
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

[VERSION June 2012]

Live Response Using PowerShell

GIAC (GCFA) Gold Certification

Author: Sajeev Nair, Nair.Sajeev@gmail.com
Advisor: Antonios Atlasis

Accepted: August 7th 2013

Abstract
Live response is a critical area within Incident Response. While there are many tools
and processes available to collect valuable information for later analysis, there
haven’t	 been	 any	 comprehensive	 studies	 done	 with	 the	 capabilities	 of	 PowerShell as
an inbuilt tool to aid live response. This paper focuses on various ways in which
PowerShell can be utilized to collect data from Windows 7 systems. PowerShell
comes bundled with Windows 7 and Microsoft provides a wealth of options to
collect, analyze and present the various artifacts.

Live Response Using PowerShell 2

Sajeev Nair, Nair.Sajeev@Gmail.com

1. Introduction
Organizations today handle more sensitive personal data than ever before. As the

amount of sensitive personal data increases, the more they are susceptible to security

incidents and breaches (AICPA, n.d). The risk also increases due to the fact that such

sensitive personal data is shared with multiple entities such as clients and business

partners. To mitigate this risk, organizations started investing in Incident Response

programs. Having an Incident Response program allows organizations to follow a formal

process while responding to security incidents (Cichonski, Millar, Grance, Scarfone,

2012).

One of the biggest challenges in Incident Response today is in the incident

detection phase. Do you have the right information available to determine if a security

incident has occurred? How fast can you collect the information to determine if a security

incident has occurred? In this paper, various industry data breach and incident reports

were studied to identify the amount of time it takes to detect the incident. According to

some of these reports:

 64% - Percentage of victim organizations that took more than 90 days to

detect the intrusion. (Trustwave Global Security Report, 2013)

 66% - In 2012, 66% of breaches remained undiscovered for months or more

(Verizon Data Breach Report, 2013).

 243 days - “median number of days that the attackers were present on a victim

network before detection” (Mandiant M-Trends, 2013).

From the various reports it is apparent that organizations are struggling with

incident detection. Organizations have to do a better job in detecting incidents as the

incident response costs continue to increase (Ponemon Institute, 2012).

Incident identification through disk imaging and forensic analysis is very time

consuming and impacts the normal operation of organization’s business. Additionally,

important volatile evidence could be lost by shutting down a system (Walters, Petroni,

Live Response Using PowerShell 3

Sajeev Nair, Nair.Sajeev@Gmail.com

2007). Due to these factors, live response is being used as a critical part in the

investigation process.

There are various tools available, both open-source and commercial to perform

live response. This paper focuses on a third option – use of in-built operating system tools

and commands to do the job. Operating system selected for this study is Windows 7 and

PowerShell is an in-built tool or scripting language that comes bundled with Windows 7.

PowerShell is a very powerful and scalable scripting language using which we can

extract the required information from Windows 7 operating system. This paper also looks

at some of the challenges that both open source and commercial tools present for

organizations.

2. Live Response
Live response is an area that deals with collecting information from a live

machine in order to identify if an incident has occurred. Such data include artifacts

such as process information, connection information, files opened by processes, and

so on. It does not have to be only volatile information, it can be any artifact to

establish the fact that an incident has occurred. Live response helps the analyst to

not lose the artifacts which may not be available when the machine is powered

down. This also helps an analyst to respond to an incident quickly while not

disturbing the regular activity of that machine. This aspect is very important for

both user machines and servers, where organizations cannot afford to have

downtime until we establish the fact that an incident has occurred.

2.1. What to collect during a Live Response
The goal of live response is to identify incidents as quickly as possible. In order to

do that you want to collect the right information that helps you make the decision. Here is

a comprehensive list of artifacts that you want to collect (Jones, Bejtlich & Rose, 2006.

Carvey, 2009. Carvey, 2011):

1. Machine and Operating system information.

2. User accounts and current login information.

Live Response Using PowerShell 4

Sajeev Nair, Nair.Sajeev@Gmail.com

3. Network configuration and connectivity information.

4. Anti-Virus application status and related logs.

5. Startup applications.

6. Running process related information.

7. Running services related information.

8. Drivers installed and running.

9. DLLs created.

10. Open files.

11. Open shares.

12. Mapped drives.

13. Scheduled jobs.

14. Active network connections and related process.

15. Hotfixes applied.

16. Installed applications.

17. Link files created.

18. Packed files.

19. USB related.

20. Shadow copies created.

21. Prefetch files and timestamps.

22. DNS cache.

23. List of available logs and last write times.

24. Firewall configuration.

25. Audit policy.

26. Temporary Internet files and cookies.

27. Typed URLs.

28. Important registry keys.

29. File timeline.

30. Important event logs.

Live Response Using PowerShell 5

Sajeev Nair, Nair.Sajeev@Gmail.com

2.2. Tools available – Commercial and Open Source
There are many tools – both open source and commercial to achieve this

objective. The below list of tools is not a comprehensive list but to give the reader the

products available in the market.

1. Helix3 Enterprise. This is an enterprise level solution to capture required

evidences from a remote system (E-fence, n.d.a).

2. Live Response. Acquires volatile data using a USB key (E-fence, n.d.b).

3. ProDiscover Incident Response. This is an enterprise level client server

application that can perform disk preview, imaging and analysis (Techpathways,

n.d).

4. Mandiant for Intelligent Response. This is an appliance-based solution to

investigate enterprise wide endpoints (Mandiant, n.d).

5. EnCase Enterprise. This is another enterprise level client server application,

which can do multitude of incident response and forensic investigations remotely

(Guidance, n.d).

6. The Windows Forensic Toolchest. This a live response tool for Windows systems

(Foolmoon, n.d).

7. GRR. GRR is an Incident Response Framework focused on remote live forensics

(GRR, n.d).

8. RPIER. This tool utilizes multiple open source utilities to collect artifacts from a

live system. (RPIER, n.d).

9. MIR-ROR. MIR-ROR is a script that calls specific Windows sysinternals and

other utilities to perform live response (MIR-ROR, n.d).

2.3. Live Response challenges
Live response is a maturing area within the incident response spectrum and there

are many tools to do the job. However, relying on open source and commercial tools

present many challenges:

Privacy related. Many of the tools are designed to collect information which is on

the user’s machine without user input. If a country’s regulation requires consent to collect

such information, it could pose privacy concerns.

Live Response Using PowerShell 6

Sajeev Nair, Nair.Sajeev@Gmail.com

Connectivity related. Current organization’s internal networks are highly

segmented and communication outside the segmented networks is controlled through a

firewall. It is a nightmare for large organizations to manage all these connectivity in order

to provide access from a centrally managed live response tool. Additionally, what

happens when the tool itself changes or moved to a new network, now you have a new IP

address and new application port number to deal with.

Licensing related. Do you really trust that software you are running on your

network? Do you know what exactly it is supposed to do? Do you know if the software

runs other tools which may be prohibitive for commercial usage? Verifying usage options

for many of the open source software is a tedious task and requires legal department’s

approval. Even for commercial tools, you have to really understand whether it can be

used on a partner network, software images which run your client’s licensed operating

system, personal machines that employees bring in as part of your BYOD policy, etc.

Tool installation related. Due to the memory and process footprint that the live

response agents add to a user’s machine, many organizations prefer an on-demand

approach to installation of agents. It is also done to limit the number of licenses an

organization can use. In such cases, can you make sure you can install the agent fast

enough to capture the artifacts as the incidents happen? What about the artifacts left

behind by the installation of such agents? During an analysis, does the agent installation

come up as the last made change? Since many of the corporate users don’t have

administrative privilege to install and run the agents, some organizations are forced to

wait for the technician to arrive and install the agent. In such situations you are not only

altering the user profile but destroying vital evidence as well.

USB and CD/DVD related. Today, most organizations block USB and CD/DVD

usage for users that handle sensitive information. If the tool is designed to collect artifacts

using these methods, then it poses problems.

Efficiency related. If the tools are designed to collect “all or nothing”, then it

would not be efficient in scenarios where you are using your security intelligence and

collecting specific artifacts. Specific artifacts may include items such as specific USB

device connected, login time for a specific user, whether a particular process is running,

Live Response Using PowerShell 7

Sajeev Nair, Nair.Sajeev@Gmail.com

whether a DLL with a specific name is present, whether a specific registry entry is

present, specific IP address in the active network connections, etc. Collecting specific

artifacts also ensures that you are making minimal change to the system. Post

confirmation of an incident, when you collect system memory, you don’t want the usage

of tools to overwrite memory areas.

Cost related. Commercial tools that operate on a per agent basis become very

expensive for large organizations. You also need to account for operating expense such as

data center cost, administrator cost, hardware cost, software cost, vendor support cost,

etc.

So, what’s the solution? The solution is to use in-built tools and APIs to extract

artifacts. Most of the challenges discussed above can be mitigated by using in-built tools.

However, the challenge is to identify if such tools can effectively collect the required

artifacts in order to analyze and detect the incidents that are taking place in your network.

PowerShell, which comes bundled with Windows 7, is highly customizable and can do an

admirable job in collecting the required artifacts.

3. Overview of PowerShell
PowerShell is both a scripting language and a powerful interactive command

interface similar to Bash in UNIX. PowerShell console where the commands are run is

very similar to the Windows command interface, cmd.exe. PowerShell commands can be

run in the background or interactively if a particular country’s privacy policy enforces an

organization to do so. PowerShell V2 is installed by default on Windows 7 operating

system.

PowerShell commands or Cmdlets are based on .NET Framework objects, which

mean that the objects carry multiple aspects or properties of the command. These

Cmdlets lets you access the file system and other Windows operating system data stores,

such as the registry. PowerShell also provides access to Windows Management

Instrumentation (WMI), which means that all the WMI commands that incident

responders and information security professionals are familiar with, can be run using

PowerShell.

Live Response Using PowerShell 8

Sajeev Nair, Nair.Sajeev@Gmail.com

All the Cmdlets follow a verb-noun structure, where the verb is always an action

statement to get something from the operating system or tell the operating system to do

something. The noun part of the Cmdlet is what the different objects that are of interest,

objects such as computer, file system, disk, processes, event logs, etc. The noun part is

always derived from a specific .NET class (Microsoft, n.d.a).

All the PowerShell Cmdlets follow a common help system.“Get-Help <Cmdlet

name> -Online” command initiates a local internet explorer session to the Microsoft

TechNet library, which contains command options with multiple examples.

Some of the most common Cmdlets that are useful for live response are:

Command Alias Description

Get-ChildItem GCI or

DIR or

LS

Similar to “dir” command, it gets the items and child items

from one or more directories. It can also identify the MAC

time stamps.

Get-

ItemProperty

GP Primarily used to get the property values of registry entries.

Get-WmiObject GWMI Lists details of a WMI class.

Get-Process GPS Lists the processes that are running on the machine.

Get-Service GSV Lists the services that are running on the machine.

Get-WinEvent None Lists the events from event logs and event tracing files.

Get-HotFix None Lists the hotfixes applied on the machine.

Get-Content GC Lists the contents of a file.

Write-Host None Enables writing messages to the console. Useful if the

command or the script need to be run interactively.

Table 3.0.1: Common PowerShell Cmdlets used in live response

Since PowerShell Cmdlets are designed to deal with objects, the output of

Cmdlets carry additional data that can be used for additional processing, such as output

formatting, command piping, sorting and export options. Command piping is one of the

most powerful features of PowerShell. It enables outputs of one command to pass

through a whole new Cmdlet and start a new set of processing. Export options include

Live Response Using PowerShell 9

Sajeev Nair, Nair.Sajeev@Gmail.com

HTML, Text, XML and CSV. Some of the additional processing and export options are

listed below with examples:

Command Description

Select-Object or

select

Primarily used to select specific properties from a Cmdlet.

Ex: Get-Process | select ID, ProcessName

Select-String Similar to find or grep. This command can be used to select a

specific string from the output.

Ex: ipconfig /displaydns | select-string 'Record Name'
ConvertTo-Html Converts the output to HTML format. This command also supports

defining HEAD, TITLE and BODY options.

Ex: Get-Process | select ID, ProcessName | ConvertTo-Html >

c:\report.html

Format-table or ft This is an output option to format the display in a table form.

Ex: Get-Process | select ID, ProcessName | ft -auto

Where-Object or

where

This command is used to filter the output for specific properties

Ex: Get-WmiObject Win32_NetworkAdapterConfiguration |
where{$_.IPEnabled -eq 'True'}

ConvertFrom-Csv

This command is used to convert a CSV file for formatting within

PowerShell.

Ex: driverquery.exe /v /FO CSV | ConvertFrom-CSV | Select

'Display Name','Start Mode', Path

Sort-Object or

sort

This command sorts the properties in ascending or descending order.

