
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 1 of 33

SANS/GIAC Certified Forensic
Analyst (GCFA) Practical
Assignment version 1.0
Chris Calabrese
September 2002

Table of Contents
1. Part 1 – OPTION 2: Perform a Forensic Tool Validation
2. Part 2 – Analyze an Unknown Binary
3. Part 3 - Legal Issues of Incident Handling

Part 1 - OPTION 2:
Perform a Forensic Tool Validation

Scope of Test
This test concerns itself with GNU tar and GNU cpio, which are tools for copying,
archiving, and un-archiving data files.

Specifically, the test will examine whether these tools are forensically sound when used
in various common modes, and whether using their --sparse features can reduce disk
space and real time requirements of a forensic investigation.

Tool Description
Products Tested

The products tested are GNU tar and GNU cpio, both of which are data archiving tools
for Unix-like systems.

SANS GIAC

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 2 of 33

My originally intention was to test only GNU tar version 1.13.19 and GNU cpio version
2.4.2, which are included with the Red Hat Linux version 7.1 distribution installed on my
test system. However, it soon became evident that these versions did not perform as
expected.

After discussing the issues with the GNU tool maintainers[1] I eventually included GNU
tar version 1.13.25 from ftp://alpha.gnu.org/gnu/tar/ and GNU cpio version 2.5 from
ftp://ftp.gnu.org/gnu/cpio/ in my test.

What the Tools are Supposed to Do

These tools are used for copying data files on Unix-like systems (though they’ve also
been ported to Windows). This includes copying data in and out of file and/or tape
archives, such as when archiving several files into a single archive file for organization
and distribution.

In this way, tar and cpio are very similar to WinZip. The main differences being that
tar and cpio are easier to script, and they only do the archiving part, not the
compression part (usually done in the Unix world these days with gzip/gunzip).

Another difference between tar/cpio vs. WinZip is actually a difference of Unix vs. MS
Windows. That is the ability to read not just actual data files through the filesystem, but
also other constructs of the operating system through device files and pseudo-filesystems.
For example, you can take a snapshot of OS information on process status by accessing
the /proc pseudo-filesystem/directory through tar/cpio.

You might also think that tar/cpio can be used with Unix device files to directly access
raw filesystem images (e.g., /dev/root on Linux to access the root filesystem) or the
system memory map (e.g., /dev/mem and /dev/kmem), including unallocated space.
Unfortunately, they cannot do this directly since they backup device file metadata rather
than the contents. Instead, you will need another tool that can image device files (dd
being the obvious choice) and can then point tar/cpio at the output of that tool.

Differences between tar and cpio themselves are:

• They use different internal representations for their archive files.
• tar is easier to use when archiving a specific set of named files such as in

 tar xf myarchive.tar fileA fileB fileC
• cpio is more powerful in being able to archive a large set of files by specific

parameters, such as in:
 find . –name ‘*.sql’ | cpio –o > myarchive.cpio

As a result, people generally learn tar first and are more familiar with it. But, since cpio
is more powerful, a forensic investigator should be familiar with both.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 3 of 33

How This Helps the Forensic Investigator

The forensic investigator can use these tools to create data archives as part their evidence
gathering. They would use such archives for pristine storage of system images,
distribution of “working images,” etc. The tools can later be used to un-archive the data
back to its constituent files in a forensically sound way (i.e., it can be shown that the
contents of the re-constituted files will be identical to the contents of the original files).

For example, an analyst might use tar or cpio to read evidence data (individual files,
while filesystems, or OS-level process information) from of a machine under examination
and then burn the resulting data archive into a CD-ROM. They would then use this
original CD-ROM as a master copy of the data for use as courtroom evidence, and to
make “working copies” used to un-archive the data onto a forensic workstation for
analysis.

This ability to create forensically sound copies of the data from a system under
investigation is important to the forensic investigator because it allows the investigator to
“play with” the data without the risk of modifying the master copy of the data and thus
calling into question the quality of any evidence gathered.

Aside from these fundamental properties of archiving/un-archiving data, these tools have
another interesting feature - their ability to create Unix/Linux filesystem "holes" when
called with the “—sparse” command-line option. Filesystem holes are a feature of
Unix/Linux systems whereby they synthesize zero-bit-filled disk blocks without actually
taking up disk space. By using this feature, the forensic investigator can save significant
amounts of disk space when analyzing disk images, which typically contain large
amounts of unused (i.e., zero-filled) space.

This is important to the forensic investigator because it allows the examination of very
large (but sparse) data sets on a forensic workstation with a relatively small amount of
disk space. For example, during the SANS Track 3 courses at SANS 2002, I was able to
analyze over 6GB of filesystem data from a compromised system, even though my
workstation had less than 2GB of disk space available.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 4 of 33

Additional System Files

System Libraries for GNU tar version 1.13.19 (bundled with Red Hat Linux version
7.1):

LDD info on tar 1.13.19

System Libraries for GNU cpio version 2.4.2 (bundled with Red Hat Linux version
7.1):

LDD on cpio.2.4.2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 5 of 33

System Libraries for GNU tar version 1.13.25 from ftp://alpha.gnu.org/gnu/tar/:

LDD alpha version of tar, screen 1

LDD alpha version of tar, screen 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 6 of 33

System Libraries for GNU cpio version 2.5 from ftp://ftp.gnu.org/gnu/cpio/:

LDD alpha version of cpio

Other System Files:

Other system files (not shared libraries) were determined using lsof during the execution
of the programs, as shown in the Data and Results section.

Running from a CD-ROM

These tools can run directly from CD-ROM without installation on the system. In fact,
the SANS System Forensics, Investigations, and Response Course CD v1.2 (distributed
in my Track 8 class sessions at SANS 2002) includes binaries for tar that can be run off
of the CD.

Interestingly, however, while the CD includes Solaris and MS Windows versions, it does
not include Linux versions, even though Linux is the primary OS for the Track 8
laboratories...

Static Compilation

It is possible to compile these tools statically (i.e., such that they do not rely on the
shared-libraries/DLL’s of the system they are running on). In this way, they can be used
in an evidentiary sound way (i.e., so that the shared-libraries/DLL’s installed on the
system they’re running on do not affect the ability of the tools to accurately recreate their
input data as it passes through archive/un-archive cycles).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 7 of 33

The analyst can still use non-static compilations in an evidentiary sound way, but only if
the analyst trusts the shared library files on the system the process is running on. This is
often the case when un-archiving collected data onto a trusted analysis machine.

Libraries on an untrusted machine could be verified using HMAC signatures (e.g., with
md5sum). However, this requires a trusted and statically compiled signature checker...

Test Methodology

Test Apparatus

The test environment hardware is a Compaq Armada M700 laptop with 512 MB of
RAM. The OS is a stock install of Red Hat Linux version 7.1 as a guest OS under
VMWare Workstation version 3.0.0 (with a stock install of Windows XP Professional
with all patches from Windows Update as the host OS). I allocated the VMWare partition
192MB of RAM.

