
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

UNSPOKEN TRUTHS – FORENSIC
ANALYSIS OF AN UNKNOWN BINARY

(GIAC v1.4)

Louie Velocci, CA, CISA, CISSP, CAA
GCFA Certification

Louie Velocci, CA, CISA, CISSP, CAA Practical Assignment #1 – SANS GCFA
Designation

Assignment #1 - Unknown Binary Analysis:

Table of Contents
Background: 4

Figure 1.1 MD5 comparison of unknown binary to SANS provided MD5 hash total 4
Media Preparation: 4

Figure 1.2 Method of Sanitizing Media for Forensic Analysis 4
Figure 1.3 Mounting the USB drive in Linux 5

Setting the Stage – The Known Information: 5
Figure 1.4 File Ownership and Zipinfo commands against unknown Binary 5

Extraction of Unknown Binary: 8
Figure 1.5 Unknown Binary - Unzip command 8
Figure 1.6 Unzipped – Unknown Binary File Permissions 9

Integrity of the Unknown Binary: 9
Figure 1.7 MD5 Comparison of Unknown Binary Gzip 9
Figure 1.8 Decompress Unknown Binary and ‘File’ Output 10

Forensic Analysis Process: 10
Figure 1.9 Mounting dd Image in Linux VM Ware 10
Figure 1.10 Identified Unknown Binary ‘Prog’ 11

Is it the Real Thing??: 11
Figure 1.11 Unknown Binary MD5 Comparison and Match 11

Autopsy Image Analysis: 11
Figure 1.12 SleuthKit – Autopsy Forensic Analysis Tool – Screenshot 12
Figure 1.13 Initial Case Setup within Autopsy 12
Figure 1.14 – Autopsy – File Activity / Time Line Creation Process 13
Figure 1.15 Unknown Binary Identification within Autopsy 13
Figure 1.16 Unknown Binary Extraction within Autopsy 14

File MAC/Timeline Analysis: 14
Netcat Reference Explored: 15

Figure 1.17 MD5 Comparison of NetCat Binary found and downloaded 16
Figure 1.18 Interesting References within SANS to Vmware session. 16
Figure 1.19 Unknown RPM References Explored in Google Search 18

Correspondence Found: 18
Figure 1.20 Extracted Communications Relating to Investigation 18

Graphic Images Found: 19
Figure 1.21 Graphic Images retrieved from SANS Unknown Binary Assignment – Physical
Media 19
Figure 1.22 Graphic Image retrieved from SANS Unknown Binary Assignment - Ebay 19

Binary Analysis: 20
Figure 1.23 Identified Binary File Permissions 20
Figure 1.24 Modifying Permissions of Unknown Binary to allow Execution 20
Figure 1.25 File Utility Output Against Unknown Binary 20
Figure 1.26 Identification of Linked Libraries 21

Helping Myself to Help: 21
Figure 1.27 Invoking the help function of the Unknown Binary 21

Strings Search: 22
Use of BinText: 22

Figure 1.28 Identification of Unknown Binary Website Reference 23
BMAP Version 1.0.20 23
MD5Sum hash total: 23

Figure 1.29 Bmap and Unknown Binary MD5Sum Comparisons. 23
Libraries Required: 24

Figure 1.30 Identification of Bmap Required Libraries 24

l Page 3

Figure 1.31 Autopsy Existence of Bmap Required Libraries 24
Figure 1.31 Compilation of Bmap and Files Created 24

Footprint Analysis: 25
Do the individual binaries outputs compare?: 25

Figure 1.32 Comparison of Bmap and Unknown Binary Operations 26
Comparison of Help Files 26

Figure 1.34 Extract of Bmap Help File 27
Figure 1.33 Strace Utility of Bmap 29

Potential Questions: 29
Appendix A: Strings output for unknown binary ‘prog’ 31
Appendix B: Forensic Footprint of Bmap v1.0.20 32
Appendix C: Forensic Equipment Configurations: 34
Appendix D: References Used (in order of appearance) 36

4

Louie Velocci CA, CISA, CISSP, CAA

Practical Assignment #2 – SANS GCFA Designation

1 See Appendix D for more details
2 I ensure that the media used for any forensic analysis is cleansed prior to use – as this step
ensures that the evidence is admissible and in keeping with the ‘best evidence’ requirements within
the Canadian Evidence Act. (http://laws.justice.gc.ca/en/C-5/)

Background:
The first component of this paper outlines my forensic analysis of an unknown binary that is
contained within a zip file provided by SANS1 (http://www.giac.org/gcfa/binary_v1_4.zip), as such I
have decided to take some precautionary steps for the first stages of the analysis. To ensure that
the unknown binary will not affect a whole system (i.e. corrupt the machine), I will be using a Linux
9.0 VMware session running on one of my forensic laptops.

Since the binary is unknown, I do not want to simply unzip the binary without taking some
precautionary steps first. Upon downloading the unknown binary I immediately performed an
MD5Sum on the file as received from SANS. This will enable me to ensure the file integrity and
completeness once transmitted to the air-gapped forensics box.

Figure 1.1 MD5 comparison of unknown binary to SANS provided MD5 hash total

To transfer the files from my networked machine to the air-gapped one, I am using a USB Drive
™ 128 Mb – USB memory stick with serial # E-D900-00-4989(B). This will also be used to
collect evidence of the forensic procedures undertaken, and transfer it to a networked machine for
report writing and retention.

Media Preparation:
As a standard practice before beginning any forensic analysis2, to ensure that the media is
cleansed from previous evidence; I used the ‘dd’ utility within Linux to write the complete contents
of the USB device with a string of zeros. In theory by dd’ing a device with an image source of
/dev/zero the forensic analyst is copying an unlimited source of ‘zeros’ to the destination media.

