kind:(0,1),96,32;__m_lock:
(9,1),128,64;;
pthread_mutexattr_t:t(9,14)=(9,15)=s4__mutexkind:(0,1),0,32;;
pthread_once_t:t(9,16)=(0,1)
_pthread_rwlock_t:T(9,17)=s32__rw_lock:(9,1),0,64;__rw_readers:(0,1),64,32;__rw_writ

 er:(9,2),96,32;__rw_read_waiting:(9,2),128,32;__
rw_write_waiting:(9,2),160,32;__rw_kind:(0,1),192,32;__rw_pshared:(0,1),224,32;;
pthread_rwlock_t:t(9,18)=(9,17)
pthread_rwlockattr_t:t(9,19)=(9,20)=s8__lockkind:(0,1),0,32;__pshared:(0,1),32,32;;
pthread_spinlock_t:t(9,21)=(0,1)
pthread_barrier_t:t(9,22)=(9,23)=s20__ba_lock:(9,1),0,64;__ba_required:(0,1),64,32;__b

 a_present:(0,1),96,32;__ba_waiting:(9,2),128,3
2;;
pthread_barrierattr_t:t(9,24)=(9,25)=s4__pshared:(0,1),0,32;;
pthread_t:t(9,26)=(0,5)
wchar_t:t(11,1)=(0,3)
wint_t:t(11,2)=(0,4)
../include/wchar.h
../wcsmbs/wchar.h
../sysdeps/unix/sysv/linux/i386/bits/wchar.h
__mbstate_t:t(13,1)=(13,2)=s8__count:(0,1),0,32;__value:(13,3)=u4__wch:(11,2),0,32;__

 wchb:(13,4)=ar(4,33);0;3;(0,2),0,32;;,32,32;;
_G_fpos_t:t(3,1)=(3,2)=s12__pos:(4,23),0,32;__state:(13,1),32,64;;
_G_fpos64_t:t(3,3)=(3,4)=s16__pos:(4,54),0,64;__state:(13,1),64,64;;
../include/gconv.h
../iconv/gconv.h

 :T(17,1)=e__GCONV_OK:0,__GCONV_NOCONV:1,__GCONV_NODB:2,__GCONV_NO
 MEM:3,__GCONV_EMPTY_INPUT:4,__GCONV_FULL_OUTPUT:5,__GCONV_ILLEGA
 L_

INPUT:6,__GCONV_INCOMPLETE_INPUT:7,__GCONV_ILLEGAL_DESCRIPTOR:8,__
 GCONV_INTERNAL_ERROR:9,;

 :T(17,2)=e__GCONV_IS_LAST:1,__GCONV_IGNORE_ERRORS:2,;
__gconv_fct:t(17,3)=(17,4)=*(17,5)=f(0,1)
__gconv_init_fct:t(17,6)=(17,7)=*(17,8)=f(0,1)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

__gconv_end_fct:t(17,9)=(17,10)=*(17,11)=f(0,20)
__gconv_trans_fct:t(17,12)=(17,13)=*(17,14)=f(0,1)
__gconv_trans_context_fct:t(17,15)=(17,16)=*(17,17)=f(0,1)
__gconv_trans_query_fct:t(17,18)=(17,19)=*(17,20)=f(0,1)
__gconv_trans_init_fct:t(17,21)=(17,22)=*(17,23)=f(0,1)
__gconv_trans_end_fct:t(17,24)=(17,25)=*(17,26)=f(0,20)
__gconv_trans_data:T(17,27)=s20__trans_fct:(17,12),0,32;__trans_context_fct:(17,15),3

 2,32;__trans_end_fct:(17,24),64,32;__data:(0,19
),96,32;__next:(17,28)=*(17,27),128,32;;
__gconv_step:T(17,29)=s56__shlib_handle:(17,30)=*(17,31)=xs__gconv_loaded_object:

 ,0,32;__modname:(17,32)=*(0,2),32,32;__counter:(0,1
),64,32;__from_name:(4,36),96,32;__to_name:(4,36),128,32;__fct:(17,3),160,32;__init_fc

 t:(17,6),192,32;__end_fct:(17,9),224,32;__min_
needed_from:(0,1),256,32;__max_needed_from:(0,1),288,32;__min_needed_to:(0,1),32

 0,32;__max_needed_to:(0,1),352,32;__stateful:(0,1),3
84,32;__data:(0,19),416,32;;
__gconv_step_data:T(17,33)=s36__outbuf:(17,34)=*(0,11),0,32;__outbufend:(17,34),32,

 32;__flags:(0,1),64,32;__invocation_counter:(0,1)
,96,32;__internal_use:(0,1),128,32;__statep:(17,35)=*(13,1),160,32;__state:(13,1),192,6

 4;__trans:(17,28),256,32;;
__gconv_info:T(17,36)=s8__nsteps:(8,1),0,32;__steps:(17,37)=*(17,29),32,32;__data:(17

 ,38)=ar(4,33);0;-1;(17,33),64,0;;
__gconv_t:t(17,39)=(17,40)=*(17,36)
_G_iconv_t:t(3,5)=(3,6)=u44__cd:(17,36),0,64;__combined:(3,7)=s44__cd:(17,36),0,64;_

 _data:(17,33),64,288;;,0,352;;
_G_int16_t:t(3,8)=(0,8)
_G_int32_t:t(3,9)=(0,1)
_G_uint16_t:t(3,10)=(0,9)
_G_uint32_t:t(3,11)=(0,4)
_IO_stdin_used:G(0,1)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
01.01
01.01
01.01
01.01
01.01
01.01
.symtab
.strtab
.shstrtab
.interp
.note.ABI-tag
.hash
.dynsym
.dynstr
.gnu.version
.gnu.version_r
.rel.dyn

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

.rel.plt

.init

.plt

.text

.fini

.rodata

.data

.eh_frame

.ctors

.dtors

.got

.dynamic

.sbss

.bss

.stab

.stabstr

.comment

.note
ÿÿÿo
þÿÿo
initfini.c
/usr/bin/gcc2_compiled.
call_gmon_start
init.c
crtstuff.c
__DTOR_LIST__
completed.1
__do_global_dtors_aux
__EH_FRAME_BEGIN__
fini_dummy
object.2
frame_dummy
init_dummy
force_to_data
__CTOR_LIST__
__do_global_ctors_aux
__CTOR_END__
__DTOR_END__
__FRAME_END__
test.c
_DYNAMIC
__register_frame_info@@GLIBC_2.0
_fp_hw
integer_var
_init
__deregister_frame_info@@GLIBC_2.0
_start
char_array
int_array
__bss_start
main
__libc_start_main@@GLIBC_2.0
data_start

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

printf@@GLIBC_2.0
_fini
__cxa_finalize@@GLIBC_2.1.3
_edata
_GLOBAL_OFFSET_TABLE_
_end
_IO_stdin_used
__data_start
__gmon_start__

 From the above output we can see all the character information contained
in the arrays, global and local, and the first parameter passed to the printf
function. The reason that we will always see the first parameter passed to the
printf function is that the data is read-only. Functions in the C programming
language are not able to modify any data that is passed to it, unless the data is
passed via pointers. This is the reason that the first argument to the printf
function is read-only. To verify this we will look at the output of objdump. We will
run objdump so that it only looks at the read-only portion of the binary. In the ELF
format this would be the .rodata section.

[root@localhost tools]# /bin/cat test.c
#include <stdio.h>
/**********************************
This is a define preprocessor
*statement using characters. *
**********************************/

#define SANS "This_is_a_test"

/**********************************
This is a define preprocessor
*statement using integers. *
**********************************/

#define SANS2 333

/*******************************
Define an integer varable.
******************************/

int integer_var;

/******************************
Define a character array.
******************************/

char char_array[] = "This is a test of the global char array";

/****************************
Define an integer array.
*This array will hold 100 *

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

*integers. *
****************************/

int int_array[] = {1, 2, 3, 4,};

int main ()
{
 {int test_of_local_variable;
 int test_of_local_array[] = {11,22,33,44};
 char test_of_local_char_array[] ="This is a test of the local char array";

 test_of_local_variable = 222;

 printf("Test of the local character array: %s\n", test_of_local_char_array);
 printf("Test of the local integer variable: %d\n", test_of_local_variable);
 printf("Test of the local integer array %d\n", test_of_local_array);
 }

integer_var = SANS2;
printf("Test of global integer variable: %d\n", integer_var);
printf("Test of the global character array: %s\n", char_array);
printf("Test of define statement: %s\n", SANS);
return(0);
}

