GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensic:
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

UNSPOKEN TRUTHS — FORENSIC
ANALYSIS OF AN UNKNOWN BINARY
(GIAC v1.4)

Louie Velocci, CA, CISA, CISSP, CAA
GCFA Certification

Table of Contents

Background: 4
Figure 1.1 MD5 comparison of unknown binary to SANS provided MD5 hash total 4
Media Preparation: 4
Figure 1.2 Method of Sanitizing Media for Forensic Analysis 4
Figure 1.3 Mounting the USB drive in Linux 5
Setting the Stage — The Known Information: 5
Figure 1.4 File Ownership and Zipinfo commands against unknown Binary 5
Extraction of Unknown Binary: 8
Figure 1.5 Unknown Binary - Unzip command 8
Figure 1.6 Unzipped — Unknown Binary File Permissions 9
Integrity of the Unknown Binary: 9
Figure 1.7 MD5 Comparison of Unknown Binary Gzip 9
Figure 1.8 Decompress Unknown Binary and ‘File’ Output 10
Forensic Analysis Process: 10
Figure 1.9 Mounting dd Image in Linux VM Ware 10
Figure 1.10 Identified Unknown Binary ‘Prog’ 11
Is it the Real Thing??: 11
Figure 1.11 Unknown Binary MD5 Comparison and Match 11
Autopsy Image Analysis: 11
Figure 1.12 SleuthKit — Autopsy Forensic Analysis Tool — Screenshot 12
Figure 1.13 Initial Case Setup within_Autopsy 12
Figure 1.14 — Autopsy — File Activity / Time Line Creation Process 13
Figure 1.15 Unknown Binary ldentification within Autopsy 13
Figure 1.16 _Unknown Binary Extraction within Autopsy 14
File MAC/Timeline Analysis: 14
Netcat Reference Explored: 15
Figure 1.17 MD5 Comparison _of NetCat Binary found and downloaded 16
Figure 1.18 Interesting References within SANS to Vmware session. 16
Figure 1.19 Unknown RPM References Explored in Google Search 18
Correspondence Found: 18
Figure 1.20 Extracted Communications Relating to Investigation 18
Graphic Images Found: 19
Figure 1.21 Graphic Images retrieved from SANS Unknown Binary Assignment — Physical
Media 19
Figure 1.22 Graphic Image retrieved from SANS Unknown Binary Assignment - Ebay 19
Binary Analysis: 20
Figure 1.23 Identified Binary File Permissions 20
Figure 1.24 Modifying Permissions of Unknown Binary to allow Execution 20
Figure 1.25 File Utility Output Against Unknown Binary 20
Figure 1.26 ldentification of Linked Libraries 21
Helping Myself to Help: 21
Figure 1.27 Invoking the help function of the Unknown Binary 21
Strings Search: 22
Use of BinText: 22
Figure 1.28 ldentification of Unknown Binary Website Reference 23
BMAP Version 1.0.20 23
MD5Sum hash total: 23
Figure 1.29 Bmap and Unknown Binary MD5Sum_ Comparisons. 23
Libraries Required: 24
Figure 1.30 ldentification of Bmap Required Libraries 24

Louie Velocci, CA, CISA, CISSP, CAA Practical Assignment #1 — SANS GCFA
Designation

Figure 1.31 Autopsy Existence of Bmap Required Libraries
Figure 1.31 Compilation of Bmap and Files Created

Footprint Analysis:

Do _the individual binaries outputs compare?:
Figure 1.32 Comparison of Bmap and Unknown Binary Operations

Comparison _of Help Files

Figure 1.34 Extract of Bmap Help File

Figure 1.33 Strace Utility of Bmap
Potential Questions:
Appendix A: Strings output for unknown binary ‘prog’
Appendix B: Forensic Footprint of Bmap v1.0.20
Appendix C: Forensic Equipment Configurations:
Appendix D: References Used (in_order of appearance)

® Page 3

24
24
25
25
26
26
27
29
29
31
32

36

Background:

The first component of this paper outlines my forensic analysis of an unknown binary that is
contained within a zip file provided by SANS' (http://www.giac.org/gcfa/binary_v1_4.zip), as such |
have decided to take some precautionary steps for the first stages of the analysis. To ensure that
the unknown binary will not affect a whole system (i.e. corrupt the machine), | will be using a Linux
9.0 VMware session running on one of my forensic laptops.

Since the binary is unknown, | do not want to simply unzip the binary without taking some
precautionary steps first. Upon downloading the unknown binary | immediately performed an
MD5Sum on the file as received from SANS. This will enable me to ensure the file integrity and
completeness once fransmitted to the air-gapped forensics box.

Figure 1.1 MD5 comparison of unknown binary to SANS provided MD5 hash total

[root@POWERBIRDIE Practical - Binary Analysis]# mdSsum f1-160703-jpl.dd.gz
4b680767a2aed974cec5fbecbf84ccd7a £1-160703-jpl.dd.gz
[root@POWERBIRDIE Practical®- Binary Analysis]# cat f1-160703-jpl.dd.gz.md5s
4bEBD?E?a2aed9?4cec5fbcbf84cﬁ$?a 1{;—1ED?DE—jpl.dd.gz

“- —

Here I conpare the file integrity hf the dounloaded f1le frnn'ﬁ’ﬂ‘ll"&—uamg an HD5sun hazh
total. The HdSsun hash total of the'file dosnloaded natches that provided buy-SANS - 1 an
tharefore confortable that no changez have been nade during the dounloading process.
Thiz nill becone useful if the case were ever to go to a Canadian court that would expect
the evidence to neet the ’beszt evidence” principals referenced in the Canada Evidence Act.

To transfer the files from my networked machine to the air-gapped one, | am using a USB Drive
™ 128 Mb — USB memory stick with serial # E-D900-00-4989(B). This will also be used to
collect evidence of the forensic procedures undertaken, and transfer it to a networked machine for
report writing and retention.

Media Preparation:

As a standard practice before beginning any forensic analysis?, to ensure that the media is
cleansed from previous evidence; | used the ‘dd’ utility within Linux to write the complete contents
of the USB device with a string of zeros. In theory by dding a device with an image source of
/devizero the forensic analyst is copying an unlimited source of ‘zeros’ to the destination media.

Figure 1.2 Method of Sanitizing Media for Forensic Analysis

[root@POWERBIRDIE /]# dd 1f Jdev/zero of=/dev/sda:
N e

zing a if=/dewizaro = Tesulls in a -
heoret ically endless anount of zevos to be -
ritten to the device using *dd’ e
zing a of=/dewszdal - results in the USE drive
0 ba the destinat ion for these theoretically
ndless supply of zerps frod the dd process

' See Appendix D for more details

2 | ensure that the media used for any forensic analysis is cleansed prior to use — as this step
ensures that the evidence is admissible and in keeping with the ‘best evidence’ requirements within
the Canadian Evidence Act. (http://laws.justice.gc.ca/en/C-5/)

Louie Velocci CA, CISA, CISSP, CAA

Practical Assignment #2 — SANS GCFA Designation

If this analysis were being done on a Windows machine, an additional low level format prior to
using a ported version of ‘dd’ from a command line would be appropriate (if an investigator has a
machine with EnCase installed this step can be completed using the ‘wipe drive’ option). While not
required it is an old habit which provides an additional level of comfort that no residual evidence is
present.

As | am using my Linux forensic machine (see Appendix C for a complete description of the
equipment used.) for this analysis, | will mount the USB device (/dev/sda1) as mount point
Imnt/usb/ using the following command:

Figure 1.3 Mounting the USB drive in Linux

[root@POWERBIRDIE root]# moun
fdev/sda?2 on / type ext3 (rw) Initial mount command -
none on /proc type proc (rw) no fsmntfusb present
usbdevfs on fproc/bus/usb type usbdevIs (rw)
JSdevy/sdal on Sboot type extd (rw)

none on Jdew,/pts type devpts (rw,gid=5,mode=620)
none on Sdev/shm type tmpfs (rw)

[root@POWERBIRDIE root]# mount Sdewv/sdal /mnt/usb
[root@POWEREBIRDIE root]# mount
JSdev/sdaz2 on / type ext3 (rw)

none on JSproc type proc (rw) 4
command to

usbdevfs on Sproc/bus/usb type u bdevimnumtheush

Jdev/sdal on /boot type ext3 (rw) device

none on JSdewv/pts tyvpe devpts (rw,gid=]

none on Jdewv,/shm tyvpe tmpfs (rw)

fSdev/sdal on S/mnt/Sus type ext3 (rHEr‘ndtm?é_mtIc:dnrrjlmand
- hote Sfdevisdal now
[root@POWERBIRDIE root]# rounted as Anntiush

Setting the Stage - The Known Information:

Initially | have used the zipinfo utility with the —v flag. This utility provides us with a significant
amount of data about contained within the file binary_v1_4.zip provided to me by SANS, however
does not require me to extract the files. This utiity can be very helpful to in gathering important
information while preventing the extraction of possible malicious code.

