
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
1

GIAC Certified Forensic Analyst
(GCFA) Practical Assignment

Version 1.3

by
Dennis daCruz

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
2

Section I: Binary File Analysis

The first assignment is to investigate an unknown binary. The following
procedures will be used to investigate the binary file:

1. Obtain the binary file from the designated location.
(http://www.giac.org/gcfa/binary_v1.3.zip)

2. Gather stat information about the file, information such as the md5sum,
the MAC times, type of file, file size, and file owner of the file.

3. Gather string information from the binary. String information could include
ASCII and Unicode information from the binary file.

4. Investigate information gathered from the string search on the binary.
5. Use IDA disassembler to gather some Assembly instruction from the

binary file.
6. Configure a test environment with proper monitoring tools and isolate, the

system, and run the binary.
7. Run the binary in the isolated environment gathering data on what files the

binary uses.
8. Document the conclusion found while investigating the binary, including

potential countermeasures to the binary.
9. Document potential legal issues with the use of the binary file.
10. Provide a series of questions to ask anyone involved in the creation or

discovery of this unknown binary.

Binary Details:

The binary file to be investigated was downloaded from the sans website
(http://www.giac.org/gcfa/binary_v1.3.zip). The initial step was to extract the
binary and verify the MD5 checksum of the binary. The name of the extracted
file was target2.exe. The next step was to calculate the hash value of the binary.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
3

screenshot of md5sum of the target2.exe binary

There was no MD5 provided with the file, so it will have to be assumed that this
MD5 is the correct value for the executable. The next step is to use the Unix
utility file to get some information about the type of file that target2.exe is.

#file target2.exe
target2.exe: MS-DOS executable (EXE), OS/2 or MS Windows

The file command has shown that the file is a Windows executable. The next
step to take in analyzing the binary is to gather the Modify ,Access, and Create
time information on the binary. The Modify, Access, and Create (MAC) times are
stored by the filesystem and provide information about when a file was changed,
last accessed, or created on the filesystem. Other statistics such as file owner
and file size should also need to be gathered. This information could be
gathered using mac_daddy or the Unix utility stat. In this case the stat command
will be used because it provides all the required data within one command.

stat target2.exe

File: "target2.exe"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
4

 Size: 26793 Blocks: 56 IO Block: 4096 Regular File
Device: 303h/771d Inode: 246267 Links: 1
Access: (0644/-rw-r--r--) Uid: (500/ dacruz) Gid: (500/ dacruz)
Access: Thu Aug 7 18:43:04 2003
Modify: Thu Aug 7 18:43:04 2003
Change: Thu Aug 7 18:43:04 2003

The file size is 26793 bytes and the current owner is dacruz, dacruz is the local
user account on the forensics system. The MAC times on the file are all August
7, 2003 (the date of the analysis). Because this program appears to be a
Windows binary, the analysis of this file will continue using a Windows system.
The date information on the stat command did not appear accurate; the
information will be view using the property sheet on a Windows system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
5

property information on the target2.exe binary.

The property information showed the modified and creation date as February 20,
2003 at 12:45:48 PM.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
6

Program Description

The next step in the analysis of the binary is to gather any string information from
the binary file. The Bintext utility from Foundstone will be used to gather the
data.

BinText – can be used to extract Unicode, ASCII text, and Resource strings from
a binary file.
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subco
ntent=/resources/proddesc/bintext.htm

The following output was captured from the binary using the bintext utility.

File pos Mem pos ID Text
======== ======= == ====

0000004D 0040004D 0 !This program cannot be run in DOS mode.
000001D0 004001D0 0 .text
000001F8 004001F8 0 .rdata
0000021F 0040021F 0 @.data
00000248 00400248 0 .rsrc
000011D0 004011D0 0 D$,QPR
000011FC 004011FC 0 D$ j'P
0000121E 0040121E 0 T$,j'RP
000012FE 004012FE 0 T$,VRS
00001327 00401327 0 D$ j'P
00001349 00401349 0 T$,j'RP
00001408 00401408 0 L$ j'Q
0000142B 0040142B 0 D$,j'PQ
00001540 00401540 0 D$0QPR
0000156E 0040156E 0 D$$j'P
00001590 00401590 0 T$0j'RP
00001678 00401678 0 T$0URV
000016A1 004016A1 0 D$$j'P
000016C3 004016C3 0 T$0j'RP
00001803 00401803 0 D$ j'PQ
000019AF 004019AF 0 T$$QRj
000019CE 004019CE 0 D$$PW
00001BD6 00401BD6 0 h0A@
00001CEA 00401CEA 0 SPhxD@
00001D10 00401D10 0 SQhpD@
00001D65 00401D65 0 D$@SPS
00001E16 00401E16 0 T$|RP
00001E77 00401E77 0 USSSP3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
7

00001F25 00401F25 0 D$(PQ
00002050 00402050 0 x!xu\
00002056 00402056 0 x"iuV
0000205C 0040205C 0 x#tuP
0000207A 0040207A 0 IQh@A@
00002270 00402270 0 t1h@D@
000022B4 004022B4 0 Ht Ht
0000243E 0040243E 0 Ph<B@
00002460 00402460 0 T$(QR
0000249D 0040249D 0 L$0PQ
00002528 00402528 0 Ph0C@
000032EA 004032EA 0 Sleep
000032F2 004032F2 0 HeapAlloc
000032FE 004032FE 0 GetProcessHeap
00003310 00403310 0 TerminateProcess
00003324 00403324 0 ReadFile
00003330 00403330 0 PeekNamedPipe
00003340 00403340 0 CloseHandle
0000334E 0040334E 0 CreateProcessA
00003360 00403360 0 CreatePipe
0000336E 0040336E 0 WriteFile
0000337A 0040337A 0 GetLastError
0000338A 0040338A 0 LocalAlloc
00003396 00403396 0 KERNEL32.dll
000033A6 004033A6 0 StartServiceCtrlDispatcherA
000033C4 004033C4 0 SetServiceStatus
000033D8 004033D8 0 RegisterServiceCtrlHandlerA
000033F6 004033F6 0 CloseServiceHandle
0000340C 0040340C 0 ControlService
0000341E 0040341E 0 QueryServiceStatus
00003434 00403434 0 OpenServiceA
00003444 00403444 0 CreateServiceA
00003456 00403456 0 OpenSCManagerA
00003468 00403468 0 DeleteService
00003478 00403478 0 StartServiceA
00003488 00403488 0 ChangeServiceConfigA
000034A0 004034A0 0 QueryServiceConfigA
000034B4 004034B4 0 ADVAPI32.dll
000034C4 004034C4 0 WSAIoctl
000034D0 004034D0 0 WSASocketA
000034DC 004034DC 0 WS2_32.dll
000034E8 004034E8 0 MFC42.DLL
000034F4 004034F4 0 memmove
00003506 00403506 0 fprintf
00003518 00403518 0 sprintf
00003522 00403522 0 perror

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
8

0000352C 0040352C 0 strstr
0000353E 0040353E 0 printf
00003546 00403546 0 MSVCRT.dll
00003554 00403554 0 __dllonexit
00003562 00403562 0 _onexit
0000356C 0040356C 0 _exit
00003574 00403574 0 _XcptFilter
00003582 00403582 0 __p___initenv
00003592 00403592 0 __getmainargs
000035A2 004035A2 0 _initterm
000035AE 004035AE 0 __setusermatherr
000035C2 004035C2 0 _adjust_fdiv
000035D2 004035D2 0 __p__commode
000035E2 004035E2 0 __p__fmode
000035F0 004035F0 0 __set_app_type
00003602 00403602 0 _except_handler3
00003616 00403616 0 _controlfp
00003624 00403624 0 ??0Init@ios_base@std@@QAE@XZ
00003644 00403644 0 ??1Init@ios_base@std@@QAE@XZ
00003664 00403664 0 ??0_Winit@std@@QAE@XZ
0000367C 0040367C 0 ??1_Winit@std@@QAE@XZ
00003692 00403692 0 MSVCP60.dll
00004049 00404049 0 ERROR 3
00004055 00404055 0 ERROR 2
00004061 00404061 0 ERROR 1
0000406C 0040406C 0 impossibile creare raw ICMP socket
00004098 00404098 0 RAW ICMP SendTo:
000040AE 004040AE 0 ======================== Icmp BackDoor
V0.1 ========================
000040F4 004040F4 0 ========= Code by Spoof. Enjoy Yourself!
0000411E 0040411E 0 Your PassWord:
00004138 00404138 0 cmd.exe
00004142 00404142 0 Exit OK!
00004150 00404150 0 Local Partners Access
0000416A 0040416A 0 Error UnInstalling Service
0000418A 0040418A 0 Service UnInstalled Sucessfully
000041B2 004041B2 0 Error Installing Service
000041CE 004041CE 0 Service Installed Sucessfully
000041F5 004041F5 0 Create Service %s ok!
0000420D 0040420D 0 CreateService failed:%d
00004229 00404229 0 Service Stopped
0000423D 0040423D 0 Force Service Stopped Failed%d
00004260 00404260 0 The service is running or starting!
00004288 00404288 0 Query service status failed!
000042A8 004042A8 0 Open service failed!
000042C1 004042C1 0 Service %s Already exists

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
9

000042DC 004042DC 0 Local Printer Manager Service
000042FC 004042FC 0 smsses.exe
00004309 00404309 0 Open Service Control Manage failed:%d
00004338 00404338 0 Start service successfully!
00004358 00404358 0 Starting the service failed!
00004378 00404378 0 starting the service <%s>...
00004398 00404398 0 Successfully!
000043A8 004043A8 0 Failed!
000043B4 004043B4 0 Try to change the service's start type...
000043E0 004043E0 0 The service is disabled!
000043FC 004043FC 0 Query service config failed!
000062DB 004062DB 0 ?????
00005064 00405064 0 Hello from MFC!
000060F3 004060F3 0 \winnt\system32\smsses.exe
00006181 00406181 0 \winnt\system32\smsses.exe
000062B3 004062B3 0 \\199.107.97.191\C$
0000632F 0040632F 0 \winnt\system32
000063A7 004063A7 0 \winnt\system32\reg.exe
0000642F 0040642F 0 \winnt\system32\reg.exe
000064B7 004064B7 0 \winnt\system32\reg.exe
0000653F 0040653F 0 \winnt\system32\reg.exe
000065BD 004065BD 0 \winnt\system32\reg.exe
00006645 00406645 0 \winnt\system32\reg.exe
000066CD 004066CD 0 \winnt\system32\reg.exe
00006755 00406755 0 \winnt\system32\reg.exe
000067DD 004067DD 0 \winnt\system32\reg.exe
00005062 00405062 1 Hello from MFC!

There are several pieces of valuable information contained within the bintext
output. First several dynamic link libraries are mentioned:

• Kernel32.dll – Responsible for memory management, Input/Output
functions, and interrupts.

• Advapi32.dll – Advanced API services library support Application
Programming Interfaces such as security and registry calls.

• Ws2_32.dll – Windows Sockets library, used by network applications to
handle network connections.

• Mfc42.dll – Microsoft Foundation functions used by C++ applications.
• Msvcrt.dll – Microsoft C library.
• Msvcp60 – Microsoft C library.

Because the application is using C and C++ libraries it is probable that the
application was written in C or C++. The application is probably a network client
or server because the application is calling the Windows Socket dll. Several of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
10

the entries above each Dynamic Link Library entry are possibly functions that the
application is using from each Dynamic Link Library file.

The reg.exe and smsses.exe were also also mentioned in the bintext output.
The reg.exe application is part of the Windows NT 4.0 Server Resource Kit, and
is an application used to access the registry in batch scripts. The executable
smsses.exe is not a standard Windows application (that I could find), there is an
smss.exe application. The smss.exe application is the session manager
subsystem, and is used to initialize system environment variables. The
referenced smsses.exe file is possibly an application that is related to the
target2.exe file.