Figure 1.2 Method of Sanitizing Media for Forensic Analysis

l Page 5

If this analysis were being done on a Windows machine, an additional low level format prior to
using a ported version of ‘dd’ from a command line would be appropriate (if an investigator has a
machine with EnCase installed this step can be completed using the ‘wipe drive’ option). While not
required it is an old habit which provides an additional level of comfort that no residual evidence is
present.

As I am using my Linux forensic machine (see Appendix C for a complete description of the
equipment used.) for this analysis, I will mount the USB device (/dev/sda1) as mount point
/mnt/usb/ using the following command:

Figure 1.3 Mounting the USB drive in Linux

Setting the Stage – The Known Information:
Initially I have used the zipinfo utility with the –v flag. This utility provides us with a significant
amount of data about contained within the file binary_v1_4.zip provided to me by SANS, however
does not require me to extract the files. This utility can be very helpful to in gathering important
information while preventing the extraction of possible malicious code.

Figure 1.4 File Ownership and Zipinfo commands against unknown Binary

Extract of zipinfo –v command: (I choose italicized blue text for any extracted text from the analysis)

Archive: binary_v1_4.zip 459502 bytes 3 files

l Page 6

End-of-central-directory record:

Actual offset of end-of-central-dir record: 459460 (000702C4h)
Expected offset of end-of-central-dir record: 459460 (000702C4h)
(based on the length of the central directory and its expected offset)

This zipfile constitutes the sole disk of a single-part archive; its
central directory contains 3 entries. The central directory is 227
(000000E3h) bytes long, and its (expected) offset in bytes from the
beginning of the zipfile is 459233 (000701E1h).

The zipfile comment is 20 bytes long and contains the following text:

======================== zipfile comment begins
==========================
GCFA binary analysis
========================= zipfile comment ends
===========================

Central directory entry #1:

fl-160703-jp1.dd.gz

offset of local header from start of archive: 0 (00000000h) bytes
file system or operating system of origin: Unix
version of encoding software: 2.3
minimum file system compatibility required: MS-DOS, OS/2 or NT

FAT
minimum software version required to extract: 2.0
compression method: deflated
compression sub-type (deflation): normal
file security status: not encrypted
extended local header: no
file last modified on (DOS date/time): 2003 Jul 15 23:03:02
file last modified on (UT extra field modtime): 2003 Jul 16 02:03:01

local
file last modified on (UT extra field modtime): 2003 Jul 16 05:03:01

UTC
32-bit CRC value (hex): 037deebe
compressed size: 458937 bytes
uncompressed size: 474162 bytes
length of filename: 19 characters
length of extra field: 13 bytes
length of file comment: 0 characters
disk number on which file begins: disk 1
apparent file type: binary
Unix file attributes (100400 octal): -r--------
MS-DOS file attributes (01 hex): read-only

The central-directory extra field contains:
- A subfield with ID 0x5455 (universal time) and 5 data bytes.
The local extra field has UTC/GMT modification/access times.

- A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

l Page 7

There is no file comment.

Central directory entry #2:

fl-160703-jp1.dd.gz.MD5

offset of local header from start of archive: 459007 (000700FFh)
bytes
file system or operating system of origin: Unix
version of encoding software: 2.3
minimum file system compatibility required: MS-DOS, OS/2 or NT

FAT
minimum software version required to extract: 1.0
compression method: none (stored)
file security status: not encrypted
extended local header: no
file last modified on (DOS date/time): 2003 Jul 16 00:15:00
file last modified on (UT extra field modtime): 2003 Jul 16 03:14:59

local
file last modified on (UT extra field modtime): 2003 Jul 16 06:14:59

UTC
32-bit CRC value (hex): 75457d32
compressed size: 54 bytes
uncompressed size: 54 bytes
length of filename: 23 characters
length of extra field: 13 bytes
length of file comment: 0 characters
disk number on which file begins: disk 1
apparent file type: text
Unix file attributes (100644 octal): -rw-r--r--
MS-DOS file attributes (00 hex): none

The central-directory extra field contains:
- A subfield with ID 0x5455 (universal time) and 5 data bytes.
The local extra field has UTC/GMT modification/access times.

- A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

There is no file comment.

Central directory entry #3:

prog.MD5

offset of local header from start of archive: 459135 (0007017Fh)
bytes
file system or operating system of origin: Unix
version of encoding software: 2.3
minimum file system compatibility required: MS-DOS, OS/2 or NT

FAT
minimum software version required to extract: 1.0
compression method: none (stored)
file security status: not encrypted
extended local header: no
file last modified on (DOS date/time): 2003 Jul 16 00:14:38
file last modified on (UT extra field modtime): 2003 Jul 16 03:14:38

l Page 8

local
file last modified on (UT extra field modtime): 2003 Jul 16 06:14:38

UTC
32-bit CRC value (hex): 804cc662
compressed size: 39 bytes
uncompressed size: 39 bytes
length of filename: 8 characters
length of extra field: 13 bytes
length of file comment: 0 characters
disk number on which file begins: disk 1
apparent file type: text
Unix file attributes (100644 octal): -rw-r--r--
MS-DOS file attributes (00 hex): none

The central-directory extra field contains:
- A subfield with ID 0x5455 (universal time) and 5 data bytes.
The local extra field has UTC/GMT modification/access times.

- A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

There is no file comment.

As we can see this utility tells us that the operating system of the machine used to create this
archive is a Unix (likely Linux machine – based on other analysis below), the zip file was last
modified on July 16, 2003 and the zip contains fl-160703-jp1.dd.gz, fl-160703-jp1.dd.gz.MD5, and
prog.MD5. The individual file sizes are: 474162, 54, 39 bytes respectively.

Extraction of Unknown Binary:
The above analysis indicates that the binary appears to have the adopted the user (UID) and group
(GID) attributes of my machine. Using the ‘unzip’ command with the ‘–X’ flag enabled it might be
possible to determine the permissions of the original UID/GID of the files as they were set on the
machine prior to archival. This will potentially yield additional information that can be used in piecing
together seemingly random case evidence.