Environmental Conditions

I performed all testing using a networking configuration I believe is extremely secure –
The VMWare partition was configured without any network connectivity (all data
transfers done via floppy disks accessed by both the Linux VMWare partition and the
native Windows XP OS), while the host Windows XP system was configured with a very
tight local firewall allowing only outbound connections. The laptop was physically
located in my office in Franklin Lakes, NJ during testing. At other times, it was located in
my car, or in various rooms of my house in Montclair, NJ. The important point is that I
had physical control over it all times.

Data Sources

All data used in testing came from the honeypot.hda.8 file of
ForensicChallenge/challenge/images.tar on the SANS Systems Forensics,
Investigations, and Response Course CD v1.2.

Description of the Procedures

Equipment identification:

Equipment identified via visual inspection. Equipment prepared by loading Red Hat 7.1
via FTP download, with VMWare partition created after Red Hat loaded (on separate
disk partition). As mentioned in the Test Apparatus section, the test environment
hardware is a Compaq Armada M700 laptop with 512 MB of RAM. The OS is a stock
install of Red Hat Linux version 7.1 running as a guest under VMWare Workstation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 8 of 33

version 3.0.0 (with Windows XP as the host OS), and I allocated VMWare partition
192MB of RAM.

Checks before testing

Hardware checked through normal usage (i.e., this laptop is my normal desktop system
and I use it constantly).

Initial OS installation ensured by loading OS from known good sources (i.e., official Red
Hat mirror).

OS installation initially checked by using this setup during the Track-8 sessions at SANS
2002, where it performed properly in all laboratories.

Continued correctness of OS installation assured through the measures described in the
Environmental Conditions section.

Final check before these tests were performed included booting up the Red Hat /
VMWare partition and checking to make sure it could still access all hardware
peripherals properly.

How documentation will be kept

All permanent documentation included directly in this report. Temporary files stored in
/home/p644cc/gcfa on the Linux partition of the laptop.

Procedures to protect the integrity of test results

• Configure VMWare so that the Linux image has no network connectivity.
• Physically secure Laptop.

Procedures to protect repeatability/reproducibility of test results

• Configure VMWare so that the Linux image has no network connectivity.
• Minimize extraneous jobs running on the test system during testing.
• Run each test involving timing multiple times
• Make no hardware changes to the system during the testing period
• Make no OS changes to the host Windows XP system or to the Linux VMWare

system during the testing period

Procedures to protect integrity of test results

• Test results recorded into this document in real time (i.e., as they were obtained).
• Document itself stored on laptop, which I had physical control over and which has

very tight local firewall to reduce the possibility of network intrusion (only allows
outgoing connections).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 9 of 33

• No individuals allowed access to laptop beside the author (e.g., corporate desktop
support team does not know administrator password).

Criteria for Approval

Expected results:

1. The tools do not modify data as it passes through archive/unarchive cycles.
2. The tools use significantly less physical disk space when called with the --

sparse option. This is important to the forensic investigator because it allows the
examination of very large (but sparse) data sets on a forensic workstation with a
relatively small amount of disk space. See the How This Helps the Forensic
Investigator section for more information on how this works and what its benefits
are.

3. Running times of forensic analysis routines (strings, unrm, find) are faster on
files created by the tools being tested when there are called with the --sparse
option (as less physical disk accesses are necessary).

4. Running times to archive/unarchive files are faster when the tools are called with
the --sparse option (as less physical disk accesses are necessary)

Use of system files:

Determine shared libraries with ‘ldd –v’ as shown in the Additional System Files
section.

Confirm and detect other (non shared-library) system files by executing lsof while tools
are executing. Note that I later realized that running strace would have been superior,
but lsof produces reasonable results given that library files were already determined
with ldd.

Detection of evidence manipulation:

Use MD5 signatures (i.e., md5sum) to detect evidence manipulation. Exact command lines
are given below in the Execution: section.

Detection of file sizes

File sized determined using df after using du to determine that the bundled version of df
on Red Hat Linux version 7.1 does not report disk space used by filesystem "holes."

Detection of running times

Running times detected using the time command. Exact command lines are given below
in the Execution: section.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 10 of 33

The astute reader may notice that time output is in two slightly different formats. It
appears that the GNU Bourne Again Shell (bash) bundled with my Red Hat 7.1
installation calls its own built-in time function only when time is the first command in a
pipeline, falling through to /bin/time at other times. In contrast, the Korn Shell (ksh)
always calls its built-in time function as long as time is the first command of a pipe
segment. By way of example, both bash and ksh would call their built-in time function
for

time wc –l fubar
However, only ksh calls its built-in time function for

cat fubar | time wc -l

Execution:

Testing was executed as follows:

1. Extract image files from CD using
 mkdir base; cd base;
 tar xf /mnt/cdrom/ForensicChallenge/challenge/images.tar
to unarchive files from the CD to local disk without using the sparse option.
Unzip honeypot.hda8.dd.gz, which will become the basis for future tests.
Record external library files used; file sizes, compare files to expected MD5
signatures.

2. Create a tar archive of the honeypot.hda8.dd file with
 mkdir ../tmp; time tar -cf ../tmp/tar *.dd
Record external library files used; file sizes, and time for three runs.

3. Unarchive the archive created in the previous step with
 cd ../tmp; time tar -xf tar
Record external library files used; record file sizes; check MD5 signatures, and
record time for three runs.

4. Mount the image with
 mkdir mountpoint;
 mount -ro,loop,nodev,noexec,noatime $PWD/*.dd $PWD/mountpoint
and record running times for three runs on each of forensic analysis tools on the
tmp/honeypot.hda8.dd and its mounted image with
 time strings honeypot.hda8.dd > /dev/null
 time unrm honeypot.hda8.dd > /dev/null
 time find mountpoint > /dev/null

5. Unmount mountpoint and remove no-longer-needed files in tmp directory with
 umount $PWD/mountpoint
 cd ../base
 rm –rf ../tmp

6. Repeat steps 2-5, but using the --sparse option to all invocations of tar.
7. Repeat steps 2-5, but using both –sparse and GNU tar 1.13.25 from

ftp://alpha.gnu.org/gnu/tar/ rather than the system-supplied version of tar.
8. Copy the honeypot.hda8.dd file with

 cd ../base; echo *.dd | time cpio --sparse -p ../tmp
Record external library files used; file sizes, and time for three runs. Separate
archive creation/explosion steps won't work here because GNU cpio does not
implement --sparse for un-archiving.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 11 of 33

9. Repeat steps 4-5 to mount the image, record running times, unmount the image,
and remote the no-longer needed tmp directory, but for cpio rather than tar.

10. Repeat steps 8-9 using GNU cpio 2.5 from ftp://ftp.gnu.org/gnu/cpio/ rather than
the system-supplied version of cpio.

Test Results

Data and Results

Raw data:

Raw Test Results

Action Running Times Disk
Space
Usage

for
hda8

External Files/Libraries
Used

Files
Manipulated?

