
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical

Version 1.1b

Abstract: Analysis of an unknown binary provided by
GIAC, followed by a forensic analysis on a system
and a Canadian perspective surroundiung the legal

issues of incident handling. (Part 1, Part 2 Option 1
& Part 3)

By Christopher Lee
April 16th, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 2 of 63 Christopher Lee

Table of Content
TABLE OF CONTENT ..2
LEGEND..4

PART 1 – ANALYZE AND UNKNOWN BINARY .. 5
CONFIGURATION OF THE FORENSIC LAB: ...5
BINARY DETAILS:..6
PROGRAM DESCRIPTION..10
FORENSIC DETAILS..11
PROGRAM IDENTIFICATION ...15
LEGAL IMPLICATIONS..16
INTERVIEW QUESTIONS ...17
ADDITIONAL INFORMATION ..17

PART 2 – OPTION 1: PERFORM FORENSIC ANALYSIS ON A SYSTEM 18
SYNOPSIS OF CASE FACTS ...18
DESCRIBE THE SYSTEM(S) YOU WILL BE ANALYZING...18
HARDWARE..19
IMAGE MEDIA..19
MEDIA ANALYSIS OF SYSTEM...20

Modification to operating system software or configuration..................................... 22
Back doors, check for setuid and setgid files .. 26
Signs of a Sniffer program.. 31
History files.. 36
/proc examination.. 37
Start up files... 37
Non-modification of the evidence during the analysis.. 38

TIMELINE ANALYSIS ...39
RECOVER DELETED FILES ...42
STRING SEARCH...43
CONCLUSIONS..45

PART 3 - LEGAL ISSUES OF INCIDENT HANDLING.. 47
BACKGROUND: ..47
QUESTION A: WHAT, IF ANY, INFORMATION CAN YOU PROVIDE TO THE LAW
ENFORCEMENT OFFICER OVER THE PHONE DURING THE INITIAL CONTACT?......................47
QUESTION B: WHAT MUST THE LAW ENFORCEMENT OFFICER DO TO ENSURE YOU TO
PRESERVE THIS EVIDENCE IF THERE IS A DELAY IN OBTAINING ANY REQUIRED LEGAL
AUTHORITY? ..49
QUESTION C: WHAT LEGAL AUTHORITY, IF ANY, DOES THE LAW ENFORCEMENT OFFICER
NEED TO PROVIDE TO YOU IN ORDER FOR YOU TO SEND HIM YOUR LOGS?49
QUESTION D: WHAT OTHER "INVESTIGATIVE" ACTIVITY ARE YOU PERMITTED TO
CONDUCT AT THIS TIME? ...50
QUESTION E: HOW WOULD YOUR ACTIONS CHANGE IF YOUR LOGS DISCLOSED A HACKER
GAINED UNAUTHORIZED ACCESS TO YOUR SYSTEM AT SOME POINT, CREATED AN

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 3 of 63 Christopher Lee

ACCOUNT FOR HIM/HER TO USE, AND USED THAT ACCOUNT TO HACK INTO THE
GOVERNMENT SYSTEM? ..51

APPENDIX (FOR PART 1): ... 52
“TRACE-ATD” FILE...53
“TRACE-ATD.5364” FILE ...55
“TRACE-ATD-42.32159” FILE..56
“TRACE-ATD-42.26086” FILE..57
“TRACE-ATD-42.28418” FILE..58
“TRACE-ATD-42.28422” FILE..59
“TRACE-ATD-42.28423” FILE..60

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 4 of 63 Christopher Lee

Legend
Throughout this paper, a number of typographical conventions have been used.

Ordinary text is in Times New Roman 12 point font, as is this sentence.

The Times New Roman 10 point font is used to denote text typed into and printed on a UNIX shell
terminal, source code, and other text files on a UNIX system. Text boxes are often used to set these types
of text apart:

[root@machine00]# echo "text the user types is shown in blue"
commands the user types are shown in blue
[root@machine00]# echo "command output remains in black font"
command output remains in black font

Boxes like this are
used to denote
comments from
the author

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 5 of 63 Christopher Lee

Part 1 – Analyze and Unknown Binary

Configuration of the Forensic Lab:
The forensic lab is constructed via the use of the VMWare Workstation version 3.1,
where a virtual networking environment was created with no contact to the “real world”.
VMWare Workstation is software written by VMWare Inc. designed to create “virtual”
computers within a host system, and it’s designed and generally accepted as an
alternative from having to configure multiple physical computer systems.

The VMWare virtual adapter on host machine was enabled with no network protocols nor
services bind to it. A network Sniffer (Ethereal) was running on the host machine
listening to the traffic of the VMWare virtual adapter.

The Linux workstation, where the bulk of the analysis was taking place, was built directly
from the RedHat 7.3 distribution CDs (where each CD’s integrity has been validated with
MD5 checksums from the vendor) as a minimal installation with no additional patches.
The following tools necessary for the forensic analysis was added to the installation from
trusted sources after validations of their respective MD5 checksums.

1. strace, from strace-4.4.4.i386.rpm on the disc 2 of the RedHat 7.3 distribution
CDs. This is a tool to provide a trace of a given software process on all APIs
called, software library accessed, file system access and etc.

2. strings, from binutils-2.11.93.0.2-11.i386.rpm on the disc 2 of the RedHat 7.3
distribution CDs. This tool parses through a given file and extracts all ASCII text
strings embedded in the file.

3. unzip, from unzip-5.50-2.i386.rpm on the disc 1 of the RedHat 7.3 distribution
CDs. This tool decompresses (or unzips) files previously been compressed (or
zipped) using PKZIP/WinZip compatible algorithm.

4. zip, from zip-2.3-12.i386.rpm on the disc 1 of the RedHat 7.3 distribution CDs.
Similar to the “unzip” tool, this is the tool that does the actual “zipping” of the
files.

5. make, from make-3.78.1-8.i386.rpm on the disc 1 of the RedHat 7.3 distribution
CDs. “make” is software compilation interface that was designed to make ease of
the configuration, the compilation and the installation of software from its source
code files.

6. glibc libraries, from glibc-devel-2.2.5-34.i386.rpm on the disc 2 of the RedHat 7.3
distribution CDs. This set of libraries contains the most commonly utilized C
functions often used by developer to simply their development efforts.

7. kernel headers for glibc, from glibc-kernheaders-2.4-7.14.i386.rpm on the disc 2
of the RedHat 7.3 distribution CDs. The “kernel headers” are header files
necessary for the compilation of certain C source codes.

8. cpp, from cpp-2.96-110.i386.rpm on the disc 2 of the RedHat 7.3 distribution
CDs. “cpp” is the C Pre-compilation Processor required by the gcc compiler
below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 6 of 63 Christopher Lee

9. gcc, from gcc-2.96-110.i386.rpm on the disc 2 of the RedHat 7.3 distribution
CDs. “gcc” is the GNU version of the C compiler and it’s used to compile C
programs from their source codes into binaries executable in the present
environment.

Binary Details:

Upon retrieving the unknown binary file (binary_v1.1.zip) from GIAC website on Dec 25
of 2002, I first attempted to answer the following 6 questions about this unknown binary:

1. File name

This was easy enough; “atd” is the name of this binary. That seem to suggest this
is either the scheduler daemon commonly found on *nix systems, or a program
was designed to make others think that.

2. MAC Time

Using the “debugfs –R “stat <682>” /dev/sda2” command (where 682 is the inode
number of the “atd” file), I was able to obtain the mtime, atime and the ctime
fairly easily.

Mtime (last modification time): Thu, Aug 22, 14:57:54, 2002
Atime (last access time): Thu, Aug 22, 14:57:54, 2002
Ctime (last change time): Fri, Dec 27, 15:36:31, 2002

Note: Since the binary was extracted from the zip file on Dec 27, the ctime was
“updated” to reflect that.

3. File Owners

Though I tried to unzip the zip file with the –X option, it appeared that this zip file
was created from DOS/Windows operating system where the file ownership info
was not included as part of the file attributes. This could have been easily
avoided if the Trojan was first preserved using a common Unix/Linux program
“tar” prior to the transport of the binary to a remote system, which would have
retained the ownership info as well as the MAC times.

4. File Size

As revealed by the “ls -l” command, the file “atd” has a size of 15,348 bytes.

5. MD5 Hash

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 7 of 63 Christopher Lee

The command “md5sum atd” yields the MD5 checksum hash of
“48e8e8ed3052cbf637e638fa82bdc566 atd”, which is identical to the content of

the “atd.md5” file.

6. Key Words found within the program

The command “strings atd” revealed the following ASCII text strings within the
atd file:

/lib/ld-linux.so.1
libc.so.5
longjmp
strcpy
ioctl
popen
shmctl
geteuid
_DYNAMIC
getprotobynumber
errno
__strtol_internal
usleep
semget
getpid
fgets
shmat
_IO_stderr_
perror
getuid
semctl
optarg
socket
__environ
bzero
_init
alarm
__libc_init
environ
fprintf
kill
inet_addr
chdir
shmdt
setsockopt
__fpu_control
shmget
wait

$ md5sum ./atd
48e8e8ed3052cbf637e638fa82bdc566 atd
$ cat atd.md5
48e8e8ed3052cbf637e638fa82bdc566 atd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 8 of 63 Christopher Lee

umask
signal
read
strncmp
sendto
bcopy
fork
strdup
getopt
inet_ntoa
getppid
time
gethostbyname
_fini
sprintf
difftime
atexit
_GLOBAL_OFFSET_TABLE_
semop
exit
__setfpucw
open
setsid
close
_errno
_etext
_edata
__bss_start
_end
WVS1
f91u
WVS1
pWVS
vuWj
<it <ut
vudj
<it <ut
3jTh
j7Wh
Wj7j
Vj7S
j8WS
Vj7S
j8WS
Vj7S
tVj8WS
Vj7S
t'j8WS
jTh8
Wj7j
j7hU
j@hL
@j@hL
jTh8
j h@
}^j7

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 9 of 63 Christopher Lee

}1j7
<WVS
tDWS
lokid: Client database full
DEBUG: stat_client nono
lokid version: %s
remote interface: %s
active transport: %s
active cryptography: %s
server uptime: %.02f minutes
client ID: %d
packets written: %ld
bytes written: %ld
requests: %d
N@[fatal] cannot catch SIGALRM
lokid: inactive client <%d> expired from list [%d]
@[fatal] shared mem segment request error
[fatal] semaphore allocation error
[fatal] could not lock memory
[fatal] could not unlock memory
[fatal] shared mem segment detach error
[fatal] cannot destroy shmid
[fatal] cannot destroy semaphore
[fatal] name lookup failed
[fatal] cannot catch SIGALRM
[fatal] cannot catch SIGCHLD
[fatal] Cannot go daemon
[fatal] Cannot create session
/dev/tty
[fatal] cannot detach from controlling terminal
/tmp
[fatal] invalid user identification value
v:p:
Unknown transport
lokid -p (i|u) [-v (0|1)]
[fatal] socket allocation error
[fatal] cannot catch SIGUSR1
Cannot set IP_HDRINCL socket option
[fatal] cannot register with atexit(2)
LOKI2 route [(c) 1997 guild corporation worldwide]
[fatal] cannot catch SIGALRM
[fatal] cannot catch SIGCHLD
[SUPER fatal] control should NEVER fall here
[fatal] forking error
lokid: server is currently at capacity. Try again later
lokid: Cannot add key
lokid: popen
[non fatal] truncated write
/quit all
lokid: client <%d> requested an all kill
 sending L_QUIT: <%d> %s
lokid: clean exit (killed at client request)
[fatal] could not signal process group
/quit
lokid: cannot locate client entry in database
lokid: client <%d> freed from list [%d]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 10 of 63 Christopher Lee

/stat
/swapt
[fatal] could not signal parent
lokid: unsupported or unknown command string
lokid: client <%d> requested a protocol swap
 sending protocol update: <%d> %s [%d]
lokid: transport protocol changed to %s

Program Description
Based on the information gathered previously (as documented in the above section), I
know this “atd” program was last accessed/executed on Thu, Aug 22nd of 2002, and that it
generates certain type(s) of network traffic (based on output of the “strings” command)
and the string “LOKI2 route [(c) 1997 guild corporation worldwide]” is probably a
suggestion on the identity of this mystery binary.

The command “file atd” yields the following output:

This further confirms the executable nature of this program, and tells us that it is a 32-bit
ELF binary compiled for Intel 80386 CPU.

The command “ldd atd” was not able to yield us with useful information on the libraries
this binary was linked with (with obscured error message about “no such file or
directory”). However, by peeping into the first few hundred bytes of the file (using the
“hexdump” command), /lib/ld-linux.so.1 and /lib/libc.so.5 were seemingly the dynamic
libraries it was linked with. “ld-linux.so.1” was the dynamic library loader commonly
found on pre-RedHat 7.0 (i.e. RedHat 6.2 and earlier) distribution of the Linux operating
system, and libc.so.5 were the version 5 of the libc library, which was the standard library
for RedHat 2.0 through 4.2 releases of Linux distribution.

Base the output of the “strings” command obtained earlier, this program seems to create
network sockets of certain type (e.g. the keywords “socket” and “setsockopt”), and
possibly also create/modify certain files (e.g. the keyword “umask”). Interestingly, this
program also possesses the ability to duplicate another instance of itself during execution
(e.g. the keyword “fork”).

Summarizing what I have ascertained thus far, the best description of this file is as
follows:

This file “atd” is a Linux executable, written in the C programming language and was
compiled with linkages to “ld-linux.so.1” and “libc.so.5” (dynamic library loader and the
library itself for libc version 5); this is probably a Trojan designed for older Linux
systems, with ability to create or manipulate network sockets and files. This unknown

$ file atd
atd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses
shared libs), stripped

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 11 of 63 Christopher Lee

binary also possesses the ability to create a running duplicate of itself, under certain
circumstances.

Finally, it is possibly the (or a variant of) version 2 of the infamous LOKI Trojan. This
file was last executed at 2:57pm on Thursday, August 22nd of 2002.

LOKI2 is an information-tunneling program. It is a proof of concept work intending to
draw attention to the insecurity that is present in many network protocols. In this
implementation, we tunnel simple shell commands inside of ICMP_ECHO /
ICMP_ECHOREPLY and DNS namelookup query / reply traffic. To the network
protocol analyzer, this traffic seems like ordinary benign packets of the corresponding
protocol. To the correct listener (the LOKI2 daemon) however, the packets are
recognized for what they really are.1 However, in practice, LOKI2 has been seen to
provide intruders with covert channels into a compromised system (since most system
administrator would simply “ignore” ICMP/DNS packets into their networks).

Forensic Details

Binary Analysis on a RedHat 7.3 Linux system:

To add the support for both libc5 and its dynamic loader, I added both the libc-5.3.12-
31.i386.rpm and ld.so-1.9.5-13.i386.rpm to the forensic workstation. This ought to be
enough to get this binary running in this lab environment.

I first tried to run the “strace” command (i.e. “strace –tf –ff –otrace-atd ./atd”) as an
ordinary user and got the following error message before the program terminated:

Looking into the trace-atd file, I noticed the program was trying to obtain both the “real”
and the “effective” user ID of the process “atd”. Perhaps this binary requires the
privilege of a particular user??