[root@localhost tools]# /usr/bin/objdump -j .rodata -s test

test: file format elf32-i386

Contents of section .rodata:
 80485a0 03000000 01000200 00000000 00000000
 80485b0 00000000 00000000 00000000 00000000
 80485c0 54686973 20697320 61207465 7374206f This is a test o
 80485d0 66207468 65206c6f 63616c20 63686172 f the local char
 80485e0 20617272 61790000 00000000 00000000 array..........
 80485f0 00000000 00000000 00000000 00000000
 8048600 54657374 206f6620 74686520 6c6f6361 Test of the loca
 8048610 6c206368 61726163 74657220 61727261 l character arra
 8048620 793a2025 730a0000 00000000 00000000 y: %s...........
 8048630 00000000 00000000 00000000 00000000
 8048640 54657374 206f6620 74686520 6c6f6361 Test of the loca
 8048650 6c20696e 74656765 72207661 72696162 l integer variab
 8048660 6c653a20 25640a00 00000000 00000000 le: %d..........
 8048670 00000000 00000000 00000000 00000000
 8048680 54657374 206f6620 74686520 6c6f6361 Test of the loca
 8048690 6c20696e 74656765 72206172 72617920 l integer array
 80486a0 25640a00 00000000 00000000 00000000 %d..............
 80486b0 00000000 00000000 00000000 00000000
 80486c0 54657374 206f6620 676c6f62 616c2069 Test of global i
 80486d0 6e746567 65722076 61726961 626c653a nteger variable:
 80486e0 2025640a 00000000 00000000 00000000 %d.............
 80486f0 00000000 00000000 00000000 00000000
 8048700 54657374 206f6620 74686520 676c6f62 Test of the glob

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 8048710 616c2063 68617261 63746572 20617272 al character arr
 8048720 61793a20 25730a00 54686973 5f69735f ay: %s..This_is_
 8048730 615f7465 73740054 65737420 6f662064 a_test.Test of d
 8048740 6566696e 65207374 6174656d 656e743a efine statement:
 8048750 2025730a 00000000 00000000 00000000 %s.............
[root@localhost tools]#

 We can’t see any of the integer information, regardless of variable or
array. The information is in the binary, but is not kept in a form that can’t be read
by strings. To find the information the analyst would need to know more about
how gcc compiles the C source code and assembly, both of which are outside
the scope of this practical.
 From the information that we saw from our testing we can conclude that:

1. We will see any strings or character arrays that are in the source code.
2. We can see the name of any global variables.
3. We can see what version of the C library was used.
4. We can see what version of /USR/BIN/GCC was used.
5. We can see what was used to link the binary.
6. We can see the original C source code file.

 The strings utility gave us all the information that we expected. The results
were very good and the analysis provided us with good information about the
strings utility.

Analysis

 The information that is gathered by strings is ASCII text it is very easy to
interpret and will be helpful in determining what type of system the binary was
compiled on and what was used to compile it. This will be helpful if the analyst is
going to reverse engineer the binary. The forensic analyst might also gain some
insight into how the binary is suppose to be run (i.e. options, switches), without to
actually have to run it.
 While the information that is gathered by strings can be very helpful, none
of the information should be taken as fact. A non-skilled hacker could easily add
a printf statement with bogus information to throw off the forensic analyst. A
skilled programmer could compile his/her C source code into assembly and edit
the assembly code so that the information contained in the .comment section is
incorrect. From my experience most hackers only strip their binaries to make the
reverse engineering harder. The Teso (http://www.team-teso.net/) security group
has created an ELF encryption API, called burneye, that makes it easier for
programmers to obfuscate their ELF binaries. There are programs that can strip
the burneye portion off a binary to reveal the actual binary.
 The forensic analysis should look at all the output from strings and see if
there is anything of interest and take note of it. After the analyst has all the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

information that seems valuable he/she can start to investigate each piece of
information and see where it leads. When using strings on the unknown binary,
sn.dat, in the second part of the practical the information gained helped in finding
out what the binary was without any reverse engineering. This is not all ways the
case though.

Presentation

 The strings utility does not have any way for the output to be saved. The
forensic analyst has a couple of choices though. He/she could either log the
output through a terminal emulator like SecureCRT or redirect the output to a file.
Either way all of the output will be saved to an ASCII text file. When I use the
strings utility I look at each line and determine the usefulness of it. I then copy the
valuable information to a separate ASCII text file and then place a comment prior
to each line. I also separate each line with a space so that we can see what the
comments are referring to. Below is an example of the formatting that I would
use:

 /*Unkown information. Possible character array.*/
 eø _̂]ÃThis is a test of the global char array

01.01
This is a test of the local char array

/*The first part of the printf statement.*/
Test of the local character array: %s
Test of the local integer variable: %d
Test of the local integer array %d
Test of global integer variable: %d
Test of the global character array: %s

/*Unkown information. Possible character array.*/
This_is_a_test

/*The first part of the printf statement.*/
Test of define statement: %s

/*Part of the .comment section. Run objdump to verify.*/
GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)

/*ELF section headers.*/
.symtab
.strtab
.shstrtab
.text
.rel.text
.data
.bss
.note
.rodata
.comment

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/*The original C source code file that the binary was compiled from.*/
test.c

/*Possible names of global information.*/
char_array
int_array
main

/*Extra evidence that the printf function was used.*/
printf

/*Possible names of global information.*/
integer_var

Conclusion

 From the test that was conducted we can see that strings can assist us
greatly in a forensic investigation. It accurately found any character array or
string information and the first argument that was passed to the printf function. It
also assisted us in finding out what libraries and compilers were used. If the
binary is not stripped then the original C source code file name will be visible.
 Depending on if this file was to be part of an incident response tool kit or if
it were part of forensic workstation would dictate how strings would have to be
compiled and how strings would affect the files that are searched.
 If strings were to be part of an incident response tool kit it would have to
be statically compiled. If it were not then it might use files from the victim system.
This means that the attacker could place trojaned versions of the shared libraries
on the victim system and alter the usefulness of strings and any other utility that
uses those shared libraries. It would also change the atime of the files that were
looked at. Depending on the situation this could severely affect the outcome of
the investigation.
 If strings were to be part of a forensic workstation then it would not have to
be statically compiled because the evidence would be some type of device that is
not normally part of the workstation (i.e. dd image, secondary hard drive). The
shared libraries would be part of a known good system and would not adversely
affect the outcome of the investigation.
 It would be recommended that strings be statically compiled and stripped.
Once this is done a md5 checksum should be made of strings. This could be said
of all the tools/utilities used in the forensic investigation. The checksums would
be used prior to using any tools to ensure that they have not be modified in any
way. It would also be beneficial for some agency or company to certify certain
tools/utilities and provide the certified versions to the community along with md5
checksums. This would ensure that the tool/utility used has been certified and
that it did it’s function properly.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Additional Information

Strings is part of the binutils package (http://sources.redhat.com/binutils/). The
binutils package is very useful in the reverse engineering process. For a statically
linked version of strings check out http://www.incident-
response.org/irtoolkits.htm.

Part II

Preparation

 Prior to analyzing the binary I made sure that all the components are in
place to do the analysis. The analysis workstation is configured as follows:

1. Windows 2000 SP1: This workstation has ActiveState’s
PERL 5.6.0, UltraEdite32 7.10a, 3Cdaemon v2/rev10
(FTP server), SecureCRT 3.3.2, VMWare 3.1.1 build
1790 and Cygwin 1.3.10 installed on it.

2. Redhat 7.2 (VMWare, host-only mode): This is a default
install of Redhat 7.2 from the CD. Everything was
installed. Mac_daddy.pl was also installed on the system.

 I created a directory (Windows => C:\Docuements\Forensics\TOOLS\,
Linux => /usr/tools/binary) on both workstations for the analysis. I downloaded
the file (sn.zip) from the GIAC web site. There was no MD5 hash of the file on the
web site to verify the integrity of the download so I had to assume that everything
was downloaded correctly. I ran md5sum to get an MD5 hash prior to FTPing the
file to the Linux station. (NOTE: For part two of the practical all output from
SecureCRT or the Windows command line will be shown in a 10 point Arial to
eliminate the line wrap and improve readability.)

D:\Windows and Advanced Forensics\response_kit\win2k_xp>md5sum.exe
c:\Documents\forensics\TOOLS\sn.zip
\5fea57f2a1546bc391c6b9cb1bbfc452 *c:\\Documents\\forensics\\TOOLS\\sn.zip

 I FTP’ed the file from the Windows station to the Linux station and ran
md5sum again to verify the integrity of the file

 [root@localhost linux_x86_static]# ./md5sum /usr/tools/binary/sn.zip

5fea57f2a1546bc391c6b9cb1bbfc452 /usr/tools/sn.zip

 Once I verified the integrity of the file I created a sterilized floppy from the
Linux host and formatted it as e2fs.

 [root@localhost tools]# dd if=/dev/zero of=/dev/fd0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 [root@localhost tools]# mke2fs /dev/fd0

 I then mounted the floppy and unzipped the file sn.zip to the floppy and
then unmounted the floppy.