Other lines provide clues about the possible use of the application. Several
references to ICMP are seen, including references to creating an ICMP socket,
and ICMP BackDoor V0.1, which is possibly the name of the executable. There
is also an entry for cmd.exe, which is the Windows command line application.
The cmd.exe is used to generate a shell for the user who accesses this
application. Several references to installing, starting, and creating services are
mentioned it is possible that the applications loads as a Windows service.
Loading as a service would allow the application to restart at boot time, and
potentially run with system level privileges.

Two lines identify possible sources of the code, the line “Code by Spoof. Enjoy
Yourself!”, shows that the author’s name could perhaps be Spoof. The line
\\199.107.97.191\C$, provides an address that some information is being
directed to, through a windows share. This site could be referenced to update a
list of compromised system or to perhaps be used to store more tools.

The application Sam Spade was used to perform a whois on the address:

Screenshot of Sam Spade application

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
11

The address is registered to Azusa Pacific University. The Sam Spade utility
(http://www.samspade.org/ssw) is an application used to gather information
about organizations by using their IP address or Name registration information.
A whois query is a specific query to gather information about a company from a
network address. These tools provided a way to associate the IP address in the
strings output to an organization or in this case a University.

After reviewing the above output from the target2.exe, the file was analyzed
using the Unix utility strings to verify the output. The strings utility is used to
gather string information from a binary file. During the analysis an additional line
was seen in the ouput:

impossibile creare raw ICMP socket
RAW ICMP SendTo:
======================== Icmp BackDoor V0.1
========================
========= Code by Spoof. Enjoy Yourself!
 Your PassWord:
loki
cmd.exe
 Exit OK!

It is possible that loki is the password required to access the command shell or
is possibly a reference to the LOKI application. Information on LOKI was found at
http://www.phrack.org/phrack/51/P51-06, the author of LOKI states:

“LOKI2 is an information-tunneling program. It is proof of concept work
intending to draw attention to the insecurity that is present in may network
protocols. In this implementation, we tunnel simple shell commands
inside of ICMP_ECHO/ICMP_ECHOREPLY and DNS name lookup
query/reply traffic”

IDA Disassembler was used to extract the assembly language from the
target2.exe file.
IDA Disassembler – an interactive program disassembler.
http://www.datarescue.com/idabase/idadown.htm

The output is very large and I’m not proficient at ready Assembly code.

The initial header information from the Assembly dump provided some
information on the type of binary:

;
; File Name :C:\Documents and Settings\dacruz\Desktop\target2.exe
; Format : Portable executable for IBM PC (PE)
; Section 1. (virtual address 00001000)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
12

; Virtual size : 000018FC (6396.)
; Section size in file : 00002000 (8192.)
; Offset to raw data for section: 00001000
; Flags 60000020: Text Executable Readable
; Alignment : 16 bytes ?
; OS type : MSWindows
; Application type: Executable32bit

Some information was gathered on the system calls that were made to the DLL
files from the application.

; Section 2. (virtual address 00003000)
; Virtual size: 0000069E (1694.)
; Section size in file: 00001000 (4096.)
; Offset to rawdata for section: 00003000
; Flags40000040: Data Readable
; Alignment: 16 bytes ?
;
; Imports from ADVAPI32.dll
;
;
; Segment type:Pure data
_rdatasegmentpara public 'DATA' use32
assume cs:_rdata
;org 403000h
RegisterServiceCtrlHandlerA dd ?; DATA XREF: .text:00402263 r
StartServiceCtrlDispatcherA dd ?; DATA XREF: _main+122 r
SetServiceStatus dd ?; DATA XREF: .text:0040228E r
; .text:00402301 r
QueryServiceConfigA dd ?; DATA XREF: sub_0_402580+25 r
ChangeServiceConfigA dd?; DATA XREF: sub_0_402580+8A r
StartServiceAdd ?; DATA XREF: sub_0_402580+CE r
DeleteServicedd ?; DATA XREF: sub_0_4024D0+6E r
OpenSCManagerAdd ?; DATA XREF: sub_0_402320+E r
; sub_0_4024D0+D r
; Establish a connection to theservice
; control manager on the specified computer
; and opens thespecified database
CreateServiceAdd ?; DATA XREF: sub_0_402320+5F r
CloseServiceHandle dd ?; DATA XREF: sub_0_402320+190 r
; sub_0_4024D0+82 r ...
OpenServiceAdd ?; DATA XREF: sub_0_402320+AA r
; sub_0_4024D0+2C r
QueryServiceStatus dd ?; DATA XREF: sub_0_402320+D1 r

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
13

; sub_0_402580+F5 r
ControlServicedd ?; DATA XREF: sub_0_402320+112 r
; sub_0_4024D0+48 r
; Send a control code to a Win32 service
dd 0
;
; Imports from KERNEL32.dll
;
HeapAllocdd ?; DATA XREF: sub_0_4018C0+D6 r
LocalAllocdd ?; DATA XREF: sub_0_402580+B r
GetLastErrordd ?; DATA XREF: sub_0_402320+1D r
; sub_0_402320+72 r ...
WriteFiledd ?; DATA XREF: sub_0_401EE0+4A r
CreatePipedd ?; DATA XREF: sub_0_401CD0+D r
CreateProcessAdd ?; DATA XREF: sub_0_401CD0+D0 r
CloseHandledd ?; DATA XREF: sub_0_401CD0+F1 r
PeekNamedPipedd ?; DATA XREF: sub_0_401CD0+103 r
; sub_0_401EE0+86 r
ReadFiledd ?; DATA XREF: sub_0_401CD0+14B r
; sub_0_401EE0+AE r
TerminateProcess dd ?; DATA XREF: sub_0_401A00+DE r
; sub_0_401A00+129 r ...
GetProcessHeapdd ?; DATA XREF: sub_0_4018C0+CF r
Sleepdd ?; DATA XREF: sub_0_4010F0+279 r
; sub_0_401460+285 r ...
dd 0
;
; Imports from MFC42.DLL
;
; public: virtual __thiscall CWinApp::~CWinApp(void)
??1CWinApp@@UAE@XZ dd ?; DATA XREF: .text:00402736 r
; public: __thiscall CWinApp::CWinApp(char const *)
??0CWinApp@@QAE@PBD@Z dd ?; DATA XREF: CWinApp::CWinApp(char
const *) r
dd 0
;
; Imports from MSVCP60.dll
;
; public: __thiscall std::_Winit::_Winit(void)
??0_Winit@std@@QAE@XZ dd ?; DATA XREF: sub_0_402700+5 r
; public: __thiscall std::ios_base::Init::~Init(void)
??1Init@ios_base@std@@QAE@XZ dd?; DATA XREF: .text:004026E5 r
; public: __thiscall std::ios_base::Init::Init(void)
??0Init@ios_base@std@@QAE@XZ dd?; DATA XREF: sub_0_4026C0+5 r
; public: __thiscall std::_Winit::~_Winit(void)
??1_Winit@std@@QAE@XZ dd ?; DATA XREF: .text:00402725 r

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
14

dd 0
;
; Imports from MSVCRT.dll
;
strstrdd ?; DATA XREF: sub_0_401A00+1DD r
__dllonexitdd ?; DATA XREF: j___dllonexit r
timedd ?; DATA XREF: sub_0_401A00+84 r
; sub_0_401A00+155 r ...
printfdd ?; DATA XREF: _main+77 r
; sub_0_402320+29 r ...
_controlfpdd ?; DATA XREF: __controlfp r
_except_handler3 dd ?; DATA XREF: .text:004028F0 r
__set_app_typedd ?; DATA XREF: start+2C r
__p__fmodedd ?; DATA XREF: start+41 r
__p__commodedd ?; DATA XREF: start+4F r
memmovedd ?; DATA XREF: sub_0_401080+F r
exitdd ?; DATA XREF: sub_0_4010A0+38 r
; sub_0_401880+1C r ...
fprintfdd ?; DATA XREF: sub_0_4010A0+2D r
_iobdd ?; DATA XREF: sub_0_4010A0+1F r
sprintfdd ?; DATA XREF: sub_0_4010F0+2C6 r
; sub_0_401720+6E r ...
perrordd ?; DATA XREF: sub_0_4010F0+144 r
; sub_0_401460+148 r ...
_exitdd ?
_adjust_fdivdd ?; DATA XREF: start+5D r
_XcptFilterdd ?; DATA XREF: __XcptFilter r
_onexitdd ?; DATA XREF: __onexit+D r
_inittermdd ?; DATA XREF: __initterm r
__getmainargsdd ?; DATA XREF: start+B5 r
__p___initenvdd ?; DATA XREF: start+CA r
__setusermatherr dd ?; DATA XREF: start+7C r
dd 0
;
; Imports from WS2_32.dll
;
socketdd ?; DATA XREF: sub_0_4010A0+F r
WSACleanupdd ?; DATA XREF: sub_0_401880+27 r
htonsdd ?; DATA XREF: sub_0_4010F0+5D r
; sub_0_4010F0+71 r ...
closesocketdd ?; DATA XREF: sub_0_401A00+EB r
; sub_0_401A00+136 r ...
sendtodd ?; DATA XREF: sub_0_4010F0+135 r
; sub_0_4010F0+260 r ...
WSASocketAdd ?; DATA XREF: sub_0_4018C0+1B r
gethostnamedd ?; DATA XREF: sub_0_4018C0+3C r

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
15

gethostbynamedd ?; DATA XREF: sub_0_4018C0+47 r
WSAIoctldd ?; DATA XREF: sub_0_4018C0+C2 r
recvfromdd ?; DATA XREF: sub_0_4018C0+DC r
WSAGetLastErrordd ?; DATA XREF: sub_0_4018C0+E2 r
WSAStartupdd ?; DATA XREF: sub_0_401880+10 r
binddd ?; DATA XREF: sub_0_4018C0+9F r
inet_addrdd ?; DATA XREF: sub_0_4018C0+76 r
dd 0
unk_0_403128db 0FFh;; DATA XREF: start+5 o

The output from the IDA Disassembler showed the various functions that were
accessed in each Dynamic Link Library file. The most critical functions called
belong to the WS2_32.dll, this is the Windows Socket Library.

