
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1

SANS GIAC
Computer Forensic Analysts

Certification: v 1.2

J. Philip Craiger

March 29, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2

Part 1

Analysis of an Unknown Binary:
Loki ICMP Covert Channel Daemon

Abstract

This paper describes the forensic procedures applied to a binary of an unknown origin
or function. Static and dynamic analyses were conducted on the binary. The analyses
indicate that the binary is a well-known ICMP covert channeling executable. The source
code was located on the Internet in a well-known online hacker’s journal, and an
attempt was made to compile the code. Although unsuccessful, the article and source
code provided enough information to allow me to track down the author of the code.
The legal implications of running the binary are discussed, and several interview
questions are provided.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3

Static Analysis

Described below are the steps required to conduct a static analysis of the unknown
binary.

Step 1. Calculate the MD5 hash of the binary.

[root@whammo sans.cert]# md5sum binary_1.2.zip > b1.2.zip.md5

Rationale: Normally, this would not be needed because typically we are only interested
in the cryptographic hash of the binary itself. Nevertheless, it doesn’t hurt to have it --
just in case.

Step 2. Unzip the compressed file.

[root@whammo sans.cert]# unzip binary_1.2.zip

Rationale: Self explanatory. This step resulted in the extraction of two files: atd and
atd.md5. The latter file contained an MD5 hash of (apparently) atd.

Step 3. Calculate the MAC times of the binary.

Rationale: Determine a timeline as to when the program might have last been
accessed (run), compiled (modified), etc. I used the UNIX utility stat to identify the
modified, accessed, & changed times for the binary. Results of the stat command
indicate that the last time the program was accessed was Thursday, August 22 2002, at
2:57 in the afternoon (14:57 in military time). The modified time was the same. The
changed time was the time the binary was copied to my own hard drive.

Step 3. Calculate the MD5 cryptographic hash of the binary, and compare to the hash
included in the atd.md5 file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4

Rationale: To test the integrity of the file, that is, making sure that it has not been
changed in any way. Note that if I had used this command prior to the stat command
the accessed time of the binary would have changed.

The MD5 for the extracted file was then compared against the MD5 hash that
accompanied the unknown binary. As Figure 2 illustrates the cryptographic hashes are
the same, indicating the integrity of the binary.

Step 5. Determine the file type.

[root@whammo sans.cert]# file atd > atd.file

Rationale: The file command allows me to determine the type of file in question. In this
case, the command indicated the unknown binary was of type:

ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), stripped

The “dynamically linked” term indicates that the binary requires certain library files to
function properly. Accordingly, some of the utilities used in the dynamic analysis
section should assist in identifying those libraries (e.g., lsof, strace). The ‘stripped’
means that the binary has been stripped of any debugging information, which is
unfortunate as it often contains clues as to the binary’s functions.

I also ran readelf against the file to obtain more specific information regarding the
executables internals. According to itrs man page, readelf displays information about
one or more ELF format object files.

[root@whammo sans.cert]# readelf -h atd
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Intel 80386

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5

 Version: 0x1
 Entry point address: 0x8048db0
 Start of program headers: 52 (bytes into file)
 Start of section headers: 14508 (bytes into file)
 Flags: 0x0
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 5
 Size of section headers: 40 (bytes)
 Number of section headers: 21
 Section header string table index:20

Significant results are the Magic number, which the file command uses to identify the
type of file; the file class; the OS; machine; and the entry point address. The results
confirm the results from the file command.

Step 6. Use the strings UNIX utility to extract human-readable strings from the binary in
order to acquire clues about its function, author, etc.

[root@whammo sans.cert]# strings -a atd > atd.strings

Rationale: The strings command is able to write out any human readable text from a
binary source. The strings command found several useful pieces of information within
the unknown binary. Some of this information was used to identify the location of the
source code on the Internet, as well as the author of the program.

Step 7. Analyze strings from step 6 to determine the binary’s function

The UNIX utility ‘strings –a’ was run against the binary to extract the human-readable
strings. The reason for this procedure is that binaries often contain human-readable
strings (user messages, help, error messages, etc.), that can be used as keywords to
search the Internet to find the associated source code.

By far the most common unique string from the results of this procedure was the term
‘lokid.’ This term lead me to believe that the program was part of a well-known Loki
ICMP covert channel application. The ‘d’ on the end was a clue that this was a daemon,
as most UNIX daemons have a ‘d’ on the end of their names, although this was pure
speculation.

Brief Tangent: What the Hell is “Loki?”

In cracking parlance Loki is a Trojan horse that provides a covert channeling (back
door) for tunneling information over ICMP, specifically, using ICMP type ECHO_REPLY
(0) and ECHO (8). A covert channel provides a surreptitious channel for the
communication of signals (Pfleeger & Pfleeger, 2003; Miller, J., 1988).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

6

Daemon9 (route), the author of both Phrack articles as well as the Loki source code,
writes that Loki is simple a form of steganography (i.e., hiding information within another
media).

"Loki, Norse God of deceit and trickery, the 'Lord of Misrule'
was well known for his subversive behavior. Inversion and
reversal of all sorts was typical for him. Due to its
clandestine nature, we chose to name this project after
him." (Daemon9, 1996)

Back to the Strings Analysis

Partial results of the output from the strings command are provided below. Some of the
strings are clues as to the functionality provided by the Loki daemon. For example, the
string in line 5 appears to indicate that cryptography is available (actually, more than
one type of cryptography is available). Line 13 appears to be feedback to a user on the
proper use of the command:

lokid -p (i|u [-v (0|1)]

Line 14 is perhaps the most interesting and seemingly unique because it appears to tell
us the name of the program as well as the author (daemon9 AKA route), as well as the
year that the program was written (or at least copyrighted):

LOKI2 route [(c) 1997 guild corporation worldwide]

I believed this string to be unique enough to warrant its use in a Google search
(described later).

1.lokid: Client database full
2.lokid version:
3.remote interface:
4.active transport:
5.active cryptography:
6.server uptime:
7.lokid: inactive client <%d> expired from list [%d]
8.@[fatal] shared mem segment request error
9.lokid -p (i|u) [-v (0|1)]
10.LOKI2 route [(c) 1997 guild corporation worldwide]
11.lokid: server is currently at capacity. Try again later
12.lokid: Cannot add key
13.lokid: popen

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7

14.lokid: client <%d> requested an all kill
15.lokid: clean exit (killed at client request)
16.lokid: cannot locate client entry in database
17.lokid: client <%d> freed from list [%d]
18.lokid: unsupported or unknown command string
19.lokid: client <%d> requested a protocol swap
20.sending protocol update: <%d> %s [%d]
21.lokid: transport protocol changed to %s
22.GCC: (GNU) 2.7.2.1

Line 22 appears to indicate that the GNU compiler version 2.7.2.1 was used to compile
the binary. This is a helpful clue as later I will attempt to compile the source code,
which may or may not be successful depending upon the libraries and compiler used to
create the original program. Therefore, knowing that this binary was compiled
successfully with the gcc 2.7.2.1 is helpful.

Speculation as why the name ‘atd’ was chosen

The name ‘atd’ was probably chosen because it would replace the real at daemon. at is
a UNIX utility that allows users to specify commands that should be run at a specific
time or date. For example, the command:

[root@whammo sans.cert]# at 5PM bkup.sh

would run the backup shell file at 5PM. Because the at daemon is probably run by
default on startup on most UNIX/Linux systems, so that even if the host is shutdown, on
reboot the Trojaned atd (Loki) would restart. Also, the fact that the real atd was
replaced by a Trojan might not found, most likely because at is not a command that is
used as often as, for example, cron jobs, which most likely would be noticed if a cron
job was not run.

Step 8: Using results from strings as keywords to a Google search

I used the term “LOKI2 route [(c) 1997 guild corporation worldwide]” as the keyword to
a Google search. One of the returned hits was from Phrack Magazine, an online
hacker’s journal, specifically, Volume 7, Issue 51 September 01, 1997. This issue
contained an article 06 of 17: LOKI2 (the implementation) daemon9
route@infonexus.com. This article contained source code that appeared to be the
same, or at least highly similar, to the strings derived from the binary.

Clearly daemon9, the author of the article and source code, is a pseudonym; however, it
is a clue that can be used to perhaps determine the author of the program. I did some
reconnaissance by visiting www.infonexus.com. The only person apparently associated

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

8

with the website is Mike Schiffman, a picture of whom is provided below (from the web
site).

According to the web site this is Mike Schiffman. Mike appears to be a
developer/programmer with various interests. Wanting to know if Mike was the author
of Loki I emailed Mike (mike@infonexus.com, according to the web site) and straight
forwardly asked:

Of course, I could have emailed route@infonexus and asked “who are you in real life?”
However, I decided to try the aforementioned strategy first to see if Mike admits to being
the author.

Several minutes later I received the following reply:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9

Step 9. Download the article containing the source code.

I downloaded the article containing the Loki source code. The article contains a
detailed description of the Loki program, the technologies used, and a graphical
depiction of the workings of the program as well as the source code.

NOTE: daemon9 is the author of a prequel Phrack article
(http://www.phrack.org/show.php?p=49&a=6) that discussed the background on ICMP,
basic firewall theory and covert channels, how Loki attempts to subvert detection, as
well as a discussion on how to detect and prevent the use of covert channels. It’s a
very worthy read.

Step 10. Extract the source code from the article

The source code for Loki is embedded in the Phrack article. Phrack provides source
code for an ‘extract’ executable that is run against the Phrack article which automatically
extracts the source code and places it in appropriate directories. Accordingly I
downloaded and compiled the ‘extract.c’ program from the Phrack site, and ran it
against the text from the Phrack article. The resulting files and directory structure are
displayed below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

10

Next I attempted to compile the source code on an air-gapped Dell P2 laptop running
Redhat 8.0 using the instructions included in the Phrack article and the GNU compiler
version 3.2. The source did not compile. The first error message indicated a problem
with the signal.h header file. Given the modification date on the file, August 2000, from
the stat command, I surmised that the libraries had changed and therefore needed to
use an older version or an older version of the GNU compiler or both. I subsequently
installed Redhat 7.1 and attempted to compile the source code. I received the same
error. I repeated the process with Redhat 6.2, Redhat 5.2, and FreeBSD 4.5. Each
attempt resulted in a failure with the same error message.

I went back to the original Phrack article and noted that the copyright date of 1996,
1997, which predates Redhat 5.2. I then attempted to download an even older version
of Redhat (3 or 4) however, I could find none.

Next I took the source code to a knowledgeable C coder to see if he could identify and
correct the problem. After several attempts to rework the code he also surmised that I
needed to use older version of the libraries.

Although I could not compile the code, I believe there is a 99% chance that the source
code is exactly the same as the binary provided by SANS. Given enough time I could
probably, with the help of experienced coders (which I am not) brute force the problem

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

11

and get it to compile, that would most likely render the issue of comparing the MD5s
moot.

Dynamic Binary Analysis

Overview

How Loki affects a system can only be determined by running the program and noting
its effects. Questions to be answered include: What are the footprints when installed?
How is the filesystem affected by the execution of the program? Does the program use
or reference other files? These questions will be answered by using an experimental
methodology using a control and experimental condition so that the two could be
compared. The control condition involved booting a Linux Redhat 6.2 system prior to
running the Loki daemon and capturing relevant information such as running processes,
open sockets, and so forth. Next, the system is rebooted and then the Loki daemon is
executed. Subsequently, running the same commands captures the same information.
This serves as the experimental condition. The control condition serves as a baseline so
that it can be more easily determined the effect that the Loki daemon has on the
system.

I used four UNIX utilities to determine how the Loki daemon affects the system. These
commands include ps, which displays running processes; netstat, which displays open
sockets; lsof, which displays open files, and strace, which traces the program as it is
executed.

The explanation accompanying the Loki source code indicates that it has been tested
with Linux, FreeBSD, and OpenBSD. It specifically states that it has been tested with
Linux kernel 2.2. Having used Linux for a little over a year (and only using a kernel >
2.4) I did a little research and found that Redhat 6.2 used a 2.2 kernel. I installed a
Redhat 6.2 using the workstation installation on my old Dell P2 Laptop. I did no post-
installation hardening to the system, such as turning off unneeded services, or adding or
removing any software, to simulate a raw system that might be encountered on the
Internet.

The uname command indicates the following the for Redhat 6.2 system:

Linux localhost.localdomain 2.2.14-5.0 #1 Tue Mar 7 21:07:39 EST 2000 i686 unknown

Once installed I renamed the real at daemon and copied the Trojaned atd to /usr/sbin
directory, where it normally resides. I checked to ensure that the atd was scheduled to
load at run levels 3 and 5 by running the command: /sbin/chkconfig –list.

Below I compare and contrast the results of running each command across the control
and experimental conditions.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

12

Running processes

The running processes are displayed using the command ps -aux. The -a flag means
select all running processes, including other users; -u means select by effective user ID;
-x means include processes without controlling ttys.

Control Condition

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 8.8 0.1 1120 476 ? S 11:52 0:06 init [3]
root 2 0.0 0.0 0 0 ? SW 11:52 0:00 [kflushd]
root 3 0.0 0.0 0 0 ? SW 11:52 0:00 [kupdate]
root 4 0.0 0.0 0 0 ? SW 11:52 0:00 [kpiod]
root 5 0.0 0.0 0 0 ? SW 11:52 0:00 [kswapd]
root 6 0.0 0.0 0 0 ? SW< 11:52 0:00 [mdrecoveryd]
bin 264 0.0 0.1 1212 420 ? S 11:53 0:00 portmap
root 279 0.0 0.0 0 0 ? SW 11:53 0:00 [lockd]
// Sections Deleted
nobody 377 0.0 0.1 1292 628 ? S 11:53 0:00 identd -e -o
nobody 380 0.0 0.1 1292 628 ? S 11:53 0:00 identd -e -o
nobody 381 0.0 0.1 1292 628 ? S 11:53 0:00 identd -e -o
nobody 383 0.0 0.1 1292 628 ? S 11:53 0:00 identd -e -o
nobody 384 0.0 0.1 1292 628 ? S 11:53 0:00 identd -e -o
daemon 395 0.0 0.1 1144 496 ? S 11:53 0:00 /usr/sbin/atd
root 409 0.1 0.1 1328 620 ? S 11:53 0:00 crond
root 424 0.0 0.1 1212 592 ? S 11:53 0:00 /sbin/cardmgr
root 438 0.0 0.1 1144 488 ? S 11:53 0:00 inetd
root 452 0.0 0.1 1204 532 ? S 11:53 0:00 lpd
root 496 0.0 0.2 2128 1124 ? S 11:53 0:00 sendmail:
root 511 0.0 0.1 1144 452 ? S 11:53 0:00 gpm -t ps/2
root 525 1.4 1.0 6036 3952 ? S 11:53 0:00 httpd
nobody 532 0.0 1.0 6132 4024 ? S 11:53 0:00 httpd
nobody 538 0.0 1.0 6132 4024 ? S 11:53 0:00 httpd
nobody 539 0.0 1.0 6132 4024 ? S 11:53 0:00 httpd
// Sections Deleted

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

13

root 602 0.3 0.2 1696 936 tty1 S 11:53 0:00 -bash
root 623 0.0 0.2 1696 936 tty1 S 11:53 0:00 -bash
root 625 0.0 0.2 2508 828 tty1 R 11:53 0:00 ps -aux

Trojaned System

Next the Loki daemon was executed and the ps -aux was run.