Figure 1.4 File Ownership and Zipinfo commands against unknown Binary

[root@POWERBIRDIE SANS]# pwd
<+

/SANS directory and file

[root@POWERBIRDIE SANS]# 1s -1 ~_fttributes note RHE By

e puner only.
total 456 - 15
—TWX—————— 1 root root 459502 Apr 19 11:57 binary_vl_4.zip

Fath of urknoun binarg on Linus
forenz ic Haching

Archive: binary_ vl 4.zip 459502 bytes 3 files —_ ﬁ;gﬁs (= flag) opt ions

[root@POWERBIRDIE SANS]# zipinfo -v binary_vl_4.zip ESE of zipinfo with the

Extract of zipinfo —v command: (I choose italicized blue text for any extracted text from the analysis)

Archive: binary vl 4.zip 459502 bytes 3 files

® Page 5

End-of-central-directory record:

Actual offset of end-of-central-dir record: 459460 (000702C4h)
Expected offset of end-of-central-dir record: 459460 (000702C4h)
(based on the length of the central directory and its expected offset)

This zipfile constitutes the sole disk of a single-part archive,; its
central directory contains 3 entries. The central directory is 227
(000000E3h) bytes long, and its (expected) offset in bytes from the
beginning of the zipfile is 459233 (000701E1h).

The zipfile comment is 20 bytes long and contains the following text:

f1-160703-jpl.dd.gz

offset of local header from start of archive: 0 (00000000h) bytes

file system or operating system of origin: Unix

version of encoding software: 2.3

minimum file system compatibility required: MS-DOS, 0S/2 or NT
FAT

minimum software version required to extract: 2.0

compression method: deflated

compression sub-type (deflation): normal

file security status: not encrypted

extended local header: no

file last modified on (DOS date/time) : 2003 Jul 15 23:03:02

file last modified on (UT extra field modtime) : 2003 Jul 16 02:03:01
local

file last modified on (UT extra field modtime) : 2003 Jul 16 05:03:01
uTrc

32-bit CRC value (hex): 037deebe
compressed size: 458937 bytes
uncompressed size: 474162 bytes
length of filename: 19 characters
length of extra field: 13 bytes
length of file comment: 0 characters
disk number on which file begins: disk 1
apparent file type: binary

Unix file attributes (100400 octal): —r—-————----
MS-DOS file attributes (01 hex): read-only

The central-directory extra field contains:

- A subfield with ID 0x5455 (universal time) and 5 data bytes.
The local extra field has UTC/GMT modification/access times.

- A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

® Page 6

There is no file comment.

Central directory entry #2:

£f1-160703-jpl.dd.gz.MD5

offset of local header from start of archive: 459007 (000700FFh)
bytes

file system or operating system of origin: Unix

version of encoding software: 2.3

minimum file system compatibility required: MS-DOS, 0S/2 or NT
FAT

minimum software version required to extract: 1.0

compression method: none (stored)

file security status: not encrypted

extended local header: no

file last modified on (DOS date/time) : 2003 Jul 16 00:15:00

file last modified on (UT extra field modtime) : 2003 Jul 16 03:14:59
local

file last modified on (UT extra field modtime) : 2003 Jul 16 06:14:59
uTrc

32-bit CRC value (hex): 75457d32
compressed size: 54 bytes
uncompressed size: 54 bytes
length of filename: 23 characters
length of extra field: 13 bytes
length of file comment: 0 characters
disk number on which file begins: disk 1
apparent file type: text

Unix file attributes (100644 octal): —rw-r—--r--
MS-DOS file attributes (00 hex): none

The central-directory extra field contains:

- A subfield with ID 0x5455 (universal time) and 5 data bytes.
The local extra field has UTC/GMT modification/access times.

- A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

There is no file comment.

Central directory entry #3:

prog.MD5

offset of local header from start of archive: 459135 (0007017Fh)
bytes

file system or operating system of origin: Unix

version of encoding software: 2.3

minimum file system compatibility required: MS-DOS, 0S/2 or NT
FAT

minimum software version required to extract: 1.0

compression method: none (stored)

file security status: not encrypted

extended local header: no

file last modified on (DOS date/time) : 2003 Jul 16 00:14:38

file last modified on (UT extra field modtime) : 2003 Jul 16 03:14:38

® Page 7

local
file last modified on (UT extra field modtime) :
urc

2003 Jul 16 06:14:38

32-bit CRC value (hex): 804cc662
compressed size: 39 bytes
uncompressed size: 39 bytes
length of filename: 8 characters
length of extra field: 13 bytes
length of file comment: 0 characters
disk number on which file begins: disk 1
apparent file type: text

Unix file attributes (100644 octal): —rw-r—--r--
MS-DOS file attributes (00 hex): none

The central-directory extra field contains:

- A subfield with ID 0x5455 (universal time) and 5 data bytes.
The local extra field has UTC/GMT modification/access times.
- A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

There is no file comment.

As we can see this utility tells us that the operating system of the machine used to create this
archive is a Unix (likely Linux machine — based on other analysis below), the zip file was last

modified on July 16, 2003 and the zip contains fl-1607034p1.dd.gz,

fl-160703-jp1.dd.gz.MD5, and

prog.MD5. The individual file sizes are: 474162, 54, 39 bytes respectively.

Extraction of Unknown Binary:

The above analysis indicates that the binary appears to have the adopted the user (UID) and group

(GID) attributes of my machine. Using the ‘unzip’ command with the
possible to determine the permissions of the original UID/GID of the

‘—X flag enabled it might be
fles as they were set on the

machine prior to archival. This will potentially yield additional information that can be used in piecing

together seemingly random case evidence.

Figure 1.5 Unknown Binary - Unzip command

[root@POWERBIRDIE SANS]# unzip -X binary_wvl 4.zip
Archive: binary_vl_4.zip
. . “zing the -% flag will
GCFA binary analysis et the urzip utility
inflating: f1-160703-jpl.dd.gz [t¢ restore the original
intla :!.ng ‘:!P g I0AGI0 infornat ion for
extracting: f£l1-160703-jpl.dd.gz.mthis archive

extracting: prog.md5

® Page 8

Next the following command ‘Is —al’ issued to determine the file permissions and timer at archival.

Figure 1.6 Unzipped - Unknown Binary File Permissions

[root@POWEREIRDIE SANS]# 1s -ale—

———— pzing "lz -al’ I an able to list the directories content

total 940 pith all contents (-al and long listing fornat (1)
drwxr-xr-x 2 root root 4096 Jan 5 08:55 — -

Hote original archival
drwxr-xr-x 25 root root 4096 Jan 5 08:55 7 ltinesidates
—TWX—————— 1 root root 459502 Jan 5 08:56 binary_vl_4.zip
—I———————— 1 root root 474162 Jul 16 02:03 fl1-160703-jpl.dd.g=
—TW-T—-T—— 1 root root 54 Jul 16 03:14 f1-160703-jpl.dd.gz.md5

It is interesting to note that the original machine appears to be using a Unix based kemel (based
on UID/GID and directory permissions. As a result my expectation is that this unknown binary wil
be a Unix based binary as opposed to a Windows one. Additionally | noted that the date on the
system used for archival was July 16, 2003. This may be important later on as it may help us
validate the existence of the binary at that point in time in the general Intemet population.

Since | passed the -X flag to the unzip command my expectation was that the utility would have
restored the UID/GID of the original system. Given that the UID/GID are still set to root/root
respectively then either the system was a Unix system or the user was logged in as root in a
root owned directory when tard. It is possible that the file was possibly archived on another
system environment - Windows perhaps.

Integrity of the Unknown Binary:

Before | start any analysis on this binary, | will confirm the file integrity using the MD5 hash totals
provided by SANS. Since the MD5Sum fotals are the same | can state that the binary was not
altered between the archival process by SANS, and me extracting it in the forensic lab.

Figure 1.7 MD5 Comparison of Unknown Binary Gzip

[root@POWERBIRDIE SANS]# cat f1-160703-jpl.dd.gz.md5 prog.md5
4b680767a2aed974cecs5fbcbfB84cc97a £f1-160703-jpl.dd.gz "\
7b80d%aff486c6aataa3efat3cc56880 prmg H"‘-,
[root@POWERBIRDIE SANS]# mdSsum £1-160703-jpl.dd.gz
4b680767a2aed974cec5fbch fsx:maﬁl‘ﬁ}auma-jm. dd.gz

N

[noted that the HDSsum hash totals are the same = €0 we can be hig command extracts
certain that the f1-160703-jpl.dd file in the 3AM3 archive is the he contents of the
tate as the extracted one. ANS provided HAS hash
otal files.

| extract the contents of the f-160703-jp1.dd.gz file with the gzip —d command. The resultant file
called fl-160703-jp1.dd appears to be an image created with the Unix ‘dd’ utility. =~ We confirm this
with the following:

Figure 1.8 Decompress Unknown Binary and ‘File’ Output

® Page 9

[root@POWERBIRDIE SANS]# gzip -d fl—lED?DE—jR]:dd.gz

[root@POWERBIRDIE SANS]# 1s " Pazip -d7 extracts the

binary_vl_4.zip f£1-160703-jpl.dd f1l-160703-jpl.dfentents of a gzip file to
. . the current directory.