I then tried to execute this as the root user. This time, the program ran and spits out the
following message on the screen:

1 Quoted directly from Volume 7, Issue 51 of the Phrack Magazine

[clee@dhcppc0 clee]$ strace -tf -ff -otrace-atd ./atd

[fatal] invalid user identification value: Success

[root@dhcppc0 /root]# strace -tf -ff -otrace-atd ./atd

LOKI2 route [(c) 1997 guild corporation worldwide]
Process 5364 attached

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 12 of 63 Christopher Lee

With the program still running, I examined the trace files from another session. Two
trace files were created: one for the “atd” process itself (i.e. trace-atd) and the other is for
a process it forked (i.e. trace-atd.5364).

• “trace-atd”
I looked for all incidences of “open” or “write” throughput the trace file, and
concluded this program does not write to any files on the local file system, though
it attempted to open from a few of them (i.e. /usr/i486-linux-libc5/lib/libc.so.5,
/etc/ld.so.cache and /usr/share/locale/en_US.iso885915/LC_MESSAGES) with
only the READ flag and it tried also to ascertain the existence of the following
locale files:

o /etc/locale/C/libc.cat
o /usr/lib/locale/C/libc.cat
o /usr/lib/locale/libc/C
o /usr/share/locale/C/libc.cat
o /usr/local/share/locale/C/libc.cat

It also opened two IPv4 sockets. One of them is an ICMP socket, while the other
is a raw socket on port 255.

Shortly after it forked, this process terminated on its own.

• “trace-atd.5364”

The program appeared to try, unsuccessfully, to open /dev/tty for both read and
write. It then changed its current working directory to /tmp and changed its
umask to 022. Finally it listens on the ICMP socket its parent process created,
and terminates on its own after 1 hour (3600 seconds).

Base on the information provided in the trace files (trace.atd and trace-atd.5364), no file
system footprints were observed. The only changes noticed was the two raw sockets
opened on the system during the time when “atd” and forked copy was running.

Obviously, this is very odd, given the suspected Trojan nature of this unknown binary.
There is a good likelihood that certain external interaction is necessary for this unknown
binary to demonstrate its capabilities. The two network sockets it created are probably
where this program expects the external interactions.

Further, as discovered later on during the attempts to locate and compile the potential
source code of this unknown binary, this Trojan was compiled with C libraries found on
RedHat 4.2 or similar Linux systems (ones that supports Linux kernel version 2.0.x).
Perhaps a better or more accurate way to assess the behaviour of this unknown binary is
to do so from an environment for which it was compiled in and therefore designed to
operate with.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 13 of 63 Christopher Lee

Binary Analysis on a RedHat 4.2 Linux system:

Another Linux VMWare virtual machine is then built based on RedHat 4.2 distribution
stored on ftp.dulug.duke.edu, one of RedHat Linux’ official mirror sites. The content of
the files used for this installation were validated through its MD5 checksums. The
unknown binary “atd” is then moved to this new environment. The MD5 checksum of
this binary is then computed, after transfer to the new environment, and verified against
the original MD5 checksum to ensure the file was not tampered with during transit.

I first tried to run this unknown binary as an ordinary user:

Then I run it as the root user:

Thus far, I have confirmed this binary’s requirement to be executed with root user
privilege.

Now, let’s look at the trace files created by the above command.

• “trace-atd-42”
By examine the content of the trace-atd-42 (from the last command) and the previous
trace-atd file (obtained from running the same binary on the RedHat 7.3 forensic
workstation), I have concluded both file contains the essentially the same trace
outputs, with obvious differences in the time, process ID and semaphore information.

• “trace-atd-42.32159”
In comparison with the file “trace-atd.5364”, something interesting/different was
observed here. Instead of simply terminating itself after one hour (3600 seconds), it
actually restarted itself for another 3600 seconds.

However, we are still not getting any interesting insight into the operation or the purpose
of this Trojan. We will proceed with external interactions previously discussed.

Binary Analysis using Normal ICMP Traffic as the External Interaction:

[root@dhcppc0 /root]# strace -tf -ff -otrace-atd-42 ./atd

LOKI2 route [(c) 1997 guild corporation worldwide]
Process 32159 attached

[clee@dhcppc0 clee]$ strace -tf -ff -otrace-atd-42 ./atd

[fatal] invalid user identification value: Unknown error

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 14 of 63 Christopher Lee

The first attempt is to see how this unknown binary reacts when ordinary ICMP packets
(such as ICMP-echo, as commonly generated by the “PING” command) were sent to
those sockets.

As in previous attempts, the command “strace –tf –ff –otrace-atd-42 ./atd” is used to
launch the unknown binary and to capture its interaction with the host system. A
sequence of ICMP-echo packets was delivered from a remote system to this host after the
unknown binary has been executed. The “atd” process was then terminated with a “kill”
command.

Similar to our prior observation, the main process terminates shortly after it forked a copy
of itself. By examine the content of the child process’ trace file (“trace-atd-42.26086”),
the regular ICMP-echo packet does not seem to trigger any response from the “atd”
process.

Binary Analysis using LOKI2 Traffic as the External Interaction:

Finally, the LOKI2 client, obtained through the compilation process from the next
section, is used to interact with this suspected LOKI2 server.

Once again, the command “strace –tf –ff –otrace-atd-42 ./atd” is used to launch the
unknown binary and to capture its interaction with the host system. From another session
on the same computer, the command “./loki –d 127.0.0.1” was executed and the
following output was captured from the command prompt:

At this point, the LOKI2 client was terminated with a CTL-C break. The strace
command was then terminated with a “kill” command.

Four (4) trace files were created by strace as the result of this attempt: “trace-atd-42”,
“trace-atd-42.28418”, “trace-atd-42.28422”, and “trace-atd-42.28423”. From analyzing
the content of these four files, the following behaviour is observed.

1. The 1st child process listens for incoming ICMP messages.
2. Once the “right” kind of message is received (such as the “ls” command from the

LOKI2 client, in this case), a 2nd child process is then forked.

[root@dhcppc0 /root]# ./loki -d 127.0.0.1

LOKI2 route [(c) 1997 guild corporation worldwide]
loki> ls
install.log
libtermcap-2.0.8-4.i386.rpm
passwd-0.50-7.i386.rpm
rdate-0.960923-1.i386.rpm
loki>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 15 of 63 Christopher Lee

3. The 2nd child process then forked a 3rd child process to execute the “ls” command
as the root user (which is the owner of the “atd” process) via the “sh” shell,
which, in this case, is the Bourne-Again Shell (i.e. bash). The output of the “ls”
command is then passed back to the 2nd child process to send back to the LOKI2
client.

4. Both the 3rd and the 2nd child processes then terminated themselves once the
command is executed.

Footprints?

Based on our binary analysis, this Trojan does not modify any files on the file system and
thus limited forensic info is available to identify the intruder. However, the following
footprints should be visible on systems infected with this Trojan:

1. The file “atd” with the file size 15,348 byte and MD5 checksum of
“48e8e8ed3052cbf637e638fa82bdc566”.

2. The command “netstat –na “ ought to reveal two additional raw socket listeners
on port 1 and port 255.

3. Assuming the intruder planted this “atd” Trojan to start automatically with system
(e.g. insert it into one of the system init scripts), then:

a. The message “LOKI2 route [(c) 1997 guild corporation worldwide]”
might be visible in the /var/log/message file.

b. The keyword “atd” might be visible in one of the init scripts (at
/etc/rc.d/init.d/ or one of the /etc/rc.d/rc#.d directories) or in one of the
scripts called by those init scripts.

4. The command “ps –aux | grep atd | grep –v grep” should return information about
a process name “atd”.

5. Since commands issued from the LOKI2 client is executed as the root user via its
shell, those commands might still be available within the command history of the
root user.

Obviously, remote/local access to this host with the super-user (root) access is required to
plant this Trojan. Reasonably, other forensic trails ought to be available to show how this
intruder gained the necessary access to the infected system.

Program Identification
Thus far, this unknown binary seems to LOKI2. A copy of the source code was extracted
(using the extract.pl tool on the same page) from issue 51 of Phrack Magazine (available
via http://www.phrack-dont-give-a-shit-about-dmca.org/show.php?p=51&a=6). Initial
attempts to compile the source code on the RedHat 7.3 machine were unsuccessful.

I noticed the source code was published on September 1997; perhaps the C library has
changed drastically since??

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 16 of 63 Christopher Lee

The source code is then moved to a machine running RedHat 4.2 (release on April 1997)
and attempted another compilation with the default “Makefile” configuration. This time,
the source code was compiled with no errors.

The file size of the captured binary is 15,348 bytes; this is exactly the same as the
compiled LOKI2 server binary.

The command “md5sum atd” reveals the MD5 checksum of the captured binary:
48e8e8ed3052cbf637e638fa82bdc566

The command “md5sum lokid” reveals the MD5 checksum of the compiled LOKI2
server binary:
48e8e8ed3052cbf637e638fa82bdc566

By the virtue of having the exact same file size and MD5 checksum, I was able to
ascertain the identity of the captured previously unknown binary to that of a LOKI2
server compiled with the same “Makefile” configuration as published on the issue 51 of
the Phrack Magazine.

Legal Implications

Obviously, the trivial ways to ascertain the use of this program on this system is to look
for one of the footprints documented in the “Forensic Detail” section of this write-up.

One other way of ascertaining if this binary was executed on the system is through the
examination of its MAC times. If the program was executed, then its access time (atime)
ought to be updated to when it was last executed, which should be after its modified time
(mtime). This analysis, however, will only work if someone had not manipulated the
MAC times of this file.

Given the nature of this Trojan, which is to provide covert channel for someone to access
this system remotely. It is very likely for the user of this Trojan not being the legitimate
privileged user of this system, and more importantly, someone would have to first obtain
the “root” privilege to “install” this Trojan at the first place. If it has been determined
that someone has inappropriate obtained the “root” privilege on this machine, it will
constitute the violation of Section 342.1 of Criminal Code of Canada, which states

Every one who, fraudulently and without colour of right,
(a) obtains, directly or indirectly, any computer service,
(b) by means of an electro-magnetic, acoustic, mechanical or other device, intercepts or

causes to be intercepted, directly or indirectly, any function of a computer system,
(c) uses or causes to be used, directly or indirectly, a computer system with intent to commit

an offence under paragraph (a) or (b) or an offence under section 430 in relation to data or
a computer system, or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 17 of 63 Christopher Lee

Interview Questions

Obviously, by now, the interviewee knew something is up (i.e. why am I being asked to
be here?) and is probably going to be defensive on direct questions surrounding the
incident. The strategy here would be to try wining him/her over by establishing some
sort of connection and use that as a wedge to lower his/her guard and starting talking.
The goal is obviously to get him/her to confess the crime or to (accidentally) provide
more clues to the investigators.

Q1. I heard that you are really good with the computer stuff and knows all sorts of really
cool tricks. I am really impressed. Where did you learn all that?

(assuming we received a half-decent response here, otherwise keep on
chatting/identifying with him/her)

Q2. Wow, that’s real cool. So, what do you with all those new cool tricks you know? I
mean, if I were you, I will be dying to check out what all those tricks could do for me…

Q3. Now, hypothetically speaking, how would someone go about making sure he/she
could always get back into a system without being noticed?

Q4. So, what were you doing at 2:57pm on August 22nd 2002?

Q5. How would you explain this network traffic report that documents a constant stream
of “abnormal” IP packets between this system here and your computer?

Additional Information

Phrack Magazine Volume 7, Issue 51 September 01, 1997, article 06 of 17
http://www.phrack-dont-give-a-shit-about-dmca.org/show.php?p=51&a=6

Appendix A — Criminal Code of Canada offences related to hacking
http://www.rcmp-grc.gc.ca/crim_int/hackers_e-a.htm#appendixA

Criminal Code of Canada, [R.S. 1985, c. C-46]
http://www.canlii.org/ca/sta/c-46/

(d) uses, possesses, traffics in or permits another person to have access to a computer
password that would enable a person to commit an offence under paragraph (a), (b) or
(c)

is guilty of an indictable offence and liable to imprisonment for a term not exceeding ten years,
or is guilty of an offence punishable on summary conviction.

(Quoted from http://www.rcmp-grc.gc.ca/crim_int/hackers_e-a.htm#appendixA)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 18 of 63 Christopher Lee

Part 2 – Option 1: Perform Forensic Analysis on a
system

Synopsis of Case Facts

Breach of security on a database server in a local high school (XYZ high school) was
discovered on October 15th, 2002. One of the teachers discovered the grades of several
students were drastically higher than what was recorded on a prior physical printout.
This database server situates behind a firewall only granting access from web servers on
the local network. The local network is connected to the Internet directly through a
router provided by the school board (no translation of addresses is implemented).

Unfortunately, no intrusion detection systems (IDS) were implemented at this location;
therefore the investigator must proceed without any knowledge on the when or how this
crime was committed. The firewall log showed no unusual connections to the database,
thus the suspicion is one of the web servers has been compromised and used as a launch
pad to crack the security on the database server.

As part of the post-intrusion response, the local system administrator shut down all the
local web servers and submit their hard drives to the school board’s forensic team for
analysis. One of such servers is an old web server at the northwest corner of the high
school’s computer room.

Describe the system(s) you will be analyzing.

This is a Linux web server, providing part of the high school’s web presence on the
Internet, running version 1.3.22 of the Apache web server software. This server is a
clone PC purchased from a local vendor and its hardware configuration is as follows:

• Asset Tag # XYZ-012
• AMD 486 DX2/80 CPU
• 24 MB of RAM
• 1 IDE 546MB Hard Drive
• 1 1.44 MB 3.5” Floppy Drive
• 1 quad-speed IDE CDROM drive
• 1 3Com 3C509 EtherLink II 10 Mbps RJ45 network adapter

The local system administrator, as outlined by the school board’s incident response
policy, shut down this server and turned its hard drive over to the investigation team after
a written request was served.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 19 of 63 Christopher Lee

Hardware

The hard drive from the confiscated machine is described as follows:

Tag# 01 Maxtor 7546AT Hard Drive, Serial # C6013JTS, Size 546 MB

Drive Geometry: Jumper Configuration:
Cylinder Head Sectors Jumper Master/Single Slave
1060 16 63 J20 ON OFF

Image Media

The hard drive was installed (but not mounted) as the second hard drive on the primary
channel of a RedHat Linux workstation. I want to create reliable images of relevant
partitions of this hard drive for analysis on the forensic workstation. The “fdisk –l
/dev/hdb” command was used to display the partition table on this hard drive and the data
on the partition was read by the trusty “dd” command (with the “if=” parameter to read
from the appropriate partitions) and then transmitted to the forensic via a TCP connection
created by the “nc” command2. MD5 (Message Digest version 5) checksum is then
calculated via the command “md5sum” (often distributed as part of any Unix/Linux OS
distributions) for each of these partitions for integrity validation by the receiving host.

2 NetCat, an arbitrary TCP/UDP listener and forwarder written by Hobbit.

[root@dhcppc0 /root]# fdisk –l /dev/hdb

Disk /dev/hdb: 32 heads, 63 sectors, 530 cylinders
Units = cylinders of 2016 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/hdb1 1 480 483808+ 83 Linux
/dev/hdb2 481 530 50400 82 Linux swap
[root@dhcppc0 /root]# dd if=/dev/hdb1 | nc 192.168.254.10 8888
1069482+0 records in
1069482+0 records out
 punt!