Ex: driverquery.exe /v /FO CSV | ConvertFrom-CSV | Select

'Display Name','Start Mode', Path | sort path

foreach-object or
foreach

This is the “for” loop in the PowerShell world.

Ex: Get-Process |select Modules | foreach {$_.Modules} | select
Product, ModuleName

Get-Date This command shows the current date and time. It can also be used

to add or subtract days while filtering the output.

Ex: Get-WinEvent -FilterHashtable

@{logname='system';starttime=((Get-Date).AddDays(-1))} | Select

Live Response Using PowerShell 10

Sajeev Nair, Nair.Sajeev@Gmail.com

TimeCreated,ID,Message

Table 3.0.2: PowerShell – additional processing options

 PowerShell also uses multiple parameters to enhance output processing. These

parameters are same for all Cmdlets. Some of the most commonly used parameters are

given below with examples:

Parameter Description

ErrorAction or

EA

This command is used to specify a custom error action for each

Cmdlet. The most common option is to “SilentlyContinue” or a value

of “0”.

Ex: gci -ea 0 | select Name, LastWriteTime

Recurse or r This is used to do an action recursively

Ex: gci -recurse -ea 0 | select Name, LastWriteTime

Path Path defines the directory to be used in the Cmdlet

Ex: gci -path C:\ -recurse -ea 0 | select Name, LastWriteTime

Force Force is used to bypass the file attribute settings of hidden and

system.

Ex: gci -path C:\ -recurse -force -ea 0 | select Name, LastWriteTime

Include This parameter is used to include a specific set of files

Ex: gci -path C:\ -include *.exe –r -ea 0 | select Name,

LastWriteTime

max Defines the maximum number of entries that are required in the

output. Generally used with Get-WinEvent.

Ex: Get-WinEvent -max 50 -ea 0 -FilterHashtable
@{Logname='security';ID=4624} | ft –auto -wrap

FilterHashtable

Primarily used with Get-WinEvent Cmdlet to filter the event logs.

Get-WinEvent -FilterHashtable @{Logname='security'; ID=4672} |
select TimeCreated,ID,Message | ft –auto -wrap
Table 3.0.3: PowerShell – additional parameters

In PowerShell V2, there are a large number of in-built commands to satisfy the

live response need. Developers can utilize the PowerShell APIs to create additional

Cmdlets if required. Since PowerShell is based on .NET Framework, it also enables

Live Response Using PowerShell 11

Sajeev Nair, Nair.Sajeev@Gmail.com

PowerShell commands access to large collection of .NET classes. The .NET classes

already provide access to various Windows system resources. Apart from these,

PowerShell also lets you use the traditional tools, such as ipconfig, netstat, arp,

systeminfo, openfiles, driverquery, etc.

The various Cmdlets, along with the additional processing features is what makes

PowerShell really powerful. Another major advantage of using PowerShell for live

response is its ability to completely automate. Automation is always beneficial as it

becomes more efficient and scalable.

3.1. Writing Scripts using PowerShell
In the PowerShell world, scripting is nothing but writing a single or group of

Cmdlets and combining them with various processing options. PowerShell Scripts have

the .PS1 extension and can be run locally or remotely. Some examples are given below:

The below script is a basic script to extract the running processes from a system.

Get-WmiObject win32_process | select processname, ProcessId, CommandLine

In the second example, we want to see the creation date of all processes but when

you add the object, it displays the date as a string. We can use the “ConvertToDateTime”

method to display the date as the regular date format. We also want to sort this based on

the creation date in descending order, display it in table format and all should fit to the

screen properly.

Get-WmiObject win32_process | select

processname,@{NAME='CreationDate';EXPRESSION={$_.ConvertToDateTime($_.CreationD

ate)}},ProcessId,CommandLine |sort CreationDate -desc | format-table –auto -

wrap

In yet another example, we want to save the successful logon events to a text file.

In the script below, we are first defining a variable to identify where the “userprofile”

directory exist and save the value for later use. The Get-WinEvent command is used to

extract the event log for the specific event type, format it in a table form and save it to a

text file in the user’s “desktop” folder. Time taken to complete this script – 1.75 seconds.

$UserDirectory = (gi env:\userprofile).value

Get-WinEvent -FilterHashtable @{Logname='security';ID=4624} | select

TimeCreated,ID,Message | ft –auto -wrap | out-file

$UserDirectory\desktop\Event-4624.txt

Live Response Using PowerShell 12

Sajeev Nair, Nair.Sajeev@Gmail.com

Windows 7 also comes with a scripting environment, Windows PowerShell

Integrated Scripting Environment (ISE). ISE lets you write, test, and debug scripts

(Microsoft, n.d.b).

3.2. Problems with PowerShell Scripting
Any scripting language could be used to spread malicious code, PowerShell is no

exception. Due to this, Windows PowerShell by default does not allow the scripts to be

run. It is controlled by what is called as an execution policy. It does provide various

options to configure the system to run scripts (Microsoft, 2012).

Execution policies for computers and users can be enabled either through

command line or group policy. Administrative privilege is required to change the

execution policy. The execution policies are as follows:

 Restricted – This is the default policy. You can run individual commands, but not

scripts.

 AllSigned – You can run scripts but the scripts must be signed by a trusted

publisher.

 RemoteSigned – Scripts created on the local machine can be run. All downloaded

scripts must be signed by a trusted publisher.

 Unrestricted – All types of scripts can be run.

 Undefined – In this option, policy is not set. In such cases the default execution

policy of Restricted is set.

If this is too cumbersome to use, there is another option to run the PowerShell

scripts. There is a not so common feature by which you are allowed to “bypass” the

execution policy in PowerShell V2 through the Windows standard command interface.

The command to run a script named ‘script.ps1’ is:

powershell.exe -ExecutionPolicy ByPass -file .\script.ps1

3.3. Executing scripts remotely
Windows 7 operating system provides an option to run the PowerShell scripts

remotely. Microsoft uses the industry standard WS-Management Protocol to provide

remote management features. This comes as a service in Windows 7, which can be

Live Response Using PowerShell 13

Sajeev Nair, Nair.Sajeev@Gmail.com

enabled either through command line or through group policy. When enabled, the

machine starts a listening process over http protocol and enables the firewall to accept the

connections for this process. Even though it uses http protocol for communication, the

session is encrypted and authentication occur using Kerberos (Hofferle, 2012).

PowerShell remoting option could be used when the user running on the system

do not have administrative rights or when you want to run the scripts on an idle system.

With this option enabled, you can run the script which is stored on your local machine

and have it executed on the remote machine. Processing happens on the remote machine

and all outputs are collected on the local machine. The specific commands to be entered

on the local machine and remote machine in order to run a script are given below:

Step Local machine Remote machine (Name – WRK1)

1 Enable-PSRemoting -force

2 Test-WSMan

3 Test-WSMan –ComputerName WRK1

4 Invoke-Command –ComputerName

WRK1 –Credential domain\admin –

FilePath C:\csript.ps1.

Table 3.3.1: Commands used for PowerShell remoting.

4. Artifact collection using PowerShell
Artifacts can be collected using various methods – Windows built-in tools,

PowerShell CmdLets, WMI queries and .NET classes. Wherever there are multiple

methods available, it is recommended that you use multiple methods and compare results.

This ensures that you have a higher possibility of identifying malicious code which tries

to bypass the monitoring APIs. One good example of this is in the process and DLL

queries, multiple methods include:

 Querying every DLL and asking them what process they are tied to.

 Querying every process and asking them the DLLs they have opened.

 Identifying all open files, which include DLLs for all processes.

Live Response Using PowerShell 14

Sajeev Nair, Nair.Sajeev@Gmail.com

Appendix A provides the various options to collect the artifacts that were

discussed in section 2.1.

4.1. Sample Script
The script is written in such a way that most commands can be viewed separately

and can be pasted into a PowerShell window as separate commands in case there is a

need. Running separate commands enables speed and flexibility. This also ensures that

you don’t have to fiddle around with the defined execution policy. This is extremely

important during an incident where the first responders are not trained well in the use of

incident response tools and you don’t want to make any system changes.

Appendix B shows the sample script and Appendix C shows the output from the

sample script.

4.2. Case studies

4.2.1. Suspicious network traffic
Your perimeter monitoring picked up suspicious botnet traffic from multiple

internal machines. You know the IP address that these machines are connecting to, you

want to identify:

1. The machines that are making the connection to the botnet IP address.

2. The process ID, process name and port numbers that initiated this network traffic.

3. The file path from where this process was started.

4. Date and time when this process was started.

5. DLLs associated with this process with the file path.

The script that was run on the internal machines and the output are listed below. If

the logged in user do not have administrative rights, the script will have to be run using

PowerShell remoting method explained in section 3.3.

$BotNetIP = "172.20.1.21"

$CompName = (gi env:\Computername).Value

$UserDirectory = (gi env:\userprofile).value

$User = (gi env:\USERNAME).value

Live Response Using PowerShell 15

Sajeev Nair, Nair.Sajeev@Gmail.com

$Date = (Get-Date).ToString('MM.dd.yyyy')

$head = '<style> BODY{font-family:caibri; background-color:Aliceblue;}
TABLE{border-width: 1px;border-style: solid;border-color: black;border-
collapse: collapse;} TH{font-size:1.1em; border-width: 1px;padding: 2px;border-
style: solid;border-color: black;background-color:PowderBlue} TD{border-width:
1px;padding: 2px;border-style: solid;border-color: black;background-
color:white} </style>'

$OutFile = "$UserDirectory\desktop\$CompName-$User-$Date-
NetworkConnections.html"

ConvertTo-Html -Head $head -Title "Live Response using PowerShell" -Body "<h1>
Active Connections, Associated Processes and DLLs <p> Computer Name : $CompName
 User ID : $User </p> </h1>" >
$OutFile

date | select DateTime | ConvertTo-html -Body "<H2> Current Date and Time
</H2>" >> $OutFile

$cmd = netstat -nao | select-string $BotNetIP

 foreach ($element in $cmd)

{
 $data = $element -split ' ' | where {$_ -ne ''}

 $NetList = @{

 'Local IP : Port#'=$data[1];

 'Remote IP : Port#'=$data[2];

 'Process ID'= $data[4];

 'Process Name'=((Get-process |where {$_.ID -eq $data[4]})).Name

 'Process File Path'=((Get-process |where {$_.ID -eq $data[4]})).path

'Process Start Time'=((Get-process |where {$_.ID -eq
$data[4]})).starttime

'Associated DLLs and Path'=((Get-process |where {$_.ID -eq
$data[4]})).Modules |select @{Name='Modules';Expression={$_.filename -
join '; ' } } |out-string

}

New-Object -TypeName psobject –Property $NetList |

ConvertTo-html -Property 'Local IP : Port#', 'Remote IP : Port#','Process
ID','Process Name','Process Start Time','Process File Path','Associated
DLLs and File Path' -Body "<H2> </H2>" >> $OutFile

}

date | select DateTime | ConvertTo-html -Body "<H2> Current Date and Time

</H2>" >> $OutFile

Script output
Active Connections, Associated Processes and DLLs

Computer Name : Lamb-PC User ID : lamb

Live Response Using PowerShell 16

Sajeev Nair, Nair.Sajeev@Gmail.com

Local IP :

Port#
Remote

IP : Port#
Proce
ss ID

Process
Name

Process
Start Time Process File Path Associated DLLs and Path

192.168.13.
132:50523

172.20.1.
21:80 1140

b34btbzt
db0vava
w

6/11/2013
06:40:11

C:\Users\lamb\AppData\Lo
cal\Temp\
b34btbztdb0vavaw.exe

Module ------
C:\Users\lamb\AppData\Local\Te
mp\b34btbztdb0vavaw.exe
C:\Windows\SYSTEM32\ntdll.dl
l
C:\Windows\system32\kernel32.d
ll
C:\Windows\system32\KERNEL
BASE.dll
C:\Windows\system32\RPCRT4.
dll
C:\Windows\system32\WININET
.dll
C:\Windows\system32\SHLWAP
I.dll
C:\Windows\SYSTEM32\sechost
.dll

By observing this traffic, we can identify that a malicious executable is running. It

also shows the DLLs associated with the malicious code. The script completed in less

than a minute.

4.2.2. Data leak
You get a specific intelligence from an employee that he noticed his colleague

copying some data from his company machine to an USB drive. Since they both are

working on a highly confidential merger proposal, he thinks it is related to that.

Employee identified the file name as “Project-MX-proposal_V3.docx” or anything

related to that.

With this knowledge, you can run the below specific commands and identify what

transpired. The command outputs could be used to confirm whether this warrants a

complete forensic investigation. Use PowerShell remoting feature if needed.