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 2.9 0.1 1120 476 ? S 11:45 0:06 init [3]
root 2 0.0 0.0 0 0 ? SW 11:45 0:00 [kflushd]
root 3 0.0 0.0 0 0 ? SW 11:45 0:00 [kupdate]
root 4 0.0 0.0 0 0 ? SW 11:45 0:00 [kpiod]
root 5 0.0 0.0 0 0 ? SW 11:45 0:00 [kswapd]
root 6 0.0 0.0 0 0 ? SW< 11:45 0:00 [mdrecoveryd]
bin 264 0.0 0.1 1212 420 ? S 11:45 0:00 portmap
root 279 0.0 0.0 0 0 ? SW 11:45 0:00 [lockd]
// Sections Deleted
root 280 0.0 0.0 0 0 ? SW 11:45 0:00 [rpciod]
nobody 380 0.0 0.1 1292 628 ? S 11:45 0:00 identd -e -o
nobody 382 0.0 0.1 1292 628 ? S 11:45 0:00 identd -e -o
nobody 383 0.0 0.1 1292 628 ? S 11:45 0:00 identd -e -o
nobody 384 0.0 0.1 1292 628 ? S 11:45 0:00 identd -e -o
root 395 0.0 0.0 868 304 ? S 11:45 0:00 /usr/sbin/atd
root 409 0.0 0.1 1328 620 ? S 11:45 0:00 crond
root 424 0.0 0.1 1212 592 ? S 11:45 0:00 /sbin/cardmgr
root 438 0.0 0.1 1144 488 ? S 11:45 0:00 inetd
root 452 0.0 0.1 1204 532 ? S 11:45 0:00 lpd
nobody 544 0.0 1.0 6132 4024 ? S 11:45 0:00 httpd
nobody 545 0.0 1.0 6132 4024 ? S 11:45 0:00 httpd
nobody 546 0.0 1.0 6132 4024 ? S 11:45 0:00 httpd
// Sections Deleted
root 602 0.0 0.2 1696 936 tty1 S 11:47 0:00 -bash
root 629 0.0 0.2 1696 936 tty1 S 11:48 0:00 -bash

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

14

root 631 0.0 0.2 2508 828 tty1 R 11:48 0:00 ps -aux

Results

When the Loki daemon is run as a startup service -- as the at daemon is intended --
it shows up in the list of running processes as running from the /usr/sbin directory, it’s
normal location. Consequently, nothing appears suspicious about the daemon from
looking at the list of running processes.

Netstat: List of Open Sockets

The netstat command is used to print network connections, routing tables, interface
statistics, and the like. The specific command run was: netstat -pan: the -p means to
show the process ID and name of the program to which each socket belongs; the -a
means show both listening and non-listening processes; and -n means to show
numerical addresses instead of trying to determine symbolic host.

Control Condition

Active Internet connections (servers and established)
Proto Recv-Q SQ Local Add Foreign Add State ID/Program name
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 520/httpd
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 491/sendmail: accept
tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN 447/lpd
tcp 0 0 0.0.0.0:98 0.0.0.0:* LISTEN 433/inetd
tcp 0 0 0.0.0.0:79 0.0.0.0:* LISTEN 433/inetd
tcp 0 0 0.0.0.0:513 0.0.0.0:* LISTEN 433/inetd
tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN 433/inetd
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN 433/inetd
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 433/inetd
tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN 372/identd
tcp 0 0 0.0.0.0:887 0.0.0.0:* LISTEN 284/rpc.statd
tcp 0 0 0.0.0.0:1024 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 259/portmap
udp 0 0 0.0.0.0:518 0.0.0.0:* 433/inetd
udp 0 0 0.0.0.0:517 0.0.0.0:* 433/inetd
udp 0 0 0.0.0.0:885 0.0.0.0:* 284/rpc.statd
udp 0 0 0.0.0.0:1024 0.0.0.0:* -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

15

udp 0 0 0.0.0.0:111 0.0.0.0:* 259/portmap
raw 0 0 0.0.0.0:1 0.0.0.0:* 7 -
raw 0 0 0.0.0.0:6 0.0.0.0:* 7 -

Note that the real at daemon does not show up the list of open and/or listening sockets.

Trojaned System

Active Internet connections (servers and established)
Proto RQSQ Local Add Foreign Add State PID/Program name
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 525/httpd
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 496/sendmail: accept
tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN 452/lpd
tcp 0 0 0.0.0.0:98 0.0.0.0:* LISTEN 438/inetd
tcp 0 0 0.0.0.0:79 0.0.0.0:* LISTEN 438/inetd
tcp 0 0 0.0.0.0:513 0.0.0.0:* LISTEN 438/inetd
tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN 438/inetd
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN 438/inetd
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 438/inetd
tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN 377/identd
tcp 0 0 0.0.0.0:892 0.0.0.0:* LISTEN 289/rpc.statd
tcp 0 0 0.0.0.0:1024 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 264/portmap
udp 0 0 0.0.0.0:518 0.0.0.0:* 438/inetd
udp 0 0 0.0.0.0:517 0.0.0.0:* 438/inetd
udp 0 0 0.0.0.0:890 0.0.0.0:* 289/rpc.statd
udp 0 0 0.0.0.0:1024 0.0.0.0:* -
udp 0 0 0.0.0.0:111 0.0.0.0:* 264/portmap
raw 0 0 0.0.0.0:255 0.0.0.0:* 7 395/atd
raw 0 0 0.0.0.0:1 0.0.0.0:* 7 395/atd
raw 0 0 0.0.0.0:1 0.0.0.0:* 7 -
raw 0 0 0.0.0.0:6 0.0.0.0:* 7 -

The Trojan Loki daemon (PID 395 above) opens two raw (i.e., ICMP) sockets, 255

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

16

and 1. (The two bottom lines in the output indicate that the kernel is listening on ports 1
& 6, and is typical). The fact that it would show up in this list makes sense because Loki
functions as a covert ICMP channel (ergo the raw sockets as opposed to UDP or TCP).

The reason Loki opens two sockets is explained in the Phrack article. The below is the
illustration from the Phrack article. Note that the first generation Loki daemon forks
resulting in a second generation daemon, and the second generation also forks into a
third generation daemon, while the first generation daemon exits. The second and third
generation daemons appear to handle requests from the Loki client through separate
threads, ergo the two open raw ports, 1 & 255.

LSOF: List of Open Files

The lsof command indicates that files that are currently open and being used by running
process or applications. The lsof was run both pre- and post-daemon. The entire
results are several pages long, therefore, only the differences between the two listings
are indicated below:

LSOF for the Control Condition

// lines deleted

COM PID USER FD TYPE DEV SIZE NODE NAME
atd 390 root cwd DIR 3,5 4096 506951 /var/spool/at
atd 390 root rtd DIR 3,5 4096 2 /
atd 390 root txt REG 3,5 13916 1291893 /usr/sbin/atd
atd 390 root mem REG 3,5 340663 425154 /lib/ld-2.1.3.so
atd 390 root mem REG 3,5 4101324 425161 /lib/libc-2.1.3.so
atd 390 root mem REG 3,5 246652 425192 /lib/libnss_files-2.1.3.so
atd 390 root 0u CHR 1,3 196237 /dev/null
atd 390 root 1u CHR 1,3 196237 /dev/null
atd 390 root 2u CHR 1,3 196237 /dev/null
atd 390 root 3uW REG 3,5 4 1488214 /var/run/atd.pid
atd 390 root 7r FIFO 0,0 354 pipe
atd 390 root 8w FIFO 0,0 354 pipe
atd 390 root 21w CHR 1,3 196237 /dev/null

The output above describes the files that the at daemon uses when it is running. Note
the three libraries opened.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

17

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

18

LSOF for Trojaned System

// Lines deleted

COD PID USER FD TYPE DEVICE SIZE NODE NAME
atd 395 root cwd DIR 3,5 4096 179873 /tmp
atd 395 root rtd DIR 3,5 4096 2 /
atd 395 root txt REG 3,5 15348 539723 /usr/sbin/atd
atd 395 root mem REG 3,5 25386 425240 /lib/ld-linux.so.1.9.5
atd 395 root mem REG 3,5 699832 1275640 /usr/i486-linux-libc5/lib/libc.so.5.3.12
atd 395 root 1w FIFO 0,0 415 pipe
atd 395 root 2w FIFO 0,0 416 pipe
atd 395 root 3u raw 419 00000000:0001->00000000:0000 st=07
atd 395 root 4u raw 420 00000000:00FF->00000000:0000 st=07
atd 395 root 7r FIFO 0,0 417 pipe
atd 395 root 8w FIFO 0,0 417 pipe
atd 395 root 21w CHR 1,3 196237 /dev/null

The list of open files for the Trojaned system looks very different. First, it uses entirely
different library files, and it also shows the two raw sockets at ports 1 (HEX = :0001) and
255 (HEX = :00FF). Given the dissimilar functionality of the at & Loki daemons it is not
unexpected to see that they use entirely different library files.

MAC Timeline

Recall that the Loki binary was copied to an air-gapped system running a freshly
installed
(unpatched) copy of Redhat 6.2 using the server install. It was subsequently run to
determine what files, if any, change on the hard drive. Once Loki was executed, the
system was shut down and then restarted using FIRE (a bootable Linux CD that
includes TASK and many other forensics applications).

TASK tools were used to determine what files are accessed, modified, or changed when
the Loki is run. The first command run is fls, which lists files and directory names in a
forensics image, along with each MAC time.

[root@FIRE]# fls -rf linux-ext2 -m / /dev/hda5 > /data/atd.mac

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

19

The command line above asks that fls work recursively (-r) on a EXT2 file system,
getting MAC times for each file and directory encountered. Next inodes (including
unallocated) are captured along with MAC times using the ils command.

[root@FIRE]# ils -f linux-ext2 -m /dev/hda5 >> /data/atd.mac

This command line above creates MAC times for each inode on /dev/hda5, the partition
where the Loki daemon was executed. This output is concatenated onto the output
from the previous command. Finally, the MAC times are formatted in human readable
format using the mactime command.

[root@FIRE]# mactime -b /data/atd.mac 3/1/2003 > /data/atd.mactimes

The -b flag indicates the body file to be used with the mactime utility, the date 3/1/2003
indicates that I am only interested in the files with any of M,A,C on or after that date.
Partial results of the analysis are indicated below.

// Dozens of lines deleted

Wed Mar 12 2003 16:32:38

699832 .a. -/-rwxr-xr-x 0 0 957427 /usr/i486-linux-libc5/lib/libc.so.5.3.12
 25386 .a. -/-rwxr-xr-x 0 0 421913 /lib/ld-linux.so.1.9.5
 44 .a. -/-rw-r--r-- 0 0 194693
/usr/share/locale/en_US/LC_MESSAGES/SYS_LC_MESSAGES
 14 .a. l/lrwxrwxrwx 0 0 957452 /usr/i486-linux-libc5/lib/libc.so.5 -> libc.so.5.3.12bz.so.Y
 17 .a. l/lrwxrwxrwx 0 0 421912 /lib/ld-linux.so.1 -> ld-linux.so.1.9.5
 12210 .a. -/-rw-r--r-- 0 0 308565 /etc/ld.so.cache
 15348 .a. -/-rwxr-xr-x 0 0 535481 /root/atd

The time and date, Wed Mar 12 2003 16:32:38, is when the Loki daemon was
executed. Note that each is a library. The libc.so.5 library includes all the standard C
commands (e.g., printf, read, open, etc.) as well as system calls. This library has since
been replaced by a version 6. Library ld-lilnux.so.1 is the loader for the aforementioned
library. Other files opened, including ld.so.cache and SYS_LC_MESSAGES are
discussed more fully in the strace analysis below.

As the results of this analysis illustrate, the Loki server accesses several files during
execution. Unfortunately (for the forensic analysis), they are files that are probably
accessed by hundreds (thousands) of executables during the normal course of
operation. Because of this fact it will make it more difficult to determine whether the Loki
server was run on the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

20

Tracing System Calls

The final part of dynamic analysis involved tracing the use of system calls by a running
process. This was done with the Linux utility strace. strace acts like a wiretap between
a program and the operating system, displaying information about files or networks that
are accessed, memory access, and other types of system calls (Mandia & Prosise,
2002).

The exact command used to run strace was as follows:

[root@FIRE]# strace –o atd.out ./atd

The –o flag indicates that the trace should be written to the file atd.out. The results of
strace are provided below.

1. execve("./atd", ["./atd"], [/* 19 vars */]) = 0

2. old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,
0) = 0x40007000

3. mprotect(0x40000000, 21772, PROT_READ|PROT_WRITE|PROT_EXEC) = 0

4. mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
5. stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=12210, ...}) = 0
6. open("/etc/ld.so.cache", O_RDONLY) = 4
7. old_mmap(NULL, 12210, PROT_READ, MAP_SHARED, 4, 0) = 0x40008000

8. close(4) = 0
9. stat("/etc/ld.so.preload", 0xbffffb70) = -1 ENOENT (No such file or directory)
10. open("/usr/i486-linux-libc5/lib/libc.so.5", O_RDONLY) = 4

11. read(4, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0(k\1\000"..., 4096) = 4096
12. old_mmap(NULL, 823296, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x4000b000

13. old_mmap(0x4000b000, 592037, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 4, 0)
= 0x4000b000

14. old_mmap(0x4009c000, 23728, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 4,
0x90000) = 0x4009c000

15. old_mmap(0x400a2000, 201876, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400a2000

16. close(4) = 0

17. mprotect(0x4000b000, 592037, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
18. munmap(0x40008000, 12210) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

21

19. mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) = 0
20. mprotect(0x4000b000, 592037, PROT_READ|PROT_EXEC) = 0

21. mprotect(0x40000000, 21772, PROT_READ|PROT_EXEC) = 0
22. personality(PER_LINUX) = 0
23. geteuid() = 0
24. getuid() = 0

25. getgid() = 0
26. getegid() = 0
27. geteuid() = 0

28. getuid() = 0
29. brk(0x804c818) = 0x804c818
30. brk(0x804d000) = 0x804d000

31. open("/usr/share/locale/en_US/LC_MESSAGES", O_RDONLY) = 4
32. fstat(4, {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
33. close(4) = 0
34. open("/usr/share/locale/en_US/LC_MESSAGES/SYS_LC_MESSAGES", O_RDONLY) = 4

35. fstat(4, {st_mode=S_IFREG|0644, st_size=44, ...}) = 0
36. old_mmap(NULL, 44, PROT_READ, MAP_PRIVATE, 4, 0) = 0x40008000
37. munmap(0x40008000, 44) = 0

38. close(4) = 0
39. stat("/etc/locale/C/libc.cat", 0xbffff694) = -1 ENOENT (No such file or directory)
40. stat("/usr/lib/locale/C/libc.cat", 0xbffff694) = -1 ENOENT (No such file or directory)

41. stat("/usr/lib/locale/libc/C", 0xbffff694) = -1 ENOENT (No such file or directory)
42. stat("/usr/share/locale/C/libc.cat", 0xbffff694) = -1 ENOENT (No such file or directory)
43. stat("/usr/local/share/locale/C/libc.cat", 0xbffff694) = -1 ENOENT (No such file or directory)
44. socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 4

45. sigaction(SIGUSR1, {0x804a6b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT}, {SIG_DFL},
0x4003ac68) = 0

46. socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 5

47. setsockopt(5, SOL_IP, IP_HDRINCL, [1], 4) = 0
48. getpid() = 625
49. getpid() = 625
50. shmget(867, 240, IPC_CREAT|0) = 2

51. semget(1049, 1, IPC_CREAT|0x180|0600) = 1
52. shmat(2, 0, 0) = 0x40008000
53. write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52) = 52

54. time([1047438538]) = 1047438538

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

22

55. close(0) = 0
56. (SIGTTOU, {SIG_IGN}, {SIG_DFL}, 0x4003ac68) = 0

57. sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}, 0x4003ac68) = 0
58. sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}, 0x4003ac68) = 0
59. fork() = 626
60. close(5) = 0

61. close(4) = 0
62. semop(1, 0xbffffb0c, 2) = 0
63. shmdt(0x40008000) = 0

64. semop(1, 0xbffffb0c, 1) = 0
65. _exit(0) = ?