Unarchive
from CD
using
/bin/tar
without
sparse
option into
base
directory

NA 261
MB

/lib/ld-2.2.2.so
/lib/i686/libc-2.2.2.so
/lib/libnss_files-
2.2.2.so
/usr/lib/locale/EN_US/*

See also the
corresponding screen
shot in the Additional
System Files section

No

Create
archive
using
/bin/ar

1m41.105s,0m0.480s,0m12.240s
1m55.987s,0m0.400s,0m10.450s
1m47.595s,0m0.520s,0m15.200s
Avg real time 108.229s

261
MB

As above NA

Unarchive
using
/bin/tar

1m43.874,0m0390s,0m014.980s
1m43.208s,0m0360s,0m11.720s
1m42.247s,0m0.330s,0m10.250s
Ave real time 103.110s

261
MB

As above No

Forensic
tools run
on image
created
with
/bin/tar

strings
1m58.401s,1m37.890s,0m6.870s
1m50.488s,1m37.890s,0m7.140s
1m51.464s,1m37.340s,0m7.620s
unrm
0m41.479s,0m1.260s,0m5.640s
0m41.326s,0m1.350s,0m4.590s
0m44.216s,0m1.020s,0m4.730s
find
0m1.523s,0m0.020s,0m0.160s

NA NA NA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 12 of 33

Raw Test Results
Action Running Times Disk

Space
Usage

for
hda8

External Files/Libraries
Used

Files
Manipulated?

0m0.093s,0m0.000s,0m0.090s
0m0.165s,0m0.040s,0m0.040s
Total real time 438.131s

Create
archive
using
/bin/tar
--sparse

1m35.229s,0m0.470s,0m16.150s
1m44.012s,0m0.420s,0m13.560s
1m45.111s,0m0.380s,0m11.030s
Ave real time 101.451s

261
MB -
no
savings

As above for tar without
--sparse

NA

Unarchive
using
/bin/tar
--sparse

1m41.621s,0m0.290s,0m10.690s
1m40.360s,0m0.320s,0m9.760s
1m47.134s,0m0.380s,0m9.280s
Ave real time 103.038s

261
MB -
no
savings

As above No

Forensic
tools run
on image
created
with
/bin/tar
--sparse

strings
1m54.930s,1m37.450s,0m6.920s
1m55.260s,1m37.960s,0m8.640s
1m51.697s,1m37.650s,0m7.950s
unrm
0m46.725s,0m1.080s,0m4.290s
0m43.872s,0m1.050s,0m4.190s
0m41.342s,0m0.990s,0m3.620s
find
0m1.798s,0m0.070s,0m0.190s
0m0.250s,0m0.010s,0m0.030s
0m0.097s,0m0.040s,0m0.050s
Total real time 475.971s

NA NA NA

Copy file
using
/bin/cpio
--sparse

0:59.92,4.92,8.39
0:58.38,4.6,8.75
1:00.53,5.25,10.46
Avg real time 59.61s

51 MB As above for tar YES -
apparently it
strips trailing
NULL's

Forensic
tools run
on image
created
with
/bin/cpio
--sparse

strings
1m48.760s,1m35.690s,0m7.300s
1m54.440s,1m35.570s,0m7.580s
1m46.540s,1m34.860s,0m7.390s
unrm
0m11.902s,0m1.080s,0m5.550s
0m11.132s,0m1.130s,0m5.150s
0m12.000s,0m1.080s,0m4.880s
find
0m1.412s,0m0.050s,0m0.150s,
0m0.100s,0m0.040s,0m0.050s
0m0.094s,0m0.030s,0m0.050s

NA NA NA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 13 of 33

Raw Test Results
Action Running Times Disk

Space
Usage

for
hda8

External Files/Libraries
Used

Files
Manipulated?

Total real time 366.378s
Create
archive
using tar-
1.13.25
--sparse

1m34.493s,0m0.550s,0m10.930s
1m40.214s,0m0.640s,0m10.300s
1m41.372s,0m0.290s,0m8.150s
Avg. real time 98.69s

261
MB -
no
savings

/lib/ld-2.2.2.so
/lib/librt-2.2.2.so
/lib/i686/libc-2.2.2.so
/lib/i686/libpthread-
0.9.so
/lib/libnss-files-
2.2.2.so
/usr/lib/locale/EN_US/*

See also the
corresponding screen
shot in the Additional
System Files section

NA

Unarchive
using
tar-
1.13.25
--sparse

1m38.387s,0m0.270s,0m7.060s
Did not continue - no
advantage over older
versions

261
MB -
no
savings

As above No

Forensic
tools run
on image
created
with
tar-
1.13.25
--sparse

Not performed NA NA NA

Copy file
with
cpio-2.5
--sparse

48.82,12.12,7.53
47.57,8.97,6.81
52.02,9.11,7.10
Avg. real time 49.47

51 MB As above for other cpio
runs

No (unlike the
older version
of cpio!)

Forensic
tools run
on image
created
with
cpio-2.5
--sparse

strings
1m20.011s,1m9.190s,0m7.200s
1m24.234s,1m6.610s,0m7.020s
1m15.162s,1m4.620s,0m6.050s
unrm
0m9.185s,0m0.760s,0m4.540s
0m9.487s,0m0.760s,0m5.030s
0m8.859s,00.820s,0m4.580s
find
0m1.452s,0m0.020s,0m0.170s
0m0.087s,0m0.020s,0m0.050s

NA NA NA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 14 of 33

Raw Test Results
Action Running Times Disk

Space
Usage

for
hda8

External Files/Libraries
Used

Files
Manipulated?

0m0.055s,0m0.030s,0m0.030s
Total real time 268.532s

Note that I decided not to include screen shots in this section because I felt it would make
the section more difficult to follow given the large amount of information being
presented.

Comparison to expected results:

• Neither version of GNU tar works as expected with --sparse. This has been
reported to the GNU tar tool maintainers[1]. This is really too bad because tar is
much more popular than cpio.

• GNU cpio version 2.4.2 (bundled with my Red Hat Linux version 7.1
installation) does not preserve data with --sparse. I suspected that this is because
files ending in zero-filled blocks never have the final write() needed to force the
filesystem to recognize the end of the "hole." The GNU cpio tool maintainers
confirmed this suspicion in private correspondence[1].

• GNU cpio version 2.5 works as expected with --sparse, and exhibits the
expected savings in disk space and running times (roughly an 80% savings in disk
space and a 40% savings in running times in the test scenario). According to the
tool maintainers, the actual fix was to add a final
 lseek(fd, -1, SEEK_CUR); write(fd, "", 1);
when a file ends in zero-bytes. This fix originated from Debian Linux[1].

Analysis

As discussed above in the How This Helps the Forensic Investigator section, the primary
use of these tools by a forensic investigator is not to directly produce evidence for
analysis, but to facilitate evidence gathering and preservation. Thus, the most important
analysis that can a forensic investigator can perform on the data obtained using these
tools is whether the data files stored in archives created with these tools can be
reconstituted to their original form.