1. Identify if the specific file exist on the machine and the owner of the file.

Dir -Path C:\ -r -force -ea 0 -include *Project-MX-proposal* | select

fullname,lastwritetime,@{Name='Owner';Expression={($_ | Get-

ACL).Owner}} | sort lastwritetime -desc | ft -auto

2. Collect a list of USB devices connected to the machine.

Live Response Using PowerShell 17

Sajeev Nair, Nair.Sajeev@Gmail.com

Get-ItemProperty -ea 0

hklm:\system\currentcontrolset\enum\usbstor** | select

FriendlyName,PSChildName

3. Identify the first connected date for these devices.

Get-ItemProperty -ea 0

hklm:\SYSTEM\CurrentControlSet\Enum\USBSTOR** | select PSChildName

| foreach-object {$P = $_.PSChildName ; Get-Content

C:\Windows\inf\setupapi.dev.log | select-string $P -SimpleMatch -

context 1 }

4. Identify the last connected date for these devices.

Get-ItemProperty -ea 0

hklm:\SYSTEM\CurrentControlSet\Enum\USBSTOR** | select PSChildName

| foreach-object {$P = $_.PSChildName ;Get-WinEvent -LogName

Microsoft-Windows-DriverFrameworks-UserMode/Operational | where

{$_.message -match "$P"} | select TimeCreated, message |sort

TimeCreated -desc| ft -auto -wrap}

5. Identify the drive letters that were assigned to each of the USB devices.

Get-ItemProperty -path

hklm:\system\currentcontrolset\enum\usbstor** | ForEach-Object {$P

= $_.PSChildName; Get-ItemProperty hklm:\SOFTWARE\Microsoft\"Windows

Portable Devices"** |where {$_.PSChildName -like "*$P*"} | select

PSChildName,FriendlyName } | ft -auto

6. Find the specific user that these USB devices were connected to.

In order to do this, we have to find the Volume GUIDs for each of the

mounted devices from the System\MountedDevices key. If these Volume GUIDs

appear under the user’s Mountpoint2

(Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2) registry

location, then the drive was used by the particular user. When you have multiple

users logged into the system at the same time, this key is populated for all logged

in users (Fox, 2012).

7. Identify if any link files references the drive letter that the USB device used.

gwmi -ea 0 Win32_ShortcutFile | where {$_.FileName –like “*Project-
MX-proposal*”} | select FileName, caption, @{Name='CreationDate';
EXPRESSION={$_.ConvertToDateTime($_.CreationDate)}},@{Name=’LastAcces
sed’;EXPRESSION={$_.ConvertToDateTime($_.LastAccessed)}},@{Name=’Last
Modified’;EXPRESSION={$_.ConvertToDateTime($_.LastModified)}},Target
| sort LastModified -Descending

Live Response Using PowerShell 18

Sajeev Nair, Nair.Sajeev@Gmail.com

From this command, a manual review will have to be done to identify if

any drive letter matches with the drives identified in steps 5 and 6. We can also

identify whether the file timestamps matches close to the device insertion time

identified in steps 3 and 4.

4.2.3. Malware
One of the enterprise users reported a strange behavior while accessing a

web site. The user thinks the machine downloaded a malicious code and reported

to the helpdesk immediately.

In this scenario, the complete script provided in Appendix B will have to be

run and the results need to be analyzed. In this situation again, use the PowerShell

remoting if required. The specific findings from the analysis are given below:

Startup Applications

command user caption

C:\Users\lamb\AppData\Roaming\Iztugu\otez.exe lamb-
PC\lamb

{D8E86285-52AC-
D466-481D-
31F46A687FE2}

"C:\Program Files\Adobe\Reader
9.0\Reader\Reader_sl.exe" Public Adobe Reader Speed

Launcher
"C:\Program Files\Common
Files\Adobe\ARM\1.0\AdobeARM.exe" Public Adobe ARM

"C:\Program Files\Java\jre1.6.0_07\bin\jusched.exe" Public SunJavaUpdateSched

Prefetch Files

Name LastAccessTime CreationTime

SVCHOST.EXE-C871F054.pf 4/5/2013 13:15:47 4/5/2013
13:15:47

DLLHOST.EXE-40DD444D.pf 4/5/2013 13:15:57 4/5/2013
13:15:57

MORE.COM-6776F1D8.pf 6/29/2013
08:36:27

6/29/2013
08:36:27

OTEZ.EXE-8B1CFAAB.pf 7/3/2013 05:33:47 7/3/2013
05:33:47

3A2D6C8A218EBD9A178E0147629BE- 7/3/2013 05:33:48 7/3/2013

Live Response Using PowerShell 19

Sajeev Nair, Nair.Sajeev@Gmail.com

BD452D5D.pf 05:33:48

DNS Cache

IgnoreCase LineNumber Line Pattern

True 26 Record Name : msn.com Record
Name

True 36 Record Name : wer.microsoft.com Record
Name

True 46 Record Name :
www.malwaredomainlist.com

Record
Name

The output shows the presence of malicious code,	 “otez.exe” in the startup

registry keys. Prefetch file listing indicates evidence of running the same malicious

code. From the DNS cache, we can identify the possible web sites which may have

downloaded the malicious code.

Since the analysis identified malicious code, based	 on	 the	 organization’s	

policy this may warrant acquiring memory and/or a complete forensic

investigation.

5. Conclusion
This paper presented various options for incident response personnel to collect

artifacts that help confirm if an incident has occurred. It is fast – the sample script took

only 8 minutes to run and highly scalable. With the added feature of PowerShell

remoting, organizations can collect artifacts over a secure channel remotely.

PowerShell, through various Cmdlets, .NET classes and WMI objects, provides

unlimited options to delve into the Windows operating system components and present

the artifacts in easy to use formats. Microsoft is committed to developing PowerShell into

a more robust language, which is evident from the fact that all new administrative tools

for their products are built on PowerShell. PowerShell V3 has come out; it has more

capabilities and more options to enumerate Windows operating system and applications

(Microsoft, n.d.c).

Live Response Using PowerShell 20

Sajeev Nair, Nair.Sajeev@Gmail.com

More research is required in the use of PowerShell for live response, which will

ultimately benefit organizations to identify threats more efficiently.

6. References
AICPA (n.d.). An executive overview of GAPP. Retrieved from

http://www.aicpa.org/InterestAreas/InformationTechnology/Resources/Privacy/G

enerallyAcceptedPrivacyPrinciples/DownloadableDocuments/10261378ExecOver

viewGAPP.pdf

Carvey, H. (2009). Windows Forensic Analysis. Burlington, MA: Syngress

Carvey, H. (2011). Windows registry forensics: advanced digital forensic analysis of the

windows registry. [Books24x7 version] Available from

http://common.books24x7.com/toc.aspx?bookid=41894.

Cichonski, P., Millar, T., Grance, T., Scarfone, K. (2012). Computer Security

Incident Handling Guide. Retrieved from

http://csrc.nist.gov/publications/nistpubs/800-61rev2/SP800-61rev2.pdf

E-Fence. (n.d.a.). Helix3 Enterprise. Retrieved from

http://www.e-fense.com/h3-enterprise.php

E-Fence. (n.d.b.). Live Response. Retrieved from

http://www.e-fense.com/live-response.php

Foolmoon. (n.d.). The Windows Forensic Toolchest. Retrieved from

http://www.foolmoon.net/security/wft/index.html

Fox, J. (2012). Automating Windows Registry correlation and interpretation.

 Retrieved from http://digitalfire.ucd.ie/?p=337

GRR. (n.d.). Retrieved from https://code.google.com/p/grr/

Guidance. (n.d.). EnCase Enterprise. Retrieved from

http://www.guidancesoftware.com/encase-enterprise.htm#tab=0

Hofferle, J. (2012). An Introduction to PowerShell Remoting: Part One. Retrieved from

http://blogs.technet.com/b/heyscriptingguy/archive/2012/07/23/an-introduction-

to-powershell-remoting-part-one.aspx

Jones, K., Bejtlich, R., Rose, C. (2006). Real Digital Forensics: Computer Security and

 Incident Response. Available from:

Live Response Using PowerShell 21

Sajeev Nair, Nair.Sajeev@Gmail.com

http://www.pearsonhighered.com/educator/product/Real-Digital-Forensics-

Computer-Security-and-Incident-

Response/9780321240699.page#sthash.3G1rrOkl.dpuf

Mandiant M-Trends. (2013). 2013 threat report. Retrieved from

 https://www.mandiant.com/resources/m-trends/

Mandiant. (n.d.). Mandiant for Intelligent Response. Retrieved from

https://www.mandiant.com/products/mandiant-platform/intelligent-response

Microsoft. (n.d.a.). Scripting with Windows PowerShell. Retrieved from

 http://technet.microsoft.com/en-US/scriptcenter/dd742419.aspx

Microsoft. (n.d.b.). Windows PowerShell. Retrieved from

http://msdn.microsoft.com/en-

us/library/windows/desktop/dd835506(v=vs.85).aspx

Microsoft. (n.d.c.). Description of Windows Management Framework 3.0. Retrieved

from http://support.microsoft.com/kb/2506143

Microsoft. (2012). Execution Policy. Retrieved from

http://technet.microsoft.com/en-us/library/hh847748.aspx

MIR-ROR. (n.d.). Retrieved from http://mirror.codeplex.com/

Ponemon Institute. (2012). 2012 Cost of Cyber Crime Study: United States.

Benchmark Study of U.S. Companies. Retrieved from

http://www.ponemon.org/local/upload/file/2012_US_Cost_of_Cyber_Crime_Stud

y_FINAL6%20.pdf

RPIER. (n.d.). Retrieved from http://code.google.com/p/rapier/

Techpathways. (n.d.). ProDiscover Incident Response. Retrieved from

 http://www.techpathways.com/DesktopDefault.aspx?tabindex=3&tabid=12

Trustwave Global Security Report. (2013). 2013 Global Security Report. Retrieved

from

http://www2.trustwave.com/rs/trustwave/images/2013-Global-Security-

Report.pdf

Verizon Data Breach Report. (2013). 2013 Data breach Investigations Report. Retrieved

 from http://www.verizonenterprise.com/DBIR/2013/

Walters, A., Petroni, N. (2007). Volatools: Integrating volatile memory forensics into

Live Response Using PowerShell 22

Sajeev Nair, Nair.Sajeev@Gmail.com

the digital investigation process. Retrieved from

http://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-

Walters-WP.pdf

Live Response Using PowerShell 23

Sajeev Nair, Nair.Sajeev@Gmail.com

7. Appendices

Appendix A: Artifact collection using PowerShell

1. Machine information and Operating system information

The information collected should include artifacts such as machine name, OS

version, licensed organization, OS install date, boot time, time zone, domain name

the machine is logged into, etc. While there are multiple PowerShell Cmdlets to

get this information, Windows 7 already has a built-in tool that captures all these

information - systeminfo

2. User accounts and current login information

There is a WMI class known as Win32_UserProfile, which can be queried using

Get-WmiObject Cmdlet to get this information.

3. Network configuration and connectivity information

Network configuration can be queried through another WMI class,

Win32_NetworkAdapterConfiguration.

4. Anti-Virus application status and related logs

This depends on where the log file is. If it is part of Windows application log, it

can be queried through Get-WinEvent. If it is a regular text file, it can be accessed

through the Get-Content Cmdlet.

5. Startup applications

WMI class, Win32_StartupCommand captures the startup locations and the

values. Additional registry locations for 64 bit operating systems, which can be

queried through Get-ItemProperty are given below:

hklm:\software\wow6432node\microsoft\windows\currentversion\run

hklm:\software\Wow6432Node\Microsoft\Windows\CurrentVersion\Policies\Exp

lorer\Run

hklm:\software\wow6432node\microsoft\windows\currentversion\runonce

hkcu:\software\wow6432node\microsoft\windows\currentversion\run

hkcu:\software\Wow6432Node\Microsoft\Windows\CurrentVersion\Policies\Expl

orer\Run

hkcu:\software\wow6432node\microsoft\windows\currentversion\runonce

Live Response Using PowerShell 24

Sajeev Nair, Nair.Sajeev@Gmail.com

6. Running process related information

Multiple methods can be used to capture this information.

 Get-Process

 Win32_Process WMI class

 .NET class, system.diagnostics.process

 TASKLIST, which is a standard Windows built-in tool

7. Running services related information

Get-Service Cmdlet or Win32_Services WMI class can be queried to get this

information.

8. Drivers installed and running

“driverquery” is an in-built Windows tool, which lists the installed drivers, the

startup mode, path where it exists and date of install.

9. DLLs created

Multiple methods can be used to capture this information.