Strace Analysis

According to Mandia & Prosise (2002), the first 22 lines are “basically standard for all
dynamically linked Executable Linked Format (ELF) executables.” (p. 414).
Nevertheless, I will briefly describe their meaning (given I went to the trouble of
understanding their function).

The results of strace support the results of the MAC time analysis with respect to
evidence of the files that are touched/open by Loki, including ld.so.1, ld.so.5,
ld.so.cache, etc. However, strace provides far more information than the other dynamic
analysis utility, especially in terms of things that the executable apparently needs to
function properly, but cannon find on the running system. ld.so.cache is the first file that
is searched for (line 4), and if found, opened read-only (line 5) and subsequently closed
(line 8). ld.so.cache contains a compiled list of candidate libraries previously found in
the augmented library path. It appears that ld.so.cache is opened for read-only to
determine where the executable needs to find dynamically linked library files necessary
for its operation.

Line 9 indicates that the file /etc/ld.so.preload was searched for, but not found on the
system. According to Internet resources this file contains the names of libraries, which
cause the system to preload this shared library every time a dynamically linked
application is run (http://archives.neohapsis.com/archives/incidents/2002-01/0086.html).
This source also indicates that this file is part of the source of rootkit vulnerability.

Line 34 indicates that the file SYS_LC_MESSAGES is opened read-only as file descriptor 4
(and subsequently close on line 33. Files in the /locate/en_US directory are base files
for English language localization and are part of the glibc library, which is the standard
C library (according to information on freshmeat.net). I viewed the contents of this file
but was unable to ascertain its purpose (it contained what appeared to almost be grep-
like commands).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

23

I searched the Internet (via Google) using the keywords
 “/usr/share/locale/en_US/LC_MESSAGES/SYS_LC_MESSAGES”
and “SYS_LC_MESSAGES.” Although the keyword searched returned several
hundreds (or thousands) of hits I could find no a precise description as to exactly what
the file contains.

At line 39 we see that Loki attempts to find the file libc.cat by searching through several
directories. The file is not found in any of the four directories where are searched. I
attempted to manually search for the file, in case the file happened to reside in a
directory not included within the four searches [find / -name “libc.cat” –print], but it did
not appear that the file is included in the standard install. I used the keyword “libc.cat”
as well as “What is libc.cat” for a Google search. I found several references to the file,
however, no precise description as to its function.

Two raw (ICMP) sockets are opened as descriptors 4 & 5 at lines 44 & 46, respectively.
We are aware of this fact from both the results of running the netstat as well as lsof
utilities.

Lines 48 & 49 indicate that the running process received a process ID of 625. Also, it
appears that when the process forks (line 59), the fork receives the process ID of 626.

Line 53 of the strace output shows that the phrase “LOKI2 route [(c) 1997 guild corporation
worldwide]” is printed to standard out (the file descriptor 2). Line 65 indicates that the
process exits.

Conclusion

The strace utility provided new as well as corroborating evidence regarding Loki’s
functionality. There are several places in the output that indicate that the process failed
to find (apparently) needed files. This information could not be found with the other
utilities employed in the dynamic analysis.

One interesting note is that the Loki doesn’t appear to open any files on the hard drive
for writing. Thus, it appears to leave little evidence of its execution outside of the
opening of several library and associated files, files that used commonly by numerous
other executables. The only real pieces of evidence of Loki is itself (the executable),
and the fact that it writes out to standard error the executables name, author, and
copyright date.

Had I been able to compile the original source code it would have been informative to
place the code on an air-gapped network (two computers connected via switch, for
example) and run both the server and several clients to determine how they react to the
fact that several files could not be found (at least on a Redhat 6.2 system).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

24

Legal Implications

The legal implications of the use of a covert channeling system are interesting are
several levels. First I will discuss the applicability of the Computer Fraud and Abuse Act
of 1987, followed by the Nebraska Computer Crimes Act (1995). First I will discuss
whether Loki leaves any forensic evidence of it being executed on a system.

Evidence Loki Was Run

Recall that the purpose of Loki is to use ICMP packets as a covert channel of
communications. One might assume that finding a running Loki client or server would
be evidence of someone who attempting to thwart regular/acceptable communications
channels. Under some circumstances one can imagine that the use of covert channels
for communication may be necessary and ethical, albeit perhaps illegal, such as
dissidents in oppressed political regimes.

Political dissidents’ aside, however, the use of a covert channel is likely to be
problematic in an organization. The use of a covert channel in an organizational setting
is likely to indicate that someone is willfully subverting official organizational policy on
communications, and probably violating the acceptable use policy. (It is unlikely that any
acceptable use policy specifically addresses the use of covert channels, although
perhaps some government intelligence or Department of Defense agencies include
such provisions).

The dynamic analysis did not appear to demonstrate that the Loki daemon leaves
anything in the way of evidence that it was ever run (unless, of course, someone finds
that it is running during the computers operation). The evidence that makes it clear that
we are not dealing with the usual at daemon is found in the netstat, lsof, and strace
results. In each of these analyses there were two raw sockets opened by the Loki
daemon. The normal at daemon would not be associated with two ICMP sockets.

There is no strong, clear-cut evidence that the Loki daemon has been run after it is
killed. For example, it does not appear to open any files for writing (e.g., temporary,
scratch files), which may be undeleted with appropriate forensics techniques (using
debugfs, or any of the TCT or TASK tools). Several portions of the dynamic analysis
did show that the daemon used several library files; however there are hundreds or
thousands of executables that would use these library files, therefore, the behavior is
not unique to the Loki daemon.

Loki server daemon does print out its name, author, and copyright date to the screen. If
that information were found on the screen, or in some log file, then that could be
considered evidence that the file was run, especially if the executable were also found
on the hard drive.

Identifying Loki by Understanding Normal ICMP Traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

25

One way to determine if an ICMP covert channel is in use is by comparing it to normal
ICMP traffic. According to Mandia & Prosise (2002) normal ping traffic works
accordingly:

1. Normal ICMP traffic begins with an ICMP echo request, followed by single ICMP
echo reply

2. ICMP sequence number increments by one for each echo request sent
3. ICMP traffic contains a payload with predictable traffic
4. ECHO replies contain a payload that is identical to that of the corresponding

request

Any network behavior violating these heuristics may be evidence of a covert channel.
Point 1 above is fairly straightforward: ICMP echo replies must be preceded by a single
associated echo reply. Regarding point 2, the authors demonstrated that Loki traffic
has a distinctive signature instead of the normal incremented sequence number: cdab.
Points 3 and 4 can be checked through logging or other more intrusive means (sniffing
via tcpdump, Ethereal, etc.). Because ICMP covert channel is used as a backdoor the
packets will contain human readable commands, which will clearly look as such.

Loki as a Violation of Acceptable Use Policies

The extent to which use of Loki violates an organization’s acceptable use policy
depends upon how well the policy is written. A good acceptable use policy will have a
‘that which is not expressly allowed is denied.’ This is a fail-safe policy given it would be
difficult or impossible to list all of the possible types of illegal or unacceptable uses or
abuses of a computer network.

Loki as a Violation of Federal Statutes

A person installing a Loki server on a computer without the owner’s authorization could
be indicted under the 1987 Computer Fraud and Abuse Act (CFAA: DOJ, 1987). The
CFAA is part of 18 U.S.C. 1030, Fraud and Related Activity in Connection with
Computers. The CFAA defines penalties for any person who gains unauthorized access
to a protected computer, and in so doing causes damage or loss. The CFAA is fairly
broad in its interpretation of illegal and unauthorized access to ‘protected computers’
(defined below). There appear to be several conditions under which a person installing
Loki on a computer could fall under the CFAA. For example, articles 1 through 4 of the
CFAA specify that whoever:

(1) having knowingly accessed a computer without authorization or exceeding
authorized access, and by means of such conduct having obtained information
that has been determined by the United States Government pursuant to an
Executive order or statute to require protection against unauthorized disclosure
for reasons of national defense or foreign relations, or any restricted data, as
defined in paragraph y of section 11 of the Atomic Energy Act of 1954.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

26

Punishment: Fine or imprisonment of not more than 10 years, as long as
the person has not been convicted of a similar crime under this heading. If
convicted of more than one crime, subject to fine or imprisonment for not
more than 20 years, or both.

(2) intentionally accesses a computer without authorization or exceeds
authorized access…

(3) intentionally, without authorization to access any nonpublic computer of a
department or agency of the United States, accesses such a computer of that
department or agency that is exclusively for the use of the Government of the
United States;

(4) knowingly and with intent to defraud, accesses a protected computer without
authorization, or exceeds authorized access, and by means of such conduct
furthers the intended fraud and obtains anything of value

Punishment for Sections 2 and 3: Fine or imprisonment for not more than
one year, or both, unless person has been convicted previously under the
statute, where the penalty is fine or imprisonment for not more than 10
years, or both.

Sections 5 (A) and (B) extend the conditions to situations where computer code or
programs are transmitted using computers that are involved in the conduct of interstate
commerce. It would not be difficult to argue that any web server or computer with a
connection to the web may well fall under the rubric “used in the conduct of interstate
commerce.”

To paraphrase 5 (B), whoever: through means of a computer used in interstate
commerce or communication, knowingly causes the transmission of a program,
information, code, or command to a computer or computer system causes damage to
computer system or network; or withhold or deny the use of the system or
network; and if the transmission of the harmful component of the program, information,
code, or command occurred without the authorization of the persons or entities who
own or are responsible for the computer system receiving the program, information,
code, or command; and causes loss or damage to one or more other persons of a
value aggregating $1,000 or more during any 1-year period.

Section 5B appears to be directly applicable to a situation involving the unauthorized
installation of Loki. Clearly it involves the transmission of code or a program, and it can
be construed as causing damage based upon the definition of damage in the statute
(see definition below). The value to the organization would probably quickly rise to
$1,000 based upon the time it would take for several technical staff to conduct forensic
analysis to determine what the program did, how it affected other programs (even
thought it doesn’t), cleaning the system, and even reinstalling the system from backups.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

27

Civil Penalties

A person can also be subject to civil penalties as defined in section (12)(G) of the
CFAA:

Any person who suffers damage or loss by reason of a violation of this section
may maintain a civil action against the violator to obtain compensatory damages
and injunctive relief or other equitable relief. A civil action for a violation of this
section may be brought only if the conduct involves 1 of the factors set forth in
clause (i), (ii), (iii), (iv), or (v) of subsection (a)(5)(B).

Definition of Legal Terms

To determine whether the installation of Loki can be prosecuted under the articles of the
CFAA one must define the key terms included within the statute. Recall that the CFAA
defines penalties for any person who gains unauthorized access to a protected
computer, and in so doing causes damage and loss. The CFAA defines the following
terms:

• The term ‘protected computer’ as (A) exclusively for the use of a financial
institution or the United States Government, or (B) which is used in interstate or
foreign commerce or communications, including a computer located outside the
United States that is used in a manner that affects interstate or foreign commerce
or communication of the United States;

• The term “exceeds authorized access” means to access a computer with
authorization and to use such access to obtain or alter information in the
computer that the accesser is not entitled so to obtain or alter;

• The term “damage” means any impairment to the integrity or availability of data,
a program, a system, or information;

• The term “loss” includes any reasonable cost to any victim, including the cost of
responding to an offense, conducting a damage assessment, and restoring the
data, program, system, or information to its condition prior to the offense, and
any revenue lost, cost incurred, or other consequential damages incurred
because of interruption of service; and

• The term “person” means any individual, firm, corporation, educational institution,
financial institution, governmental entity, or legal or other entity.

Nebraska Computer Crimes Act

Nebraska Criminal Code, Section 28-13, defines the Nebraska Computer Crimes Act
(1995: http://downloads.securityfocus.com/library/nebraska.html). The NE state statute
covers the use of computers in fraudulent transactions, denial of service, disclosures of
passwords or other means of authentication or crimes against intellectual property.
Clearly it is not as far reaching as the CFAA although it appears to be more specific
than its Federal counterpart.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

28

The Nebraska Computer Crimes Law states that the penalty for use of a computer to
defraud is punished by a fine of not more than $10,000, or by imprisonment for not more
than five years, or both. The penalty for disclosure of passwords, codes, or other means
of authentication shall be punished by a fine of not more than $1,000, or by
imprisonment for not more than six months, or both.

An offense against intellectual property is defined as the “intentional destruction,
insertion or modification, without consent, of intellectual property; or disclosure, use,
copying, taking or accessing, without consent, of intellectual property.”

Whoever commits an offense against intellectual property shall be punished, upon
conviction, by:

• A fine of not more than $ 1,000, or by
• imprisonment for not more than six months, or
• both.

However, when the damage or loss amounts to a value of $100 or more, the offender
may be punished, upon convictions by:

• a fine of not more than $10,000, or
• imprisonment for not more than 5 years, or
• both.

The extent to which any of the Nebraska’s statute would be applicable to the installation
of Loki would depend upon the situation. If the backdoor was used to steal passwords,
or download documents (considered intellectual property) or used to defraud others,
then the perpetrator would be subject to the aforementioned penalties.

Interview Questions

There are several well known interviewing techniques that could be used for interview
purposes. Two of which I studied include the Reid and the Kubark Techniques.

Reid Technique

The “Reid Technique” is used by law enforcement when interviewing suspects prior to
answering this question. The following explanation was taken directly from the Reid
website (http://www.reid.com/critic-technique.html).

“The Reid Technique is a non-accusatory interview that is
conducted before the investigator engages in an accusatory
interrogation. The technique attempts to cull information from the
interviewee by offering moral justification for the suspect’s alleged
crime. The motive for the admission of guilt I offered in the form of
alternative choices provided the suspect. For example: "Did you
commit the crime alone or did your friend help you?"”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

29

Kubark Technique

The Kubark Manual (http://www.mindcontrolforums.com/kubark.htm) was originally
written for interrogating spies during the cold war era. The techniques I have used for
this paper are the non coercive variety. The Kubark manual includes a set of coercive
techniques, such as arrest, detention, pain, deprivation of sensory stimuli, etc., when
the non coercive types do not work.

The Pitches

The first pitch is based on the Reid technique (which is also covered in the Kubark
Manual) of allowing the interviewee to save face and empathize with them, giving them
a way out.

Pitch 1: “I understand that recently you had a falling out with your manager over
some work procedures, and that she threatened to fire you. This occurred a week
prior to this incident. That must have been humiliating given that you've been a
systems administrator for much longer than your boss. I also understand that
you were logged into the system from a remote location at the time that the
rootkit was planted on the system. I also understand that several of your friends
and co-workers that you used to code for a particular rootkit. Did you place the
rootkit on the system because you were angry at your manager, or just to test the
security of your system?”