Looking back at the Data and Results, the answer is a qualified yes. Qualified because the
GNU cpio version 2.4.2 bundled with my Red Hat Linux version 7.1 installation does
not always preserve data in all cases when used with --sparse. However, Forensic
investigators can deal with this by not using --sparse with files ending in zero-bytes, or
by moving to GNU cpio version 2.5.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 15 of 33

The forensic investigator can easily verify this for themselves by checking HMAC
signatures on the original files against those derived from the archive (e.g., with md5sum).
They can also verify that any copies of the archive are correct by checking signatures on
the original archive file against the new copy.

Presentation

Since the output of these tools is not evidence directly, but a preservation of evidence,
what might be presented by a forensic investigator about the output of these tools for
others to interpret would not be the archive files themselves, but rather evidence that the
archive files can correctly re-constitute the original evidence files they were built from. In
fact, this is the very analysis of the previous section.

An easy way to do this is to show screen dumps of an HMAC signature checker run
against the original evidence files and then against files derived from the archives. There
is an example of such a screen shot in Part 2 of this document.

Even better would be to show screen dumps for the original evidence files, and then un-
archive the files and run the signature checker against them live. You’d need a laptop
with you for this, but it would be worth it so you can show exactly how HMAC signature
checking works.

Conclusion
tar and cpio are extremely useful tools to the forensic investigator because of their
ability to preserve evidence on Unix systems. Not only can they preserve individual files,
but also whole filesystems, including unallocated filesystem space, through device files.
And, they can preserve OS process status through /proc (available on most modern
Unix-like systems).

Further, cpio --sparse can be extremely useful to the forensic investigator in reducing
the disk space and time needed to perform a forensic analysis - as long as you make sure
you have GNU cpio version 2.5!

However, a working tar --sparse , dd --sparse, and gunzip --sparse would be
even better.

Additional Information
• GNU web page for tar - http://www.gnu.org/manual/tar/index.html
• GNU tar maintainer - tar-bugs@gnu.org
• GNU web page for cpio - http://www.gnu.org/software/cpio/cpio.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 16 of 33

• GNU cpio maintainer - bug-cpio@gnu.org
• Red Hat main web page - http://www.redhat.com/

References
1. Private e-mail correspondence with the GNU tar and GNU cpio tool maintainers

(tar-bugs@gnu.org and bug-cpio@gnu.org respectively), June and July 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 17 of 33

Part 2 - Analyze an Unknown Binary

Binary Details

File Name Sn.dat

MAC Times Modified 2002 Apr 11 09:29:58
Other times not evident with MS-DOS ZIP archive type, as the FAT
filesystem that the archive was created on does not have this concept.
I verified that I could get other MAC times from the version of
zipinfo I used by creating/examining Unix ZIP archive, which
worked as expected.

File owners Again, not evident with MS-DOS ZIP archive type, as the FAT
filesystem that the archive was created on does not have this concept.
Again, I verified that the version of zipinfo I used could determine
this information by creating/examining a Unix ZIP archive, which
worked as expected.

File size 399,124 bytes

MD5 Hash 0e954f43fd73f56e812a7285f32e41d3

Key-words
associated with
program/file

ADMsniff
libpcap
Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V
ADM
mel
^pretty^
bpf_filter.c
pcap-linux.c
savefile.c
 ..ooOO The ADM Crew OOoo..
The_l0gz

Screenshot showing MD5 hash values:

Screen Dump showing md5 hash, strings, and times

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 18 of 33

Program Description
Type of program

This program is a network sniffer that runs on Linux systems. This is obvious from
examining the output of file and strings on the file. Running the program under the
gdb debugger on an expendable system (VMWare is your friend!) reveals the following
usage strings:

ADMsniff priv 1.0 <device> [HEADERSIZE] [DEBUG]
ex : admsniff le0
 ..ooOO The ADM Crew OOoo..

Program use

Network sniffers are used to capture data from a broadcast network (this sniffer does not
include mechanisms such as ARP-cache poisoning to capture data from switched
networks). An attacker could use this data for password stealing and general
confidentiality attacks.

Step-by-step actions of the program

At a high level, this program is fairly simple. It installs itself in the IP stack, looks at
packets flowing to or from various TCP ports (listed the table below) and dumps the data
into a file called The_l0gz:

TCP Ports Examined/Logged by the Program
Port Name Use Authentication Mechanisms

21 FTP File Transfers Cleartext logname/password

23 Telnet Remote login Cleartext logname/password
109 POP Remote e-mail reading Cleartext logname/password
110 POP3 Remote e-mail reading Cleartext logname/password
143 IMAP Remote e-mail reading Cleartext logname/password

512 exec Remote command
execution

Cleartext logname/password

513 login Remote login Cleartext logname/password or cleartext
machine-name/user-name

514 shell Remote command
execution

Cleartext machine-name/user-name

1521 SQLnet Oracle SQLnet database
connectivity

Cleartext logname/password

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 19 of 33

Notice that all these ports are useful for collecting weak credentials and replaying them to
break into people's e-mail/login/database accounts.

The implementation of this program is also fairly straightforward. It calls
pcap_open_live() from the libpcap network packet capturing library[1] to interpose
itself into the IP stack as a sniffer, calls pcap_next() from libpcap to actually sniff
packets, throws out any traffic that's not associated with the TCP ports listed above, and
logs whatever passes the test to the_l0gz.

pcap_open_live(), in turn, calls socket(PF_INET, SOCK_PACKET,
htons(ETH_P_ALL)); to create an endpoint socket that can grab raw packets off the
network device in promiscuous mode, bind()'s the socket, and calls ioctl() to tweak the
socket bindings. Note that I confirmed the system calls seen in the source-code in the
output of strace on the Unknown Binary.

pcap_next() essentially calls recvfrom() to get packets from the socket setup by
pcap_open_live(), though it can also call bpf_filter() (bundled in libpcap but
originally from the Stanford/CMU enet packet filter according to the copyright notices)
to do packet filtering.

The filtering code that is actually implemented grabs a packet, checks that it's a TCP
packet, and then loops over a list of ports to search for (crudely implemented as an array
with the value 31337 as a terminator). If the packet's source or destination port matches
one of the ports in the list, a flag is set. At the end of the loop, the program dumps the
packet’s contents to The_l0gz if the flag is set.

Note that this filtering code totally unnecessary given the call in pcap_next() to
bpf_filter(), which can actually do much more advanced filtering[2]. However, there
are reports that bpf_filter() does not work uniformly across all platforms[2], so the
authors may have decided to roll their own after running into problems.

However, the code they rolled is pretty ungly… it keeps the program from being able to
examine traffic on port 31337, and it doesn't scale to looking at many ports as the time
signature is O(num-packets * num-ports).