 Get-ChildItem Cmdlet can be used to get a listing of all DLLs that exist in

the system along with their MAC timestamps.

 TASKLIST with the M option can be used if the objective is to identify

the DLLs that map to a process.

 The WMI class, Win32_Process can also be queried to get the DLLs

attached to a process.

 .NET class, system.diagnostics.process

10. Open files

Windows 7 has a built-in command “openfiles”. It is not enabled by default; a

reboot is required to take the command into effect.

11. Open shares

WMI class, Win32_Share can be queried to get the shares open on a machine.

12. Mapped drives

Mapped drives are stored in the below registry location. This registry entry can be

queried through Get-ItemProperty Cmdlet

hkcu:\software\Microsoft\Windows\CurrentVersion\explorer\Map Network Drive

MRU

Live Response Using PowerShell 25

Sajeev Nair, Nair.Sajeev@Gmail.com

13. Scheduled jobs

Win32_ScheduledJob is the WMI class that can be queried to get this

information. The event log, Microsoft-Windows-TaskScheduler/ Operational also

captures the scheduled tasks.

14. Active network connections and related process

Windows standard command “netstat –nao” can be used to get the IP address, port

number and the process IDs. The process ID can be further looked up against the

Get-Process Cmdlet to get additional information in regards to the process.

15. Hotfixes applied

Get-Hotfix Cmdlet retrieves this information.

16. Installed applications

The uninstall registry key can retrieve this information.

hklm:\software\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall\

17. Link files created

WMI class, Win32_ShortcutFile lists the link files created.

18. Packed files

In order to identify the packed files, we have to use .NET Framework classes. The

file attributes of “compressed” or “encrypted” may indicate that it is a packed file.

19. USB related

The below registry location stores the USB devices connected to the machine.

hklm:\system\currentcontrolset\enum\usbstor

Operating system logs the driver installations related to the USB devices in the

setupapi.dev.log file. This can be queried to understand when the device was

connected to the system.

20. Shadow copies created

WMI class, Win32_ShadowCopy lists the shadow copies created. It lists the

number of shadow copies and the creation dates.

21. Prefetch files and timestamps

Get-ChildItem can be used to list the Prefetch files. While this is not an analysis

of Prefetch files, it can be used to identify the Prefetch files and the last access

time.

Live Response Using PowerShell 26

Sajeev Nair, Nair.Sajeev@Gmail.com

22. DNS cache

Windows standard command line tool, “ipconfig /displaydns” will display the

DNS cache entries.

23. List of available logs and last write times

Logs are viewed through the Get-WinEvent Cmdlet. It can also list the logs that

are updated and the size of each log.

24. Firewall configuration

Windows netsh command, “netsh firewall” is the best option to identify the

firewall configuration.

25. Audit policy

Windows in-built command, “auditpol” lists the audit policy defined on the

machine.

26. Temporary Internet files and Cookies

Listing of files found under the temporary Internet folder can be done using the

Get-ChildItem Cmdlet. The folder lists the temporary files opened through

multiple applications. The same method can be used to list the Cookies folder.

27. Typed URLs

URLs typed on the address bar are stored in the below registry key:

hkcu:\Software\Microsoft\Internet Explorer\TypedUrls

28. Important registry keys

There are many registry keys of interest; some of the major ones are listed below:

 hkcu:\Software\Microsoft\Windows\CurrentVersion\Internet Settings

 hkcu:\Software\Microsoft\Windows\CurrentVersion\Internet

Settings\ZoneMap\EscDomains

 hklm:\Software\Microsoft\Windows NT\CurrentVersion\Windows

 hklm:\Software\Microsoft\Windows\CurrentVersion\policies\system

 hklm:\Software\Microsoft\Active Setup\Installed Components

 hklm:\Software\Microsoft\Windows\CurrentVersion\App Paths

 hklm:\software\microsoft\windows nt\CurrentVersion\winlogon

 hklm:\software\microsoft\security center\svc

 hkcu:\Software\Microsoft\Windows\CurrentVersion\Explorer\TypedPaths

Live Response Using PowerShell 27

Sajeev Nair, Nair.Sajeev@Gmail.com

 hkcu:\Software\Microsoft\Windows\CurrentVersion\explorer\RunMru

 hklm:\Software\Microsoft\Windows\CurrentVersion\explorer\Startmenu

 hklm:\System\CurrentControlSet\Control\Session Manager

 hklm:\Software\Microsoft\Windows\CurrentVersion\explorer\Shell

Folders

 hklm:\Software\Microsoft\Windows\CurrentVersion\Shell

Extensions\Approved

 hklm:\System\CurrentControlSet\Control\Session Manager\AppCertDlls

 hklm:\ Software \Classes\exefile\shell\open\command

 hklm:\BCD00000000

 hklm:\system\currentcontrolset\control\lsa

 hklm:\ Software \Microsoft\Windows\CurrentVersion\Explorer\Browser

Helper Objects

 hklm:\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Expl

orer\Browser Helper Objects

 hkcu:\Software\Microsoft\Internet Explorer\Extensions

 hklm:\Software\Microsoft\Internet Explorer\Extensions

 hklm:\Software\Wow6432Node\ Microsoft\Internet Explorer\Extensions

29. File Timeline

Get-ChildItem can be used to collect the files with a particular timestamp.

30. Important event logs

Some of the common event logs that you want to collect as part of live

response are given below:

 Logon events

 Logon failure events

 Time change events

 Application crashes

 Process execution

 Service control manager events

 Windows-Application-Experience/Program-Inventory events

Live Response Using PowerShell 28

Sajeev Nair, Nair.Sajeev@Gmail.com

 Task scheduler events

 Terminal services events

 User creation

 Logon using explicit credentials

 Privilege use events

 DNS – failed resolution events

 WFP events

Appendix B: Sample PowerShell script

<#

Live Response Script Desktop

Author: Sajeev.Nair - Nair.Sajeev@gmail.com

Version : 2.0 for PowerShell V2

#>

write-host ""

Write-host "**** Script Started ****"

Global Variables used in this script

$CompName = (gi env:\Computername).Value

$UserDirectory = (gi env:\userprofile).value

$User = (gi env:\USERNAME).value

$Date = (Get-Date).ToString('MM.dd.yyyy')

$head = '<style> BODY{font-family:caibri; background-color:Aliceblue;}
TABLE{border-width: 1px;border-style: solid;border-color: black;border-
collapse: collapse;} TH{font-size:1.1em; border-width: 1px;padding: 2px;border-
style: solid;border-color: black;background-color:PowderBlue} TD{border-width:
1px;padding: 2px;border-style: solid;border-color: black;background-
color:white} </style>'

$OutLevel1 = "$UserDirectory\desktop\$CompName-$User-$Date-Level1.html"

$TList = @(tasklist /V /FO CSV | ConvertFrom-Csv)

$ExecutableFiles = @("*.EXE","*.COM","*.BAT","*.BIN",
"*.JOB","*.WS",".WSF","*.PS1",".PAF","*.MSI","*.CGI","*.CMD","*.JAR","*.JSE","*
.SCR","*.SCRIPT","*.VB","*.VBE","*.VBS","*.VBSCRIPT","*.DLL")

Setting HTML report format

ConvertTo-Html -Head $head -Title "Live Response script for $CompName.$User" -
Body "<h1> Live Forensics Script <p> Computer Name : $CompName

Live Response Using PowerShell 29

Sajeev Nair, Nair.Sajeev@Gmail.com

 User ID : $User </p> </h1>" >
$OutLevel1

Main Routine

Record start time of collection

date | select DateTime | ConvertTo-html -Body "<H2> Current Date and Time
</H2>" >> $OutLevel1

openfiles /local on

systeminfo /FO CSV | ConvertFrom-Csv | select-object * -ExcludeProperty
'Hotfix(s)','Network Card(s)' | ConvertTo-html -Body "<H2> System Information
</H2>" >> $OutLevel1

gwmi -ea 0 Win32_UserProfile | select LocalPath, SID,@{NAME='last
used';EXPRESSION={$_.ConvertToDateTime($_.lastusetime)}} | ConvertTo-html -
Body "<H2> User accounts and current login Information </H2>" >> $OutLevel1

gwmi -ea 0 Win32_NetworkAdapterConfiguration |where{$_.IPEnabled -eq 'True'} |
select DHCPEnabled,@{Name='IpAddress';Expression={$_.IpAddress -join ';
'}},@{Name='DefaultIPgateway';Expression={$_.DefaultIPgateway -join ';
'}},DNSDomain | ConvertTo-html -Body "<H2> Network Configuration Information
</H2>" >> $OutLevel1

gwmi -ea 0 Win32_StartupCommand | select command,user,caption | ConvertTo-html
-Body "<H2> Startup Applications </H2>" >> $OutLevel1

gp -ea 0 'hklm:\software\wow6432node\microsoft\windows\currentversion\run' |
select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Startup
Applications - Additional for 64 bit Systems </H2>" >> $OutLevel1

gp -ea 0
'hklm:\software\Wow6432Node\Microsoft\Windows\CurrentVersion\Policies\Explorer\
Run' | select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Startup
Applications - Additional for 64 bit Systems </H2>" >> $OutLevel1

gp -ea 0 'hklm:\software\wow6432node\microsoft\windows\currentversion\runonce'
| select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Startup
Applications - Additional for 64 bit Systems </H2>" >> $OutLevel1

gp -ea 0 'hkcu:\software\wow6432node\microsoft\windows\currentversion\run' |
select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Startup
Applications - Additional for 64 bit Systems </H2>" >> $OutLevel1

gp -ea 0
'hkcu:\software\Wow6432Node\Microsoft\Windows\CurrentVersion\Policies\Explorer\
Run' | select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Startup
Applications - Additional for 64 bit Systems </H2>" >> $OutLevel1

gp -ea 0 'hkcu:\software\wow6432node\microsoft\windows\currentversion\runonce'
| select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Startup
Applications - Additional for 64 bit Systems </H2>" >> $OutLevel1

$cmd = netstat -nao | select-string "ESTA"

 foreach ($element in $cmd)
 {

 $data = $element -split ' ' | where {$_ -ne ''}

 New-Object -TypeName psobject -Property @{

 'Local IP : Port#'=$data[1];

 'Remote IP : Port#'=$data[2];

 'Process ID'= $data[4];

Live Response Using PowerShell 30

Sajeev Nair, Nair.Sajeev@Gmail.com

 'Process Name'=((Get-process |where {$_.ID -eq $data[4]})).Name

 'Process File Path'=((Get-process |where {$_.ID -eq $data[4]})).path

 'Process Start Time'=((Get-process |where {$_.ID -eq $data[4]})).starttime

 #'Process File Version'=((Get-process |where {$_.ID -eq
$data[4]})).FileVersion

 'Associated DLLs and File Path'=((Get-process |where {$_.ID -eq
$data[4]})).Modules |select @{Name='Module';Expression={$_.filename -join '; '
} } |out-string

 } | ConvertTo-html -Property 'Local IP : Port#', 'Remote IP :
Port#','Process ID','Process Name','Process Start Time','Process File
Path','Associated DLLs and File Path' -Body "<H2> </H2>" >> $OutLevel1
}

gwmi -ea 0 win32_process | select
processname,@{NAME='CreationDate';EXPRESSION={$_.ConvertToDateTime($_.CreationD
ate)}},ProcessId,ParentProcessId,CommandLine,sessionID |sort ParentProcessId -
desc | ConvertTo-html -Body "<H2> Running Processes sorted by ParentProcessID
</H2>" >> $OutLevel1

gwmi -ea 0 win32_process | where {$_.name -eq 'svchost.exe'} | select ProcessId
|foreach-object {$P = $_.ProcessID ;gwmi win32_service |where {$_.processId -eq
$P} | select processID,name,DisplayName,state,startmode,PathName} | ConvertTo-
html -Body "<H2> Running SVCHOST and associated Processes </H2>" >>
$OutLevel1

gwmi -ea 0 win32_Service | select Name,ProcessId,State,DisplayName,PathName |
sort state | ConvertTo-html -Body "<H2> Running Services - Sorted by State
</H2>" >> $OutLevel1

driverquery.exe /v /FO CSV | ConvertFrom-CSV | Select 'Display Name','Start
Mode', Path | sort Path | ConvertTo-html -Body "<H2> Drivers running, Startup
mode and Path - Sorted by Path </H2>" >> $OutLevel1

gci -r -ea 0 c:\ -include *.dll | select
Name,CreationTime,LastAccessTime,Directory | sort CreationTime -desc | select -
first 50 | ConvertTo-html -Body "<H2> Last 50 DLLs created - Sorted by
CreationTime </H2>" >> $OutLevel1

openfiles /query > "$UserDirectory\desktop\$CompName-$User-$Date-OpenFiles.txt"

gwmi -ea 0 Win32_Share | select name,path,description | ConvertTo-html -Body
"<H2> Open Shares </H2>" >> $OutLevel1

gp -ea 0 'hkcu:\Software\Microsoft\Windows\CurrentVersion\explorer\Map Network
Drive MRU' | select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Mapped
Drives </H2>" >> $OutLevel1

gwmi -ea 0 Win32_ScheduledJob | ConvertTo-html -Body "<H2> Scheduled Jobs
</H2>" >> $OutLevel1

get-winevent -ea 0 -logname Microsoft-Windows-TaskScheduler/ Operational |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Scheduled task
events </H2>" >> $OutLevel1