The second pitch is based on “Nobody Loves You” from the Kubark Manual. The
Kubark Manual explains this pitch thusly:

“An interrogatee who is withholding items of no grave consequence to himself may
sometimes be persuaded to talk by the simple tactic of pointing out that to date all of the
information about his case has come from persons other than himself. The interrogator
wants to be fair. He recognizes that some of the denouncers may have been biased or
malicious. In any case, there is bound to be some slanting of the facts unless the
interrogatee redresses the balance. The source owes it to himself to be sure that the
interrogator hears both sides of the story.”

Pitch 2: “I’ve been talking to several of your colleagues and they've indicated that
they believe that you are the one that placed the back door on the system. They
have also implied that perhaps you were the source of several other security
problems [a bluff]. I just want to get the facts, and hear both sides of the story so
that we can get this mess cleaned up ASAP.”

The third pitch will be based upon the “The All-Seeing Eye (or Confession is Good for
the Soul)” from the Kubark manual:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

30

“The interrogator who already knows part of the story explains to the source that the
purpose of the questioning is not to gain information; the interrogator knows everything
already. His real purpose is to test the sincerity (reliability, honor, etc.) of the source.
The interrogator then asks a few questions to which he knows the answers. If the
subject lies, he is informed firmly and dispassionately that he has lied. By skilled
manipulation of the known, the questioner can convince a naive subject that all his
secrets are out and that further resistance would be not only pointless but dangerous. If
this technique does not work very quickly, it must be dropped before the interrogatee
learns the true limits of the questioner's knowledge.”

Pitch 3: I already have everything I need to know from several very reliable
sources. Now I want to hear everything from you. Don’t skip any details. I know
you were logged in from your girlfriends home account, that's been verified. Now,
start at the beginning ..."

Pitch four is based upon “Ivan Is a Dope.” This pitch appears to be applicable when
there may be two suspects, or the suspect is working for someone. From the Kubark
Manual:

“It may be useful to point out to a hostile agent that the cover story was ill-contrived, that
the other service botched the job, that it is typical of the other service to ignore the
welfare of its agents. The interrogator may personalize this pitch by explaining that he
has been impressed by the agent's courage and intelligence. He sells the agent the idea
that the interrogator, not his old service, represents a true friend, who understands him
and will look after his welfare.”

Pitch 4. I don’t believe you story. It doesn’t ring true. No one believes it. It’s time
to come clean. We know you are working for “Fred.” Fred doesn’t give a crap
about you. He’s let other workers go to jail, and you know what, he could not
care less. We know you aren’t the leader, you were just following orders. Why
don’t you start at the beginning and tell me everything. If you cooperate, I can see
what I can do to lighten your sentence.”

The final pitch is called “overstating the case.” In this pitch the interrogator exaggerates
what the suspect has believed to have done in hopes that the suspect will admit to only
the lesser offense, and deny the larger one.

Pitch 5: “So now we find that not only did you install the Loki server on the
system, but it appears that you also installed several logic bombs, as well as
destroyed several backup tapes. We were looking at maybe a fine with the Loki
server; however, with these additional charges you are looking at serious jail
time.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

31

References

Pfleeger, C.P., & Pfleeger, S.L. (2003). Security in computing. Prentice-Hall: New York.

Miller, J. (1988). 20 Years of Covert Channel Modeling and Analysis. Unpublished
Paper.

John Reid Interviewing Technique. http://www.reid.com/critic-technique.html.

The Kubark Manual. http://www.mindcontrolforums.com/kubark.htm

Phrack P51-06: LOKI2. http://www.phrack.org/phrack/51/P51-06

Whalley, I., Arnold, B., Chess, D., Morar, J., Segal, A., & Swimmer, M.
(2001). An Environment for Controlled Worm Replication and Analysis or:
Internet-inna-Box.
http://www.research.ibm.com/antivirus/SciPapers/VB2000INW.htm

Merchant, C., & Stewart, J. (July 10, 2002). Detecting and Containing IRC-Controlled
Trojans: When Firewalls, AV, and IDS Are Not Enough. LURHQ Corporation Secure
Operations Center.
http://www.megasecurity.org/Trojaninfo/IRC%20controled%20Trojans.html

Daemon9 (route) (August, 1996). Project Loki. Phrack Magazine. Volume Seven,
Issue Forty-Nine. http://www.phrack.org/show.php?p=49&a=6

DOJ (July, 2002). Searching and Seizing Computers and Obtaining Electronic Evidence
in Criminal Investigations. Computer Crime and Intellectual Property Section, Criminal
Division, United States Department of Justice.
http://www.cybercrime.gov/s&smanual2002.htm

Acceptable Use Policies. http://www.rice.edu/armadillo/acceptable.html

Computer Fraud and Abuse Act.
http://www.usdoj.gov/criminal/cybercrime/1030NEW.htm

Computer Crime and Intellectual Property Section (CCIPS), Federal Computer
Intrusion. Laws http://www.usdoj.gov/criminal/cybercrime/cclaws.html

Nebraska Computer Crime Laws.
http://www.phreak.org/archives/The_Hacker_Chronicles_II/law/ne_law.sta

Mandia, K, & Prosise, C. (2002). Incident response: Investigating computer crime.
Osborne.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

32

Part 2

Forensic Analysis of a Discarded
University Computer System

ABSTRACT

This document describes the forensic analysis of a ‘retired’ university personal
computer system. The system was a P5-2000 Gateway system with a three GB hard
drive running Microsoft Windows 95 and DOS 6. The forensic procedures were
comprised of an analysis of allocated, slack, and unallocated space. The results of the
analysis suggested there had been five users with accounts (user ids) on the computer
over a four year period of time, and that the computer had once been used by
employees of the cashiering/student accounting department.

Below I provide a detailed explanation of these forensic procedures. The analysis
resulted in the recovery of several personal as well as work-related documents, social
security numbers, and user id/password combinations. Given the nature of the
information found all identifying has been sanitized, or described in summary, in order to
protect users’ privacy, as well as those whose names are mentioned in the files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

33

Synopsis of Case Facts

Every year the university selectively replaces computers in various departments. The
replacement of computers usually occurs on a three- to five- year rotating basis. The
specific procedure for the replacement of computers is handled thusly:

1. A department, either academic or administrative, is identified as eligible for new
computers.

2. Computer Services identifies a minimum set of requirements for a new computer
system.

3. The order goes out for bid, and a vendor is subsequently selected.
4. New computers arrive.
5. A user, a departmental member, faculty member, or staff member from Computer

Services is designated as responsible for preparing the old computer for
transition from university use. (One might expect that this procedure would
include a secure deletion of the hard drive would occur at this time.)

6. The old computers, including CPU, monitor, keyboard, and mouse, are taken to a
warehouse.

7. At a later time the university holds auctions for the systems.

We requisitioned approximately 20 of these computers for the purpose of providing
incoming freshmen and high school students with the opportunity of acquiring hands-on
experience with computer hardware.

An inventory of these systems found all to be Pentium class machines, P5-200, 250, or
300 systems built around 1997-98. The hard drives were in the range of two to three GB
in size.

I selected a system randomly for this assignment. Below I provide a detailed
explanation of the forensic procedures that I applied to this system. The analysis
resulted in the recovery of several personal as well as work-related documents, social
security numbers, and user id/password combinations. Given the nature of the
information found all identifying has been sanitized, or described in summary, to protect
users’ privacy, as well as those whose names are mentioned in the files.

Hardware

The hardware selected for this forensic analysis was the following:

Tag # Description
001 Gateway P5-2000, Pentium 1, 200MHz, SN 0007055495, MD: 4/30/97
002 Western Digital Caviar 32500, Model: WDAC32500-32H SN: WT3603304173

The system included:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

34

• 17" Gateway monitor;
• 3.5" floppy drive ;
• Teac CD-ROM drive;
• internal sound card;
• internal Matrox graphics card;
• Microsoft mouse, and;
• Gateway keyboard.

Forensic Analysis Machine

The forensic machine is a dual boot machine that purchased specifically for forensic
analysis with money from a modest grant. The machine is a P4-2.2GhZ system with
two hard drives: an 80GB Western Digital hard drive for the operating systems, and a
200GB Western Digital forensic evidence hard drive, both of which spin at 7200 RPM.
The Linux partition runs Redhat 8, and the Windows partition runs Windows XP. The
evidence drive is partitioned into several different file systems, Linux-ext3, FAT32, or
NTFS. The forensic machine includes a LG DVD-RW and a Hewlett-Packard CD-RW.

The hard drive was removed from the Gateway computer and tagged. I made a bit-
copy (image) of the hard drive using an external USB hard drive mounter. The
procedures employed in the imaging of the hard drive are described below.

Forensic Software

The Linux partition includes many forensic tools, including:

• The @stake Sleuth Kit (TASK) v. 1.60 (Carrier, 2003), a replacement and
extension of The Coroner’s Toolkit (Farmer & Venema, 1998) that supports the
analysis of Linux (e.g., ext2 & 3) as well as FAT and NTFS file systems;

• The Autopsy Browser v. 1.70 (Carrier, 2003), a graphical front-end to TASK;
• mac_daddy (Lee, 2003), a Perl script for calculating MAC times;
• mac-robber, a command line utility for calculating MAC times (Carrier, 2000); and
• John the Ripper, a UNIX/NT password cracker.

The Windows partition includes

• The Forensic Toolkit (www.accessdata.com) ;
• EnCase (www.guidancesoftware.com)
• NTI's command line suite of forensic tools (www.nti.com);
• Registrar Lite, a utility for viewing Window’s registry files; and
• PWLTOOL, a *.PWL password cracker (old Windows password files).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

35

The forensic analysis required the use of both Linux and Window’s forensic tools.

Image Media

The first step is to mount the hard drive read-only and then calculate the MD5
cryptographic hash.

md5sum /dev/sda1 > /sans.cert/evidence.md5
//initial step calculates the MD5 cryptographic hash
dd if=/dev/zero of=/dev/hdb2
// write a series of '0's to evidence/forensic hard drive to ensure that no information
preexisting information remains
dd if=/dev/sda1 of=/mnt/evidence/uno.dispose.dd bs=1M
// create the bit-copy image with a block size of 1MB

md5sum uno.dispose.dd >> /sans.cert/evidence.md5
// calculate the cryptographic hash and compare to the hash of the original
cat ./evidence.md5
ef4e023769f1ff1ab895f37cf2205b52 /dev/sda1
ef4e023769f1ff1ab895f37cf2205b52 uno.dispose.dd

Analysis of the System
Evidence can be found anywhere on a disk. This includes allocated space, that is, in
files residing on the disk, as well as unallocated space, when files have been deleted.
Evidence may also be found in slack space; the space at the end of a cluster that a file
does not use. If a file overwrites a previously used cluster, and the file does not use the
entire cluster, then evidence within the slack space may be retrieved.

The procedures for identifying and retrieving evidence will differ depending upon where
the evidence resides. Files in allocated space may be searched by mounting the disk
image (read-only), and then using common search techniques, such as find or grep
under UNIX, to search for specific file names or keywords within files, respectively. The
unallocated space is a special animal because it can hold information from deleted files.
Special forensic procedures are required to access this evidence. Unallocated space
will be searched last.

Windows provides standard directories where it places files which it controls, such as
cookies, recently access files, or temporary files, and so on. The outline below provides
a brief description of this search space.
• Swap (win386.swp)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

36

• Located anywhere
o *.tmp files located anywhere (temporary files)
o *.emf files located anywhere (e.g., print spool files)
o *.txt (text)
o inbox.mbx (mailbox files)
o *.PWL (password files)
o Usual files holding evidence

§ *.doc, *.wp5, *.ppt, *.xls, *.mba, etc.
• Internet history
• Windows registry files

o System.dat
o User.dat

• Any files in the following directories
o C:\temp
o C:\tmp
o C:\windows\temp
o C:\windows\spool
o C:\windows\recent
o C:\windows\cookies
o C:\windows\favorites
o C:\windows\Temporary Internet Files
o C:\Program Files
o C:\My Documents

This outline served as a blueprint for the forensic procedures and their description
below.

Filesystem Overview

Specific information regarding the filesystem can be established using TASK’s fsstat
command. According to its man page, the fsstat command display details of a file
system. The command indicated that the system was a FAT16 system with a cluster
size of 32K, and contains the traditional two FATs (file allocation tables) and a root
directory. Data begins at sector 537.

fsstat -f fat16 uno.dispose.dd

FILE SYSTEM INFORMATION
--
File System Type: FAT
OEM: MSWIN4.1
Volume ID: 595812119
Volume Label:
File System Type (super block): FAT16

META-DATA INFORMATION

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

37

--
Range: 2 - 65922050
Root Directory: 2

CONTENT-DATA INFORMATION
--
Sector Size: 512
Cluster Size: 32768
Sector of First Cluster: 537
Total Sector Range: 0 - 4120639
FAT 0 Range: 1 - 252
FAT 1 Range: 253 - 504
Data Area Sector Range: 505 - 4120639

// lines deleted which display the fat allocation

Note the large cluster size: each allocation unit is comprised of 64 sectors of size
512bytes. This is the largest cluster size recommended by Microsoft. Forensically
speaking, the larger the cluster size, the greater chance of finding interesting tidbits of
evidence in the slack space. Recall that the allocation unit, i.e., the cluster size, is the
smallest amount of disk space that any file (of any size) will be allocated. Thus, a file
comprised of a single ASCII character would be allocated a whopping 32768 byte
cluster. Accordingly, on average, each file will waste approximately 1/2 of its allocation
unit. This will be important when slack space is analyzed later.

Timeline Analysis

I created a timeline first for two reasons. The first reason was to create an exhaustive
list of every file on the system. The second reason was to establish who was using the
programs and files, at what time, and so on. I used command line utilities from the
@stake Sleuth kit (TASK, v1.6). Creating a timeline using TASK is a three step process
First fls is run against the bit-copy. According to its man page fls creates a timeline
listing for existing files:

fls -rf fat16 -m / uno.dispose.dd > /sans.cert/uno.timeline

The -r flag indicates that fls should work recursively through the files, the -f flag
indicates the type of file system (fat16), and -m indicates that the MAC (modified,
accessed, creagted) times should be generated.

The second command run is ils. According to its man page ils lists inode information (or
in this case, directory entry listings):

ils -f fat16 -m uno.dispose.dd >> /sans.cert/uno.timeline

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

38

The results of this command are appended to the results from fls. The final step is to
format the results in a human-readable format, done so by the mactime utility.
According to its man page mactime creates an ASCII time line of file activity. The exact
command line is:

mactime -b /sans.cert/uno.timeline

The -b indicates the body file to be used that contains the derived MAC times, in this
case it is the combined output from the fls and ils command. If an investigator is
interested in only a specific time period, say Jan 1 2003 until April 4, 2003, then a
specific time period can be specified. For example:

mactime -b /sans.cert/uno.timeline 1/1/2003-4/1/2003

Because I was not interested in constraining the timeline I included no constraints.

The entire timeline is attached as a zipped file (it is several hundred pages long).

Timeline Results

The timeline begins on Wed Dec 31 1969 18:00:00, clearly an impossible date for any
PC timeline given that the first PCs did not exist until 1981. According to the timeline
1537 files were created (and a few accessed) at this date and time, which if not for the
highly incorrect date, might lead one to infer that this was the installation time. Because
the system clock was not correctly set during installation it is impossible to determine
the actual date and time of installation.

