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Abstract 

The most widely used commercial forensic tools have not undergone major architectural 

change since their market introduction in the late 1990s. Meanwhile, architectural change 

elsewhere has brought fast, powerful and inexpensive search, data visualization, and 

collaboration capabilities to users of all ages and computing experience levels. If the 

Internet is being indexed for search, could not forensic images be likewise indexed also? 

Could there potentially be relief from image size limits and storage barriers? Could 

forensic analysis be performed faster? What are the risks? “Big data” open-source tools 

like Apache Hadoop, Apache HBase and Apache Spark were used to develop a new 

architectural foundation proof of concept for digital forensics. While this framework did 

not improve performance on tasks that require serial processing, like hashing images for 

verification hashes, it has shown improved performance on a basic parsing task – finding 

ASCII strings. 
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1. Introduction 

Many have written about the “digital forensics crisis” caused by growing 

caseloads and storage device sizes. (Garfinkel, 2010) Attempts to address these issues 

have focused primarily on triage or data reduction.  While triage prioritizes forensic tasks 

so that the analyst is presented the most important artifacts or products first, data 

reduction eliminates items of low relevance to the case, such as “known-good” operating 

system and application files. (Casey, 2011) 

While the digital forensics community seems to agree that more images in more 

formats each month are being submitted for analysis, few efforts discuss managing the 

increased “volume, variety and velocity” (Laney, 2001) of incoming data as a “big data” 

issue. Laney focused on the growth of transactional data that came from e-commerce.  

Some of the same data management strategies and tools that facilitate the analysis of e-

commerce data may apply to digital forensics. 

In digital forensics, a large amount of computer time and effort go towards 

parsing. Tools like Snort, WireShark and tcpdump are used to parse packet data from 

packet structures, various tools and scripts to parse expected text structures from log files, 

and a variety of other tools to parse disk and RAM artifacts from lots of other structures 

like partition tables, boot sectors, file allocation tables (FAT), master file tables (MFT), 

etc. 

Most parsers process the structures serially (one at a time). Proof is found in the 

number of cores kept busy on the forensic workstation. Most often, the number is the 

same as the number of parse jobs initiated. Most parsers have this style (in pseudocode): 

while(input.hasNext()) { 
 x = input.next() 
 output.add(parse(x)) 
} 
return output 

The larger the input, the larger the wait time for output. 

A large amount of analyst time goes toward selecting what to parse because there 

is insufficient time to wait for the output or space to store it. 
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2. Related Work 

2.1. BinaryPig: Scalable Static Binary Analysis over Hadoop 

Endgame Inc. introduced BinaryPig at a talk at BlackHat USA 2013. (Endgame 

Inc., 2013) About their data management challenge, they wrote: 

“Over the past three years, Endgame received 40 million samples of malware 

equating to roughly 19TB of binary data.” (Cloudera, Inc., 2013) 

Issues they were experiencing include running out of storage space and losing 

malware samples due to node failures.  They also sought a better way of running analysis 

modules on all samples and sharing results.  

Endgame’s solution was the open source BinaryPig framework.  Endgame set up 

an Apache Hadoop cluster to organize their samples so that their feature extraction 

modules could analyze them more efficiently.  If a new module were developed, it could 

be run on all samples in short order. (Endgame Inc., 2013) 

BinaryPig is available on GitHub:  https://github.com/endgameinc/binarypig. 

2.2. The Sleuth Kit Hadoop Framework  

The Sleuth Kit Hadoop Framework is a prototype digital forensic analysis 

framework whose development was funded by the US Army Intelligence Center of 

Excellence (USAICoE). It seems to be a capable project, but it lacks installation scripts 

and instructions.  The project’s last commit occurred in 2012. 

The project’s code can be found on GitHub https://github.com/sleuthkit 

/hadoop_framework. 

3. A New Architectural Foundation for Digital Forensics 

Since digital forensic workload is outgrowing the forensic workstation, what 

capabilities would any alternative need? 
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Table 1: Current vs. future platform for digital forensics 

 Current Alternative 

Forensic tool Mostly serial Mostly parallel 

CPU Single node Multiple redundant nodes 

Memory Single node Multiple redundant nodes 

Storage Drives, RAID, Network Storage Multiple redundant nodes 

Failure recovery Usually manual Mostly automatic 

 

The digital forensic workstation is limited to the CPU and memory resources of a 

single node. Its storage is local, attached to an array, or available over the network. Most 

of its tools parse information serially. RAID prevents data loss in case of hardware 

failure, but disasters other than loss of the site may require restoration from backups. 

By contrast, the alternative system is a multi-node system. There is redundancy in 

its CPU, memory and storage resources.  Its tools generally work in parallel across the 

nodes.  Its software handles most failures other than loss of the site automatically. 

3.1. Parallel Processing Concepts  

MapReduce has proven its worth as a programming model for parallel processing 

since Google engineers Dean and Ghemawat published MapReduce: Simplified Data 

Processing on Large Clusters. (Dean & Ghemawat, 2004) Google, now known as 

Alphabet, Inc. earned $16.3 billion in net income for the year ending December 31, 2015. 