 [root@localhost tools]# mount /mnt/floppy
 [root@localhost tools]# unzip –d /mnt/floppy /usr/tools/binary/sn.zip
 [root@localhost tools]# umount /mnt/floppy

 I made the floppy read only via the tab on the floppy disk and then
remounted it as I would have any partition that required a forensics investigation.

 [root@localhost tools]# mount -o ro,nodev,noexec,noatime /mnt/floppy

 I also unzipped a copy of the file sn.zip into the /usr/tools/binary directory
for the disassembly portion of the forensics examination.

Binary Details

The name of the original file is sn. The file that was part of the sn.zip file is
named sn.dat. The output from /usr/bin/md5sum (sn.md5)shows that the file
name at the time that /usr/bin/md5sum was run on the file sn.

 [root@localhost binary]# /bin/cat sn.md5

0e954f43fd73f56e812a7285f32e41d3 sn

Running mac_daddy.pl shows that the last modified and access times on

sn.dat are both April 11th, 2002 at 9:29:58. The last change time for sn.dat was
September 16th, 2002 at 07:10:03, which is the time that sn.zip was unzipped.
(NOTE: This assumes that the system clock on the host that the binary was
found on was correct.)

[root@localhost mac_daddy]# ./mac_daddy.pl /mnt/floppy | grep sn
Apr 11 2002 09:29:52 37 ma. -rw-rw-rw- root root /mnt/floppy/sn.md5
Apr 11 2002 09:29:58 399124 ma. -rw-rw-rw- root root /mnt/floppy/sn.dat
Sep 16 2002 07:10:03 399124 ..c -rw-rw-rw- root root /mnt/floppy/sn.dat
 37 ..c -rw-rw-rw- root root /mnt/floppy/sn.md5

The owner of the file is root. This file was most likely not on the system

when the attacker compromised it. The attacker transferred this file from some
other system under their control. The file would show what account the file was
created under. The only time that the UID/GID would be shown and not the name
of the UID/GID is if the system that the file was mounted on did not have a
corresponding UID/GID.
 The file is 399,124 bytes. This can be seen in the output from ls –la and -
mac_daddy.pl:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[root@localhost mac_daddy]# ls -la /usr/tools/binary/sn.dat
-rwxr-xr-x 1 root root 399124 Apr 11 09:29 /usr/tools/binary/sn.dat
[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/ | egrep sn.dat
Apr 11 2002 09:29:58 399124 m.. -rwxr-xr-x root root /usr/tools/binary/sn.dat
Sep 16 2002 18:02:39 399124 ..c -rwxr-xr-x root root /usr/tools/binary/sn.dat
Sep 16 2002 18:07:33 399124 .a. -rwxr-xr-x root root /usr/tools/binary/sn.dat

 Even though we are showing the output from the SecureCRT session we
will provide a screenshot (bitmap image) for the md5 checksum output.

 To see what keywords are associated with the file we ran /usr/bin/strings –
a on sn.dat and came up with the following text that helped in determining what
the binary was.

SIOCGSTAMP: %s
bind: %s: %s
SIOCGIFHWADDR: %s
SIOCGIFMTU: %s
SIOCGIFFLAGS: %s
linux socket: %s
linux SIOCSIFFLAGS: %s
unknown physical layer type 0x%x
ld.so-1.7.0
glibc-ld.so.cache1.1
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98)
--=[%s:%i -->
%s:%i]=--
DUMP STRUCT = NUMBER %i
sip -> %s
sport -> %i
dip -> %s
dport -> %i

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

*data -> %s

* The END */
priv 1.0
ADMsniff %s <device> [HEADERSIZE] [DEBUG]
ex : admsniff le0
 ..ooOO The ADM Crew OOoo..
cant open pcap device :<
init_pcap : Unknown device type!
ADMsniff %s in libpcap we trust !
credits: ADM, mel , ^pretty ̂for the mail she sent me
The_l0gz
@(#) $Header: pcap-linux.c,v 1.15 97/10/02 22:39:37 leres Exp $ (LBL)
@(#) $Header: pcap.c,v 1.29 98/07/12 13:15:39 leres Exp $ (LBL)
@(#) $Header: savefile.c,v 1.37 97/10/15 21:58:58 leres Exp $ (LBL)
@(#) $Header: bpf_filter.c,v 1.33 97/04/26 13:37:18 leres Exp $ (LBL)

Program Description

 By executing /usr/bin/file on sn.dat we know that it an executable.

 [root@localhost tools]# /usr/bin/file /mnt/floppy/sn.dat

/mnt/floppy/sn.dat: ELF 32-bit LSB executable, Intel 80386, version 1, statically linked,
stripped

 This also tells us that the executable was statically linked. This means that
the file will not use any shared libraries. The file was also stripped of all symbols.
The file sn.dat is really a file called sn. This can be seen in the file sn.md5,
which is the output from /usr/bin/md5sum.

 [root@localhost binary]# /bin/cat sn.md5

0e954f43fd73f56e812a7285f32e41d3 sn

By looking at the output from mac_daddy.pl we can see the MACTimes of

sn.dat

[root@localhost mac_daddy]# ./mac_daddy.pl /mnt/floppy | grep sn
Apr 11 2002 09:29:52 37 ma. -rw-rw-rw- root root /mnt/floppy/sn.md5
Apr 11 2002 09:29:58 399124 ma. -rw-rw-rw- root root /mnt/floppy/sn.dat
Sep 16 2002 07:10:03 399124 ..c -rw-rw-rw- root root /mnt/floppy/sn.dat
 37 ..c -rw-rw-rw- root root /mnt/floppy/sn.md5

From the output from mac_daddy.pl we see two pieces of information that

are not consistent with an executable binary. The first is that under most normal
circumstances an executable would not have the same modified and access
times. The access time should be newer. When compiling a binary, all of the
times (modified, access and change) will be the same on the final executable.
This is because the file is created, similar to a file’s MACTimes when a file is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

created with /bin/touch. If the file were to be executed then the access time would
have changed, but this is not what we see in sn.dat. The other anomaly that is
seen are the permissions of sn.dat. When I found out what the binary was and
downloaded a copy of it and then complied it, the permissions on the binary were
set to 755. The permissions on sn.dat are set to 666. The permissions that are
set are usually associated with a normal file. There is no way that the umask
could been set to change the permissions from 755 to 666 as the umask can only
take away permissions, not add them. The change in permissions would have to
have been done with /bin/chmod. We will take a look at these discrepancies
along with other information that we learn from sn.dat to reconstruct a plausible
series of events. From examining the evidence we can conclude:

1. The file sn had the /usr/bin/md5sum utility ran against it. This can be
seen from the file sn.md5.

2. The file sn.dat was zipped (compressed). This can be seen from the
file extension of the compressed file, sn.zip.

3. The file name sn was changed to sn.dat. This can be seen when
comparing the file that had /usr/bin/md5sum against it and the file that
was part of sn.zip.

4. The modified time and access time of sn.dat are the same. This can be
seen from the output of mac_daddy.pl.

5. The change time of sn.dat is the time that the sn.zip file was unzipped.
This can be seen from the output of mac_daddy.pl.

6. The modified time and access time of sn.md5 is six seconds prior to
the modified time and access time of the sn.dat file. This can be seen
from the output of mac_daddy.pl.

7. The change time of sn.md5 is the time that the sn.zip file was
unzipped. This can be seen from the output of mac_daddy.pl.

8. The permissions on sn.dat or sn were changed. This can be seen with
either macdaddy.pl or /bin/ls –la.

Based on the information above we can reconstruct a partial event

timeline.

md5sum sn >>sn.md5
Rename (cp or mv) sn to sn.dat
chmod 666 sn or sn.dat
zip –r sn sn.md5 sn.dat

The reason that we don’t list the file sn as being executed (i.e. ./sn eth0)

is because the evidence was tampered with which caused all the information
regarding MACTimes to be altered. From the MACtimes on sn.md5 we can see
that /usr/bin/md5sum was ran on sn before the file name was changed from sn to
sn.dat, and we know that the access time on sn was changed during this

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

process. We can also conclude that the file name was changed before the file
was zipped. We can’t conclude at what point that /bin/chmod was used to change
the permissions on the binary.

It is evident that an unusually situation has occurred. From the current
information that I have gathered I have come up with two conclusions. The first is
that any of the actions carried out by an attacker would have been lost due to the
way that the information was gathered. There is not enough evidence provided to
prove that the system was hacked and that anything malicious was done. The
second is that the evidence was not gathered in a way that is forensically correct
and the evidence was tampered with prior to the collection. This leads me to
believe that the file was only part of the certification and not a binary that was
actually found on an actual system or honeypot. The unusual way that the binary
was acquired and treated is typical certification that tests a person’s level of
knowledge by creating a non-real world situation.