[root@POWERBIRDIE SANS]# file f1-160703-jpl.dd

f1-160703-jpl.dd: Linux rev 1.0 ext2 filesystem data

he *file® utility tries to identify the file contents based on the ‘nagic’
araneters enbedded in the file. These nagic® files provide a fingerprint of
he file type.

Forensic Analysis Process:

Since the file is a ‘dd’ image | have two options to start the analysis; first | can use Autopsy
(http:/Amww.sleuthkit.org/autopsy/index.php), or secondly | can mount the image directly in Linux with
the command outlined in Figure 1.9. Initially | chose the second option to mount the image directly,
however | will also be using Autopsy to perform further do some analysis. | chose this path, as |
do not know what to expect, and if the image is mounted properly then no harm will come from
the direct mounting.

Figure 1.9 Mounting dd Image in Linux VM Ware

[root@POWERBIRDIE SANS]# mount -o loop,ro,noatime,nodev,noexec f1-160703-jpl.dd /mnt/sans-unknown|

binary/
hount ing the f1-160703-jpl.dd inage nith the folloning flags enabled:
[root@POWERBIRDIE SANS]# mount Lo s
dev/sda2 on / type ext3 (rw) loap: use the loophack device
\ 0z Tead unlg - doezn’t inpact file integrity
one on /proc type proc (rw) oat ine: don™t adjust last access tine (since vead only - don’t need to

hould ba preszent]
hithin the inage.

hone on /dev/shm type tmpfs (rw) potent ially “corpronised naching” uith unknown binaries
dev/sdal on /mnt/usb type ext3 (rw)

sbdevfs on /proc/bus/usb type usbdevfs (rw) \‘\ pecify mot to change inode tines for nodif icat fons & creeat iohs - none
dev/sdal on /boot type ext3 (rw) odev: bazically asks the systen to ignove any dewices [i.e. Sdew’zdal)

lone on /dev/pts type devpts (rw,gid=5,mode=620) oesec: don’t allow binaries to esecute - could be wery dangerous given a

bp0)
[root@POWERBIRDIE SANS]# hons the inage nounted on gy nachine az fnntssanz-unknounb inary aith the sane
attributes as specified above.

SANS/f1-160703-jpl.dd on /mnt/sans-unknownbinary type ext2 (ro,noexec,nodev,noatime,loop=/dev/lo

When mounting the image | wanted to ensure that the integrity of the evidence was preserved.
By using the following mount options the data integrity will be preserved:

loop — use loopback device

ro — read only so no image changes are allowed
noatime — don't change last access time

nodev — Bypass system devices in image
noexec — disable binary execution

Once mounted | change to that directory and perform an ‘Is’ command to list the content of the
image and get the following interesting information, namely the ‘prog’ file that we have been told to
isolate and perform the analysis on as the unknown binary. Typically a forensic analyst doesn’t
know the exact items they are looking for so this option would be less effective in a real forensic
analysis.

Figure 1.10 Identified Unknown Binary ‘Prog’

® Page 10

[Toot@POWERBIRDIE SANS]# cd /mnt/sans—unknownbinary/
[root@POWERBIRDIE sans-unknownbinary]# 1s

Docs John lost+found May03 nc-1.10-165.3i386.rpm..rpm prog
[root@POWEREBIRDIE sans-unknownbinary]# I

Is it the Real Thing??:
A quick comparison of the MD5Sum hash totals indicates that this is in-fact the unknown binary.

Figure 1.11 Unknown Binary MD5 Comparison and Match

Vo
[root@POWERBIRDIE SANS]# cat prog.md5 v, BANS provided HdSSun of the
7b80d9aff486c6aabaaldefa6l3cc56880 prog unknoun binary
[root@POWERBIRDIE SANS]# mdSsum /mnt/sans-UnKnownbinary,/prog
7b80d9aff486cGaaGaa3efaG3cc 36880 /mnt/sans-unknownbinary/prog

-
~ natching HdSsun hazh for the found binary - they are the sane thing.

So we have the ‘what’ component of the five “W’ questions and at a first glance it appears that we do not
have to do anything for me to have been able to extract the unknown binary. As a forensic investigator
however, I want to examine all the evidence before making any conclusions. I notice the lost+found
directory, and the nec-1.10-16.i386.rpm file (this is for a network utility called ‘netcat’) were also noted in
the ‘Is’ output, this might assist / help us to better understand the ‘why’ and ‘where’ of any inappropriate
activity.

Before going any further I want to load this image into Autopsy and create a timeline as well as other items
that I think will help with a thorough investigation.

Autopsy Image Analysis:

To help with the additional analysis of this unknown binary I wanted to perform some additional research in
Autopsy’ (version 1.70). Autopsy is an all-encompassing image analysis tool that draws upon several open
source utilities; however the individual tools could also be run independently. In this analysis I choose the
New Case icon at the bottom and put in the appropriate investigators name, image type and the source
location for the image, as well as the MD5hash total database(s). Autopsy takes this information and starts
to assess the timeline (modified, accessed and changed).

Figure 1.12 SleuthKit - Autopsy Forensic Analysis Tool - Screenshot

3 Autopsy is located at http://www.sleuthkit.org/autopsy/

® Page 11

Here are the initial case facts captured in Autopsy:

Figure 1.13 Initial Case Setup within Autopsy

screenprint fron Autopsy -
indicat ing directory and date of
initial analyziz for thiz work.

I have compiled the NSRL known MDS5hash total databases on my Linux forensic machine. Once in
Autopsy I quickly perform a timeline capture (see below) of the image, and then perform a ‘file analysis’
search from within the case gallery sub-menu.

Figure 1.14 - Autopsy - File Activity / Time Line Creation Process

® Page 12

Case: SANS-Unkown_Binary
Host: SANS-ASSIGN1

fiz a first step nost

into Autopsy.

fila.

—

invastigators will create a file
lact ivity tine line (tine-line) for
k1l inagez that they have loaded

In Autopsy 1,70

this is dane by clicking on tha®,
File fictivity Tite Lines Icon froh|
the Caze Gallery section, and then
elact ing the appropirate inage to
kreate a file tineline for, and

then alsa the output nane of the

CASE GALLERY[% HosT GALLERY HosT MANAGER
mount name
A # (¢ unalloc) images/f1-160703-jpl.dd details
OK ADD IMAGE CLosE HosT
b
\, HeLP
FILE ACTIVITY TIME LINES IMAGE INTEGRITY HAsH DATABASES
ViEw NOTES EVENT SEQUENCER

I noted that the image has both allocated and unallocated content which means we will likely have to analyze

deleted files during this analysis.

Figure 1.15 Unknown Binary Ildentification within Autopsy

11:24:00 (CDT)

03:12:45 (CDT)

03:05:33 (CDT)

FILE ANALYSIS = KEYWORD SEARCH FILETYPE IMAGE DETAILS META DATA DaTa UNIT Herp CLOSE
l. k] X
e Diecclory; DeL 'I.'_vp.e MAME UL % MoDIFIED ACCESSED CHANGED SIZE uibD GID
o dir / in
d/d A 2003.07.16 2003.07.16 2003.07.16 1024 0 0
Gic 03:03:13(CDT) 03:12:39(CDT) 03:03:13 (CDT)
d/d oL 2003.07.16 2003.07.16 2003.07.16 1024 0 0
03:03:13(CDT) 03:12:39 (CDT) 03:03:13 (CDT)
rir 2~5456g . tp 2003.07.14 2003.07.16 2003.07.14 2592] 0
A TR D 11:13:52(CDT) 03:11:36 (CDT} 11:13:532 (CDT)
d/d Docs/ 2003.07.14 2003.07.16 2003.07.14 1024 502 502
EXPAND DIRECTORIES 11:22:36 (CDT) 03:10:01 (CDT) 11:43:44 (CDT)
d/d John/ 2003.02.03 2003.07.16 2003.07.14 1024 502 502
07:08:00 (ATL) 03:09:35(CDT) 11:49:25 (CDT)
) _ d/d lost+found/ 2003.07.14 2003.07.16 2003.07.14 12288 0O 0
e T b e o 11:08:00 (CDT) 03:06:15 (CDT) 11:08:09 (CDT)
the unk bi *prog”
lgezasﬁg”mg?g?e ;:Sng preg d/d May03/ 2003.05.03 2003.07.16 2003.07.14 1024 502 502
clicking on the title of it, I 07:10:00(CDT) 03:0949(CDT) 11:50:15 (CDT)
paz able to extract the .
ontents to a file. il rir ne-1.10-16.1386.rpm..xpm 2(003.07.14 2003.07.14 2003.07.14 56950 502 502
= 11:12:02 (CDT) 11:12:02(CDT) 11:43:57(CDT)
r/T & prog 2003.07.14 2003.07.16 2003.07.16 487476 502 502

Using file analysis it is easy to find the ‘prog’ file. Once identified it is possible to recover and
extract the files using the ‘export contents’ functionality. Figure 1.16 shows how | identified and
exported the unknown binary for further analysis.