(Alphabet Inc. and Google Inc., 2015)  

3.1.1. The map Method 
In a number of programming languages, a collection is a group of elements, like 

an array or a set. Scala’s map method, for example, applies a function to each element of 

the collection.  The map function then returns a new collection containing the result of 

the function on each element.  (Odersky & Spoon, 2010) 

To illustrate this, define upper, which takes a string and changes its case to upper 

case. 
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scala> def upper(s : String) : String = { 
     | s.toUpperCase 
     | } 
upper: (s: String)String 

Now, define the “items” collection, an array of strings, to which the upper 

function will be applied. 

scala> val items = Array("One","Two","Three") 
items: Array[String] = Array(One, Two, Three) 
 
scala> items.map(upper) 
res0: Array[String] = Array(ONE, TWO, THREE) 
 
scala> items 
res1: Array[String] = Array(One, Two, Three) 

 
Therefore, the map function returns the array of items processed through the 

upper function. There is no requirement for looping or iteration in the code to apply the 

function to the elements. 

Now, using some syntactic sugar (called a closure) to simplify coding, another 

simple map function changes the case of each element of the “items” array to lower case. 

scala> items.map(s => s.toLowerCase) 
res3: Array[String] = Array(one, two, three) 

3.1.2. The reduce Method 
Scala’s reduce method processes the collection’s elements through a function that 

takes two elements at a time. 

For example, to calculate the total lengths of the words: 

scala> items 
res1: Array[String] = Array(One, Two, Three) 
 
scala> items.map(s => s.length) 
res26: Array[Int] = Array(3, 3, 5) 
 
Now, to add the lengths of the elements together, use addition as a reduce 

function with two of the elements at a time, like so: 
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scala> items.map(s => s.length).reduce((a,b) => a + b) 
res27: Int = 11 

 
So the reduce function added (3 + 3) + 5, or 3 + (3 + 5), or 5 + (3 + 3) (there is no 

way to tell or predict) but the correct answer was returned! 

Do not assume that “adjoining” elements will be sent to a reduce function, or that 

elements will be considered in a given order, or the results will surprise or disappoint.  A 

reduce function must be commutative and associative, or else the result may be 

unexpected. 

A function is commutative if the order of the operands does not matter.  Addition, 

for example, is a commutative function because:  3 + 5 = 5 + 3 = 8; on the other hand, 

subtraction is not a commutative function because: 3 – 5 = -2, which is not equal to 5 – 3 

= +2. 

Likewise, a function is associative if any pair of elements could be chosen to be 

processed first. For example, addition is also an associative function because: (1 + 2) + 3 

= 1 + (2 + 3) = 6. 

3.1.3. Example Using the Scala Programming Language 
Returning to parsing in digital forensics, most parsers have this style (in 

pseudocode): 

while(input.hasNext()) { 
 x = input.next() 
 output.add(parse(x)) 
} 
return output 

 
Provided parse is a good candidate for a map function and x represents an 

individual record structure to parse, the new parser could have this style instead: 

output = input.map(x => parse(x)) 
 

Since the execution environment controls invocation of the parse method, not the 

programmer, this style lends itself to parallelization. Different parse methods could parse 

a record structure like a log file row, a File Allocation Table (FAT) entry, an NTFS 
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Master File Table (MFT) file record or an Internet cache entry in parallel. Multiple cores 

or even multiple machines could collaborate on the workload.  

3.2. Parallel Processing Tools 

3.2.1. Apache™ Hadoop® 
Doug Cutting and Mike Cafarella developed Apache Hadoop to improve their 

Nutch web search engine. It worked fine. However, it would not scale beyond a handful 

of machines and it could not operate without constant monitoring.  Inspired by two 

Google research papers, The Google File System (Ghemawat, Gobioff, & Leung, 2003) 

and MapReduce: Simplified Data Processing on Large Clusters, (Chang, Dean, 

Ghemawat, Hsieh, & Wallach, 2006) they created the Hadoop MapReduce framework 

and the Hadoop Distributed File System and ported Nutch atop it.  Cutting’s son named 

his toy elephant “Hadoop,” which is the origin of the name.  Powered by Hadoop, Nutch 

ran with much less human intervention on 20-40 surplus machines. (Harris, 2013) 

According to the Apache Software Foundation (ASF), Hadoop software is: 

“The Apache Hadoop software library is a framework that allows for the 

distributed processing of large data sets across clusters of computers using simple 

programming models. It is designed to scale up from single servers to thousands 

of machines, each offering local computation, and storage. Rather than rely on 

hardware to deliver high-availability, the library itself is designed to detect and 

handle failures at the application layer, so delivering a highly available service on 

top of a cluster of computers, each of which may be prone to failures.” (The 

Apache Software Foundation, 2016) 

In Hadoop, data is dealt redundantly across the cluster of machines for availability 

and fault tolerance. Hadoop executes tasks in parallel and sends tasks, as close to the data 

as CPU, RAM, and network resources will allow. 

Simple Programming Model:  Hadoop MapReduce  

Hadoop MapReduce differs from scala’s map and reduce methods in the 

following ways: 
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• Map and reduce tasks are defined in user-defined Mapper and Reducer classes, 

vs. the map and reduce methods.  