Get-HotFix -ea 0| Select HotfixID, Description, InstalledBy, InstalledOn |
Sort-Object InstalledOn -Descending | ConvertTo-html -Body "<H2> HotFixes
applied - Sorted by Installed Date </H2>" >> $OutLevel1

gp -ea 0
HKLM:\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall* |
Select DisplayName,DisplayVersion,Publisher,InstallDate,InstallLocation | Sort
InstallDate -Desc | ConvertTo-html -Body "<H2> Installed Applications -
Sorted by Installed Date </H2>" >> $OutLevel1

Live Response Using PowerShell 31

Sajeev Nair, Nair.Sajeev@Gmail.com

gwmi -ea 0 Win32_ShortcutFile | select
FileName,caption,@{NAME='CreationDate';EXPRESSION={$_.ConvertToDateTime($_.Crea
tionDate)}},@{NAME=’LastAccessed’;EXPRESSION={$_.ConvertToDateTime($_.LastAcces
sed)}},@{NAME=’LastModified’;EXPRESSION={$_.ConvertToDateTime($_.LastModified)}
},Target | Where-Object {$_.lastModified -gt ((Get-Date).addDays(-5)) }| sort
LastModified -Descending | ConvertTo-html -Body "<H2> Link File Analysis -
Last 5 days </H2>" >> $OutLevel1

gci -Path C:\ -r -ea 0 -include $ExecutableFiles |Where {$_.Attributes -band
[IO.FileAttributes]::Compressed} | ConvertTo-html -Body "<H2> Compressed files
</H2>" >> $OutLevel1

gci -Path C:\ -r -force -ea 0 -include $ExecutableFiles |Where {$_.Attributes -
band [IO.FileAttributes]::Encrypted} | ConvertTo-html -Body "<H2> Encrypted
files </H2>" >> $OutLevel1

gwmi -ea 0 Win32_ShadowCopy | select
DeviceObject,@{NAME='CreationDate';EXPRESSION={$_.ConvertToDateTime($_.InstallD
ate)}} | ConvertTo-html -Body "<H2> ShadowCopy List </H2>" >> $OutLevel1

gci -path C:\windows\prefetch*.pf -ea 0 | select Name,
LastAccessTime,CreationTime | sort LastAccessTime | ConvertTo-html -Body "<H2>
Prefetch Files </H2>" >> $OutLevel1

ipconfig /displaydns | select-string 'Record Name' | Sort | ConvertTo-html -
Body "<H2> DNS Cache </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='system';ID=1014} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log – DNS –
failed resolution events </H2>" >> $OutLevel1

Get-WinEvent -ea 0 -ListLog * | Where-Object {$_.IsEnabled} | Sort-Object -
Property LastWriteTime -Descending | select LogName, FileSize, LastWriteTime |
ConvertTo-html -Body "<H2> List of available logs </H2>" >> $OutLevel1

$la = $env:LOCALAPPDATA ;gci -r -ea 0 $la\Microsoft\Windows\'Temporary Internet
Files' | select Name, LastWriteTime, CreationTime,Directory| Where-Object
{$_.lastwritetime -gt ((Get-Date).addDays(-5)) }| Sort creationtime -Desc |
ConvertTo-html -Body "<H2> Temporary Internet Files - Last 5 days - Sorted by
CreationTime </H2>" >> $OutLevel1

$a = $env:APPDATA ;gci -r -ea 0 $a\Microsoft\Windows\cookies | select Name
|foreach-object {$N = $_.Name ;get-content -ea 0
$a\Microsoft\Windows\cookies\$N | select-string '/'} | ConvertTo-html -Body
"<H2> Cookies </H2>" >> $OutLevel1

gp -ea 0 'hkcu:\Software\Microsoft\Internet Explorer\TypedUrls' | select * -
ExcludeProperty PS* | ConvertTo-html -Body "<H2> Typed URLs </H2>" >>
$OutLevel1

write-host ""

Write-host "**** Script is running please wait ****"

gp -ea 0 'hkcu:\Software\Microsoft\Windows\CurrentVersion\Internet Settings' |
select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry
keys - Internet Settings </H2>" >> $OutLevel1

gci -ea 0 "hkcu:SOFTWARE\Microsoft\Windows\CurrentVersion\Internet
Settings\ZoneMap\EscDomains" | select PSChildName | ConvertTo-html -Body "<H2>
Important Registry keys - Internet Trusted Domains </H2>" >> $OutLevel1

gp -ea 0 'hklm:\Software\Microsoft\Windows NT\CurrentVersion\Windows' | select
AppInit_DLLs | ConvertTo-html -Body "<H2> Important Registry keys -
AppInit_DLLs </H2>" >> $OutLevel1

gp -ea 0 hklm:\Software\Microsoft\Windows\CurrentVersion\policies\system |
select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry
keys - UAC Group Policy Settings </H2>" >> $OutLevel1

Live Response Using PowerShell 32

Sajeev Nair, Nair.Sajeev@Gmail.com

gp -ea 0 'HKLM:\Software\Microsoft\Active Setup\Installed Components*' |
select ComponentID,'(default)',StubPath | ConvertTo-html -Body "<H2>
Important Registry keys - Active setup Installs </H2>" >> $OutLevel1

gp -ea 0 'hklm:\Software\Microsoft\Windows\CurrentVersion\App Paths*' | select
PSChildName, '(default)' | ConvertTo-html -Body "<H2> Important Registry keys
- APP Paths keys </H2>" >> $OutLevel1

gp -ea 0 'hklm:\software\microsoft\windows nt\CurrentVersion\winlogon**' |
select '(default)',DllName | ConvertTo-html -Body "<H2> Important Registry
keys - DLLs loaded by Explorer.exe shell </H2>" >> $OutLevel1

gp -ea 0 'hklm:\software\microsoft\windows nt\CurrentVersion\winlogon' | select
* -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry keys -
shell and UserInit values </H2>" >> $OutLevel1

gp -ea 0 'hklm:\software\microsoft\security center\svc' | select * -
ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry Keys -
Security center SVC values </H2>" >> $OutLevel1

gp -ea 0 'hkcu:\Software\Microsoft\Windows\CurrentVersion\Explorer\TypedPaths'
| select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important
Registry keys - Desktop Address bar history </H2>" >> $OutLevel1

gp -ea 0 'hkcu:\Software\Microsoft\Windows\CurrentVersion\explorer\RunMru' |
select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry
keys - RunMRU keys </H2>" >> $OutLevel1

gp -ea 0 'hklm:\Software\Microsoft\Windows\CurrentVersion\explorer\Startmenu' |
select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry
keys - Start Menu </H2>" >> $OutLevel1

gp -ea 0 'hklm:\SYSTEM\CurrentControlSet\Control\Session Manager' | select * -
ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry keys -
Programs Executed By Session Manager </H2>" >> $OutLevel1

gp -ea 0 'hklm:\Software\Microsoft\Windows\CurrentVersion\explorer\Shell
Folders' | select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2>
Important Registry keys - Shell Folders </H2>" >> $OutLevel1

gp -ea 0 'hkcu:\Software\Microsoft\Windows\CurrentVersion\explorer\Shell
Folders' | select startup | ConvertTo-html -Body "<H2> Important Registry keys
- User Shell Folders 'Startup' </H2>" >> $OutLevel1

gp -ea 0 'hklm:\SOFTWARE\Microsoft\Windows\CurrentVersion\Shell
Extensions\Approved' | select * -ExcludeProperty PS* | ConvertTo-html -Body
"<H2> Important Registry keys - Approved Shell Extentions </H2>" >> $OutLevel1

gp -ea 0 'hklm:\System\CurrentControlSet\Control\Session Manager\AppCertDlls' |
select * -ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry
keys - AppCert DLLs </H2>" >> $OutLevel1

gp –ea 0 'hklm:\SOFTWARE\Classes\exefile\shell\open\command' | select * -
ExcludeProperty PS* | ConvertTo-html -Body "<H2> Important Registry keys - EXE
File Shell Command Configured </H2>" >> $OutLevel1

gp -ea 0 hklm:\SOFTWARE\Classes\HTTP\shell\open\command | select '(default)' |
ConvertTo-html -Body "<H2> Important Registry keys - Shell Commands </H2>" >>
$OutLevel1

gp -ea 0 hklm:\BCD00000000**** | select Element |select-string ‘exe’ |
select Line | ConvertTo-html -Body "<H2> Important Registry keys - BCD Related
</H2>" >> $OutLevel1

gp -ea 0 'hklm:\system\currentcontrolset\control\lsa' | select * -
ExcludeProperty PS*| ConvertTo-html -Body "<H2> Important Registry keys - LSA
Packages loaded </H2>" >> $OutLevel1

gp –ea 0 'hklm:\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser
Helper Objects*' | select '(default)'| ConvertTo-html -Body "<H2> Important
Registry keys - Browser Helper Objects </H2>" >> $OutLevel1

Live Response Using PowerShell 33

Sajeev Nair, Nair.Sajeev@Gmail.com

gp -ea 0
'HKLM:\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\Browser
Helper Objects*' | select '(default)' | ConvertTo-html -Body "<H2> Important
Registry keys - Browser Helper Objects 64 Bit </H2>" >> $OutLevel1

gp -ea 0 'hkcu:\Software\Microsoft\Internet Explorer\Extensions*' | select
ButtonText, Icon | ConvertTo-html -Body "<H2> Important Registry keys - IE
Extensions </H2>" >> $OutLevel1

gp -ea 0 'hklm:\Software\Microsoft\Internet Explorer\Extensions*' | select
ButtonText, Icon | ConvertTo-html -Body "<H2> Important Registry keys – IE
Extensions </H2>" >> $OutLevel1

gp -ea 0 'hklm:\Software\Wow6432Node\Microsoft\Internet Explorer\Extensions*'
| select ButtonText, Icon | ConvertTo-html -Body "<H2> Important
Registry keys - IE Extensions </H2>" >> $OutLevel1

write-host ""

Write-host "**** Script is running please wait ****"

gp -ea 0 hklm:\system\currentcontrolset\enum\usbstor** | select
FriendlyName,PSChildName,ContainerID | ConvertTo-html -Body "<H2> List of USB
devices </H2>" >> $OutLevel1

gci -Path C:\ -r -force -ea 0 -include $ExecutableFiles | Where-Object {-not
$_.PSIsContainer -and $_.lastwritetime -gt ((Get-Date).addDays(-30)) } | select
fullname,lastwritetime,@{N='Owner';E={($_ | Get-ACL).Owner}} | sort
lastwritetime -desc | ConvertTo-html -Body "<H2> File Timeline Executable
Files - Past 30 days </H2>" >> $OutLevel1

gci c:\ -r -ea 0 -include $ExecutableFiles |foreach {$P = $_.fullname; get-item
$P -Stream *} |where {$_.Stream -match "Zone.Identifier"} | select filename,
stream, @{N='LastWriteTime';E={(dir $P).LastWriteTime}} | ConvertTo-html -Body
"<H2> Downloaded executable files </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4624} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log - Account
logon </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4625} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log - An
account failed to log on </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4616} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log - The
system time was changed </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='application';ID=1002} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log –
Application crashes </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4688} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log - Process
execution </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4720} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log - A user
account was created </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4648} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log - A logon
was attempted using explicit credentials </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4672} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log –
Privilege use 4672 </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4673} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log –
Privilege use 4673 </H2>" >> $OutLevel1

Live Response Using PowerShell 34

Sajeev Nair, Nair.Sajeev@Gmail.com

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='security';ID=4674} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log –
Privilege use 4674 </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='system';ID=7036} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log – Service
Control Manager events </H2>" >> $OutLevel1