A much faster filter would be one that keeps an array of flags for all 64k ports (requires a
mere 8KB memory if done with 1 bit/flag), sets the flags for all the ports its interested in,
and then checks each packet against whether the port it's send from/to has its flag set.
This is O(num-packets + num-ports), which is likely to be a whole lot faster, even
with small values of num-ports.

Time last used

Can't tell from the ZIP archive provided

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 20 of 33

Forensic Details
Forensic footprints

Not many footprints on installation. Basically just the creation of the file itself, and the
associated M-time change on the directory it’s placed in.

What other files are used when the program is executed/implemented?

Running strings | grep ^/ on the file reveals that it references:
/lib
/usr/lib
/usr/lib/gconf
/usr/share/locale
/locale.aliases
/proc
/usr/share/zoneinfo
/dev/null
/etc/ld.so.cache
/etc/suid-debug
/proc/self/exe
/proc/sys/kernel/osrelease
/usr/lib/gconv/gconv-modules.cache
/usr/share/locale
/proc/self/cwd
/etc/mtab
/etc/fstab
/cpuinfo
/meminfo
/usr/lib/locale
/etc/localtime

Running under strace, however, shows that the only actual filesystem access is that it
creates/writes a log file called The_l0gz.

How is the filesystem affected by the execution of the program?

The_l0gz created. Other files found by strings may be accessed.

Does the program use, manipulate, or reference any other system files?

Not evident through strings or strace. Interestingly, /etc/ld.so.cache appears in the
strings, but ldd claims the file is not dynamically linked.

Are there any "leads" that could be pulled out of the file for further
investigation (e.g., IP address, user information, etc.)?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 21 of 33

No IP addresses or e-mail addresses appear in the strings output. However, the
following bits do appear:

C/o Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V
+45 3122-6543
+45 3325-6543
credits: ADM, mel, ^pretty^ for the mail she sent me
 ..ooOO The ADM Crew OOoo..

The first line appears to be a name and address in Copenhagen, Denmark[3]. However,
this name/address seems to be associated with the Linux internationalization libraries,
and not with the direct creators of the binary in question. This is evident because this line
appears in the various files under /usr/lib/locale on my Red Hat Linux version 7.1
system and these files indicate that this is the name/address of the maintainer of the Linux
internationalization libraries. Further, searching for this line on Google gets you links to
an awful lot of Linux binaries[4].

According the text of files under /usr/lib/locale, the second and third lines are
apparently Mr. Simonsen’s telephone numbers.

The fourth line looks like list of people involved in writing the program.

The fifth and final line confirms that these people are part of The ADM Crew.

Program Identification
I located what appears to be the “official” program source code to the ADMsniff-1 priv
1.0 program at adm.freelsd.net/ADM/ by searching Google for ADMsniff[4].

There is some question whether this is the exact source code used for compiling this
program because:

• The output of the strings command on the version compiled from the source
found on the web is not an exact match with the Unknown Binary.

• The system call patterns of the two binaries are not identical according to strace,
as the binary compiled from the source found on the web appears to have an extra
call to getpid() when running against the loopback interface lo.

On the other hand:

• Usage messages are identical.
• Both programs claim to be version 'priv 1.0'.
• Both programs are sniffers that capture selective traffic to The_l0gz (e.g., both

capture Telnet traffic, neither captures HTTP traffic).
• Program sizes are reasonably similar after stripping the binary I compiled

(382,144 bytes for the Unknown Binary vs. 399,124 for the binary I compiled).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 22 of 33

• The difference in system call patterns is minute and can easily be explained by
compiling with different library versions.

• The source code found at adm.freelsd.net/ADM/ is an exact match with the source
code to the ADMsniff-1 priv 1.0 program on other ADM-related sites I found
on the web such as packetstormsecurity.nl/groups/ADM/ADMsniff.tgz and
www.phreak.org/archives/exploits/unix/network-sniffers/ADMsniff.tgz. And, it is
a much closer match to the Unknown Binary than anything else I found on the
web, including other versions of ADMsniff found on the web, such as ADMsniff
0.8 found at www.securityfocus.com/data/tools/ADMsniff-v0.8.tgz and
www.cotse.com/sw/sniffers/ADMsniff-v0.8.tgz.

I believe these are the same program, but the unknown binary was built with a different
compiler and/or library files. For the uninitiated, the compiler is the program used to
build the actual executable machine-instruction program from the human-readable
source-code, while the library files contain common executable machine-instruction
routines that get linked into every program by the compiler so that the programmer
doesn’t have to supply the source-code to these operations to the compiler every time.

In other words, the unknown binary was built from the source-code I found on the web,
but deviates from the binary I built myself from this source-code because the two
compilers used generated slightly different (but functionally equivalent) executable
machine instructions and/or because the compilers linked in slightly different (but
functionally equivalent) executable machine-instruction library routines.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 23 of 33

One particularly strong piece of evidence supporting this view is that the output of the
strings program for the two binaries reveals differences that look exactly like
differences in library versions (after filtering for lines shorter than six characters):

diff in strings output, screen 1

diff in strings output, screen 2

Legal Implications

Proof Program Executed

It is possible to prove that the program was executed based on the existence of the
The_l0gz file (assuming proper incident/forensic precautions were taken so that it could
be shown that the evidence gathered had a specific chain of custody, etc.). Therefore, a
discussion of legal implications is appropriate here.

Of course, one could argue that someone placed an empty The_l0gz file on the system

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 24 of 33

when installed the sniffer software. But, that argument would be hard to make if
The_l0gz contained data obviously taken from the local network.

Applicable Laws

My particular circumstances are such that the compromised machine would be located in
the United States, and would likely contain medical information (I work for a nationwide
healthcare company).

So, assuming that the program were placed by an attacker and not by an agent of the
company (e.g., a system administrator or some other person with "permission" to place a
sniffer), then the attacker would be in violation of

• The Computer Fraud and Abuse Act (CFAA)[5]
• The Wiretap Act (WA)[6].
• and The Electronic Communications Privacy Act (ECPA)[7].

Depending on the nature of the data found in the The_l0gz file, one could also argue that
the attacker might be in violation of

• The Criminal Trade Secrets statue 18 U.S.C. 1832[8].

Moreover, depending on who carried out the attack and what their motives where, they
might also be in violation of

• The Economic Espionage Act 18 U.S.C. 1831[9]

Since we have the medical records of U.S. Military personnel on our systems (the DoD is
a client), an interesting question is whether the records could be used in such a way that
the perpetrator would be in violation of Treason, Sedation, and Subversion statutes under
18 U.S.C. Chapter 115[10]. Consensus among my colleagues is that is possible to come up
with Treason scenarios, such as using the knowledge that a certain battlefield commander
is HIV positive to blackmail them into changing their actions. Statutes covered under
such situations might be:

• 18 U.S.C. 2381 – Treason[11],
• 18 U.S.C. 2383 - Rebellion or insurrection[12],
• 18 U.S.C. 2384 - Seditious conspiracy[13],
• 18 U.S.C. 23987 - Activities affecting armed forces generally[14],
• and 18 U.S.C. 2388 - Activities affecting armed forces during time of war[15].

