
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 1

Ex-Tip: An Extensible Timeline Analysis Framework in Perl

GCFA Gold Certification

Author: Michael Cloppert [mike@cloppert.org]

Adviser: Dominicus Adriyanto

Accepted: May 16, 2008

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 2

Outline

1. Introduction..5

1.1. Abstract..5

1.2. Background..5

1.3. Prior & Related Work ...6

2. The Ex-Tip Framework..8

2.1. Ex-Tip Design ..8

2.2. Ex-Tip Implementation...11

3. Ex-Tip Module Implementation..14

3.1. Input Modules ..14

3.1.1. Classic Mactime Body Files ...15

3.1.2. McAfee Anti-Virus Logs..17

3.1.3. Windows Registry Keys..19

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 3

3.2. Output Modules ...21

3.2.1. StandardOut: Classic Mactime Output Format...22

4. Practical Ex-Tip ...23

4.1. Getting Ex-Tip..23

4.2. Ex-Tip Installation ..23

4.3. Ex-Tip Usage Example ..25

4.4. Limitations and Considerations..26

5. Conclusion & Future Work ..28

6. References..29

Index of Figures

Figure 1: Generic Ex-Tip module relationship ..9

Figure 2: Ex-Tip Timeline Data Hierarchy ..10

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 4

Figure 3: Ex-Tip 0.1 Implementation ..11

Figure 4: Example hash structure for a file deleted by McAfee13

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 5

1. Introduction

1.1. Abstract

Digital forensic investigative needs extend well beyond the capabilities provided by

classic timeline generation and analysis tools. In this paper, a simple, extensible, and

portable timeline framework is discussed in detail. Dubbed Ex-Tip, it is shown that this tool

can be used to provide basic timeline capabilities to any variety of input sources, with

customizable output for human or programmatic consumption.

1.2. Background

Tools exist to construct timelines based on modify, access, and create times of files on

various filesystems to aid in forensic investigations. Sleuthkit's mactime in concert with fls or

macrobber is a common example. However, in most investigations, the timeline needs of the

forensic analyst have become far more encompassing than simple file activity. Investigations

often necessitate a step-by-step recreation of events pulling time data associated with

Windows registry entries, anti-virus logs, intrusion detection systems, and any other data

available to supplement filesystem activity. At times, both in the lab and in the field,

investigators find new time-stamped data that warrants inclusion in a timeline, such as custom

application logs. As the digital forensics field matures, the list of critical data available grows

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 6

longer, as does the number of timeline visualization tools available for data presentation.

Adding to the complexity, the nature of these data sources is dynamic as software versions

change.

All of this considered, one can see that a gap has emerged between the timeline data

needed by analysts and flexible, portable tools available to easily consume this data -

aggregation, normalization, and visualization, to be specific. This paper describes an

extensible framework to achieve these ends, with plug-ins provided for common timeline data

sources and output formats as proof-of-concept.

1.3. Prior & Related Work

As mentioned above, Brian Carrier’s Sleuthkit toolset is the de-facto standard in open-

source forensics tools as of the writing of this paper. Another powerful collection of free and

open-source (FOSS) tools commonly used is Helix (http://www.e-fense.com/helix/). Helix

contains Sleuthkit tools, amongst others, in the form of a bootable linux-based CD or DVD.

Both contain utilities to generate timelines, but their input and output formats are limited,

static, and cannot handle multiple data types.

Various commercial, off-the-shelf (COTS) tools contain basic timeline capabilities. For

instance, Guidance Software’s EnCase Forensic tool

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 7

(http://www.guidancesoftware.com/products/ef_index.aspx), in its various versions, provides a

“timeline view.” By default, this display includes file metadata. It can be expanded to include

other file formats, but the barrier for entry is high in either cost or vendor-specific knowledge.

Custom scripts must be written in Encase’s own language. Additionally, Encase is not as

portable a tool as the various FOSS tools mentioned above.