• Both Mapper and Reducer classes take key-value pairs as input instead of 

elements of a collection.  

About MapReduce jobs, the ASF says: 

“A MapReduce job usually splits the input data set into independent chunks that 

are processed by the map tasks in a completely parallel manner. The framework 

sorts the outputs of the maps, which are then input to the reduce tasks. Typically, 

both the input and the output of the job are stored in a file-system. The framework 

takes care of scheduling tasks, monitoring them and re-executes the failed tasks.” 

(Apache Software Foundation, 2016) 

The canonical example, Hadoop’s WordCount program, reads text files and lists 

each word found in the file, followed by the number of times it appears in the input data 

set. 

First, the TokenizerMapper class’ map method accepts key-value pairs composed 

of the input filename as the key, and a line of text from the file as the value. 

36  public static class TokenizerMapper  
37       extends Mapper<Object, Text, Text, IntWritable>{ 
38     
39    private final static IntWritable one = new IntWritable(1); 
40    private Text word = new Text(); 
41       
42    public void map(Object key, Text value, Context context 
43                    ) throws IOException, InterruptedException { 
44      StringTokenizer itr = new StringTokenizer(value.toString()); 
45      while (itr.hasMoreTokens()) { 
46        word.set(itr.nextToken()); 
47        context.write(word, one); 
48      } 
49    } 
50  }  (Apache Software Foundation) 

 
So if the the input key-value pair is: 

<“a.txt”, “The quick brown fox jumps over the lazy dog”>, 
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As Hadoop calls the map method in line #42, key is set to “a.txt” and value is set 

to “The quick brown fox jumps over the lazy dog.”  Line 44 splits the string into tokens.  

Between lines 45 and 48, the map function iterates over the tokens in the list.  For each 

word, the variable word is set to the value of the token, and a new key–value pair with the 

token as the key and a count of 1 is returned to the framework by line 47. 

Likewise, the framework sorts the maps by key and groups them by key.  It then 

sends the new key-value pairs <token, <1, 1, 1, 1>> to the IntSumReducer class’ reduce 

method: 

52  public static class IntSumReducer  
53       extends Reducer<Text,IntWritable,Text,IntWritable> { 
54    private IntWritable result = new IntWritable(); 
55 
56    public void reduce(Text key, Iterable<IntWritable> values,  
57                       Context context 
58                       ) throws IOException, InterruptedException { 
59      int sum = 0; 
60      for (IntWritable val : values) { 
61        sum += val.get(); 
62      } 
63      result.set(sum); 
64      context.write(key, result); 
65    } 
66  }  (Apache Software Foundation) 

 
Therefore, by line 56, invocations of the TokenizerMapper class’ map method 

capture key as the token, and a list of number 1s emitted by maps for that key token as 

values. The loop at lines 60-62 adds the list of number 1s together. 

Here is a simplified example. 

scala> val txt = "The quick brown fox jumps over the lazy dog" 
txt: String = The quick brown fox jumps over the lazy dog 

 
scala> txt.split(" ") 
res4: Array[String] = Array(The, quick, brown, fox, jumps, over, the, 
lazy, dog) 

 
scala> txt.split(" ").map(s => (s,1)) 
res6: Array[(String, Int)] = Array((The,1), (quick,1), (brown,1), (fox,1), 
(jumps,1), (over,1), (the,1), (lazy,1), (dog,1)) 
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Note the way (s, 1) was used to create a type of key-value pair in Scala, called a tuple.  

The key of the tuple can be accessed using the _1 element of the tuple, and the value 

using _2. 

scala> txt.split(" ").map(s => (s,1)).head 
res12: (String, Int) = (The,1) 
 
scala> txt.split(" ").map(s => (s,1)).map(s => s._1) 
res8: Array[String] = Array(The, quick, brown, fox, jumps, over, the, 
lazy, dog) 
 
scala> txt.split(" ").map(s => (s,1)).map(s => s._2) 
res9: Array[Int] = Array(1, 1, 1, 1, 1, 1, 1, 1, 1) 

 
Hadoop groups (and sorts) the elements by their keys.  It is just grouped by key 

below, for ease of illustration. 

scala> txt.split(" ").map(s => (s,1)).groupBy(s => s._1) 
res7: scala.collection.immutable.Map[String,Array[(String, Int)]] = 
Map(lazy -> Array((lazy,1)), dog -> Array((dog,1)), The -> 
Array((The,1)), over -> Array((over,1)), brown -> Array((brown,1)), 
quick -> Array((quick,1)), jumps -> Array((jumps,1)), fox -> 
Array((fox,1)), the -> Array((the,1)) 

 
This creates another type of key-value pair that is stored in a Scala Map 

collection. The groupBy method returns a Map collection that associates the given key 

with all the elements that shared that key. The two instances of the word “the” have 

different character case, so they are separate.  Normalizing to lower case better illustrates 

the groupBy.  