Another interesting issue to consider is how difficult it would be to meet the "Protected
Computer" and "damage" requirements under CFAA[5]. It would not be difficult to argue
that our computers are used-in/affect "interstate or foreign commerce" and that attacking
them would necessarily cost us at least $5,000 (if only in the cost of the investigation).
More interestingly, however, we can point out the existence of medical records and argue
that their disclosure could "potentially modif[y] or impair ... the medical examination,
diagnosis, treatment, or care of one or more individuals," [5] eliminating the need to show
$5,000 in damages or the involvement in interstate/foreign commerce under the CFAA.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 25 of 33

On the state side, a quick search on the web site for the Legislature of the State of New
Jersey (where my office and most of our computer infrastructure are located) shows that
the attacker might also be in violation of

• Computer related theft 2C:2-25, 2C:2-25, and 2C2-27[16].

Note that I cited three statutes here because 2C:20-25 is the base statute, and -26 and -27
describe additional penalties for various degrees of theft.

Other states my company operates computer systems in include Florida, Pennsylvania,
Texas, and Nevada. Those states likely have similar statutes.

Nevertheless, the Federal statutes are likely to override any use of state statues to
prosecute a case such as this given the likelihood of meeting the CCFA requirements as
discussed above.

Penalties

Similar cases have garnered punishment anywhere from slap-on-the-wrist community
service, to serving several years in Federal prison. The following table elaborates on
punishments under various Federal Statutes[5] [6] [7] [8] [9] [11] [12] [13] [14] [15]. I would have also
added the NJ statutes, but they do not actually specify penalties.

Statute Minimum Penalty Maximum Penalty
Computer Fraud and
Abuse Act

fine 20 years imprisonment

Wiretap Act $500 fine per violation five years imprisonment

Electronic
Communications
Privacy Act

fine two years imprisonment

Commercial Trade
Secrets

fined ten years imprisonment
(individuals)
$5,000,000
(organizations)

Economic Espionage $500,000 fine and/or 15
years imprisonment
(individuals)
$10,000,000 fine
(organizations)

Treason five years imprisonment and fined
$10,000, and incapable of holding any
office under the United States

Rebellion or
insurrection

fined and incapable of holding any
office under the United States

ten years imprisonment

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 26 of 33

Seditious conspiracy fined 20 years imprisonment
Activities affecting
armed forces
generally

fined, ineligible for employment by the
United States or any department or
agency thereof, for the five years next
following his [sic] conviction

five years imprisonment

Activities affecting
armed forces during
time of war

fined 20 years imprisonment

Authorized Use

The discussion so far is based on the possibility that person who activated the sniffer was
an attacker and not an agent of the company. So, the question is, could they have broken
any laws if they were an agent of the company? In my opinion, the answer is Yes. The
System Administrator and/or anyone whom authorized/directed them to put the sniffer in
place may be in violation of Wiretap Act. See Part 3 - Legal Issues of Incident Handling
for a complete treatment of why. As for penalties here, this would likely be limited to
civil penalties to recover damages.

Another interesting question is whether anyone else might be criminally liable. Under the
proposed security requirements of the Health Insurance Portability and Accountability
Act (HIPAA) agents of the company may be liable when medical data is made public if
they have been negligent in protecting it[17]. This could come into play in a situation
where an attacker was able to pick up medical data using a sniffer.

Internal Policies

On the Policy side, we are a bit of a mess owing to our imminent spin-off from a large
company with very mature policies into our own entity. So it's possible that no formal
policies would have been violated.

One area where there are strong policies is in the Policy requiring the use of Computer
Systems for Business Use. However, this is directly contradicted by our Ethics policy and
our Internet usage policy, which explicitly allow the use of company resources for
personal use as long as "such use has no adverse effect on productivity and the work
environment."

Another possibility is the Internet and Other Communication Tools Policy, but it only
takes effect if information obtained by the sniffer is disclosed to the outside world
through electronic means.

Interview Questions

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 27 of 33

This probably depends greatly on whether I believe interviewee is a well-intentioned
insider, a malicious insider, or a malicious outsider. At first I was going to say that I'd do
questions for the well-intentioned insider. But, it's really not that useful for well-
intentioned usage given that the software filters much of the traffic, On the other hand,
we don't have to let the interview subject know that...

• Did you hear that someone installed a sniffer program on XYZ? The way
management keeps expecting us to get things done faster and faster, but keeps
putting red tape in our way, I bet they were just trying to debug a networking
problem and couldn’t get a hold of the Networking Services team.

• Still, there’s some very sensitive data on that network, and we don’t know for sure
what their motives were. You don’t happen to know anything about it, do you?

• I sure hope they come forward so we can be sure there are no other sniffers
lurking around. Getting this behind us is the most important thing right now. Still,
they really should have gone through Networking Services. You know, we're
going to have to turn the case over to the FBI if we don't find out what happened
pretty soon. Did you know they could be violating the US Wiretap Act? That's
pretty serious.

• Wow, I'm glad you told me that you were the one who put that in place. Now we
can go clean it up and put it behind us. Oh yeah, did you install sniffers on any
other systems? We need to make sure they're all cleaned up so we can be sure
nobody's misusing the data.

• By the way, it looked like you setup the sniffer to get just the info you needed.
That's pretty clever. How did you do that?

Additional Information
The single biggest resource I used was Google (www.google.com).

From there, I accessed the various sites listed in the Program Identification section
looking for the source code to the Unknown Binary.

I also accessed the Cornell University Legal Information Institute's collection of the U.S.
Code on the web (www.law.cornell.edu/uscode), the legal sections of the U.S. Internet
Industry Association's web site (www.usiia.org/legis/legis.htm), the web site of Computer
Professionals for Social Responsibility (www.cpsr.org), the Jones International
Telecommunications and Multimedia Encyclopedia (www.jonesencyclo.com/encyclo/),
The New Jersey Legislature (www.njleg.state.nj.us/), and HIPAAdvisory
(www.hipaadvisory.com) for legal information.

Finally, I used the IANA Port Numbers list (www.iana.org/assignments/port-numbers)
the SANS Intrusion Detection FAQ
(www.sans.org/newlook/resources/IDFAQ/oddports.htm), and the G-Lock Software
Trojan Ports list (www.glocksoft.com/trojan_port.htm) to find port number assignments.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 28 of 33

References
1. The Tcpdump Group, manual page for “pcap – Packet capture library.” Available

from www.tcpdump.org/pcap3_man.html.
2. Tim Carstens, “Programming with Pcap.” Available from

www.tcpdump.org/pcap.htm.
3. Københavns Kommunes kampagne-website, www.kobenhavn.dk
4. Various searches on Google in June and July 2002, www.google.com.
5. The Computer Fraud and Abuse Act, 18 U.S.C. 1030, “Fraud and related activity

in connection with computers.” Available from
www4.law.cornell.edu/uscode/18/1030.html.