One existing extensible framework is Zeitline, a research project by Purdue

University’s CERIAS – Center for Education and Research in Information Assurance and

Security (http://projects.cerias.purdue.edu/forensics/timeline.php). This FOSS tool is a

graphical, java-based event analysis tool that enables timeline event analysis from various

input sources and hierarchical clustering. Data adapters that have been written into this

framework are classic mactime and UNIX syslog formats. While this shows promise, it is

inactive (last updated in 2006), requires a relatively high barrier for entry to include other data

sources, and does not provide for variable output formats.

The only other tool that brushes this application domain is a timeline tool called

EasyTimeline (http://infodisiac.com/Wikipedia/EasyTimeline/). This multipurpose timeline tool

takes a configuration file and graphically represents the results. It makes no attempts to

address the other challenges presented in this paper.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 8

2. The Ex-Tip Framework

Ex-Tip aims to address the challenges of normalization and aggregation with a flexible

and portable tool. It is a complementary technology to many existing domain-specific tools

such as those listed above.

2.1. Ex-Tip Design

Ex-Tip is written in Perl, meaning that any bootable environment that can run Perl can

also run Ex-Tip, provided the required supporting libraries are included. All efforts have been

made to remove the Perl-specific complexities of the framework outside of the adapter scripts,

simplifying the job of the analyst attempting to extend Ex-Tip.

Fundamentally, Ex-Tip is a collection of four types of Perl scripts:

1. The main Perl script, ex-tip.pl

2. The Timeline module which contains the basic input/output/sorting functions of Ex-

Tip, Timeline.pm.

3. The various input modules, adapters that convert data from their native format into

the Ex-Tip hierarchical hash structure discussed later.

4. The various output modules, adapters that convert data from the Ex-Tip hierarchical

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 9

hash structure into whatever output format is required (textual, visual, custom file

format, etc.).

Figure 1 illustrates these modules and their relationship to one another. The use of certain

parameters when calling ex-tip.pl result in function calls to Timeline.pl, which in turn leverages

the various input & output adapter modules using the variables provided on the command

line. The specifics of this relationship are described later.

Figure 1: Generic Ex-Tip module relationship

Data is represented in Timeline.pm as a hierarchical hash structure conforming to that

illustrated in Figure 2.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 10

Figure 2: Ex-Tip Timeline Data Hierarchy

The timeline hash has as its children the epoch time1 of every event inserted into Ex-Tip by

the input module adapters. For each epoch time, a hash structure exists for every data

source type. This is populated by the input module adapters, and can be any value the

analyst desires. Underneath the {time, source} hash is another hash for each activity type

that meets this criteria. Again, this is populated by the input module adapter and can take any

1 “Epoch time,” or “Unix time,” is the date recorded as the number of seconds since 1/1/1970 00:00:00 GMT. It is

typically represented as a 32-bit integer. It has been common in POSIX systems since the 1970’s in various forms [Unix

Programmer’s Manual, 1st Ed.], and specified as a standard in ISO 8601.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 11

value, although it is recommended that this be a single character. Finally, an array is

associated with the {time, source, type} triplet for each object that shares these properties.

2.2. Ex-Tip Implementation

As written for this project, Ex-Tip 0.1 supports one output and three input module

adapters, the dependencies of which are illustrated in Figure 3.

Figure 3: Ex-Tip 0.1 Implementation

Each of these modules will be discussed in detail in Section 3, with sample uses in Section 4.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 12

An illustration of a sample instantiation of Ex-Tip is provided in Figure 4. This is a

simplified example of how infected files that were detected by McAfee and modified would be

represented in the hash structure described in the previous section. One file is modified for

content, aka “Cleaned,” the other is deleted outright. Perl’s hierarchical hash capabilities

allow for unlimited nesting of hashes. The implementation of Ex-Tip leverages this feature so

that each timeline object has associated metadata of the entire hierarchy. The flexible nature

of Perl’s hashing capabilities makes it ideal for adding more object-associated metadata in the

future.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 13

Figure 4: Example hash structure for a file deleted by McAfee

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 14

3. Ex-Tip Module Implementation

Ex-Tip modules are of type input or output. At least one of each must be specified in

order for Ex-Tip to function. More than one of each type may be specified, but the same

module may not be specified more than once.