Figure 1.5 Unknown Binary - Unzip command

l Page 9

Next the following command ‘ls –al’ issued to determine the file permissions and timer at archival.

Figure 1.6 Unzipped – Unknown Binary File Permissions

It is interesting to note that the original machine appears to be using a Unix based kernel (based
on UID/GID and directory permissions. As a result my expectation is that this unknown binary will
be a Unix based binary as opposed to a Windows one. Additionally I noted that the date on the
system used for archival was July 16, 2003. This may be important later on as it may help us
validate the existence of the binary at that point in time in the general Internet population.

Since I passed the ‘–X’ flag to the unzip command my expectation was that the utility would have
restored the UID/GID of the original system. Given that the UID/GID are still set to root/root
respectively then either the system was a Unix system or the user was logged in as root in a
root owned directory when tar’d. It is possible that the file was possibly archived on another
system environment - Windows perhaps.

Integrity of the Unknown Binary:
Before I start any analysis on this binary, I will confirm the file integrity using the MD5 hash totals
provided by SANS. Since the MD5Sum totals are the same I can state that the binary was not
altered between the archival process by SANS, and me extracting it in the forensic lab.

Figure 1.7 MD5 Comparison of Unknown Binary Gzip

I extract the contents of the fl-160703-jp1.dd.gz file with the gzip –d command. The resultant file
called fl-160703-jp1.dd appears to be an image created with the Unix ‘dd’ utility. We confirm this
with the following:

Figure 1.8 Decompress Unknown Binary and ‘File’ Output

l Page 10

Forensic Analysis Process:

Since the file is a ‘dd’ image I have two options to start the analysis; first I can use Autopsy
(http://www.sleuthkit.org/autopsy/index.php), or secondly I can mount the image directly in Linux with
the command outlined in Figure 1.9. Initially I chose the second option to mount the image directly,
however I will also be using Autopsy to perform further do some analysis. I chose this path, as I
do not know what to expect, and if the image is mounted properly then no harm will come from
the direct mounting.

Figure 1.9 Mounting dd Image in Linux VM Ware

When mounting the image I wanted to ensure that the integrity of the evidence was preserved.
By using the following mount options the data integrity will be preserved:

loop – use loopback device
ro – read only so no image changes are allowed
noatime – don’t change last access time
nodev – Bypass system devices in image
noexec – disable binary execution

Once mounted I change to that directory and perform an ‘ls’ command to list the content of the
image and get the following interesting information, namely the ‘prog’ file that we have been told to
isolate and perform the analysis on as the unknown binary. Typically a forensic analyst doesn’t
know the exact items they are looking for so this option would be less effective in a real forensic
analysis.

Figure 1.10 Identified Unknown Binary ‘Prog’

l Page 11

3 Autopsy is located at http://www.sleuthkit.org/autopsy/

Is it the Real Thing??:
A quick comparison of the MD5Sum hash totals indicates that this is in-fact the unknown binary.

Figure 1.11 Unknown Binary MD5 Comparison and Match

So we have the ‘what’ component of the five ‘W’ questions and at a first glance it appears that we do not
have to do anything for me to have been able to extract the unknown binary. As a forensic investigator
however, I want to examine all the evidence before making any conclusions. I notice the lost+found
directory, and the nc-1.10-16.i386.rpm file (this is for a network utility called ‘netcat’) were also noted in
the ‘ls’ output, this might assist / help us to better understand the ‘why’ and ‘where’ of any inappropriate
activity.

Before going any further I want to load this image into Autopsy and create a timeline as well as other items
that I think will help with a thorough investigation.

Autopsy Image Analysis:
To help with the additional analysis of this unknown binary I wanted to perform some additional research in
Autopsy3 (version 1.70). Autopsy is an all-encompassing image analysis tool that draws upon several open
source utilities; however the individual tools could also be run independently. In this analysis I choose the
New Case icon at the bottom and put in the appropriate investigators name, image type and the source
location for the image, as well as the MD5hash total database(s). Autopsy takes this information and starts
to assess the timeline (modified, accessed and changed).

Figure 1.12 SleuthKit – Autopsy Forensic Analysis Tool – Screenshot

l Page 12

Here are the initial case facts captured in Autopsy:

Figure 1.13 Initial Case Setup within Autopsy

I have compiled the NSRL known MD5hash total databases on my Linux forensic machine. Once in
Autopsy I quickly perform a timeline capture (see below) of the image, and then perform a ‘file analysis’
search from within the case gallery sub-menu.

Figure 1.14 – Autopsy – File Activity / Time Line Creation Process

l Page 13

I noted that the image has both allocated and unallocated content which means we will likely have to analyze
deleted files during this analysis.

Figure 1.15 Unknown Binary Identification within Autopsy

Using file analysis it is easy to find the ‘prog’ file. Once identified it is possible to recover and
extract the files using the ‘export contents’ functionality. Figure 1.16 shows how I identified and
exported the unknown binary for further analysis.

Figure 1.16 Unknown Binary Extraction within Autopsy

l Page 14

4 Coroners Toolkit (TCT) can be located http://www.porcupine.org/forensics/tct.html

File MAC/Timeline Analysis:
A timeline provides extremely useful information to a forensic analyst on system modifications, or in re-
constructing a chain of events. The process of creating a timeline within Autopsy is rather mundane, in that
it is precipitated by clicking an icon and entering in the start date for the timeline and the output file name.
You can specify the ending date for a timeline, however you may miss information if the file system dates
were altered.

