
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit

GIAC GCFA Gold Certification

Author: Derek Edwards, derekedw@yahoo.com

Advisor: Richard Carbone

Accepted: March 2, 2015

Abstract

The most widely used commercial forensic tools have not undergone major architectural

change since their market introduction in the late 1990s. Meanwhile, architectural change

elsewhere has brought fast, powerful and inexpensive search, data visualization, and

collaboration capabilities to users of all ages and computing experience levels. If the

Internet is being indexed for search, could not forensic images be likewise indexed also?

Could there potentially be relief from image size limits and storage barriers? Could

forensic analysis be performed faster? What are the risks? “Big data” open-source tools

like Apache Hadoop, Apache HBase and Apache Spark were used to develop a new

architectural foundation proof of concept for digital forensics. While this framework did

not improve performance on tasks that require serial processing, like hashing images for

verification hashes, it has shown improved performance on a basic parsing task – finding

ASCII strings.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 2

Author Name, email@address

1. Introduction

Many have written about the “digital forensics crisis” caused by growing

caseloads and storage device sizes. (Garfinkel, 2010) Attempts to address these issues

have focused primarily on triage or data reduction. While triage prioritizes forensic tasks

so that the analyst is presented the most important artifacts or products first, data

reduction eliminates items of low relevance to the case, such as “known-good” operating

system and application files. (Casey, 2011)

While the digital forensics community seems to agree that more images in more

formats each month are being submitted for analysis, few efforts discuss managing the

increased “volume, variety and velocity” (Laney, 2001) of incoming data as a “big data”

issue. Laney focused on the growth of transactional data that came from e-commerce.

Some of the same data management strategies and tools that facilitate the analysis of e-

commerce data may apply to digital forensics.

In digital forensics, a large amount of computer time and effort go towards

parsing. Tools like Snort, WireShark and tcpdump are used to parse packet data from

packet structures, various tools and scripts to parse expected text structures from log files,

and a variety of other tools to parse disk and RAM artifacts from lots of other structures

like partition tables, boot sectors, file allocation tables (FAT), master file tables (MFT),

etc.

Most parsers process the structures serially (one at a time). Proof is found in the

number of cores kept busy on the forensic workstation. Most often, the number is the

same as the number of parse jobs initiated. Most parsers have this style (in pseudocode):

while(input.hasNext()) {
 x = input.next()
 output.add(parse(x))
}
return output

The larger the input, the larger the wait time for output.

A large amount of analyst time goes toward selecting what to parse because there

is insufficient time to wait for the output or space to store it.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 3

Author Name, email@address

2. Related Work

2.1. BinaryPig: Scalable Static Binary Analysis over Hadoop

Endgame Inc. introduced BinaryPig at a talk at BlackHat USA 2013. (Endgame

Inc., 2013) About their data management challenge, they wrote:

“Over the past three years, Endgame received 40 million samples of malware

equating to roughly 19TB of binary data.” (Cloudera, Inc., 2013)

Issues they were experiencing include running out of storage space and losing

malware samples due to node failures. They also sought a better way of running analysis

modules on all samples and sharing results.

Endgame’s solution was the open source BinaryPig framework. Endgame set up

an Apache Hadoop cluster to organize their samples so that their feature extraction

modules could analyze them more efficiently. If a new module were developed, it could

be run on all samples in short order. (Endgame Inc., 2013)

BinaryPig is available on GitHub: https://github.com/endgameinc/binarypig.

2.2. The Sleuth Kit Hadoop Framework

The Sleuth Kit Hadoop Framework is a prototype digital forensic analysis

framework whose development was funded by the US Army Intelligence Center of

Excellence (USAICoE). It seems to be a capable project, but it lacks installation scripts

and instructions. The project’s last commit occurred in 2012.

The project’s code can be found on GitHub https://github.com/sleuthkit

/hadoop_framework.

3. A New Architectural Foundation for Digital Forensics

Since digital forensic workload is outgrowing the forensic workstation, what

capabilities would any alternative need?

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 4

Author Name, email@address

Table 1: Current vs. future platform for digital forensics

 Current Alternative

Forensic tool Mostly serial Mostly parallel

CPU Single node Multiple redundant nodes

Memory Single node Multiple redundant nodes

Storage Drives, RAID, Network Storage Multiple redundant nodes

Failure recovery Usually manual Mostly automatic

The digital forensic workstation is limited to the CPU and memory resources of a

single node. Its storage is local, attached to an array, or available over the network. Most

of its tools parse information serially. RAID prevents data loss in case of hardware

failure, but disasters other than loss of the site may require restoration from backups.

By contrast, the alternative system is a multi-node system. There is redundancy in

its CPU, memory and storage resources. Its tools generally work in parallel across the

nodes. Its software handles most failures other than loss of the site automatically.

3.1. Parallel Processing Concepts

MapReduce has proven its worth as a programming model for parallel processing

since Google engineers Dean and Ghemawat published MapReduce: Simplified Data

Processing on Large Clusters. (Dean & Ghemawat, 2004) Google, now known as

Alphabet, Inc. earned $16.3 billion in net income for the year ending December 31, 2015.

(Alphabet Inc. and Google Inc., 2015)

3.1.1. The map Method
In a number of programming languages, a collection is a group of elements, like

an array or a set. Scala’s map method, for example, applies a function to each element of

the collection. The map function then returns a new collection containing the result of

the function on each element. (Odersky & Spoon, 2010)

To illustrate this, define upper, which takes a string and changes its case to upper

case.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 5

Author Name, email@address

scala> def upper(s : String) : String = {
 | s.toUpperCase
 | }
upper: (s: String)String

Now, define the “items” collection, an array of strings, to which the upper

function will be applied.

scala> val items = Array("One","Two","Three")
items: Array[String] = Array(One, Two, Three)

scala> items.map(upper)
res0: Array[String] = Array(ONE, TWO, THREE)

scala> items
res1: Array[String] = Array(One, Two, Three)

Therefore, the map function returns the array of items processed through the

upper function. There is no requirement for looping or iteration in the code to apply the

function to the elements.