One last tool to use to gather information from the binary is objdump. The
objdump utility is a Unix utility to dump the object files from a binary file, the (-p)
option will be used to extract the headers from the file.

target2.exe: file format efi-app-ia32
Characteristics 0x10f

relocations stripped
executable

line numbers stripped
symbols stripped

32 bit words

Time/Date Wed Nov 27 23:53:13 2002
ImageBase 0000000000400000
SectionAlignment 0000000000001000
FileAlignment 0000000000001000
MajorOSystemVersion 4
MinorOSystemVersion 0
MajorImageVersion 0
MinorImageVersion 0
MajorSubsystemVersion 4
MinorSubsystemVersion 0
Win32Version 00000000
SizeOfImage 00006000
SizeOfHeaders 00001000
CheckSum 00000000
Subsystem 00000003 (Windows CUI)
DllCharacteristics 00000000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
16

SizeOfStackReserve 0000000000100000
SizeOfStackCommit 0000000000001000
SizeOfHeapReserve 0000000000100000
SizeOfHeapCommit 0000000000001000
LoaderFlags 00000000
NumberOfRvaAndSizes 00000010

The Data Directory

Entry 0 0000000000000000 00000000 Export Directory [.edata (or where ever
we found it)]
Entry 1 0000000000003134 0000008c Import Directory [parts of .idata]
Entry 2 0000000000005000 000000a0 Resource Directory [.rsrc]
Entry 3 0000000000000000 00000000 Exception Directory [.pdata]
Entry 4 0000000000000000 00000000 Security Directory
Entry 5 0000000000000000 00000000 Base Relocation Directory [.reloc]
Entry 6 0000000000000000 00000000 Debug Directory
Entry 7 0000000000000000 00000000 Description Directory

Entry 8 0000000000000000 00000000 Special Directory
Entry 9 0000000000000000 00000000 Thread Storage Directory [.tls]
Entry a 0000000000000000 00000000 Load Configuration Directory
Entry b 0000000000000000 00000000 Bound Import Directory
Entry c 0000000000003000 00000128 Import Address Table Directory
Entry d 0000000000000000 00000000 Delay Import Directory
Entry e 0000000000000000 00000000 Reserved
Entry f 0000000000000000 00000000 Reserved

There is an import table in .rdata at 0x403134
The Import Tables (interpreted .rdata section contents)
 vma: Hint Time Forward DLL First
 Table Stamp Chain Name Thunk

 00003134 000031f8 00000000 00000000 00003396 00003038

DLL Name: KERNEL32.dll
vma: Hint/Ord Member-Name Bound-To

32f0 409 HeapAlloc
3388 456 LocalAlloc
3378 282 GetLastError
336c 735 WriteFile
335e 67 CreatePipe
334c 68 CreateProcessA
333e 27 CloseHandle
332e 505 PeekNamedPipe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
17

3322 536 ReadFile
330e 670 TerminateProcess
32fc 320 GetProcessHeap
32e8 662 Sleep

 00003148 000031c0 00000000 00000000 000034b4 00003000

DLL Name: ADVAPI32.dll
vma: Hint/Ord Member-Name Bound-To

33d6 398 RegisterServiceCtrlHandlerA
33a4 435 StartServiceCtrlDispatcherA
33c2 430 SetServiceStatus

349e 336 QueryServiceConfigA

3486 45 ChangeServiceConfigA
3476 434 StartServiceA
3466 120 DeleteService
3454 325 OpenSCManagerA
3442 76 CreateServiceA
33f4 52 CloseServiceHandle
3432 327 OpenServiceA
341c 341 QueryServiceStatus
340a 53 ControlService

 0000315c 000032ac 00000000 00000000 000034dc 000030ec

DLL Name: WS2_32.dll
vma: Hint/Ord Member-Name Bound-To

80000017 23 <none>
80000074 116 <none>
80000009 9 <none>
80000003 3 <none>
80000014 20 <none>
34ce 61 WSASocketA
80000039 57 <none>
80000034 52 <none>
34c2 37 WSAIoctl
80000011 17 <none>
8000006f 111 <none>
80000073 115 <none>
80000002 2 <none>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
18

8000000b 11 <none> 00003170 0000322c 00000000 00000000 000034e8 0000306c

DLL Name: MFC42.DLL
vma: Hint/Ord Member-Name Bound-To

8000032f 815 <none>
80000231 561 <none>

 00003184 0000324c 00000000 00000000 00003546 0000308c

DLL Name: MSVCRT.dll
vma: Hint/Ord Member-Name Bound-To

352a 709 strstr
3552 85 __dllonexit
3534 720 time
353c 670 printf
3614 183 _controlfp
3600 202 _except_handler3
35ee 129 __set_app_type
35e0 111 __p__fmode
35d0 106 __p__commode
34f2 664 memmove
34fc 585 exit
3504 600 fprintf
350e 275 _iob
3516 690 sprintf
3520 668 perror
356a 211 _exit
35c0 157 _adjust_fdiv
3572 72 _XcptFilter
3560 390 _onexit
35a0 271 _initterm
3590 88 __getmainargs
3580 100 __p___initenv
35ac 131 __setusermatherr

 00003198 00003238 00000000 00000000 00003692 00003078

DLL Name: MSVCP60.dll
vma: Hint/Ord Member-Name Bound-To

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
19

3662 165 ??0_Winit@std@@QAE@XZ
3642 265 ??1Init@ios_base@std@@QAE@XZ
3622 158 ??0Init@ios_base@std@@QAE@XZ
367a 269 ??1_Winit@std@@QAE@XZ

 000031ac 00000000 00000000 00000000 00000000 00000000

This output provided similar information as the IDA disassmbler, however an
extra date was gathered at the top of the output: Wed Nov 27 23:53:13 2002.
This is possibly the compile time of the target2.exe application.

The next possible step could be to use a debugger program to walk through
execution of the binary file. Possible tools could include the SoftIce Debugger or
the Microsoft Windows Debugger. These tasks are beyond my abilities and
should be performed by someone with a programming background.

From the data gathered in the last two sections, we can deduce the following
conclusions:

• The application is likely an Windows ICMP backdoor application
• The applications was last used around Feb 20,2003, going by last

modified and created dates.
• The application appears to be attempting to install itself as a service,

possibly called Local Print Manager Service. The Local Print Manager
Service name cannot be confirmed but I found no mention of that specific
service in any Windows documentation.

• The application possibly provides a cmd.exe shell to the attacker.
• The application uses several Dynamic Link Libraries located on the

system.
• The application or part of the application was written by someone named

Spoof.
• There is an IP address referenced in the strings output 199.107.97.191.
• Smsses.exe and reg.exe are executables referenced in the code.

Smsses.exe is not a common Windows application.

Forensic Details

The program appears to be a Windows binary file. The binary will be analyzed
using a Windows 2000 SP4 Server Computer and a Windows NT 4.0SP6
Computer. Several tools will be used to monitor the systems during the analysis.

• Regmon – a utility to monitor registry activity, regmon can be used to
display what applications are accessing the registry and what keys are
being accessed. http://www.sysinternals.com/ntw2k/source/regmon.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
20

• Filemon – a utility to display real time filesystem activity.
http://www.sysinternals.com/ntw2k/source/filemon.shtml

• Netmon - a utility to monitor network connections. http://www.futures-
inc.com/Tools_and_origins/n.html

• listdlls – a command line utility to display what Dynamic Link Libraries are
used by an application.
http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml

The next step is to using the two Lab systems to attempt to run the application.
Prior to running the application, regmon, filemon, listdlls, and netmon were
installed in order to provide some level of monitoring for the application. The
applications were each filtered to monitor only output from the target2.exe
application. The binary file will be run from the Windows NT system first. As the
file was launched an error was received. The error stated that the
MSVCP60.DLL was not found.

I searched through the system and the Dynamic Link Library files were not
installed on this system. This was a default install of Windows NT with Service
Pack 6. It appears that this binary will not run on a default Windows NT system.
Next the binary will be run from the Windows 2000 System. The program ran for
about ten seconds, it displayed a DOS window and then exited.

Screenshot of the DOS Windows that the target2.exe application displayed.

Regmon, Filemon, Netmon, and listdlls were all running and capturing data.
Here is the output from the listdlls application, this shows all the Dynamic Link
Library files that the application uses while loading:

target2.exe pid: 1328

Command line: target2.exe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
21

 Base Size Version Path
0x00400000 0x6000 C:\bin_analysis\target2.exe
0x77f80000 0x7b000 5.00.2195.6685 C:\WINNT\system32\ntdll.dll
0x7c4e0000 0xb9000 5.00.2195.6688 C:\WINNT\system32\KERNEL32.dll
0x7c2d0000 0x62000 5.00.2195.6710 C:\WINNT\system32\ADVAPI32.dll
0x77d30000 0x6e000 5.00.2195.6753 C:\WINNT\system32\RPCRT4.DLL
0x75030000 0x14000 5.00.2195.6601 C:\WINNT\system32\WS2_32.dll
0x78000000 0x45000 6.01.9844.0000 C:\WINNT\system32\MSVCRT.DLL
0x75020000 0x8000 5.00.2134.0001 C:\WINNT\system32\WS2HELP.DLL
0x6c370000 0xfb000 6.00.9586.0000 C:\WINNT\system32\MFC42.DLL
0x77f40000 0x3c000 5.00.2195.6660 C:\WINNT\system32\GDI32.dll
0x77e10000 0x65000 5.00.2195.6688 C:\WINNT\system32\USER32.DLL
0x780c0000 0x61000 6.00.8168.0000 C:\WINNT\system32\MSVCP60.dll

This output confirmed many of the dlls that were seen in the bintext output of the
file. Some other dll files were referenced:

• Ntdll.dll – Dynamic Link Library that control Windows NT System functions
• GDI32.dll – Dynamic Link Library that contains Windows Graphic Device

Interface to display 2D graphics in Windows.
• USER32.dll – Dynamic Link Library that provides functions for the

Windows user interface.

A screenshot of the Task Manager was also taken while the application was
running, the second from the last entry displays the target2.exe application.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
22

Screenshot of taskmanager while target2.exe was running.

The screenshot from the Windows Taskmanager shows that target2.exe ran as
PID 1652 and consumed 1212K of memory and 324K of Virtual Memory. The
following screenshot shows the regmon application capturing data while the
application was running.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
23

Regmon utility screenshot, while target2.exe was running.

The following output shows the log file from regmon utility:

1 690.23772735 explorer.exe:1464 OpenKey
HKLM\System\CurrentControlSet\Control\Session Manager\AppCompatibility\target2.exe
NOTFOUND

2 690.23816090 explorer.exe:1464 OpenKey
HKLM\Software\Microsoft\Windows\CurrentVersion\App Paths\target2.exeNOTFOUND

3 690.23820200 explorer.exe:1464 OpenKey
HKLM\Software\Microsoft\Windows\CurrentVersion\App Paths\target2.exeNOTFOUND

4 690.23877938 explorer.exe:1464 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\target2.exe NOTFOUND
5 690.23943747 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\target2.exe NOTFOUND
6 690.23947312 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\target2.exe NOTFOUND
7 690.23982387 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\target2.exe NOTFOUND
8 690.24261245 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\target2.exe NOTFOUND
9 690.27533382 CSRSS.EXE:208 OpenKey

HKCU\Console\C:_bin_analysis_target2.exe NOTFOUND
10 690.27535118 CSRSS.EXE:208 OpenKey

HKCU\Console\C:_bin_analysis_target2.exe NOTFOUND
11 690.28319314 target2.exe:1520 OpenKey

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
24

HKLM\System\CurrentControlSet\Control\Terminal Server SUCCESSKey:
0xE14BCF20
12 690.28322276 target2.exe:1520 QueryValue

HKLM\System\CurrentControlSet\Control\Terminal Server\TSAppCompatSUCCESS0x0
13 690.28325359 target2.exe:1520 CloseKey

HKLM\System\CurrentControlSet\Control\Terminal Server SUCCESSKey:
0xE14BCF20
14 690.28336748 target2.exe:1520 OpenKey

HKLM\System\CurrentControlSet\Control\Session Manager SUCCESSKey:
0xE14BCF20
15 690.28339750 target2.exe:1520 QueryValue

HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode
NOTFOUND

16 690.28342096 target2.exe:1520 CloseKey
HKLM\System\CurrentControlSet\Control\Session Manager SUCCESSKey:

0xE14BCF20
17 690.28353347 target2.exe:1520 OpenKey

HKLM\System\CurrentControlSet\Control\Terminal Server SUCCESSKey:
0xE14BCF20
18 690.28355061 target2.exe:1520 QueryValue

HKLM\System\CurrentControlSet\Control\Terminal Server\TSAppCompatSUCCESS0x0
19 690.28357258 target2.exe:1520 CloseKey