This same process could be done from a command line using the ‘grave-robber tool’ from The Coroners
Toolkit 4(TCT) assuming that it is installed on the system by using the following command:

grave-robber –E (the –E flag says to grave-robber to grab all file information – however additional flags
can be configured - for a complete listing use grave-robber ••help)

Once a timeline has been developed an investigator needs to understand how to interpret the results,
particularly the differences between the components of the timeline. The timeline represents three system
related events for each individual file, commonly referred to as ‘MAC’ as outlined below:

Timeline Component Represents

M – modification time The last time that a file was written

A – access time The last time a file was read

C – change time The last time the inode contents were written.

Using Autopsy I extracted the timeline analysis for this image, and noted that the first entry was January
28,2003 which appears to be the creation and access of two of the three images retrieved. Looking for
more information about the timelines for the unknown binary, I extracted only the entries related to ‘prog’:

Mon Jul 14 2003 11:24:00 487476 m.. -/-rwxr-xr-x 502 502 18
\/prog

Wed Jul 16 2003 03:05:33 487476 ..c -/-rwxr-xr-x 502 502 18
\/prog

Wed Jul 16 2003 03:12:45 487476 .a. -/-rwxr-xr-x 502 502 18

l Page 15

\/prog

We can see that the unknown binary was brought onto the machine July 14th at 11:24, is 487476 bytes in
size and has both a user and group ownership value of 502 (unfortunately we do not have a copy of the
/etc/group file to further analyze the memberships of this group (but it is likely all users), in any event the
file is set to ‘rwxr-xr-x’ meaning that the owning UID/GID have read, write and execute permissions on this
file, while all system users have the ability to read and execute this file but not necessarily write to the file.
It is interesting to note that the last time the program was accessed was July 16, 2003 at 3:12 AM, the
same day that the image was taken (which we can assert was the day the evidence was seized).

So far the analysis has shown several references to nc-1.10-16..i386.rpm and within the timelines we see
specific entries about this nc rpm including the original creation and access date and time of July 14, 2003
at 11:12 AM and a change entry on the same date but at 11:43 AM.

\/nc-1.10-16.i386.rpm..rpm
Mon Jul 14 2003 11:12:15 100430 ma. -rwxr-xr-x 0 0 23
<fl-160703-jp1.dd-dead-23>

We are able to see that Netcat initially appears in this timeline on July 14, 2003 at 11:12 AM. This is
likely the compile date and time of Netcat.

Mon Jul 14 2003 11:43:57 56950 ..c -/-rwxr-xr-x 502 502 22
\/nc-1.10-16.i386.rpm..rpm

Netcat Reference Explored:
Using Autopsy I was able to extract the nc-1.10-16.i386 rpm binary, and upon analysis determine that the file
extracted from the image was the actual rpm that one would use to install ‘netcat’ on a system. Using a
Google search with criteria of ‘nc-1.10-16.i386.rpm’ I found that this specific rpm is the Redhat 8.0 rpm for
nc. I found and downloaded a copy of the rpm from the website (http://rpmfind.rediris.es/rpm2html/redhat-
8.0-i386/nc-1.10-16.i386.html) and performed an MD5Sum on it and the one extracted from the fl-160703-
jp1.dd image from SANS. The MD5Sum hash totals matched, and so I now know that the system that John
Price was likely using was using Redhat 8.0 as it’s base operating system, or that he had some dual boot, or
VM configuration of Redhat 8.0. Additionally we know have evidence that Netcat was present on his
machine.

Figure 1.17 MD5 Comparison of NetCat Binary found and downloaded

Netcat (nc) is defined on the same rpm website as ‘a simple utility for reading and writing data across
network connections, using the TCP or UDP protocols. Netcat is intended to be a reliable back-end
tool which can be used directly or easily driven by other programs and scripts. Netcat is also a
feature-rich network debugging and exploration tool, since it can create many different connections
and has many built-in capabilities’. From experience I know that ‘nc’ can be used to copy files to /
from remote computers, execute commands remotely etc. This leads me to believe that John is likely using

l Page 16

‘nc’ in connection with his illegal activities and most likely to connect remotely to another machine to retrieve
the copyrighted material.

Given that the rpm found was for Redhat 8.0, and the workstation appeared to be a Microsoft based on the
presence and use of Microsoft Word 8.0, it is likely that this version of Netcat was either run from a dual
boot machine or within a virtual machine. With further investigation of the full image I was able to extract
evidence that Netcat was likely run in a virtual machine using Vmware (www.vmware.com).

Figure 1.18 Interesting References within SANS to Vmware session.

Within Autopsy I identified a fragmented inode on the image that contained remnants of references to vmware.

An extract of fragment #42 found using Autopsy

Autopsy string Fragment Report (ver 1.74)

--
Fragment: 42
Length: 1024 bytes
Invalid address in indirect list (too large): 134996352Not allocated to
any meta data structures
MD5 of raw Fragment: e1067497002867b59c8e1953da221c25
MD5 of string output: 5a18a616b1dbb5016819365948c6ac44
Image: /forensics//SANS-Unkown_Binary/SANS-ASSIGN1/images/fl-160703-
jp1.dd
Image Type: linux-ext2
Date Generated: Mon Jan 05 02:05:59 2004
Investigator: unknown
--
xmms-mpg123-1.2.7-13.i386.rpm..rpmUU
UU a
vmware
cd ..
vmware-config.pl
vmware
LOGNAME=root

To ensure that the analysis was complete a Google search with the following search criteria ‘xmms-mpg123-
1.2.7.13-i386.rpm’ confirmed my expectations that this was a Linux source code package. It appears that this

l Page 17

5 Taken from http://havardk.xmms.org/dist/xmms-1.2.7-rh8-rh9-rpm/

specific rpm is needed by Redhat 8.0 or 9.0 to handle mpeg audio input5– which seems to follow the possible
scenario that we are investigating. It also gives further support that we are looking at either a dual boot
machine or a machine with VMware installed.