[root@dhcppc0 /root]# md5sum /dev/hdb1
f79bf19e048d5feb3d4e3fdbddd85aa4 /dev/hdb1

[root@dhcppc0 /root]# dd if=/dev/hdb2 | nc 192.168.254.10 8888
1069482+0 records in
1069482+0 records out
 punt!

[root@dhcppc0 /root]# md5sum /dev/hdb2
5c4cac34514c2904b0732fc0b55139bc /dev/hdb2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 20 of 63 Christopher Lee

On the receiving machine (i.e. our forensic workstation), the “nc” commands are utilized
to redirect the data stream to files on the local file system. MD5 checksums are then
calculated for those image files and compared with the MD5 checksum of the original
partitions.

Since the image files possesses the same MD5 checksum as the hard drive partitions, we
have ascertained the files “hdb1image.img” and “hdb2image.img” are good forensic
images of the hard drive.

Media Analysis of System

Here comes the media analysis of the partitions on this hard drive. The goal here to look
for the following “clues” in the file system that might provide insight to the investigator
on how (if any) the crime was committed:

1. Modification to operating system software and configuration
2. Back doors, check for setuid and setgid files
3. Signs of a Sniffer program
4. History files
5. /proc examination
6. Start up files

To make sure we do not accidentally modify the partitions during the analysis, the MD5
checksum values of both partitions are first saves to the files /morgue/md5.txt and the
options “ro, loop, nodev, noexec, nosuid, noatime” were supplied to the “mount”
command. Those options are explained as follows:

• ro:
Mount the file system read-only.

• loop:
Mount on a loop device. The loop device is a device driver that allows an
image file to be mounted as though it were a normal block device

• nodev:
Do not interpret character or block special devices on the file system.

• noexec:
Do not allow execution of any binaries on the mounted file system. This option might be useful
for a server that has file systems containing binaries for architectures other than its own.

• nosuid:

[root@forensic /root]# nc –l –p 8888 > /images/hdb1image.img

[root@forensic /root]# md5sum /images/hdb1image.img
f79bf19e048d5feb3d4e3fdbddd85aa4 /images/hdb1image.img

[root@forensic /root]# nc –l –p 8888 > /images/hdb2image.img

[root@forensic /root]# md5sum /images/hdb2image.img
5c4cac34514c2904b0732fc0b55139bc /images/hdb2image.img

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 21 of 63 Christopher Lee

Do not allow set-user-identifier or set-group-identifier bits to take effect. (This seems safe, but is
in fact rather unsafe if you have suidperl(1) installed.)

• noatime:
Do not update inode access times on this file system.

I then proceed to collect the following information about this system:

• OS and version: RedHat Linux 7.2
• Host’s time zone: Canada/Eastern
• Hostname storm
• Host IP address(es) 192.168.254.100
• Last boot date: October 16th, 2003
• Partition map:

LABEL=/ / ext Defaults 1 1
None /dev/pts devpts gid=5,mode=620 0 0
None /proc proc Defaults 0 0
None /dev/shm tmpfs Defaults 0 0
/dev/hda2 swap swap Defaults 1 1
/dev/fd0 /mnt/floppy auto noauto,owner,kudzu 0 0
//Cyclops/pub /mnt/import smbfs username=storm,password=storm,fmask=744,rw

[root@forensic morgue]# md5sum hdb1image.img hdb2image.img > md5.txt
[root@forensic morgue]# mkdir /mnt/forensic
[root@forensic morgue]# mount –o ro,loop,nodev,noexec,nosuid,noatime /morgue/hdb1image.img
/mnt/forensic
[root@forensic morgue]# cd /mnt/forensic
[root@forensic forensic]# touch test-if-read-only
touch: creating t̀est-if-read-only': Read-only file system
[root@forensic forensic]# mount
/dev/sda2 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/sda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
/dev/cdrom on /mnt/cdrom type iso9660 (ro,nosuid,nodev)
/morgue/hdb1image.img on /mnt/forensic type ext3 (ro,noexec,nosuid,nodev,noatime,loop=/dev/loop0)

The file system
is indeed read
only

Confirmed the options
supplied to the
“mount” command

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 22 of 63 Christopher Lee

Modification to operating system software or configuration
As previously established (through the /etc/issue and /etc/redhat-release files), this
appears to be a RedHat Linux 7.2 based system. The “rpm -Va” (RedHat Package
Manager) command is then used to verify the integrity of all system software and/or
configuration files installed through RPM packages on this system. Since the system
being analyzed in mounted on /mnt/forensic, the option “—root /mnt/forensic” is
supplied to instruct the “rpm” command to treat the directory “/mnt/forensic” as the
system’s root directory during its validation process.

[root@forensic forensic]# cat etc/issue
Red Hat Linux release 7.2 (Enigma)
Kernel \r on an \m

[root@forensic forensic]# cat etc/redhat-release
Red Hat Linux release 7.2 (Enigma)
[root@forensic forensic]# ls --full-time var/log/boot.log
-rw-r----- 1 root root 5069 Wed Oct 16 01:02:17 2002 var/log/boot.log
[root@forensic forensic]# cat etc/sysconfig/clock
ZONE="Canada/Eastern"
UTC=false
ARC=false
[root@forensic forensic]# cat etc/sysconfig/network
NETWORKING=yes
HOSTNAME=storm.myhome.local
GATEWAY=192.168.254.1
GATEWAYDEV=eth0
[root@forensic forensic]# grep storm etc/hosts
192.168.254.102 storm storm.myhome.local
[root@forensic forensic]# cat etc/fstab
LABEL=/ / ext3 defaults 1 1
none /dev/pts devpts gid=5,mode=620 0 0
none /proc proc defaults 0 0
none /dev/shm tmpfs defaults 0 0
/dev/hda2 swap swap defaults 0 0
/dev/fd0 /mnt/floppy auto noauto,owner,kudzu 0 0
//cyclops/pub /mnt/import smbfs
 username=storm,password=storm,fmask=744,rw

This is probably a
RedHat 7.2 system

This system is last
booted on
October16th, 2002

Local time
zone of this
system

Hostname

Host IP address

Local
Partition
Layout

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 23 of 63 Christopher Lee

[root@forensic forensic]# rpm --root /mnt/forensic/ -Va | tee /tmp/verified.txt
.M...... /proc
.M...... /usr/local
.M...... /usr/local/bin
.......T c /etc/syslog.conf
missing /dev/log
.M....G. /dev/tty1
.M....G. /dev/tty2
.M....G. /dev/tty3
.M....G. /dev/tty4
.M....G. /dev/tty5
.M....G. /dev/tty6
S.5....T c /etc/krb.conf
.....UG. c /var/lib/rpm/Filemd5s
.....UG. c /var/lib/rpm/Sha1header
.....UG. c /var/lib/rpm/Sigmd5
.......T c /etc/ssh/moduli
.......T c /etc/pam.d/sshd
.......T c /etc/rc.d/init.d/sshd
.......T c /etc/nscd.conf
.......T c /etc/rc.d/init.d/nscd
.......T c /etc/rpc
.......T c /etc/httpd/conf/ssl.crl/Makefile.crl
.......T c /etc/httpd/conf/ssl.crt/Makefile.crt
.......T c /etc/httpd/conf/ssl.crt/ca-bundle.crt
.......T c /etc/httpd/conf/ssl.crt/snakeoil-ca-dsa.crt
.......T c /etc/httpd/conf/ssl.crt/snakeoil-ca-rsa.crt
.......T c /etc/httpd/conf/ssl.crt/snakeoil-dsa.crt
.......T c /etc/httpd/conf/ssl.crt/snakeoil-rsa.crt
.......T c /etc/httpd/conf/ssl.key/snakeoil-ca-dsa.key
.......T c /etc/httpd/conf/ssl.key/snakeoil-ca-rsa.key
.......T c /etc/httpd/conf/ssl.key/snakeoil-dsa.key
.......T c /etc/httpd/conf/ssl.key/snakeoil-rsa.key
.......T c /etc/httpd/conf/ssl.prm/snakeoil-ca-dsa.prm
.......T c /etc/httpd/conf/ssl.prm/snakeoil-dsa.prm
missing /var/cache/ssl_gcache_data.dir
missing /var/cache/ssl_gcache_data.pag
missing /var/cache/ssl_gcache_data.sem
.......T c /etc/krb5.conf
.......T c /etc/rc.d/init.d/kdcrotate
..5....T c /etc/mime.types
S.5....T /etc/cron.daily/logrotate
S.5....T c /etc/xinetd.d/telnet
S.5....T c /etc/pam.d/system-auth
.......T c /etc/cron.daily/00webalizer
S.5....T c /etc/webalizer.conf
missing /var/www/html/usage/msfree.png
missing /var/www/html/usage/webalizer.png
S.5....T c /etc/openldap/ldap.conf
S.5....T c /etc/ntp.conf
S.5....T c /etc/inittab

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 24 of 63 Christopher Lee

The output of the “rpm –Va” command is divided into three columns; the first column
describes where the differences are, the second column denotes if the file is a
“configuration file” (by the character “c”) and the last column displays the name of the
file/directory in question.

The symbols used in the first column is explained as follows3:

• S File Size differs
• M Mode differs (includes permissions and file type)
• D Device major/minor number mis-match
• 5 MD5 sum differs
• L readLink(2) path mis-match
• U User ownership differs
• G Group ownership differs
• T mTime differs

Generally speaking, I am not concerned with files whose mtime had changed as long as
its MD5 checksums are still good (i.e. assuming the potential intruder did not modify the
RPM’s database files, however this is something to verify later on). To identify those
files that has changed since installation, I used the “grep” command with its “-v” option
to filter away messages about:

1. Only mTime was changed
2. Missing files
3. Unsatisfied dependancies

3 Quoted from the man page for the rpm command, as written on June 6th, 2001

Unsatisfied dependencies for perl-5.6.1-26.72.3: perl-CPAN, perl-CGI, perl-DB_File, perl-
NDBM_File
Unsatisfied dependencies for fetchmail-5.9.0-11: smtpdaemon
S.5....T /boot/kernel.h-2.4.9
.......T c /etc/httpd/conf/access.conf
S.5....T c /etc/httpd/conf/httpd.conf
.......T c /etc/httpd/conf/magic
.......T c /etc/httpd/conf/srm.conf
.......T c /etc/logrotate.d/apache
.......T c /etc/rc.d/init.d/httpd
......G. /usr/sbin/suexec
.....U.. /var/cache/httpd
.......T c /var/www/html/index.html
.......T c /etc/pam.d/sudo
S.5....T c /etc/sudoers
.......T c /etc/fdprm
.......T c /etc/pam.d/chfn
.......T c /etc/pam.d/chsh
.......T c /etc/pam.d/login

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 25 of 63 Christopher Lee

With that thought in mind, the files of interests would be:

• /etc/krb.conf
• /etc/mime.types
• /etc/cron.daily/logrotate
• /etc/xinetd.d/telnet
• /etc/pam.d/system-auth
• /etc/webalizer.conf
• /etc/openldap/ldap.conf
• /etc/ntp.conf
• /etc/inittab
• /boot/kernel.h-2.4.9
• /etc/httpd/conf/httpd.conf
• /etc/sudoers

All of the above files were examined manually and nothing out of ordinary were
observed; all changes detected seemed to be the result of site-specific configurations.

At the same times, I also noticed the following:

• RPMs providing capabilities “smtpdaemon”, “perl-CPAN”, “perl-CGI”, “perl-

[root@forensic forensic]# cd /tmp
[root@forensic tmp]# grep -v '\.\.\.\.\.\.\.T' verified.txt | grep -v ‘missing’ | grep -v ‘Unsatisfied’
.M...... /proc
.M...... /usr/local
.M...... /usr/local/bin
.M....G. /dev/tty1
.M....G. /dev/tty2
.M....G. /dev/tty3
.M....G. /dev/tty4
.M....G. /dev/tty5
.M....G. /dev/tty6
S.5....T c /etc/krb.conf
.....UG. c /var/lib/rpm/Filemd5s
.....UG. c /var/lib/rpm/Sha1header
.....UG. c /var/lib/rpm/Sigmd5
..5....T c /etc/mime.types
S.5....T /etc/cron.daily/logrotate
S.5....T c /etc/xinetd.d/telnet
S.5....T c /etc/pam.d/system-auth
S.5....T c /etc/webalizer.conf
S.5....T c /etc/openldap/ldap.conf
S.5....T c /etc/ntp.conf
S.5....T c /etc/inittab
S.5....T /boot/kernel.h-2.4.9
S.5....T c /etc/httpd/conf/httpd.conf
......G. /usr/sbin/suexec
.....U.. /var/cache/httpd
S.5....T c /etc/sudoers

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 26 of 63 Christopher Lee

DB_File”, and “perl-NDBM_File” are missing.
• The following files are missing:

o “/dev/log”,
o “/var/www/html/usage/msfree.png”,
o “/var/www/html/usage/webalizer.png”,
o “/var/cache/ssl_gcache_data.dir”,
o “/var/cache/ssl_gcache_data.pag” and
o “/var/cache/ssl_gcache_data.sem”.

• Files/directories with changed group, user memberships and/or permissions:
o /proc
o /usr/local
o /usr/local/bin
o /dev/tty1
o /dev/tty2
o /dev/tty3
o /dev/tty4
o /dev/tty5
o /dev/tty6
o /var/lib/rpm/Filemd5s
o /var/lib/rpm/Sha1header
o /var/lib/rpm/Sigmd5
o /usr/sbin/suexec
o /var/cache/httpd

Once again, none of these observations lead to any noteworthy discoveries; they are
different simply as the result of the system boot-up or intentional modifications by the
system administrator.

Back doors, check for setuid and setgid files
Ensuring they could get back into the compromised systems, backdoors are typically
implemented as soon as the intruder gained access to the system. The backdoors are
typically covert channels that will give the intruder the “root” access (also known as the
super-user access) upon connection (with or without further authentication), and these
covert channels are almost always provided through executables with “setuid” and/or
“setgid” bits enabled.