Figure 1.16 Unknown Binary Extraction within Autopsy

® Page 13

FILE ANALYSIS = KEYWORD SEARCH FILETYPE IMAGE DETAILS META DATA DATA UNIT HELr CLOSE

7 X
View Di U100 (CDT) 03:0%:49 (CDT) TES0:15 (CDT)
\ few Directory: r/r ﬂ41'ﬂ_tg;€-1-10-15-i335- m. qeom - 2003.07.14 2003.07.14 2003.07.14 56950 502 502
11:12:02 (CDT) 11:12:02(CDT} 11:43:57 (CDT)
r/r prog 2003.07.14 2003.07.16 2003.07.16 487476 502 502
oK /' 11:24:00 (CDT) 03:12:45(CDT) 03:05:33 (CDT)
<] I E
file: Using regular magic file */root/SKEL/usr/local/src/sleuthkit/share/magic’ file: couldn't find any magic files!
T ——— ASCII (display - report) * Strings (display - report) * Export * Add Note

File Tvt:le: d ,a,tar-"'“,"

EXPAND DIRECTORIES Contents Of File: ‘prog o —

y clicking on “prog _—
utopzy opens the file up in —
brouzer field and provides —
he Forensic Analyst several A127ELEARSTRIAQADADADADADADADADAZADASADATADADADAZZLAT 2BALABLADADADALA0MAT ADADADADADAAD ADABAD(ADALTADATEADATADADADAD)
ptions in dealing with the 14-—=T334201ur23441844040404041334102¢41641314236 ha22441024114842324132~42514247413141064164184414040404163 1641148413
e, A139EA24A1318A0xA 542357 4141w A0A 1314236444 139EA2442550hT= ABJABA232$41140404131419641641314236 h@= ABAZ

Ton here dou can evpert the || 400813141964164100EA2524242425542 5542554 139EA24A2 540423341494 040404 1444 130 EA 2484 1288~ xA2 5 5uA24BA130EA 24425 50n 128

File MAC/Timeline Analysis:

A timeline provides extremely useful information to a forensic analyst on system modifications, or in re-
constructing a chain of events. The process of creating a timeline within Autopsy is rather mundane, in that
it is precipitated by clicking an icon and entering in the start date for the timeline and the output file name.
You can specify the ending date for a timeline, however you may miss information if the file system dates
were altered.

This same process could be done from a command line using the ‘grave-robber tool’ from The Coroners
Toolkit 4TCT) assuming that it is installed on the system by using the following command:

grave-robber —E (the —E flag says to grave-robber to grab all file information — however additional flags
can be configured - for a complete listing use grave-robber * « help)

Once a timeline has been developed an investigator needs to understand how to interpret the results,
particularly the differences between the components of the timeline. The timeline represents three system
related events for each individual file, commonly referred to as ‘MAC’ as outlined below:

Timeline Component Represents
M - modification time The last time that a file was written
A — access time The last time a file was read
C — change time The last time the inode contents were written.

Using Autopsy I extracted the timeline analysis for this image, and noted that the first entry was January
28,2003 which appears to be the creation and access of two of the three images retrieved. Looking for
more information about the timelines for the unknown binary, I extracted only the entries related to ‘prog’:

Mon Jul 14 2003 11:24:00 487476 m.. —/-rwxr-xr-x 502 502 18
\/prog
Wed Jul 16 2003 03:05:33 487476 ..c —-/-rwxr-xr-x 502 502 18
\/prog
Wed Jul 16 2003 03:12:45 487476 .a. —-/-rwxr-xr-x 502 502 18

4 Coroners Toolkit (TCT) can be located http://www.porcupine.org/forensics/tct.html

® Page 14

\/prog

We can see that the unknown binary was brought onto the machine July 14th at 11:24, is 487476 bytes in
size and has both a user and group ownership value of 502 (unfortunately we do not have a copy of the
fetc/group file to further analyze the memberships of this group (but it is likely all users), in any event the
file is set to ‘rwxr-xr-x’ meaning that the owning UID/GID have read, write and execute permissions on this
file, while all system users have the ability to read and execute this file but not necessarily write to the file.
It is interesting to note that the last time the program was accessed was July 16, 2003 at 3:12 AM, the
same day that the image was taken (which we can assert was the day the evidence was seized).

So far the analysis has shown several references to nc-1.10-16..i386.rpm and within the timelines we see
specific entries about this nc rpm including the original creation and access date and time of July 14, 2003
at 11:12 AM and a change entry on the same date but at 11:43 AM.

\/nc-1.10-16.1i386.rpm..rpm
Mon Jul 14 2003 11:12:15 100430 ma. —-rwxr-xr-x 0 0 23
<fl-160703-jpl.dd-dead-23>

We are able to see that Netcat initially appears in this timeline on July 14, 2003 at 11:12 AM. This is
likely the compile date and time of Netcat.

Mon Jul 14 2003 11:43:57 56950 ..c -/-rwxr-xr-x 502 502 22
\/nc-1.10-16.1i386.rpm..rpm

Netcat Reference Explored:

Using Autopsy I was able to extract the nc-1.10-16.i1386 rpm binary, and upon analysis determine that the file
extracted from the image was the actual rpm that one would use to install ‘netcat’ on a system. Using a
Google search with criteria of ‘ne-1.10-16.i386.rpm’ I found that this specific rpm is the Redhat 8.0 rpm for
nc. I found and downloaded a copy of the rpm from the website (http:/rpmfind.rediris.es/rpm2html/redhat-
8.0-1386/nc-1.10-16.1386.html) and performed an MD5Sum on it and the one extracted from the fl-160703-
jpl.dd image from SANS. The MD5Sum hash totals matched, and so I now know that the system that John
Price was likely using was using Redhat 8.0 as it’s base operating system, or that he had some dual boot, or
VM configuration of Redhat 8.0. Additionally we know have evidence that Netcat was present on his
machine.

Figure 1.17 MD5 Comparison of NetCat Binary found and downloaded

[rauté—P{}HERBIRDIE SANS]# mdSsum nc-1*.rpm
535003964e861aad97ed28b EEfEE??EDN nc-1.10-16.i386.rpm
535003964e861aad97ed28b56Ffe677220 nc-1.10-16.i386. lgam. .rpm

The rpr dounloaded fron the internet<lspecific——
to Redhat 8.0) - natches the HDSsun—of the
ne-1.10-16. vpri. . rprfide=Eut racted fron the
f 1-160703-jpl.dd inage

Netcat (nc) is defined on the same rpm website as ‘a simple utility for reading and writing data across
network connections, using the TCP or UDP protocols. Netcat is intended to be a reliable back-end
tool which can be used directly or easily driven by other programs and scripts. Netcat is also a
feature-rich network debugging and exploration tool, since it can create many different connections
and has many built-in capabilities’. From experience I know that ‘nc’ can be used to copy files to /
from remote computers, execute commands remotely etc. This leads me to believe that John is likely using

® Page 15

‘nc’ in connection with his illegal activities and most likely to connect remotely to another machine to retrieve

the copyrighted material.

Given that the rpm found was for Redhat 8.0, and the workstation appeared to be a Microsoft based on the
presence and use of Microsoft Word 8.0, it is likely that this version of Netcat was either run from a dual
boot machine or within a virtual machine. With further investigation of the full image I was able to extract
evidence that Netcat was likely run in a virtual machine using Vmware (Www.vmware.com).

Figure 1.18 Interesting References within SANS to Vmware session.

ragment Number:
260

Number of Fragments:
1

ragment Size: 1024

Lddress Type:

I Regular (dd) j
L azarus Addr: [~

OK

BLLOCATION LIST

LoAD UNALLOCATED

4m PREVIOUS NEXT =p
ExXPORT CONTENTS App NoTE

ASCII (display - report) * Hex (display - report) * Strings (display - report)
file: Using regular magic file “/root/SKEL/usr/local/src/sleuthkit/share/magic’ file: couldn't find any magic files!

data
Fragment 42 %
Not Allocated
Group: ()
Hide Meta Data Address

String Contents of Fragment 42 (1024 bytes) in images/fl-160703-jpl.dd

. sing Autopsy I uwas able to look at unallocated fragrents within the
xmms-mpgl23-1.2.7-13.1386. rpm. .Tpmllg__ linage. In Fragrent 42, T uas able to extract another file nane that
Ul a ppears to be related to the case, and at a ninimun gives uz sone nove

infornat ion that John Price was likely vunning Redhat 8.0 - in a
- MHuare. The vpn identif ied shnz-npgl?3-1.1.2.7-13. 0386, rpr iz only
cd .. - oquired for individuals uzing Redhat 8.0 or 9.0 and wizhing to uatch
vmware-config.pl FEG "z,
VIWare
LOGNAME=root

wnware

Within Autopsy 1 identified a fragmented inode on the image that contained remnants of references to vmware.