Figure 1.19 Unknown RPM References Explored in Google Search

In addition to extractable files and various references to rpms’, from the image I was able to extract some
correspondence between John Price and an individual called Mike.

Correspondence Found:
Figure 1.20 illustrates two Microsoft word documents and several pieces of documentation. Through Autopsy
I extracted each of these for further analysis.

Figure 1.20 Extracted Communications Relating to Investigation

One word document details a communication between John Price and an individual referred to as ‘Mike’
(located in a file called Mikemsg.doc, which appears to have been created on July 14th, or 2 days before the
image was created (so close to the investigation initiation).

‘Hey Mike,
I received the latest batch of files last night and I’m ready to rock-n-roll (ha-ha).

l Page 18

I have some advance orders for the next run. Call me soon.
JP’

This communication is interesting as it indicates that John Price received ‘the latest’ indicating that there has
been past batches of copyrighted material illegally copied and gives a sense that he is not acting alone.
Additionally he appears to have a pre-defined market for his stolen goods and is willing to source items that
they would like. This would typically indicate that he trusts these individuals (both to buy illegal copies, and
to formalize the process enough to start taking requests).

The other items of note was the reference to ‘last night’ and ‘next run’, this might give us a sense that the
individual is using the IT resources overnight, or is collecting the files at night and processing them during
normal business hours. Additionally when I read ‘next run’ I envision a process which is actually re-copying
material into a more useable format (i.e. copying CD’s). Finally it is signed by ‘JP’, which I have taken to
be John Price our suspect. This links his activities to him.

Graphic Images Found:
During our analysis I was also able to identify three (3) pictures located within the fl-160703-jp1.dd image.
Two of the images sect-num.gif, and sector.gif respectively – seem to depict a hard-disk and the allocations of
physical media sectors.

Figure 1.21 Graphic Images retrieved from SANS Unknown Binary Assignment –
Physical Media

and

Since the scenario provided by SANS indicates that John Price was using the company’s IT resources to
illegally distribute copyrighted material, this might indicate that John had to do some research on how to
make an exact copy (and hence the reason behind track and sectors).

Figure 1.22 depicts the final image ebay300.gif which appears to be un-related to this investigation – although
at first I thought it might be a means for John Price to sell the copyrighted materials. I did not investigate
this further at this point in time.

Figure 1.22 Graphic Image retrieved from SANS Unknown Binary Assignment -
Ebay

l Page 19

So far our analysis tends to lead us to John Price copying some form of entertainment (Music, Video, DVD)
using an unknown program. Given the nature of the items he is likely copying, my expectation is that the
unknown binary will be a ‘ripper’ or image utility of some type to make illegal copies of DVD’s, CD’s or
other media. Such a utility would be used to possibly break the encryption around a movie for instance and
then allow the person to make illegal copies of the same CD or DVD. Let’s move to the binary analysis
now.

Binary Analysis:
Having identified the file called ‘prog’ as the unknown binary from SANS and verifying its integrity I started
by using the ‘ls –l prog’ command to show the file permissions for prog.

Figure 1.23 Identified Binary File Permissions

Note that JLO is one of the UIDs on my forensic machine and so the name is not that of the original
machine, rather it has inherited the user and group references that are on this particular machine. What is
interesting is that the permissions is executable by all individuals on the system. This would of course
assume that we hadn’t set the mount options to ‘read only’ and ‘noexec’. As it is currently mounted we
will not be able to execute the binary for our investigation. So I will first copy ‘prog’ to a partition that
will allow me to execute the binary when necessary. I will at the same time change the permissions to
ensure that it isn’t accidentally executed by another system user (which is unlikely as it is an air-gapped
laptop). To do this we use ‘chmod 700 prog’ and perform another ‘ls –al prog’

Figure 1.24 Modifying Permissions of Unknown Binary to allow Execution

Comfortable that only root can execute this binary, it is important to extract as much information without
actually executing it. To extract some basic information about the binary I will use the ‘file’ utility in Linux
to extract any useful information.

Figure 1.25 File Utility Output Against Unknown Binary
\

As Figure 1.25 shows, the binary is a Linux executable that is statically linked and is considered version 1.
This leads me to believe that it is not dependant on the existence of any shared libraries. I will confirm this
with the ‘ldd’ utility that will identify any interesting shared libraries that might be needed to execute the
binary.

l Page 20

Figure 1.26 Identification of Linked Libraries

So we are not looking for a binary that requires shared libraries to function properly, this might mean that
the program could be run as a stand-alone or run from a CD or floppy. As a next step I will see if any
help files exist.

Helping Myself to Help:
In an attempt to see the usage pattern of this unknown binary I decided to try to see if there was a help file
associated with it. This test is rather harmless as it doesn’t actually execute the binary – only shows you the
help file.

To test for this I used ‘./prog • •help’, which invokes a help file if available. The output was interesting,
and so I re-ran the same command but added an optional output redirection flag so that I could review the
help file in a text editor, or possibly use it for comparative purposes.

Figure 1.27 Invoking the help function of the Unknown Binary

The rest of the help file makes references to various configuration specific help. I decided that since some of
the relevant information was obfuscated, that I might yield better results from the use of the strings utility that
reads the contents of a file and shows any printable characters.

Strings Search:
Often extremely useful information is contained within the source code of the binaries / programs themselves.
It might be for de-bugging purposes, programmer documentation or simply a wise-guy programmer wanting to
take some personal credit. In any event it is also very useful in most cases to help identify unknown

l Page 21

6 BinText is a text extractor freeware tool that can be located at
www.foundstone.com/resources/proddesc/bintext.htm .
7 www.google.ca (Canadian version) www.google.com (U.S. version)
www.foundstone.com/resources/proddesc/bintext.htm

binaries. Next I run ‘strings’ against prog and output it to a file. The output was eighty-nine (89) pages in
length, so I have extracted the parts that I used from this output and incorporated them into this document.
For a full listing of the output file see Appendix A.