The “find” command commonly found on Linux/Unix systems is the perfect tool for
locating files with special attributes. Its extensive parameters and the ability to create
logical relationship between parameter makes it the ideal method of locating files with
either “setuid” or “setgid” bits enabled. In this case, the “-perm” parameter is used to
specify the “setuid” (i.e. permission value of 0x004000 in hexadecimal) and “setgid” (i.e.
0x002000 in hexadecimal) permissions we are looking for, the “-type f” parameter is
supplied to narrow our searches to only files, and the “-ls” parameter instructs the “find”
command to list the file attributes of the matched files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 27 of 63 Christopher Lee

A quick search revealed the following files with “setuid” and/or “setgid” bits enabled:

• /usr/bin/suidperl
• /usr/bin/chage
• /usr/bin/gpasswd
• /usr/bin/at
• /usr/bin/lockfile
• /usr/bin/slocate
• /usr/bin/sperl5
• /usr/bin/passwd
• /usr/bin/wall
• /usr/bin/chfn
• /usr/bin/chsh
• /usr/bin/newgrp
• /usr/bin/write
• /usr/bin/crontab
• /usr/bin/ssh

[root@forensic forensic]# find . \(-perm -004000 -o -perm -002000 \) -type f -ls
 36335 795 -rws--x--x 2 root root 808822 Feb 20 2002 ./usr/bin/suidperl
 36339 35 -rwsr-xr-x 1 root root 34476 Aug 27 2001 ./usr/bin/chage
 36341 37 -rwsr-xr-x 1 root root 36208 Aug 27 2001 ./usr/bin/gpasswd
 36645 38 -rwsr-xr-x 1 root root 37528 Jan 17 2002 ./usr/bin/at
 36440 14 -rwxr-sr-x 1 root mail 12500 Jun 30 2001 ./usr/bin/lockfile
 36489 26 -rwxr-sr-x 1 root slocate 25020 Jun 25 2001 ./usr/bin/slocate
 36335 795 -rws--x--x 2 root root 808822 Feb 20 2002 ./usr/bin/sperl5.6.1
 36524 15 -r-s--x--x 1 root root 13476 Aug 7 2001 ./usr/bin/passwd
 36557 7 -r-xr-sr-x 1 root tty 6444 Aug 28 2001 ./usr/bin/wall
 36646 14 -rws--x--x 1 root root 13164 Jun 24 2002 ./usr/bin/chfn
 36564 14 -rws--x--x 1 root root 12512 Jun 24 2002 ./usr/bin/chsh
 36582 6 -rws--x--x 1 root root 5488 Jun 24 2002 ./usr/bin/newgrp
 36593 9 -rwxr-sr-x 1 root tty 8768 Jun 24 2002 ./usr/bin/write
 36601 22 -rwsr-xr-x 1 root root 21280 Jun 24 2001 ./usr/bin/crontab
 36519 235 -rwsr-xr-x 1 root root 239024 May 22 2002 ./usr/bin/ssh
 36717 82 ---s--x--x 1 root root 82348 Apr 22 2002 ./usr/bin/sudo
 42374 20 -rwsr-xr-x 1 root root 18444 Aug 27 2001 ./usr/sbin/ping6
 42378 10 -rwsr-xr-x 1 root root 9804 Aug 27 2001 ./usr/sbin/traceroute6
 42407 7 -rwxr-sr-x 1 root utmp 6604 Jun 24 2001 ./usr/sbin/utempter
 70878 317 -rwxr-sr-x 1 root 503 321358 Jul 10 2002 ./usr/sbin/postdrop
 42402 7 -rwsr-xr-x 1 root root 6340 Feb 6 2002 ./usr/sbin/usernetctl
 42468 21 -rwsr-xr-x 1 root root 20120 Jun 25 2001 ./usr/sbin/traceroute
 42473 12 -r-s--x--- 1 root 48 11308 Jun 19 2002 ./usr/sbin/suexec
 70879 281 -rwxr-sr-x 1 root 503 284356 Jul 10 2002 ./usr/sbin/postqueue
 84740 24 -rwsr-xr-x 1 root root 23436 Aug 27 2001 ./bin/ping
 84859 58 -rwsr-xr-x 1 root root 57628 Jul 24 2001 ./bin/mount
 84860 29 -rwsr-xr-x 1 root root 28380 Jul 24 2001 ./bin/umount
 84890 20 -rwsr-xr-x 1 root root 18452 Jul 23 2001 ./bin/su
 77044 16 -r-sr-xr-x 1 root root 15088 Nov 9 2001 ./sbin/pwdb_chkpwd
 77045 18 -r-sr-xr-x 1 root root 16824 Nov 9 2001 ./sbin/unix_chkpwd
 77144 5 -rwxr-sr-x 1 root root 4120 Feb 6 2002 ./sbin/netreport

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 28 of 63 Christopher Lee

• /usr/bin/sudo
• /usr/sbin/ping6
• /usr/sbin/traceroute6
• /usr/sbin/utempter
• /usr/sbin/postdrop
• /usr/sbin/usernetctl
• /usr/sbin/traceroute
• /usr/sbin/suexec
• /usr/sbin/postqueue
• /bin/ping
• /bin/mount
• /bin/umount
• /bin/su
• /sbin/pwdb_chkpwd
• /sbin/unix_chkpwd
• /sbin/netreport

Base on the output of running the same command on a freshly-built (from known-good
source media) identically configured RedHat 7.2 system, I know the above list of
SUID/SGID binaries are nothing out of ordinary.

I then check the “/etc/passwd” (i.e the list of accounts) and “/etc/shadow” (i.e. the actual
password file) files for more conventional type of backdoors; the rogue accounts.

Base on the above finding, the permissions for those files, along with the ownership and
its dates seem to be in good order. Let’s take a look at their contents.

[root@forensic forensic]# ls -l etc/passwd
-rw-r--r-- 1 root root 1347 Aug 3 2002 etc/passwd
[root@forensic forensic]# ls -l etc/shadow
-r-------- 1 root root 918 Aug 3 2002 etc/shadow

[root@forensic forensic]# cat etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/var/spool/news:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 29 of 63 Christopher Lee

Almost every accounts are assigned with dummy shells4, with the exception of “root”,
“sync”, “shutdown”, “halt”, “news”, “rpm”, “advu”, and “bbuser” users. Users “sync”,
“shutdown”, “halt” and “news” are system accounts and are configured to launch their
functional binaries as their shells. That leaves us with users “root”, “rpm”, “advu” and
“bbuser” as the only ones with interactive shells. We shall move onto the “/etc/shadow”
file for additional clues.

4 Shells like “/sbin/nologin”, “/no/shell”, “/dev/null” or “/bin/false”

uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/dev/null
rpm:x:37:37::/var/lib/rpm:/bin/bash
rpc:x:32:32:Portmapper RPC user:/:/bin/false
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/bin/false
apache:x:48:48:Apache:/var/www:/bin/false
advu:x:500:500::/home/advu:/bin/bash
bbuser:x:501:501::/home/bbuser:/bin/bash
postfix:x:502:502::/no/where:/no/shell
ntp:x:38:38::/etc/ntp:/sbin/nologin
pcap:x:77:77::/var/arpwatch:/sbin/nologin
sshd:x:74:74::/var/empty/sshd:/bin/false
dnscache:x:503:504:DJBDNS dnscache user:/no/where:/no/shell
dnslog:x:504:505:DJBDNS dnslog user:/no/where:/no/shell

[root@forensic forensic]# cat etc/shadow
root:1/X4bav3e$K2RhyREqxWEaXdbDXUcGW0:11672:0:99999:7:::
bin:*:11672:0:99999:7:::
daemon:*:11672:0:99999:7:::
adm:*:11672:0:99999:7:::
lp:*:11672:0:99999:7:::
sync:*:11672:0:99999:7:::
shutdown:*:11672:0:99999:7:::
halt:*:11672:0:99999:7:::
mail:*:11672:0:99999:7:::
news:*:11672:0:99999:7:::
uucp:*:11672:0:99999:7:::
operator:*:11672:0:99999:7:::
games:*:11672:0:99999:7:::
gopher:*:11672:0:99999:7:::
ftp:*:11672:0:99999:7:::
nobody:*:11672:0:99999:7:::
mailnull:!!:11672:0:99999:7:::
rpm:!!:11672:0:99999:7:::
rpc:!!:11672:0:99999:7:::
rpcuser:!!:11672:0:99999:7:::

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 30 of 63 Christopher Lee

Interesting enough, only the user “root” and “advu” possesses valid passwords, all other
accounts have the string “!!” as their password hashes, which effectively prevents anyone
from logging into those accounts. So much for our prior concerns over those interactive
accounts “rpm” and “bbuser”. While “advu” is the only other account with both a valid
password hash and an interactive shell, its UID (i.e. user ID) of 500 suggests this is a
non-root account. Nevertheless, let’s investigate further on this.

To investigate the access logs on this system, the command “last” is used. The command
“last” searches back through the file /var/log/wtmp (or the file designated by the -f flag)
and displays a list of all users logged in (and out) since that file was created5. In this
case, I directed the “last” command to consult the log file at /mnt/forensic/var/log/wtmp
for its output.

It appears “advu” is the only user that has been access this system since October 14th,
2002. And that (s)he has been accessing this system from 192.168.254.11 and a host
called “wolverine”. Let’s dig even deeper on this.

Since the current “wtmp” file began on Oct 14th 2002, a mere two days prior to the
shutdown of the server for investigation. Perhaps we ought to look at any prior “wtmp”
files for further clues. At the same time, I wonder what IP address was referred to by this
host for the hostname “wolverine”.

5 Man page, July, 29th, 1999

[root@forensic forensic]# last -f var/log/wtmp
advu pts/0 192.168.254.10 Wed Oct 16 00:51 - down (00:10)
advu pts/0 192.168.254.10 Wed Oct 16 00:32 - 00:33 (00:01)
advu pts/0 192.168.254.11 Wed Oct 16 00:28 - 00:31 (00:03)
advu pts/0 192.168.254.11 Wed Oct 16 00:19 - 00:23 (00:04)
reboot system boot 2.4.9-34 Tue Oct 15 01:23 (23:38)
advu pts/0 wolverine Tue Oct 15 01:18 - down (00:02)
advu pts/0 wolverine Mon Oct 14 22:30 - 22:30 (00:00)
advu pts/0 wolverine Mon Oct 14 14:47 - 15:36 (00:49)

wtmp begins Mon Oct 14 14:47:40 2002

nfsnobody:!!:11672:0:99999:7:::
nscd:!!:11672:0:99999:7:::
apache:!!:11672:0:99999:7:::
advu:1kcT7SU3v$LLOj/1DfwGq8/56f1k81./:11672:0:99999:7:::
bbuser:!!:11673:0:99999:7:::
postfix:!!:11676:0:99999:7:::
ntp:!!:11721:0:99999:7:::
pcap:!!:11799:0:99999:7:::
sshd:!!:11833:0:99999:7:::
dnscache:!!:11902:0:99999:7:::
dnslog:!!:11902:0:99999:7:::

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 31 of 63 Christopher Lee

Upon reviewing the “wtmp.1” (the previous wtmp file), I discovered the user “advu” had
also accessed this system from a host called “colossus”. However, the “etc/hosts” file
was not able to provide the information on the whereabouts of host “wolverine” and
“colossus”… However, since the “wtmp” files contains only the short name of the hosts
(instead of their fully qualified domain name), it is safe to say host “wolverine” and
“colossus” are machines belonging to the same DNS domain and thus in the local
network. Still no sign of connections from outside of the local network…

After examining both the list of all SUID/SGID binaries and the password files, I have
concluded no apparent sign of backdoors on this system.

Signs of a Sniffer program
For a Sniffer program to be deployed by the intruder, at least some of the following needs
to hold true:

1. Sniffer binary, either SUID/SGID or the intruder must have root privilege.
2. Data capture file, probably in a hidden directory
3. An automated mechanism to launch the Sniffer, possibly during boot-up

Hunting for Sniffer binary

As shown previously, none of the SUID/SGID files were neither foreign (based on their
names) nor abnormal (based on their MD5 checksums, as verified by rpm). The only
possibility here would be for the intruder to have somehow obtained the root privilege
and was able to use the system’s native Sniffer utility “tcpdump” for this purpose. Even
if that were the case, there must be a file somewhere on the system being used to store all
the data captured.

Hunting for data capture file

My first assumption would be a hidden directory. The “find” command is then again
being used to locate and print out information about any “hidden” directories. This time,

[root@forensic forensic]# ls -l var/log/wtmp*
-rw-rw-r-- 1 root utmp 24960 Oct 16 01:02 var/log/wtmp
-rw-rw-r-- 1 root utmp 1536 Sep 17 2002 var/log/wtmp.1
[root@forensic forensic]# last -f var/log/wtmp.1
advu pts/0 colossus Tue Sep 17 16:03 - 16:04 (00:00)
advu pts/0 colossus Tue Sep 17 09:52 - 10:06 (00:14)

wtmp.1 begins Tue Sep 17 09:52:13 2002
[root@forensic forensic]# grep hosts etc/nsswitch.conf
hosts: files nisplus dns
[root@forensic forensic]# cat etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
192.168.254.102 storm storm.myhome.local

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 32 of 63 Christopher Lee

we instruct the “find” command to locate any directories (with the “-type d” parameter)
that starts with the character “.” (with the “-name “.*” parameter) and display the result
with the format of “%Tc %k %h/%f” followed by a new line character (i.e. \n). The
formatting symbols are explained as follows:

• %f File's name with any leading directories removed (only the last
element).

• %h Leading directories of file's name (all but the last element).
• %k File's size in 1K blocks (rounded up).
• %Tc File's last modification time in the format specified by c, which is locale's

date and time (Sat Nov 04 12:02:33 EST 1989)

In my search for hidden directories, I found only one that seemed to created by the “ssh”
(Secure Shell) application and contains only the “known_hosts2” file, which is a mere list
of known hosts’ RSA keys for Secure Shell. However, base on the info in this file, we
were able to confirm our prior assumption of “colossus” being an internal host in the
local network. Anyhow, let’s see if we could find any “hidden” file in regular directories
that might be used by the potential intruder for Sniffer data storage. Using the previous
“find” command, I merely changed the file type to “directories” (i.e. with the option “-
type f”).

[root@forensic forensic]# find /mnt/forensic/ -name ".*" -type d -printf "%Tc %k %h/%f\n"
Thu 20 Dec 2001 08:39:00 PM EST 1 /mnt/forensic/root/.ssh
[root@forensic forensic]# ls -a /mnt/forensic/root/.ssh/
. .. known_hosts2
[root@forensic forensic]# cat /mnt/forensic/root/.ssh/known_hosts2
colossus,192.168.254.101 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAsGhUl0fBBMydJLHwdA7asarKYv0bZE8f2DRawaAnMi
dVd+gVV30TWs34y4dHBkC1gcTNWFWCcFJrpDXR1ZAbhoMRFcNiJc5sTMRwpHAOBnnr0prg
B3Tdit11OAgUvMIUeX2+tPmGlLNRJTkH2B/QXMV2o/+ZI1mRTP46DTpM4xE=

[root@forensic forensic]# find /mnt/forensic/ -name ".*" -type f -printf "%Tc %k %h/%f\n"
Sun 24 Feb 2002 12:58:11 AM EST 0 /mnt/forensic/var/spool/at/.SEQ
Mon 09 Jul 2001 08:56:20 AM EDT 1 /mnt/forensic/etc/skel/.bash_logout
Mon 09 Jul 2001 08:56:20 AM EDT 1 /mnt/forensic/etc/skel/.bash_profile
Mon 09 Jul 2001 08:56:20 AM EDT 1 /mnt/forensic/etc/skel/.bashrc
Sat 15 Dec 2001 07:27:08 PM EST 0 /mnt/forensic/etc/.pwd.lock
Wed 20 Feb 2002 03:06:55 PM EST 61 /mnt/forensic/usr/lib/perl5/5.6.1/i386-linux/.packlist
Mon 09 Jul 2001 08:56:19 AM EDT 1 /mnt/forensic/usr/share/man/man1/..1.gz
Sat 15 Dec 2001 08:03:33 PM EST 1 /mnt/forensic/home/advu/.bash_logout
Sat 15 Dec 2001 08:03:33 PM EST 1 /mnt/forensic/home/advu/.bash_profile
Sat 15 Dec 2001 08:03:33 PM EST 1 /mnt/forensic/home/advu/.bashrc
Wed 16 Oct 2002 01:02:41 AM EDT 6 /mnt/forensic/home/advu/.bash_history
Sun 16 Dec 2001 07:03:57 PM EST 1 /mnt/forensic/home/bbuser/.bash_logout
Sun 16 Dec 2001 07:03:57 PM EST 1 /mnt/forensic/home/bbuser/.bash_profile
Sun 16 Dec 2001 07:03:57 PM EST 1 /mnt/forensic/home/bbuser/.bashrc
Mon 20 May 2002 09:43:11 PM EDT 2 /mnt/forensic/home/bbuser/.bash_history
Wed 10 May 2000 11:51:05 AM EDT 0 /mnt/forensic/home/bbuser/bb19c/install/.helloworld

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 33 of 63 Christopher Lee

Once again, nothing interesting showed up here. Almost all hidden files found bare
common names and are too small to be Sniffer data files. I verified the larger ones (e.g.
the .bash_history files and the .packlist file) and concluded their content to be legitimate.