Now, using some syntactic sugar (called a closure) to simplify coding, another

simple map function changes the case of each element of the “items” array to lower case.

scala> items.map(s => s.toLowerCase)
res3: Array[String] = Array(one, two, three)

3.1.2. The reduce Method
Scala’s reduce method processes the collection’s elements through a function that

takes two elements at a time.

For example, to calculate the total lengths of the words:

scala> items
res1: Array[String] = Array(One, Two, Three)

scala> items.map(s => s.length)
res26: Array[Int] = Array(3, 3, 5)

Now, to add the lengths of the elements together, use addition as a reduce

function with two of the elements at a time, like so:

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 6

Author Name, email@address

scala> items.map(s => s.length).reduce((a,b) => a + b)
res27: Int = 11

So the reduce function added (3 + 3) + 5, or 3 + (3 + 5), or 5 + (3 + 3) (there is no

way to tell or predict) but the correct answer was returned!

Do not assume that “adjoining” elements will be sent to a reduce function, or that

elements will be considered in a given order, or the results will surprise or disappoint. A

reduce function must be commutative and associative, or else the result may be

unexpected.

A function is commutative if the order of the operands does not matter. Addition,

for example, is a commutative function because: 3 + 5 = 5 + 3 = 8; on the other hand,

subtraction is not a commutative function because: 3 – 5 = -2, which is not equal to 5 – 3

= +2.

Likewise, a function is associative if any pair of elements could be chosen to be

processed first. For example, addition is also an associative function because: (1 + 2) + 3

= 1 + (2 + 3) = 6.

3.1.3. Example Using the Scala Programming Language
Returning to parsing in digital forensics, most parsers have this style (in

pseudocode):

while(input.hasNext()) {
 x = input.next()
 output.add(parse(x))
}
return output

Provided parse is a good candidate for a map function and x represents an

individual record structure to parse, the new parser could have this style instead:

output = input.map(x => parse(x))

Since the execution environment controls invocation of the parse method, not the

programmer, this style lends itself to parallelization. Different parse methods could parse

a record structure like a log file row, a File Allocation Table (FAT) entry, an NTFS

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 7

Author Name, email@address

Master File Table (MFT) file record or an Internet cache entry in parallel. Multiple cores

or even multiple machines could collaborate on the workload.

3.2. Parallel Processing Tools

3.2.1. Apache™ Hadoop®
Doug Cutting and Mike Cafarella developed Apache Hadoop to improve their

Nutch web search engine. It worked fine. However, it would not scale beyond a handful

of machines and it could not operate without constant monitoring. Inspired by two

Google research papers, The Google File System (Ghemawat, Gobioff, & Leung, 2003)

and MapReduce: Simplified Data Processing on Large Clusters, (Chang, Dean,

Ghemawat, Hsieh, & Wallach, 2006) they created the Hadoop MapReduce framework

and the Hadoop Distributed File System and ported Nutch atop it. Cutting’s son named

his toy elephant “Hadoop,” which is the origin of the name. Powered by Hadoop, Nutch

ran with much less human intervention on 20-40 surplus machines. (Harris, 2013)

According to the Apache Software Foundation (ASF), Hadoop software is:

“The Apache Hadoop software library is a framework that allows for the

distributed processing of large data sets across clusters of computers using simple

programming models. It is designed to scale up from single servers to thousands

of machines, each offering local computation, and storage. Rather than rely on

hardware to deliver high-availability, the library itself is designed to detect and

handle failures at the application layer, so delivering a highly available service on

top of a cluster of computers, each of which may be prone to failures.” (The

Apache Software Foundation, 2016)

In Hadoop, data is dealt redundantly across the cluster of machines for availability

and fault tolerance. Hadoop executes tasks in parallel and sends tasks, as close to the data

as CPU, RAM, and network resources will allow.

Simple Programming Model: Hadoop MapReduce

Hadoop MapReduce differs from scala’s map and reduce methods in the

following ways:

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 8

Author Name, email@address

• Map and reduce tasks are defined in user-defined Mapper and Reducer classes,

vs. the map and reduce methods.

• Both Mapper and Reducer classes take key-value pairs as input instead of

elements of a collection.

About MapReduce jobs, the ASF says:

“A MapReduce job usually splits the input data set into independent chunks that

are processed by the map tasks in a completely parallel manner. The framework

sorts the outputs of the maps, which are then input to the reduce tasks. Typically,

both the input and the output of the job are stored in a file-system. The framework

takes care of scheduling tasks, monitoring them and re-executes the failed tasks.”

(Apache Software Foundation, 2016)

The canonical example, Hadoop’s WordCount program, reads text files and lists

each word found in the file, followed by the number of times it appears in the input data

set.

First, the TokenizerMapper class’ map method accepts key-value pairs composed

of the input filename as the key, and a line of text from the file as the value.

36 public static class TokenizerMapper
37 extends Mapper<Object, Text, Text, IntWritable>{
38
39 private final static IntWritable one = new IntWritable(1);
40 private Text word = new Text();
41
42 public void map(Object key, Text value, Context context
43) throws IOException, InterruptedException {
44 StringTokenizer itr = new StringTokenizer(value.toString());
45 while (itr.hasMoreTokens()) {
46 word.set(itr.nextToken());
47 context.write(word, one);
48 }
49 }
50 } (Apache Software Foundation)

So if the the input key-value pair is:

<“a.txt”, “The quick brown fox jumps over the lazy dog”>,

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 9

Author Name, email@address

As Hadoop calls the map method in line #42, key is set to “a.txt” and value is set

to “The quick brown fox jumps over the lazy dog.” Line 44 splits the string into tokens.