Get-WinEvent -max 50 -ea 0 -FilterHashtable @{Logname='system';ID=64001} |
select TimeCreated,ID,Message | ConvertTo-html -Body "<H2> Event log – WFP
events </H2>" >> $OutLevel1

get-winevent -ea 0 -logname Microsoft-Windows-Application-Experience/Program-
Inventory | select TimeCreated,ID,Message | ConvertTo-html -Body "<H2>
Application inventory events </H2>" >> $OutLevel1

get-winevent -ea 0 -logname Microsoft-Windows-TerminalServices-
LocalSessionManager | select TimeCreated,ID,Message | ConvertTo-html -Body
"<H2> Terminal services events </H2>" >> $OutLevel1

Record end time of collection

date | select DateTime | ConvertTo-html -Body "<H2> Current Date and Time
</H2>" >> $OutLevel1

Copying network connections

netstat -naob > "$UserDirectory\desktop\$CompName-$User-$Date-
NetworkConnections.txt"

Copying Hosts file

gc $env:windir\system32\drivers\etc\hosts > "$UserDirectory\desktop\$CompName-
$User-$Date-HostsFile.txt"

Audit Policy

auditpol /get /category:* | select-string 'No Auditing' -notmatch >
"$UserDirectory\desktop\$CompName-$User-$Date-AuditPolicy.txt"

Firewall Config

netsh firewall show config > "$UserDirectory\desktop\$CompName-$User-$Date-
FirewallConfig.txt"

Popup message upon completion

(New-Object -ComObject wscript.shell).popup("Script Completed")

Live Response Using PowerShell 35

[VERSION June 2012]

Appendix C: Sample output in HTML format

Live Response Script
Computer Name : LAMB-PC User ID : lamb

Current Date and Time

*
Wednesday, July 17, 2013 04:24:27

System Information

Ho
st

Na
me

OS
Nam

e

OS
Ver
sion

OS
Manuf
acture

r

OS
Config
uratio

n

OS
Build
Type

Regi
stere

d
Own

er

Syst
em

Boot
Tim

e

Syste
m

Manuf
acture

r

Syste
m

Mod
el

Sys
te
m
Ty
pe

Proces
sor(s)

BIO
S

Versi
on

Wind
ows

Direc
tory

System
Directory Boot Device

Syst
em
Loc
ale

Inpu
t

Loc
ale

Time
Zone

Page
File

Locati
on(s)

Domai
n

Log
on
Ser
ver

LA
MB
-PC

Micro
soft
Wind
ows 7
Profe
ssion
al N

6.1.
760
1
Ser
vice
Pac
k 1
Buil
d
760
1

Micros
oft
Corpor
ation

Standal
one
Workst
ation

Multip
rocesso
r Free

lamb

7/17/
2013
,
04:0
2:04

innotek
GmbH

Virtu
alBo
x

X8
6-
bas
ed
PC

1
Proces
sor(s)
Install
ed.,[01
]: x64
Family
6
Model
23

innot
ek
Gmb
H
Virtu
alBo
x,
12/1/
2006

C:\Wi
ndow
s

C:\Windo
ws\system
32

\Device\Har
ddiskVolum
e1

en-
us;E
nglis
h
(Uni
ted
State
s)

en-
us;E
nglis
h
(Uni
ted
State
s)

(UTC
+01:0
0)
Belgra
de,
Bratisl
ava,
Budap
est,
Ljublj
ana,

C:\pag
efile.sy
s

WORK
GROU
P

\\L
AM
B-
PC

Live Response Using PowerShell 36

Sajeev Nair, Nair.Sajeev@Gmail.com

User accounts and current login Information

LocalPath SID last used
C:\Users\lamb S-1-5-21-4239305696-2745980338-1987368278-1001 7/17/2013 04:24:19
C:\Windows\ServiceProfiles\NetworkService S-1-5-20 7/17/2013 04:12:48
C:\Windows\ServiceProfiles\LocalService S-1-5-19 7/17/2013 04:12:58
C:\Windows\system32\config\systemprofile S-1-5-18 4/5/2013 23:03:06

Network Configuration Information

DHCPEnabled IpAddress DefaultIPgateway DNSDomain
True 192.168.13.132; fe80::8b8:2386:244b:42d3 192.168.13.1 private.domain

Startup Applications

command user caption
%ProgramFiles%\Windows Sidebar\Sidebar.exe /autoRun NT AUTHORITY\LOCAL SERVICE Sidebar
"C:\Program Files\Adobe\Reader 9.0\Reader\Reader_sl.exe" Public Adobe Reader Speed Launcher
"C:\Program Files\Common Files\Adobe\ARM\1.0\AdobeARM.exe" Public Adobe ARM
"C:\Program Files\Java\jre1.6.0_07\bin\jusched.exe" Public SunJavaUpdateSched
C:\Windows\system32\VBoxTray.exe Public VBoxTray

Startup Applications - Additional for 64 bit Systems

Startup Applications - Additional for 64 bit Systems

Startup Applications - Additional for 64 bit Systems

Startup Applications - Additional for 64 bit Systems

Live Response Using PowerShell 37

Sajeev Nair, Nair.Sajeev@Gmail.com

Startup Applications - Additional for 64 bit Systems

Startup Applications - Additional for 64 bit Systems

Local IP :
Port#

Remote IP :
Port#

Proc
ess
ID

Proc
ess

Nam
e

Proces
s Start
Time

Process File
Path Associated DLLs and File Path

192.168.13.132:
49295

143.215.130.
61:80 2816 iexpl

ore

7/17/2
013
04:21:
43

C:\Program
Files\Internet
Explorer\iexplo
re.exe

Module ------ C:\Program Files\Internet Explorer\iexplore.exe
C:\Windows\SYSTEM32\ntdll.dll C:\Windows\system32\kernel32.dll
C:\Windows\system32\KERNELBASE.dll C:\Windows\system32\ADVAPI32.dll
C:\Windows\system32\msvcrt.dll C:\Windows\SYSTEM32\sechost.dll
C:\Windows\system32\RPCRT4.dll C:\Windows\system32\USER32.dll
C:\Windows\system32\GDI32.dll C:\Windows\system32\LPK.dll
C:\Windows\WinSxS\x86_microsoft.vc80.crt_1fc8b3b9a1e18e3b_8.0.50727.4940_none_d
08cc06a442b34fc\MSVCP80.dll C:\Program Files\Common
Files\Adobe\Acrobat\ActiveX\AcroIEHelper.dll C:\Windows\system32\SXS.DLL
C:\Windows\system32\ntmarta.dll C:\Windows\system32\WLDAP32.dll
C:\Windows\System32\jscript9.dll C:\Windows\system32\msimtf.dll
C:\Windows\system32\windowscodecs.dll C:\Windows\System32\Dxtrans.dll
C:\Windows\System32\ATL.DLL C:\Windows\system32\ddrawex.dll
C:\Windows\system32\DDRAW.dll C:\Windows\system32\DCIMAN32.dll
C:\Windows\system32\ImgUtil.dll C:\Windows\system32\XmlLite.dll
C:\Windows\system32\MSIMG32.dll

Local IP : Port# Remote IP :
Port#

Process
ID

Process
Name

Process
Start
Time

Process File Path Associated DLLs and File Path

192.168.13.132:49303 83.223.104.55:80 2984 iexplore 7/17/2013
04:20:41

C:\Program
Files\Internet
Explorer\iexplore.exe

Module ------ C:\Program Files\Internet Explorer\iexplore.exe
C:\Windows\SYSTEM32\ntdll.dll
C:\Windows\system32\kernel32.dll
C:\Windows\System32\wshtcpip.dll
C:\Windows\system32\NLAapi.dll
C:\Windows\system32\UxTheme.dll C:\Program Files\Common
Files\Adobe\Acrobat\ActiveX\AcroIEHelperShim.dll C:\Program
Files\Java\jre1.6.0_07\bin\MSVCR71.dll C:\Program

Live Response Using PowerShell 38

Sajeev Nair, Nair.Sajeev@Gmail.com

Files\Java\jre1.6.0_07\bin\npjpi160_07.dll C:\Program
Files\Java\jre1.6.0_07\bin\jpiexp.dll C:\Program
Files\Java\jre1.6.0_07\bin\deploy.dll
C:\Windows\system32\wsock32.dll
C:\Windows\system32\napinsp.dll
C:\Windows\system32\pnrpnsp.dll
C:\Windows\System32\winrnr.dll C:\Program
Files\Java\jre1.6.0_07\bin\jpishare.dll
C:\PROGRA~1\Java\JRE16~1.0_0\bin\client\jvm.dll
C:\PROGRA~1\Java\JRE16~1.0_0\bin\hpi.dll
C:\PROGRA~1\Java\JRE16~1.0_0\bin\verify.dll
C:\PROGRA~1\Java\JRE16~1.0_0\bin\java.dll
C:\PROGRA~1\Java\JRE16~1.0_0\bin\zip.dll C:\Program
Files\Java\jre1.6.0_07\bin\awt.dll
C:\Windows\system32\WINSPOOL.DRV C:\Program
C:\Windows\system32\msi.dll C:\Program
Files\Java\jre1.6.0_07\bin\net.dll C:\Program
Files\Java\jre1.6.0_07\bin\dcpr.dll C:\Program
Files\Java\jre1.6.0_07\bin\nio.dll

Running Processes sorted by ParentProcessID

ProcessName CreationDate ProcessId ParentProcessId CommandLine sessionID

iexplore.exe 7/17/2013
04:21:43 2816 2844 "C:\Program Files\Internet Explorer\iexplore.exe" SCODEF:2844

CREDAT:79878 1

iexplore.exe 7/17/2013
04:20:40 2844 816 "C:\Program Files\Internet Explorer\iexplore.exe" 1

b34btbztdb0vavaw.exe 7/17/2013
04:24:11 2832 752 C:\Users\lamb\AppData\Local\Temp\b34btbztdb0vavaw.exe 1

wininit.exe 7/3/2013 06:12:09 392 336 wininit.exe 0
smss.exe 7/3/2013 06:11:59 264 4 \SystemRoot\System32\smss.exe 0
System Idle Process 0 0 0

Running SVCHOST and associated Processes

Live Response Using PowerShell 39

Sajeev Nair, Nair.Sajeev@Gmail.com

processID name DisplayName state startmode PathName
1976 PolicyAgent IPsec Policy Agent Running Manual C:\Windows\system32\svchost.exe -k NetworkServiceNetworkRestricted
592 WinDefend Windows Defender Running Auto C:\Windows\System32\svchost.exe -k secsvcs
1176 p2pimsvc Peer Networking Identity Manager Running Manual C:\Windows\System32\svchost.exe -k LocalServicePeerNet
1176 PNRPsvc Peer Name Resolution Protocol Running Manual C:\Windows\System32\svchost.exe -k LocalServicePeerNet

Running Services - Sorted by State

Name ProcessId State DisplayName PathName
PolicyAgent 1976 Running IPsec Policy Agent C:\Windows\system32\svchost.exe -k NetworkServiceNetworkRestricted
Power 612 Running Power C:\Windows\system32\svchost.exe -k DcomLaunch
SDRSVC 0 Stopped Windows Backup C:\Windows\system32\svchost.exe -k SDRSVC
RpcLocator 0 Stopped Remote Procedure Call (RPC) Locator C:\Windows\system32\locator.exe
dot3svc 0 Stopped Wired AutoConfig C:\Windows\system32\svchost.exe -k LocalSystemNetworkRestricted

Drivers running, Startup mode and Path - Sorted by Path

Display Name Start Mode Path
Common Log (CLFS) Boot C:\Windows\system32\CLFS.sys
1394 OHCI Compliant Host Controller Manual C:\Windows\system32\drivers\1394ohci.sys
Microsoft ACPI Driver Boot C:\Windows\system32\drivers\ACPI.sys

Last 50 DLLs created - Sorted by CreationTime

Name CreationTime LastAccessTime Directory
wsdetect.dll 4/10/2013 10:33:04 6/10/2072 02:32:34 C:\Program Files\Java\jre1.6.0_07\bin
verify.dll 4/10/2013 10:33:04 6/10/2072 02:10:40 C:\Program Files\Java\jre1.6.0_07\bin
w2k_lsa_auth.dll 4/10/2013 10:33:04 6/10/2072 02:10:40 C:\Program Files\Java\jre1.6.0_07\bin
zip.dll 4/10/2013 10:33:04 6/10/2072 02:10:40 C:\Program Files\Java\jre1.6.0_07\bin

Live Response Using PowerShell 40

Sajeev Nair, Nair.Sajeev@Gmail.com

unpack.dll 4/10/2013 10:33:04 6/10/2072 02:10:40 C:\Program Files\Java\jre1.6.0_07\bin

Open Shares

name path description
ADMIN$ C:\Windows Remote Admin
C$ C:\ Default share
IPC$ Remote IPC
Users C:\Users