An extract of fragment #42 found using Autopsy

Autopsy string Fragment Report (ver 1.74)

Fragment: 42

Length: 1024 bytes

Invalid address in indirect list (too large): 134996352Not allocated to
any meta data structures

MD5 of raw Fragment: e€1067497002867b59c8e1953da221c25

MD5 of string output: 5al18a616bldbb5016819365948cbac4d4

Image: /forensics//SANS-Unkown Binary/SANS-ASSIGNl/images/f1-160703-

ipl.dd

Image Type: linux-ext?2
Date Generated: Mon Jan 05 02:05:59 2004
Investigator: unknown

xmms-mpgl23-1.2.7-13.1386.rpm..rpmUU

Uu a
vmware
cd ..

vmware-config.pl

vmware
LOGNAME=root

To ensure that the analysis was complete a Google search with the following search criteria ‘xmms-mpg123-
1.2.7.13-i386.rpm’ confirmed my expectations that this was a Linux source code package. It appears that this

® Page 16

specific rpm is needed by Redhat 8.0 or 9.0 to handle mpeg audio input™— which seems to follow the possible
scenario that we are investigating. It also gives further support that we are looking at either a dual boot
machine or a machine with VMware installed.

Figure 1.19 Unknown RPM References Explored in Google Search

laddress I@jhttp:Hhavardk.xmms.urg,l’distfxmms-l.2.?-rh8-rh9-rpm,|’ j @GD Links 65nag1t S

The short SUImary [The rpn identified in the strings output of the
_ pnallocated fragrent 42 fron the f1-160703-jpl.dd
— inage.

You 01]1}’ need to install th.lS rpm to be at_)!gj:g_p_lay.mp%’s*ﬂﬂ{ed Hat 8/9: ote interesting references to Redhat not shipping with
xmms-mpgl23-1.2.7-21.1386.pm 4 _— this RPH *due to concerns about patents”.

Complete set of xinms rpm's for RedHat 8 and 9/’

e
This iz a set of RPM's for Red Hat 8 and 9 that includes the mpeg audio input plugin. Red Hat shipped without support for mpeg
audio due to concerns about patents. In able to easily be able to add mpeg decoding to a Red Hat install, these RPM's are built with

the Red Hat spec file. The RPM's that are distributed by xmms.org are a bit different.
Source:

xmms-1.2.7-21.8rc.rpm

Binary packages:

xmms-1.2.7-21.i386.rpm

xmms-mpel23-1.2.7-21.i386.1pm (mpgl23 plugin)

xmms-sking-1.2.7-21.i386.rpm (skin package)
xmme-devel-1.2.7-21.i386.1pm (devel package)

Hiavard Kvilen <havardk@xmms. org>

s

In addition to extractable files and various references to rpms’, from the image I was able to extract some
correspondence between John Price and an individual called Mike.

Correspondence Found:
Figure 1.20 illustrates two Microsoft word documents and several pieces of documentation. Through Autopsy
I extracted each of these for further analysis.

Figure 1.20 Extracted Communications Relating to Investigation

DVD-Playing-HOWTO-html.tar Letter.doc MP3-HOWTO-html.tar.g=z
Kernel-HOWTO-html. tar [%z Mikemsg.doc Sound-HOWTO-html.tar.gz

CUMENnat 1on Tound U1t Ihn tha T [-100703- Jpl.00 Inage Tron MG, Hote fhat several docunents
reference uze of warious nedia file types [OMD, HP3, Sound files)

Theze night hawe been useful for John when trying to zet up hizs Linos nachine to play warious
hedia tupss — azsuning that he waz illegally cppying DNO %, C0%: or Husic in sone fornat.

Bince we didn™t find any actual copied nedia ue would not be able to say with 100 percent
artaintn

One word document details a communication between John Price and an individual referred to as ‘Mike’
(located in a file called Mikemsg.doc, which appears to have been created on July 14%, or 2 days before the
image was created (so close to the investigation initiation).

‘Hey Mike,
I received the latest batch of files last night and I'm ready to rock-n-roll (ha-ha).

5 Taken from http:/havardk.xmms.org/dist/xmms-1.2.7-rh8-rh9-rpmy/

® Page 17

I have some advance orders for the next run. Call me soon.
JP!

This communication is interesting as it indicates that John Price received ‘the latest’ indicating that there has
been past batches of copyrighted material illegally copied and gives a sense that he is not acting alone.
Additionally he appears to have a pre-defined market for his stolen goods and is willing to source items that
they would like. This would typically indicate that he trusts these individuals (both to buy illegal copies, and
to formalize the process enough to start taking requests).

The other items of note was the reference to ‘last night’ and ‘next run’, this might give us a sense that the
individual is using the IT resources ovemight, or is collecting the files at night and processing them during
normal business hours. Additionally when I read ‘next run’ I envision a process which is actually re-copying
material into a more useable format (i.e. copying CD’s). Finally it is signed by ‘JP’, which I have taken to
be John Price our suspect. This links his activities to him.

Graphic Images Found:

During our analysis I was also able to identify three (3) pictures located within the fl-160703-jpl.dd image.
Two of the images sect-num.gif, and sector.gif respectively — seem to depict a hard-disk and the allocations of
physical media sectors.

Figure 1.21 Graphic Images retrieved from SANS Unknown Binary Assignment -
Physical Media

Track mector
and

Since the scenario provided by SANS indicates that John Price was using the company’s IT resources to
illegally distribute copyrighted material, this might indicate that John had to do some research on how to
make an exact copy (and hence the reason behind track and sectors).

Figure 122 depicts the final image ebay300.gif which appears to be un-related to this investigation — although
at first I thought it might be a means for John Price to sell the copyrighted materials. 1 did not investigate
this further at this point in time.

Figure 1.22 Graphic Image retrieved from SANS Unknown Binary Assignment -
Ebay

H] T‘a]f' e Y [T e e]

We're serry, but the eBay system is temporarily umavailahle,

We extend owr umaost apologies for this inconvenience, and we thank you
for your patience.

Please see The eBay Ammoimcements Board for more information

[Thee Automsatic Auction Extenzion Policy provides details about vwhen
cBay will atomatically extend saictions following an mscheduled osace.

wly

® Page 18

So far our analysis tends to lead us to John Price copying some form of entertainment (Music, Video, DVD)
using an unknown program. Given the nature of the items he is likely copying, my expectation is that the
unknown binary will be a ‘ripper’ or image utility of some type to make illegal copies of DVD’s, CD’s or
other media. Such a utility would be used to possibly break the encryption around a movie for instance and
then allow the person to make illegal copies of the same CD or DVD. Let’s move to the binary analysis
NOW.

Binary Analysis:
Having identified the file called ‘prog’ as the unknown binary from SANS and verifying its integrity I started
by using the ‘Is -1 prog’ command to show the file permissions for prog.

Figure 1.23 Identified Binary File Permissions

[ruut@PDWERﬁIRDIE sans-unknownbinary]# 1s -1 prog
—-TWXT-XT-X 1 JLO JLO 487476 Jul 14 11:24 prog

Note that JLO is one of the UIDs on my forensic machine and so the name is not that of the original
machine, rather it has inherited the user and group references that are on this particular machine. What is
interesting is that the permissions is executable by all individuals on the system. This would of course
assume that we hadn’t set the mount options to ‘read only’ and ‘noexec’. As it is currently mounted we
will not be able to execute the binary for our investigation. So I will first copy ‘prog’ to a partition that
will allow me to execute the binary when necessary. 1 will at the same time change the permissions to
ensure that it isn’t accidentally executed by another system user (which is unlikely as it is an air-gapped
laptop). To do this we use ‘chmod 700 prog’ and perform another ‘Is —al prog’

Figure 1.24 Modifying Permissions of Unknown Binary to allow Execution

[root@POWERBEIRDIE sans-unknownbinary]# cp ./prog /SANSs [
_ . Copg 'prog’ to another
[root@POWERBIRDIE sans-unknownbinary]# cd ,-"SANS,G________ hart it Lon and change
[root@POWEREIRDIE SANS]# chmod 700 prog T to that directory
[root@POWERBIRDIE SANS]# 1s -al prog ‘HNK

—-rWK—————= 1 root root 487476 Jﬁhakﬁ 09:58 prog

Lhange the file perniszions so that only voot
Hote pernizzions are changed to veflect that only root can emecute thiz unknoun binavy (within a WH
cah hod executa, ko any potent ial danage would not be
pathanent 1.

Comfortable that only root can execute this binary, it is important to extract as much information without
actually executing it. To extract some basic information about the binary I will use the ‘file’ utility in Linux
to extract any useful information.

Figure 1.25 File Utility Output Against Unknown Binary

[root@POWERBIRDIE SANS]# file prog
prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, stripped

As Figure 1.25 shows, the binary is a Linux executable that is statically linked and is considered version 1.
This leads me to believe that it is not dependant on the existence of any shared libraries. I will confirm this
with the ‘ldd’ utility that will identify any interesting shared libraries that might be needed to execute the
binary.

® Page 19

Figure 1.26 ldentification of Linked Libraries

[root@POWERBIRDIE ENS]# 1ldd prog
not a dynamic executable

So we are not looking for a binary that requires shared libraries to function properly, this might mean that
the program could be run as a stand-alone or run from a CD or floppy. As a next step I will see if any
help files exist.