Between lines 45 and 48, the map function iterates over the tokens in the list. For each

word, the variable word is set to the value of the token, and a new key–value pair with the

token as the key and a count of 1 is returned to the framework by line 47.

Likewise, the framework sorts the maps by key and groups them by key. It then

sends the new key-value pairs <token, <1, 1, 1, 1>> to the IntSumReducer class’ reduce

method:

52 public static class IntSumReducer
53 extends Reducer<Text,IntWritable,Text,IntWritable> {
54 private IntWritable result = new IntWritable();
55
56 public void reduce(Text key, Iterable<IntWritable> values,
57 Context context
58) throws IOException, InterruptedException {
59 int sum = 0;
60 for (IntWritable val : values) {
61 sum += val.get();
62 }
63 result.set(sum);
64 context.write(key, result);
65 }
66 } (Apache Software Foundation)

Therefore, by line 56, invocations of the TokenizerMapper class’ map method

capture key as the token, and a list of number 1s emitted by maps for that key token as

values. The loop at lines 60-62 adds the list of number 1s together.

Here is a simplified example.

scala> val txt = "The quick brown fox jumps over the lazy dog"
txt: String = The quick brown fox jumps over the lazy dog

scala> txt.split(" ")
res4: Array[String] = Array(The, quick, brown, fox, jumps, over, the,
lazy, dog)

scala> txt.split(" ").map(s => (s,1))
res6: Array[(String, Int)] = Array((The,1), (quick,1), (brown,1), (fox,1),
(jumps,1), (over,1), (the,1), (lazy,1), (dog,1))

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 10

Author Name, email@address

Note the way (s, 1) was used to create a type of key-value pair in Scala, called a tuple.

The key of the tuple can be accessed using the _1 element of the tuple, and the value

using _2.

scala> txt.split(" ").map(s => (s,1)).head
res12: (String, Int) = (The,1)

scala> txt.split(" ").map(s => (s,1)).map(s => s._1)
res8: Array[String] = Array(The, quick, brown, fox, jumps, over, the,
lazy, dog)

scala> txt.split(" ").map(s => (s,1)).map(s => s._2)
res9: Array[Int] = Array(1, 1, 1, 1, 1, 1, 1, 1, 1)

Hadoop groups (and sorts) the elements by their keys. It is just grouped by key

below, for ease of illustration.

scala> txt.split(" ").map(s => (s,1)).groupBy(s => s._1)
res7: scala.collection.immutable.Map[String,Array[(String, Int)]] =
Map(lazy -> Array((lazy,1)), dog -> Array((dog,1)), The ->
Array((The,1)), over -> Array((over,1)), brown -> Array((brown,1)),
quick -> Array((quick,1)), jumps -> Array((jumps,1)), fox ->
Array((fox,1)), the -> Array((the,1))

This creates another type of key-value pair that is stored in a Scala Map

collection. The groupBy method returns a Map collection that associates the given key

with all the elements that shared that key. The two instances of the word “the” have

different character case, so they are separate. Normalizing to lower case better illustrates

the groupBy.

scala> txt.split(" ").map(s => s.toLowerCase).map(s =>
(s,1)).groupBy(s => s._1)
res6: scala.collection.immutable.Map[String,Array[(String, Int)]] =
Map(lazy -> Array((lazy,1)), dog -> Array((dog,1)), over ->
Array((over,1)), brown -> Array((brown,1)), quick -> Array((quick,1)),
jumps -> Array((jumps,1)), fox -> Array((fox,1)), the -> Array((the,1),
(the,1)))

It is not exactly what Hadoop passes to the reducer. Let us drop the token words

from the list of map inputs. Note that Scala Map collection elements can still be accessed

using the _1 and _2 members.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 11

Author Name, email@address

scala> txt.split(" ").map(s => s.toLowerCase).map(s =>
(s,1)).groupBy(s => s._1).map(kvp => (kvp._1, kvp._2.map(s
=> s._2)))
res8: scala.collection.immutable.Map[String,Array[Int]] = Map(lazy ->
Array(1), dog -> Array(1), over -> Array(1), brown -> Array(1), quick ->
Array(1), jumps -> Array(1), fox -> Array(1), the -> Array(1, 1))

The map class passes something like this. Note that the word “the” is associated

with an array of two (2) numbers one (1) because it appears twice in the input.

scala> txt.split(" ").map(s => s.toLowerCase).map(s =>
(s,1)).groupBy(s => s._1).map(kvp => (kvp._1, kvp._2.map(s
=> s._2).reduce((a,b) => a + b)))
res9: scala.collection.immutable.Map[String,Int] = Map(lazy -> 1, dog -
> 1, over -> 1, brown -> 1, quick -> 1, jumps -> 1, fox -> 1, the -> 2)

Scalable & Distributed: Hadoop Distributed File System (HDFS)

A Hadoop cluster uses HDFS to distribute data. HDFS was designed with the

following assumptions in mind:

• Hardware Failure: A cluster of hundreds or thousands of machines may host an

HDFS file system. Each machine has a number of components that could fail.

Larger clusters have more machines, so the probability is higher that some

component of the cluster is not working. Therefore, HDFS must detect failed

components and automatically recover.

• Streaming Data Access: HDFS supports “short-circuit local reads” to get data to

tasks faster when the data and the task are on the same node. (McCabe, 2013)

• Large Data Sets: HDFS is optimized to store up to tens of millions of files, each

up to terabytes in size, even as the cluster may scale to hundreds of nodes.