3.1. Input Modules

The provided input modules with Ex-Tip 0.1 will be described in terms of their output by

the StandardOut module, as this clearly reveals the underlying timeline hash structure that

has been defined therein. The StandardOut module will be discussed in detail later, but

readers familiar with the mactime tool’s textual output will find that StandardOut is very

similar.

Input modules are specified at the command line with the –i parameter to ex-tip.pl as

follows:

$./ex-tip.pl –i <Module Name> [VAR1=VAL1 [VAR2=VAL2 […]]]

Module Name is the name of the module without the .pl extension. Input modules will

typically require an input source be specified by variable assignment. Some input modules

will have other options that can be specified with additional variable assignments. There is no

limit to the number of variables that can be specified for a particular module.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 15

Multiple input modules of different types can be specified with –i.2 Variable

assignments are made to the most recently named module specified by –i, and variable

names need not be unique within Ex-Tip – only within each individual module.

3.1.1. Classic Mactime Body Files

The goal of the Mactime input module is to represent the basic functionality provided

by The Sleuthkit's mactime tool. The module takes as input "body" files from the Sleuthkit

tools fls and ils. The basic file action types introduced to Ex-Tip by this module are:

• File modified time - the last time the file's metadata was modified (i.e., MFT entry),

denoted by capital "M."

• File access time - the last time the file's metadata was accessed, denoted by capital

"A."

• File create time - the time when the file's metadata entry was created, denoted by

capital "C."

Commensurate with Ex-Tip's framework, each file entry provided in the body files will

2 Input modules of the same type cannot be specified twice in this version. If this happens, the second

specification of a particular input module will replace the first.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 16

necessarily have three separate entries: one each for Modified, Accessed, and Created, even

if all three timestamps are identical.

The only variable supported by this module is INFILE, and it is a required parameter.

This is the mactime bodyfile to be read by the module. The module has no dependencies.

Listing 1 is a truncated body file created via fls and ils with data describing 4 files.

Listing 1: Mactime input format

The same data, after having been imported into Ex-Tip and displayed via the StandardOut

module, is shown in Listing 2.

Wed Jul 12 02:52:13 2006
 [bodyfile] A sda/System.map-2.6.17-1.2142_FC4
 [bodyfile] A sda/config-2.6.17-1.2142_FC4
 [bodyfile] A sda/vmlinuz-2.6.17-1.2142_FC4
 [bodyfile] M sda/config-2.6.17-1.2142_FC4
 [bodyfile] M sda/vmlinuz-2.6.17-1.2142_FC4
Wed Jan 17 06:14:32 2007
 [bodyfile] C sda/System.map-2.6.17-1.2142_FC4
 [bodyfile] C sda/config-2.6.17-1.2142_FC4
 [bodyfile] C sda/vmlinuz-2.6.17-1.2142_FC4
Wed Jan 17 06:14:41 2007
 [bodyfile] M sda/System.map-2.6.17-1.2142_FC4
Wed Jan 17 06:14:47 2007
 [bodyfile] A <sda1-dead-22106>
 [bodyfile] M <sda1-dead-22106>
 [bodyfile] C <sda1-dead-22106>

0|sda/System.map-2.6.17-1.2142_FC4|0|20|33188|-/-rw-r--r--
|1|0|0|0|832577|1169014481|1152672733|1169014472|1024|0
0|sda/config-2.6.17-1.2142_FC4|0|21|33188|-/-rw-r--r--
|1|0|0|0|65917|1152672733|1152672733|1169014472|1024|0
0|sda/vmlinuz-2.6.17-1.2142_FC4|0|22|33188|-/-rw-r--r--
|1|0|0|0|1803676|1152672733|1152672733|1169014472|1024|0
0|<sda1-dead-22106>|0|22106|33152|-rw-------|0|0|0|0|0|1169014487|1169014487|1169014487|1024|0