Mapped Drives

Scheduled Jobs

Event log – Scheduled task events

HotFixes applied - Sorted by Installed Date

HotfixID Description InstalledBy InstalledOn
KB2727528 Security Update NT AUTHORITY\SYSTEM 4/5/2013 00:00:00
KB2729094 Update NT AUTHORITY\SYSTEM 4/5/2013 00:00:00
KB2729452 Security Update NT AUTHORITY\SYSTEM 4/5/2013 00:00:00
KB2719857 Update NT AUTHORITY\SYSTEM 4/5/2013 00:00:00

Installed Applications - Sorted by Installed Date

Link File Analysis - Last 5 days

FileName caption CreationDate LastAccessed LastModified Target
lamb- c:\users\lamb\appdata\roaming\microsoft\windows\recent\lamb- 7/17/2013 7/17/2013 7/17/2013 E:\lamb-

Live Response Using PowerShell 41

Sajeev Nair, Nair.Sajeev@Gmail.com

07.17.2013-
Level1

07.17.2013-level1.lnk 04:16:23 04:16:23 04:16:23 07.17.2013-
Level1.html

host c:\users\lamb\appdata\roaming\microsoft\windows\recent\host.lnk 7/17/2013
04:13:06

7/17/2013
04:13:06

7/17/2013
04:13:06 E:\host.txt

Compressed files

Encrypted files

ShadowCopy List

DeviceObject CreationDate
\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1 6/13/2013 10:23:23
\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2 6/25/2013 07:10:29
\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy4 6/26/2013 13:33:40

Prefetch Files

Name LastAccessTime CreationTime
SVCHOST.EXE-C871F054.pf 4/5/2013 13:15:47 4/5/2013 13:15:47
DLLHOST.EXE-40DD444D.pf 4/5/2013 13:15:57 4/5/2013 13:15:57
JAVAW.EXE-3B7782B5.pf 7/17/2013 04:24:12 7/17/2013 04:24:12
REGSVR32.EXE-8461DBEE.pf 7/17/2013 04:24:12 7/17/2013 04:24:12
B34BTBZTDB0VAVAW.EXE-A991B8B7.pf 7/17/2013 04:24:21 7/17/2013 04:24:21
1390349.EXE-555A88A6.pf 7/17/2013 04:25:28 7/17/2013 04:25:28
SVCHOST.EXE-A72229FD.pf 7/17/2013 04:26:06 7/17/2013 04:26:06

DNS Cache

IgnoreCase LineNumber Line Filename Path Pattern Context Matches

Live Response Using PowerShell 42

Sajeev Nair, Nair.Sajeev@Gmail.com

True 26 Record Name : notepad-plus-plus.org InputStream InputStream Record
Name System.Text.RegularExpressions.Match[]

True 6 Record Name : thepooka.co.uk InputStream InputStream Record
Name System.Text.RegularExpressions.Match[]

True 36 Record Name : wer.microsoft.com InputStream InputStream Record
Name System.Text.RegularExpressions.Match[]

True 46 Record Name :
www.malwaredomainlist.com InputStream InputStream Record

Name System.Text.RegularExpressions.Match[]

Event log – DNS – failed resolution events

TimeCreated Id Message
7/17/2013 04:10:22 1014 Name resolution for the name _ldap._tcp.dc._msdcs.private.domain timed out after none of the configured DNS servers responded.
7/3/2013 06:12:41 1014 Name resolution for the name isatap.private.domain timed out after none of the configured DNS servers responded.

List of available logs

LogName FileSize LastWriteTime
Microsoft-Windows-Windows Defender/Operational 69632 7/17/2013 04:15:27
Microsoft-Windows-ReliabilityAnalysisComponent/Operational 69632 7/17/2013 04:12:23
Microsoft-Windows-WindowsBackup/ActionCenter 69632 7/17/2013 04:10:27
Microsoft-Windows-Application-Experience/Problem-Steps-Recorder 69632 4/5/2013 13:18:49

Temporary Internet Files - Last 5 days - Sorted by CreationTime

Name LastWriteTime CreationTime Directory
iesqmdata0.sqm 7/17/2013 04:17:21 7/17/2013 04:17:21 C:\Users\lamb\AppData\Local\Microsoft\Windows\Temporary Internet Files\Sqm
Sqm 7/17/2013 04:17:21 4/5/2013 14:15:21

Cookies

Live Response Using PowerShell 43

Sajeev Nair, Nair.Sajeev@Gmail.com

IgnoreCase LineNumber Line
True 3 apmebf.com/
True 3 vidstest3.d1.sc.omtrdc.net/
True 3 www.msn.com/
True 2 filezilla:ignum:/filezilla/FileZilla%20Server/0.9.41/FileZilla_Server-0_9_41.exe
True 3 downloads.sourceforge.net/

Typed URLs

url1 url2 url3 url4 url5
http://thepooka.co.uk/0aee28143
cab839c469bf216142f42e3/a.ph
p

http://malwaredomainlist.com/forums/ind
ex.php?topic=4963.0;prev_next=prev#ne
w

http://trafficconverter.biz/4
vir/antispyware/loadadv.ex
e

http://trafficconverter.biz/4
vir/antispyware/loaddv.exe

http://www.cacetech.com/p
roducts/catalog/account.ph
p

Important Registry keys - Internet Settings

IE5_UA_Ba
ckup_Flag

User
Agent

Email
Name

PrivDisc
UiShown

Enable
Http1_1

WarnOn
Intranet

MimeExclusion
ListForCache

AutoConf
igProxy

UrlEn
coding

SecureP
rotocols

WarnonZon
eCrossing

Proxy
Enable

EnableA
utodial

NoNetA
utodial

Proxy
Http1.1

5.0

Mozill
a/4.0
(comp
atible;
MSIE
8.0;
Win32
)

User@ 1 1 1

multipart/mixed
multipart/x-
mixed-replace
multipart/x-
byteranges

wininet.dl
l 0 160 0 0 0 0 1

Important Registry keys - Internet Trusted Domains

*
microsoft.com

Live Response Using PowerShell 44

Sajeev Nair, Nair.Sajeev@Gmail.com

Important Registry keys - AppInit_DLLs

*

Important Registry keys - UAC Group Policy Settings

ConsentPro
mptBehavio

rAdmin

ConsentPr
omptBeha
viorUser

EnableIn
stallerDe
tection

Ena
bleL
UA

EnableS
ecureUI
APaths

EnableUI
ADesktop

Toggle

Enable
Virtuali
zation

PromptO
nSecureD

esktop

ValidateAd
minCodeSi

gnatures

dontdispl
aylastuse

rname

legaln
oticeca
ption

legal
notic
etext

scfor
ceop
tion

shutdow
nwithou
tlogon

undock
without
logon

FilterAd
ministrat
orToken

0 3 1 0 1 0 1 0 0 0 0 1 1 0

Important Registry keys - Active setup Installs

ComponentID (default) StubPath
IEACCESS Internet Explorer C:\Windows\System32\ie4uinit.exe -UserIconConfig
BRANDING.CAB Browser Customizations "C:\Windows\System32\rundll32.exe" "C:\Windows\System32\iedkcs32.dll",BrandIEActiveSetup SIGNUP
MobilePk Offline Browsing Pack
MailNews Microsoft Windows "C:\Program Files\Windows Mail\WinMail.exe" OCInstallUserConfigOE
DirectDrawEx DirectDrawEx
HelpCont Internet Explorer Help

Important Registry keys - APP Paths keys

PSChildName (default)
AcroRd32.exe C:\Program Files\Adobe\Reader 9.0\Reader\AcroRd32.exe
IEXPLORE.EXE C:\Program Files\Internet Explorer\IEXPLORE.EXE
javaws.exe C:\Program Files\Java\jre1.6.0_07\bin\javaws.exe
wireshark.exe C:\Program Files\Wireshark\wireshark.exe
WORDPAD.EXE "C:\Program Files\Windows NT\Accessories\WORDPAD.EXE"

Live Response Using PowerShell 45

Sajeev Nair, Nair.Sajeev@Gmail.com

Important Registry keys - DLLs loaded by Explorer.exe shell

(default) DllName
Wireless Group Policy wlgpclnt.dll
Group Policy Environment gpprefcl.dll
Group Policy Local Users and Groups gpprefcl.dll

Important Registry keys - shell and UserInit values

Repo
rtBo
otOk

She
ll

PreCrea
teKnow
nFolders

Userinit VMApplet

Auto
Resta
rtShel

l

Bac
kgr
oun

d

Cache
dLogo
nsCou

nt

DebugS
erverCo
mmand

Force
Unloc
kLogo

n

Legal
Notice
Captio

n

Legal
Notic
eText

Passwor
dExpiry
Warning

Powerdo
wnAfterS
hutdown

Shutdow
nWithou
tLogon

WinSt
ations

Disable
d

Disa
ble
CA
D

scre
move
optio

n

Shut
down
Flags

1
expl
orer
.exe

{A520A
1A4-
1780-
4FF6-
BD18-
167343C
5AF16}

C:\Windows
\system32\u
serinit.exe,

SystemProp
ertiesPerfor
mance.exe
/pagefile

1 0 0
0 10 no 0 5 0 0 0 1 0 39

Important Registry Keys - Security center SVC values

VistaSp1 AntiVirusOverride AntiSpywareOverride FirewallOverride
128920187794894432 0 0 0

Important Registry keys - Desktop Address bar history

Important Registry keys - RunMRU keys

Important Registry keys - Start Menu

Live Response Using PowerShell 46

Sajeev Nair, Nair.Sajeev@Gmail.com

Type Text Bitmap HelpID
group @shell32.dll,-30464 C:\Windows\system32\shell32.dll,40 windows.hlp#51132

Important Registry keys - Programs Executed By Session Manager

CriticalSe
ctionTime

out

Glob
alFla

g

HeapDeCommit
FreeBlockThres

hold

HeapDeCommit
TotalFreeThres

hold

HeapSeg
mentCom

mit

HeapSeg
mentRese

rve

Process
orCont

rol

ResourceT
imeoutCou

nt

BootE
xecute

ExcludeFr
omKnown

Dlls

Object
Directo

ries

Protect
ionMo

de

NumberOf
InitialSessi

ons

Setup
Execu

te

2592000 1638
4 0 0 0 0 2 648000

Syste
m.Stri
ng[]

System.Stri
ng[]

System.
String[] 1 2

Syste
m.Stri
ng[]

Important Registry keys - Shell Folders

Common
Desktop

Common Start
Menu

Commo
nVideo

Common
Pictures

Common
Programs

Commo
nMusic

Common
Administrative

Tools

Common
Startup

Common
Document

s

OEM
Links

Common
Templates

Com
mon

AppD
ata

C:\Users\
Public\De
sktop

C:\ProgramData\
Microsoft\Wind
ows\Start Menu

C:\Users\
Public\V
ideos

C:\Users\
Public\Pi
ctures

C:\ProgramData\
Microsoft\Wind
ows\Start
Menu\Programs

C:\Users
\Public\
Music

C:\ProgramData\
Microsoft\Wind
ows\Start
Menu\Programs\
Administrative
Tools

C:\ProgramData\
Microsoft\Wind
ows\Start
Menu\Programs\
Startup

C:\Users\P
ublic\Docu
ments

C:\Progr
amData\
OEM
Links

C:\ProgramData\M
icrosoft\Windows\
Templates

C:\Pro
gram
Data

Important Registry keys - User Shell Folders 'Startup'

*
C:\Users\lamb\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup

Important Registry keys - Approved Shell Extentions

Live Response Using PowerShell 47

Sajeev Nair, Nair.Sajeev@Gmail.com

{00C6D95F-
329C-409a-81D7-
C46C66EA7F33}

{08165EA0-E946-
11CF-9C87-

00AA005127ED}

{F5175861-2688-
11d0-9C5E-

00AA00A45957}

{E6FB5E20-
DE35-11CF-

9C87-
00AA005127ED}

{7D559C10-
9FE9-11d0-93F7-
00AA0059CE02}

{ABBE31D0-
6DAE-11D0-

BECA-
00C04FD940BE}

{7FC0B86E-
5FA7-11d1-

BC7C-
00C04FD929DB}

{23170F69-
40C1-278A-

1000-
000100020000}

 WebCheckWebCrawler Subscription
Folder WebCheck Code Download

Agent Subscription Mgr WebCheck
SyncMgr Handler

7-Zip Shell
Extension

Important Registry keys - AppCert DLLs

Important Registry keys - EXE File Shell Command Configured

(default) IsolatedCommand
"%1" %* "%1" %*

Important Registry keys - Shell Commands

*
"C:\Program Files\Internet Explorer\iexplore.exe" -nohome

Important Registry keys - BCD Related

*
@{Element=\Windows\system32\winresume.exe}
@{Element=\windows\system32\winload.exe}
@{Element=\boot\memtest.exe}