• Simple Coherency Model: To allow many jobs and users to access the same data

concurrently, without needing locks, semaphores or mutexes to prevent

corruption, HDFS applications support a write-once-read-many access model for

files. Files can be truncated or appended, but not modified between the file’s

beginning and its end.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 12

Author Name, email@address

• “Moving Computation is Cheaper than Moving Data”: tasks, made of kilobytes

or megabytes of Java class files, can be easily transferred throughout the cluster.

Transferring mega-, giga- or terabytes of input data to a task will not be network-

and storage-efficient, especially if the task is a parser and its input is a digital

forensic image that is hundreds of gigabytes in size.

• Portability across Heterogeneous Hardware and Software Platforms: HDFS was

designed to be portable across a variety of platforms. (Apache Software

Foundation, 2016)

“Distribution” does not mean wide-area geographic distribution, or even

distribution beyond a single data center in a Hadoop context. HDFS supports “rack

awareness,” meaning that data can be distributed outside the current rack to ensure that it

remains accessible even in the event of failure of an entire computer equipment rack.

(Apache Software Foundation, 2016)

The NameNode daemon implements HDFS’ File Name (file and directory

naming) and Metadata Layers (allocation, addressing and bookkeeping).

There is one NameNode per cluster and multiple DataNodes. The NameNode is a

single point of failure that cannot be recovered without operator intervention. The

“Secondary Namenode” described in the documentation does not provide automatic

failover. High availability strategies for Hadoop are available. A secondary NameNode

machine can stand in for a failed primary NameNode, at a risk of data loss. (Karanth,

2014)

The network URL of the NameNode, such as, hdfs://ip-10-0-0-

27.ec2.internal:8020/ is the root of the HDFS filesystem. In jobs, the absolute path

hdfs://ip-10-0-0-27.ec2.internal:8020/user/hadoop/piggybank.jar could be referenced

using “/user/hadoop/piggybank.jar” or just “piggybank.jar,” for the user “Hadoop.”

DataNode daemons implement the Data Layer (management of data clusters).

HDFS replicates file blocks across the cluster. Files are composed of sequences of

blocks. All blocks of an HDFS file are the same size, except the last. The NameNode

ensures that the number of replicas of each file block is maintained, as defined by either

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 13

Author Name, email@address

the cluster-wide replication factor (3 by default), or a per-file replication factor given

later. The NameNode ensures that each HDFS file has only one writer at a time. Create a

new file, and the NameNode will decide where to create and replicate the file’s blocks.

The first DataNode that receives the data successfully copies it to the replica locations.

The default block size is 64 MiB, (Apache Software Foundation) but Amazon Web

Services configures Elastic MapReduce (EMR) servers for its cloud clients with a default

block size of 128 MiB. (Amazon Web Services, 2016)

On an hourly basis, each DataNode sends a heartbeat and a block report to the

NameNode. A successful heartbeat lets the NameNode know that the DataNode is alive,

functioning properly and capable of serving future block storage requests. The

NameNode marks DataNodes that do not send a heartbeat as dead, and their data

becomes unavailable. The block report contains an inventory of the blocks the DataNode

is storing. The NameNode checks the block report to see which blocks the DataNode did

not report. The NameNode then replicates any blocks that are replicated fewer times than

the cluster’s or the file’s replication factor.

Pertaining to RAID, the best practice is installing RAID only on operating system

drives of Hadoop nodes to lengthen their service life; otherwise, DataNode storage

should be just a bunch of disks (JBOD). (Loughran, 2012) (Holoman & O'Dell, 2015)

(Sammer, 2012) First, the HDFS software replicates blocks, so the data is available

elsewhere. In addition, using RAID to store data redundantly means less total storage for

the cluster. Hadoop workloads involve large sequential I/O reads and writes, so dividing

the I/O operations across the drives’ individual controllers and spindles actually performs

better than having them queue in the RAID controller. For these reasons, DataNode

daemons use the DataNode machines’ underlying local filesystems for HDFS storage.

For example, a DataNode could be set up to use UNIX filesystems on /disk1, /disk2, and

/disk3 for storage.

The “hadoop fs” command does most basic HDFS file management. For

example, to list the contents of the “/user/hadoop” directory on HDFS use the –ls option:

hadoop fs -ls /user/hadoop
<add>

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 14

Author Name, email@address

To copy the piggybank.jar file from the local UNIX to the “/user/hadoop”

directory on HDFS, use the –copyFromLocal option:

hadoop fs -copyFromLocal /usr/lib/pig/piggybank.jar /user/hadoop
<add>

Likewise, to copy the piggybank.jar file from the local UNIX to the

“/user/hadoop” directory on HDFS, use the –copyToLocal option:

hadoop fs -copyToLocal /user/hadoop/output/part-r-00000 .
<add>

Reliable: Hadoop Yet Another Resource Negotiator (YARN)

The YARN ResourceManager manages requests for the cluster’s CPU, RAM,

disk and network resources. The ResourceManager also can schedule cluster aware

applications that do not use Hadoop directly to execute on the cluster. NodeManager

processes running on the DataNode machines report resource usage to the

ResourceManager process. Jobs negotiate with the ResourceManager to allocate work to

the cluster through the ApplicationManager interface code. If the ResourceManager

agrees that work can be allocated to a node, the ApplicationManager can ask the node’s

NodeManager to start resource container on the node. The ApplicationManager monitors

the progress of the job’s containers, and the ResourceManager monitors the health and

resources of the nodes.

3.2.2. Apache HBase
HBase is a database that makes use of the distribution and fault-tolerance of

Hadoop HDFS. It is derived from Google’s BigTable (Chang, Dean, Ghemawat, Hsieh,

& Wallach, 2006).