Listing 2: Mactime output format

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 17

3.1.2. McAfee Anti-Virus Logs

Three McAfee log file formats were considered for this anti-virus parser:

• On-Demand Logs

• On-Access Logs

• Access Protection Logs

These logs are voluminous, often containing statistics, informational, and warning

messages intertwined with clean and delete messages. Access Protection logs, which

contain messages about blocked execution based on behavioral rules, were especially

difficult to digest notionally alongside more discrete data like file MAC times. Due to

inconsistent log formatting, vague protection messages, and a general lack of availability of

representative Access Protection logs, the decision was made to only include file clean and

delete messages from On-Demand and On-Access logs. These are the two action types

introduced to Ex-Tip: Clean, denoted by the lowercase "c," and Delete, denoted by the

lowercase "d."

Modern versions of McAfee adhere to the following space-aligned format for log entries

recording Clean and Delete messages:

<date> <time> <AM | PM> <Cleaned | Deleted> [(message)] <DOMAIN>\<userID>

<process> <file> <detection name> <(detection type)>

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 18

The mapping of these fields to Ex-Tip fields is articulated in Table 1.

Table 1: Field mappings from Mcafee to Ex-Tip

Ex-Tip Hash epoch_time data_source activity_type object

McAfee Data <date>, <time>,
<AM|PM>
conversion by
Time::Local

“mcafee” <Cleaned = “c” |
Deleted = “d”>

<DOMAIN><userID>,
<process>, <file>,
<detection name>,
<(detection type)>

The only required variable definition for this module is INFILE, which is the McAfee log

file to be parsed. Note that the assumed timezone for this module is US Eastern. This is not

controlled by a variable, but the script could be easily modified to do so. There is one

package dependency for this module, Time::Local, available through CPAN

(http://search.cpan.org/dist/Time-Local/).

Listing 3 is a sample McAfee log file, truncated to include lines of interest. The first

lines that contain statistical or stateful information are ignored by the parser. Only the lines

with “Cleaned” or “Deleted” specified are even processed.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 19

Listing 3: McAfee Anti-virus input format

Listing 4 is the same data after having been imported into Ex-Tip and displayed via the

StandardOut module. The mapping of McAfee fields to Ex-Tip fields is made clear in this

example.

Listing 4: McAfee output format

3.1.3. Windows Registry Keys

Windows registry files can be valuable in forensic investigations as well. It isn’t

1/11/2008 10:17:19 AM Statistics:
1/11/2008 10:17:19 AM Files scanned: 300903
1/11/2008 10:17:19 AM Files detected: 130
1/11/2008 10:17:19 AM Files cleaned: 0
1/11/2008 10:17:19 AM Files deleted: 0
1/11/2008 11:26:07 AM Engine version = 5200.2160
1/11/2008 11:26:07 AM AntiVirus DAT version = 5204.0000
1/11/2008 11:26:07 AM Number of detection signatures in EXTRA.DAT = None
1/11/2008 11:26:07 AM Names of detection signatures in EXTRA.DAT = None
1/11/2008 11:32:46 AM Not scanned (scan timed out) ASPENSYS\rhou
C:\WINDOWS\Explorer.EXE C:\Program Files\Quest Software\Toad for Oracle\TOAD.exe
1/11/2008 12:04:34 PM Not scanned (The file is encrypted) ASPENSYS\rhou
C:\Program Files\Internet Explorer\iexplore.exe C:\Documents and Settings\rhuo\Local
Settings\Temporary Internet Files\Content.IE5\0JHBAIR1\TodayLight[1].aspx\TodayLight[1]
[...]
1/13/2008 11:22:13 AM Cleaned ASPENSYS\rhou C:\Program Files\Internet
Explorer\iexplore.exe c:\documents and settings\rhuo\local settings\temporary internet
files\content.ie5\wqe160nf\setup[1].exe Adware-ZangoSA (Adware)
1/13/2008 11:22:15 AM Deleted ASPENSYS\rhou C:\Program Files\Internet
Explorer\iexplore.exe C:\DOCUMENTS AND SETTINGS\RHUO\LOCAL SETTINGS\TEMPORARY INTERNET