scala> txt.split(" ").map(s => s.toLowerCase).map(s => 
(s,1)).groupBy(s => s._1) 
res6: scala.collection.immutable.Map[String,Array[(String, Int)]] = 
Map(lazy -> Array((lazy,1)), dog -> Array((dog,1)), over -> 
Array((over,1)), brown -> Array((brown,1)), quick -> Array((quick,1)), 
jumps -> Array((jumps,1)), fox -> Array((fox,1)), the -> Array((the,1), 
(the,1))) 

 
It is not exactly what Hadoop passes to the reducer. Let us drop the token words 

from the list of map inputs. Note that Scala Map collection elements can still be accessed 

using the _1 and _2 members. 
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scala> txt.split(" ").map(s => s.toLowerCase).map(s => 
(s,1)).groupBy(s => s._1).map(kvp => (kvp._1, kvp._2.map(s 
=> s._2))) 
res8: scala.collection.immutable.Map[String,Array[Int]] = Map(lazy -> 
Array(1), dog -> Array(1), over -> Array(1), brown -> Array(1), quick -> 
Array(1), jumps -> Array(1), fox -> Array(1), the -> Array(1, 1)) 

 
The map class passes something like this.  Note that the word “the” is associated 

with an array of two (2) numbers one (1) because it appears twice in the input. 

scala> txt.split(" ").map(s => s.toLowerCase).map(s => 
(s,1)).groupBy(s => s._1).map(kvp => (kvp._1, kvp._2.map(s 
=> s._2).reduce((a,b) => a + b))) 
res9: scala.collection.immutable.Map[String,Int] = Map(lazy -> 1, dog -
> 1, over -> 1, brown -> 1, quick -> 1, jumps -> 1, fox -> 1, the -> 2) 

Scalable & Distributed:  Hadoop Distributed File System (HDFS) 

A Hadoop cluster uses HDFS to distribute data.  HDFS was designed with the 

following assumptions in mind: 

• Hardware Failure:  A cluster of hundreds or thousands of machines may host an 

HDFS file system.  Each machine has a number of components that could fail.  

Larger clusters have more machines, so the probability is higher that some 

component of the cluster is not working.  Therefore, HDFS must detect failed 

components and automatically recover. 

• Streaming Data Access:  HDFS supports “short-circuit local reads” to get data to 

tasks faster when the data and the task are on the same node.  (McCabe, 2013) 

• Large Data Sets: HDFS is optimized to store up to tens of millions of files, each 

up to terabytes in size, even as the cluster may scale to hundreds of nodes.  

• Simple Coherency Model: To allow many jobs and users to access the same data 

concurrently, without needing locks, semaphores or mutexes to prevent 

corruption, HDFS applications support a write-once-read-many access model for 

files. Files can be truncated or appended, but not modified between the file’s 

beginning and its end.  
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• “Moving Computation is Cheaper than Moving Data”:  tasks, made of kilobytes 

or megabytes of Java class files, can be easily transferred throughout the cluster.  

Transferring mega-, giga- or terabytes of input data to a task will not be network- 

and storage-efficient, especially if the task is a parser and its input is a digital 

forensic image that is hundreds of gigabytes in size. 

• Portability across Heterogeneous Hardware and Software Platforms:  HDFS was 

designed to be portable across a variety of platforms. (Apache Software 

Foundation, 2016) 

“Distribution” does not mean wide-area geographic distribution, or even 

distribution beyond a single data center in a Hadoop context.  HDFS supports “rack 

awareness,” meaning that data can be distributed outside the current rack to ensure that it 

remains accessible even in the event of failure of an entire computer equipment rack.  

(Apache Software Foundation, 2016) 

The NameNode daemon implements HDFS’ File Name (file and directory 

naming) and Metadata Layers (allocation, addressing and bookkeeping).   

There is one NameNode per cluster and multiple DataNodes.  The NameNode is a 

single point of failure that cannot be recovered without operator intervention. The 

“Secondary Namenode” described in the documentation does not provide automatic 

failover. High availability strategies for Hadoop are available. A secondary NameNode 

machine can stand in for a failed primary NameNode, at a risk of data loss.  (Karanth, 

2014) 

The network URL of the NameNode, such as, hdfs://ip-10-0-0-

27.ec2.internal:8020/ is the root of the HDFS filesystem.  In jobs, the absolute path 

hdfs://ip-10-0-0-27.ec2.internal:8020/user/hadoop/piggybank.jar could be referenced 

using “/user/hadoop/piggybank.jar” or just “piggybank.jar,” for the user “Hadoop.”  

DataNode daemons implement the Data Layer (management of data clusters).   

HDFS replicates file blocks across the cluster. Files are composed of sequences of 

blocks.  All blocks of an HDFS file are the same size, except the last.  The NameNode 

ensures that the number of replicas of each file block is maintained, as defined by either 
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the cluster-wide replication factor (3 by default), or a per-file replication factor given 

later. The NameNode ensures that each HDFS file has only one writer at a time.  Create a 

new file, and the NameNode will decide where to create and replicate the file’s blocks.  

The first DataNode that receives the data successfully copies it to the replica locations.  