Although HBase is defined in terms of tables, rows, and columns, its data model

is not at all like a spreadsheet or relational database. Some more suitable descriptions are

a multidimensional map, a nested associative array or a list of key-value pairs that

contain key-value pairs. Within an HBase table, the location of a data cell is specified by

its row key, column family, column key, and timestamp or version number.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 15

Author Name, email@address

When a table is created, it has a name, which is a text string and a column family,

which is also a text string. Cells that share the same column family are stored together in

HDFS. (Apache HBase Team, 2016)

Row and column keys are byte arrays. HBase sorts them in alphabetical order.

Each data cell has a version number. If no value is specified when a cell is saved,

the current UNIX epoch time is used.

HBase has a Master Server and multiple Region Servers. Each Region Server

serves regions, or ranges of row keys. Using row keys that cluster together, like numbers

in a series, dates, or times, can cause storage and retrieval traffic to “hot spot” on one

region server. Big data vendor MAPR has produced a short “Whiteboard Walkthrough”

about HBase row key selection for time series data. (MAPR, 2015)

3.2.3. Apache Spark
Apache Spark is a powerful advancement in Hadoop tooling. It is multi-platform,

does not require Hadoop in test, and has language bindings for Java, Python, Scala and

the R mathematics language. It offers the developer the ability to create powerful

massively-parallel distributed processing applications with the ease of use of the Scala

API and tools.

The Apache Spark website describes Spark as:

“Apache Spark is a fast and general-purpose cluster computing system. It

provides high-level APIs in Java, Scala, Python and R, and an optimized engine

that supports general execution graphs. It also supports a rich set of higher-level

tools including Spark SQL for SQL and structured data processing, MLlib for

machine learning, GraphX for graph processing, and Spark Streaming.” (Apache

Software Foundation)

The main component of Spark programs is the Resilient Distributed Data Set

(RDD). An RDD is a distributed collection whose elements are distributed to memory of

machines in the cluster. If an RDD will not fit in the cluster’s RAM, elements can be

configured to be cached to disk, otherwise they are re-generated when needed again.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 16

Author Name, email@address

RDDs can undergo transformations and actions. Transformations, like map, are

fast, and can be chained and/or done in parallel. Actions are operations that require

generating an output, like reduce, count, or collect. The collect method sends the

elements of the RDD to the Spark client as an array. If the RDD is sufficiently large,

collect could easily cause an OutOfMemoryError.

When a Spark job is submitted using “spark-submit,” the submitter can request a

number of YARN application containers to start, called “executors,” and how much

RAM each executor should have. This log snippet shows recovery of a “Lost executor”:

16/02/27 21:37:01 ERROR cluster.YarnScheduler: Lost executor 6 on
ip-10-0-0-156.ec2.internal: remote Akka client disassociated
16/02/27 21:37:01 WARN remote.ReliableDeliverySupervisor:
Association with remote system [akka.tcp://sparkExecutor@ip-10-0-0-
156.ec2.internal:39097]
has failed, address is now gated for [5000] ms. Reason is:
[Disassociated].
16/02/27 21:37:01 INFO scheduler.TaskSetManager: Re-queueing tasks
for 6 from TaskSet 1.0
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 92), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 88), so marking it as still running
16/02/27 21:37:01 WARN scheduler.TaskSetManager: Lost task 146.0
in stage 1.0 (TID 1151, ip-10-0-0-156.ec2.internal): ExecutorLostFailure
(executor 6
 lost)
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 93), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 89), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 87), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 90), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 91), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 85), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 86), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted
ShuffleMapTask(1, 94), so marking it as still running
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Executor lost: 6
(epoch 0)

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 17

Author Name, email@address

16/02/27 21:37:01 INFO storage.BlockManagerMasterActor: Trying to
remove executor 6 from BlockManagerMaster.
16/02/27 21:37:02 INFO storage.BlockManagerMasterActor: Removing
block manager BlockManagerId(6, ip-10-0-0-156.ec2.internal, 34952)
16/02/27 21:37:02 INFO storage.BlockManagerMaster: Removed 6
successfully in removeExecutor
16/02/27 21:37:02 INFO scheduler.Stage: Stage 1 is now unavailable
on executor 6 (536/598, false)
16/02/27 21:37:17 INFO scheduler.TaskSetManager: Starting task
146.1 in stage 1.0 (TID 1152, ip-10-0-0-154.ec2.internal, RACK_LOCAL,
1396 bytes)
16/02/27 21:37:17 WARN scheduler.TaskSetManager: Lost task 123.0
in stage 1.0 (TID 1148, ip-10-0-0-154.ec2.internal): java.io.IOException:
Failed to
connect to ip-10-0-0-156.ec2.internal/10.0.0.156:34952

4. Proof of Concept

The proof of concept test was conducted in the Amazon Web Services (AWS)

cloud. AWS offers, through its Amazon Elastic MapReduce (EMR) service, pre-

configured Hadoop clusters.

The test cluster was composed of 1 (one) “m1.large” master host and eight (8)

“m2.2xlarge” hosts. Specifications for the instances, excerpted from the AWS website,

are given below.