There are five different actions that could have changed the MACtimes on
the binary, running the binary, renaming (UNIX mv or cp command) the binary,
calculating the md5 checksum of the binary and zipping/unzipping the binary. We
will run some tests on a copy of sn.dat that is not on the floppy drive to derive
what actions were taken on the binary.

The first binary that we will run on sn.dat is /bin/chmod. The reason that
we are going to run this executable first is because the current permissions of
sn.dat will not allow us to execute it. We will be changing the permissions from
666 to 755. Before we do this though we will get the MACTimes of sn.dat. After
running /bin/chmod we will again get the MACTimes and see what has changed.

[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/
Apr 11 2002 09:29:52 37 ma. -rw-rw-rw- root root /usr/tools/binary/sn.md5
Apr 11 2002 09:29:58 399124 ma. -rw-rw-rw- root root /usr/tools/binary/sn.dat
Sep 15 2002 15:03:50 175185 m.c -rw-r--r-- root root /usr/tools/binary/sn.zip
Sep 16 2002 17:59:51 399124 ..c -rw-rw-rw- root root /usr/tools/binary/sn.dat
 37 ..c -rw-rw-rw- root root /usr/tools/binary/sn.md5
 175185 .a. -rw-r--r-- root root /usr/tools/binary/sn.zip

[root@localhost mac_daddy]# /bin/chmod 755 /usr/tools/binary/sn.dat

[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/
Apr 11 2002 09:29:52 37 ma. -rw-rw-rw- root root /usr/tools/binary/sn.md5
Apr 11 2002 09:29:58 399124 ma. -rwxr-xr-x root root /usr/tools/binary/sn.dat
Sep 15 2002 15:03:50 175185 m.c -rw-r--r-- root root /usr/tools/binary/sn.zip
Sep 16 2002 17:59:51 37 ..c -rw-rw-rw- root root /usr/tools/binary/sn.md5
 175185 .a. -rw-r--r-- root root /usr/tools/binary/sn.zip
Sep 16 2002 18:02:39 399124 ..c -rwxr-xr-x root root /usr/tools/binary/sn.dat

From the above output we can see that /bin/chmod changes the change

time of the binary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Now we will look at is how does executing a binary change the MACtimes.
We will get the MACtimes of /usr/tools/sn.dat before and after we execute it
(Note: The permissions on sn.dat needed to be changed before executing it.):

[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/
[root@localhost mac_daddy]# Apr 11 2002 09:29:52 37 ma. -rw-rw-rw- root root
/usr/tools/binary/sn.md5
Apr 11 2002 09:29:58 399124 m.. -rwxr-xr-x root root /usr/tools/binary/sn.dat
Sep 15 2002 15:03:50 175185 m.c -rw-r--r-- root root /usr/tools/binary/sn.zip
Sep 16 2002 17:59:51 37 ..c -rw-rw-rw- root root /usr/tools/binary/sn.md5
 175185 .a. -rw-r--r-- root root /usr/tools/binary/sn.zip
Sep 16 2002 18:02:39 399124 ..c -rwxr-xr-x root root /usr/tools/binary/sn.dat
Sep 16 2002 18:07:07 399124 .a. -rwxr-xr-x root root /usr/tools/binary/sn.dat

[root@localhost mac_daddy]# /usr/tools/binary/sn.dat eth0
ADMsniff priv 1.0 in libpcap we trust !
credits: ADM, mel , ^pretty ̂for the mail she sent me

[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/
Apr 11 2002 09:29:52 37 ma. -rw-rw-rw- root root /usr/tools/binary/sn.md5
Apr 11 2002 09:29:58 399124 m.. -rwxr-xr-x root root /usr/tools/binary/sn.dat
Sep 15 2002 15:03:50 175185 m.c -rw-r--r-- root root /usr/tools/binary/sn.zip
Sep 16 2002 17:59:51 37 ..c -rw-rw-rw- root root /usr/tools/binary/sn.md5
 175185 .a. -rw-r--r-- root root /usr/tools/binary/sn.zip
Sep 16 2002 18:02:39 399124 ..c -rwxr-xr-x root root /usr/tools/binary/sn.dat
Sep 16 2002 18:07:33 399124 .a. -rwxr-xr-x root root /usr/tools/binary/sn.dat

We see that only the access time has changed when the binary is executed.

Next we will create two separate files and get there MACtimes. Then we
will mv one of the files and cp the other file and then record the MACtimes and
see what has changed.

[root@localhost mac_daddy]# touch /usr/tools/binary/test_file.mv
[root@localhost mac_daddy]# touch /usr/tools/binary/test_file.cp
[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/ | egrep test
Sep 16 2002 18:20:57 0 mac -rw-r--r-- root root /usr/tools/binary/test_file.mv
Sep 16 2002 18:21:00 0 mac -rw-r--r-- root root /usr/tools/binary/test_file.cp

 [root@localhost mac_daddy]# mv /usr/tools/binary/test_file.mv
 /usr/tools/binary/test_file.mv.new
 root@localhost mac_daddy]# cp /usr/tools/binary/test_file.cp
 /usr/tools/binary/test_file.cp.new

 [root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/ | egrep test
 Sep 16 2002 18:20:57 0 ma. -rw-r--r-- root root /usr/tools/binary/test_file.mv.new
 Sep 16 2002 18:21:00 0 m.c -rw-r--r-- root root /usr/tools/binary/test_file.cp
 Sep 16 2002 18:28:13 0 ..c -rw-r--r-- root root /usr/tools/binary/test_file.mv.new
 Sep 16 2002 18:28:29 0 .a . -rw-r--r-- root root /usr/tools/binary/test_file.cp
 0 mac -rw-r--r-- root root /usr/tools/binary/test_file.cp.new

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 With the mv command we see the only thing that has changed is the
change time. With the cp command the access time of the original file is changed
while the new file gets all new MACTimes, similar to the MACTimes from touch.
 Next we will zip/unzip a file to see what changes.

[root@localhost binary]# echo thisisatestoftheziputility >>testzip
[root@localhost binary]# cd ../mac_daddy/
[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/ | egrep test
Sep 16 2002 19:05:48 27 mac -rw-r--r-- root root /usr/tools/binary/testzip
[root@localhost mac_daddy]# cd /usr/tools/binary/

 [root@localhost binary]# zip -r testzip testzip
 adding: testzip (stored 0%)
 [root@localhost binary]# rm -f testzip
 [root@localhost binary]# unzip testzip.zip
 Archive: testzip.zip
 extracting: testzip
 [root@localhost binary]# cd ../mac_daddy/
 [root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/ | egrep test
 Sep 16 2002 19:05:48 27 ma. -rw-r--r-- root root /usr/tools/binary/testzip
 Sep 16 2002 19:06:40 173 m.c -rw-r--r-- root root /usr/tools/binary/testzip.zip
 Sep 16 2002 19:07:01 27 ..c -rw-r--r-- root root /usr/tools/binary/testzip
 173 .a. -rw-r--r-- root root /usr/tools/binary/testzip.zip
 We see that only the change time changes during the zip/unzip process.
The last thing that we will do is create a file and get the md5 checksum of the file
and see what changes the /usr/bin/md5sum utility makes on the file.

[root@localhost mac_daddy]# echo thisisatestofmd5sum > /usr/tools/binary/testmd5
[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/ | egrep test
Sep 16 2002 19:18:56 20 mac -rw-r--r-- root root /usr/tools/binary/testmd5
[root@localhost mac_daddy]# /usr/bin/md5sum /usr/tools/binary/testmd5
>/usr/tools/binary/testmd5.md5
[root@localhost mac_daddy]# ./mac_daddy.pl /usr/tools/binary/ | egrep test
Sep 16 2002 19:18:56 20 m.c -rw-r--r-- root root /usr/tools/binary/testmd5
Sep 16 2002 19:20:29 20 .a. -rw-r--r-- root root /usr/tools/binary/testmd5
 60 mac -rw-r--r-- root root /usr/tools/binary/testmd5.md5

 The only time that is changed from the /usr/bin/md5sum utility is the
access time. Since the /usr/bin/md5sum utility does not have an option to save
the information to a text file the person who ran the /usr/bin/md5sum utility
redirected the output to a file. This MACTimes of this file are all the same.
 Below is a chart that shows the effects of the different process on the
MACtimes. We will us it to find out in what command were executed on the
binary and in what order.