\ \ \

Sun Jan 13 16:22:13 2008
 [mcafee] c (ASPENSYS\rhou) C:\Program Files\Internet Explorer\iexplore.exe
c:\documents and settings\rhuo\local settings\temporary internet
files\content.ie5\wqe160nf\setup[1].exe : (Adware)Adware-ZangoSA
Sun Jan 13 16:22:15 2008
 [mcafee] d (ASPENSYS\rhou) C:\Program Files\Internet Explorer\iexplore.exe
C:\DOCUMENTS AND SETTINGS\RHUO\LOCAL SETTINGS\TEMPORARY INTERNET
FILES\CONTENT.IE5\WQE160NF\SETUP[1].EXE : (Adware)Adware-ZangoSA

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 20

commonly known, but all registry keys have a last modified timestamp associated with them

that can be crucial in identifying the time across which suspicious activity occurred during an

intrusion-related investigation (as compared to, say, an investigation related to pornography).

While this date isn’t always valuable, as it is only associated with the registry key and not

values and is only a last-modified timestamp, there are times that this supplemental

information can be invaluable, such as in cases where intruders modify file timestamps –

amongst others. It is important to note that the files which contain the timestamps are raw,

binary registry files; not registry hive exports that are ascii text.

The Registry module accepts the following variables:

• INFILE – A required variable, this is the binary registry file that will be parsed

• KEYNAME – This is the name of the registry hive that was imported. It is arbitrary

text (no spaces), and will be prepended to the key upon import.

In order to parse the windows registry file format, the module leverages the work done by

James Macfarlane in Parse::Win32Registry, available from CPAN

(http://search.cpan.org/~jmacfarla/Parse-Win32Registry-0.30/). This module can be

problematic, and will sometimes generate warning or error messages. It also does not work

in some environments (Cygwin, for example), however as tested in Fedora the module will

parse most modern Windows registry files, and will not terminate when errors or warnings are

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 21

encountered. There are a variety of existing perl scripts that parse Windows registry files, but

unfortunately all are problematic to one degree or another. Parse::Win32Registry gave the

author the fewest problems.

Listing 5 shows a portion of a registry file, as displayed by the Ex-Tip StandardOut

module after import. To generate this output, the variable assignment

KEYNAME=SOFTWARE was used when calling ex-tip.pl.

Listing 5

3.2. Output Modules

Output modules are specified at the command line with the –o parameter to ex-tip.pl as

follows:

$./ex-tip.pl –o <Module Name> [VAR1=VAL1 [VAR2=VAL2 […]]]

Module Name is the name of the module without the .pl extension. This usage is identical to

that of input modules, simply with a different sentinel switch. As with input modules, there is

Wed Mar 14 14:40:37 2007
 [registry] M SYSTEM\ControlSet001\Enum\Root\LEGACY_PARTMGR
 [registry] M SYSTEM\ControlSet001\Hardware Profiles\0001
 [registry] M SYSTEM\ControlSet003\Enum\Root\LEGACY_PARTMGR
 [registry] M SYSTEM\ControlSet003\Hardware Profiles\0001
Wed Mar 14 14:40:43 2007
 [registry] M SYSTEM\ControlSet001\Enum\Root\LEGACY_MUP
 [registry] M SYSTEM\ControlSet001\Enum\Root\LEGACY_NDIS
 [registry] M SYSTEM\ControlSet003\Enum\Root\LEGACY_MUP
 [registry] M SYSTEM\ControlSet003\Enum\Root\LEGACY NDIS

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 22

no limit to the number of variables that can be specified for a particular module.