Table 2: AWS instance types used in the proof of concept

Instance
Family

Instance
Type

Pro-
cessor
Arch

vCPU Memory
(GiB)

Instance
Storage

(GB)

EBS-
optimized
Available

Network
Performance

General
purpose

m1.large 64-bit 2 7.5 2 x 420 Yes Moderate

Memory
optimized

m2.2xlarge 64-bit 4 34.2 1 x 850 Yes Moderate

Note: Adapted from “Previous Generation Instances” (Amazon Web Services)

The software configuration is listed below:

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 18

Author Name, email@address

Table 3: AWS Elastic MapReduce installed software

AMI
Version

Includes Notes Release

Date

3.11.0 • AWS SDK for
Java 1.10.41

• AWS SDK for
Ruby 2.2.8

• Amazon Linux
version
2015.09

• Hadoop 2.4.0
• Hive 0.13.1
• Hue 3.7.1
• Pig 0.12.0
• Hbase 0.94.18
• Impala 1.2.4
• Mahout 0.9
• Java:

Oracle/Sun
jdk-7u76

• Perl 5.16.3
• PHP 5.6.14
• Python 2.6.9
• R 3.2.2
• Ruby 1.8.7
• Scala 2.11.1
• Spark 1.3.1

This Amazon EMR AMI version provides the
following bug fixes and changes:

• Fixed a bug that prevented MapReduce
JobHistory logs from pushing to Amazon S3.

• Fixed bugs that prevented YARN container
logs from being pushed to Amazon S3.

4

January

2016

Note: Adapted from “AMI Versions Supported in Amazon EMR” (Amazon Web Services)

The image used for performance testing is a 70 GB EWF image of a computer

owned by the author.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 19

Author Name, email@address

4.1. Security

DISCLAIMER: Testing digital forensic tools in the cloud is not without risk.

Please get permission to use be prepared for possibly losing control of all data sent to the

cloud. Also, before experimenting, please research the vendor’s security features, take

responsibility and mitigate risk to the extent possible.

The AWS Cloud Security Whitepaper is a great place to start to learn.

Images and other static files were saved to a private AWS S3 bucket. Code and

scripts were checked out from a private GitHub repository using SSH with a key. The

cluster was set up in an AWS Virtual Private Cloud. Inbound connections to the master

host occurred over port 22 (SSH) only. SSH to the master host was accomplished

through an SSH key. Access to web services on the master host, like the HBase console

and Ganglia monitoring were tunneled through the SSH connection. All SSH keys used

require passphrases.

4.2. Importing the Image

Introducing the image to the cluster means more than copying the image files.

The goal is to stage the image for efficient access.

Navigating a forensic image requires alternating between two ways of accessing

the image. Starting with a master boot record (MBR), for example, there are some

structures and values to parse in this header, followed by the record structures of the

partition table. One of the partitions may lead to an NTFS volume on the drive. The

NTFS volume boot record has some header fields that lead to the record structures of the

MFT. The MFT records represent files and may contain resident and non-resident file

attribute records. So parsing the structures properly not only requires referencing offsets

in the image and reading the structures sequentially, but it also offers the opportunity to

parallelize the parsing of record structures. Once the locations of the structures have

been parsed from headers and placed on a list, a map function could be used to parse the

structures in parallel. Both types of access can be accomplished with the data blocks

stored in HBase.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 20

Author Name, email@address

The image input program is an Apache Spark Program that uses the

EWFImageInputFormat to load the image into an RDD. The EWFImageInputFormat

divides the image into logical “splits” of up to 128 MiB (the HDFS block size) for

processing. Then the EWFRecordReader actually reads the image into records of up to

64 KiB (HBase’s default block size). The key-value records have the offset into the

image as the key and the bytes of the image as the value. The RDD is then transformed

into RDDs that are saved directly to HBase using HBase’s TableOutputFormat.

To promote uniform distribution of the data across the HBase region servers, the

row key is a SHA-1 hash of the image filename and a block ID (the starting offset

divided by 128 MiB). This ensures that 128 MiB, plus up to 64 KiB are in each row

(since the starting offset is used to calculate the block ID). For more, see the diagram

below:

Figure 1: Sample navigation to an image block of interest in HBase

To get data beginning with a given offset of 134348800, we can start a scan

operation on the ‘row-keys’ table and the ‘images’ column family name with the image

filename ‘CDrive.E01’ as the row key and the desired offset divided by 124 MiB as the

starting column qualifier. That gives the row key hash in the ‘images’ table. So we

initiate another scan operation on the ‘images’ table with the row key hash as the starting

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 21

Author Name, email@address

row and look for the greatest column qualifier less than or equal to the starting offset and

retrieve the column.

As the HBase web UI shows below, the data are evenly distributed in 24 regions

across all 8 region servers.

Figure 2: HBase Region Server Listing

Varying the number of executors or amount of RAM per executor did have an

effect. More executors or more RAM only helped slightly.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 22

Author Name, email@address

Figure 3: Image import performance, varying the number of executors on the cluster and RAM per executor

4.3. An Unsuitable Application: Verifying Integrity

Verifying the integrity of an acquired image is an important pre-analysis step. The

goal is to hash the image to check to ensure that it matches the hash calculated at

acquisition. Verifying the image’s integrity is also an important test of whether the image

importation software is working properly.

However, hash functions like MD5 and SHA-1 cannot be parallelized. The hash

of any given block of a file except the first is a function of values accumulated by

calculating the hash function on all of the preceding blocks. (Rivest, 1992) (National

Institute of Standards and Technology , 2015) (Schneier, 2015) So they are neither

commutative nor associative functions. So a sequential stream of the image has to be

generated and passed to the hash function. Fortunately, HBase’s scan operation can serve

stored values in order, first by row key, then by column key with low latency. By

comparison, the sha1sum UNIX command can be used to calculate a SHA-1 hash of a

digital forensic image.

The proof of concept’s Apache HBase SHA-1 hashing program used HBase’s

scan operation on two tables to get the image’s blocks in order and calculate a SHA-1

hash. The SHA-1 implementation used is part of the java.security.MessageDigest Oracle

Java runtime library. Results were compared with results of running the sha1sum UNIX

00:00.0

07:12.0

14:24.0

21:36.0

28:48.0

36:00.0

43:12.0

50:24.0

8 16 24 32

Ru
n

Ti
m

e

Number of executors

Image Input Performance

2

4

8

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 23

Author Name, email@address

command on the dd image on the master node’s local storage. Both programs

successfully calculated hashes that match the acquisition hash.