 Modify Time Access Time Change Time
Executing Binary X
mv X
cp (Original File) X

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

cp (New File) X X X
zip/unzip X
md5sum X
chmod X

 The only time that the modification time and access time would be the
same would be if the person ran the cp command and used the new file to
include in sn.zip. Below is a timeline analysis of what happened:

Time Commands executed
n/a ** sn [Interface]
Apr 11 2002 09:29:52 md5sum sn >>sn.md5
Apr 11 2002 09:29:58 cp sn. sn.dat
n/a zip –r sn sn.dat sn.md5
**This may or may not have happened. There is no way to prove it since the file
was not acquired in a forensically correct manner and there is no other evidence
(i.e. The_l0gz file) to support the assumption that the binary was executed.
 The only command that we can’t put into the timeline is /bin/chmod. The
only thing that we know is that /bin/chmod was run before the binary was zipped.
There is only six seconds between when the md5 checksum was calculated and
the file name was changed, but if the person was quick enough or they issued
multiple commands at one time (i.e. separating commands with “;”) they could
have changed the permissions within this amount of time.
 The file sn.dat is a renamed copy of ADMsniff. We can see this from
running sn.dat without any options. I was able to find a copy of ADMsniff and
compile it to make the same executable. This will be shown later in the practical.

 [root@localhost binary]# ./sn.dat

ADMsniff priv 1.0 <device> [HEADERSIZE] [DEBUG]
ex : admsniff le0
 ..ooOO The ADM Crew OOoo..

 While this is not enough evidence to prove that the file is really a version
of ADMsniff we will run /usr/bin/strings –a on sn.dat and see what other ASCII
related information we can see. By looking at the information below we can see
more evidence that sn.dat could be a copy of ADMsniff.

 --=[%s:%i -->

%s:%i]=--
DUMP STRUCT = NUMBER %i
sip -> %s
sport -> %i
dip -> %s
dport -> %i

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

*data -> %s

* The END */
priv 1.0
ADMsniff %s <device> [HEADERSIZE] [DEBUG]
ex : admsniff le0
 ..ooOO The ADM Crew OOoo..
cant open pcap device :<
init_pcap : Unknown device type!
ADMsniff %s in libpcap we trust !
credits: ADM, mel , ^pretty^ for the mail she sent me
The_l0gz
@(#) $Header: pcap-linux.c,v 1.15 97/10/02 22:39:37 leres Exp $ (LBL)
@(#) $Header: pcap.c,v 1.29 98/07/12 13:15:39 leres Exp $ (LBL)
@(#) $Header: savefile.c,v 1.37 97/10/15 21:58:58 leres Exp $ (LBL)
@(#) $Header: bpf_filter.c,v 1.33 97/04/26 13:37:18 leres Exp $ (LBL)

 ADMsniff is a “libpap-based sniffer that is designed to be portable and
powerful” according to the README file that is distributed with it. This sniffer only
listens to traffic on TCP ports 21 (FTP Control), 23 (Telnet), 109(POP2),
110(POP3), 143(IMAP), 512(exec), 513(login), 514(shell), 1521(Oracle SQL),
31337(Many different backdoors). This is seen in the source code of thesniff.c.

 u_short coolport[] =

{21, 23, 109, 110, 143, 512, 513, 514, 1521, 31337};

 There are three arguments that can be passed to ADMsniff. The only
argument that is required is the <device> name (as seen in the source code).

if (argc < 2)
 {
 printf ("ADMsniff %s <device> [HEADERSIZE] [DEBUG] \n",
VERSION);
 printf ("ex : admsniff le0\n");
 printf (" ..ooOO The ADM Crew OOoo.. \n");
 exit (ERROR);
 }

When ADMsniff sees a packet that matches any one ports listed above it

will save the data to the file The_l0gz. The information in The_l0gz shows the
data portion of the packet in clear text. This information will usually be username
and password. Depending on if the compromised host is on a switched network
or in a hub environment, the attacker will have varying degrees of information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 From the information that we looked at in the “Binary Details” portion of
the document we see that there is no way for us to know what time the binary
was last executed.

For a step-by-step analysis of what sn.dat does when it is run we will look
at the source code (thesniff.c from ADMsniff), some output from /usr/bin/strace -x
-o strace.sn.dat -s 2000, /usr/sbin/lsof -p. The first operation that we will perform
is /usr/sbin/lsof-p on sn.dat :

[root@localhost binary]# ./sn.dat eth0 &
[1] 1434
ADMsniff priv 1.0 in libpcap we trust !
credits: ADM, mel , ^pretty ̂for the mail she sent me
[root@localhost binary]# lsof -p 1434
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sn.dat 1434 root cwd DIR 8,5 4096 342466 /usr/tools
sn.dat 1434 root rtd DIR 8,5 4096 2 /
sn.dat 1434 root txt REG 8,5 399124 342485 /usr/tools/sn.dat
sn.dat 1434 root 0u CHR 136,0 2 /dev/pts/0
sn.dat 1434 root 1u CHR 136,0 2 /dev/pts/0
sn.dat 1434 root 2u CHR 136,0 2 /dev/pts/0
sn.dat 1434 root 3u sock 0,0 3004 can't identify protocol
sn.dat 1434 root 4w REG 8,5 0 342899 /usr/tools/The_l0gz

 From the above output we can see that sn.dat opens up a regular file call
The_l0gz in the same directory that the binary is in and it opens up a socket
connection. This file is an ASCII text file that contains information outputted from
sn.dat.
 To see what steps the binary takes when executed we will trace the
system calls with /usr/bin/strace -x -o strace.sn.dat -s 2000.

 [root@localhost binary]# strace -x -o strace.sn.dat -s 2000./sn.dat eth0

 This will save the output from /usr/bin/strace to a file called strace.sn.dat.
We will then examine the contents of strace.sn.dat for information on how sn.dat
operates. The binary is executed with the argument eth0.

execve("./sn.dat", ["./sn.dat", "eth0"], [/* 22 vars */]) = 0

 The fcntl64 function if getting information about the first three file
descriptors (0,1,2) with the F_GETFD.

fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0

The uname function is getting information about the current system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

uname({sys="Linux", node="localhost.localdomain", ...}) = 0

 The next four functions are getting permissions information about the
process. The first one is getting information about the effective UID (user ID) of
the calling process. The second one is getting information about the real UID of
the calling process. The third one is getting information about the effective GID
(group ID) of the calling process. The fourth on is getting information about the
real GID of the calling process.

geteuid32() = 0
getuid32() = 0
getegid32() = 0
getgid32() = 0

The brk syscall is returning the address of the end of the data segment.

brk(0) = 0x80ab488
brk(0x80ab4a8) = 0x80ab4a8
brk(0x80ac000) = 0x80ac000

The binary is creating a socket and directly accessing the data link layer.

socket(PF_INET, SOCK_PACKET, 0x300 /* IPPROTO_??? */) = 3

The socket is then bound to the interface.

bind(3, {sin_family=AF_INET, sin_port=htons(25972), sin_addr=inet_addr("104.48.0.0")}},
16) = 0

 The binary then gets the hardware address, MTU and interface flags of
the interface that it is monitoring. The MTU is the maximum transmission unit that
an IP datagram can send without fragmenting the packet. The reason that it is
getting the MTU of the interface is so that it can set up a buffer that will be able to
capture the entire packet. According to the code within pcap-linux.cii the buffer
will be set to 64 bytes bigger than the MTU to make sure that the link layer

ii pcap-linux.c as part libpcap version 0.4 as packaged with ADMsniff.
/* Base the buffer size on the interface MTU */
 memset(&ifr, 0, sizeof(ifr));
 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
 if (ioctl(p->fd, SIOCGIFMTU, &ifr) < 0) {
 sprintf(ebuf, "SIOCGIFMTU: %s", pcap_strerror(errno));
 goto bad;
 }
/* Leave room for link header (which is never large under linux...) */
 p->bufsize = ifr.ifr_mtu + 64;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

information is captured.. This way it will be able to capture all of the packet,
including the data-link layer information.

ioctl(3, SIOCGIFHWADDR, 0xbffff890) = 0
ioctl(3, SIOCGIFMTU, 0xbffff890) = 0
ioctl(3, SIOCGIFFLAGS, 0xbffff890) = 0
ioctl(3, SIOCSIFFLAGS, 0xbffff890) = 0

 The binary is checking the status of the file using the fstat64 function and
utilizing the mmap function to write the buffer to both memory and the file,
The_l0gz, simultaneously. Since the file The_l0gz has not been created yet it is
only preparing the buffer in memory.