Important Registry keys - LSA Packages loaded

auditba
seobjec

ts

auditbas
edirector

ies

crasho
nauditf

ail

fullprivil
egeauditi

ng

Boun
ds

LimitBlan
kPassword

Use

NoL
mHa

sh

Notific
ation
Packa

Securi
ty

Packa

Authe
nticati

on

Ls
aPi
d

Secu
reBo

ot

Prod
uctTy

pe

disabled
omaincr

eds

everyoneincl
udesanonym

ous

forc
egue

st

restricta
nonymo

us

restrictan
onymouss

am

Live Response Using PowerShell 48

Sajeev Nair, Nair.Sajeev@Gmail.com

ges ges Packa
ges

0 0 0 System.B
yte[]

Syste
m.Byt
e[]

1 1
Syste
m.Stri
ng[]

Syste
m.Stri
ng[]

System
.String
[]

49
6 1 16 0 0 0 0 1

Important Registry keys - Browser Helper Objects

Important Registry keys - Browser Helper Objects 64 Bit

Important Registry keys - IE Extensions

Important Registry keys - IE Extensions

Important Registry keys - IE Extensions

List of USB devices

File Timeline Executable Files - Past 30 days

FullName LastWriteTime Owner
C:\Users\lamb\Local Settings\Application Data\Application Data\Application Data\Application Data\Application
Data\Application Data\Application Data\Temp\1390349.exe

7/17/2013
04:25:16 BUILTIN\Administrators

C:\Users\lamb\Local Settings\Application Data\Application Data\Application Data\Application Data\Application
Data\Application Data\Temp\1390349.exe

7/17/2013
04:25:16 BUILTIN\Administrators

C:\Users\lamb\Local Settings\Application Data\Application Data\Application Data\Application Data\Application
Data\Application Data\Application Data\Application Data\Application Data\Application Data\Temp\1390349.exe

7/17/2013
04:25:16 BUILTIN\Administrators

C:\Users\lamb\Local Settings\Application Data\Application Data\Application Data\Application Data\Application
Data\Application Data\Application Data\Application Data\Temp\1390349.exe

7/17/2013
04:25:16 BUILTIN\Administrators

C:\Documents and Settings\lamb\Local Settings\Temp\1390349.exe 7/17/2013
04:25:16 BUILTIN\Administrators

C:\Documents and Settings\lamb\Local Settings\Application Data\Application Data\Application Data\Application 7/17/2013 BUILTIN\Administrators

Live Response Using PowerShell 49

Sajeev Nair, Nair.Sajeev@Gmail.com

Data\Temp\1390349.exe 04:25:16
C:\Documents and Settings\lamb\Local Settings\Application Data\Application Data\Application Data\Application
Data\Application Data\Temp\1390349.exe

7/17/2013
04:25:16 BUILTIN\Administrators

Event log - Account logon

TimeCreated Id Message

7/17/2013
04:29:34 4624

An account was successfully logged on. Subject: Security ID: S-1-5-18 Account Name: LAMB-PC$ Account Domain: WORKGROUP
Logon ID: 0x3e7 Logon Type: 5 New Logon: Security ID: S-1-5-18 Account Name: SYSTEM Account Domain: NT AUTHORITY
Logon ID: 0x3e7 Logon GUID: {00000000-0000-0000-0000-000000000000} Process Information: Process ID: 0x1e8 Process Name:
C:\Windows\System32\services.exe Network Information: Workstation Name: Source Network Address: - Source Port: - Detailed
Authentication Information: Logon Process: Advapi Authentication Package: Negotiate Transited Services: - Package Name (NTLM only):
- Key Length: 0 This event is generated when a logon session is created. It is generated on the computer that was accessed. The subject
fields indicate the account on the local system which requested the logon. This is most commonly a service such as the Server service, or a
local process such as Winlogon.exe or Services.exe. The logon type field indicates the kind of logon that occurred. The most common
types are 2 (interactive) and 3 (network). The New Logon fields indicate the account for whom the new logon was created, i.e. the account
that was logged on. The network fields indicate where a remote logon request originated. Workstation name is not always available and
may be left blank in some cases. The authentication information fields provide detailed information about this specific logon request. -
Logon GUID is a unique identifier that can be used to correlate this event with a KDC event. - Transited services indicate which
intermediate services have participated in this logon request. - Package name indicates which sub-protocol was used among the NTLM
protocols. - Key length indicates the length of the generated session key. This will be 0 if no session key was requested.

7/17/2013
04:29:34 4624

An account was successfully logged on. Subject: Security ID: S-1-5-18 Account Name: LAMB-PC$ Account Domain: WORKGROUP
Logon ID: 0x3e7 Logon Type: 5 New Logon: Security ID: S-1-5-18 Account Name: SYSTEM Account Domain: NT AUTHORITY
Logon ID: 0x3e7 Logon GUID: {00000000-0000-0000-0000-000000000000} Process Information: Process ID: 0x1e8 Process Name:
C:\Windows\System32\services.exe Network Information: Workstation Name: Source Network Address: - Source Port: - Detailed
Authentication Information: Logon Process: Advapi Authentication Package: Negotiate Transited Services: - Package Name (NTLM only):
- Key Length: 0 This event is generated when a logon session is created. It is generated on the computer that was accessed. The subject
fields indicate the account on the local system which requested the logon. This is most commonly a service such as the Server service, or a
local process such as Winlogon.exe or Services.exe. The logon type field indicates the kind of logon that occurred. The most common
types are 2 (interactive) and 3 (network). The New Logon fields indicate the account for whom the new logon was created, i.e. the account
that was logged on. The network fields indicate where a remote logon request originated. Workstation name is not always available and
may be left blank in some cases. The authentication information fields provide detailed information about this specific logon request. -
Logon GUID is a unique identifier that can be used to correlate this event with a KDC event. - Transited services indicate which
intermediate services have participated in this logon request. - Package name indicates which sub-protocol was used among the NTLM
protocols. - Key length indicates the length of the generated session key. This will be 0 if no session key was requested.

Live Response Using PowerShell 50

Sajeev Nair, Nair.Sajeev@Gmail.com

Event log - An account failed to log on

Event log - The system time was changed

TimeCreated Id Message

7/17/2013
04:10:17 4616

The system time was changed. Subject: Security ID: S-1-5-18 Account Name: LAMB-PC$ Account Domain: WORKGROUP Logon ID:
0x3e7 Process Information: Process ID: 0x2a0 Name: C:\Windows\System32\VBoxService.exe Previous Time: 2013 - 07 -
 03T04:20:00.022907600Z New Time: 2013 - 07 - 17T02:10:17.362000000Z This event is generated when the system time is changed. It is
normal for the Windows Time Service, which runs with System privilege, to change the system time on a regular basis. Other system time
changes may be indicative of attempts to tamper with the computer.

7/3/2013
06:15:38 4616

The system time was changed. Subject: Security ID: S-1-5-19 Account Name: LOCAL SERVICE Account Domain: NT AUTHORITY
Logon ID: 0x3e5 Process Information: Process ID: 0x43c Name: C:\Windows\System32\svchost.exe Previous Time: 2013 - 07 -
 03T04:15:38.589014400Z New Time: 2013 - 07 - 03T04:15:38.589000000Z This event is generated when the system time is changed. It is
normal for the Windows Time Service, which runs with System privilege, to change the system time on a regular basis. Other system time
changes may be indicative of attempts to tamper with the computer.

Event log – Application crashes

Event log - Process execution

Event log - A user account was created

TimeCreated Id Message

4/5/2013
13:15:51 4720

A user account was created. Subject: Security ID: S-1-5-18 Account Name: WIN-GV5JVE93GEV$ Account Domain: WORKGROUP
Logon ID: 0x3e7 New Account: Security ID: S-1-5-21-4239305696-2745980338-1987368278-1002 Account Name: HomeGroupUser$
Account Domain: lamb-PC Attributes: SAM Account Name: HomeGroupUser$ Display Name: <value not set> User Principal Name: -
Home Directory: <value not set> Home Drive: <value not set> Script Path: <value not set> Profile Path: <value not set> User
Workstations: <value not set> Password Last Set: <never> Account Expires: <never> Primary Group ID: 513 Allowed To Delegate To: -
Old UAC Value: 0x0 New UAC Value: 0x15 User Account Control: Account Disabled 'Password Not Required' - Enabled 'Normal
Account' - Enabled User Parameters: <value not set> SID History: - Logon Hours: All Additional Information: Privileges -

4/5/2013
13:15:50 4720

A user account was created. Subject: Security ID: S-1-5-18 Account Name: WIN-GV5JVE93GEV$ Account Domain: WORKGROUP
Logon ID: 0x3e7 New Account: Security ID: S-1-5-21-4239305696-2745980338-1987368278-1001 Account Name: lamb Account
Domain: lamb-PC Attributes: SAM Account Name: lamb Display Name: <value not set> User Principal Name: - Home Directory: <value
not set> Home Drive: <value not set> Script Path: <value not set> Profile Path: <value not set> User Workstations: <value not set>

Live Response Using PowerShell 51

Sajeev Nair, Nair.Sajeev@Gmail.com

Password Last Set: <never> Account Expires: <never> Primary Group ID: 513 Allowed To Delegate To: - Old UAC Value: 0x0 New
UAC Value: 0x15 User Account Control: Account Disabled 'Password Not Required' - Enabled 'Normal Account' - Enabled User
Parameters: <value not set> SID History: - Logon Hours: All Additional Information: Privileges -

Event log - A logon was attempted using explicit credentials

TimeCreated Id Message

7/3/2013
06:12:24 4648

A logon was attempted using explicit credentials. Subject: Security ID: S-1-5-18 Account Name: LAMB-PC$ Account Domain:
WORKGROUP Logon ID: 0x3e7 Logon GUID: {00000000-0000-0000-0000-000000000000} Account Whose Credentials Were Used:
Account Name: lamb Account Domain: lamb-PC Logon GUID: {00000000-0000-0000-0000-000000000000} Target Server: Target Server
Name: localhost Additional Information: localhost Process Information: Process ID: 0x1b8 Process Name:
C:\Windows\System32\winlogon.exe Network Information: Network Address: 127.0.0.1 Port: 0 This event is generated when a process
attempts to log on an account by explicitly specifying that account’s credentials. This most commonly occurs in batch-type configurations
such as scheduled tasks, or when using the RUNAS command.

6/26/2013
13:35:30 4648

A logon was attempted using explicit credentials. Subject: Security ID: S-1-5-18 Account Name: LAMB-PC$ Account Domain:
WORKGROUP Logon ID: 0x3e7 Logon GUID: {00000000-0000-0000-0000-000000000000} Account Whose Credentials Were Used:
Account Name: lamb Account Domain: lamb-PC Logon GUID: {00000000-0000-0000-0000-000000000000} Target Server: Target Server
Name: localhost Additional Information: localhost Process Information: Process ID: 0x1b8 Process Name:
C:\Windows\System32\winlogon.exe Network Information: Network Address: 127.0.0.1 Port: 0 This event is generated when a process
attempts to log on an account by explicitly specifying that account’s credentials. This most commonly occurs in batch-type configurations
such as scheduled tasks, or when using the RUNAS command.

Event log – Privilege use 4672

TimeCreated Id Message

7/17/2013
04:29:34 4672

Special privileges assigned to new logon. Subject: Security ID: S-1-5-18 Account Name: SYSTEM Account Domain: NT AUTHORITY
Logon ID: 0x3e7 Privileges: SeAssignPrimaryTokenPrivilege SeTcbPrivilege SeSecurityPrivilege SeTakeOwnershipPrivilege
SeLoadDriverPrivilege SeBackupPrivilege SeRestorePrivilege SeDebugPrivilege SeAuditPrivilege SeSystemEnvironmentPrivilege
SeImpersonatePrivilege

7/17/2013
04:15:10 4672

Special privileges assigned to new logon. Subject: Security ID: S-1-5-18 Account Name: SYSTEM Account Domain: NT AUTHORITY
Logon ID: 0x3e7 Privileges: SeAssignPrimaryTokenPrivilege SeTcbPrivilege SeSecurityPrivilege SeTakeOwnershipPrivilege
SeLoadDriverPrivilege SeBackupPrivilege SeRestorePrivilege SeDebugPrivilege SeAuditPrivilege SeSystemEnvironmentPrivilege
SeImpersonatePrivilege

Live Response Using PowerShell 52

Sajeev Nair, Nair.Sajeev@Gmail.com

Event log – Privilege use 4673

Event log – Privilege use 4674

Event log – WFP events

Current Date and Time

*
Wednesday, July 17, 2013 04:32:22