Multiple output modules of differing types can also be specified with –o.3 Variable

assignments are made to the most recently named module specified by –o, and variable

names need not be unique within Ex-Tip – only within each individual module.

3.2.1. StandardOut: Classic Mactime Output Format

The classic Mactime output format in the StandardOut module was designed to

emulate the timeline data display provided by The Sleuthkit’s mactime tool. Listings provided

throughout this paper serve as examples of this output format.

The StandardOut module has no required parameters. If specified, the OUTFILE

variable will cause the module to write all output to a file. Otherwise, the module prints all

output to STDOUT. In order to print epoch time in human-readable format, StandardOut

depends on the Time::gmtime module available from CPAN

(http://perldoc.perl.org/Time/gmtime.html).

3 Output modules of the same type cannot be specified twice in this version. If an output module is specified twice

with different parameters, the second specification will replace the first.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 23

4. Practical Ex-Tip

Ex-Tip should be easy to use for any analyst comfortable with a shell prompt.

However, to remove any uncertainty, this section describes its installation and use.

4.1. Getting Ex-Tip

A static copy of the proof-of-concept code is stored at http://www.cloppert.org/ex-tip-

0.1.zip for the purposes of evaluating this practical. It will also be stored and maintained long-

term thanks to Sourceforge.net at http://sourceforge.net/projects/ex-tip. Ex-Tip will be

released under the Gnu Public License (GPL), according to the terms and conditions

documented in full at http://www.gnu.org.

4.2. Ex-Tip Installation

Before Ex-Tip is used, all module dependencies must be resolved. For version 0.1,

this means installing the following from CPAN:

• Time::Local

• Time::gmtime

• Parse::Win32Registry

The most likely problems one is likely to encounter with Ex-Tip involves installation and

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 24

use of the dependent modules. Time::gmtime and Time::Local are part of the standard Perl

libraries. Parse::Win32Registry is not, and CPAN testers have documented problems in

some environments. All modules can be installed using CPAN as illustrated in Listing 6,

which demonstrates the installation of Time::Local.

For proper operation of ex-tip.pl, all associated Perl scripts and modules must be

copied to the user’s PATH, or current working directory (CWD). This includes:

• ex-tip.pl

• Timeline.pm

• All modules. For version 0.1:

o StandardOut.pl

o Mcafee.pl

o Mactime.pl

o Registry.pl

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 25

Listing 6: Installation of Time::Local using CPAN

4.3. Ex-Tip Usage Example

A few usage examples are given here to support descriptions of Ex-Tip given earlier in

the paper. The most basic use, emulating The Sleuthkit’s mactime functionality of taking in a

bodyfile and printing its contents in human-readable format to screen, is as follows:

./ex-tip.pl –i Mactime INFILE=/some/dir/bodyfile.txt –o StandardOut

In order to take this output and write it to disk, the output can be redirected using the greater-

than symbol “>”, or specified as a parameter to StandardOut, as shown respectively below:

./ex-tip.pl –i Mactime INFILE=/some/dir/bodyfile.txt –o StandardOut > output.txt

./ex-tip.pl –i Mactime INFILE=/some/dir/bodyfile.txt –o StandardOut

[root@webservices ~]# perl -MCPAN -e shell
Terminal does not support AddHistory.

cpan shell -- CPAN exploration and modules installation (v1.7602)
ReadLine support available (try 'install Bundle::CPAN')
cpan> install Time::Local
CPAN: Storable loaded ok
Going to read /root/.cpan/Metadata
 Database was generated on Tue, 14 Aug 2007 22:36:47 GMT
CPAN: LWP::UserAgent loaded ok
Fetching with LWP:
[…]
Writing /usr/lib/perl5/5.8.8/i386-linux-thread-multi/auto/Time/Local/.packlist
Appending installation info to /usr/lib/perl5/5.8.8/i386-linux-thread-multi/perllocal.pod
 /usr/bin/make install -- OK

cpan>

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 26

OUTFILE=output.txt

Multiple input and output modules of different types can be specified. In Listing 7, all

three input modules are used, with the StandardOut module writing the result to disk. The

output of Ex-Tip is also included here.