Wed Dec 31 1969 18:00:00

48640 ..c -/-rwxrwxrwx 0 0 4230668 /WINDOWS/SYSTEM/VIEWERS/VSAMI.DLL
 545 ..c -/-rwxrwxrwx 0 0 671276 /WINDOWS/DOSPRMPT.PIF

78965 ..c -/-rwxrwxrwx 0 0 980528 /WINDOWS/SYSTEM/VMM32/_HELL.VXD (deleted)
2629 .ac -/-rwxrwxrwx 0 0 4106769 /PROGRA~1/ONLINE~1/AT&T/SIGNBTN.GIF
4336 ..c -/-rwxrwxrwx 0 0 706409 /WINDOWS/SYSTEM/ADDREG.EXE

55920 ..c -/-rwxrwxrwx 0 0 706058 /WINDOWS/SYSTEM/MSPRINT.DLL
69194 ..c -/-rwxrwxrwx 0 0 603 /DOS/MSBACKFR.OVL
 57 .ac -/-rwxrwxrwx 0 0 3310093 /WINDOWS/SHELLNEW/WORDPFCT.WPG
88064 ..c -/-rwxrwxrwx 0 0 706308 /WINDOWS/SYSTEM/AVIFIL32.DLL

18999 .ac -/-rwxrwxrwx 0 0 1157651 /WINDOWS/SYSTEM/IOSUBSYS/HSFLOP.PDR
90521 ..c -/-rwxrwxrwx 0 0 980526 /WINDOWS/SYSTEM/VMM32/_ONFIGMG.VXD (deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

39

5632 ..c -/-rwxrwxrwx 0 0 706311 /WINDOWS/SYSTEM/DCIMAN32.DLL
282112 ..c -/-rwxrwxrwx 0 0 706348 /WINDOWS/SYSTEM/D3DRM.DLL

11264 ..c -/-rwxrwxrwx 0 0 706182 /WINDOWS/SYSTEM/AWRAMB32.DLL
17993 ..c -/-rwxrwxrwx 0 0 980490 /WINDOWS/SYSTEM/VMM32/_BIOS.VXD (deleted)
[HUNDREDS OF LINES DELETED]

The second date appearing is Fri Jan 04 1980 00:00:00. Again, this would be an
incorrect date. There are several hundred files with this date/timestamp.

The fact that the system clock was set incorrectly several times will make it difficult, and
impossible in some cases, to make valid inferences regarding system usage. This
anomaly is discussed later in more depth.

Password Files

Perhaps the most interesting forensic questions are: who was using the system, and for
what purposes? Answering these questions requires establishing who the users were.
Unfortunately, Windows 95 does not partition the user space as does NT/2000, and XP,
therefore, other means are required to establish user identity. This was accomplished
by examining the password files found in the Windows directory.

There were five password files (Windows *.PWL files) in the \windows directory.
Because different users would leave different fingerprints on the filesystem I a) cracked
the passwords and b) established the MAC times for the password files, which would
allow me to establish when the user first started on the system (the creation date of the
*.PWL file), when the user last modified his/her password (the modification date of the
*.PWL), and the last time a user logged onto the system, given by the access time.

Users (sanitized) user IDs are:

User ID Password
T******* T******* (same as username)
H***** “1234”
S******* “welcome”
TW**** “blockout”
V******* FAILED

Four of the five passwords were broken with a dictionary attack, using a dictionary with
over 3 million entries. The fifth password (user V) proved more difficult. When the
dictionary attack failed for user V I subsequently ran several brute force attacks,
including:

1. Maximum of four characters using the character set of upper/lower case letters
and numbers

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

40

2. Same as #1 only adding special characters
3. Maximum of five characters using the character set of upper/lower case letters,

numbers and special characters
4. Maximum of 8 characters using "smart force" search (heuristically driven search

for plausible combinations of letters.)
5. Numbers 0-9 with 9 letters, hoping that user V used her social security number.

None of the aforementioned attempts succeeded in breaking the password for user V.

User T’s PWL password file included several cached passwords:

Server:'UNOBFSRV'
Password:’t*******’
Share path:'WWW\HTMLCASH'
Password:'zyac074'
Mail:'MAPI'
Password:'MAPI'

The ‘zyac074’ password will reappear multiple times later when I analyze the
unallocated and slack space of the hard drive.

I was able to establish the entire user’s first and last names from various documents
and files remaining on the hard drive. The names will not be divulged due to privacy
concerns.

User Timeline

Next I used the MAC times of the password files to establish when each of the users
was first and last logged onto the system. I speculated that the creation date of each
password file would be a good guess as to the initial date that the user first logged in,
and that the access time would be the last time the user logged in. Each of the users is
considered below in the (apparent) order in which they gained accessed to the
computer.

User T
Wed Dec 03 1997 13:39:38 758 ..c -/-rwxrwxrwx 0 0 671421 /WINDOWS/T.PWL
Tue Feb 24 1998 16:00:16 758 m.. -/-rwxrwxrwx 0 0 671421 /WINDOWS/T.PWL
Tue Jun 23 1998 01:00:00 758 .a. -/-rwxrwxrwx 0 0 671421 /WINDOWS/T.PWL

User T was the first account created on the computer, in December of 1997. She
changed her password on Feb 24, 1998, and last logged in on June 23 1998. She did
not change her password for 5 months. At some point in time user T changed her last
name, based upon the fact that her last name as indicated on her user ID was different
from the name she used to sign documents.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

41

User TW
Tue Jun 23 1998 16:50:18 688 ..c -/-rwxrwxrwx 0 0 671627 /WINDOWS/TW.PWL
Tue Jun 23 1998 16:50:34 688 m.. -/-rwxrwxrwx 0 0 671627 /WINDOWS/TW.PWL

Tue Jul 07 1998 01:00:00 688 .a. -/-rwxrwxrwx 0 0 671627 /WINDOWS/TW.PWL

User TW’s account was created on June 23, 1998. He/she last logged in on July 7 of
1998, and the modification date indicates that he/she never changed her/his password.
TW accessed the computer for a mere three weeks during the summer of 1998. I could
find no evidence on the evidence drive that could be attributed to TW.

User S
Tue Jun 30 1998 12:10:32 730 ..c -/-rwxrwxrwx 0 0 671630 /WINDOWS/S.PWL
Mon Dec 07 1998 08:10:10 730 m.. -/-rwxrwxrwx 0 0 671630 /WINDOWS/S.PWL
Sun Dec 27 1998 00:00:00 730 .a. -/-rwxrwxrwx 0 0 671630 /WINDOWS/S.PWL

User S’s password was created on June 30, 1998. She modified the password on
December 7, 1998, and was last logged in on December 27. Interestingly, user H’s
account was created the same day (see below).

User V
Fri Jan 04 1980 00:00:00 706 .a. -/-rwxrwxrwx 0 0 671651 /WINDOWS/V.PWL
Fri Jan 04 1980 17:01:58 706 m.. -/-rwxrwxrwx 0 0 671651 /WINDOWS/V.PWL

Sun Jan 24 1999 21:08:58 706 ..c -/-rwxrwxrwx 0 0 671651 /WINDOWS/V.PWL

The last time that user V, a female, logged in is speculative. Clearly the date is set
incorrectly. It does indicate that user V was the last account to be created on the
computer, Sun Jan 24, 1999, which interestingly, is the last time that user H was logged
in.

User H
Sun Dec 27 1998 14:18:44 688 ..c -/-rwxrwxrwx 0 0 671262 /WINDOWS/H.PWL
Sun Dec 27 1998 14:18:46 688 m.. -/-rwxrwxrwx 0 0 671262 /WINDOWS/H.PWL
Sun Jan 24 1999 00:00:00 688 .a. -/-rwxrwxrwx 0 0 671262 /WINDOWS/H.PWL

User H’s account was created Dec 27, 1998, and was last logged in Sun Jan 24, 1999.
According to the modification date he never changed his password.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

42

This timeline clearly indicates that the two users with the most access over time were
user T and user S.

Operating System

I mounted the disk image in read-only mode and did some reconnaissance to determine
what programs or files remained.

mount -t vfat -o ro,loop,noexec,noatime,nodev /dev/sda1 /mnt/evidence

I quickly found that the hard drive contained what appeared to be the entire Windows 95
application. It also contained Microsoft Office 97, Lotus Notes, several games, as well
as several dozen files of possible evidentiary value found in several locations. The
operating system and applications versions were established by viewing several text
files, or using a hex viewer to view documents to view the signatures, or viewing binary
files.

• Windows 95
• DOS 6
• Internet Explorer 4

o Microsoft Office 8
o Word 8
o Excel 8
o PowerPoint 8
o Access 7.53

• Lotus Notes Client 4.6
• Several games

Start-up Files

Start-up files were examined for any anomalous entries. Start-up files included:

• autoexec.bat (root directory)
• config.sys (root directory)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

43

• win.ini (c:\windows directory)
• system.ini c:\windows directory)

Nothing strange or interesting was found in any of the start-up files.

Program Files Directory

The “Program Files” directory contained a full compliment of software. An
examination of each of the directories found that what appeared to be the full
installation of each software package.

[jpc@whammo Program Files]# ls -al
total 608

dr-xr-xr-x 19 32768 Dec 3 1997 .
drwxr-xr-x 22 16384 Dec 31 1969 ..
dr-xr-xr-x 3 32768 Dec 3 1997 Accessories

drwxr-xr-x 6 32768 Dec 5 1997 Common Files
drwxr-xr-x 3 32768 Dec 5 1997 Dr Solomon's
drwxr-xr-x 2 32768 Dec 3 1997 ICW-Internet Connection Wizard
dr-xr-xr-x 5 32768 Dec 3 1997 Internet Explorer

drwxr-xr-x 3 32768 Jul 2 1998 Internet Mail and News
drwxr-xr-x 12 32768 Dec 11 1997 Microsoft FrontPage
drwxr-xr-x 6 32768 Dec 5 1997 Microsoft Office

dr-xr-xr-x 2 32768 Dec 3 1997 NetMeeting
drwxr-xr-x 5 32768 Dec 3 1997 Online Services
drwxr-xr-x 7 32768 Dec 4 1997 Personal Communications

dr-xr-xr-x 2 32768 Dec 3 1997 The Microsoft Network
drwxr-xr-x 13 32768 Dec 5 1997 Uninstall Information
dr-xr-xr-x 2 32768 Dec 3 1997 Windows Messaging
drwxr-xr-x 2 32768 Dec 18 1998 backpack

drwxr-xr-x 3 32768 Dec 3 1997 plus!
drwxr-xr-x 6 32768 Dec 11 1997 websvr

Program Installation Dates

Windows and DOS Installation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

44

It was clear from the MAC timeline that the system clock was quite often set incorrectly.
Recall that the first time on the timeline is Wednesday, December 31, 1969. The fact
that there were many Window’s system files and directories created at this time might
lead one to believe that this was when Windows was first installed.

Of course, Windows could not have been installed in 1969. I suspect that the Gateway
computer came with DOS and Windows installed as they usually do. I also would
expect that the workers at Gateway who perform these installations would correctly set
the system clock. Interestingly, the modification dates of the Windows installation files
were December 3, 1997 (see below), which could mean that Windows 95 was updated
on that date.

Wed Dec 03 1997 11:56:46 32768 m.. d/drwxrwxrwx 0 0 6 /DOS
Wed Dec 03 1997 12:02:44 71 m.. -/-rwxrwxrwx 0 0 242184 /PCD/CONFIG.SYS

Wed Dec 03 1997 12:11:30 32768 m.. d/drwxrwxrwx 0 0 11 /PCD
Wed Dec 03 1997 12:11:34 99 m.. -/-rwxrwxrwx 0 0 9 /CONFIG.SYS
Wed Dec 03 1997 12:11:36 98 m.. -/-rwxrwxrwx 0 0 10 /AUTOEXEC.BAT
Wed Dec 03 1997 12:25:48 22 m.. -/-r-xr-xr-x 0 0 5 /MSDOS.---

Wed Dec 03 1997 12:54:34 32768 m.. d/drwxrwxrwx 0 0 18 /WINDOWS
Wed Dec 03 1997 12:54:56 2389 m.. -/-rwxrwxrwx 0 0 20 /NETLOG.TXT
Wed Dec 03 1997 12:55:14 32768 m.. d/dr-xr-xr-x 0 0 671237 /WINDOWS/INF

Wed Dec 03 1997 12:55:16
 32768 m.. d/drwxrwxrwx 0 0 671239 /WINDOWS/COMMAND
 32768 m.. d/drwxrwxrwx 0 0 671238 /WINDOWS/SYSTEM

 2474 m.. -/-rwxrwxrwx 0 0 706053 /WINDOWS/SYSTEM/DLCNDI.DLL

Accoring to web site ComputerHope (http://www.computerhope.com/whow.htm)
Windows 95 had several updates:

• Windows 95 4.00.950 Original release of Windows 95.
• Windows 95 4.00.950 A Original release of Windows 95 with Service Pack 1

or OEM Service Release 1.
• Windows 95 4.00.950 B Second release of Windows 95 / OSR2 (Has Fat32).
• Windows 95 4.00.950 C Second release of Windows 95 / OSR2 with FAT32,

USB and AGP support.

Therefore, it is likely that the modification dates of December 3, 1997 are most likely
one of these Windows 95 updates.

Office 97 Installation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

45

Office 97 was installed on Friday, July 11, 1997. A portion of the listing of the timeline
associated with the installation is provided below.

Fri Jul 11 1997 01:00:00
5324560 m.c -/-rwxrwxrwx 0 0 2228780 /PROGRA~1/MICROS~1/OFFICE/WINWORD.EXE
34806 mac -/-rwxrwxrwx 0 0 7143966 /PROGRA~1/MICROS~1/CLIPART/POPULAR/CHAMPGNE.WMF
114706 m.c -/-rwxrwxrwx 0 0 2228835 /PROGRA~1/MICROS~1/OFFICE/XLMAIN8.CNT
 9878 mac -/-rwxrwxrwx 0 0 7143963 /PROGRA~1/MICROS~1/CLIPART/POPULAR/BRICK.WMF

500736 m.c -/-rwxrwxrwx 0 0 2228869 /PROGRA~1/MICROS~1/OFFICE/MSAIN800.DLL
5604624 m.c -/-rwxrwxrwx 0 0 2228821 /PROGRA~1/MICROS~1/OFFICE/EXCEL.EXE
1597200 m.c -/-rwxrwxrwx 0 0 7053847 /PROGRA~1/COMMON~1/MICROS~1/VBA/VBA332.DLL

18402 mac -/-rwxrwxrwx 0 0 2228904 /PROGRA~1/MICROS~1/OFFICE/OFREAD8.TXT
[HUNDREDS OF LINES DELETED]

Internet Explorer 4 Update or Installation

Internet Explorer 4 was installed, or version 3 was updated, on Thursday, Sept 18,
1997. Only a portion of the MAC timeline is provided below.