Helping Myself to Help:
In an attempt to see the usage pattern of this unknown binary I decided to try to see if there was a help file
associated with it. This test is rather harmless as it doesn’t actually execute the binary — only shows you the
help file.

To test for this I used ‘/prog ¢ < help’, which invokes a help file if available. The output was interesting,
and so I re-ran the same command but added an optional output redirection flag so that I could review the

help file in a text editor, or possibly use it for comparative purposes.

Figure 1.27 Invoking the help function of the Unknown Binary

[root@POWERBIRDIE SANS]# ./prog --help

prog:1.0.20 (07/15/03) newt

Usage :¥prog [DPTIDN]..:‘Tﬁxarget—filename>]

use bluck:}iaE‘knuwledge to perform special operations on files

e,
e Intereszt ingly enough we non have a werzion and
--doc VALUE H‘“H_ date, and a reference to newt. It iz likely
where VALUE is one of™ that neut eithar created, ov iz tesponsibla for
] i ™) the upkeep of whatever the binary is.
version display version dnd exit

.,
help display options and exif“m.ah
man generate man page and exit .

b
sgml generate SGML invocation info . |It appears az if whonever conpiled this
d ot SAMS did a thorough job of stripping
--mode VALUE the actual mane of the binary - the
where VALUE is one of: putputted halpfile will be uzeful az b
] ran use the "diff” comnand against the
m list sector numbers help file nou.
¢ extract a copy from the raw device
s display data
p place data
w wipe

chk test (returns 0 if exist)

sb print number of bytes available

wipe wipe the file from the raw device

frag display fragmentation information for the file

The rest of the help file makes references to various configuration specific help. 1 decided that since some of
the relevant information was obfuscated, that I might yield better results from the use of the strings utility that
reads the contents of a file and shows any printable characters.

Strings Search:
Often extremely useful information is contained within the source code of the binaries / programs themselves.
It might be for de-bugging purposes, programmer documentation or simply a wise-guy programmer wanting to
take some personal credit. In any event it is also very useful in most cases to help identify unknown

® Page 20

binaries. Next I run ‘strings’ against prog and output it to a file. The output was eighty-nine (89) pages in
length, so I have extracted the parts that I used from this output and incorporated them into this document.
For a full listing of the output file sec Appendix A.

*1.0.20 (07/15/03) " — appeared to be a version and date reference for this file — so potentially
useful for comparative purposes later on.

‘newt’ — appears to be a specific references to an individual who was also referenced in the help files —
possibly an Intemet ‘handle’ for whomever is taking care of bug fixes or at least tracking them.

‘use block-1list knowledge to perform special operations on files’ —
appeared to be some specific help related information for ‘prog’

Use of BinText:
Since the strings output wasn’t the easiest to use and didn’t provide me with many valuable pieces of
information 1 decided to use BinText® to load the ‘prog’ file and extract the following text which appeared
to be part of a help file. Specifically I was interested in the following:

‘0004C880 0004C880 0 wuse block-list knowledge to perform special operations on files’

This appeared to be some binary specific type information, which I confirmed by moving to the networked
machine and performing a Google’ search on the following:

‘use block-list knowledge to perform special operations on files’

One of the Google search pages returned was http://lwn.net/2000/0420/announce.php3 and referenced a
product called bmap v1.0.17. Interested in this 1 decided to see first if there was a version 1.0.20 (using
Google with a search criteria of ‘bmap 1.0.20°) — which in fact there was. 1 downloaded it from another
website (http://build.Inx-bbe.org/packages/fs/bmap.html)

Figure 1.28 depicts a likely match to the unknown binary.

Figure 1.28 Identification of Unknown Binary Website Reference

Address I@:lhttp:;’,l’build.lnx-bbc.org,l’packages,ffs,l’bmap.html j @Go | Links QSnagIt =

bmap -- bmap forensic tool

Categories

.f'.:-

Version

¢ BinText is a text extractor freeware tool that can be located at
www.foundstone.com/resources/proddesc/bintext.htm .

" www.google.ca (Canadian version) www.google.com (U.S. version)
www.foundstone.com/resources/proddesc/bintext.htm

® Page 21

It is interesting that the references and analysis now appears to point to a forensic imaging tool not a ripper
program. This would makes sense as John would want to make exact copies of media, then he would be
using an imaging tool that is capable of performing ‘true’ copies, which typically requires bit-stream-copies®.

BMAP Version 1.0.20

To determine if BMAP was in fact the unknown binary, I felt it prudent to download the source from this
website, and then perform some analysis on it. The first step was to obtain the source file and un-gzip and
un-tar it, in essence I uncompressed the source files and loaded them to my Unix based analysis machine
(once downloaded from my networked machine with Internet connectivity).

MD5Sum hash total:

Ideally we would be able to compare the outputs of the MD5Sum hash totals for each file and have a
perfect match. Unfortunately this is not typically the way that things work in a forensic investigation and
when 1 tried to compare the MDS5Sum hashes of these two files, they were different. This indicates that the
content of each file has at least a single character difference.

Figure 1.29 Bmap and Unknown Binary MD5Sum Comparisons.

[root@POWERBIRDIE bmap-1.0.20]# md5sum prog bmap
7b80d9%aff486c6aabaa3efa63cc56880 prog
eafb4ce0c141263dfe9edf75d79b218a bmap

This makes sense as we will see later from the footprint of bmap that it writes specific lines into
the files about the compile date, which would result in different MDS5’s. Additionally any variants
in the system configuration, such as the error below that I received during compilation would result
in slight variances in the way that bmap was compiled on my system, even if it works fine against our test
files.

“make: sgml2latex: Command not found
make: *** [doc] Error 1277

Libraries Required:

Having identified that the MD5’s do not match, I decided to see which libraries bmap uses and see
if I can find evidence of the same dependencies for the unknown binary. To do this I used the
‘Idd’ utility against the bmap executable and identified that it calls libs.s0.6 and ld-linux.so.2 as
illustrated in Figure 1.30 below.

Figure 1.30 Identification of Bmap Required Libraries

[root@POWERBIRDIE bmap-1.0.20]# 1ldd ./bmap
libec.so.6 => flib/i686/1ibc.so.6 (0x42000000)
J1ib/1d-1inux.s0.2 =»> /lib/ld-linux.so.2 (0x40000000)

The same command against the unknown binary did not result in similar results, as the unknown
binary did not have the dependencies available. From the image however, I was able to use
Autopsy to extract references for the same libraries using a keyword search on libe. . While this
isn’t conclusive evidence on it’s own it does lead us to further believe that the unknown binary is
bmap. Next I wanted to look for any type of unique characteristics that the software might leave
during a compile.

Figure 1.31 Autopsy Existence of Bmap Required Libraries

8 Bit-Stream refers to a process where the image is made by copying over the ones and zeros of
a file one bit at a time — resulting in a true likeness to the original. This is similar to forensic
image using the ‘dd’ utility.

® Page 22

New Search file: Using regular magic file "/root/SKEL/usr/local/sre/sleuthkit/share/magic” file: couldn't find any
magic files! File Type: data
3 occurrences of 1ibe\ . so were found —
Search Options: String Contents of Fragment 194 (1024 bytes) in images/fl-160703-jpl.dd
Case Insensitive
root
root
root
s root
Fragmenth 194 (Hex - Ascii) root %
1: 219 (1ibec.s0.6) root
2: 229 (1ibec.s0.6(GL) nc-1.10-16.src.rpm
3: 250 (1ibe .s0.6(CL) rpmlib(PayloadFilesHavePrefix)
rpmlib(CompressedFileNames)
/bin/sh
libc.so.6
libc.so.6(GLIBC_2.0)
libc.so.6(GLIBC_2.2)

Figure 1.31 Compilation of Bmap and Files Created

[root@POWERBIRDIK bmap-1.0.20]# 1=
belump bmap-makefile-output.txt dev_builder libbmap.o slacker

bclump.c bmap .o dev_builder.c LICENSE slacker.c
bclump-invoke.sgml bmap.sgml dev_entries.c Makefile slacker-invoke.sgml
beclump.o bmap.sgml.m4 dev_entries.o man slacker-modules.c
bmap bmap . spec include mft slacker-modules.o
bmap . c config.h index.html . prog slacker.o
bmap-invoke.sgml COPYING _______1-:'L-bbm'i]§T_E_ README tes;.mpg

T have copied the unknoun binary prog imt@ the b;;p_n-i.[I.EI] divectory. T have alzo created a fila called test.npg
bith zona text enbadded.

Footprint Analysis:

Each piece of software leaves a unique footprint as it is compiled and/or executed on a system.
For instance bmap has a unique way of defining echo statements into files as it is compiling. As
an example a file within the bmap directory called config.h contains the compile date, 01/09/04,
which is the system date on my machine during compilation. =~ We see other examples in the help
files and others.