6. The Wiretap Act, 18 U.S.C. 2511, “Interception and disclosure of wire, oral, or
electronic communication prohibited.” Available from
www4.law.cornell.edu/uscode/18/2511.html.

7. The Electronic Communications Privacy Act, 18 U.S.C. 2701, “Unlawful access
to stored communications.". Available from
www4.law.cornell.edu/uscode/18/2701.html.

8. The Criminal Trade Secrets Act, 18 U.S.C. 1832, “Theft of trade secrets.”
Available from www4.law.cornell.edu/uscode/18/1832.html.

9. The Economic Espionage Act, 18 U.S.C. 1831, “Economic espionage.” Available
from www4.law.cornell.edu/uscode/18/1831.html.

10. 18 U.S.C. Chapter 115, “Treason, Sedition, and Subservive Activities.” Available
from www4.law.cornell.edu/uscode/18/pIch115.html.

11. 18 U.S.C. 2381 – “Treason.” Available from
www4.law.cornell.edu/uscode/18/2381.html.

12. 18 U.S.C. 2383 – “Rebellion or insurrection.” Available from
www4.law.cornell.edu/uscode/18/2383.html.

13. 18 U.S.C. 2384 – “Seditious conspiracy.” Available from
www4.law.cornell.edu/uscode/18/2384.html.

14. 18 U.S.C. 23987 – “Activities affecting armed forces generally.” Available from
www4.law.cornell.edu/uscode/18/2387.html.

15. 18 U.S.C. 2388 – “Activities affecting armed forces during time of war.”
Available from www4.law.cornell.edu/uscode/18/2388.html.

16. NJ Permanent Statutes 2C:20-25, 2C:20-26, and 2C:20-27 – “Computer related
theft” available from www.njleg.state.nj.us/.

17. Federal Register of the United States, “Health Insurance Portability &
Accountability Act of 1996 (HIPAA).” Available from
aspe.hhs.gov/admnsimp/Index.htm. Additional information on security provisions
available from aspe.hhs.gov/admnsimp/Index.htm,
www.hcfa.gov/hipaa/hipaahm.htm, and
www.hipaadvisory.com/regs/privacynprm/index.htm.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 29 of 33

Part 3 - Legal Issues of Incident Handling

Wiretap Statute - Wiretap Act exemptions for system
administrators

Related Statutes and their Exemptions

Wiretap Act – U.S.C. 2511 - Interception and disclosure of wire, oral, or electronic
communications prohibited[1]

This statute is what is generally referred to as The Wiretap Act (though it actually
replaces an earlier statute, 18 U.S.C. 1334, that went by the same heading). The primary
exemption to the Wiretap Act that a system administrator might work under would be[1]

"It shall not be unlawful under this chapter for an operator of a switchboard, or
an officer, employee, or agent of a provider of wire or electronic communication
service, whose facilities are used in the transmission of a wire or electronic
communication, to intercept, disclose, or use that communication in the normal
course of his employment while engaged in any activity which is a necessary
incident to the rendition of his service or to the protection of the rights or
property of the provider of that service, except that a provider of wire
communication service to the public shall not utilize service observing or random
monitoring except for mechanical or service quality control checks."

Under this exemption, I would have broad authority to carry out network sniffing and
other forms of "wiretap" related to my duties in administering the systems/networks I
have domain over. This would include things like investigating alleged abuses of
computing/network resources by other employees (in that I would be protecting the
rights/property of my employer).

Note, however, that the Act makes it clear that this doesn't allow me to violate other laws
in the following of the Act[1]:

"It shall not be unlawful under this chapter for a person not acting under color of
law to intercept a wire, oral, or electronic communication where such person is a
party to the communication or where one of the parties to the communication has
given prior consent to such interception unless such communication is intercepted
for the purpose of committing any criminal or tortious act in violation of the
Constitution or laws of the United States or of any State."

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 30 of 33

USA Patriot Act - Public Law 107-56, Uniting and Strengthening America by
Providing Appropriate Tools Required to Intercept and Obstruct Terrorism Act of
2001[2]

Among many other things, the USA Patriot Act amends the Wiretap Act to allow System
Administrators to call upon law enforcement to help them monitor their networks when
they suspect a crime is being committed. This is in contrast with the previous reading of
the Wiretap Act (cited above) which exempted those acting “under the color of law” [1] in
the exemptions.

Note, however, that there are organizations such as the Electronic Frontier Foundation[3]
and the ACLU[4] that have called into question the constitutionality of some aspects of the
USA Patriot Act, though not this particular provision. Therefore, it would be wise for
system administrators to get sign-off from both their management and their corporate
council before calling in law enforcement for monitoring help.

Electronic Communications Privacy Act (ECPA) – 18. U.S.C. 2701 - Unlawful access
to stored communications[5]

As the name of this statute implies, ECPA is not about wiretapping, but rather about
stored communications (such e-mail or v-mail stored on a server).

One interesting question is where the Wiretap Act ends and ECPA takes over. This is
important because it governs things like whether examining data on an e-mail server is
the same as intercepting an e-mail in transit. Or whether examining data on a web server
is the same as intercepting web traffic in transit.

At first blush, the courts appear undecided here.

The ruling in Eagle Investment Systems Corporation v. Einar Tamm, et al., 2001 U.S.
Dist. Lexis 7349 (D. Mass., May 22, 2001) [6] was that accessing an e-mail sitting on an e-
mail server after the mail had been read (but not explicitly deleted) was not a wiretap
(i.e., covered by ECPA and not the Wiretap Act).

Whereas the final ruling in Robert Konop v. Hawaiian Airlines, Inc., No. 99-55106 (9th
Cir. January 8, 2001), withdrawn (9th Cir., August 28, 2001) was that unauthorized
access to data on a password-protected web site was a wiretap[7]. Furthermore, the court
specifically stated that[7]:

"It is perfectly clear that the framers of the Wiretap Act's current definition of
"electronic communication" understood that term to include communications in
transit and storage alike. ... It makes no more sense that a private message
expressed in a digitized voice recording stored in a voice mailbox should be
protected from interception, but the same words expressed in an e-mail stored in
an electronic post office pending delivery should not. We conclude that it would
be equally senseless to hold that Konop's messages to his fellow pilots would have
been protected from interception had he recorded them and delivered them

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 31 of 33

through a secure voice bulletin board accessible by telephone, but not when he set
them down in electronic text and delivered them through a secure web server
accessible by a personal computer. We hold that the Wiretap Act protects
electronic communications from interception when stored to the same extent as
when in transit."

An astute reader, however, will notice that these two rulings are not actually at odds,
since Eagle refers to messages that were read but not deleted from the server, while
Konop refers to messages that had not yet been read by all potential recipients, something
both courts were careful to point out in their rulings.

So, it appears that the Wiretap Act covers data until it is delivered to the (human)
recipient. But, ECPA covers the data once the recipient receives the data and decides to
save it, as it is no longer "in transit" to the recipient.