The default block size is 64 MiB, (Apache Software Foundation) but Amazon Web 

Services configures Elastic MapReduce (EMR) servers for its cloud clients with a default 

block size of 128 MiB. (Amazon Web Services, 2016) 

On an hourly basis, each DataNode sends a heartbeat and a block report to the 

NameNode.  A successful heartbeat lets the NameNode know that the DataNode is alive, 

functioning properly and capable of serving future block storage requests.  The 

NameNode marks DataNodes that do not send a heartbeat as dead, and their data 

becomes unavailable.  The block report contains an inventory of the blocks the DataNode 

is storing.  The NameNode checks the block report to see which blocks the DataNode did 

not report. The NameNode then replicates any blocks that are replicated fewer times than 

the cluster’s or the file’s replication factor. 

Pertaining to RAID, the best practice is installing RAID only on operating system 

drives of Hadoop nodes to lengthen their service life; otherwise, DataNode storage 

should be just a bunch of disks (JBOD). (Loughran, 2012) (Holoman & O'Dell, 2015) 

(Sammer, 2012) First, the HDFS software replicates blocks, so the data is available 

elsewhere.  In addition, using RAID to store data redundantly means less total storage for 

the cluster. Hadoop workloads involve large sequential I/O reads and writes, so dividing 

the I/O operations across the drives’ individual controllers and spindles actually performs 

better than having them queue in the RAID controller. For these reasons, DataNode 

daemons use the DataNode machines’ underlying local filesystems for HDFS storage.  

For example, a DataNode could be set up to use UNIX filesystems on /disk1, /disk2, and 

/disk3 for storage. 

The “hadoop fs” command does most basic HDFS file management.  For 

example, to list the contents of the “/user/hadoop” directory on HDFS use the –ls option: 

hadoop fs -ls /user/hadoop 
<add> 
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To copy the piggybank.jar file from the local UNIX to the “/user/hadoop” 

directory on HDFS, use the –copyFromLocal option: 

hadoop fs -copyFromLocal /usr/lib/pig/piggybank.jar /user/hadoop 
<add> 

Likewise, to copy the piggybank.jar file from the local UNIX to the 

“/user/hadoop” directory on HDFS, use the –copyToLocal option: 

hadoop fs -copyToLocal /user/hadoop/output/part-r-00000 . 
<add> 

Reliable:  Hadoop Yet Another Resource Negotiator (YARN) 

The YARN ResourceManager manages requests for the cluster’s CPU, RAM, 

disk and network resources.  The ResourceManager also can schedule cluster aware 

applications that do not use Hadoop directly to execute on the cluster. NodeManager 

processes running on the DataNode machines report resource usage to the 

ResourceManager process. Jobs negotiate with the ResourceManager to allocate work to 

the cluster through the ApplicationManager interface code.  If the ResourceManager 

agrees that work can be allocated to a node, the ApplicationManager can ask the node’s 

NodeManager to start resource container on the node.  The ApplicationManager monitors 

the progress of the job’s containers, and the ResourceManager monitors the health and 

resources of the nodes. 

3.2.2. Apache HBase 
HBase is a database that makes use of the distribution and fault-tolerance of 

Hadoop HDFS.  It is derived from Google’s BigTable (Chang, Dean, Ghemawat, Hsieh, 

& Wallach, 2006).  

Although HBase is defined in terms of tables, rows, and columns, its data model 

is not at all like a spreadsheet or relational database. Some more suitable descriptions are 

a multidimensional map, a nested associative array or a list of key-value pairs that 

contain key-value pairs. Within an HBase table, the location of a data cell is specified by 

its row key, column family, column key, and timestamp or version number.  
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When a table is created, it has a name, which is a text string and a column family, 

which is also a text string. Cells that share the same column family are stored together in 

HDFS.  (Apache HBase Team, 2016)  

Row and column keys are byte arrays.  HBase sorts them in alphabetical order.  

Each data cell has a version number.  If no value is specified when a cell is saved, 

the current UNIX epoch time is used. 

HBase has a Master Server and multiple Region Servers.  Each Region Server 

serves regions, or ranges of row keys. Using row keys that cluster together, like numbers 

in a series, dates, or times, can cause storage and retrieval traffic to “hot spot” on one 

region server.  Big data vendor MAPR has produced a short “Whiteboard Walkthrough” 

about HBase row key selection for time series data. (MAPR, 2015) 

3.2.3. Apache Spark 
Apache Spark is a powerful advancement in Hadoop tooling.  It is multi-platform, 

does not require Hadoop in test, and has language bindings for Java, Python, Scala and 

the R mathematics language. It offers the developer the ability to create powerful 

massively-parallel distributed processing applications with the ease of use of the Scala 

API and tools.   

The Apache Spark website describes Spark as: 

“Apache Spark is a fast and general-purpose cluster computing system. It 

provides high-level APIs in Java, Scala, Python and R, and an optimized engine 

that supports general execution graphs. It also supports a rich set of higher-level 

tools including Spark SQL for SQL and structured data processing, MLlib for 

machine learning, GraphX for graph processing, and Spark Streaming.” (Apache 

Software Foundation) 

The main component of Spark programs is the Resilient Distributed Data Set 

(RDD). An RDD is a distributed collection whose elements are distributed to memory of 

machines in the cluster. If an RDD will not fit in the cluster’s RAM, elements can be 

configured to be cached to disk, otherwise they are re-generated when needed again. 
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RDDs can undergo transformations and actions.  Transformations, like map, are 

fast, and can be chained and/or done in parallel. Actions are operations that require 

generating an output, like reduce, count, or collect.  The collect method sends the 

elements of the RDD to the Spark client as an array. If the RDD is sufficiently large, 

collect could easily cause an OutOfMemoryError. 