Table 4: Hashing performance comparison

String Extraction Program Running time (minutes)

Apache HBase-based SHA-1 82:53.858

UNIX sha1sum 18:34.942

Here is a snippet of the script that runs the tests:

'time' times the execution. Curly braces were needed so that the
timing
would be directed to the log file
'tee -a' appends to the test.log file (but lets me still see what's
happening)

Does an HBase scan to get the contents of the image and calculate a
SHA1
{ time java com.edwardsit.spark4n6.HBaseSHA1 500GB-CDrive.E01
} 2>&1 | tee -a test.log
echo SHA1 should = 2bf1b3af2f049c0cda50d5c01c83f5a3dec3e43a

Uses the sha1sum UNIX command to calculate a SHA1 of the image
{ time sha1sum /mnt/500GB-CDrive.E01.dd
} 2>&1 | tee -a test.log
echo SHA1 should = 2bf1b3af2f049c0cda50d5c01c83f5a3dec3e43a

This is an excerpt of the output:

16/02/29 04:08:06 INFO spark4n6.HBaseSHA1: 73.14 GiB read,
100.00% complete
500GB-CDrive.E01 = 2bf1b3af2f049c0cda50d5c01c83f5a3dec3e43a

real 82m53.858s
user 16m4.896s
sys 7m47.304s
2bf1b3af2f049c0cda50d5c01c83f5a3dec3e43a /mnt/500GB-
CDrive.E01.dd

real 18m34.942s
user 4m45.456s
sys 0m46.348s

In both cases, Ganglia shows that only the master host (on the bottom) is under

moderate load.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 24

Author Name, email@address

Figure 4: Ganglia monitoring during hash calculation

4.4. A Fitting Application: Finding Strings

Searching for text strings of interest is a key requirement of a digital forensic

system. (NIST Computer Forensic Tool Testing (CFTT), 2008) the most important proof

that could be obtained may be text the user has written. Text hidden other places can also

be important clues.

One way of searching is to search the image for specific key words as needed.

Another way involves two steps: first extracting all readable text to an index file using a

program like the strings UNIX command, then using a text-searching program like the

grep UNIX command or the find command on Windows to the desired string in the index

file.

The strings UNIX command is used to extract readable ASCII or Unicode text

from binary images. The strings command, when run on a suspicious executable, may

reveal instructions for users of the program, error messages, IP addresses or even user

identities and passwords. Likewise, when run on forensic images, strings likewise can

reveal documents, e-mail messages, and web pages and stored Personally Identifiable

Information (PII) like names, e-mail addresses, telephone numbers, credit card numbers

and social security numbers.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 25

Author Name, email@address

The proof of concept used an Apache Spark program running on the master node

to extract readable ASCII text from the image. The program uses HBase’s

TableInputFormat to load the image’s blocks into a Spark RDD in parallel. The RDD is

then transformed to an RDD of strings and offsets into the image where the strings were

found. The RDD is then collected to send the strings to the standard output on the master

node. The proof of concept program’s running time was compared with running the

strings UNIX command on the dd image on the master node’s local storage. Both

programs’ output was discarded to save testing time and disk space on the master node.

Table 5: 'strings' programs performance comparison

String Extraction Program Running time (minutes)

Apache Spark-based string extraction

program

13:8.572

UNIX strings 108:11.512

Here is the snippet of the script that runs the tests:

{ time spark-submit \
 --num-executors 24 --executor-memory 8g \
 --class com.edwardsit.spark4n6.Strings \
 target/scala-2.10/spark4n6_2.10-1.0.jar >/dev/null
} 2>&1 | tee -a test.log
{ time strings –t d /mnt/CDrive.E01.dd >/dev/null
} 2>&1 | tee -a test.log

This shows Ganglia monitoring activity during the run of the Apache Spark-based

string extraction program. The whole cluster is engaged, primarily the master (in red on

the bottom), which is collecting the input, but the remainder of the cluster is not

overburdened.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 26

Author Name, email@address

Figure 5: Ganglia monitoring during Spark strings calculation

This shows Ganglia monitoring activity during the run of the strings UNIX

command. Only the master host is busy (in red at the bottom).

Figure 6: Ganglia monitoring during UNIX 'strings' calculation

5. Future Directions

Amazon has developed a ruggedized 50 TB storage device called Snowball with

an attached Kindle reader that acts as a management interface when the device is in use

or as a shipping label otherwise. It is essentially a portable S3 bucket. (Barr, 2015) The

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 27

Author Name, email@address

client interface for copying data to one or more devices over a local network appears to

implement a subset of the functionality of the hadoop distcp program. Acquisition could

be a “killer app” for a device with this capacity, especially if its API could support

acquisition in parallel using tools like Spark.

6. Conclusion

Digital forensic workloads seem to have outgrown the digital forensic

workstation, which is limited to the CPU and memory resources of a single node.

Adding storage usually offers little help.

On the other hand, the new architectural foundation for digital forensics shows

that “Big Data” tools and technologies may be able to help with many aspects of the data

challenge in digital forensics. It makes use of Apache Hadoop’s reliable, expandable

storage, HBase’s, sequential access and and Spark’s distributed parallel in-memory

computation. Both a fitting application of the technology, finding strings, and an

unsuitable application, hashing, were demonstrated.