Another thought, maybe this data capture file is kept at the “/dev” directory; a common
place for intruder to hide files in. Now, all files in the “/dev” directory are either a
character-mode device or a block-mode device, so files that does not possess either one of
these attributes would be suspicious to us. As usual, the “find” command is being
utilized to locate the suspicious files. Given the nature of our search (i.e. looking for files
that are neither block-mode nor character-mode) and the desired output format (like the
previous search), the option “-type f -not –type c –not –type b –printf “%Tc %k
%h/%f\n” is once again used.

As it turns out, we did not find any suspicious files in the “/dev” directory, either. The
only non-character/block mode file is the MAKEDEV executable, which was verified
previously by the “rpm –root /mnt/forensic/ -Va” command. Base on the data gathered
thus far, I drew another blank on this one.

Wed 10 May 2000 11:51:07 AM EDT 0 /mnt/forensic/home/bbuser/bb19c/tmp/.helloworld
Mon 20 May 2002 08:52:18 PM EDT 1 /mnt/forensic/home/bbuser/bb19c/tmp/.license
Wed 16 Oct 2002 01:01:10 AM EDT 0 /mnt/forensic/home/bbuser/bb19c/tmp/.expire
Wed 10 May 2000 11:51:08 AM EDT 0 /mnt/forensic/home/bbuser/bb19c/ext/.helloworld
Tue 08 Aug 2000 01:44:46 PM EDT 0 /mnt/forensic/home/bbuser/bb19c/www/rep/.helloworld
Wed 10 May 2000 11:51:08 AM EDT 0 /mnt/forensic/home/bbuser/bb19c/www/notes/.helloworld
Wed 10 May 2000 11:51:12 AM EDT 0 /mnt/forensic/home/bbuser/bb19c/www/html/.helloworld
Wed 10 May 2000 11:51:08 AM EDT 0 /mnt/forensic/home/bbuser/bb18d4/www/notes/.helloworld
Tue 08 Aug 2000 01:44:46 PM EDT 0 /mnt/forensic/home/bbuser/bb18d4/www/rep/.helloworld
Wed 10 May 2000 11:51:12 AM EDT 0 /mnt/forensic/home/bbuser/bb18d4/www/html/.helloworld
Wed 10 May 2000 11:51:05 AM EDT 0 /mnt/forensic/home/bbuser/bb18d4/install/.helloworld
Wed 10 May 2000 11:51:07 AM EDT 0 /mnt/forensic/home/bbuser/bb18d4/tmp/.helloworld
Wed 16 Jan 2002 11:44:46 PM EST 1 /mnt/forensic/home/bbuser/bb18d4/tmp/.license
Mon 20 May 2002 09:41:03 PM EDT 0 /mnt/forensic/home/bbuser/bb18d4/tmp/.expire
Wed 10 May 2000 11:51:08 AM EDT 0 /mnt/forensic/home/bbuser/bb18d4/ext/.helloworld
Thu 20 Dec 2001 06:08:18 PM EST 1 /mnt/forensic/home/postfix/.bash_logout
Thu 20 Dec 2001 06:08:18 PM EST 1 /mnt/forensic/home/postfix/.bash_profile
Thu 20 Dec 2001 06:08:18 PM EST 1 /mnt/forensic/home/postfix/.bashrc
Sat 10 Jun 2000 05:00:15 PM EDT 1 /mnt/forensic/root/.bash_logout
Wed 23 Aug 1995 03:02:38 PM EDT 2 /mnt/forensic/root/.Xresources

[root@forensic forensic]# find /mnt/forensic/dev -type f -not -type b -not -type c -printf "%Tc %k
%h/%f\n"
Thu 30 Aug 2001 04:30:52 PM EDT 18 /mnt/forensic/dev/MAKEDEV

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 34 of 63 Christopher Lee

Hunting for the automated Sniffer-launching mechanism

In order for a program to be executed automatically, it would have to be invoked directly
or indirectly through either a system start scripts or through a task-scheduler. Let’s focus
on the task-scheduler for now, as I will investigate the system start scripts in a later
section.

In Linux systems, “at” and “crontab” are two readily available task schedulers. The “at”
scheduler read its task schedules from the directory “/var/spool/at/spool” while the
“crontab” scheduler reads its task schedules from the directories:

• /etc/cron.hourly
• /etc/cron.daily
• /etc/cron.weekly
• /etc/cron.monthly
• /etc/cron.d
• /var/spool/cron

I then proceeded to check each of those directories. For the most part, all task schedules
in those directories were placed by their RPMs. We determined these relationships by
looking for (using the good old “grep” command) each file in the list the files queried
from the RPM database for the appropriate package (using the “rpm –ql PackageName”
command).

[root@forensic etc]# pwd
/mnt/forensic/etc
[root@forensic etc]# ls cron.hourly/

Nothing in the
/etc/cron.hourly
directory

[root@forensic etc]# ls cron.daily/
00webalizer logrotate rpm sysstat
0anacron makewhatis.cron slocate.cron tmpwatch
[root@forensic etc]# rpm --root /mnt/forensic/ -ql webalizer | grep /etc/cron.daily
/etc/cron.daily/00webalizer
[root@forensic etc]# rpm --root /mnt/forensic/ -ql anacron | grep /etc/cron.daily
/etc/cron.daily/0anacron
[root@forensic etc]# rpm --root /mnt/forensic/ -ql logrotate | grep /etc/cron.daily
/etc/cron.daily/logrotate
 [root@forensic etc]# rpm --root /mnt/forensic/ -ql man | grep /etc/cron.daily
/etc/cron.daily/makewhatis.cron
[root@forensic etc]# rpm --root /mnt/forensic/ -ql rpm | grep /etc/cron.daily
/etc/cron.daily/rpm
 [root@forensic etc]# rpm --root /mnt/forensic/ -ql slocate | grep /etc/cron.daily
/etc/cron.daily/slocate.cron
[root@forensic etc]# rpm --root /mnt/forensic/ -ql sysstat | grep /etc/cron.daily
/etc/cron.daily/sysstat
[root@forensic etc]# rpm --root /mnt/forensic/ -ql tmpwatch | grep /etc/cron.daily
/etc/cron.daily/tmpwatch

Each of files found in
/etc/cron.daily directory
was placed there by their
RPMs

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 35 of 63 Christopher Lee

At the same time, however, we noticed two commands being scheduled from the root
user’s personal crontab file “/var/spool/cron/root”:

• /usr/local/etc/logcheck.sh
• /root/share/update.cron

After close examination, “logcheck.sh” seems to belong to Psionic Technologies’
LogSentry product. Unfortunately, this product is no longer available after Cisco
Systems acquired the firm. Nevertheless, this bourne shell script does not seem to carry
out any suspicious activities, after a careful visual inspection of its code.

However, I was not able to locate the “update.cron” file as it was stored on a remote SMB
file system, as determined by the entry in the system’s “/etc/fstab” file.

[root@forensic etc]# ls cron.weekly/
0anacron makewhatis.cron
[root@forensic etc]# rpm --root /mnt/forensic/ -ql anacron | grep /etc/cron.weekly
/etc/cron.weekly/0anacron
[root@forensic etc]# rpm --root /mnt/forensic/ -ql man | grep /etc/cron.weekly
/etc/cron.weekly/makewhatis.cron
[root@forensic etc]# ls cron.monthly/
0anacron
[root@forensic etc]# rpm --root /mnt/forensic/ -ql anacron | grep /etc/cron.monthly
/etc/cron.monthly/0anacron
[root@forensic etc]# ls cron.d
sysstat
[root@forensic etc]# rpm --root /mnt/forensic/ -ql sysstat | grep /etc/cron.d/sysstat
/etc/cron.d/sysstat
[root@forensic spool]# pwd
/mnt/forensic/var/spool
[root@forensic spool]# ls cron/
root
[root@forensic spool]# cat cron/root
DO NOT EDIT THIS FILE - edit the master and reinstall.
(/tmp/crontab.2973 installed on Wed Aug 14 14:13:35 2002)
(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37 vixie Exp $)
0 * * * * /usr/local/etc/logcheck.sh
0 12 * * * /root/share/update.cron
[root@forensic spool]# cat /mnt/forensic/root/share
cat: /mnt/forensic/root/share: No such file or directory
[root@forensic spool]# ls -l /mnt/forensic/root/
total 2
-rw-r--r-- 1 root root 1089 Dec 15 2001 anaconda-ks.cfg
lrwxrwxrwx 1 root root 17 Feb 3 2002 share -> /mnt/import/root/
[root@forensic spool]# ls -l /mnt/forensic/mnt/import/
total 0
[root@forensic spool]# grep /mnt/import /mnt/forensic/etc/fstab
//cyclops/pub /mnt/import smbfs
 username=storm,password=storm,fmask=744,rw
[root@forensic spool]# ls at/spool
[root@forensic spool]#

Nothing is found at the
/var/spool/at/spool
directory

What are these
commands?

Each of files found
in /etc/cron.weekly
directory was placed
there by their RPMs

The file found in
/etc/cron.d directory
was placed there by
its RPM

The files found in
/etc/cron.monthly
directory was placed
there by its RPM

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 36 of 63 Christopher Lee

At the conclusion of my search for Sniffer on this system, I was not able to conclude the
presence of such binary nor its data capture storage on this system.

History files
One excellent feature about Linux systems is its logging capabilities. All of the common
shells (or command interpretation systems) by default keep a good record of each
command issued by the user. In this section, I will identify and examine each of these
command history files.

By default, those command history files are written to a hidden file on the user’s home
directory. As shown from our previous search for hidden files on this system, we have
located the following command history files:

1. /home/advu/.bash_history
2. /home/bbuser/.bash_history
3. /root/.bash_history

Each of the above files were carefully examined but could not locate any suspicious
activities in them. The activities of interests are basically any outbound network
connectivity and program compilations.

I located only regular telnet, ftp and ssh connections to various internal hosts and to two
external hosts, both of which are legitimate business partner of the school board. The
high school’s system administrator was also able to identify those outbound connections
as part of his routine functions.

Additionally, all occurrence of program compilation (e.g. the commands “make” or
“gcc”) were traced back to either the upgrade of the “Big Brother” network monitoring
system or the upgrade of the “postfix” mail transfer agent. The first case was easy, due to
the use of the account name and its uniquely cascaded commands. In the case of the
program compilations in the root user’s history file, the system administrator was able to
identify the pattern of “make” and “make upgrade” pairs of commands for me.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 37 of 63 Christopher Lee

In conclusion of this section, we found no evidence of suspicious activities.

/proc examination
Oh well, it appeared to me that this computer was properly shut down. As the result,
there is no data in the “/proc” directory. One must make sure the system administrator do
not do this in the future when being asked to submit hard drives for forensic analysis.

Start up files
Finally, I will examine the system start up files to attempt locating traces or clues to the
potential security breach on this host.

In a RedHat Linux system, the system start up scripts are kept at the directory “/etc/rc.d”.
Typically, one will find three files (rc, rc.local and rc.sysinit) and 8 subdirectories (init.d,
rc0.d, rc1.d, rc2.d, rc3.d, rc4.d, rc5.d, and rc6.d) under this directory. Most of the time,
subdirectories “rc0.d” through “rc6.d” contains merely symbolic links to actual start up
scripts in the “init.d” subdirectory or symbolic links to the rc.local script.
To help make short of verifying the content of the rcX.d directories, I first search for non
symbolic links in those directories (using the “find rc?.d/* -not –type l” command, where
the wildcard “rc?.d/*” resolves to all files in those rcX.d directories and the parameter “-

[root@forensic forensic]# pwd
/mnt/forensic
[root@forensic forensic]# grep make home/advu/.bash_history
[root@forensic forensic]# grep gcc home/advu/.bash_history
[root@forensic forensic]# grep make home/bbuser/.bash_history
make;make install;cd ../..;chown -R bbuser bb*
make;make install;cd ../..;chown -R bbuser bb*
cd ../src;make;make install; cd ../..; chown -R bbuser:bbuser bb19c
[root@forensic forensic]# grep gcc home/bbuser/.bash_history
[root@forensic forensic]# grep make root/.bash_history
make; make upgrade
make
make upgrade
make
make upgrade
make
make upgrade
make
make upgrade
make
make setup check
make linux
[root@forensic forensic]# grep gcc root/.bash_history
[root@forensic forensic]#

[root@forensic forensic]# cd proc
[root@forensic proc]# ls -ld .
drwxr-xr-x 2 root root 1024 Dec 15 2001 .

Big Brother
upgrades

Postfix upgrades, as
identified by the
system administrator

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 38 of 63 Christopher Lee

not –type l” instructs the “find” command to search for non symbolic link files) and then
validate those symbolic references using the command “find rc?.d/* -not \(-lname
“../init.d/*” –o –lname “../rc.local” \)”. The “-lname” parameter specifies the symbolic
link pattern for “find” to match against.

Through detail examination of the start up scripts in the “/etc/rc.d/init.d” directory (via a
series of queries to the RPM database), I was able to verify the integrity of all but two
start up scripts: “bb” and “postfix”. However, by simply walking through the content of
these scripts, I was able to ascertain their uses are nothing more than to merely launch the
“BigBrother” and the “Postfix” daemons respectively.

In summary, I found no evidence through the analysis of the start up scripts to support the
occurrence of any tempering.

Non-modification of the evidence during the analysis
Finally, MD5 checksum is taken once again on the image file “hdb1image.img” and
compared to the checksum we obtained previously. By the virtue of successful MD5
checksum verification, we are certain the image file (i.e. the evidence) was not modified
during this examination.

[root@forensic forensic]# cd etc/rc.d/
[root@forensic rc.d]# ls
init.d rc rc0.d rc1.d rc2.d rc3.d rc4.d rc5.d rc6.d rc.local rc.sysinit
[root@forensic rc.d]# find rc?.d/* -not -type l
[root@forensic rc.d]# find rc?.d/* -not \(-lname "../init.d/*" -o -lname "../rc.local" \)
[root@forensic rc.d]# rpm -ql initscripts | grep /etc/rc.d/rc$
/etc/rc.d/rc
[root@forensic rc.d]# rpm -ql initscripts | grep /etc/rc.d/rc.local
/etc/rc.d/rc.local
[root@forensic rc.d]# rpm -ql initscripts | grep /etc/rc.d/rc.sysinit
/etc/rc.d/rc.sysinit
[root@forensic rc.d]# cd init.d/
[root@forensic init.d]# ls
anacron autofs crond halt kdcrotate killall netfs nfs nscd portmap random single
syslog xinetd
atd bb functions httpd keytable kudzu network nfslock ntpd postfix rawdevices sshd
tux

Look for files that are neither
symbolic links to files
outside of the init.d directory
nor to the rc.local file.