Thu Sep 18 1997 01:00:00
 92672 m.c -/-rwxrwxrwx 0 0 706233 /WINDOWS/SYSTEM/URL.DLL
 6144 m.c -/-rwxrwxrwx 0 0 706537 /WINDOWS/SYSTEM/COMCAT.DLL

 17075 m.c -/-rwxrwxrwx 0 0 706731 /WINDOWS/SYSTEM/IE4UINIT.INF
486000 m.c -/-rwxrwxrwx 0 0 706792 /WINDOWS/SYSTEM/IE4TOUR.DLL
 46746 mac -/-rwxrwxrwx 0 0 738924 /WINDOWS/HELP/IEXPLORE.HLP
 35232 mac -/-rwxrwxrwx 0 0 2063888 /PROGRA~1/INTERN~1/ACTSETUP.EXE

 1478 m.c -/-rwxrwxrwx 0 0 686855 /WINDOWS/INF/INETFIND.INF
 83200 m.c -/-rwxrwxrwx 0 0 706787 /WINDOWS/SYSTEM/CRYPTDLG.DLL
 22528 m.c -/-rwxrwxrwx 0 0 706742 /WINDOWS/SYSTEM/CFGMGR32.DLL

482576 m.c -/-rwxrwxrwx 0 0 706549 /WINDOWS/SYSTEM/JSCRIPT.DLL
 18371 mac -/-rwxrwxrwx 0 0 11065864 /PROGRA~1/INTERN~1/SETUP/IE4.INF
 77728 m.c -/-rwxrwxrwx 0 0 706759 /WINDOWS/SYSTEM/IETIMER.OCX
106352 m.c -/-rwxrwxrwx 0 0 2063887 /PROGRA~1/INTERN~1/IE4.DLL

106352 mac -/-rwxrwxrwx 0 0 11065866 /PROGRA~1/INTERN~1/SETUP/IE4.DLL

Lotus Notes Installation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

46

Lotus Notes 4.6 was installed on Monday, September 15, 1997. Only a small portion of
the MAC timeline is provided below.

Mon Sep 15 1997 20:08:48

13824 m.c -/-rwxrwxrwx 0 0 25471633 /NOTES/nntediff.dll (NNTEDIFF.DLL)
Mon Sep 15 1997 20:08:52
47104 m.c -/-rwxrwxrwx 0 0 25471911 /NOTES/naldaemn.exe (NALDAEMN.EXE)
Mon Sep 15 1997 20:08:54

95232 m.c -/-rwxrwxrwx 0 0 25471527 /NOTES/namgr.exe (NAMGR.EXE)
Mon Sep 15 1997 20:08:56
4096 m.c -/-rwxrwxrwx 0 0 25471937 /NOTES/namhook.dll (NAMHOOK.DLL)

Mon Sep 15 1997 20:09:00
28672 m.c -/-rwxrwxrwx 0 0 25471607 /NOTES/ltssb01.dll (LTSSB01.DLL)
Mon Sep 15 1997 20:09:02
63488 m.c -/-rwxrwxrwx 0 0 25471919 /NOTES/nwrdaemn.exe (NWRDAEMN.EXE)

Mon Sep 15 1997 20:09:08
43520 m.c -/-rwxrwxrwx 0 0 25471651 /NOTES/nchronos.exe (NCHRONOS.EXE)
Mon Sep 15 1997 20:09:16

11264 m.c -/-rwxrwxrwx 0 0 25471695 /NOTES/ndbnotes.dll (NDBNOTES.DLL)
Mon Sep 15 1997 20:09:18
5120 m.c -/-rwxrwxrwx 0 0 25471691 /NOTES/nntcheck.dll (NNTCHECK.DLL)

Mon Sep 15 1997 20:09:26
40960 m.c -/-rwxrwxrwx 0 0 25471711 /NOTES/getgroup.exe (GETGROUP.EXE)
Mon Sep 15 1997 20:11:46
702464 m.c -/-rwxrwxrwx 0 0 25471537 /NOTES/neditfax.dll (NEDITFAX.DLL)

Mon Sep 15 1997 20:12:10
36864 m.c -/-rwxrwxrwx 0 0 25471609 /NOTES/mksyd.exe (MKSYD.EXE)

// hundreds of additional lines deleted

Last Days of the Computer

According to the MAC timeline the last day the computer was accessed was
Wednesday, December 29, 1999. (As will be demonstrated later, this simply cannot be
the case, as a letter is found whose contents describe events transpiring in November
of 2000). On that day there is evidence that someone was manipulating some of the
personal files on the computer. Although one cannot put too much faith in the dates
and times on these files, it appears that someone was working on Christmas day. A
description of the nature of these personal files is provided later.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

47

Fri Dec 17 1999 00:00:00
33792 .a. -/-rwxrwxrwx 0 0 14851598 /DATA/To The Honorable Senators Kerry and Hagel.doc

Fri Dec 17 1999 21:26:58
33792 ..c -/-rwxrwxrwx 0 0 14851598 /DATA/To The Honorable Senators Kerry and Hagel.doc
Fri Dec 17 1999 21:27:00
33792 m.. -/-rwxrwxrwx 0 0 14851598 /DATA/To The Honorable Senators Kerry and Hagel.doc

38912 .a. -/-rwxrwxrwx 0 0 14851601 /DATA/To my dearest Son.doc
Sat Dec 25 1999 01:06:16
38912 ..c -/-rwxrwxrwx 0 0 14851601 /DATA/To my dearest Son.doc

Sat Dec 25 1999 10:53:16
38912 m.. -/-rwxrwxrwx 0 0 14851601 /DATA/To my dearest Son.doc
Wed Dec 29 1999 00:00:00

22016 .a. -/-rwxrwxrwx 0 0 14851603 /DATA/Dear Bill.doc
Wed Dec 29 1999 05:51:38
22016 ..c -/-rwxrwxrwx 0 0 14851603 /DATA/Dear Bill.doc
Wed Dec 29 1999 05:51:40

22016 m.. -/-rwxrwxrwx 0 0 14851603 /DATA/Dear Bill.doc

FILE ANALYSIS

Windows Swap File

The Window’s swap file was found in C:\windows\win386.swp. Unfortunately, the file
was 0 bytes, and therefore contained no data. Data previously contained within the
swap file might still be accessible in the unallocated or slack space.

C:\windows\temp

The Window’s \temp directory contained several files, including eight *.tmp files.
However, each was 0 bytes, and therefore, provided no evidentiary information.

-rwxr-xr-x 1 root root 0 Apr 16 1999 ~dfa37.tmp
-rwxr-xr-x 1 root root 0 Jan 4 1980 ~dfc458.tmp
-rwxr-xr-x 1 root root 0 Apr 16 1999 ~dff613.tmp

-rwxr-xr-x 1 root root 0 Mar 3 1999 offA0B1.TMP
-rwxr-xr-x 1 root root 0 Mar 3 1999 offA0B4.TMP
-rwxr-xr-x 1 root root 0 Mar 3 1999 offB1D5.TMP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

48

-rwxr-xr-x 1 root root 0 Dec 30 1998 offC2F5.TMP
-rwxr-xr-x 1 root root 0 Dec 30 1998 offC302.TMP

Root Directory

The root directory contained many files of possible evidentiary value. These files are
identified in bold. The dates associated are the creation dates (from the –c flag on the
ls command).

ls –lct

drwxr-xr-x 2 root root 32768 Apr 16 1999 mc3

drwxr-xr-x 4 root root 32768 Apr 16 1999 sl
-rwxr-xr-x 1 root root 32768 Apr 16 1999 shroud.doc
-rwxr-xr-x 1 root root 19456 Dec 29 1998 Doc1.doc

-rwxr-xr-x 1 root root 65 Dec 18 1998 config.w40
-r-xr-xr-x 1 root root 1652 Dec 18 1998 msdos.w40
drwxr-xr-x 3 root root 32768 Dec 18 1998 ~mssetup.t

drwxr-xr-x 2 root root 32768 Dec 15 1998 shtlman
drwxr-xr-x 2 root root 32768 Dec 15 1998 epiacd.w95
-rwxr-xr-x 1 root root 70577 Dec 15 1998 detlog.txt
-rwxr-xr-x 1 root root 0 Dec 9 1998 config.bak

drwxr-xr-x 2 root root 32768 Sep 17 1998 rockymt
-rwxr-xr-x 1 root root 187 Jul 7 1998 Autoexec.ttw.bat
-rwxr-xr-x 1 root root 238 Jul 7 1998 Config.ttw

-rwxr-xr-x 1 root root 183 Jul 7 1998 autoexec.syd
-rwxr-xr-x 1 root root 234 Jul 7 1998 Config.sys.syd
drwxr-xr-x 6 root root 32768 Jul 2 1998 notes
-rwxr-xr-x 1 root root 35665 Jul 2 1998 uninst.log

-rwxr-xr-x 1 root root 154 Jun 30 1998 Autoexec.old.bat
drwxr-xr-x 2 root root 32768 Jan 8 1998 ewan
drwxr-xr-x 2 root root 32768 Dec 11 1997 temp

drwxr-xr-x 2 root root 32768 Dec 11 1997 data
drwxr-xr-x 5 root root 32768 Dec 11 1997 webshare
drwxr-xr-x 3 root root 32768 Dec 9 1997 internet

drwxr-xr-x 2 root root 32768 Dec 9 1997 My Documents

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

49

-rwxr-xr-x 1 root root 21669 Dec 8 1997 nec_ide.sys
-rwxr-xr-x 1 root root 25361 Dec 8 1997 mscdex.exe

drwxr-xr-x 2 root root 32768 Dec 8 1997 bin
drwxr-xr-x 2 root root 32768 Dec 8 1997 dev
-rwxr-xr-x 1 root root 88484 Dec 5 1997 detlog.old
-rwxr-xr-x 1 root root 62901 Dec 5 1997 findviru.rpt

-rwxr-xr-x 1 root root 483 Dec 5 1997 autoexec.bak
-rwxr-xr-x 1 root root 485 Dec 5 1997 autoexec.w40
drwxr-xr-x 2 root root 32768 Dec 3 1997 recycled

-rwxr-xr-x 1 root root 59672 Dec 3 1997 setuplog.txt
-rwxr-xr-x 1 root root 5168 Jan 4 1980 ffastun.ffa
-rwxr-xr-x 1 root root 167936 Jan 4 1980 ffastun.ffo

-rwxr-xr-x 1 root root 364544 Jan 4 1980 ffastun0.ffx
-rwxr-xr-x 1 root root 98304 Jan 4 1980 ffastun.ffl
-rwxr-xr-x 1 root root 16896 Jan 4 1980 My Dearest Darling.doc
dr-xr-xr-x 19 root root 32768 Jan 1 1980 Program Files

-rwxr-xr-x 1 root root 98 Jan 1 1980 autoexec.bat
-rwxr-xr-x 1 root root 24767 Jan 1 1980 bootlog.prv
-rwxr-xr-x 1 root root 24767 Jan 1 1980 bootlog.txt

-r-xr-xr-x 1 root root 54619 Jan 1 1980 command.com
-rwxr-xr-x 1 root root 93812 Jan 1 1980 command.w40
-rwxr-xr-x 1 root root 99 Jan 1 1980 config.sys

drwxr-xr-x 2 root root 32768 Jan 1 1980 dos
-rwxr-xr-x 1 root root 98304 Jan 1 1980 file0001.chk
-rwxr-xr-x 1 root root 32768 Jan 1 1980 file0002.chk
-rwxr-xr-x 1 root root 32768 Jan 1 1980 file0003.chk

-rwxr-xr-x 1 root root 98304 Jan 1 1980 file0004.chk
-rwxr-xr-x 1 root root 32768 Jan 1 1980 file0005.chk
-rwxr-xr-x 1 root root 32768 Jan 1 1980 file0006.chk

-rwxr-xr-x 1 root root 524288 Jan 1 1980 file0007.chk
-r-xr-xr-x 1 root root 40566 Jan 1 1980 io.sys
-rwxr-xr-x 1 root root 29078 Jan 1 1980 logo.sys
-rwxr-xr-x 1 root root 22 Jan 1 1980 msdos.---

-r-xr-xr-x 1 root root 38138 Jan 1 1980 msdos.sys
-rwxr-xr-x 1 root root 2389 Jan 1 1980 netlog.txt
drwxr-xr-x 2 root root 32768 Jan 1 1980 pcd

-rwxr-xr-x 1 root root 447 Jan 1 1980 scandisk.log

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

50

-r-xr-xr-x 1 root root 5166 Jan 1 1980 suhdlog.dat
-r-xr-xr-x 1 root root 517892 Jan 1 1980 system.1st

-rwxr-xr-x 1 root root 9349 Jan 1 1980 wina20.386
-r-xr-xr-x 1 root root 214836 Jan 1 1980 winboot.sys
drwxr-xr-x 34 root root 32768 Jan 1 1980 windows

The files in bold were considered of potential ‘evidentiary value.’ That is, files that could
tell possibly tell me something significant about the use of the computer. In some
instances this guess was correct, and others not.

The contents of the autoexec.bat and associated backups appeared normal, as did the
contents of the config.sys files and its associated backups.

The *.chk files are lost clusters that are retrieved by DOS chkdsk utility. These were
viewed with a hex viewer. Nothing of interest was found in any of the seven files.

The bootlog.txt file consisted of several hundred lines showing the drivers loaded on
bootup.

[001553C3] Loading Device = \DEV\SLCD.SYS
[001553FC] LoadFailed = \DEV\SLCD.SYS
[001553FC] Loading Device = C:\WINDOWS\HIMEM.SYS
[001553FE] LoadSuccess = C:\WINDOWS\HIMEM.SYS
[001553FE] Loading Device = C:\WINDOWS\IFSHLP.SYS
[00155400] LoadSuccess = C:\WINDOWS\IFSHLP.SYS
[00155400] Loading Device = C:\WINDOWS\SETVER.EXE
[00155402] LoadSuccess = C:\WINDOWS\SETVER.EXE
[00155408] C:\BIN\MSCDEX.EXE[00155408] starting
[Several Hundred Lines Deleted]

Nothing obvious was found regarding the possibility of Trojans or backdoors being
loaded, of course, only a more thorough examination including a dynamic analysis,
would be required to validate this assumption.

The directory \webshare contained some work-related web sites. Apparently the users
of this computer were responsible for maintaining a portion of the web site for
cashiering/student accounting.

The directories \data and \My Documents contained a wealth of information. The \data
directory contained highly personal – non work related – files, whereas the \My
Document directory contained a dozen or so Access databases, several of which
contained personal identifying information. The contents of these directories are
described below.

Two Microsoft Word files were found in the root directory: shroud.doc and Doc1.doc.
Although the document’s properties indicated that the author of the document was user

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

51

S, its creation time indicates that the user associated with this file is user V, the only
apparent user at the time.

Fri Apr 16 1999 21:17:48 32768 ..c -/-rwxrwxrwx 0 0 82 /shroud.doc

Fri Apr 16 1999 21:17:50 32768 m.. -/-rwxrwxrwx 0 0 82 /shroud.doc

The file contained a description of the Shroud of Turin. The title of the document is
“Hungry for His Presence,” and according to text within the document, was downloaded
from http://www.hungryweb.net.

The document Doc1.doc was an empty document.

Word 97 GUID

Microsoft Word 97 included a Globally Unique Identifier in each Word document. This
ID could be used to trace a document to a particular copy of Word. The GUID for the
copy of Word used to create the documents on this hard drive was established through
the use of a hex editor to view the Word documents:

GUID CFC69D43-56AC-11BD-8B0D-E666CGC5E42B

Contents of c:\data\

A user created a directory called \data and placed several personal files here. Except
for a single file (KEYS.doc) each file was of a personal nature. The files are listed
below.