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 28

Author Name, email@address

7. References

Amazon Web Services. (2016). HDFS Configuration. Retrieved from Amazon Elastic

MapReduce:

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-hdfs-

config.html

Apache HBase Team. (2016, February 24). Apache HBase ™ Reference Guide. Retrieved

from Apache HBase ™: https://hbase.apache.org/book.html#columnfamily

Apache Software Foundation. (2016, 01 26). HDFS Architecture. Retrieved from Apache

Hadoop: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

hdfs/HdfsDesign.html

Apache Software Foundation. (2016, January 26). HDFS Users Guide. Retrieved from

Hadoop: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

hdfs/HdfsUserGuide.html

Apache Software Foundation. (2016, 01 26). MapReduce Tutorial. Retrieved from

Apache Hadoop: http://hadoop.apache.org/docs/current/hadoop-mapreduce-

client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Apache Software Foundation. (n.d.). GC: WordCount. Retrieved from grepcode.com:

http://grepcode.com/file/repo1.maven.org/maven2/org.apache.hadoop/hadoop-

mapreduce-

examples/2.7.1/org/apache/hadoop/examples/WordCount.java#WordCount.main

%28java.lang.String%5B%5D%29

Apache Software Foundation. (n.d.). hdfs-default.xml. Retrieved from Apache Hadoop:

https://hadoop.apache.org/docs/r2.6.3/hadoop-project-dist/hadoop-hdfs/hdfs-

default.xml

Casey, E. (2011). Digital Evidence and Computer Crime: Forensic Science, Computers

and the Internet, 3rd Edition. Boston: Elsevier Inc.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., & Wallach, D. A. (2006). Bigtable: A

Distributed Storage System for Structured Data. Retrieved from Google:

http://static.googleusercontent.com/media/research.google.com/en//archive/bigtab

le-osdi06.pdf

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 29

Author Name, email@address

Cloudera, Inc. (2013, November 15). BinaryPig: Scalable Static Binary Analysis Over

Hadoop. Retrieved from Cloudera Engineering Blog:

https://blog.cloudera.com/blog/2013/11/binarypig-scalable-static-binary-analysis-

over-hadoop/

Dean, J., & Ghemawat, S. (2004, December). MapReduce: Simplified Data Processing

on Large Clusters . Retrieved from Google:

http://research.google.com/archive/mapreduce.html

Endgame Inc. (2013, December 2). Black Hat USA 2013 - BinaryPig - Scalable Malware

Analytics in Hadoop. Retrieved from YouTube:

https://www.youtube.com/watch?v=fcLkTvnBpIw

Garfinkel, S. L. (2010). Digital forensics research: The next 10 years. Digital

Investigation, S64-S73.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003, October). The Google File System .

Retrieved from Google: http://research.google.com/archive/gfs.html

Harris, D. (2013, March 4). The history of Hadoop: From 4 nodes to the future of data.

Retrieved from Gigaom: https://gigaom.com/2013/03/04/the-history-of-hadoop-

from-4-nodes-to-the-future-of-data/

Holoman, J., & O'Dell, K. (2015, January 16). How-to: Deploy Apache Hadoop Clusters

Like a Boss. Retrieved from Cloudera Engineering Blog:

http://blog.cloudera.com/blog/2015/01/how-to-deploy-apache-hadoop-clusters-

like-a-boss/

Karanth, S. (2014). HDFS high availability. In S. Karanth, Mastering Hadoop.

Birmingham, UK: Packt Publishing.

Laney, D. (2001, February 6). 3D Data Management: Controlling Data Volume, Velocity

and Variety. Retrieved from Gartner Web site:

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rj

a&uact=8&ved=0ahUKEwj5rPLQjpPLAhUIVT4KHcbNAzAQFgg5MAA&url=

http%3A%2F%2Fblogs.gartner.com%2Fdoug-

laney%2Ffiles%2F2012%2F01%2Fad949-3D-Data-Management-Controlling-

Data-Volume-Velocity-and

© 2016 The SANS Institute Author retains full rights.

Tech Refresh for the Forensic Analysis Toolkit 30

Author Name, email@address

Loughran, S. (2012, November 9). Why not RAID-0? It’s about Time and Snowflakes.

Retrieved from Hortonworks: http://hortonworks.com/blog/why-not-raid-0-its-

about-time-and-snowflakes/

McCabe, C. (2013, August 16). How Improved Short-Circuit Local Reads Bring Better

Performance and Security to Hadoop. Retrieved from Cloudera Engineering

Blog: http://blog.cloudera.com/blog/2013/08/how-improved-short-circuit-local-

reads-bring-better-performance-and-security-to-hadoop/

NIST Computer Forensic Tool Testing. (2008, January 24). Forensic String Searching

Tool Requirements Specification. Retrieved from National Institute of Standards

and Technology: http://www.cftt.nist.gov/ss-req-sc-draft-v1_0.pdf

Odersky, M. (2002). What is Scala? Retrieved from The Scala Programming Language:

http://scala-lang.org/what-is-scala.html

Odersky, M., & Spoon, L. (2010, September 7). Trait Traversable. Retrieved from scala-

lang.org: http://www.scala-lang.org/docu/files/collections-api/collections_3.html

Sammer, E. (2012). Daemons. In E. Sammer, Hadoop Operations. Sebastopol: O'Reilly

Media, Inc.

Schinz, M., & Haller, P. (2011). A Scala Tutorial for Java Programmers. Retrieved from

The Scala Programming Language: http://docs.scala-lang.org/tutorials/scala-for-

java-programmers.html

Schneier, B. (2015). 18.5 MD5. In Applied Cryptography: Protocols, Algorithms and

Source Code in C, 20th Anniversary Edition. Indianapolis: John Wiley & Sons.

Subramaniam, V. (2011, September 29). Why Scala? ...by a hilarious Indian guy.

Retrieved from YouTube: https://www.youtube.com/watch?v=LH75sJAR0hc

The Apache Software Foundation. (2016, February 13). Welcome to Apache™

Hadoop®! Retrieved from Apache™ Hadoop®!: http://hadoop.apache.org/