HKLM\System\CurrentControlSet\Control\Terminal Server SUCCESSKey:
0xE14BCF20
20 690.28365186 target2.exe:1520 OpenKey HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon SUCCESS Key: 0xE14BCF20
21 690.28367274 target2.exe:1520 QueryValue HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\LeakTrack NOTFOUND
22 690.28369441 target2.exe:1520 CloseKey HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon SUCCESS Key: 0xE14BCF20
23 690.28374146 target2.exe:1520 OpenKey HKLMSUCCESS Key: 0xE14BCF20
24 690.28377698 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Diagnostics NOTFOUND
25 690.28480852 target2.exe:1520 OpenKey

HKLM\System\CurrentControlSet\Control\Error Message Instrument\ NOTFOUND
26 690.28565124 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility32 SUCCESS Key: 0xE2B0D380
27 690.28568135 target2.exe:1520 QueryValue HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility32\target2 NOTFOUND
28 690.28570575 target2.exe:1520 CloseKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility32 SUCCESS Key: 0xE2B0D380
29 690.28575466 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility2 SUCCESS Key: 0xE29E3C00
30 690.28581191 target2.exe:1520 QueryValue HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility2\target20.0 NOTFOUND
31 690.28583430 target2.exe:1520 CloseKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility2 SUCCESS Key: 0xE29E3C00
32 690.28587847 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\IME Compatibility SUCCESS Key: 0xE2DA5240
33 690.28590938 target2.exe:1520 QueryValue HKLM\Software\Microsoft\Windows
NT\CurrentVersion\IME Compatibility\target2 NOTFOUND
34 690.28593203 target2.exe:1520 CloseKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\IME Compatibility SUCCESS Key: 0xE2DA5240
35 690.28615226 target2.exe:1520 OpenKey

HKLM\System\CurrentControlSet\Control\Session Manager\AppCompatibility\target2.exe
NOTFOUND

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
25

36 690.28619357 target2.exe:1520 OpenKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows SUCCESS Key: 0xE2DA5240
37 690.28621419 target2.exe:1520 QueryValue HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows\AppInit_DLLs SUCCESS ""
38 690.28624565 target2.exe:1520 CloseKey HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows SUCCESS Key: 0xE2DA5240
39 690.28696462 target2.exe:1520 OpenKey HKCU SUCCESSKey:
0xE2DA5240
40 690.28699384 target2.exe:1520 OpenKey

HKLM\System\CurrentControlSet\Control\Nls\MUILanguages NOTFOUND
41 690.28702979 target2.exe:1520 OpenKey HKCU\Control Panel\DesktopSUCCESS

Key: 0xE2889CE0
42 690.28706974 target2.exe:1520 QueryValue HKCU\Control
Panel\Desktop\MultiUILanguageId NOTFOUND
43 690.28709059 target2.exe:1520 CloseKey HKCU\Control Panel\DesktopSUCCESS

Key: 0xE2889CE0
44 690.28711285 target2.exe:1520 CloseKey HKCU SUCCESSKey:
0xE2DA5240
45 690.28798225 target2.exe:1520 OpenKey

HKLM\System\CurrentControlSet\Control\ServiceCurrentSUCCESS Key: 0xE2DA5240
46 690.28800736 target2.exe:1520 QueryValue

HKLM\System\CurrentControlSet\Control\ServiceCurrent\(Default) SUCCESS0x14
47 690.28803600 target2.exe:1520 CloseKey

HKLM\System\CurrentControlSet\Control\ServiceCurrentSUCCESS Key: 0xE2DA5240
48 705.27777501 target2.exe:1520 CloseKey HKLMSUCCESS Key:0xE14BCF20

Several key from the HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER
Hives were queried or opened. Many keys were not found.

• Lines 1 – 8, include the target2.exe attempting to open keys
HKLM\System\CurrentControlSet\Control\Session
Manager\AppCompatibility\target2.exe and
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options\target2.exe. Neither of these keys is located on the
system.

• Lines 9 and 10, involve the CSRSS.EXE application attempting to Open
the HKCU\Console\C:_bin_analysis_target2.exe. The CSRSS.exe
application is the Windows Client Server Runtime SubSystem and is used
to perform windows and graphics functions for Windows subsystems,
creating and deleting threads, and running the 16 bit virtual DOS
environment. This key is again not found on the analysis system.

• Lines 11 – 19, involve target2.exe opening, successfully, several keys
related to windows Terminal Server and Session Manager. Line 15 the
HKLM\System\CurrentControlSet\Control\Session
Manager\SafeDllSearchMode key was not found.

• Lines 20 – 22, involve the target2.exe application opening and closing
keys in the HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon.

• Lines 24 and 25, involve the target2.exe application looking for registry
keys under HKLM, the keys are not found on the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
26

• Lines 26 – 31 involve the target2.exe application opening and closing keys
within the HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Compatibility32 and
HKLM\Software\Microsoft\Windows NT\CurrentVersion\Compatibility2
registry directories.

• Lines 32 – 34, involve the application target2.exe opening, querying, and
closing HKLM\Software\Microsoft\Windows NT\CurrentVersion\IME
Compatibility. The value being queried is target2 and is not found at that
registry location.

• Line 35 and 40, involve the application target2.exe looking for registry
keys HKLM\System\CurrentcontrolSet\Control\Session
Manager\AppCompatibility\target2.exe and
HKLM\System\CurrentControlSet\Control\NIs\MUILanguages, neither key
is found.

• Lines 36 – 38, involve the application target2.exe querying the
AppInit_DLLS key under HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Windows.

• Lines 41 – 44, involve the application target2.exe querying the
Multilanguageld value from the HKCU\Control Panel\Desktop registry
location.

• Lines 45 – 48, involve the application target2.exe opening, querying, and
closing keys within
HKLM\System\CurrentControlSet\Control\ServiceCurrent.

The following screenshot shows the filemon application:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
27

Screenshot of filemon, while target2.exe is running.

The following output is from the log file from filemon:

14:23:28 PMexplorer.exe:1464QUERY INFORMATION C:\bin_analysis\target2.exe
SUCCESSAttributes: RA
2 4:23:28 PM explorer.exe:1464 OPEN C:\bin_analysis\target2.exe

SUCCESS Options: Open Access: All
3 4:23:28 PM explorer.exe:1464 READ C:\bin_analysis\target2.exe

SUCCESS Offset: 0 Length: 24
4 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe:_Raec25ph4sudbf0hAaq5ehw3Nf:$DATAFILE NOT
FOUND Options: Open Access: All
5 4:23:28 PM explorer.exe:1464 CLOSE C:\bin_analysis\target2.exe

SUCCESS
6 4:23:28 PM explorer.exe:1464 OPEN C:\bin_analysis\target2.exe

SUCCESS Options: Open Access: All
7 4:23:28 PM explorer.exe:1464 READ C:\bin_analysis\target2.exe

SUCCESS Offset: 0 Length: 24
8 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe:_Raec25ph4sudbf0hAaq5ehw3Nf:$DATAFILE NOT
FOUND Options: Open Access: All
9 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:{4c8cc155-6c1e-11d1-8e41-00c04fb9386d}:$DATA
FILE NOT FOUND Options: Open Access: All

10 4:23:28 PM explorer.exe:1464 OPEN
C:\bin_analysis\target2.exe\:_SummaryInformation:$DATA FILE NOT FOUND
Options: Open Access: All

11 4:23:28 PM explorer.exe:1464 OPEN
C:\bin_analysis\target2.exe\:Docf__SummaryInformation:$DATAFILE NOT

FOUND Options: Open Access: All
12 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:_SummaryInformation:$DATA FILE NOT FOUND
Options: Open Access: All

13 4:23:28 PM explorer.exe:1464 OPEN
C:\bin_analysis\target2.exe\:Docf__SummaryInformation:$DATAFILE NOT

FOUND Options: Open Access: All
14 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:_SummaryInformation:$DATA FILE NOT FOUND
Options: Open Access: All

15 4:23:28 PM explorer.exe:1464 OPEN
C:\bin_analysis\target2.exe\:Docf__SummaryInformation:$DATAFILE NOT

FOUND Options: Open Access: All
16 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:_DocumentSummaryInformation:$DATAFILE NOT
FOUND Options: Open Access: All
17 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:Docf__DocumentSummaryInformation:$DATAFILE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
28

NOT FOUND Options: Open Access: All
18 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:_SummaryInformation:$DATA FILE NOT FOUND
Options: Open Access: All

19 4:23:28 PM explorer.exe:1464 OPEN
C:\bin_analysis\target2.exe\:Docf__SummaryInformation:$DATAFILE NOT

FOUND Options: Open Access: All
20 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:_SummaryInformation:$DATA FILE NOT FOUND
Options: Open Access: All

21 4:23:28 PM explorer.exe:1464 OPEN
C:\bin_analysis\target2.exe\:Docf__SummaryInformation:$DATAFILE NOT

FOUND Options: Open Access: All
22 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:_SebiesnrMkudrfcoIaamtykdDa:$DATAFILE NOT
FOUND Options: Open Access: All
23 4:23:28 PM explorer.exe:1464 OPEN

C:\bin_analysis\target2.exe\:Docf__SebiesnrMkudrfcoIaamtykdDa:$DATAFILE
NOT FOUND Options: Open Access: All
24 4:23:28 PM explorer.exe:1464 CLOSE C:\bin_analysis\target2.exe

SUCCESS
25 4:23:28 PM explorer.exe:1464 DIRECTORY C:\bin_analysis\

SUCCESS FileBothDirectoryInformation: target2.exe
26 4:23:28 PM explorer.exe:1464 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
27 4:23:28 PM explorer.exe:1464 DIRECTORY C:\bin_analysis\

SUCCESS FileBothDirectoryInformation: target2.exe
28 4:23:28 PM explorer.exe:1464 QUERY INFORMATION

C:\bin_analysis\target2.exe\desktop.ini PATH NOT FOUND Attributes: Error
29 4:23:28 PM explorer.exe:1464 OPEN C:\bin_analysis\target2.exe

SUCCESS Options: Open Access: All
30 4:23:28 PM explorer.exe:1464 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
31 4:23:28 PM explorer.exe:1464 SET INFORMATION

C:\bin_analysis\target2.exe SUCCESS FileBasicInformation
32 4:23:28 PM explorer.exe:1464 READ C:\bin_analysis\target2.exe

SUCCESS Offset: 0 Length: 64
33 4:23:28 PM explorer.exe:1464 READ C:\bin_analysis\target2.exe

SUCCESS Offset: 216 Length: 64
34 4:23:28 PM explorer.exe:1464 READ C:\bin_analysis\target2.exe

SUCCESS Offset: 288 Length: 4
35 4:23:28 PM explorer.exe:1464 READ C:\bin_analysis\target2.exe

SUCCESS Offset: 308 Length: 4
36 4:23:28 PM explorer.exe:1464 CLOSE C:\bin_analysis\target2.exe

SUCCESS
37 4:23:28 PM explorer.exe:1464 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
38 4:23:28 PM explorer.exe:1464 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
39 4:23:28 PM explorer.exe:1464 OPEN C:\bin_analysis\target2.exe

SUCCESS Options: Open Access: Execute

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
29

40 4:23:28 PM explorer.exe:1464 QUERY INFORMATION
C:\bin_analysis\target2.exe SUCCESS Length: 26793

41 4:23:28 PM explorer.exe:1464 CLOSE C:\bin_analysis\target2.exe
SUCCESS

42 4:23:28 PM target2.exe:1520OPEN C:\bin_analysis SUCCESSOptions:
Open Directory Access: Traverse
43 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\WS2_32.dll FILE NOT FOUND Attributes: Error
44 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\WS2_32.dll FILE NOT FOUND Attributes: Error
45 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\WINNT\system32\WS2_32.dll SUCCESS Attributes: A
46 4:23:28 PM target2.exe:1520OPEN C:\WINNT\system32\WS2_32.dll