[jpc@whammo data]# ls -al
total 512
drwxr-xr-x 2 32768 Dec 11 1997 .

drwxr-xr-x 22 16384 Dec 31 1969 ..
-rwxr-xr-x 1 22016 Dec 29 1999 Dear Bill.doc
-rwxr-xr-x 1 38912 Dec 29 1998 KEYS.doc

-rwxr-xr-x 1 78848 Jul 8 1998 PROMISSORY NOTE.doc
-rwxr-xr-x 1 21504 Jan 4 1980 The Story.doc
-rwxr-xr-x 1 22528 Jan 4 1980 The.doc (empty file)
-rwxr-xr-x 1 33792 Dec 17 1999 To The Honorable Senators Kerry and Hagel.doc

-rwxr-xr-x 1 38912 Dec 25 1999 To my dearest Son.doc
-rwxr-xr-x 1 35840 Jan 4 1980 faith.doc

The contents of the files are as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

52

Dear Bill.doc
Although the Word properties dialog indicates that the author of this document is user S,
this information doesn’t fit with the MAC timelines. The MAC times for this document
indicate the file was created, modified, and last accessed on the last day the computer
was accessed. However, the only user accessing the system at that time was user H.

The author of the letter describes his/her current financial situation, and requests a loan
of $2400 from Bill. The author admits he/she gambles frequently at the casinos, and
apparently has won a lot of money.

To my dearest Son.doc
This is a letter from a father to a son in which the father discusses similarities in a
number of painful moments throughout their lives. Because the author is male and the
MAC times associated with the letter, the apparent author of the letter is user H.

To The Honorable Senators Kerry and Hagel.doc
This is a letter to two Nebraska U.S. Senators. The letter, signed by user V, relates the
fact that she is the mother of a daughter who was subject of a police investigation. User
V accuses the local police department of improper actions based on a search of her
daughter’s house.

PROMISSORY NOTE.doc
This is a template letter from student accounting to be completed by students owing
money to the university.

The Story.doc
A story about growing up in Nebraska.

faith.doc
This is a consoling letter written to a family who lost a child. Dozens of copies of this
letter were found in unallocated as well as slack space. This was most likely because it
was saved multiple times by the author: Explanation: Each time a file is saved Microsoft
Word creates a temporary file. The figure below illustrates this phenomenon as I’m
writing this document.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

53

Once the document is closed Word deletes the temporary files. However, this
information remains on the hard drive until overwritten.

Contents of C:\My Documents
Eighteen files remained in the \My Documents directory. Each file was a Microsoft
Access database. One of the databases was named after the first name of User H.

drwxr-xr-x 2 32768 Dec 9 1997 .

drwxr-xr-x 22 16384 Dec 31 1969 ..
-rwxr-xr-x 1 628736 Jan 4 1980 Asset Tracking1.mdb
-rwxr-xr-x 1 1085440 Dec 31 1998 Inventory Control1.mdb

-rwxr-xr-x 1 1087488 Apr 19 1999 Inventory Control2.mdb
-rwxr-xr-x 1 1277952 Dec 31 1998 Service Call Management1.mdb
-rwxr-xr-x 1 71680 Dec 27 1998 db1.mdb
-rwxr-xr-x 1 61440 Nov 21 1999 db10.mdb

-rwxr-xr-x 1 196608 Jan 4 1980 db11.mdb
-rwxr-xr-x 1 137216 Jan 4 1980 db12.mdb
-rwxr-xr-x 1 153600 Jan 4 1980 db13.mdb

-rwxr-xr-x 1 71680 Mar 30 1999 db2.mdb
-rwxr-xr-x 1 61440 Dec 28 1998 db3.mdb
-rwxr-xr-x 1 59392 Dec 28 1998 db4.mdb
-rwxr-xr-x 1 145408 Dec 28 1998 db5.mdb

-rwxr-xr-x 1 67584 Apr 19 1999 db6.mdb

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

54

-rwxr-xr-x 1 73728 Apr 19 1999 db7.mdb
-rwxr-xr-x 1 73728 Jun 27 1999 db8.mdb

-rwxr-xr-x 1 77824 Aug 1 1999 db9.mdb
-rwxr-xr-x 1 258048 Feb 8 1999 user H.mdb

The databases were void of information, except for some ‘scratch’ information.
Moreover, each database had the exact same interface except for a few changes. One
might speculate that these were databases that had been created for a class.

Below is a screenshot from db4.mdb. It appears that user H was the creator of this
database.

A second database (db5.mdb) was even more revealing, containing user H’s (apparent)
social security number, home phone, office and email addresses.

Finally, db10.mdb contained user H’s social security number and full name.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

55

Temporary Internet Files

The \windows\Temporary Internet Files directory contains four subdirectories as
expected. When a user visits a web site with a browser, the files downloaded are
cached within the four subdirectories in turn. For example, if a user visits sites A, B, C
&, D, then a copy of page A would be placed in the first subdirectory, B in the second, C
in the third, and D in the fourth. A copy of the next web page would be placed in A, and
so on..

An examination of this directory was accomplished in two steps. First I extracted the
human-readable strings from the index.dat file to determine which users were visiting
which sites.

strings –a windows/Temporary Internet Files/index.dat > /sans.cert/tif.strings.

A typical record within the index.dat file looks like the following:

URL
http://www3.infoseek.com/Topic?tid=502
Topic.htm
HTTP/1.0 200 OK
MIME-Version: 1.0
Content-length: 23754
Content-type: text/html
~U:t*******

Each record displays the URL, the protocol used in the download, the number of bytes
of the download, type of content, and the user’s account which accessed the site. The
above example indicates that user T accessed www.infoseek.com, a popular search
engine at that time.

There was nothing particularly inflammatory or interesting about the web sites visited.
The only interesting evidence found was that, apparently, only User T and S browsed
the Internet, given that there’s were the only names appearing in the index.dat file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

56

The second procedure involved manually loading each of the files in each of the four
subdirectories of \windows\Temporary Internet Files into a browser for viewing.
Several interesting pieces of evidence were found. First, some user was interested in
California State University at Fullerton. Several files associated with Cal State Fullerton
were found, including files containing information on tuition rates, and also a login page
(see figure). The tuition rates page for the University of Nebraska @ Omaha were
visited for 1996-97 (an old page) and from 1997-98. One could speculate that user T
had a son or daughter attending California State University, and one at the University of
Nebraska @ Omaha. However, because this computer was used by employees in
student accounting, this is not definitive (one might expect employees in this department
to view these web pages as part of their job).

There was only a single record found in the index.dat file relating to Cal State Fullerton.

URL
http://bfa.fullerton.edu/images/Visa.gif
Visa.gif
HTTP/1.1 200 OK
Content-Type: image/gif
ETag: "80f5ad6b7ddfbc1:dcc"
Content-Length: 654

Unfortunately, no name is associated with this record.

A second interesting finding is that the temporary internet folders contained several files
that indicate search keywords and results.

• Yahoo:
o Search Keyword: automated gifs

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

57

• USWESTDEX:
o Search Keyword: Bellevue Nebraska

• Unspecified search page:
o Search Keyword: graphics

• USWESTDEX:
o Search Keywords: Joan G**** of Piedmont, OH

User S was the only user associated with the uswestdex site (according to records in
the index.dat file), therefore, it is reasonable to conclude that she was the one who
searched for Bellevue, NE and Joan G***** of Piedmont OH.

http://www.uswestdex.com/img/index_11.gif
index_11.gif
HTTP/1.0 200 OK
Content-length: 2800
Content-type: image/gif
~U:s*******

Cookies

The c:\windows\cookies directory holds cookies, small text files placed on the user’s
computer by a server. Cookies provide evidence of web sites users have visited.

[jpc@whammo cookies]$ ls -lut
total 1376

-rwxr-xr-x 1 90 Dec 7 1998 USER.S@net-trak_stats(1).txt
-rwxr-xr-x 1 203 Dec 7 1998 USER.S@home_microsoft(2).txt
-rwxr-xr-x 1 113 Nov 30 1998 USER.S@wp_uswestdex(1).txt
-rwxr-xr-x 1 190 Nov 30 1998 USER.S@www_uswestdex(2).txt

-rwxr-xr-x 1 94 Nov 12 1998 USER.S@abc.txt
-rwxr-xr-x 1 69 Oct 27 1998 USER.S@bfast.txt
-rwxr-xr-x 1 91 Oct 27 1998 USER.S@linkexchange.txt

-rwxr-xr-x 1 92 Oct 27 1998 USER.S@homearts.txt
-rwxr-xr-x 1 103 Oct 27 1998 USER.S@sidewalk_msn.txt
-rwxr-xr-x 1 73 Oct 26 1998 USER.S@doubleclick.txt
-rwxr-xr-x 1 99 Oct 26 1998 USER.S@4.txt

-rwxr-xr-x 1 181 Oct 26 1998 USER.S@switchboard(1).txt
-rwxr-xr-x 1 80 Oct 26 1998 USER.S@altavista.txt
-rwxr-xr-x 1 189 Sep 29 1998 USER.S@www_uswestdex.txt

-rwxr-xr-x 1 103 Sep 29 1998 USER.S@home_microsoft(1).txt
-rwxr-xr-x 1 111 Sep 22 1998 USER.S@www_drwhitakersvitamins.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

58

-rwxr-xr-x 1 155 Sep 21 1998 USER.S@netfind_aol(1).txt
-rwxr-xr-x 1 98 Sep 21 1998 USER.S@preferences.txt

-rwxr-xr-x 1 184 Sep 21 1998 anyuser@www_uswestdex(1).txt
-rwxr-xr-x 1 99 Sep 21 1998 anyuser@web3_yp_uswest(1).txt
-rwxr-xr-x 1 77 Aug 26 1998 USER.S@yahoo.txt
-rwxr-xr-x 1 125 Aug 18 1998 USER.S@www_windowsmedia(1).txt

-rwxr-xr-x 1 343 Jul 31 1998 USER.S@yp_yahoo(1).txt
-rwxr-xr-x 1 100 Jul 13 1998 USER.S@web3_yp_uswest(1).txt
-rwxr-xr-x 1 147 Jul 13 1998 USER.S@excite(1).txt

-rwxr-xr-x 1 106 Jul 13 1998 USER.S@infoseek.txt
-rwxr-xr-x 1 100 Jul 2 1998 USER.S@microsoft(1).txt
-rwxr-xr-x 1 94 Jul 2 1998 USER.S@msn.txt

-rwxr-xr-x 1 76 Feb 6 1998 USER.T@yahoo.txt
-rwxr-xr-x 1 160 Jan 21 1998 USER.T@msn(1).txt
-rwxr-xr-x 1 102 Jan 21 1998 USER.T@home_microsoft.txt
-rwxr-xr-x 1 147 Jan 20 1998 USER.T@excite(1).txt

-rwxr-xr-x 1 98 Jan 19 1998 USER.T@preferences(1).txt
-rwxr-xr-x 1 73 Jan 9 1998 USER.T@doubleclick.txt
-rwxr-xr-x 1 91 Dec 18 1997 USER.T@linkexchange.txt

-rwxr-xr-x 1 106 Dec 18 1997 USER.T@infoseek.txt
-rwxr-xr-x 1 109 Dec 18 1997 USER.T@warnerbros_entertaindom.txt
-rwxr-xr-x 1 84 Dec 12 1997 USER.T@gateway2000.txt

-rwxr-xr-x 1 83 Dec 12 1997 USER.T@www_gateway.txt
-rwxr-xr-x 1 87 Dec 5 1997 USER.T@netscape.txt
-rwxr-xr-x 1 8192 Dec 5 1997 mm2048.dat
-rwxr-xr-x 1 8192 Dec 5 1997 mm256.dat

-rwxr-xr-x 1 32768 Jan 4 1980 index.dat

The timelines for user T and S’s cookies are consistent with the timeline acquired from
an examination of their password files. Interestingly, these were the only users who had
cookies, which is consistent with findings from the index.dat from the Window’s
Temporary Internet Files directory.

Printer Spool Files

Eighty print spool files were still accessible within unallocated space. Example print
spool files include:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

59

Thu Nov 19 1998 15:44:18
161 ..c -rwxrwxrwx 0 0 505371 <uno.dispose.dd-_0022.SHD-dead-505371>

161 ..c -/-rwxrwxrwx 0 0 505371 /WINDOWS/SPOOL/PRINTERS/_0022.SHD (deleted)
Thu Nov 19 1998 15:44:20
161 m.. -/-rwxrwxrwx 0 0 505371 /WINDOWS/SPOOL/PRINTERS/_0022.SHD (deleted)
161 m.. -rwxrwxrwx 0 0 505371 <uno.dispose.dd-_0022.SHD-dead-505371>

Thu Nov 19 1998 15:45:22
162 ..c -/-rwxrwxrwx 0 0 505372 /WINDOWS/SPOOL/PRINTERS/_0023.SHD (deleted)
Thu Nov 19 1998 15:45:24

162 m.. -/-rwxrwxrwx 0 0 505372 /WINDOWS/SPOOL/PRINTERS/_0023.SHD (deleted)
Thu Nov 19 1998 16:10:30
164 m.. -/-rwxrwxrwx 0 0 505390 /WINDOWS/SPOOL/PRINTERS/_0041.SHD (deleted)

I retrieved these files using TASK’s icat command line utility.

icat –f fat16 /sans.cert/uno.dispose.dd 505390 > /sans.cert/505390.icat

The 505390 is the inode number of the file. Unfortunately nothing in the way of
interesting evidence was revealed in these files.

Windows Registry File

The Window’s registry file holds a wealth of information regarding the system and its
users. As mentioned previous, Windows 95 does not partition the user space (as do
the more recent versions of Windows). Therefore, there are only two files associated
with the Windows registry as opposed to two per user. These files are system.dat and
user.dat, found in the \windows directory. Possible evidentiary information found in the
Windows 95 version of the registry includes: user information; MRU (most recently used
files); installed programs; deleted programs; etc.

I copied these files, along with their associated backups found in the same directory
(system.da0 and user.da0) to a FAT32 partition, for analysis under Windows XP using
Resplendence Registrar, a powerful registry editor.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

60

I first attempted to load system.dat into Resplendence Registrar, and received the error
message displayed above. I next attempted to load user.dat, but received the same
error message. I used Google to search the Internet to determine what the problem is,
but unfortunate, could not find a solution. This is unfortunate as the registry is an
important part of any forensic analysis on a Windows system.

Given I couldn’t use the preferred method of accessing the contents of the registry files,
I opened up the files using a hex editor. Unfortunately, it was very difficult, or
impossible, to interpret the contents with any degree of accuracy.

UNALLOCATED SPACE

Unallocated space consists of disk clusters that: (a) have never been allocated for use,
or (b) were previously allocated for a file, but were marked for reallocation due to a files
deletion. Forensically speaking (b) is the more interesting situation because data
residing in those clusters will be available for retrieval until overwritten.

The TASK command line utility dls was used to extract data from the unallocated
clusters.
//check unallocated space
dls -f fat uno.dispose.dd > uno.dispose.dls
strings -a uno.dispose.dls > uno.dispose.dls.strings
grep -A 5 -B 5 -i ssn uno.dispose.dls.strings | less
grep -A 5 -B 5 -i pass uno.dispose.dls.strings | less
grep -A 5 -B 5 -i sex uno.dispose.dls.strings | less
grep -A 5 -B 5 -i porn uno.dispose.dls.strings | less

The –A 5 and –B 5 flags indicate to return 5 lines after the match and five lines before,
to provide context. The –i flag indicates to ignore case.

The ‘ssn’ and ‘pass’ keywords were chosen to determine if any personal information
was located within the files (there was). The ‘sex’ and ‘porn’ keywords were chosen to
determine the ‘browsing habits’ of the users.