In either event, the ECPA exemptions for System Administrators are largely similar to
those in the Wiretap Act[1]:

“Subsection (a) of this section does not apply with respect to conduct authorized –
(1) by the person or entity providing a wire or electronic communications service;
(2) by a user of that service with respect to a communication of or intended for
that user; or
(3) in section 2703 [Requirements for Governmental Access], 2704 [Backup
preservation] or 2518 [Procedures for interception of wire, oral, or electronic
communications] of this title”

Do these exemptions allow random monitoring?

One important question is whether these exemptions allow me to do random/wholesale
monitoring of traffic to find potential abuses. The Wiretap Act clearly does not exempt
this for a "provider of wire communication service to the public"[1] such as an ISP or
Telco. But I don’t work for an ISP or Telco.

In my particular circumstances, there are two issues: intercepting private communications
of other employees, and intercepting communications of the general public accessing our
web sites.

Employee communications

On the face of it, it should be clear from the text of the Wiretap Act that I can intercept
any employee communications as long as I can show that it was in the interest of
protecting the company's rights/property. However...

• The 6th U.S. Circuit Court of Appeals ruled in Adams v. City of Battle Creek, 6th
U.S. Circuit Court of Appeals, No. 99-1543 (2001) that a police department can
not use wiretaps that are not part of its "ordinary course of business" to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 32 of 33

investigate specific allegations against an officer (in this case intercepting pager
communications to investigate charges that the officer was assisting drug
dealers)[8]. But then, the Wiretap Act has very different restrictions for law
enforcement than for other employers.

• However, 9th U.S. Circuit Court of Appeals ruled in Robert Konop v. Hawaiian
Airlines, Inc., No. 99-55106 (9th Cir. January 8, 2001), withdrawn (9th Cir.,
August 28, 2001) similarly concluded that a commercial entity could not use
wiretaps outside its ordinary course of business to investigate union involvement
of its employees[7].

• And, a Maryland court ruled in Schmerling v. Injured Workers' Insurance Fund,
Md. App., No. 88, (4/8/02) that the Maryland Wiretap Act does not allow the
installation of equipment (and presumably software) for the sole purpose of
monitoring employees[9]. Again, one could argue that this is subordinate to the
Federal Act, but the point is that the courts seem to have a reasonably high
standard for employers showing that their monitoring was in the ordinary course
of business and not specifically for monitoring the general activity employees.

So, it looks reasonably certain that I could monitor employee communications as long as
the monitoring was being done to protect the rights/property of the company (such as
detecting patterns of intrusion, virus scanning, detecting leakage of proprietary data, etc.).
But, not specifically to monitor private employee communications that have no direct
impact on the company.

However, it is possible that California courts would still require specific consent on the
part of the employees. I will address the issue of what constitutes consent below.

Web site access by the general public

Our web servers accept messages destined for specific other humans (prescription orders
destined to pharmacists and “feedback” destined to customer-service representatives).
Therefore, the same monitoring restrictions discussed in the Employee Communications
section seem to apply to these communications.

Further, one might argue that operating a public web server implies that the company is a
"provider of wire communication service to the public"[1], in which case general random
monitoring would clearly be in violation of the Wiretap Act. However, monitoring using
mechanical systems such as IDS and virus scanners would still be exempted. So, the
Wiretap Act here would seem to restrict what individuals may access the data not what
the "mechanical systems" of the company can do with the data. Meanwhile, a similar
reading of ECPA would seem to protect data stored and collected by web site users of the
general public. Thus implying a limitation to the ability of companies to disseminate
information obtained from the public without specific consent (such as selling mailing
lists). The Wiretap Act and ECPA could also be used under these circumstances to
determine penalties should the company inadvertently disclose such data through a web
site breach.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 33 of 33

So, to allow a greater level of monitoring, disclosure, mailing list sales, etc. the company
should get specific consent from its web site users. In addition, it should get specific
consent from any employees that specific messages from its web site are destined for (to
cover state laws requiring consent of both the sending and receiving parties).

Gaining Consent

This section offers of brief taxonomy and comparison of mechanisms for obtaining such
consent from employees and web-site users.

Mechanism Description Does it work for
Employee

Communications?

Does it work for a Web
Site?

Written policy Description of
monitoring policies
published in Employee
Handbook or Web
Privacy policy

Only if you can show
that everyone
actually read the
policy

No, since most attackers
do not bother to read the
privacy policy…

Click-Through
or Signed Paper

As above, but with a
click-through or paper
signature showing that
the user has seen the
policy

Yes, since now you
can positively show
the consent implied
by clicking/signing

Yes, for applications
that deny access without
the click-through

Port Bannering Post a mini version of
the policy in a banner
that is shown on every
access to a network
service

Maybe. Guarantees the policy is posted on
every access. But no case law showing this
actually implies consent, hard/impossible to
banner some applications, and no opportunity
to see the banners in some other applications.
Not to mention that automated attack tools
ignore the banners.

Judging from the above, it seems the right thing to do is all of the above. I.e.,

1. Put monitoring information into all relevant policy
2. Get employee’s signoff on monitoring policies
3. Use a click-through of the policy where practical on web sites
4. Banner wherever practical

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Chris_Calabrese_GCFA Page Page 34 of 33

References

1. 18 U.S.C. 2511, Interception and disclosure of wire, oral, or electronic
communications prohibited . Available from
www4.law.cornell.edu/uscode/18/2511.html.

2. Public Law 107-56, Uniting and Strengthening America by Providing Appropriate
Tools Required to Intercept and Obstruct Terrorism Act of 2001

3. Electronic Frontier Foundation, “EFF Analysis of the Provisions of the USA
Patriot Act that relate to Online Activities,” 31 October 2001. Available from
www.eff.org/Privacy/Surveillance/Terrorism_militias/20011031_eff_usa_patriot_
analysis.html.

4. American Civil Liberties Union, “USA Patriot Act Boosts Government Powers
while Cutting Back on Checks and Balances.” Available from
www.aclu.org/congress/l110101a.html.

5. 18 U.S.C. 2701, Unlawful access to stored communications
6. Martin H. Samson, synopsis of Eagle Investment Systems Corporation v. Einar

Tamm, et al., 2001 U.S. Dist. Lexis 7349 (D. Mass., May 22, 2001). Available
from www.phillipsnizer.com/int-art232.htm.

7. Martin H. Samson, synopsis of Robert Konop v. Hawaiian Airlines, Inc., No. 99-
55106 (9th Cir. January 8, 2001), withdrawn (9th Cir., August 28, 2001).
Available from www.phillipsnizer.com/int-art225.htm.

8. policecenter.com, "Department taps officer's pager." Available from
www.policecenter.com/rulings/r052301api.shtml.

9. Criminal Practice, "Surveillance: Employer's Recording System Violates Wiretap
Act." Available from
criminalpractice.pf.com/subscribers/html/showarticle.asp?article=820.