[root@POWERBIRDIE bmap-1.0.20]# cat config.h
#ifndef NEWT_CONFIG_H

#define NEWT_CONFIG_H [noted during the conpiling
. — N . nf brap 1.0.20 that specific,
#define VERSION "1.0.20 _letatic echo statenents are

-

#define BUILD_DATE "01/09/04" & g;ri]}tigr_‘htzi?hirillfhgaérllgg
#define AUTHOR "newt@scyld.com" directory.

#define BMAP_BOGUS_MATOR 123

#define BMAP_BOGUS_MINOR 123

#define BMAP_BOGUS_FILENAME "/.../image"

#define _FILE_OFFSET_EBITS 64

#endif

Knowing that these unique characteristics exist, an investigator or even an administrator could now
target a system and create a simple shell script that would look for a combination of a config.h
files with the term ‘newt@scyld.com’. Additionally they could look for the mere presence of
newt_conf_h files on their system.

® Page 23

Do the individual binaries outputs compare?:
One way to be able to prove that the unknown binary is actually bmap v1.0.20 is to see if the two files
operate in the same fashion on the same test file. To do this I have compiled bmap 1.0.20 into a VM
session, and also copied the unknown binary to the same directory. Additionally I created a file called testmpg
to use in the analysis of both files.

Figure 1.32 Comparison of Bmap and Unknown Binary Operations

[root@POWERBIRDIE bmap-1.0.20]# cat sanstest.mpg
3297240

Theze nunbers refer to the actual blocks

3297241 that are being copied. Mote that bath
3297242 P hlnarieslnutput tha sane_tuntent anid

7 pperate in the zane fashion.
3297243 ,f/??
3297244 {f},—f” /
3297245 - /
3297246 / 3
3297247 /

[runt@PDHERE}ﬁhIE bmap-1.0.20]# cat sanstestl.mpg
3297240 /

3297241

3297242

3297243

3297244

3297245

3297246

3297247

As we can see the two binaries handle the testmpg file in exactly the same way, and appear to be
performing a bit-stream level copying of the files. The files only contain one line of text so the output
appears to be an appropriate amount.

Comparison of Help Files
Finally, as a last step before concluding that the unknown binary is bmap 1.0.20 I decided to compare the
outputs of the help files that are associated with each. Figure 1.34 shows us the help file from bmap 1.0.20:

Figure 1.34 Extract of Bmap Help File

® Page 24

[root@POWERBIRDIE bmap-1.0.20]# ./bmap --help
bmap:1.0.20 (01/09/04) newt@scyld.com

Usage: bmap [OPTION]... [<target—filename§ﬂmh&
use block-list knowledge to perform special up@ra;is?s on files
e
—-doc VALUE S,
) Ertract of the help file aszociated
where VALUE is one of: With bnap 1.0.20
version display version and exit
help display options and exit -
man generate man page and exit _fxf’f
sgml generate SGML invocation info .,xf’f
—-mode VALUE -
where VALUE is one of:
map list sector numbers [%

carve extract a copy from the raw device

Now we examine the help file associated with ‘prog’ (the unknown binary) as illustrated in Figure 1.35 below.

Figure 1.35 Extract of Unknown Binary Help File

[root@POWERBIRDIE bmap-1.0.20]# ./prog --help

prog:1.0.20 [EEIEEY nevt v

Usage: prog [0OPTION]. [<target—fﬁl&n&m§}]
use block-list knowledge. to perform speciﬁl“ﬂpegatiuns on files

e
—

Thiz iz the output of the help file
bazociated with the unknown binary. I
hoted that while not identical there is
/ [little doubt that these tuo binavy files
‘ fare not wariantz of each other.

—-doc VALUE
where VALUE is one of:
version display version and e
help display options and exit
man generate man page and exit
sgml generate SGML invocation info

It iz also interesting to note
that the date of compilation is

——mode VALUE located within these files.
, Thiz iz congistent with the echo
where VALUE is one of: Connents in brap s footprint.

m list sector numbers |

Figure 1.36 Comparison of the Functions of Each Binary

® Page 25

[root@POWERBIRDIE bmap-1.0.20]# ./bmap --outfile sanstest.mpg test.mpg FonTng The oo Tfepandant
[root@POWERBIRDIE bmap-1.0.20]# ./prog --outfile sanstestl.mpg test.mpg\mes anainst ny test.npg
@QPOWERBIRDIE bmap-1.0.20]# ls -1 sans*® file

[roo

1 root root 64 Jan 10 OO: sanstestl.mpg
KL% 1 root root 4 Jan 10 00:27fsanstest.mpg
[root@POWERBIRDIE bmap-1.0.20]# md5sum sans® \Perfm‘ning an 1z -1 cormand for all sans®
7898c0e0cb08eb232beeB11f1d3325ch sanstestl.mpg f%m.ﬂﬂé@ the zana file size, pernizzions
7898c0e0cb08eb232bee811F1d3325ch "Banstest.mpg e SHnErEhie-

Finally I perforned an HdSzun hazh total of the output fron tuo different binavies
and noted that the hazh totals are the zane. Thiz could only happen if the
binaries acted in the zane fashion and wrote the zane files.

All the above analysis leads me to believe that the unknown binary is bmap v1.0.20.

STRACE Comparison:

Another good approach to seeing how a binary interacts with a system is to use the debugging tool ‘strace’,
which traces the interactions the binary performs on a system. While I do not expect that the output would
be the same, as an investigator it would provide some additional assurance if there were similar characteristics
in each file. We start off with the strace output for the unknown binary, as it is likely going to have fewer
interactions on the system as it was not compiled on it.

[root@POWERBIRDIE bmap-1.0.20]# strace ./prog

geteuid3z() =0
getuid3z() =0
getegid3z() =0
getgid3z() =0

brk(0) = 0x80bedec
brk (0x80beedc) = 0x80beelc
brk(0x80bf000) = 0x80bf000
brk (0x80c0000) = Ox80c00

I then ran the same utility on the bmap binary, and note that there is several similarities, and while not
conclusive — once again a good indication that we have identified the unknown binary as bmap.

Figure 1.33 Strace Utility of Bmap

® Page 26

[root@POWERBIRDIE bmap-1.0.20]# strace ./bmap

brk({0) = 0x806df20

open("/etc/ld.so.preload"”, O_RDONLY) = -1 ENOENT (Mo such file or directory)
open("fetc/ld.so.cache", O0_RDONLY) = 3

fstat64(3, {st_mode=S5_IFREG|0644, st_size=61962, ...}) =0

0ld_mmap(NULL, 61962, PROT_READ, MAP_PRIVATE, 3, 0) = Ox40013000

close(3) =0

open("/lib/i686/1ibc.s0.6", O_RDONLY) =3

read(3, "N\177ELFA\1N141M0MN040%0%0N0N0%040% 3404 34001000000 220701, .., 1024) = 1024
fstat64(3, {st_mode=S_IFREG|0755, st_size=1395734, ...}) =0

old_mmap(0x42000000, 1239844, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x42000000

nprotect(0x42126000, 35620, PROT_NONE) = O E%
old_mmap(0x42126000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3, 0x126000) = 0Ox4212
0
o1d_mmap (0x4212b000, 15140, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0O)
421 2b000

close(3) =0

pld_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = Ox40023000
nunmap (0x40013000, 61962) =0

Unknown Binary Program Identification:

Based on the above analysis the unknown binary is called bmap v1.0.20, and is 487 476 bytes in
size.

Having identified the binary as BMAPV1.0.20, at this point I would likely confront John Price with our
forensic analysis to try and pose the following questions that might help further understand the full spectrum of
evidence.

Potential Questions:

If | were able to sit down with John Price and was given the chance to ask five questions | would
likely use the following questions which | feel will be helpful in the investigation but not come across
as a direct attack on him.

1.) “John, during the investigation I have identified several programs (binaries) that are not standard programs for our
deployments. Given that this was your machine did you happen to load any non-standard programs on your machine?
If'you did we would like to know what they were so that we can identify if you possibly installed a ‘trojan’d’ version
of a file? It might be possible that you could have inadvertently loaded files without knowing it?” [it is important to
always allow them the possibility of helping themselves]

2.) ‘John, from what I was able to analyze it appears that somehow the company’s IT resources were being used for non-
business purposes during non-business hours Do you think that this is a serious issue?’ [this will give an investigator
a sense of the moral fiber of the individual that they are investigating, in practice similar questions have been enough
for an individual to state that they were wrong to do this type of thing but didn’t understand the gravity of their actions]

3.) ‘John, the evidence seems to lead me to believe that you and other individuals were using the company’s computers
and network resources inappropriately, apparently to try and break copyright laws. Management is taking this very
seriously and wants to ensure that this does not happen again. Is there anyone else that was involved?

4.) ‘Johnis it possible that I am not getting the full picture based on the evidence that I am seeing, or that it seems worse
than it really was? Did you care to help clarify your actions? — I would really like to clear this up before it gets out of

® Page 27

hand’ [this gives them the sense that you have found evidence of wrong doing and might infer the worst possible
solution — it might be enough for them to want to try and clear their name / of confess to their actions]

5.) “John, I have to admit that based on the evidence that we were able to collect, and the fact that you attempted to wipe
some evidence from the system prior to your departure does nott look good for you. Why did you try to wipe
information from your computer? What were you afraid we would find? [sometimes you have to play it hard with
these individuals, and often their reasoning for destroying evidence is not what we think they did it for.]