The only interesting information found in the unallocated space was user id/password
combinations:

user=zyac074
password=^EXL<DEIqE4!pp
login=^L03^T05^M^Slogin:^S^W^U^M^SPassword:^S^W^P^M
logout=^L03^T05^Mexit^M^Slogin:^S

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

61

stopserver=^L03^T05^C^X^X^X^X^X^M^S\x24 ^S^R00|^S# ^S^R00|^S%
^S^R00|^Slogin:^S^R00
startserver=^L03^T10^C^X^X^X^X^X^H^H^H^H^H^H^Mterm -
x^M^SOK^M^J^S^R00|^Slogin:^S^R01

Recall that the PWL file was cracked for user T, and that her password for a Window’s
share was ‘zyac074.’

telnet
xxxcsh00 [sanitized]
zyac074
XL<DEIqE4!pp
login:
Password:
exit

It appears that user T used telnet to connect to a university computer. Note that the
‘zyac074’ and ‘XL<DEIqE4!pp’ appear again. I used the domain internet groper (dig)
utility to determine the identity of ‘xxxcsh00’:

[jpc@whammo jpc]$ dig xxxcsh00.xxxxxxx.edu
; <<>> DiG 9.2.1 <<>> unocshxx.unomaha.edu
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35784
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 2
;; QUESTION SECTION:
;xxxcsh00.xxxxxxx.edu. IN A
;; ANSWER SECTION:
unocshxx.unomaha.edu. 86400 IN CNAME xxxcsh00.eab.xxxxxxx.edu.
xxxcsh00.eab.unomaha.edu. 86400 IN A 137.xx.xx.xx
;; AUTHORITY SECTION:
eab.xxxxxxx.edu. 86400 IN NS dns-1.xxxxxxxx.edu.
eab.xxxxxxx.edu. 86400 IN NS dns-2.xxxxxxx.edu.

The ‘eab.xxxxxxx.edu’ is a computer in the university’s administration building. This is
consistent given the other evidence that indicates this person works somewhere within
financial aid office.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

62

xprot=WTERMCRC
user=post
password=^EVL,D_)UG55/p
login=^L03^T05^M^Slogin:^S^W^U^M^SPassword:^S^W^P^M
logout=^L03^T05^Mexit^M^Slogin:^S
startserver=^L03^T10^C^X^X^X^X^X^H^H^H^H^H^H^Mterm -
x^M^SOK^M^J^S^R00|^Slogin:^S
^R01
stopserver=^L03^T05^C^X^X^X^X^X^M^S\x24 ^S^R00|^S# ^S^R00|^S%
^S^R00|^Slogin:^S^

A Google search for "WTERMCRC" indicated that it was some type of file transfer
protocol in the realm of zmodem, xmodem, ymodem, ftp, etc.

xprot=WTERMCRC
user=lookup
password=^EVL,D_)UG55/p
login=^L03^T05^M^Slogin:^S^W^U^M^SPassword:^S^W^P^M
logout=^L03^T05^Mexit^M^Slogin:^S
startserver=^L03^T10^C^X^X^X^X^X^H^H^H^H^H^H^Mterm -
x^M^SOK^M^J^S^R00|^Slogin:^S

We see two new users, ‘lookup’ and ‘post’, which could be automated processes or
scripts of various kinds that are run unattended (or maybe not). Nevertheless, note that
they both use the same password.

There were several files found in unallocated space. Here are the most interesting
ones:

1. A letter about a Korean student drowning in the university pool.
2. An email about an “Inside Edition” TV story about a scam to abduct women in

parking lots.
3. A letter regarding the 2000 election and all the hubbub surrounding it.

The last letter is telling about the system clock. This story had to have been written
after November, 2000. Yet the last date in the MAC timelines was December, 1999.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

63

Other less interesting things found include a list of faculty names, and a list of what
appears to be student names. No other personal information was associated with the
list of names.

SLACK SPACE ANALYSIS

I searched the slack space with TASK’s dls command using the –s switch. Recall that
slack space is the space at the end of a cluster that is not used by a file. For example,
if a file is 1 character (in ASCII, 1 byte), then the cluster current cluster size (recall,
32768 bytes) allows for slack space amounting to 32768 – 1 = 32767 bytes. That’s a lot
of wasted space; however, from a forensic standpoint it can be a goldmine.

// check the slack space only
dls -f fat -s uno.dispose.dd > uno.dispose.slack
strings -a uno.dispose.slack > uno.dispose.slack.strings
grep -A 5 -B 5 -i ssn uno.dispose.slack.strings | less
grep -A 5 -B 5 -i pass uno.dispose.slack.strings | less

grep -A 5 -B 5 -i sex uno.dispose.slack.strings | less
grep -A 5 -B 5 -i porn uno.dispose.slack.strings | less

The results were somewhat similar as to that found in unallocated space. For example,
the same user/password combinations were found.

xprot=WTERMCRC
user=lookup
password=^EVL,D_)UG55/p
login=^L03^T05^M^Slogin:^S^W^U^M^SPassword:^S^W^P^M
logout=^L03^T05^Mexit^M^Slogin:^S
startserver=^L03^T10^C^X^X^X^X^X^H^H^H^H^H^H^Mterm -
x^M^SOK^M^J^S^R00|^Slogin:^S^R01

bsdel=OFF
col132=OFF
wru=
xprot=WTERMCRC
user=zyac074
password=^EE4,CGIqEs!pp
login=^L03^T05^M^Slogin:^S^W^U^M^SPassword:^S^W^P^M
logout=^L03^T05^Mexit^M^Slogin:^S

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

64

stopserver=^L03^T05^C^X^X^X^X^X^M^S\x24 ^S^R00|^S# ^S^R00|^S%
^S^R00|^Slogin:^S^R00

telnet
unocsh00
zyac074
E4,CGIqEs!pp
login:
Password:
exit

Recycle Bin

The recycle bin contained no files except for the desktop.ini, which contained the
following:

[.ShellClassInfo] CLSID={645FF040-5081-101B-9F08-00AA002F954E}

This indicated that someone had ‘emptied’ the recycle bin at some point in time. I used
the Autopsy Browser (Carrier, 2003) to determine what files, if any, had ever resided in
the recycle bin.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

65

Autopsy showed that there were several hundred deleted files, 295 of which had once
resided in the Recycle Bin (see figure above). Note that when a file is ‘deleted’ using
the Recycle Bin, a copy of the file is placed in the Recycle Bin and renamed by
replacing the original name with the drive letter where the file resided, plus the order in
which the file was placed in the Recycle Bin, and the original extension. Therefore, a
typical file with possible evidentiary value (due to the file extension name) might be
C068.doc, C191.xls, etc.

Several dozen of these files were Microsoft Office files, including Word and Excel
documents. I used Autopsy’s ‘export’ function to retrieve these documents and
OpenOffice 1.02 to view them.

Because most of these recovered documents were of a work-related nature and
contained identifying information (particularly student names) I will only summarize
them. The Excel documents contained information on Pell grant applications and other
financial applications. The Word documents were letters to students regarding their
university grants or accounts. User T signed the Word documents to students.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

66

Conclusions

This document describes the forensic analysis of a ‘moth-balled’ university personal
computer system. The forensic procedures were comprised of an analysis of allocated,
slack, and unallocated space. The results of the analysis suggested there had been
five users with accounts (user ids) on the computer over a four year period of time, and
that the computer had once been used by employees of the cashiering/student
accounting department.

A significant number of work-related as well as personal files were recovered from the
hard drive. Interestingly, the work-related documents had been diligently deleted;
however, they were easily retrieved using the Autopsy browser. Alternatively, sensitive
personal documents remained on the computer. It would be interesting to find out why
personal documents were not deleted as well.

Personal identifying information was easily retrieving, including; first and last names of
former users, social security numbers, addresses, email login IDs, and phone numbers.

There were several unfortunate realities. First, the MAC timeline indicated there were
several hundred files with impossible dates (from 1969 until the early 1990s, well before
Windows 95). This made it impossible to determine the exact dates of the installation or
creation of some files, including the initial installation of the software. Care should be
taken when relying on any of the MAC time due to this anomaly. Finally, I was unable to
import the Windows 95 registry files system.dat and user.dat into a registry editor, which
likely would have held information of significant evidentiary value.

References

ComputerHope (1999). (http://www.computerhope.com/whow.htm)
Carrier, B. (2003). The @stake Sleuth Kit (TASK). http://www.atstake.com/research/
Carrier, B. (2003). Autopsy Browser http://www.atstake.com/research/
Lee, R. (2003). Mac-Daddy. http://www.incident-response.org/mac_daddy.html
John the Ripper. (2002). http://www.openwall.com/john/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

67

Part 3

Legal Issues of Incident Handling

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

68

Question: What, if any, information can you provide to the law enforcement
officer over the phone during the initial contact.

The provider has the legal obligation to protect the privacy of the individual. Two
Federal Statutes may be applicable in this situation: The Electronic Communications
Privacy Act Sources: (United States Department of Justice, July, 2002, Searching and
Seizing Computers and Obtaining Electronic Evidence in Criminal Investigations,
http://www.usdoj.gov/criminal/cybercrime/s&smanual2002.htm), and the U.S. Patriot Act
(Source: http://www.ala.org/washoff/patriot.html).

Electronic Communications Privacy Act

The 18 U.S.C. 2703, ECPA creates statutory privacy rights for customers of ISPs,
imposing restrictions and granting rights to system operators and government agents
with regard to disclosing stored customer information and stored communications.

Two important pieces of information regarding the scenario that determine how the
provider should handle it are a) it is a law enforcement (government) agent who is
requesting the information, and b) the fact that the provider is a “public provider.” Had
the provider been a private provider, then it could have voluntarily disclosed the
information requested. Private providers are not subject to ECPA. Or, had the calling
party NOT been a government agent (law enforcement), then the provider could have
voluntarily disclosed the information.

The ECPA provides for voluntary disclosure of non-content customer records to
government agencies. When:

(1) The disclosure "may be necessarily incident to the rendition of the service or to
the protection of the rights or property of the provider of that service," §
2702(c)(3);

(2) The provider "reasonably believes that an emergency involving immediate
danger of death of serious physical injury to any person" justifies disclosure, §
2702(c)(4); or

(3) the disclosure is made with the consent of the intended recipient, or pursuant to a
court order or legal process § 2702(c)(1)-(2).

“In general, these exceptions permit disclosure by a provider to the public when the
needs of public safety and service providers outweigh privacy concerns of customers,
or else when disclosure is unlikely to pose a serious threat to privacy interests.”

U.S Patriot Act

The U.S. Patriot Act (USC 2703) may also be applicable to this situation. (Source:
http://www.ala.org/washoff/patriot.html) According the 2703 (c):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

69

(1) A governmental entity may require a provider of electronic communication

service or remote computing service to disclose a record or other information
pertaining to a subscriber to or customer of such service (not including the
contents of communications) only when the governmental entity—

a. obtains a warrant issued using the procedures described in the Federal
Rules of Criminal Procedure by a court with jurisdiction over the offense
under investigation or equivalent State warrant;

b. obtains a court order for such disclosure under subsection (d) of this
section;

c. has the consent of the subscriber or customer to such disclosure; or
d. submits a formal written request relevant to a law enforcement

investigation concerning telemarketing fraud for the name, address, and
place of business of a subscriber or customer of such provider, which
subscriber or customer is engaged in telemarketing (as such term is
defined in section 2325 of this title); or

e. seeks information under paragraph (2).

(2) A provider of electronic communication service or remote computing service shall
disclose to a governmental entity the—

a. name;
b. address;
c. local and long distance telephone connection records, or records of

session times and durations;
d. length of service (including start date) and types of service utilized;
e. telephone or instrument number or other subscriber number or identity,

including any temporarily assigned network address; and
f. means and source of payment for such service (including any credit card

or bank account number), of a subscriber to or customer of such service
when the governmental entity uses an administrative subpoena authorized
by a Federal or State statute or a Federal or State grand jury or trial
subpoena or any means available under paragraph (1).

Nebraska Computer Crimes Act

The Nebraska Computer Crimes Act does not provide guidance on the situation in this
case, at least with respect to the obligations of the provider. However, it does deal with
the suspected hacker in this case. (Source: http://statutes.unicam.state.ne.us)

Conclusion

The provider would not be able to provide the information requested by the law
enforcement agent, given they are a public provider and covered by the ECPA. The
only item of information that the provider could provide is the fact that that person is a
customer, and the fact that they have logs for the customer at the time of the incident.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

70

Question: What must the law enforcement officer do to ensure that you preserve
this evidence if there is a delay in obtaining any required legal authority?

Phone, FAX, or email them and make a request that they preserve the logs:

From: (United States Department of Justice, July, 2002, Searching and Seizing
Computers and Obtaining Electronic Evidence in Criminal Investigations,
http://www.usdoj.gov/criminal/cybercrime/s&smanual2002.htm

Preservation of Evidence under 18 U.S.C. § 2703(f)

“Agents may direct providers to preserve existing records pending the issuance of
compulsory legal process. … ECPA permits the government to direct providers to
"freeze" stored records and communications pursuant to 18 U.S.C. § 2703(f).

Specifically, § 2703(f)(1) states:

A provider of wire or electronic communication service or a remote computing service,
upon the request of a governmental entity, shall take all necessary steps to preserve
records and other evidence in its possession pending the issuance of a court order or
other process.”

This request may be made in the form of phone call, FAX, or email. According to DOJ
(2002) “a fax or an e-mail is better practice because it both provides a paper record and
guards against miscommunication. Upon receipt of the government’s request, the
provider must retain the records for 90 days, renewable for another 90-day period upon
a government request.”

Question: What legal authority, if any, does the law enforcement officer need to
provide to you in order for you to send him the logs?

Assuming that the ISP is considered a ‘public provider,’ then the ECPA has five
mechanisms that a “government entity” may take to compel providers to disclose the
requested information. Listed below, in ascending order of required threshold are the
mechanisms:

a) Subpoena;
b) Subpoena with prior notice to the customer;
c) § 2703(d) Court order;
d) § 2703(d) Court order with prior notice to the customer, and;
e) Search warrant

(Source: United States Department of Justice, July, 2002, Searching and Seizing
Computers and Obtaining Electronic Evidence in Criminal Investigations,
http://www.usdoj.gov/criminal/cybercrime/s&smanual2002.htm)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

71

Question: What other investigative activity are you permitted to conduct at this
time?

The provider is allowed to review any other logs, such as intrusion detection, if
applicable. Also, the provider may contact upstream providers if it can be determined
that the customer logged in from another ISP, as long as the ISP upstream is not an
agent of the government. The Federal Wiretap Act and the Pen/Trap statute allow
service providers to use pen/trap devices on their own networks without a court order.

Question: How would your actions change if the logs disclosed a hacker gained
unauthorized access to your system at some point, created an account for
him/her, and used THAT account to hack into the government system?

There is a provider exception in the ECPA which allows the provider to voluntarily
disclose information in the “may be necessarily incident to the rendition of the service or
to the protection of the rights or property of the provider of that service” § 2702(b)(5).
It would not be difficult to argue that it is in the provider’s interest to call in law
enforcement and provide them with the information to protect their customers.

From: (United States Department of Justice, July, 2002, Searching and Seizing
Computers and Obtaining Electronic Evidence in Criminal Investigations,
http://www.usdoj.gov/criminal/cybercrime/s&smanual2002.htm