Look for files
that are not
symbolic links

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 39 of 63 Christopher Lee

Timeline Analysis

Timeline analysis is often valuable to an investigation. It provides the investigator with a
detailed list of when each file was last modified, created and accessed. If the time of the
compromise were known, we could then focus our effort looking at changes/events taking
place around that timeframe. However, as in this case, the time of the compromise is not
known to us.

Obviously, this provides the forensic investigator with a quick and easy way to find the
relationship between the creation and the modification of various files and directories.
Rather often, we are able to reconstruct the activity of the intruder by simply follow the
timeline around the creation date of suspicious files or directories.

Additionally, from this summary of times, we are able to gather key information about
the system such as:

• System installation time
The installation time of the system can often be traced to when a large amount of
files and directories were created (i.e. the cTime being changed on a high number
of files and directories).

• Time of major updates
Similarly, a major system update would present itself as large number of consecutive file creations
after the initial system installation.

• Time of last use
Obviously, this is simply the date of the last entry in the timeline file.

• Time of last software compilation

Apart from the obvious use of the *cc compilers, a high number of library files (i.e. *.h files) will
be indicative of when source codes were compiled on the system.

From the forensic workstation, I added the following entry to the “/morgue/fsmorgue”
file:

Then the following commands were executed to launch the “Autopsy Forensic
Browser”6.

6 A browser interface to The @stake Sleuth Kit (TASK), created by Brian Carrier of @stake

hdb1image.img linux-ext2 / EST5EDT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 40 of 63 Christopher Lee

From the browser, a forensic data file “body” was created for “hdb1image.img” with the
options to collect data of types “Allocated Files”, “Unallocated Files” and “Unallocated
Inodes”.

Once the “body” file was created, a timeline file “timeline” is then created with no
explicit start nor end dates (i.e. all dates). This “timeline” file documents the changes in
the MAC time of each file (both allocated and unallocated files, including the unallocated
Inodes). In this case, this file is 9,879,218 bytes in size and contains 94841 lines. This is
far too large to examine manually.

To facilitate the analysis of this rather large timeline file, I wrote a BASH (Bourne-Again
SHell) script to carry out the following:

1. Ensure the time stamp is printed in front of each entry within the timeline file and
save the new timeline file as “timeline.complete”.

2. Summarize the timeline files by highlighting the number of file/directory
creations on a ten-minute interval. This summary is stored in the
“timeline.creation” file.

[root@forensic morgue]# cd /usr/local/autopsy
[root@forensic autopsy]# ./autopsy 8888 localhost &
[1] 7241
[root@forensic autopsy]#
==
======

 Autopsy Forensic Browser
 ver 1.50

==
======

Morgue: /morgue
Start Time: Fri Mar 21 11:39:04 2003
Investigator: Christopher Lee

Paste this as your browser URL on localhost:
 localhost:8888/13559782742903294675/autopsy

Press ctrl-c to exit

[root@forensic autopsy]# netscape localhost:8888/13559782742903294675/autopsy &
[2] 7242

[root@forensic morgue]# ls -l timeline
-rw-r--r-- 1 root root 9879218 Mar 21 12:19 timeline
[root@forensic morgue]# wc -l timeline
 94841 timeline

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 41 of 63 Christopher Lee

By analyzing the “timeline.creation” file, I was able to ascertain the system installation
time to be December 15th, 2001, between 7pm and 8:19pm. Similarly, I was also able to
identify major system upgrade (or major additional software installation) took place
between 11:30-12:10pm on Aug 14th, 2002 (10,300+ files were created).

Simply by examining the end of the “timeline.complete” file, I was able to determine this
system was last used (shut down by the system administrator) at 1:02am on Oct 16th,
2002.

#!/bin/sh

First, ensure the date is printed in front of every line
C=1
IFS=

read LINE
while [$? -eq 0]
do
 F1=`echo "$LINE" | cut -c1-20 ̀
 if ["$F1" == " "]; then
 F1=$OLDF1
 fi
 F2=`echo "$LINE" | cut -c21- ̀
 echo "$F1" "$F2" >> timeline.complete
 ((C=$C + 1))
 OLDF1=$F1
 read LINE
done

summarize the timeline for creation of files/directories
grep '[m.][a.]c' timeline.complete | cut -c1-16 | sort -b -k 4.3 | sort -b -k 4.1,4.2 | sort -b -n -k 2.1,2.2 |
sort -M -b -k 1.,1.3 | sort -b -k 3.1,3.4 | uniq -c | awk -F':' '{print $1":"$2"0-"substr($1,21,22)":"$2"9"}'
> timeline.creation

Summary file is
generated by one
continuous command.

[root@ forensic root]# more timeline.creation
 1 Dec 31 1969 19:00-19:09
 1 Dec 31 1969 19:10-19:19
……..
 316 Dec 15 2001 19:10-19:19
 10552 Dec 15 2001 19:20-19:29
 7120 Dec 15 2001 19:30-19:39
 1004 Dec 15 2001 19:40-19:49
 786 Dec 15 2001 19:50-19:59
 26 Dec 15 2001 20:00-20:09

Entries were ignored, since they
predate the installation date.
Those are files copied to the
system through the RPM
packages.

[root@forensic root]# tail timeline.complete
Oct 16 2002 01:02:48 0 mac ---------- 0 0 26358 <hdb1image.img-dead-26358>
Oct 16 2002 01:02:48 0 ..c -/-rw-r--r-- 0 0 12 /.autofsck (deleted)
Oct 16 2002 01:02:48 0 ..c -rw-r--r-- 0 0 12 <hdb1image.img-dead-12>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 42 of 63 Christopher Lee

Further, based on the usage of the C library files (*.h files), I was able to make an
educated guess that some source code was compiled on Jan 8th 2002, Jan 16th 2002, Feb
8th 2002, Feb 15th 2002, Feb 20th 2002, May 20th 2002, Jun 1st 2002, Jul 3rd 2002, Jul 10th
2002, Aug 3rd 2002, Aug 7th 2002 and Aug 14th 2002.

While none of these dates fall within close proximity of the intrusion to the database
server, the possibility of this host being compromised much earlier still remains.
However, without further evidence to support this claim or to suggest a time frame for
which this host might have been compromised, I am not able conclude any misuse did
take place on this host.

Recover Deleted Files

Often time, the intruder will delete either the source code of their rootkit or the package
containing the rest of his tools once he gain access to the compromised system and
accomplished his objective. By recovering deleted files, the investigator can often gain
further insight or evidence of the intruder’s activities on this system.

Oct 16 2002 01:02:48 0 mac -/-rw-r--r-- 0 0 26487 /etc/.webalizer.conf.swx (deleted)
Oct 16 2002 01:02:48 28380 .a. -/-rwsr-xr-x 0 0 84860 /bin/umount
Oct 16 2002 01:02:48 0 mac -rw-r--r-- 0 0 26487 <hdb1image.img-dead-26487>
Oct 16 2002 01:02:48 13 .a. l/lrwxrwxrwx 0 0 8095 /lib/libc.so.6 -> libc-2.2.4.so
Oct 16 2002 01:02:48 0 mac -/---------- 0 0 26358 /etc/.webalizer.conf.swp (deleted)
Oct 16 2002 01:02:48 11363 .a. -/-rw-r--r-- 0 0 26452 /etc/ld.so.cache
Oct 16 2002 01:02:48 47 mac -/-rw-r--r-- 0 0 26852 /etc/mtab

[root@forensic root]# grep “[m.]a\.” timeline.complete | grep “\.h$” | cut -c1-11 | uniq -c
……..
 2 Jan 08 2002
 1 Jan 16 2002
 2 Feb 08 2002
 1 Feb 15 2002
 47 Feb 20 2002
 1 May 20 2002
 420 Jun 01 2002
 7 Jul 03 2002
 1 Jul 10 2002
 72 Aug 03 2002
 305 Aug 07 2002
 39 Aug 14 2002

Entries were ignored, since
they predate the system
installation date.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 43 of 63 Christopher Lee

To recover the deleted files on this system, the following piece of code was created to
automat the functionality of tools from “The @stake Sleuth Kit” (TASK)7. In short, this
sequence of commands parses the output of the “ils” command from “TASK”, and
provides it as the input to the “icat” command (from “TASK” as well) to recover data
contained in those inodes. The recovered deleted files are place in the “/morgue/deleted”
directory.

The “ils” command displays the information on the specified inode. The “-r” parameter
instructs the program to look for only inodes of “deleted” files, while the “-f” parameter
specifies the file system of the device/image file to be investigated.

The “awk” processor is then applied to parse and format the output of the “ils” command
to proper input strings for the subprogram following.

Finally, within the “while” loop, the “icat” command extracts the data in each of the
inodes of deleted files and save it into files in the “/morgue/deleted” directory, named
after their respective inode numbers.

As the result of the data recovery, 6,978 files were created in the directory
“/morgue/deleted”, however the majority of them are 0 bytes (i.e. those deleted inodes
have since been reallocated to other files). Even the non-zero byte files possess no more
than 46 bytes of data and of which are entirely binary in nature. Clearly, none of the
deleted files are of interests to the investigation of this system.

String Search

In principle, the forensic media should be searched for files containing keywords that we
have picked up during the investigation thus far. This technique is often employed to
locate additional suspected files altered/left behind by the intruder.

In addition to the above “clues”, the following list of keywords has often been found
within blackhat tools “r00tkit, rootkit, hack, irc, bot, sniff, backdoor, promisc, knark,
hax0r, hide, Trojan, virus, TFN2K, adore, LKM, attack, denial –of- service, ddos, brute
force, 0wn”. These keywords are often part of the blackhat’s binaries’ embedded text.

7 The @stake Sleuth Kit (TASK) is the only open source forensic toolkit for analyzing Microsoft and UNIX
file systems. It integrates the file system analysis tools of The Coroner's Toolkit (TCT), by Wietse Venema
and Dan Farmer, with TCTUTILs and adds new features. TASK is written by Brian Carrier of @stake.

[root@forensic bin]# mkdir /morgue/deleted
[root@forensic bin]# cd /usr/local/task/bin
[root@forensic bin]# ./ils -r -f linux-ext2 /morgue/hdb1image.img | awk -F '|' '($2=="f") {print $1}' |
while read i; do ./icat -f linux-ext2 /morgue/hdb1image.img $i > /morgue/deleted/$i; done
[root@forensic bin]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 44 of 63 Christopher Lee

In this case, given that we have not been able to locate any clue of intrusion/misuse up to
this point. I proceed with a case insensitive keyword search on the list of common
blackhat keywords documented in the previous paragraph.

“Autopsy Forensic Browser” searches the raw device one keyword at a time and returns a
list of inodes (both allocated and unallocated) containing the matched keyword. While
it’s easy to use, it can be time-consuming and cumbersome for interpretation of the data.
Since we have already salvaged the deleted files in the previous section, an (better)
alternative strategy is employed here to look for files containing those keywords of
interests:

1. Enter those keywords into the “blackhat_strings”, where each keyword, prefixed
and suffixed with a blank space, is at its own line.

2. Create a executable shell script “find_keywords” as follows:

#!/bin/sh
this scripts prints out the filenames of files that contains strings
in the blackhat_strings file.
fgrep -f /morgue/blackhat_strings $1 > /dev/null && echo $1

3. Execute the command:

“find /mnt/forensic/ -type f -exec ./find_keywords {} \; | cut -c14- | while read i ;
do rpm -V –nodeps --root=/mnt/forensic/ -f $i | grep $i ; done”

The result is a list of either suspicious regular files containing one or more of
these keywords and the description on where they failed the verification process.

4. Execute the command:

“find /morgue/deleted/ -type f –exec ./find_keywords {} \;”

The result is a list of deleted files containing one or more of these keywords.

The result of this search is reveals the following list of “suspicious files”:

1. /etc/postfix/canonical
2. /usr/local/etc/logcheck.sh
3. /usr/local/man/man5/canonical.5
4. /usr/local/man/man8/cleanup.8
5. /home/bbuser/bb19c/web/bb-ack.sh.DIST
6. /home/bbuser/bb19c/web/bb-hist.sh.DIST
7. /home/bbuser/bb19c/www/help/bb-man.html
8. /home/bbuser/bb18d4/www/help/bb-man.html
9. /home/bbuser/bb18d4web/bb-ack.sh.DIST
10. /home/bbuser/bb18d4web/bb-hist.sh.DIST
11. /var/cache/man/whatis
12. /etc/webalizer.conf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 45 of 63 Christopher Lee

File 12 was quickly verified as the legitimate configuration file for “Webalizer” (a
website usage reporting tool), while files 5 through 10 were quickly identified as the shell
script templates supplied with version 19c and version 18d4 of the BigBrother network
monitoring system. A closer look confirmed files 1 through 4 are legitimate files for the

“Postfix”8 mail transfer agent software, which was compiled and installed manually onto
this host.

File 11 (i.e. /var/cache/man/whatis) is the keyword index of all man pages and a quick
test revealed its innocence.

Okay, so we have nothing in the ext3 file system that interests us. Let move onto the
swap partition and find out if we have better luck there (e.g. in case the program were
launched from a remotely mounted file system).

Unfortunately (for the investigation), the keyword search did not turn up any useful clue
on this system.

Conclusions

8 A clean, efficient, and secured MTA written by Wietse Venema

[root@forensic morgue]# find /mnt/forensic/ -type f -exec ./find_keywords {} \; | cut -c14- | while read
i ; do rpm -V –nodeps --root=/mnt/forensic/ -f $i | grep $i ; done
file /var/cache/man/whatis is not owned by any package
error: file /etc/postfix/canonical: No such file or directory
S.5....T c /etc/webalizer.conf
error: file /usr/local/etc/logcheck.sh: No such file or directory
error: file /usr/local/man/man5/canonical.5: No such file or directory
error: file /usr/local/man/man8/cleanup.8: No such file or directory
error: file /home/bbuser/bb19c/web/bb-ack.sh.DIST: No such file or directory
error: file /home/bbuser/bb19c/web/bb-hist.sh.DIST: No such file or directory
error: file /home/bbuser/bb19c/www/help/bb-man.html: No such file or directory
error: file /home/bbuser/bb18d4/www/help/bb-man.html: No such file or directory
error: file /home/bbuser/bb18d4/web/bb-hist.sh.DIST: No such file or directory
error: file /home/bbuser/bb18d4/web/bb-ack.sh.DIST: No such file or directory

[root@forensic forensic]# fgrep -f /morgue/blackhat_strings ./var/cache/man/whatis
perlhack (1) - How to hack at the Perl internals
perltie (1) - how to hide an object class in a simple variable
shred (1) - delete a file securely, first overwriting it to hide its contents

[root@forensic morgue]# ./find_keyword hdb2image.img
[root@forensic morgue]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 46 of 63 Christopher Lee

Based on the result of all of the above analysis, I have yet to locate concrete evidence of
misuse on this system. While it is possible for the intruder to have covered his tracks so
carefully that he leaves no visible forensic data behind, it would have required in-depth
knowledge and expertise typically not found on people who are interested in the database
server of a local high school.

Therefore, after thoroughly analyze the file system, the timeline file, the deleted files, and
even the swap file, I am confident to conclude that it is highly unlikely for this system to
have been compromised by an external intruder and used as a launch pad to attack the
internal infrastructure at the local high school.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 47 of 63 Christopher Lee

Part 3 - Legal Issues of Incident Handling

Background:
I am the system administrator for a regional Internet Service Provider that provides
Internet access to paying customers. I receive a telephone call from a law enforcement
officer who informs you that an account on my system was used to hack into a
government computer. He asks me to verify the activity by reviewing my logs and
determine if my logs reflect whether or not the activity was initiated there or from another
upstream provider. I review my logs and can only determine a valid user account logged
in via a dialup account during the period of the suspicious activity.