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40000000

 The binary is writing to the file descriptor (STDOUT) the information that
we see when we run the binary.

write(1, "ADMsniff priv 1.0 in libpcap we trust !\n", 41) = 41
write(1, "credits: ADM, mel , ^pretty ̂for the mail she sent me\n", 54) = 54
brk(0x80ad000) = 0x80ad000

 The binary is opening the file The_L0gz in write only mode (O_WRONLY).
The 0_CREAT option tells the OS to create the file if it does not exist. The
O_TRUNC option tells the OS to set the file size to zero if the file all ready exists
and is a regular file. The permissions on this file are going to be se to 0666.

open("The_l0gz", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 4

We also see the sniffer in action capturing packets:

recvfrom(3,
"\x00\x50\x56\xf2\x4b\x3c\x00\x50\x56\xc0\x00\x01\x08\x00\x45\x00\x00\x38\x58\x5b\x0
0\x00\x80\x01\x62\x96\xc0\xa8\xff\x0
1\xc0\xa8\xff\x80\x03\x03\x50\xf1\x00\x00\x00\x00\x45\x00\x00\x48\x50\x2c\x40\x00\x40\
x11\x6a\xa5\xc0\xa8\xff\x80\xc0\xa8\xff\x01\x0
4\x03\x00\x35\x00\x34\xa7\x9f", 1564, 0, {sin_family=AF_UNIX, path="eth0"}, [18]) = 70
ioctl(3, 0x8906, 0xbffff970) = 0

 This will continue until a packet is captured that meets the port
requirement. Then the binary will time stamp the packet.

recvfrom(3,
"\x00\x50\x56\xc0\x00\x01\x00\x50\x56\xf2\x4b\x3c\x08\x00\x45\x00\x00\x3c\x0f\xa5\x40
\x00\x40\x06\xab\x43\xc0\xa8\xff\x8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0\xc0\xa8\xff\x01\x04\x07\x00\x15\x27\xbf\x5f\x89\x00\x00\x00\x00\xa0\x02\x16\xd0\xd5\
xc9\x00\x00\x02\x04\x05\xb4\x04\x02\x08\x0a\x0
0\x09\x50\x2c\x00\x00\x00\x00\x01\x03\x03\x00", 1564, 0, {sin_family=AF_UNIX,
path="eth0"}, [18]) = 74
ioctl(3, 0x8906, 0xbffff970) = 0
brk(0x80ae000) = 0x80ae000
time(NULL) = 1026998727
time(NULL) = 1026998727
time(NULL) = 1026998727

 This packet is a packet for a FTP session. When it is about the write the
packet to The_l0gz the output from /usr/bin/strace will show the following:

 fstat64(4, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40001000
write(4, "\n--=[192.168.255.1:21 --> 192.168.255.128:1031]=--
\n..............................%)..P,220 3Com 3CDaemon FTP Server Ve
rsion 2.0........%Q..Q.331 User name ok, need password........%z..S+230 User logged
in........%z..S,215 UNIX Type: L8........%...S.2
00 Type set to I.........%...T.221 Service closing control connection........%...T..\n", 337) =
337

 We can see the fstat64 system call retrieving information about the file
and the old_mmap system call writing the information to memory. At the same
time that the information is being written to memory it is also being written to
The_l0gz. This cycle will continue until the binary is terminated.

Forensic Details

 To see what footprints are left by this binary we will look at the output from
/usr/sbin/lsof and explain the use of inode information to see possible out of
place creation times.
 By running /usr/sbin/lsof on the binary while it is running we can see any
files that are used by the binary.

[root@localhost binary]# ./sn.dat eth0 &
[1] 1434
ADMsniff priv 1.0 in libpcap we trust !
credits: ADM, mel , ^pretty ̂for the mail she sent me
[root@localhost binary]# lsof -p 1434
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
sn.dat 1434 root cwd DIR 8,5 4096 342466 /usr/tools
sn.dat 1434 root rtd DIR 8,5 4096 2 /
sn.dat 1434 root txt REG 8,5 399124 342485 /usr/tools/sn.dat
sn.dat 1434 root 0u CHR 136,0 2 /dev/pts/0
sn.dat 1434 root 1u CHR 136,0 2 /dev/pts/0
sn.dat 1434 root 2u CHR 136,0 2 /dev/pts/0
sn.dat 1434 root 3u sock 0,0 3004 can't identify protocol

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sn.dat 1434 root 4w REG 8,5 0 342899 /usr/tools/The_l0gz

 We can see that it has a socket connection open and a regular file, called
The_L0gz, open as well. Depending on how busy the system is there may be
information that could be gained from the inode number. Since the binary is a
sniffer it will set the PROMISC flag on the interface. This will show up when the
system administrator reboots the system or if he/she runs /sbin/ifconfig. The
interface will show that it is in PROMISC mode. This information also shows up in
/var/log/messages. This is a good indicator that a sniffer is running or has been
run.

[root@localhost tools]# tail -3 /var/log/messages
Oct 23 06:03:19 localhost kernel: sn.dat uses obsolete (PF_INET,SOCK_PACKET)
Oct 23 06:03:19 localhost kernel: eth0: Promiscuous mode enabled.
Oct 23 06:03:19 localhost kernel: device eth0 entered promiscuous mode
[root@localhost tools]#

From the above output we can see that sn.dat uses on old socket call and

sets the interface to promiscuous mode. Depending on where the attacker hid
this binary the MACtimes might show something suspicious. If the binary is
hidden in a low activity area it would show up, but if it hidden in a highly
accessed area then it will get hidden in normal activity. Depending on the activity
of the server that was compromised the inode information might give away some
clues. The inode number will be rather new (higher). Depending on when the
binary was installed by the attacker and when the server was forensically
analyzed this may show up. If there were a lot of files created after the binary
was installed then the inode number might not stand out. This also depends on
where the binary was installed. If the binary was installed in a directory that is
usually static (i.e. /dev) the new inode number will stick out. If the attacker
installed the binary in a directory that has a lot of files created in it regularly then
the inode number might not show up as easily. When a hacker breaks into a
system he/she will usually attempt to hide the binary in a directory that has a lot
of files in it. Attacker’s also tries to name their binaries to something that will not
be so easily noticed.

Program Identification

 From executing /usr/bin/strings –a on sn.dat we saw right away the
following information that helps us find the source code and what it was complied
with:

ADMsniff %s <device> [HEADERSIZE] [DEBUG]
priv 1.0
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-97)
/USR/BIN/GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-98).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 A search on the Internet using the google search engine found many
copies of ADMsniff-v.08 but only a couple of sites had ADMsniff priv 1.0. The file
that I downloaded was ADMsniff.tgz. The version of /USR/BIN/GCC that the
attacker used to compile ADMsniff is the same that is shipped with Red Hat Linux
7.2. The Makefile that is included with this binary does not create a statically
linked executable so I edited the Makefile and added the –static keyword so that
the file that I created would be statically linked. When I first attempted to compile
the binary I received an error:

[root@localhost ADMsniff]# gcc thesniff.c -static -lpcap -oADMsniff-1
/usr/bin/ld: cannot find -lpcap
collect2: ld returned 1 exit status
[root@localhost ADMsniff]#

 After looking this error up I found out that the linker, ld, only looks for
libraries in certain directories. I place the libpcap.a library in the /usr/lib directory
and tried to compile it again. This time the binary successfully compiled. I then
fully stripped the binary using /usr/bin/strip.

 [root@localhost ADMsniff]# gcc thesniff.c -static -lpcap -oADMsniff-1
 [root@localhost ADMsniff]# /usr/bin/strip ADMsniff-1
 [root@localhost ADMsniff]#

 After compiling the binary and stripping it I ran /bin/ls –la ADMsniff-1 and
saw that the file was 399,124 bytes. After this I ran /usr/bin/md5sum ADMsniff-1
and compared it to the md5 checksum of sn and it was the same.

 When running /usr/sbin/lsof –p on both of the binaries (sn and ADMsniff-
1) it shows that they both access the same file, The_l0gz, and they both open a
socket connection. We will look at all the syscalls made my ADMsniff-1 and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

compare them to the syscalls made sn.dat. To find this information we will use
/usr/bin/objdump –D. This will dump the files contents into assembly language
format. Looking at the assembly language we need to find int $0x80 or “cd 80” in
hexadecimal. This is the assembly language instruction for operating system
calls. Once we find this we look for the eax register’s value just before the int
$0x80 and this will tell us the value of the system call being made. We will then
cross reference this with the file /usr/include/asm/unistd.h to get the name of the
syscall’s being executed. To simplify the cross referencing process I wrote a
PERL script.