‘1.0.20 (07/15/03)’ – appeared to be a version and date reference for this file – so potentially
useful for comparative purposes later on.

‘newt’ – appears to be a specific references to an individual who was also referenced in the help files –
possibly an Internet ‘handle’ for whomever is taking care of bug fixes or at least tracking them.

‘use block-list knowledge to perform special operations on files’ –
appeared to be some specific help related information for ‘prog’

Use of BinText:
Since the strings output wasn’t the easiest to use and didn’t provide me with many valuable pieces of
information I decided to use BinText6 to load the ‘prog’ file and extract the following text which appeared
to be part of a help file. Specifically I was interested in the following:

‘0004C880 0004C880 0 use block-list knowledge to perform special operations on files’

This appeared to be some binary specific type information, which I confirmed by moving to the networked
machine and performing a Google7 search on the following:

‘use block-list knowledge to perform special operations on files’

One of the Google search pages returned was http://lwn.net/2000/0420/announce.php3 and referenced a
product called bmap v1.0.17. Interested in this I decided to see first if there was a version 1.0.20 (using
Google with a search criteria of ‘bmap 1.0.20’) – which in fact there was. I downloaded it from another
website (http://build.lnx-bbc.org/packages/fs/bmap.html)

Figure 1.28 depicts a likely match to the unknown binary.

Figure 1.28 Identification of Unknown Binary Website Reference

l Page 22

8 Bit-Stream refers to a process where the image is made by copying over the ones and zeros of
a file one bit at a time – resulting in a true likeness to the original. This is similar to forensic
image using the ‘dd’ utility.

It is interesting that the references and analysis now appears to point to a forensic imaging tool not a ripper
program. This would makes sense as John would want to make exact copies of media, then he would be
using an imaging tool that is capable of performing ‘true’ copies, which typically requires bit-stream-copies8.

BMAP Version 1.0.20
To determine if BMAP was in fact the unknown binary, I felt it prudent to download the source from this
website, and then perform some analysis on it. The first step was to obtain the source file and un-gzip and
un-tar it, in essence I uncompressed the source files and loaded them to my Unix based analysis machine
(once downloaded from my networked machine with Internet connectivity).

MD5Sum hash total:
Ideally we would be able to compare the outputs of the MD5Sum hash totals for each file and have a
perfect match. Unfortunately this is not typically the way that things work in a forensic investigation and
when I tried to compare the MD5Sum hashes of these two files, they were different. This indicates that the
content of each file has at least a single character difference.

Figure 1.29 Bmap and Unknown Binary MD5Sum Comparisons.

This makes sense as we will see later from the footprint of bmap that it writes specific lines into
the files about the compile date, which would result in different MD5’s. Additionally any variants
in the system configuration, such as the error below that I received during compilation would result
in slight variances in the way that bmap was compiled on my system, even if it works fine against our test
files.

“make: sgml2latex: Command not found
make: *** [doc] Error 127”

Libraries Required:
Having identified that the MD5’s do not match, I decided to see which libraries bmap uses and see
if I can find evidence of the same dependencies for the unknown binary. To do this I used the
‘ldd’ utility against the bmap executable and identified that it calls libs.so.6 and ld-linux.so.2 as
illustrated in Figure 1.30 below.

Figure 1.30 Identification of Bmap Required Libraries

The same command against the unknown binary did not result in similar results, as the unknown
binary did not have the dependencies available. From the image however, I was able to use
Autopsy to extract references for the same libraries using a keyword search on libc. . While this
isn’t conclusive evidence on it’s own it does lead us to further believe that the unknown binary is
bmap. Next I wanted to look for any type of unique characteristics that the software might leave
during a compile.

Figure 1.31 Autopsy Existence of Bmap Required Libraries

l Page 23

Figure 1.31 Compilation of Bmap and Files Created

Footprint Analysis:
Each piece of software leaves a unique footprint as it is compiled and/or executed on a system.
For instance bmap has a unique way of defining echo statements into files as it is compiling. As
an example a file within the bmap directory called config.h contains the compile date, 01/09/04,
which is the system date on my machine during compilation. We see other examples in the help
files and others.

Knowing that these unique characteristics exist, an investigator or even an administrator could now
target a system and create a simple shell script that would look for a combination of a config.h
files with the term ‘newt@scyld.com’. Additionally they could look for the mere presence of
newt_conf_h files on their system.

l Page 24

Do the individual binaries outputs compare?:
One way to be able to prove that the unknown binary is actually bmap v1.0.20 is to see if the two files
operate in the same fashion on the same test file. To do this I have compiled bmap 1.0.20 into a VM
session, and also copied the unknown binary to the same directory. Additionally I created a file called test.mpg
to use in the analysis of both files.

Figure 1.32 Comparison of Bmap and Unknown Binary Operations

As we can see the two binaries handle the test.mpg file in exactly the same way, and appear to be
performing a bit-stream level copying of the files. The files only contain one line of text so the output
appears to be an appropriate amount.

Comparison of Help Files
Finally, as a last step before concluding that the unknown binary is bmap 1.0.20 I decided to compare the
outputs of the help files that are associated with each. Figure 1.34 shows us the help file from bmap 1.0.20:

Figure 1.34 Extract of Bmap Help File

l Page 25

Now we examine the help file associated with ‘prog’ (the unknown binary) as illustrated in Figure 1.35 below.

Figure 1.35 Extract of Unknown Binary Help File

Figure 1.36 Comparison of the Functions of Each Binary

l Page 26

All the above analysis leads me to believe that the unknown binary is bmap v1.0.20.