When a Spark job is submitted using “spark-submit,” the submitter can request a 

number of YARN application containers to start, called “executors,” and how much 

RAM each executor should have.  This log snippet shows recovery of a “Lost executor”: 

16/02/27 21:37:01 ERROR cluster.YarnScheduler: Lost executor 6 on 
ip-10-0-0-156.ec2.internal: remote Akka client disassociated 
16/02/27 21:37:01 WARN remote.ReliableDeliverySupervisor: 
Association with remote system [akka.tcp://sparkExecutor@ip-10-0-0-
156.ec2.internal:39097] 
has failed, address is now gated for [5000] ms. Reason is: 
[Disassociated]. 
16/02/27 21:37:01 INFO scheduler.TaskSetManager: Re-queueing tasks 
for 6 from TaskSet 1.0 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 92), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 88), so marking it as still running 
16/02/27 21:37:01 WARN scheduler.TaskSetManager: Lost task 146.0 
in stage 1.0 (TID 1151, ip-10-0-0-156.ec2.internal): ExecutorLostFailure 
(executor 6 
 lost) 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 93), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 89), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 87), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 90), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 91), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 85), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 86), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Resubmitted 
ShuffleMapTask(1, 94), so marking it as still running 
16/02/27 21:37:01 INFO scheduler.DAGScheduler: Executor lost: 6 
(epoch 0) 
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16/02/27 21:37:01 INFO storage.BlockManagerMasterActor: Trying to 
remove executor 6 from BlockManagerMaster. 
16/02/27 21:37:02 INFO storage.BlockManagerMasterActor: Removing 
block manager BlockManagerId(6, ip-10-0-0-156.ec2.internal, 34952) 
16/02/27 21:37:02 INFO storage.BlockManagerMaster: Removed 6 
successfully in removeExecutor 
16/02/27 21:37:02 INFO scheduler.Stage: Stage 1 is now unavailable 
on executor 6 (536/598, false) 
16/02/27 21:37:17 INFO scheduler.TaskSetManager: Starting task 
146.1 in stage 1.0 (TID 1152, ip-10-0-0-154.ec2.internal, RACK_LOCAL, 
1396 bytes) 
16/02/27 21:37:17 WARN scheduler.TaskSetManager: Lost task 123.0 
in stage 1.0 (TID 1148, ip-10-0-0-154.ec2.internal): java.io.IOException: 
Failed to 
connect to ip-10-0-0-156.ec2.internal/10.0.0.156:34952 

4. Proof of Concept 

The proof of concept test was conducted in the Amazon Web Services (AWS) 

cloud.  AWS offers, through its Amazon Elastic MapReduce (EMR) service, pre-

configured Hadoop clusters.  

The test cluster was composed of 1 (one) “m1.large” master host and eight (8) 

“m2.2xlarge” hosts. Specifications for the instances, excerpted from the AWS website, 

are given below. 

Table 2: AWS instance types used in the proof of concept 

Instance 
Family    

Instance 
Type 

Pro-
cessor 
Arch 

vCPU Memory 
(GiB) 

Instance 
Storage 

(GB) 

EBS-
optimized 
Available 

Network 
Performance 

General 
purpose 

m1.large 64-bit 2 7.5 2 x 420 Yes Moderate 

Memory 
optimized 

m2.2xlarge 64-bit 4 34.2 1 x 850 Yes Moderate 

Note:  Adapted from “Previous Generation Instances” (Amazon Web Services) 
 

The software configuration is listed below: 
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Table 3: AWS Elastic MapReduce installed software 

AMI 
Version 

Includes Notes Release 

Date 

3.11.0 • AWS SDK for 
Java 1.10.41 

• AWS SDK for 
Ruby 2.2.8 

• Amazon Linux 
version 
2015.09 

• Hadoop 2.4.0 
• Hive 0.13.1 
• Hue 3.7.1 
• Pig 0.12.0 
• Hbase 0.94.18 
• Impala 1.2.4 
• Mahout 0.9 
• Java: 

Oracle/Sun 
jdk-7u76 

• Perl 5.16.3 
• PHP 5.6.14 
• Python 2.6.9 
• R 3.2.2 
• Ruby 1.8.7 
• Scala 2.11.1 
• Spark 1.3.1 

This Amazon EMR AMI version provides the 
following bug fixes and changes: 

• Fixed a bug that prevented MapReduce 
JobHistory logs from pushing to Amazon S3. 

• Fixed bugs that prevented YARN container 
logs from being pushed to Amazon S3. 

4 

January 

2016 

Note:  Adapted from “AMI Versions Supported in Amazon EMR” (Amazon Web Services) 
 

The image used for performance testing is a 70 GB EWF image of a computer 

owned by the author.  
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4.1. Security 

DISCLAIMER:  Testing digital forensic tools in the cloud is not without risk.  