SUCCESS Options: Open Access: Execute
47 4:23:28 PM target2.exe:1520CLOSE C:\WINNT\system32\WS2_32.dll

SUCCESS
48 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\WS2HELP.DLL FILE NOT FOUND Attributes: Error
49 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\WS2HELP.DLL FILE NOT FOUND Attributes: Error
50 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\WINNT\system32\WS2HELP.DLL SUCCESS Attributes: A
51 4:23:28 PM target2.exe:1520OPEN C:\WINNT\system32\WS2HELP.DLL

SUCCESS Options: Open Access: Execute
52 4:23:28 PM target2.exe:1520CLOSE C:\WINNT\system32\WS2HELP.DLL

SUCCESS
53 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\MFC42.DLL FILE NOT FOUND Attributes: Error
54 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\MFC42.DLL FILE NOT FOUND Attributes: Error
55 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\WINNT\system32\MFC42.DLL SUCCESS Attributes: A
56 4:23:28 PM target2.exe:1520OPEN C:\WINNT\system32\MFC42.DLL

SUCCESS Options: Open Access: Execute
57 4:23:28 PM target2.exe:1520CLOSE C:\WINNT\system32\MFC42.DLL

SUCCESS
58 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\MSVCP60.dll FILE NOT FOUND Attributes: Error
59 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\MSVCP60.dll FILE NOT FOUND Attributes: Error
60 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\WINNT\system32\MSVCP60.dll SUCCESS Attributes: A
61 4:23:28 PM target2.exe:1520OPEN C:\WINNT\system32\MSVCP60.dll

SUCCESS Options: Open Access: Execute
62 4:23:28 PM target2.exe:1520CLOSE C:\WINNT\system32\MSVCP60.dll

SUCCESS
63 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\bin_analysis\target2.exe.Local FILE NOT FOUND Attributes: Error
64 4:23:28 PM CSRSS.EXE:208 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
65 4:23:28 PM CSRSS.EXE:208 QUERY INFORMATION

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
30

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
66 4:23:28 PM CSRSS.EXE:208 OPEN C:\bin_analysis\target2.exe

SUCCESS Options: Open Access: All
67 4:23:28 PM CSRSS.EXE:208 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
68 4:23:28 PM CSRSS.EXE:208 SET INFORMATION

C:\bin_analysis\target2.exe SUCCESS FileBasicInformation
69 4:23:28 PM CSRSS.EXE:208 READ C:\bin_analysis\target2.exe

SUCCESS Offset: 0 Length: 12
70 4:23:28 PM CSRSS.EXE:208 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Length: 26793
71 4:23:28 PM CSRSS.EXE:208 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Length: 26793
72 4:23:28 PM CSRSS.EXE:208 CLOSE C:\bin_analysis\target2.exe

SUCCESS
73 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\WINNT\system32\MFC42LOC.DLL FILE NOT FOUND Attributes: Error
74 4:23:28 PM target2.exe:1520QUERY INFORMATION

C:\WINNT\system32\MFC42LOC.DLL FILE NOT FOUND Attributes: Error
75 4:23:28 PM Regmon.exe:1488 DIRECTORY C:\bin_analysis\

SUCCESS FileBothDirectoryInformation: target2.exe
76 4:23:28 PM Regmon.exe:1488 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
77 4:23:28 PM Regmon.exe:1488 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
78 4:23:28 PM Regmon.exe:1488 OPEN C:\bin_analysis\target2.exe

SUCCESS Options: Open Access: All
79 4:23:28 PM Regmon.exe:1488 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Attributes: RA
80 4:23:28 PM Regmon.exe:1488 SET INFORMATION

C:\bin_analysis\target2.exe SUCCESS FileBasicInformation
81 4:23:28 PM Regmon.exe:1488 READ C:\bin_analysis\target2.exe

SUCCESS Offset: 0 Length: 12
82 4:23:28 PM Regmon.exe:1488 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Length: 26793
83 4:23:28 PM Regmon.exe:1488 QUERY INFORMATION

C:\bin_analysis\target2.exe SUCCESS Length: 26793
84 4:23:28 PM Regmon.exe:1488 CLOSE C:\bin_analysis\target2.exe

SUCCESS
85 4:23:28 PM Regmon.exe:1488 DIRECTORY C:\bin_analysis\

SUCCESS FileBothDirectoryInformation: target2.exe
86 4:23:43 PM target2.exe:1520CLOSE C:\bin_analysis SUCCESS

The output for the filemon application shows target2.exe accessing the Dynamic
Link Libraries and also shows several attempts to find files that are not there.
Lines 4 and 8-23 all show attempts by explorer.exe to open files associated with
target2.exe that are not found on the filesystem. Line 28 shows the file looking
for the desktop.ini file. The desktop.ini file is used to customize the Windows

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
31

user interface, an example might be for a user to customize their folder style or
icon. The following the is the breakdown of the DLL file access information.

• Lines 42-45 show target2.exe attempting to locate the WS2_32.dll file
starting at the directory where target2.exe was run. Line 45 shows the
application find the dll file at C:\WINNT\system32\WS2_32.dll. Lines 46
and 47 show the applications opening (Execute) and closing access to the
WS2_32.dll.

• Lines 48-50 show target2.exe attempting to locate WS2HELP.DLL starting
at the location where the binary was run from. WS2HELP.DLL is found on
Line 50 at C:\WINNT\SYSTEM32\WS2HELP.DLL. Lines 51 and 52 show
target2.exe opening (executing) and closing the WS2HELP.DLL file.

• Lines 53-57 involve the MFC42.DLL file, the file is located on line 55 at
C:\WINNT\system32\MFC32.DLL and is executed on line 56 and closed
on line 57.

• Lines 58-62 involve the MSVCP60.DLL, which is located on line 60 at
C:\WINNT\system32\MSVCP60.DLL, the file is executed and closed on
lines 61 and 62.

The following is a screenshot of the Netmon utility that was running while the
target2.exe application was being executed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
32

Screenshot of the Netmon application that was running while target2.exe was running.

The Netmon utility did not capture any useful information possibly because the
binary failed to execute properly.

The target2.exe application while executing did appear to be an MS-DOS binary
file, which could not run on a default load of Windows NT 4.0SP6 or Windows
2000 Server SP4. The application opened, queried, and closed several values in
the local registry, mainly under the HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USER registry hives. The output from filemon confirms that
the application uses local Dynamic Link Library files on the system and attempts
to find a file called desktop.ini located in the directory where the application is run
from.

Program Identification

The program is most likely an ICMP backdoor program for Windows. Searches
were conducted using http://www.google.com, http://www.altavista.com,
http://www.yahoo.com, and www.alltheweb.com. The following patterns were
used during the searches: “Windows ICMP Backdoor”, “Code by Spoof”, “ICMP
Backdoor” Windows, “ICMP Backdoor V0.1”, and “199.107.97.191”. No
programs or information were found about an Windows ICMP Backdoor program.
It is probable that this application is part of a larger Windows rootkit.

Defense

This backdoor program allows unauthorized access to systems using ICMP.
This type of vulnerability should be prevented through the proper implementation
of firewalls. ICMP should not be allowed to cross a perimeter firewall system.
Even point-to-point ICMP rules allow for the potential of address spoofing. If
ICMP is required for normal operation some type of authentication should be
required to allow the ICMP to cross the firewall and the source and destination
addresses should be limited. Providing some form of authentication would
prevent applications from initiating ICMP connections through the firewall.

Norton Anti-Virus did not discover the application, so the application could
potentially exist on a system and go undetected by an Anti-Virus program.

The use of the ICMP Backdoor application could be detected using Intrusion
Detection Systems. The strings output of the program does not mention
encryption so it is possible that the ICMP packets used in the communication
would be cleartext. The ICMP packets would potentially be larger then normal
ICMP packets.

Impact

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
33

This program appears to be an ICMP backdoor program. This commands
appears to access the registry and provides a command shell to a user who
enters a password, and the password is possibly loki. The program appears to
attempt to install itself as a service. By installing as a service the ICMP backdoor
program could provide system level access to anyone connecting to the system.
Using ICMP to connect to the system this program allows attackers to potentially
circumvent security measures such as network or host based firewalls. Local
system controls are circumvented because the application provides a system
level shell. Anyone who accesses the compromised system using the covert
channel will have complete control of the system.

Legal Implications

The ICMP Backdoor program provides the potential for unauthorized access to a
compromised system. Depending on who installed the binary and how the binary
was installed on the machine would determine the legal implications of
discovering the binary.

It is possible that a local administrator installed the binary to provide a backdoor
to systems under his control. This type of installation would most likely violate
local security policies and should result in some punishment and education for
the administrator. The local firewall policies regarding the use of ICMP should
also be investigated. The risk of allowing ICMP into a network must be weighed
versus the potential use by an organization. In most cases ICMP should not be
allowed to or from all internal systems.

If the binary was installed through some other means such as part of an email
virus or Trojan horse program then it could be potentially difficult to track down
the originator. However systems that attempted to access the computer using
the backdoor program could be tracked. User who accessed this system could
be guilty of violating the Computer Fraud Waste and Abuse Act.

Interview Questions
Several questions about the binary file need to be answered in order to
determine the intent of the individual who installed the binary.

1. Who is the administrator of the system where the binary was found?
2. What users have access to the system? (List the user accounts on the

system in question).
3. Because this binary affects Windows systems is this computer part of

domain?
4. Has this system been returned to the network?
5. If the system has been returned to the network what steps were done to

clean the system?
6. Has any software from the Internet recently been installed on the

compromised system?
7. What users receive email on the compromised system?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
34

8. What is the computer, where the binary was found, used for? Is the
system mission critical?

9. What analysis, if any, analysis was done on the compromised system?
10. Where any other systems checked for the presence of this binary?
11. Is the compromised system or any other system accessible via ICMP?

(Check Firewall and Intrusion Detection Logs)
12. Is the password to access the backdoor loki, or was that a reference in the

code to the original Loki concept mentioned in phrack?
13. Why does the application attempt to load as a service? Why not just start

from the registry?
14. Is this binary part of a larger rootkit?
15. Is this binary distributed as part of a worm?

Other Sources of Information

• http://www.phrack.org/phrack/51/P51-06. This article provided
background information about LOKI and about covert channels in general.

• http://www.sysinternals.com. This website provided many of the tools
used in this investigation. In addition information about the tool usage was
gathered from the website.

• http://www.securityfocus.com/infocus/1637. This article from
Securityfocus.com provided some information about how to reverse
engineer hostile code.

• http://www.foundstone.com. This website provide bintext which was useful
in gathering the initial string information from the binary.

• http://www.liutilities.com/products/wintaskpro/dlllibrary/. This website
provided valuable information on the Dynamic Link Libraries.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
35

Option 1 Section II

System Background

I was notified by the local IT Security Manager to begin analysis on a system that
had been submitted to him by our Desktop support group. The desktop group
apparently noticed an unusual entry in the process listing on the system. There
were two entries titled “keylogger”, the technician working on the computer
immediately notified his supervisor. The supervisor then notified the local IT
Security manager. Before analyzing the system the IT Security manager and
myself conducted an interview with the computer technician and his supervisor
regarding the computer.

The first question that was asked was when the technicians came in possession
of the system. The technician responded by saying they had been in possession
of the computer for several months. The user who had previously used the
system was a given a new system because this system had become unstable.

The next question asked was why they had the computer so long? The
technician stated that they were going to keep the computer to use for their
student aids when they came in over the summer. They were going to upgrade
the system when they noticed the “keylogger” entry in the process listing.

The final question asked was if he or anyone else in the shop had installed any
software or done any upgrades? He stated they had never upgraded the
computer. They had done some work on the computer when it was still in the
user’s possession but after several attempts to fix the system the box was
replaced. The technician claimed that no work had been done on the system
since it was replaced.