 [root@localhost ADMsniff]# ./syscall_finder.pl ADMsniff-1

sh: obdump: command not found
Total entries: 42
Call: 01 #define __NR_exit 1
Call: 03 #define __NR_read 3
Call: 04 #define __NR_write 4
Call: 05 #define __NR_open 5
Call: 06 #define __NR_close 6
Call: 0d #define __NR_time 13
Call: 13 #define __NR_lseek 19
Call: 14 #define __NR_getpid 20
Call: 18 #define __NR_getuid 24
Call: 21 #define __NR_access 33
Call: 25 #define __NR_kill 37
Call: 2f #define __NR_getgid 47
Call: 31 #define __NR_geteuid 49
Call: 32 #define __NR_getegid 50
Call: 36 #define __NR_ioctl 54
Call: 37 #define __NR_fcntl 55
Call: 37 #define __NR_fcntl 55
Call: 37 #define __NR_fcntl 55
Call: 4c #define __NR_getrlimit 76 /* Back compatible 2Gig limited rlimit */
Call: 55 #define __NR_readlink 85
Call: 5b #define __NR_munmap 91
Call: 68 #define __NR_setitimer 104
Call: 6a #define __NR_stat 106
Call: 6c #define __NR_fstat 108
Call: 77 #define __NR_sigreturn 119
Call: 7a #define __NR_uname 122
Call: 7d #define __NR_mprotect 125
Call: 8c #define __NR__llseek 140
Call: 92 #define __NR_writev 146
Call: a3 #define __NR_mremap 163
Call: ad #define __NR_rt_sigreturn 173
Call: ae #define __NR_rt_sigaction 174
Call: af #define __NR_rt_sigprocmask 175
Call: b7 #define __NR_getcwd 183
Call: bf #define __NR_ugetrlimit 191 /* SuS compliant getrlimit */
Call: c3 #define __NR_stat64 195
Call: c5 #define __NR_fstat64 197
Call: c7 #define __NR_getuid32 199

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Call: c8 #define __NR_getgid32 200
Call: c9 #define __NR_geteuid32 201
Call: ca #define __NR_getegid32 202
Call: dd #define __NR_fcntl64 221
[root@localhost ADMsniff]# ./syscall_finder.pl /usr/tools/binary/sn.dat
sh: obdump: command not found
Total entries: 42
Call: 01 #define __NR_exit 1
Call: 03 #define __NR_read 3
Call: 04 #define __NR_write 4
Call: 05 #define __NR_open 5
Call: 06 #define __NR_close 6
Call: 0d #define __NR_time 13
Call: 13 #define __NR_lseek 19
Call: 14 #define __NR_getpid 20
Call: 18 #define __NR_getuid 24
Call: 21 #define __NR_access 33
Call: 25 #define __NR_kill 37
Call: 2f #define __NR_getgid 47
Call: 31 #define __NR_geteuid 49
Call: 32 #define __NR_getegid 50
Call: 36 #define __NR_ioctl 54
Call: 37 #define __NR_fcntl 55
Call: 37 #define __NR_fcntl 55
Call: 37 #define __NR_fcntl 55
Call: 4c #define __NR_getrlimit 76 /* Back compatible 2Gig limited rlimit */
Call: 55 #define __NR_readlink 85
Call: 5b #define __NR_munmap 91
Call: 68 #define __NR_setitimer 104
Call: 6a #define __NR_stat 106
Call: 6c #define __NR_fstat 108
Call: 77 #define __NR_sigreturn 119
Call: 7a #define __NR_uname 122
Call: 7d #define __NR_mprotect 125
Call: 8c #define __NR__llseek 140
Call: 92 #define __NR_writev 146
Call: a3 #define __NR_mremap 163
Call: ad #define __NR_rt_sigreturn 173
Call: ae #define __NR_rt_sigaction 174
Call: af #define __NR_rt_sigprocmask 175
Call: b7 #define __NR_getcwd 183
Call: bf #define __NR_ugetrlimit 191 /* SuS compliant getrlimit */
Call: c3 #define __NR_stat64 195
Call: c5 #define __NR_fstat64 197
Call: c7 #define __NR_getuid32 199
Call: c8 #define __NR_getgid32 200
Call: c9 #define __NR_geteuid32 201
Call: ca #define __NR_getegid32 202
Call: dd #define __NR_fcntl64 221

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 For a quick verification of the two files (ADMsniff-1 and sn) syscall’s I sent
the output from the two different files to separate output files and ran /usr/bin/wc
–l and /usr/bin/md5sum on both files to see if they matched.

 [root@localhost ADMsniff]# ./syscall_finder.pl ADMsniff-1 >sysadm

sh: obdump: command not found
[root@localhost ADMsniff]# ./syscall_finder.pl /usr/tools/binary/sn.dat >syssn
sh: obdump: command not found
[root@localhost ADMsniff]# wc -l syssn
 43 syssn
[root@localhost ADMsniff]# wc -l sysadm
 43 sysadm
[root@localhost ADMsniff]# /usr/bin/md5sum sysadm
2d4f29ea7e00ba056a9d2ed4ffd8265b sysadm
[root@localhost ADMsniff]# /usr/bin/md5sum syssn
2d4f29ea7e00ba056a9d2ed4ffd8265b syssn

 From the output above we can see that they two binaries use the same
syscalls (amount and placement/order). With all the evidence that we have we
can say with 100% accuracy that the binary that we reverse engineered was a
copy of ADMsniff priv 1.0.

Legal Implications

 With the MACtime analysis that was conducted earlier I was not able to
prove that the file was actually executed. I was only able to prove three facts:

1. The original file name is sn.
2. The /usr/bin/md5sum utility was run on sn at Apr 11 2002 09:29:52.
3. The file sn was copied to sn.dat at Apr 11 2002 09:29:58.
4. The files sn.dat and sn.md5 were zipped.

Our company policy prohibits any user to be in possession of any tools or

utilities that would be considered malicious or a “hacker” tool. The only
departments that are allowed to own, or have possession of, a sniffer is network
engineering and information security. The sniffer applications that are authorized
for use within the company are Network General Sniffer’s DSS (Distributed
Sniffer System), EtherPeek, and Ethereal. If any person, including anyone in
network engineering or information security, is found to be in possession of a
sniffer that has not been authorized he/she will be disciplined accordingly.
 The sniffer that was found on the system was not a sniffer that could be
used for any troubleshooting purpose or investigation. This sniffer does not allow
the user to do the following things that are common among other sniffers:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1. Filter the traffic. The only way that the user can modify the filtering
process is to modify the coolport array of thesniff.c and recompile
thesniff.c.

2. Ability to decode traffic. Most, if not all, sniffers not only capture
packets but can also decode them. Regular sniffers are able to decode
not only TCP packets but others as well (i.e. UDP, other IP protocols,
IPX, Apple Talk).

3. Ability to see raw packet. Sniffers usually allow people to view the
packets in different ways. Most of the time the users will view the
packet in a “decode” view, but they also have other views that they can
view the captured packets.

 The only purpose of this sniffer is to capture username’s and password’s
and some user data. Interestingly enough our company’s acceptable network
policy states that any electronic transmission of data can be intercepted or
monitored with out prior consent of the parties being monitored. There is no
stipulation on who can and can’t do the monitoring or who has to authorize it
either. The only stipulation is that the information can not be used for personal
gain. However the likelihood of someone possessing this utility and not using for
personal gain is highly unlikely.
 For us to use the binary as part of evidence we would need to have some
more information, like the The_l0gz file, or an image of the directory where the
binary was found. If the binary had been collected in a forensically sound manner
(i.e. dd) the binary would give us more clues, but we would still need other pieces
of evidence.
 The use of this tool on the system would violate the Wiretap Act since a
certain amount of the content of the packet is being kept. Since this utility does
not posses any troubleshooting functionality it has no use in any toolkit for either
network engineering or information security.

Interview Questions

 The following questions would have been asked if we were able to
determine who attacked and compromised the server. From my experience the
evidence had a “look and feel” of a technical exam. The evidence was like
nothing that I have encountered in my professional work experience or working
with the South Florida Honeynet Project. It did seem very similar to the way that
high level technical certifications tests are carried out though. Even though I don’t
believe that an attacker left the binary on the system I still came up with five
questions for the “attacker”.
 Question 1: Are you familiar with the Linux operating system?
Reason: I want to establish if the attack has or has not used the Linux operating
system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Question 2: Have to worked with any types of sniffers, like
tcpdump,snoop, or ethereal?
Reason: This may help establish that the attacker’s level of knowledge about
how sniffers operate and what type of information they can get.
 Question 3. Do you do any program development in the Unix/Linux
environment?
Reason: The attacker had to have some knowledge to know to move the
libpcap.a library to the a directory where the linker would look for it prior to
compiling the binary. The attacker also had to know about statically compiling the
binary.
 Question 4: Have you ever heard of a program called ADMsniff?
Reason: This will let us know if the attacker knows what this program does.
 Question 5: Do you like challenges?
Reason: If the attacker does not like challenges then he/she may not be the real
attacker. If the attacker does like challenges it shows that they make like hacking
and consider it a game.