STRACE Comparison:

Another good approach to seeing how a binary interacts with a system is to use the debugging tool ‘strace’,
which traces the interactions the binary performs on a system. While I do not expect that the output would
be the same, as an investigator it would provide some additional assurance if there were similar characteristics
in each file. We start off with the strace output for the unknown binary, as it is likely going to have fewer
interactions on the system as it was not compiled on it.

I then ran the same utility on the bmap binary, and note that there is several similarities, and while not
conclusive – once again a good indication that we have identified the unknown binary as bmap.

Figure 1.33 Strace Utility of Bmap

l Page 27

Unknown Binary Program Identification:

Based on the above analysis the unknown binary is called bmap v1.0.20, and is 487 476 bytes in
size.

Having identified the binary as BMAPV1.0.20, at this point I would likely confront John Price with our
forensic analysis to try and pose the following questions that might help further understand the full spectrum of
evidence.

Potential Questions:
If I were able to sit down with John Price and was given the chance to ask five questions I would
likely use the following questions which I feel will be helpful in the investigation but not come across
as a direct attack on him.

‘John, during the investigation I have identified several programs (binaries) that are not standard programs for our 1.)
deployments. Given that this was your machine did you happen to load any non-standard programs on your machine?
If you did we would like to know what they were so that we can identify if you possibly installed a ‘trojan’d’ version
of a file? It might be possible that you could have inadvertently loaded files without knowing it?’ [it is important to
always allow them the possibility of helping themselves]

‘John, from what I was able to analyze it appears that somehow the company’s IT resources were being used for non-2.)
business purposes during non-business hours Do you think that this is a serious issue?’ [this will give an investigator
a sense of the moral fiber of the individual that they are investigating, in practice similar questions have been enough
for an individual to state that they were wrong to do this type of thing but didn’t understand the gravity of their actions]

‘John, the evidence seems to lead me to believe that you and other individuals were using the company’s computers 3.)
and network resources inappropriately, apparently to try and break copyright laws. Management is taking this very
seriously and wants to ensure that this does not happen again. Is there anyone else that was involved?

‘John is it possible that I am not getting the full picture based on the evidence that I am seeing, or that it seems worse 4.)
than it really was? Did you care to help clarify your actions? – I would really like to clear this up before it gets out of

l Page 28

hand’ [this gives them the sense that you have found evidence of wrong doing and might infer the worst possible
solution – it might be enough for them to want to try and clear their name / of confess to their actions]

‘ John, I have to admit that based on the evidence that we were able to collect, and the fact that you attempted to wipe 5.)
some evidence from the system prior to your departure does nott look good for you. Why did you try to wipe
information from your computer? What were you afraid we would find? [sometimes you have to play it hard with
these individuals, and often their reasoning for destroying evidence is not what we think they did it for.]

l Page 29

Appendix A: Strings output for unknown binary ‘prog’
This a embedded PDF document that contains the full content of the strings output against the ‘prog’ file.
I choose to embed the document as a PDF because the full file was approximately eighty plus (80+) pages.

"Output of command
strings prog.pdf"

l Page 30

Appendix B: Forensic Footprint of Bmap v1.0.20

This is the output of the ‘make’ command for bmap 1.0.20.

echo "#ifndef NEWT_CONFIG_H" > config.h
echo "#define NEWT_CONFIG_H" >> config.h
echo "#define VERSION \"1.0.20\"" >> config.h
echo "#define BUILD_DATE \"01/09/04\"" >> config.h
echo "#define AUTHOR \""newt@scyld.com"\"" >> config.h
echo "#define BMAP_BOGUS_MAJOR 123" >> config.h
echo "#define BMAP_BOGUS_MINOR 123" >> config.h
echo "#define BMAP_BOGUS_FILENAME \""/.../image"\"" >> config.h
echo "#define _FILE_OFFSET_BITS 64" >> config.h
echo "#endif" >>config.h
if [-n mft] ; then make -C mft ; fi
make[1]: Entering directory ̀ /UNKNOWN_Binary/bmap-1.0.20/mft'
echo "#define MFT_VERSION \"0.9.2\"" > mft_config.h
echo "#define MFT_BUILD_DATE \"01/09/04\"" >> mft_config.h
echo "#define MFT_AUTHOR \""newt@scyld.com"\"" >> mft_config.h
cc -Wall -g -I. -Iinclude -c -o option.o option.c
cc -Wall -g -I. -Iinclude -c -o log.o log.c
log.c:354: warning: ̀ syslog_dispatch' defined but not used
log.c:361: warning: ̀ html_dispatch' defined but not used
cc -Wall -g -I. -Iinclude -c -o helper.o helper.c
ld -r --whole-archive -o libmft.a option.o log.o helper.o
make[1]: Leaving directory ̀ /UNKNOWN_Binary/bmap-1.0.20/mft'
cc -Wall -g -Imft/include -Iinclude -Lmft -lmft dev_builder.c -o
dev_builder
mft/libmft.a: In function ̀ mft_log_perror':
/UNKNOWN_Binary/bmap-1.0.20/mft/log.c:297: ̀ sys_errlist' is deprecated; use
`str
error' or ̀ strerror_r' instead
/UNKNOWN_Binary/bmap-1.0.20/mft/log.c:294: ̀ sys_nerr' is deprecated; use
`strerr
or' or ̀ strerror_r' instead
cc -Wall -g -Imft/include -Iinclude -c -o bmap.o bmap.c
bmap.c: In function ̀ main':
bmap.c:371: warning: implicit declaration of function ̀ dprintf'
cc -Wall -g -Imft/include -Iinclude -c -o libbmap.o libbmap.c
./dev_builder > dev_entries.c
cc -Wall -g -Imft/include -Iinclude -c -o dev_entries.o dev_entries.c
cc -Lmft -lmft bmap.o libbmap.o dev_entries.o -o bmap
mft/libmft.a: In function ̀ mft_log_perror':
/UNKNOWN_Binary/bmap-1.0.20/mft/log.c:297: ̀ sys_errlist' is deprecated; use
`str
error' or ̀ strerror_r' instead
/UNKNOWN_Binary/bmap-1.0.20/mft/log.c:294: ̀ sys_nerr' is deprecated; use
`strerr
or' or ̀ strerror_r' instead
cc -Wall -g -Imft/include -Iinclude -c -o slacker.o slacker.c
cc -Wall -g -Imft/include -Iinclude -c -o slacker-modules.o slacker-modules.c
cc -Lmft -lmft slacker.o slacker-modules.o libbmap.o dev_entries.o -o
slacker
mft/libmft.a: In function ̀ mft_log_perror':
/UNKNOWN_Binary/bmap-1.0.20/mft/log.c:297: ̀ sys_errlist' is deprecated; use
`str
error' or ̀ strerror_r' instead
/UNKNOWN_Binary/bmap-1.0.20/mft/log.c:294: ̀ sys_nerr' is deprecated; use
`strerr