The IT Security manager then informed the supervisor that we would be
confiscating the computer at least long enough to image the drive and would
probably keep the original drive for evidence. The supervisor said they would
like the original computer back but that we could keep the drive.

The IT Security manager and myself took the system at approximately 2:15pm
on May 15, 2003. The system was brought to the IT Security laboratory. This is
a locked office with controlled access. The IT Security manager decided to notify
the supervisor of the employee that was previously using the system. The
supervisor was informed that an investigation was occurring on a system that
belonged to one of his employees. The supervisor was asked a single question,
was the employee in question the only user of the system. The supervisor
responded that each employee in that area has an administrative system. He
defined administrative system as a system for reading email and surfing the
Internet. He also stated that this employee works in a secure location and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
36

access to this area would be limited to a handful of employees (approximately
six).

The current chain of custody or timeline of ownership for this system is:

System Possession Dates of possession
Original owner Unknown – January 2003
Desktop Support January 6, 2003 – May 15, 2003
IT Security May 15, 2003 – 2:15pm

Documentation was started showing the chain of custody and the desktop
technicians signed for the period of time the computer was in their possession
and then the IT Security manager signed for the date he picked the system up
from the technicians and I signed for the system when the system was received
from the IT Security manager.

The procedures that will be followed for investigating this system will be:
1. Current chain of custody will be established and system will be relocated

to secure location for imaging and analysis.
2. A logical image of the system will be completed.
3. The original harddrive will be kept in a safe under the control of the IT

Security Manager.
4. The logical image will be analyzed and any finding will be provided to

management.
5. If necessary additional firewall, webproxy, mail, or Intrusion Detection

System logs will be analyzed.
6. If necessary our agency law enforcement group would capture a physical

image for the target drive. My findings would also be turned over to law
enforcement for further analysis.

System Hardware

System is a Dell OptiPlex GX1P computer, with internal zip drive, CDROM, and
floppy drive.
Tag # 2004824
Serial Number 5E84K
Model Number MMP

From the interview with the technician his documentation stated that the system
was Windows 98, 128MB RAM, 9GB harddrive, and the processor was a
Pentium III 500Mhz. He did not know the filesystem type. All this information
would be verified on the system.

The harddrive was a Maxtor UltiMax.
Tag# 2004824A
Serial Number: W40XCANA

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
37

Model Number: 9102404

In order to perform the imaging on the system a Mandrake Linux 9.1 system was
used. This system is often used to capture disk images in the field. Before the
system is used a procedure to wipe the drive and reinstall Linux is performed to
make sure of a clean filesystem prior to imaging. The process is to boot the
laptop from Fire 0.4 CDROM (more details on the Fire CDROM in the imaging
section) and complete the following set of commands:

#dd if=/dev/random of=/dev/hda
#dd if=/dev/zero of=/dev/hda
#dd if=/dev/zero of=/dev/hda

This procedure writes random data to the harddrive and then overwrites the data
with zeros twice, this eliminates any data from previous installations and
investigations from tampering with the current investigation.

The forensics system is a Dell inspiron 3700, 500Mhz Pentium III, 256MB RAM,
18GB internal harddrive.
Serial Number: 159-245-94
Model Number: PPX

Each potential investigator has a system assigned to them for performing system
analysis. The forensic systems are locked in a safe controlled by the IT Security
manager. Each time the forensics system is removed from the safe a log is kept
and the investigator must sign the evidence out of the safe. These procedures
are used to provide chain of custody for the evidence being analyzed.

The following tools were also installed on the forensics laptop:
Tool Name URL
The SleuthKit 1,62 http://sleuthkit.sourceforge.net/index.php
Netcat 3.20.96 http://www.atstake.com/research/tools/network_utilities
Md5sum 2.0.21 Standard Linux utility
Regutils ftp.cs.mun.ca/pub/regutils
Mac_daddy http://www.incident-response.org/mac_daddy.html
Fire ISO http://biatchux.dmzs.com/

A md5 checksum of common the tools used during the investigations is
maintained, the md5sum were either gathered from websites or if the value is not
available the value is calculated locally. Any time these tools are reinstalled the
md5sum is compared to the previous value.

Media imaging

In order to capture a logical image, the forensics laptop and the system under
investigation were both connected to a network hub. This hub has no other

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
38

connections other then the connections for the laptop and the system under
investigation.

In order to do the image a FIRE 0.4 CDROM (the same one used for the
forensics system cleaning) is used to boot the target system and copy the target
harddrive across the network to the forensics laptop. FIRE is a product that can
be used to conduct system investigations using a CDROM. FIRE has several
different methods of booting and provides a variety of ways to gather data.

The FIRE CDROM has an MD5SUM of:
ae810533dc3ae95e4036b2d665bd5f1a fire-0.4a.iso

Prior to booting the FIRE CDROM the system BIOS (Basic Input Output System)
was checked to verify that the system would boot from CDROM and also to verify
the date on the system. The floppy drive was listed as the first boot device,
followed by the harddrive. This was modified to the CDROM first, Floppy
second, and harddrive third. The system clocked showed:

System clock Data/time: 10:11 5/17/03
Actual Date/Time: 10:16 5/17/03

In addition the memory in the system was verified to be 128Mbytes. This
confirmed what the technician had stated.

After gathering this data and modifying the system BIOS it is time to boot from
the FIRE CDROM and perform the image capture. FIRE presents the user with
several choices on how to access the system:

• Using the FIRE tools, through a menu driven system (with virtual
consoles)

• Booting in X Windows and using the tools manually
• Booting into console mode and using the tools manually

I prefer to use the tools manually and also like to have several windows open so I
choose to boot into X Windows.

In order to begin the imaging process I first wanted to verify the partition layout.
To do this I ran:

#fdisk /dev/hda (option p)

This command printed the partition table for the primary IDE drive in the target
system. The partition was all contained within the first partition (/dev/hda1). The
second step was to configure the network between the two systems. On the
target system I entered:

#ifconfig eth0 192.168.0.22 netmask 255.255.255.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
39

This establishes the IP address for the target system to 192.168.0.22 with a 24
bit netmask. For the forensics system the following command was entered:

#ifconfig eth0 192.168.0.34 netmask 255.255.255.0

This establishes the IP address for the forensics system as 192.168.0.34 with a
24 bit netmask. In order to verify connectivity between the two a system a ping
command was run from the forensics system to the target system:

#ping 192.168.0.22

PING 192.168.0.22 (192.168.0.22) from 192.168.0.34 : 56(84) bytes of data.
64 bytes from 192.168.0.22: icmp_seq=1 ttl=128 time=0.417 ms
64 bytes from 192.168.0.22: icmp_seq=2 ttl=128 time=0.402 ms

This confirms that the two systems are able to communicate and file transfer
should now be possible. In order to do the imaging the dd command will be used
to perform the bit for bit copying and netcat will be used to copy the data to the
forensics system. Dd is a Unix utility used to copy all the data from one source to
a target, the data includes free space on a drive.

The first step is to establish the netcat listener on the forensics system. The
command to perform this action is:

nc –l –p 31337 > hda1.img

This command establishes a netcat session listening on port 31337 and write
whatever comes into that port into a file called hda1.img. Now on the target
system we will begin the disk imaging.

#dd if=/dev/hda1 | nc 192.168.0.34 31337

This command will perform the bit for bit copy and copy the output of the dd
command is sent to the netcat (nc) command with establishes a connection to
the forensic system on port 31337. Once this command is complete we will
perform two checksums one on the original drive and a second on the image file
on the forensics system. To complete this process we will start by establishing
the netcat listener on the forensics system:

#nc –l –p 31337 > hda1.org.md5sum

Again this netcat command is listening on port 31337 but this time is writing to a
file called hda1.org.md5sum. Then on the target system run:

md5sum /dev/hda1 | nc 192.168.0.34 31337

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
40

This command will create an md5 checksum of the original drive and copy the
output to the netcat command. Finally we need a checksum of the imaged file
from the forensics system.

#md5sum hda1.img > hda1.img.md5sum

Once these two checksums are created verify the output is the same. The
checksums are used to validate the integrity of the image, the image file must be
exactly the same as the original media.

#cat *md5sum
149e3ad6212ab0f04bcaf7378b0dfe88 hda1.img
149e3ad6212ab0f04bcaf7378b0dfe88 /dev/hda1

Because the output is identical this validates that the image file is the same as
the original drive. At this point the CDROM is removed from the system and the
system is powered down. The FIRE CDROM never mounted the original
harddrive, and no analysis was attempted from the original image. This provides
proof that the original harddrive was never modified.

A physical image of the target system was completed by our law enforcement
agency. The physical image was created immediately following our logical image
of the drive. The local policy at our location states that in any investigation that
has potential criminal ramifications our law enforcement agency will complete the
physical image of the target system. Our law enforcement agency has specific
equipment to perform the duplication. All checksums between our logical image,
the original image, and the duplicate image are verified.

The harddrive from the target system is removed from the system and is labeled
a placed in a static bag and locked in a safe controlled by the IT Security
manager. The computer itself is returned to the desktop support office. The IT
Security Manager received and signed for the drive on May 19, 2003 at 9:00am.
The duplicated physical drive is stored onsite under the supervision of the law
enforcement agency. At the end of the investigation a briefing on our findings will
be provided to the law enforcement agency.

Media Analysis

At this point the keylogger binary needs to be found and when and how did the
binary get on the system. The first place to look for information on the binary is
in the system registry. In addition the web cache and possibly mail files will be
investigated to verify that the user did not receive the keylogger through a virus
or web download.

The first step to the investigation is to mount the image and get some initial
information about the filesystem. To mount the image I used to command:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
41

#mkdir /mnt/forensics
#mount –t auto –o ro,nodev,noexec,noatime,loop /root/forensics/hda1.img
/mnt/forensics

This first command created a directory to mount the image. The second
command mounted the image. The options to the mount command “-t auto” told
Linux to attempt to figure out the file system, since I did not know for sure what
the file system was. The “-o” specifies the options to the mount command in this
case, read-only, no devices, do not update access time, and this is a loopback
filesystem. The last two options specify the file to mount and where to mount the
file. Next I ran the following command to get some information about the file
system:

#mount

This command returns all the filesystems mounted on the system. The entry I’m
concerned with is:

/root/forensics/hda1.img on /mnt/forensics type vfat
(ro,noexec,nodev,noatime,loop=/dev/loop0)

This entry tells me the filesystem is a vfat filesystem. In order to get more details
I ran:

#fsstat -f fat /root/forensics/hda1.img > fsstat.out
#cat fsstat.out

FILE SYSTEM INFORMATION
--
File System Type: FAT
OEM: MSWIN4.1
Volume ID: 131008783
Volume Label: NO NAME
File System Type: FAT32

META-DATA INFORMATION
--
Range: 2 - 319443970
Root Directory: 2

CONTENT-DATA INFORMATION
--
Sector Size: 512
Cluster Size: 8192
Sector of First Cluster: 19544

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
42

Total Sector Range: 0 - 19984795
FAT 0 Range: 32 - 9787
FAT 1 Range: 9788 - 19543
Data Area Sector Range: 19544 - 19984795

The fsstat command is part of the TASK toolset and provides some low-level
information about the filesystem. This tells me that the filesystem type is FAT32.

The FAT32 filesystem is a type of File Allocation Table filesystem and is included
with Windows 95 OSR2, Windows 98, and Windows ME. FAT32 uses 32 bit
cluster identifiers and provides cluster sizes as large as 32KB. Unlike other FAT
filesystems, the FAT32 root directory is not stored at a predefined location on the
volume and the root directory has no upper limit on the size. In addition FAT32
provides a second copy of the boot sector for reliability. On the image the root
directory is contained at cluster number two and the cluster size is 8KB.