Please get permission to use be prepared for possibly losing control of all data sent to the 

cloud.  Also, before experimenting, please research the vendor’s security features, take 

responsibility and mitigate risk to the extent possible.  

The AWS Cloud Security Whitepaper is a great place to start to learn. 

Images and other static files were saved to a private AWS S3 bucket. Code and 

scripts were checked out from a private GitHub repository using SSH with a key. The 

cluster was set up in an AWS Virtual Private Cloud. Inbound connections to the master 

host occurred over port 22 (SSH) only.  SSH to the master host was accomplished 

through an SSH key. Access to web services on the master host, like the HBase console 

and Ganglia monitoring were tunneled through the SSH connection.  All SSH keys used 

require passphrases. 

4.2. Importing the Image 

Introducing the image to the cluster means more than copying the image files.  

The goal is to stage the image for efficient access. 

Navigating a forensic image requires alternating between two ways of accessing 

the image.  Starting with a master boot record (MBR), for example, there are some 

structures and values to parse in this header, followed by the record structures of the 

partition table.  One of the partitions may lead to an NTFS volume on the drive.  The 

NTFS volume boot record has some header fields that lead to the record structures of the 

MFT.  The MFT records represent files and may contain resident and non-resident file 

attribute records. So parsing the structures properly not only requires referencing offsets 

in the image and reading the structures sequentially, but it also offers the opportunity to 

parallelize the parsing of record structures.  Once the locations of the structures have 

been parsed from headers and placed on a list, a map function could be used to parse the 

structures in parallel. Both types of access can be accomplished with the data blocks 

stored in HBase. 
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The image input program is an Apache Spark Program that uses the 

EWFImageInputFormat to load the image into an RDD.  The EWFImageInputFormat 

divides the image into logical “splits” of up to 128 MiB (the HDFS block size) for 

processing.  Then the EWFRecordReader actually reads the image into records of up to 

64 KiB (HBase’s default block size). The key-value records have the offset into the 

image as the key and the bytes of the image as the value.  The RDD is then transformed 

into RDDs that are saved directly to HBase using HBase’s TableOutputFormat.  

To promote uniform distribution of the data across the HBase region servers, the 

row key is a SHA-1 hash of the image filename and a block ID (the starting offset 

divided by 128 MiB).  This ensures that 128 MiB, plus up to 64 KiB are in each row 

(since the starting offset is used to calculate the block ID). For more, see the diagram 

below:

 

Figure 1: Sample navigation to an image block of interest in HBase 

To get data beginning with a given offset of 134348800, we can start a scan 

operation on the ‘row-keys’ table and the ‘images’ column family name with the image 

filename ‘CDrive.E01’ as the row key and the desired offset divided by 124 MiB as the 

starting column qualifier. That gives the row key hash in the ‘images’ table.  So we 

initiate another scan operation on the ‘images’ table with the row key hash as the starting 
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row and look for the greatest column qualifier less than or equal to the starting offset and 

retrieve the column. 

As the HBase web UI shows below, the data are evenly distributed in 24 regions 

across all 8 region servers. 

 
Figure 2: HBase Region Server Listing 

Varying the number of executors or amount of RAM per executor did have an 

effect.  More executors or more RAM only helped slightly. 
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Figure 3: Image import performance, varying the number of executors on the cluster and RAM per executor 

4.3. An Unsuitable Application: Verifying Integrity  

Verifying the integrity of an acquired image is an important pre-analysis step. The 

goal is to hash the image to check to ensure that it matches the hash calculated at 

acquisition. Verifying the image’s integrity is also an important test of whether the image 

importation software is working properly. 

However, hash functions like MD5 and SHA-1 cannot be parallelized.  The hash 

of any given block of a file except the first is a function of values accumulated by 

calculating the hash function on all of the preceding blocks. (Rivest, 1992) (National 

Institute of Standards and Technology , 2015)  (Schneier, 2015) So they are neither 

commutative nor associative functions.  So a sequential stream of the image has to be 

generated and passed to the hash function. Fortunately, HBase’s scan operation can serve 

stored values in order, first by row key, then by column key with low latency. By 

comparison, the sha1sum UNIX command can be used to calculate a SHA-1 hash of a 

digital forensic image.   

The proof of concept’s Apache HBase SHA-1 hashing program used HBase’s 

scan operation on two tables to get the image’s blocks in order and calculate a SHA-1 

hash. The SHA-1 implementation used is part of the java.security.MessageDigest Oracle 

Java runtime library. Results were compared with results of running the sha1sum UNIX 
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command on the dd image on the master node’s local storage.  Both programs 

successfully calculated hashes that match the acquisition hash. 