NOTE: For the purposes of this scenario, assume I validated the identity of the law
enforcement officer and this is not social engineering.

Question A: What, if any, information can you provide to the law
enforcement officer over the phone during the initial contact?

This question can be best answered by addressing concerns over the following three
areas:

1. Compliance with corporate policy
2. Compliance with government privacy legislature
3. Compliance with government criminal code

Compliance with Corporate Policy

While the corporate policy of each ISP is different, the majority of Canadian ISPs
belongs and subscribed to the same Code of Conduct and Privacy Code standards as
established by the members of the CAIP (Canadian Association of Internet Providers).

While I, as a system administrator of an ISP, is obliged to assist the law enforcement
officers (section 1, Code of Conduct), necessary authorization or user consent still must
be received prior to the release of the information. In this case, the nature of a criminal
investigation satisfies the provision for exemptions of the principle 3 of the Privacy Code.

At the same time, the disclosure of the information must also comply with the principle 5
of the Privacy Code, which states the release of information when required to do so by
law (e.g. subpoenas, search warrants, other court and government orders, or demands
from other parties who have a legal right to personal information, or to protect the
security and integrity of its network or system) must be limited to the information that is
legally required and nothing more.

While compliance to CAIP’s codes is voluntary, it is typical of a service organization
such as an ISP to try protecting its image as a trusted custodian of its users’ private
information. As the result, it is highly unlikely for an ISP to release private user

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 48 of 63 Christopher Lee

information without appropriate paperwork and legal requirements first being satisfied.
For the sake of this hypothetical discussion, it is prudent to assume the prevalence of this
conservative nature.

Therefore, based on the above codes, I am not able to release user information (including
the log data) to the law enforcement officers over the phone without first receiving the
appropriate paperwork.

The current CAIP’s Code of Conduct is published at
http://www.caip.ca/issues/selfreg/code-of-conduct/code.htm)

The current CAIP’s Privacy Code is published at
http://www.caip.ca/issues/selfreg/privacy-code/privacy.htm)

Compliance with Government Privacy Legislature:

Currently, in Canada, the government does not have any legislature outlining the proper
handling of personal information for non-government institutions.

However, the federal Privacy Act (R.S. 1985, c. P-21) describes what “Federal
Institutions” must adhere to for the collection, disclosure, protection, retention, and
storage of personal information.

Similarly, the Ontario provincial government’s “Freedom of Information and Protection
of Privacy Act” describes the policy each provincial government institution must comply
with in regards to the handling of personal information.

However, since I am the system administrator of a regional ISP that does not fall into the
categories of federal or provincial institutions, there is no restriction in the disclosure of
the log data. In case, being a good citizen, I will provide to the officer as much info over
the phone as he requests.

References:

“Ontario Freedom of Information and Protection of Privacy Act”,
(http://www.ipc.on.ca/scripts/index_.asp?action=31&P_ID=11607&N_ID=1&PT_ID=23
&U_ID=0#top)
“Canadian Federal Privacy Act”, (http://laws.justice.gc.ca/en/P-21/index.html)

Compliance with Government Criminal Code:

Under Criminal Code section 487 (2.2), I will be required of full cooperation with the law
enforcement officer when a warrant is presented.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 49 of 63 Christopher Lee

However, in this case, a warrant has not been produced and as the result, I am not
required under the law to provide such information. At the same token, since I am not
required by the law to release the information, I am still bounded by the typical corporate
policy of upholding the privacy of the requested user information.

Canadian Criminal Code Section 487 is available at http://www.canlii.org/ca/sta/c-
46/sec487.html

Question B: What must the law enforcement officer do to ensure
you to preserve this evidence if there is a delay in obtaining any
required legal authority?

Currently, there are no provisions under the existing Canadian legislature on the topics of
“data-preservation” when a warrant cannot be obtained in a timely manner. As the result,
the preservation of any “evidence” in the absence of a signed warrant is not required of
any service providers.

Without the support of applicable legislature, I, as an administrator for an ISP, am not
allowed to access potential evidences protected under the privacy legislatures. As such,
nothing can be done to preserve the evidence without a signed warrant.

A proposed “Lawful Access” legislature (available through Canadian Justice Department
website @ http://www.canada.justice.gc.ca/en/cons/la_al/) has been made available for
public consultation since August 2002. However, service providers (such as ISPs) are
fearful the cost of implementing and maintaining necessary infrastructure to support
requirements proposed within this legislature will spell the doom of the industry,
especially in today’s economy condition.

Question C: What legal authority, if any, does the law
enforcement officer need to provide to you in order for you to
send him your logs?

As suggested by the section 487.01 (1) of the Canadian Criminal Code, a signed warrant
is necessary to authorize a peace officer to request the release of those log files.

Such warrant will need to be signed by either a:

• provincial court judge,
• judge of a superior court of criminal jurisdiction, or
• judge defined in section 552 of Canadian Criminal Code.

Under section 552 of Canadian Criminal Code, a judge is defined as:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 50 of 63 Christopher Lee

a) in the Province of Ontario, a judge of the superior court of criminal jurisdiction of
the Province,

b) in the Province of Quebec, a judge of the Court of Quebec,
c) in the Province of Nova Scotia, a judge of the superior court of criminal

jurisdiction of the Province,
d) in the Province of New Brunswick, a judge of the Court of Queen's Bench,
e) in the Province of British Columbia, the Chief Justice or a puisne judge of the

Supreme Court,
f) in the Provinces of Prince Edward Island and Newfoundland, a judge of the

Supreme Court,
g) in the Province of Manitoba, the Chief Justice or a puisne judge of the Court of

Queen's Bench,
h) in the Provinces of Saskatchewan and Alberta, a judge of the superior court of

criminal jurisdiction of the province,
i) in the Yukon Territory and the Northwest Territories, a judge of the Supreme

Court of the territory, and
j) in Nunavut, a judge of the Nunavut Court of Justice;

References:

Criminal Code section 487.01 (1), http://www.canlii.org/ca/sta/c-46/sec487.01.html
Criminal Code section 552, http://www.canlii.org/ca/sta/c-46/sec552.html

Question D: What other "investigative" activity are you permitted
to conduct at this time?

While there are no laws prohibiting me from “investigate” the crime, I must do so in
compliance with all necessary privacy and criminal laws.

As the result, it is typically a “safe” practice to allow the law enforcement agents to drive
the investigation instead of allowing my own zeal to thwart their efforts.

That being said, non-intrusive reviews of the organization’s security strategy and/or
vulnerabilities of its infrastructure are good example of things I could investigate and
perhaps could bring about clues on how the intrusion might have had taken place. It is
vitally important to ensure my own investigation is not interfering nor damaging the
official investigation as well its compliance with appropriate laws and regulations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 51 of 63 Christopher Lee

Question E: How would your actions change if your logs
disclosed a hacker gained unauthorized access to your system
at some point, created an account for him/her to use, and used
that account to hack into the government system?

If internal staff members of the ISP made this discovery of unauthorized access via a
lawful process (such as a routine system maintenance or internal system audits), we could
then gather the evidence and submit it, in its relevant entirety, to the appropriate law
enforcement agency (in this case, Royal Canadian Mounted Police) as a report of
violation of Criminal Code section 342.19 (Unauthorized Use of Computer, Unauthorized
Possession of Password) and possibly section 342.2(1)10 (Possession of Device to Obtain
Computer Service).

However, if the law enforcement agency made the discovery of the unauthorized access,
then the response procedure would have been consistent with what I have described in
previous sections.

Once a formal criminal investigate has been taken place and I, as the ISP’s system
administrator, has been contacted by the law enforcement officers to cooperate with
them, I could no longer “investigate” the crime on my own without proper authorization
(typically in writing) from the appropriate law enforcement agencies.

9 Criminal Code 342.1, http://www.canlii.org/ca/sta/c-46/sec342.1.html
10 Criminal Code 342.2 (1), http://www.canlii.org/ca/sta/c-46/sec342.2.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 52 of 63 Christopher Lee

Appendix (for Part 1):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 53 of 63 Christopher Lee

“trace-atd” file
(output of strace on the unknown binary)

08:55:24 execve("./atd", ["./atd"], [/* 16 vars */]) = 0
08:55:24 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40007000
08:55:24 mprotect(0x40000000, 21772, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
08:55:24 mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
08:55:24 stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=10994, ...}) = 0
08:55:24 open("/etc/ld.so.cache", O_RDONLY) = 3
08:55:24 old_mmap(NULL, 10994, PROT_READ, MAP_SHARED, 3, 0) = 0x40008000
08:55:24 close(3) = 0
08:55:24 stat("/etc/ld.so.preload", 0xbffffba0) = -1 ENOENT (No such file or directory)
08:55:24 open("/usr/i486-linux-libc5/lib/libc.so.5", O_RDONLY) = 3
08:55:24 read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0(k\1\000"..., 4096) = 4096
08:55:24 old_mmap(NULL, 823296, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x4000b000
08:55:24 old_mmap(0x4000b000, 592037, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED,
3, 0) = 0x4000b000
08:55:24 old_mmap(0x4009c000, 23728, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x90000) = 0x4009c000
08:55:24 old_mmap(0x400a2000, 201876, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400a2000
08:55:24 close(3) = 0
08:55:24 mprotect(0x4000b000, 592037, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
08:55:24 munmap(0x40008000, 10994) = 0
08:55:24 mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) = 0
08:55:24 mprotect(0x4000b000, 592037, PROT_READ|PROT_EXEC) = 0
08:55:24 mprotect(0x40000000, 21772, PROT_READ|PROT_EXEC) = 0
08:55:24 personality(0 /* PER_??? */) = 0
08:55:24 geteuid() = 0
08:55:24 getuid() = 0
08:55:24 getgid() = 0
08:55:24 getegid() = 0
08:55:24 geteuid() = 0
08:55:24 getuid() = 0
08:55:24 brk(0x804c820) = 0x804c820
08:55:24 brk(0x804d000) = 0x804d000
08:55:24 open("/usr/share/locale/en_US.iso885915/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No
such file or directory)
08:55:24 stat("/etc/locale/C/libc.cat", 0xbffff6c4) = -1 ENOENT (No such file or directory)
08:55:24 stat("/usr/lib/locale/C/libc.cat", 0xbffff6c4) = -1 ENOENT (No such file or directory)
08:55:24 stat("/usr/lib/locale/libc/C", 0xbffff6c4) = -1 ENOENT (No such file or directory)
08:55:24 stat("/usr/share/locale/C/libc.cat", 0xbffff6c4) = -1 ENOENT (No such file or directory)
08:55:24 stat("/usr/local/share/locale/C/libc.cat", 0xbffff6c4) = -1 ENOENT (No such file or directory)
08:55:24 socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
08:55:24 sigaction(SIGUSR1, {0x804a6b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42029098) = 0
08:55:24 socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
08:55:24 setsockopt(4, SOL_IP, IP_HDRINCL, [1], 4) = 0
08:55:24 getpid() = 5119
08:55:24 getpid() = 5119
08:55:24 shmget(5361, 240, IPC_CREAT|0) = 65538
08:55:24 semget(5543, 1, IPC_CREAT|0x180|0600) = 65538

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 54 of 63 Christopher Lee

08:55:24 shmat(65538, 0, 0) = 0x40008000
08:55:24 write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52) = 52
08:55:24 time([1044712524]) = 1044712524
08:55:24 close(0) = 0
08:55:24 sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}, 0x42029098) = 0
08:55:24 sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}, 0x42029098) = 0
08:55:24 sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}, 0x42029098) = 0
08:55:24 fork() = 5364
08:55:24 close(4) = 0
08:55:24 close(3) = 0
08:55:24 semop(65538, 0xbffffb3c, 2) = 0
08:55:24 shmdt(0x40008000) = 0
08:55:24 semop(65538, 0xbffffb3c, 1) = 0
08:55:24 _exit(0) = ?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 55 of 63 Christopher Lee

“trace-atd.5364” File
(output of strace on the unknown binary on a RedHat 7.3 Linux system, with no external
interactions)

08:55:24 setsid() = 5364
08:55:24 open("/dev/tty", O_RDWR) = -1 ENXIO (No such device or address)
08:55:24 chdir("/tmp") = 0
08:55:24 umask(0) = 022
08:55:24 sigaction(SIGALRM, {0x8049218, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42029098) = 0
08:55:24 alarm(3600) = 0
08:55:24 sigaction(SIGCHLD, {0x8049900, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42029098) = 0
08:55:24 read(3, 0x804c78c, 84) = ? ERESTARTSYS (To be restarted)
09:55:24 --- SIGALRM (Alarm clock) ---

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 56 of 63 Christopher Lee

“trace-atd-42.32159” file
(output of strace on unknown binary on a RedHat 4.2 Linux system).

18:26:58 setsid() = 32159
18:26:58 open("/dev/tty", O_RDWR) = -1 ENXIO (No such device or address)
18:26:58 chdir("/tmp") = 0
18:26:58 umask(0) = 022
18:26:58 sigaction(SIGALRM, {0x8049218, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
18:26:58 alarm(3600) = 0
18:26:58 sigaction(SIGCHLD, {0x8049900, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
18:26:58 read(4, 0x804c78c, 84) = ? ERESTARTSYS (To be restarted)
19:26:58 --- SIGALRM (Alarm clock) ---
19:26:58 alarm(0) = 0
19:26:58 time([1047256018]) = 1047256018
19:26:58 semop(0xb, 0x2, 0, 0xbffffbec) = 0
19:26:58 semop(0xb, 0x1, 0, 0xbffffbf4) = 0
19:26:58 sigaction(SIGALRM, {0x8049218, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
19:26:58 alarm(3600) = 0
19:26:58 sigreturn() = ? (mask now [])
19:26:58 read(4, 0x804c78c, 84) = ? ERESTARTSYS (To be restarted)
19:28:46 --- SIGTERM (Terminated) ---
19:28:46 +++ killed by SIGTERM +++

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 57 of 63 Christopher Lee

“trace-atd-42.26086” file

13:26:02 setsid() = 26086
13:26:02 open("/dev/tty", O_RDWR) = -1 ENXIO (No such device or address)
13:26:02 chdir("/tmp") = 0
13:26:02 umask(0) = 022
13:26:02 sigaction(SIGALRM, {0x8049218, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
13:26:02 alarm(3600) = 0
13:26:02 sigaction(SIGCHLD, {0x8049900, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
13:26:02 read(4, "E\0\0<@\214\0\0@\1\273\350\300\250"..., 84) = 60
13:26:12 read(4, "E\0\0<@\214\0\0@\1\273\350\300\250"..., 84) = 60
13:26:13 read(4, "E\0\0<@\214\0\0@\1\273\350\300\250"..., 84) = 60
13:26:14 read(4, "E\0\0<@\214\0\0@\1\273\350\300\250"..., 84) = 60
13:26:15 read(4, 0x804c78c, 84) = ? ERESTARTSYS (To be restarted)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 58 of 63 Christopher Lee

“trace-atd-42.28418” file
(output of strace on the 1st child process of the unknown binary on a RedHat 4.2 Linux
system, with LOKI2 client as the external interaction)