The next step that will be performed on the image is to mount the image and
perform an ASCII dump of the registry files. The two registry files on the system
(either Windows 95 or more likely Windows 98) are the system.dat and user.dat
files. The file system is still mounted read-only and both files are located at
/mnt/forensics/windows directory.

In order to perform this operation the regutils programs were downloaded from:
ftp;//ftp.cs.mun.ca. The regutils commands allow Linux users to investigate
Windows 9x registry files. The regedit command from the regutils toolset is the
program that will be used to get information from the registry files.

The commands that were used to perform an ASCII dump of the two registry files
were:

#/root/regutils-0.10/regedit –f /mnt/forensics/windows/system.dat
>/root/forensics/system.dat.txt
#/root/regutils-0.10/regedit –f /mnt/forensics/windows/user.dat
>/root/forensics/user.dat.txt

The two commands read the registry files and output the binary files to ASCII
files for manipulation. Before looking for the keylogger binary the operating
system will be identified by looking through the registry. The registry key
[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion]
provided some insight into the operating system.

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion]
provided
"FirstInstallDateTime"=hex:41,84,8e,25
"ProductName"="Microsoft Windows 98"
"SystemRoot"="c:\\windows"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
43

"Version"="Windows 98"
"VersionNumber"="4.10.1998"

This information provided the version of Windows that the system was running
and where the system root was located. The next registry key that requires
investigating is:
\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

This key will show the programs that are being started from the registry. This is
a common area for Trojans or viruses to live because they are semi hidden and
can be started at boot time. If the file is not located in the registry it could be
located in a Windows initialization (ini) file or in the autoexec.bat file or config.sys
file. Here is the output from that key:

[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run]
"Adaptec DirectCD"="C:\\Program Files\\DirectCD\\DIRECTCD.EXE"
"AtiCwd32"="Aticwd32.exe"
"AtiKey"="Atitask.exe"
"Disknag"="C:\\DELL\\DISKNAG.EXE"
"LoadPowerProfile"="Rundll32.exe powrprof.dll,LoadCurrentPwrScheme"
"NodeMngr"="C:\\DMI\\bin\\NodeMngr.exe"
"POINTER"="C:\\PROGRA~1\\MSHARD~1\\point32.exe"
"ScanRegistry"="C:\\Windows\\Scanregw.exe /autorun"
"System Policies"="\\\\xxxx\\sys\\public\\9xpol.exe"
"System Tray"="SysTray.Exe"
"SystemTray"="SysTray.Exe"
"TaskMonitor"="c:\\windows\\taskmon.exe"
"TCASUTIEXE"="TCAUDIAG.EXE -off"
"Win32SysTray"="C:\\WINDOWS\\DESKTOP\\WIN323.exe"

Several programs are started from this registry key every time this system starts.
Most program are related to the CDROM burner (must have been an external
burner, because the CDROM in the system is not a burner) or the video driver.
The last entry is one of interest the file is called WIN323.exe and is located in the
C:\windows\Desktop directory. This file could possibly be the keylogger binary.

After finding the above information in the system.dat file, I started looking through
the user.dat file. While looking through this file I did not find any information
regarding the keylogger or win323.exe but I did find reference to an interesting
program called Camouflage.

[HKEY_USERS\.DEFAULT\Software\Camouflage]

[HKEY_USERS\.DEFAULT\Software\Camouflage\CamouflageFile]
"0"="C:\\Program Files\\Qualcomm\\Eudora Mail\\Attach\\Breathe - Faith
Hill.mp3"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
44

[HKEY_USERS\.DEFAULT\Software\Camouflage\frmMain]
"Height"=dword:00000d02
"Left"=dword:00001716
"Top"=dword:0000177f
"Width"=dword:00001ce3
"WindowState"=dword:00000000

[HKEY_USERS\.DEFAULT\Software\Camouflage\frmMain\CamouflageFileList]
"Accessed"=dword:00000000
"Attributes"=dword:000003e8
"Created"=dword:00000000
"File"=dword:00001130
"Modified"=dword:00000000
"Size"=dword:000004b0

[HKEY_USERS\.DEFAULT\Software\Camouflage\frmMain\UncamouflageFileList
]
"Accessed"=dword:00000000
"Attributes"=dword:000003e8
"Created"=dword:00000000
"File"=dword:00001130
"Modified"=dword:00000000
"Size"=dword:000004b0

[HKEY_USERS\.DEFAULT\Software\Camouflage\OutputFile]
"0"="C:\\WINDOWS\\Desktop\\alliwant.mp3"

[HKEY_USERS\.DEFAULT\Software\Camouflage\OutputFolder]
"0"="C:\\WINDOWS\\Desktop\\Jlo"
"1"="C:\\WINDOWS\\Desktop\\My Folder\\Joe"
"2"="C:\\WINDOWS\\Desktop\\Luniz"
"3"="C:\\WINDOWS\\Desktop\\Nas\\Nas"

It is possible that the user is using this camouflage program to possibly hide
certain files or perhaps keylogger data files. I decided to search the
www.google.com for information regarding the Camouflage program. Some
information about the camouflage program was found at:
http:/www.jjtc.com/stegoarchive/stego/software.html:

Camouflage (Freeware)
Camouflage is a Windows-based program that allows you to hide files by
scrambling them and then attaching them to the end of the file of your
choice. Password protection included. The hidden file can be detected by
examining the raw file data and seeing that the hidden file has been added

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
45

after the normal carrier data, cut this will only appear as gibberish since
the data is encrypted. 8

More details about the Camouflage program could be required if there is a
keylogger application on the system or if data from the keylogger application
cannot be found.

Prior to looking at the binary some more information about the target system will
be acquired such as when the operating system was installed and what
applications are installed on the system.

Information about the operating system will be gathered first. The stat utility will
be run against kernel32.dll file in the /mnt/forensics/windows/system32 directory
and also against the explorer.exe file in the /mnt/forensics/windows directory.
This two files should provide information about when this system was installed.

#stat kernel32.dll

File: "kernel32.dll"
 Size: 471040 Blocks: 928 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 1312080 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Mon May 11 19:01:00 1998
Modify: Mon May 11 19:01:00 1998
Change: Mon Dec 31 23:00:00 1979

#stat ../explorer.exe

File: "../explorer.exe"
 Size: 180224 Blocks: 352 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 1310993 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Mon May 11 19:01:00 1998
Modify: Mon May 11 19:01:00 1998
Change: Mon May 11 19:01:00 1998

It appears the system was probably installed on May 11, 1998 at 19:01. Next a
list of installed applications will be gathered. The following applications were
found on the system:

• Eudora (email client)
• Netscape 4.7 (web browser)
• Easy CD Creator
• Microsoft Office 97
• Filemaker Pro 4
• Filemaker Pro 5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
46

• Visio
• Canvas 6
• AutoCAD

In order to determine the last time the user received or sent email some files in
the Eudora directory will be investigated.

#stat Eudora.exe

File: "Eudora.exe"
 Size: 2510905 Blocks: 4912 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 1314647 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Wed Apr 11 15:57:04 2001
Modify: Wed Apr 11 15:57:04 2001
Change: Tue Sep 18 10:39:54 2001

#stat in.mbx

File: "In.mbx"
 Size: 114901 Blocks: 240 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 1314621 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Tue Feb 19 10:46:38 2002
Modify: Tue Feb 19 10:46:38 2002
Change: Thu Feb 14 10:39:54 2002

These two commands show that the binary was modified and accessed April of
2001 but the inbox was modified on February 19, 2002. It is possible that the
February 19 date was the last day the user accessed email from this system.

The Easy CD Creator program is also interesting because this system has no
internal CDROM burner so why would this application be installed. It is possible
the CD burner could have been used to move data off the system during an
upgrade.

#stat Creatr32.exe

File: "Creatr32.exe"
 Size: 2027008 Blocks: 3968 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 1314971 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Mon Nov 30 02:50:00 1998
Modify: Mon Nov 30 02:50:00 1998
Change: Mon Nov 30 02:50:00 1998

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
47

These dates are November 30, 1998, it appears that the CD Creator application
has not been used for several years.

Binary file analysis

Now that some operating system and application information have been gathered
on the target system the suspicious binary file will be investigated to determine if
it is in fact the keylogger application. The file and stat commands will be used to
get some initial information about the file. The Unix utility strings will be used to
look at the win323.exe binary. Before running strings on the file the stat and file
commands will be used to get some information about the file. Here is the output
from the file and stat commands:

#file win323.exe
win323.exe: MS-DOS executable (EXE), OS/2 or MS Windows

stat win323.exe

 File: "win323.exe"
 Size: 28672 Blocks: 64 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 625202 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Fri Dec 21 18:31:16 2001
Modify: Fri Dec 21 18:31:16 2001
Change: Fri Dec 21 18:31:16 2001

The output of the file command confirms that it is a binary file. The output of the
stat command gives me details above the size of the file 28672 bytes and the
MAC times on the file (all Dec 21 18:31:16:2001). The command to gather the
strings in the binary file:

#strings –a /mnt/forensics/windows/Desktop/win323.exe
>/root/forensics/output/win323.txt

Here is the output of that command:

!This program cannot be run in DOS mode.
RichA
.text
`.data
.rsrc
MSVBVM60.DLL
[Qsn

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
48

FDss
RsaTQs
TQskcDs
UQst
RssADs
QsmYOs
`Os0XQsaUQs?
Rsn[Ps
OsFUDs4
ADstEDs
UQsPOQs
EDs<
FDsF
Qs"DDsj
MDsS
Project1
KeyLogger
Sensible KeyLogger
wwwwwwwwwwwwwx
wwwwwwwwwwwwwx
tDDDDDDDD@
tDDDDDDDDGppw
tDDDDDDDDGppw
tDDDDDDDDDDDDH
wwwwwwwwwwwwwx
Form1
txtFileName
c:\keylog.txt
TimerSave
Timer1
Text1
Label2
Output File Name:
menAbout
&About
menAknow
&Aknowledgements
menBy
VB5!
Win32
KeyLogger
Project1
4x$@
Project1
KeyLogger
KeyTrap

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
49

Form
C:\Program Files\Microsoft Visual Studio\VB98\VB6.OLB
TimerSave
Timer1
menBy
VB5!
Win32
KeyLogger
Project1
4x$@
Project1
KeyLogger
KeyTrap
Form
C:\Program Files\Microsoft Visual Studio\VB98\VB6.OLB
TimerSave
Timer1
menBy
menAknow
txtFileName
menAbout
Label2
Text1
user32
GetAsyncKeyState
hD$@
Form_Load
GetKeyState
h4%@
advapi32.dll
RegCloseKey
hd'@
RegCreateKeyExA
RegOpenKeyExA
RegQueryValueExA
h@(@
RegSetValueExA
__vbaFileClose
__vbaVarAdd
RegDeleteKeyA
RegDeleteValueA
h4)@
VBA6.DLL
__vbaWriteFile
__vbaFileOpen
__vbaOnError

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
50

__vbaErrorOverflow
__vbaVarCat
__vbaStrVarCopy
__vbaFreeVar
__vbaFpI4
__vbaFreeVarList
__vbaFreeObjList
__vbaVarSub
__vbaI4Var
__vbaStrVarVal
__vbaVarTstGt
__vbaObjSet
__vbaLenBstr
__vbaVarMove
__vbaVarCopy
__vbaSetSystemError
__vbaFreeStrList
__vbaStrCat
__vbaStrMove
__vbaFreeObj
__vbaFreeStr
__vbaHresultCheckObj
__vbaNew2
__vbaUI1I2
__vbaGenerateBoundsError
__vbaStrCopy
__vbaExitProc
__vbaResume
__vbaVargVarMove
__vbaStrVarMove
__vbaError
__vbaVarVargNofree
__vbaStrToUnicode
__vbaStrToAnsi
(SVW
F<u&
F<u!
F<uL
F<u/
F<uL
F<uL
F<uL
F<uL
F<uL
F<u!
F<u!