Listing 7: Three input and one output modules example use

4.4. Limitations and Considerations

As noted earlier, Parse::Win32Registry is problematic in some operating environments.

It works as tested in Fedora Core 4, but will occasionally generate very verbose warnings or

errors for some registry files. In cases such as this, most registry data will still be imported

$./ex-tip.pl -i Mcafee INFILE=./mcafee_samples/OnAccessScanLog.txt -i Mactime
INFILE=test.body -i Registry INFILE=./SYSTEM KEYNAME=SYSTEM -o StandardOut
OUTFILE=./test_output.txt
Adding input packages
 Adding package Mcafee
 Setting 'INFILE'='./mcafee_samples/OnAccessScanLog.txt'
 Adding package Mactime
 Setting 'INFILE'='test.body'
 Adding package Registry
 Setting 'INFILE'='./SYSTEM'
 Setting 'KEYNAME'='SYSTEM'
Adding output packages
 Adding package StandardOut
 Setting 'OUTFILE'='./test_output.txt'
Processing package Mcafee
Processing package Mactime
Processing package Registry
Processing package StandardOut
 Writing to output file ./test_output.txt
$

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 27

and the scripts will not terminate. Redirecting STDERR to /dev/null will allow Ex-Tip to

proceed to the end of the file so that output validation is possible – recommended in these

cases.

Performance and memory footprint of Ex-Tip were not considered for this proof-of-

concept. The purpose of this version was merely to demonstrate the benefits of a tool with

the properties documented herein. As a result, it is possible that large data sets may not

execute as quickly as expected. Provided sufficient memory is available, however, data set

size should not prohibit the tool from executing successfully.

This early version of the tool does not permit multiple input or output modules of the

same type to be used. For instance, multiple registry files cannot be imported using ‘-i

Registry’. In such a case, the last specification will be the only one instantiated by Ex-Tip.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 28

5. Conclusion & Future Work

Ex-Tip is without a doubt incomplete. The most immediate need to facilitate adoption

of the framework is the addition of more modules. Of particular use would be Windows

Eventlog and other Anti-Virus vendor file format parsers. Other hurdles exist within the

framework itself between this proof-of-concept and a full release version, such as the

capability to use more than one instance of each input or output plugin, e.g. adding binary

SYSTEM and SOFTWARE hives with the Windows Registry plugin. The implementation

should be studied with performance considerations in mind. It is likely that computational and

memory efficiency gains can be achieved.

While the current realization of the framework does have limitations, this approach

proves the value of an extensible framework for forensic timeline creation. It saves the

valuable time of digital forensic investigators by solving the problems of data normalization,

ordering, and visualization, and as a consequence reduces the cost of such investigations. It

is adaptable to various visualization tools with open file formats, and can be extended to meet

the needs of future input file types through the creation of a simple adapter. Written in Perl,

and well-documented, this approach gives investigators easy access to the framework’s

extensibility so that it may be leveraged ad-hoc or in the field in classic forensic operating

environments.

© SANS Institute 2008, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 8

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Ex-Tip

Michael Cloppert 29

6. References

Comprehensive Perl Archive Network, CPAN (http://www.cpan.org)

The Sleuth Kit & Autopsy: Digital Investigation Tools for Linux and Other Unixes

(http://www.sleuthkit.org/)

ISO 8601:2004, Date and Time Format (http://www.iso.org/iso/date_and_time_format)

Thompson, K., and Ritchie, D.M., Unix Programmer’s Manual, Bell Labs, 1971.