Additional Information

 To assist with the reverse engineering of the binary I used the site
http://linuxassembly.org/linasm.html. This site provided me the information to
correlate the output from /usr/bin/objdump –D to /usr/include/asm/unistd.h. This
allowed me to find out what system calls were made by each binary. I automated
this information by writing a PERL script, syscall_finder.pl. For more information
on reverse engineering I used http://www.hut.fi/~kalyytik/hacker/ssh-crc32-
exploit_Korpinen_Lyytikainen.html and
http://www.hut.fi/~kalyytik/hacker/security_breach_test_report_Korpinen_Lyytikai
nen.html. These are excellent papers on the reverse engineering process of the
X2 exploit from a developers prospective. For information about assembly code
translation specific to vulnerabilities I used http://lsd-pl.net/papers.html.

Part III

Legal Issues of Incident Handling

 As a senior information security engineer I am called on to troubleshoot
many different issues, and I often use a sniffer. All though there are different laws
out there restricting the use of “network taps” they all have clauses that outline
under what circumstances that a person can legally use a “network tap”. Under
the Wiretap Act, U.S.C 2511, clause (2)(a)(i), allows me to monitor network
traffic legally for most of the situations that I encounter. This clause basically

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

states that as long as I am providing a service that is part of my job function then
I can use a sniffer. In most cases I am not acting under color of the law so U.S.C.
2511(2)(c) does not apply, even though when I am troubleshooting an issue I
have the consent of the user. The Wiretap Act also allows me to monitor traffic if I
feel that there is a threat to any one of our systems. I would have to filter the
traffic for the latter scenario.
 The newly enacted Patriot Act enables system administrator more
flexibility in using network taps, but is geared toward government agencies rather
than the private sector. The Patriot Act uses the term “under color of law” in a lot
of it’s definitions. Like previously stated, when I use a sniffer it is part of my job
function so I am able to do so freely with out violating the Wiretap Act and since I
am not acting under the “color of law” I don’t concern myself with the Patriot Act.
What is unique in my situation is that I am not a system administrator. The
functions that I am required to perform for the company allow me to monitor all
network traffic, content included. Most system administrators might not use
network monitoring tools as part of their job function so they would have to make
sure that they are covered by either the Wiretap Act or the Patriot Act prior to
monitoring traffic.
 There are four distinct times when I would be called on to use a sniffer. I
will outline each one of them and detail my responsibilities to the company and
the user. In of these cases I would be exempt from prosecution because of
U.S.C. 2511(2)(a)(i). One of them, situation three, could even be covered by the
Pen Register Act as I am only looking at packet header information.
 Situation One: Troubleshoot a user issue in which the user has already
worked with other technical people within the company and the others were not
able to troubleshot the issue. I usually troubleshoot all of these issues with the
use of a sniffer. Using a sniffer offers a different view when troubleshooting an
application that uses network resources. I don’t have to worry about what the
developer thinks should be sent from a client to server or visa versa. I can see
exactly what is sent. When I use a sniffer I will most likely be capturing the entire
packet and not just the header information
 Situation Two: Troubleshoot an issue that effects many users and
is thought to be an application issue. In this scenario I will work with the
developers of the application instead of the users. I would usually capture all
traffic going to a particular application and filter the packets out later. This allows
me to see many different users data. It is not feasible to get the consent of all the
users, but I can get the permission of the developers.
 Situation Three: Troubleshoot an issue that is network related (i.e.
duplex mismatching, bandwidth saturation). In this scenario I will be working
either alone or with the network engineering department. I will be capturing a lot
of traffic and be looking for any issues that would help determine the issue. In
this case I can capture just the header information.
 Situation Four: Investigating an active attack on the network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

In this scenario I would use a sniffer for forensic evidence and also to understand
what the attacker did. I would be capturing the entire packet so that I could see
what the attacker is doing without any type of translation. Looking at log files on a
system can provide some type of evidence but if does not understand the
request that was sent it may not log it properly.
 Just because I am part of the information security staff doesn’t mean that I
have the right to monitor network traffic without a legitimate reason. If the reason
for me to monitor the network does not follow any of the aforementioned
situations then I would be in violation of the Wiretap Act because it would not be
part of my job function. If the situation does not involve troubleshooting or an
actual network anomaly/attack I make sure that I get permission from a VP prior
to capturing network traffic. While this does not take the responsibility away from
me it does give me some more assurance about my reasoning for doing a
network capture.
 There are some instances were I would be abiding by corporate policy, but
not be abiding by US law. If the company were to want me to capture all traffic
from a user because the user might be doing something illegal I would be
following company policy but not be following USC 2511 (2)(a)(i). Unless the user
is actually doing something malicious at the time that I want to capture the traffic,
I can’t monitor all their network traffic hoping to capture something. The company
would need a court order for this type of monitoring to be carried out.
 As a part of the information security staff we can set a company policy that
all systems that offer particular services have a banner on them, but we do not
actually touch the systems to put the banner in place. Since we run an all
Microsoft client network we have the policy set so that each system has a logon
banner. This is set in
“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\poli
cies\system\” with a string value name of “legalnoticetext” and an appropriate
legal notice in the banner. This notice will show up on any PC that is running a
version of Microsoft Windows (greater than 3.11) that is set up to use the “Client
for Microsoft Networks”. The “Client for Microsoft Networks” needs to be set to
log onto the appropriate NT domain. This will allow us to notify any user that their
activity on the network could be monitored and that by using the system they are
consenting to the regulations. This would suffice if the person logged onto the
network from a PC that is part of the domain, but what if they didn’t? There are a
few scenarios where someone could use internal resources without even seeing
the logon banner.
 Scenario One: Attacker uses a PC that was never logged off the network
by the current user. This scenario would not be hard to do at the company that I
work for. There are many people that view logging onto the network as a hassle
and leave their PC’s logged in at all times. It would not be hard to sit down at
someone’s PC that is logged into the network and access the resources that they
have and also launching some attacks from the victim’s PC. If an attacker were
to do this they would not see the login banner at all. If we are not able to force

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the users to be responsible for their user ID’s and to secure their PC’s when they
are not at them there is little that we can do to persecute any attacker since it
would be hard to prove who was sitting at the PC at the time of attack. If the
company had video cameras all over then they would be able to catch the
attacker, but this is not the case.
 Scenario Two: Attacker used personal PC that is not part of the network or
domain. This type of attack would also be easy to execute within the company.
There is no policy that states that user’s can’t bring in a personal laptop into the
company and plug it into the network. There is also no regulation from the
physical security team on watching what employees bring into the company. The
attack does not have to be an employee though. Like many companies if the
attacker “looks the part” and enters the company during the busy times he/she
has a high chance of getting into the company, unless the physical security group
has some way to enforce the policy of making sure that all employees wear their
badge and are identified prior to entering the building this type of a scenario is
very easy to carry out.
 Scenario Three: An attacker used the Internet to attack publicly available
systems. This attack would be mainly focused on web, email or FTP servers. We
can place a banner on the email and FTP servers, but not on the HTTP servers.
The most targeted systems are usually the web server. There are a couple of
reasons for this. The first is that they are running Microsoft’s IIS. IIS has had a lot
of security issues in the past and is a favorite among hackers. The second is that
the attacker can not only gain access to the internals of the web server, but in a
lot of cases the attacker will be able to attack any backend database servers.
 Some services do not have any method of displaying a logon banner, like
HTTP. These services were not meant for a user to connect to directly without
the use of a specific client application. With HTTP a company can post a policy
concerning the use of their web site and state that by using the site you consent
to any type of monitoring, but this does not mean that the user saw the policy and
gave their consent. Since most attackers use custom scripts/utilities to attack
web servers they don’t have any way of seeing the links to the security policy.
Currently there exists no software that can ensure that the user has seen and
acknowledged the websites security policy. The software would not be hard to
implement. When an attacker creates a script/utility to attack a web servers
he/she only needs to specify which HTTP version that he/she is using. One of the
easiest ways to do a “banner grab” on a web server is to telnet to port 80 and
type “get” and hit the “enter”. This will give back an error like the one show below.

 HTTP/1.1 400 Bad Request
 Server: Microsoft-IIS/5.0
 Date: Mon, 26 Aug 2002 16:00:12 GMT
 Content-Type: text/html
 Content-Length: 87

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 <html><head><title>Error</title></head><body>The parameter is
 incorrect. </body></html>

 Connection to host lost.

 During this process I was not able to see any security policy. This is a
similar view to the attack when he/she attempts to exploit a server. Depending on
the situation a logon banner may or may not be of use. Since we are not a
government agency there is more things that we can do without a court order.
One of them is capturing the traffic from the attacker for evidence. Under USC
2511 (2)(a)(i) we would be able to capture the attacker’s network traffic because
we would be attempting to protect the property on the server being attacked. The
network capture will not stop the attacker from getting any information, but it may
be of assistance when it comes to finding out what the attacker was doing so that
we could be more focused when it comes to the forensic investigation or any
legal matters.