® Page 28

Appendix A: Strings output for unknown binary ‘prog’
This a embedded PDF document that contains the full content of the strings output against the ‘prog’ file.
I choose to embed the document as a PDF because the full file was approximately eighty plus (80+) pages.

"Output of command
strings prog.pdf"

® Page 29

Appendix B: Forensic Footprint of Bmap v1.0.20

This is the output of the ‘make’ command for bmap 1.0.20.

echo "#ifndef NEWT CONFIG H" > config.h

echo "#define NEWT CONFIG H" >> config.h

echo "#define VERSION \"1.0.20\"" >> config.h

echo "#define BUILD DATE \"01/09/04\"" >> config.h

echo "#define AUTHOR \""newt@scyld.com"\"" >> config.h

echo "#define BMAP BOGUS MAJOR 123" >> config.h

echo "#define BMAP BOGUS MINOR 123" >> config.h

echo "#define BMAP BOGUS FILENAME \""/.../image"\"" >> config.h

echo "#define FILE OFFSET BITS 64" >> config.h

echo "#endif" >>config.h

if [-n mft] ; then make -C mft ; fi

make[l]: Entering directory ~/UNKNOWN Binary/bmap-1.0.20/mft'

echo "#define MFT VERSION \"0.9.2\"" > mft config.h

echo "#define MFT BUILD DATE \"01/09/04\"" >> mft config.h

echo "#define MFT AUTHOR \""newt@scyld.com"\"" >> mft config.h

cc -Wall -g -I. -Iinclude -c -o option.o option.c

cc -Wall -g -I. -Iinclude -c -o log.o log.c

log.c:354: warning: “syslog dispatch' defined but not used

log.c:361: warning: "html dispatch' defined but not used

cc -Wall -g -I. -Iinclude -c -o helper.o helper.c

1d -r --whole-archive -o libmft.a option.o log.o helper.o

make[1l]: Leaving directory °~/UNKNOWN Binary/bmap-1.0.20/mft'

cc -Wall -g -Imft/include -Iinclude -Lmft -1lmft dev builder.c -o

dev _builder

mft/libmft.a: In function "'mft log perror':

/UNKNOWN Binary/bmap-1.0.20/mft/log.c:297: “sys errlist' is deprecated; use
‘str

error' or ‘strerror r' instead

/UNKNOWN Binary/bmap-1.0.20/mft/log.c:294: “sys nerr' is deprecated; use
‘strerr

or' or ‘strerror r' instead

cc -Wall -g -Imft/include -Iinclude -c -o bmap.o bmap.c

bmap.c: In function "main':

bmap.c:371: warning: implicit declaration of function ‘dprintf'

cc -Wall -g -Imft/include -Iinclude -c -o libbmap.o libbmap.c
./dev_builder > dev_entries.c

cc -Wall -g -Imft/include -Iinclude -c -o dev_entries.o dev_entries.c

cc -Lmft -1Imft bmap.o libbmap.o dev_entries.o -o bmap

mft/libmft.a: In function "'mft log perror':

/UNKNOWN Binary/bmap-1.0.20/mft/log.c:297: “sys errlist' is deprecated; use
‘str

error' or ‘strerror r' instead

/UNKNOWN Binary/bmap-1.0.20/mft/log.c:294: “sys nerr' is deprecated; use
‘strerr

or' or ‘strerror r' instead

cc -Wall -g -Imft/include -Iinclude -c -o slacker.o slacker.c

cc -Wall -g -Imft/include -Iinclude -c -o slacker-modules.o slacker-modules.c
cc -Lmft -1Imft slacker.o slacker-modules.o libbmap.o dev_entries.o -o
slacker

mft/libmft.a: In function "'mft log perror':

/UNKNOWN Binary/bmap-1.0.20/mft/log.c:297: “sys errlist' is deprecated; use
‘str

error' or ‘strerror r' instead

/UNKNOWN Binary/bmap-1.0.20/mft/log.c:294: “sys nerr' is deprecated; use
‘strerr

® Page 30

or' or ‘strerror r' instead

cc -Wall -g -Imft/include -Iinclude -c -o bclump.o bclump.c
bclump.c:313: warning: missing braces around initializer

bclump.c:313: warning: (near initialization for “options[l].defval')

cc -Lmft -1mft bclump.o -o bclump

mft/libmft.a: In function "'mft log perror':

/UNKNOWN Binary/bmap-1.0.20/mft/log.c:297: “sys errlist' is deprecated; use
‘str

error' or ‘strerror r' instead

/UNKNOWN Binary/bmap-1.0.20/mft/log.c:294: “sys nerr' is deprecated; use
‘strerr

or' or ‘strerror r' instead

for i in bmap slacker bclump ; do ./$1i --sgml > $Si-invoke.sgml ; done

m4 < bmap.sgml.m4 > bmap.sgml

sgml2latex bmap.sgml

make: sgml2latex: Command not found

make: *** [doc] Error 127

® Page 31

Appendix C: Forensic Equipment Configurations:

| used two (2) IBM T40 laptops for this analysis — each has some common items (i.e. processors)
and then specifics about the loadset and operating system. | have broken this appendix into these
two same areas.

Common Characteristics

Processor(s)

Model : Intel(R) Pentium(R) M processor 1500MHz
Speed : 797MHz

L2 On-board Cache : 1024kB ECC synchronous ATC

Mainboard and BIOS

Bus(es) : AGP PClI PCMCIA CardBus USB SMBus/i2c
System BIOS : IBM 1RET36WW (1.07)

Mainboard : IBM 2373EU1

Front Side Bus Speed : 1x 89MHz (89MHz data rate)
Installed Memory : 1023MB

Video System

Monitor/Panel : IBM ThinkPad 1024x768 TFT LCD panel
Adapter : ATl MOBILITY RADEON 7500

Specific Differences Include:

Machine 1 Internal Network Machine //Haliveloclo1®
Querying information for HALIVELOCLOL...

System information for \\HALIVELOCLO1:

Uptime: 0 days 3 hours 37 minutes 1 second
Kernel version: Microsoft Windows 2000, Uniprocessor Free
Product type: Professional

Product version: 5.0

Service pack: 3

Kernel build number: 2195

Registered organization: ABC CORP

Registered owner: ABC CORP

Install date: 03/10/2003, 1:14:58 AM
Activation status: Not applicable

IE version: 6.0000

System root: C:\WINNT

Processors: 1

Processor speed: 1.4 GHz

Processor type: Intel (R) Pentium(R) M processor
Physical memory: 1022 MB

Video driver: ATI MOBILITY RADEON 7500

Machine 2 AIRGAPPED Network Machine /POWERBIRDIE
Output from ‘uname —an’ command

Linux POWERBIRDIE 2.4.20-8 #1 Thu Jan 13 17:54:28 EST 2003 i686 i686 i386 GNU/Linux

Logical Storage Devices:

® Gathered using PSINFO (www.sysinternals.com)

® Page 32

Output from ‘df —ah’ command

Filesystem Size Used Avail Use% Mounted on
/dev/hda3 32G 20G 11G 65% /

none 0 0 0 - /proc

usbdevfs 0 0 0 - /proc/bus/usb
/dev/hdal 101M 9.2M 86M 10% /boot

none 0 0 0 - /dev/pts

none 504M 0 504M % /dev/shm

Haliveloclol - Hindows 2000 -
netuorked Hachine

® Page 33

Appendix D: References Used (in order of appearance)

10.

11.

12.

SANS - Unknown Binary Media — taken from (http://www.giac.org/gcfa/binary v1 4.zip)

Canadian Evidentiary Act. (http://laws.justice.gc.ca/en/C-5/)

Netcat Reference Material and RPM — (http://rpmfind.rediris.es/mpm2html/redhat-8.0-i386/nc-1.10-
16.i386.html

XMMS RPM's for Redhat — (http://havardk.xmms.org/dist/xmms-1.2.7-rh8-rh9-rpm/)

Google (www.google.ca) - BMAP Search Result (http://Iwn.net/2000/0420/announce.php3)

Google (www.google.ca) ‘bmap 1.0.20' Search Result (http://build.Inx-

bbc.org/packages/fs/bmap.html)

DMZ Definition - (http://isp.webopedia.com/TERM/D/DMZ.html)

National Institute of Standards and Technology — Definition of Forensic Image
(http://www.cftt.nist.gov/DI-spec-3-1-6.doc)

Canadian Evidence Act — (http://laws.justice.gc.ca/en/c-5/15821.html),

Tool Reference - PSINFO (www.sysinternals.com)

Michael Ford - Imaging of Volatile Memory using a Unix machine
(http://lwww.samag.com/documents/s=9053/sam0403e/0403e.htm)

Rob Lee - SANS GCFA Training — in class notes on MAC times.

® Page 34