Table 4: Hashing performance comparison 

String Extraction Program Running time (minutes) 

Apache HBase-based SHA-1  82:53.858 

UNIX sha1sum 18:34.942 

 
Here is a snippet of the script that runs the tests: 

# 'time' times the execution.  Curly braces were needed so that the 
timing 
# would be directed to the log file 
# 'tee -a' appends to the test.log file (but lets me still see what's 
happening) 
# 
# Does an HBase scan to get the contents of the image and calculate a 
SHA1 
{ time java com.edwardsit.spark4n6.HBaseSHA1 500GB-CDrive.E01 
} 2>&1 | tee -a test.log 
echo SHA1 should = 2bf1b3af2f049c0cda50d5c01c83f5a3dec3e43a 
# 
# Uses the sha1sum UNIX command to calculate a SHA1 of the image 
{ time sha1sum /mnt/500GB-CDrive.E01.dd 
} 2>&1 | tee -a test.log 
echo SHA1 should = 2bf1b3af2f049c0cda50d5c01c83f5a3dec3e43a 

 
This is an excerpt of the output: 

16/02/29 04:08:06 INFO spark4n6.HBaseSHA1: 73.14 GiB read, 
100.00% complete 
500GB-CDrive.E01 = 2bf1b3af2f049c0cda50d5c01c83f5a3dec3e43a 
 
real    82m53.858s 
user    16m4.896s 
sys     7m47.304s 
2bf1b3af2f049c0cda50d5c01c83f5a3dec3e43a  /mnt/500GB-
CDrive.E01.dd 
 
real    18m34.942s 
user    4m45.456s 
sys     0m46.348s 

 
In both cases, Ganglia shows that only the master host (on the bottom) is under 

moderate load. 
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Figure 4: Ganglia monitoring during hash calculation 

4.4. A Fitting Application: Finding Strings  

Searching for text strings of interest is a key requirement of a digital forensic 

system.  (NIST Computer Forensic Tool Testing (CFTT), 2008) the most important proof 

that could be obtained may be text the user has written.  Text hidden other places can also 

be important clues.  

One way of searching is to search the image for specific key words as needed.  

Another way involves two steps:  first extracting all readable text to an index file using a 

program like the strings UNIX command, then using a text-searching program like the 

grep UNIX command or the find command on Windows to the desired string in the index 

file.   

The strings UNIX command is used to extract readable ASCII or Unicode text 

from binary images.  The strings command, when run on a suspicious executable, may 

reveal instructions for users of the program, error messages, IP addresses or even user 

identities and passwords.  Likewise, when run on forensic images, strings likewise can 

reveal documents, e-mail messages, and web pages and stored Personally Identifiable 

Information (PII) like names, e-mail addresses, telephone numbers, credit card numbers 

and social security numbers. 
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The proof of concept used an Apache Spark program running on the master node 

to extract readable ASCII text from the image.  The program uses HBase’s 

TableInputFormat to load the image’s blocks into a Spark RDD in parallel.  The RDD is 

then transformed to an RDD of strings and offsets into the image where the strings were 

found. The RDD is then collected to send the strings to the standard output on the master 

node. The proof of concept program’s running time was compared with running the 

strings UNIX command on the dd image on the master node’s local storage.  Both 

programs’ output was discarded to save testing time and disk space on the master node. 

Table 5: 'strings' programs performance comparison 

String Extraction Program Running time (minutes) 

Apache Spark-based string extraction 

program 

13:8.572 

UNIX strings 108:11.512 

 
Here is the snippet of the script that runs the tests: 

{ time spark-submit \ 
 --num-executors 24 --executor-memory 8g \ 
 --class com.edwardsit.spark4n6.Strings \ 
 target/scala-2.10/spark4n6_2.10-1.0.jar >/dev/null 
} 2>&1 | tee -a test.log 
{ time strings –t d /mnt/CDrive.E01.dd >/dev/null 
} 2>&1 | tee -a test.log 

 
This shows Ganglia monitoring activity during the run of the Apache Spark-based 

string extraction program.  The whole cluster is engaged, primarily the master (in red on 

the bottom), which is collecting the input, but the remainder of the cluster is not 

overburdened. 
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Figure 5: Ganglia monitoring during Spark strings calculation 

This shows Ganglia monitoring activity during the run of the strings UNIX 

command.  Only the master host is busy (in red at the bottom). 

 

 
Figure 6: Ganglia monitoring during UNIX 'strings' calculation 

5. Future Directions 

Amazon has developed a ruggedized 50 TB storage device called Snowball with 

an attached Kindle reader that acts as a management interface when the device is in use 

or as a shipping label otherwise.  It is essentially a portable S3 bucket. (Barr, 2015) The 
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client interface for copying data to one or more devices over a local network appears to 

implement a subset of the functionality of the hadoop distcp program. Acquisition could 

be a “killer app” for a device with this capacity, especially if its API could support 

acquisition in parallel using tools like Spark. 

6. Conclusion 

Digital forensic workloads seem to have outgrown the digital forensic 

workstation, which is limited to the CPU and memory resources of a single node.  

Adding storage usually offers little help.   

On the other hand, the new architectural foundation for digital forensics shows 

that “Big Data” tools and technologies may be able to help with many aspects of the data 

challenge in digital forensics. It makes use of Apache Hadoop’s reliable, expandable 

storage, HBase’s, sequential access and and Spark’s distributed parallel in-memory 

computation.  Both a fitting application of the technology, finding strings, and an 

unsuitable application, hashing, were demonstrated.  
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