00:20:15 setsid() = 28418
00:20:15 open("/dev/tty", O_RDWR) = -1 ENXIO (No such device or address)
00:20:15 chdir("/tmp") = 0
00:20:15 umask(0) = 022
00:20:15 sigaction(SIGALRM, {0x8049218, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
00:20:15 alarm(3600) = 0
00:20:15 sigaction(SIGCHLD, {0x8049900, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
00:20:15 read(4, "E\0\0T\261\355\0\0@\1\312\271\177"..., 84) = 84
00:20:21 fork() = 28422
00:20:22 read(4, "E\0\0T\261\356\0\0@\1\312\270\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\360\0\0@\1\312\266\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\361\0\0@\1\312\265\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\364\0\0@\1\312\262\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\365\0\0@\1\312\261\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\366\0\0@\1\312\260\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\372\0\0@\1\312\254\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\373\0\0@\1\312\253\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\374\0\0@\1\312\252\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\375\0\0@\1\312\251\177"..., 84) = 84
00:20:22 read(4, "E\0\0T\261\376\0\0@\1\312\250\177"..., 84) = 84
00:20:22 --- SIGCHLD (Child exited) ---
00:20:22 wait4(-1, [WIFEXITED(s) && WEXITSTATUS(s) == 0], 0, NULL) = 28422
00:20:22 sigaction(SIGCHLD, {0x8049900, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
00:20:22 sigreturn() = ? (mask now [])
00:20:22 read(4, 0x804c78c, 84) = ? ERESTARTSYS (To be restarted)
00:20:42 --- SIGTERM (Terminated) ---
00:20:42 +++ killed by SIGTERM +++

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 59 of 63 Christopher Lee

“trace-atd-42.28422” file
(output of strace on the 2nd child process of the unknown binary on a RedHat 4.2 Linux
system, with LOKI2 client as the external interaction)

00:20:22 semop(0x8, 0x2, 0, 0xbffffcfc) = 0
00:20:22 time(NULL) = 1047187222
00:20:22 semop(0x8, 0x1, 0, 0xbffffd00) = 0
00:20:22 pipe([0, 6]) = 0
00:20:22 fork() = 28423
00:20:22 close(6) = 0
00:20:22 fstat(0, {st_mode=S_IFIFO|0600, st_size=0, ...}) = 0
00:20:22 mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x400d3000
00:20:22 read(0, "install.log\nlibtermcap-2.0.8-4."..., 4096) = 89
00:20:22 --- SIGCHLD (Child exited) ---
00:20:22 wait4(-1, [WIFEXITED(s) && WEXITSTATUS(s) == 0], 0, NULL) = 28423
00:20:22 sigaction(SIGCHLD, {0x8049900, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) = 0
00:20:22 sigreturn() = ? (mask now [])
00:20:22 oldselect(1, NULL, NULL, NULL, {0, 100}) = 0 (Timeout)
00:20:22 sendto(5, "E\0\0T\0\0\0\0@\1\0\0\0\0\0\0\177"..., 84, 0, {sin_family=AF_INET,
sin_port=htons(832), sin_addr=inet_addr("127.0.0.1")}, 16) = 84
00:20:22 oldselect(1, NULL, NULL, NULL, {0, 100}) = 0 (Timeout)
00:20:22 sendto(5, "E\0\0T\0\0\0\0@\1\0\0\0\0\0\0\177"..., 84, 0, {sin_family=AF_INET,
sin_port=htons(832), sin_addr=inet_addr("127.0.0.1")}, 16) = 84
00:20:22 oldselect(1, NULL, NULL, NULL, {0, 100}) = 0 (Timeout)
00:20:22 sendto(5, "E\0\0T\0\0\0\0@\1\0\0\0\0\0\0\177"..., 84, 0, {sin_family=AF_INET,
sin_port=htons(832), sin_addr=inet_addr("127.0.0.1")}, 16) = 84
00:20:22 oldselect(1, NULL, NULL, NULL, {0, 100}) = 0 (Timeout)
00:20:22 sendto(5, "E\0\0T\0\0\0\0@\1\0\0\0\0\0\0\177"..., 84, 0, {sin_family=AF_INET,
sin_port=htons(832), sin_addr=inet_addr("127.0.0.1")}, 16) = 84
00:20:22 read(0, "", 4096) = 0
00:20:22 oldselect(1, NULL, NULL, NULL, {0, 100}) = 0 (Timeout)
00:20:22 sendto(5, "E\0\0T\0\0\0\0@\1\0\0\0\0\0\0\177"..., 84, 0, {sin_family=AF_INET,
sin_port=htons(0), sin_addr=inet_addr("127.0.0.1")}, 16) = 84
00:20:22 semop(0x8, 0x2, 0, 0xbffffcf8) = 0
00:20:22 time(NULL) = 1047187222
00:20:22 semop(0x8, 0x1, 0, 0xbffffcfc) = 0
00:20:22 semop(0x8, 0x2, 0, 0xbffffd00) = 0
00:20:22 time(NULL) = 1047187222
00:20:22 semop(0x8, 0x1, 0, 0xbffffd00) = 0
00:20:22 close(5) = 0
00:20:22 close(4) = 0
00:20:22 semop(0x8, 0x2, 0, 0xbffffce4) = 0
00:20:22 shmdt(0x40007000) = 0
00:20:22 semop(0x8, 0x1, 0, 0xbffffce4) = 0
00:20:22 _exit(0) = ?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 60 of 63 Christopher Lee

“trace-atd-42.28423” file
(Output of strace on the 3rd child process of the unknown binary on a RedHat 4.2 Linux
system, with LOKI2 client as the external interaction)

00:20:22 close(0) = 0
00:20:22 dup2(6, 1) = 1
00:20:22 close(6) = 0
00:20:22 execve("/bin/sh", ["sh", "-c", "ls\n"], [/* 17 vars */]) = 0
00:20:22 mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40006000
00:20:22 mprotect(0x8048000, 277863, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
00:20:22 stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=2050, ...}) = 0
00:20:22 open("/etc/ld.so.cache", O_RDONLY) = 0
00:20:22 mmap(0, 2050, PROT_READ, MAP_SHARED, 0, 0) = 0x40007000
00:20:22 close(0) = 0
00:20:22 open("/lib/libtermcap.so.2.0.8", O_RDONLY) = 0
00:20:22 read(0, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"..., 4096) = 4096
00:20:22 mmap(0, 12288, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40008000
00:20:22 mmap(0x40008000, 7276, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 0, 0) =
0x40008000
00:20:22 mmap(0x4000a000, 3496, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 0,
0x1000) = 0x4000a000
00:20:22 close(0) = 0
00:20:22 mprotect(0x40008000, 7276, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
00:20:22 open("/lib/libc.so.5.3.12", O_RDONLY) = 0
00:20:22 read(0, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"..., 4096) = 4096
00:20:22 mmap(0, 831488, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x4000b000
00:20:22 mmap(0x4000b000, 599154, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 0, 0)
= 0x4000b000
00:20:22 mmap(0x4009e000, 22664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 0,
0x92000) = 0x4009e000
00:20:22 mmap(0x400a4000, 200812, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400a4000
00:20:22 close(0) = 0
00:20:22 mprotect(0x4000b000, 599154, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
00:20:22 munmap(0x40007000, 2050) = 0
00:20:22 mprotect(0x8048000, 277863, PROT_READ|PROT_EXEC) = 0
00:20:22 mprotect(0x40008000, 7276, PROT_READ|PROT_EXEC) = 0
00:20:22 mprotect(0x4000b000, 599154, PROT_READ|PROT_EXEC) = 0
00:20:22 personality(PER_LINUX) = 0
00:20:22 geteuid() = 0
00:20:22 getuid() = 0
00:20:22 getgid() = 0
00:20:22 getegid() = 0
00:20:22 getuid() = 0
00:20:22 getgid() = 0
00:20:22 geteuid() = 0
00:20:22 getegid() = 0
00:20:22 brk(0x8092938) = 0x8092938
00:20:22 brk(0x8093000) = 0x8093000
00:20:22 time(NULL) = 1047187222
00:20:22 sigaction(SIGCHLD, {SIG_DFL}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGCHLD, {SIG_DFL}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGINT, {SIG_DFL}, {SIG_DFL}) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 61 of 63 Christopher Lee

00:20:22 sigaction(SIGINT, {SIG_DFL}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGQUIT, {SIG_DFL}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGQUIT, {SIG_DFL}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGHUP, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGINT, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGILL, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGTRAP, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGABRT, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGFPE, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGBUS, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGSEGV, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGPIPE, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGALRM, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGTERM, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGXCPU, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGXFSZ, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGVTALRM, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV
USR2 PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGPROF, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGUSR1, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigaction(SIGUSR2, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1 SEGV USR2
PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}, {SIG_DFL}) = 0
00:20:22 sigprocmask(SIG_BLOCK, NULL, []) = 0
00:20:22 sigaction(SIGQUIT, {SIG_IGN}, {SIG_DFL}) = 0
00:20:22 open("/etc/nsswitch.conf", O_RDONLY) = 0
00:20:22 brk(0x8096000) = 0x8096000
00:20:22 fstat(0, {st_mode=S_IFREG|0644, st_size=1208, ...}) = 0
00:20:22 mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40007000
00:20:22 read(0, "#\n# /etc/nsswitch.conf\n#\n# An"..., 4096) = 1208
00:20:22 read(0, "", 4096) = 0
00:20:22 close(0) = 0
00:20:22 munmap(0x40007000, 4096) = 0
00:20:22 open("/etc/passwd", O_RDONLY) = 0
00:20:22 fstat(0, {st_mode=S_IFREG|0644, st_size=585, ...}) = 0
00:20:22 mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40007000
00:20:22 read(0, "root:.n1kkKAgsCNfs:0:0:root:/roo"..., 4096) = 585
00:20:22 lseek(0, -541, SEEK_CUR) = 44
00:20:22 close(0) = 0
00:20:22 munmap(0x40007000, 4096) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 62 of 63 Christopher Lee

00:20:22 uname({sys="Linux", node="dhcppc0", ...}) = 0
00:20:22 brk(0x8097000) = 0x8097000
00:20:22 lstat(".", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=1024, ...}) = 0
00:20:22 lstat("/", {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
00:20:22 lstat("..", {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
00:20:22 stat("..", {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
00:20:22 open("..", O_RDONLY) = 0
00:20:22 fcntl(0, F_SETFD, FD_CLOEXEC) = 0
00:20:22 brk(0x8099000) = 0x8099000
00:20:22 getdents(0, /* 16 entries */, 4096) = 260
00:20:22 lstat("../tmp", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=1024, ...}) = 0
00:20:22 close(0) = 0
00:20:22 getpid() = 28423
00:20:22 getppid() = 28422
00:20:22 stat(".", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=1024, ...}) = 0
00:20:22 stat("/bin/sh", {st_mode=S_IFREG|0755, st_size=300668, ...}) = 0
00:20:22 getpgrp() = 28418
00:20:22 fcntl(-1, F_SETFD, FD_CLOEXEC) = -1 EBADF (Bad file number)
00:20:22 sigaction(SIGCHLD, {0x805bc10, [], 0}, {SIG_DFL}) = 0
00:20:22 stat(".", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=1024, ...}) = 0
00:20:22 stat("/bin/ls", {st_mode=S_IFREG|0755, st_size=49432, ...}) = 0
00:20:22 sigaction(SIGHUP, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGILL, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGTRAP, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGABRT, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGFPE, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGBUS, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGSEGV, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGPIPE, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGALRM, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGTERM, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGXCPU, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGXFSZ, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGVTALRM, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGPROF, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGUSR1, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGUSR2, {SIG_DFL}, NULL) = 0
00:20:22 sigaction(SIGINT, {SIG_DFL}, {0x804b510, [HUP INT ILL TRAP ABRT BUS FPE USR1
SEGV USR2 PIPE ALRM TERM XCPU XFSZ VTALRM PROF], 0}) = 0
00:20:22 sigaction(SIGQUIT, {SIG_DFL}, {SIG_IGN}) = 0
00:20:22 sigaction(SIGCHLD, {SIG_DFL}, {0x805bc10, [], 0}) = 0
00:20:22 execve("/bin/ls", ["ls"], [/* 16 vars */]) = 0
00:20:22 mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40006000
00:20:22 mprotect(0x8048000, 46847, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
00:20:22 stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=2050, ...}) = 0
00:20:22 open("/etc/ld.so.cache", O_RDONLY) = 0
00:20:22 mmap(0, 2050, PROT_READ, MAP_SHARED, 0, 0) = 0x40007000
00:20:22 close(0) = 0
00:20:22 open("/lib/libc.so.5.3.12", O_RDONLY) = 0
00:20:22 read(0, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"..., 4096) = 4096
00:20:22 mmap(0, 831488, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40008000
00:20:22 mmap(0x40008000, 599154, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 0, 0)
= 0x40008000
00:20:22 mmap(0x4009b000, 22664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, 0,
0x92000) = 0x4009b000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCFA Practical Version 1.1b

 Page 63 of 63 Christopher Lee

00:20:22 mmap(0x400a1000, 200812, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400a1000
00:20:22 close(0) = 0
00:20:22 mprotect(0x40008000, 599154, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
00:20:22 munmap(0x40007000, 2050) = 0
00:20:22 mprotect(0x8048000, 46847, PROT_READ|PROT_EXEC) = 0
00:20:22 mprotect(0x40008000, 599154, PROT_READ|PROT_EXEC) = 0
00:20:22 personality(PER_LINUX) = 0
00:20:22 geteuid() = 0
00:20:22 getuid() = 0
00:20:22 getgid() = 0
00:20:22 getegid() = 0
00:20:22 open(0xbffffc84, O_RDONLY) = -1 ENOENT (No such file or directory)
00:20:22 open(0xbffffc84, O_RDONLY) = -1 ENOENT (No such file or directory)
00:20:22 open(0xbffffc84, O_RDONLY) = -1 ENOENT (No such file or directory)
00:20:22 open(0xbffffc8c, O_RDONLY) = -1 ENOENT (No such file or directory)
00:20:22 open(0xbffffc84, O_RDONLY) = -1 ENOENT (No such file or directory)
00:20:22 open(0xbffffc88, O_RDONLY) = -1 ENOENT (No such file or directory)
00:20:22 brk(0x8054bf4) = 0x8054bf4
00:20:22 brk(0x8055000) = 0x8055000
00:20:22 time(NULL) = 1047187222
00:20:22 ioctl(1, TCGETS, 0xbffffd6c) = -1 EINVAL (Invalid argument)
00:20:22 ioctl(1, TIOCGWINSZ, 0xbffffda4) = -1 EINVAL (Invalid argument)
00:20:22 brk(0x8058000) = 0x8058000
00:20:22 stat(".", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=1024, ...}) = 0
00:20:22 open(".", O_RDONLY) = 0
00:20:22 fcntl(0, F_SETFD, FD_CLOEXEC) = 0
00:20:22 getdents(0, /* 6 entries */, 4096) = 164
00:20:22 getdents(0, /* 0 entries */, 4096) = 0
00:20:22 close(0) = 0
00:20:22 fstat(1, {st_mode=S_IFIFO|0600, st_size=0, ...}) = 0
00:20:22 mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40007000
00:20:22 write(1, "install.log\nlibtermcap-2.0.8-4."..., 89) = 89
00:20:22 close(1) = 0
00:20:22 munmap(0x40007000, 4096) = 0
00:20:22 _exit(0) = ?