l Page 31

or' or ̀ strerror_r' instead
cc -Wall -g -Imft/include -Iinclude -c -o bclump.o bclump.c
bclump.c:313: warning: missing braces around initializer
bclump.c:313: warning: (near initialization for ̀ options[1].defval')
cc -Lmft -lmft bclump.o -o bclump
mft/libmft.a: In function ̀ mft_log_perror':
/UNKNOWN_Binary/bmap-1.0.20/mft/log.c:297: ̀ sys_errlist' is deprecated; use
`str
error' or ̀ strerror_r' instead
/UNKNOWN_Binary/bmap-1.0.20/mft/log.c:294: ̀ sys_nerr' is deprecated; use
`strerr
or' or ̀ strerror_r' instead
for i in bmap slacker bclump ; do ./$i --sgml > $i-invoke.sgml ; done
m4 < bmap.sgml.m4 > bmap.sgml
sgml2latex bmap.sgml
make: sgml2latex: Command not found
make: *** [doc] Error 127

l Page 32

9 Gathered using PSINFO (www.sysinternals.com)

Appendix C: Forensic Equipment Configurations:
I used two (2) IBM T40 laptops for this analysis – each has some common items (i.e. processors)
and then specifics about the loadset and operating system. I have broken this appendix into these
two same areas.

Common Characteristics
Processor(s)
Model : Intel(R) Pentium(R) M processor 1500MHz
Speed : 797MHz
L2 On-board Cache : 1024kB ECC synchronous ATC

Mainboard and BIOS
Bus(es) : AGP PCI PCMCIA CardBus USB SMBus/i2c
System BIOS : IBM 1RET36WW (1.07)
Mainboard : IBM 2373EU1
Front Side Bus Speed : 1x 89MHz (89MHz data rate)
Installed Memory : 1023MB

Video System
Monitor/Panel : IBM ThinkPad 1024x768 TFT LCD panel
Adapter : ATI MOBILITY RADEON 7500

Specific Differences Include:

Machine 1 Internal Network Machine //Haliveloclo19

Querying information for HALIVELOCLO1...

System information for \\HALIVELOCLO1:
Uptime: 0 days 3 hours 37 minutes 1 second
Kernel version: Microsoft Windows 2000, Uniprocessor Free
Product type: Professional
Product version: 5.0
Service pack: 3
Kernel build number: 2195
Registered organization: ABC CORP
Registered owner: ABC CORP
Install date: 03/10/2003, 1:14:58 AM
Activation status: Not applicable
IE version: 6.0000
System root: C:\WINNT
Processors: 1
Processor speed: 1.4 GHz
Processor type: Intel(R) Pentium(R) M processor
Physical memory: 1022 MB
Video driver: ATI MOBILITY RADEON 7500

Machine 2 AIRGAPPED Network Machine //POWERBIRDIE
Output from ‘uname –an’ command

Linux POWERBIRDIE 2.4.20-8 #1 Thu Jan 13 17:54:28 EST 2003 i686 i686 i386 GNU/Linux

Logical Storage Devices:

l Page 33

Output from ‘df –ah’ command

Filesystem Size Used Avail Use% Mounted on
/dev/hda3 32G 20G 11G 65% /
none 0 0 0 - /proc
usbdevfs 0 0 0 - /proc/bus/usb
/dev/hda1 101M 9.2M 86M 10% /boot
none 0 0 0 - /dev/pts
none 504M 0 504M 0% /dev/shm

l Page 34

Appendix D: References Used (in order of appearance)

SANS - Unknown Binary Media – taken from (http://www.giac.org/gcfa/binary_v1_4.zip)1.

Canadian Evidentiary Act. (http://laws.justice.gc.ca/en/C-5/)2.

Netcat Reference Material and RPM -- (http://rpmfind.rediris.es/rpm2html/redhat-8.0-i386/nc-1.10-3.
16.i386.html)

XMMS RPM’s for Redhat – (http://havardk.xmms.org/dist/xmms-1.2.7-rh8-rh9-rpm/)4.

Google (www.google.ca) - BMAP Search Result (http://lwn.net/2000/0420/announce.php3)5.

Google (www.google.ca) ‘bmap 1.0.20’ Search Result (http://build.lnx-6.
bbc.org/packages/fs/bmap.html)

DMZ Definition - (http://isp.webopedia.com/TERM/D/DMZ.html)7.

National Institute of Standards and Technology – Definition of Forensic Image 8.
(http://www.cftt.nist.gov/DI-spec-3-1-6.doc)

Canadian Evidence Act – (http://laws.justice.gc.ca/en/c-5/15821.html),9.

Tool Reference - PSINFO (www.sysinternals.com)10.

Michael Ford - Imaging of Volatile Memory using a Unix machine 11.
(http://www.samag.com/documents/s=9053/sam0403e/0403e.htm)

Rob Lee - SANS GCFA Training – in class notes on MAC times.12.