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
51

F<u!
F<u!
F<u!
F<u!
F<u!
F<u!
F<u!
F<u!
F<u!
F<u!
F<u!
F<u!
F<uL
F<uH
F<uL
F<uL
haA@
h<'@
h %@
0SVW
h_G@
h_G@
(SVW
h4H@
MSVBVM60.DLL
__vbaVarTstGt
__vbaVarSub
_CIcos
_adj_fptan
__vbaVarMove
__vbaVarVargNofree
__vbaFreeVar
__vbaStrVarMove
__vbaLenBstr
__vbaFreeVarList
_adj_fdiv_m64
__vbaFreeObjList
_adj_fprem1
__vbaResume
__vbaStrCat
__vbaError
__vbaWriteFile
__vbaSetSystemError
__vbaHresultCheckObj
_adj_fdiv_m32
__vbaExitProc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
52

__vbaObjSet
__vbaOnError
_adj_fdiv_m16i
_adj_fdivr_m16i
_CIsin
__vbaVargVarMove
__vbaChkstk
__vbaFileClose
EVENT_SINK_AddRef
__vbaGenerateBoundsError
DllFunctionCall
_adj_fpatan
EVENT_SINK_Release
__vbaUI1I2
_CIsqrt
EVENT_SINK_QueryInterface
__vbaExceptHandler
__vbaStrToUnicode
_adj_fprem
_adj_fdivr_m64
__vbaFPException
__vbaStrVarVal
__vbaVarCat
_CIlog
__vbaErrorOverflow
__vbaFileOpen
__vbaNew2
_adj_fdiv_m32i
_adj_fdivr_m32i
__vbaStrCopy
__vbaFreeStrList
_adj_fdivr_m32
_adj_fdiv_r
__vbaI4Var
__vbaVarAdd
__vbaStrToAnsi
__vbaVarCopy
__vbaFpI4
_CIatan
__vbaStrMove
__vbaStrVarCopy
_allmul
_CItan
_CIexp
__vbaFreeStr
__vbaFreeObj

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
53

wwwwwwwwwwwwwx
wwwwwwwwwwwwwx
tDDDDDDDD@
tDDDDDDDDGppw
tDDDDDDDDGppw
tDDDDDDDDDDDDH
wwwwwwwwwwwwwx

There is some valuable information contained within this output. There are
several references to the word Keylogger and one that references “sensible
keylogger”. There is some reference to a file called C:\keylog.txt and references
to several dynamic Load Library (DLL) files. The program could be written in
visual basic because there are several references to “vba”. It is probable that
this is the keylogger application. There was another file located in the same
location as the discovered binary, the file was named dat.cab. This is an unusual
location for an apparent Microsoft CAB file. This file should be examined to
determine what it contains.

#file dat.cab
dat.cab: ASCII text, with CRLF, CR line terminators

This looks unusual for the file command to return ASCII text for what appears to
be a Windows cabinet file (at least has the cabinet file extension). I decided to try
to find another cab file on the image and run the file command against that file to
compare the results.

#file /mnt/forensics/windows/options/cabs/net9.cab
/mnt/forensics/windows/options/cabs/net9.cab: Microsoft cabinet file data, v1.3

The file command verified the output for an actual Microsoft Cabinet file. So the
dat.cab is possibly not an actual Microsoft cabinet file. Before looking at the file
the stat command will be used to get information about the dat.cab file:

#stat dat.cab
 File: "dat.cab"
 Size: 135647 Blocks: 272 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 625201 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Tue May 13 11:17:30 2003
Modify: Tue May 13 11:17:30 2003
Change: Fri Mar 22 10:52:46 2002

The file size for the file is 135647 bytes and the modify and access times are
both May 13, 2003, with a change time of March 22, 2002. Now that information

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
54

about the file has been gathered the file will be examined with a text editor to see
what is in the file. When the file was opened it contains 33864 Lines and 135647
characters (only a portion of the file is displayed). Mainly the file consists of “”
but there are some commands in the file such as:

"(Cant Undo...Bksp...t32
"sysedit
"logger
"
"key"
""
"keylogger
""
""
"i
"
"syncconfg.exe"
"debu
"/"
"/"
"/ordpa...Bksp...d...Bksp...
"
"k(Cant Undo)sysconfigex...Bksp...e"
">cb"
"a"
"cab
//"

There are also several other entries that are possibly passwords or other
personal information (not displayed). It appears that some of the files for
collecting data have been found. Very quickly the keylogger application and
some keystroke information have been discovered on the system.

How the keylogger software got on the system whether it was deliberate or
possibly from some virus sent by email still needs to be determined. One way to
gather information is to run the strings command against the raw image file
looking for any reference to the word “keylogger”.

#strings –a /root/forensics/hda1.img | grep keylogger

The output of this command produced 1211 Lines of references to keylogger,
mainly websites and HTML code (some of the keylogger pages are probably in
the users cache). The various websites included:

http://keylogger.com/images/contactoff.gif
AllTheWeb.com: Web pages results for `dat.cab keylogger'

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
55

http://www.alltheweb.com/search?cat=web&lang=any&query=dat.cab+keylogger
http://ln.doubleclick.net/ad/atw.ly.ln/r_atw;kw=ghost+keylogger+faq;h=misc;prov=
fast_atw;pos=2;sz=320x20;tile=2;!category=adult_atw;ratio=1_3;ord=5978990?
http://home.swipnet.se/~w-94075/keylogger/
AllTheWeb.com: Web pages results for `download ghost 1.0 keylogger'
http://www.alltheweb.com/search?cat=web&lang=any&query=download+ghost+1
.0+keylogger
http://pa.yahoo.com/pa?q=keylogger&s=9035784
http://www.keylogger.hp
http://www.keyloggerhp
http://www.keylogger.net
Results for 'ghost keylogger'
http://search.cert.org/query.html?rq=0&col=allcert&ht=0&qp=&qs=&qc=&pw=100
%25&ws=1&la=&qm=0&st=1&nh=25&lk=1&rf=2&oq=&rq=0&si=1&qt=ghost+keyl
ogger
http://keylogger.com/images/top4.gif
http://www.keylogger.net/transparent.
http://www.keylogger.com/ik97v12s.exe

This is just of portion of the file. The last entry above could indicate the actual
binary download. It also appears that someone is doing a query looking for
“download ghost 1.0 keylogger” and also “dat.cab + keylogger”. This further
proves that the above dat.cab file is involved with the keylogger application. This
evidence confirms that someone on this computer was actively gathering
information about keyloggers.

The current company policy dictated that Netscape was the only authorized
browser, and this policy was enforced with User-Agent-Strings verification at our
corporate webproxy system. The location of the Netscape cache files is:
/mnt/forensics/Program Files/Netscape/Users/user_name. There were 27 html
files in the directory and over 1000 images in the directory. I decided to get a
listing of the HTML files to show when they were created:

#ls –l *htm

-rwxr-xr-x 1 root root 5684 Feb 12 2002 bookmark.htm
-rwxr-xr-x 1 root root 14984 Mar 11 2002 m01f3n08.htm
-rwxr-xr-x 1 root root 23826 Mar 11 2002 m030bm1m.htm
-rwxr-xr-x 1 root root 18727 Mar 11 2002 m062dtt2.htm
-rwxr-xr-x 1 root root 26374 Mar 11 2002 m07e8h0l.htm
-rwxr-xr-x 1 root root 4602 Mar 20 2002 m0ick9mm.htm
-rwxr-xr-x 1 root root 24191 Mar 20 2002 m0m148bs.htm
-rwxr-xr-x 1 root root 17938 Mar 11 2002 m0s8hn7s.htm
-rwxr-xr-x 1 root root 21325 Mar 11 2002 m1io3vg4.htm
-rwxr-xr-x 1 root root 8376 Mar 20 2002 m1n9l0pp.htm
-rwxr-xr-x 1 root root 4531 Mar 20 2002 m1vq2u34.htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
56

-rwxr-xr-x 1 root root 6234 Mar 11 2002 mu23jdib.htm
-rwxr-xr-x 1 root root 127588 Mar 11 2002 mua370dl.htm
-rwxr-xr-x 1 root root 10434 Mar 20 2002 muilt08g.htm
-rwxr-xr-x 1 root root 4236 Mar 20 2002 mup43qmk.htm
-rwxr-xr-x 1 root root 3820 Mar 11 2002 mv3i9l62.htm
-rwxr-xr-x 1 root root 3570 Mar 20 2002 mv7p4kg6.htm
-rwxr-xr-x 1 root root 9848 Mar 19 2002 mv9gr921.htm
-rwxr-xr-x 1 root root 1506 Mar 20 2002 mvfidq0o.htm
-rwxr-xr-x 1 root root 1019 Mar 11 2002 mvim45vp.htm
-rwxr-xr-x 1 root root 9840 Mar 11 2002 mvnbot7u.htm
-rwxr-xr-x 1 root root 11041 Mar 20 2002 mvprcvh8.htm
-rwxr-xr-x 1 root root 9302 Mar 11 2002 mvqrgauf.htm
-rwxr-xr-x 1 root root 11991 Mar 20 2002 mvqt7725.htm
-rwxr-xr-x 1 root root 11116 Mar 20 2002 mvspjis9.htm
-rwxr-xr-x 1 root root 683294 Mar 20 2002 mvta6shq.htm
-rwxr-xr-x 1 root root 7974 Mar 19 2002 mvvvmrdo.htm

The stat command on the win323.exe binary file showed the MAC time as Fri
Dec 21 18:31:16 2001, all of these HTM files were created after that date. To
see if these files had any data on the keylogger application I ran:

#grep keylogger *.htm

The output of the command verified that they keyword keylogger was contained
within some of the htm files. I was confused about the dates, the original
application was installed before these sites were visited (according to their file
times). Had the user returned to gather more information? Possibly the user had
discovered the keylogger and was trying to get information about it?

I also decided to look in other common data areas to see if any keylogger
information was there. The directories I choose were:
/mnt/forensics/windows/Temporary Internet Files/
/mnt/forensics/windows/temp
/mnt/forensics/windows/Application Data/Mozilla/Profiles

Searching these directories for keylogger information produced no further
evidence. Next I looked for the index.dat file for Internet Explorer and the
netscape.hst file for Netscape. These two files maintain a list of all sites a user
has browsed using that web browser. The index.dat file (Internet Explorer) is
located at /mnt/forensics/windows/Temporary Internet Files/

#stat /mnt/forensics/windows/Temporary Internet Files/index.dat

File: "index.dat"
 Size: 49152 Blocks: 96 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 1449537 Links: 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
57

Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Tue May 13 11:17:30 2003
Modify: Tue May 13 11:17:30 2003
Change: Wed Sep 15 07:15:46 1999

The index.dat file did not contain any information regarding the keylogger and
looking at the access and modify date on the file it is possible that the desktop
technicians used Internet Explorer to surf the web.

I did not expect to find any information in the Internet Explorer file. Internet
Explorer was not allowed through our web proxy system when the original user
had the computer. Any web surfing the user did regarding the keylogger
application would have been done with Netscape. The two files of interest with
Netscape are /mnt/forensics /Program
Files/Netscape/users/user_name/netscape.hst and /mnt/forensics /Program
Files/Netscape/users/user_name/fat.db these two files record all web activity with
Netscape. The stat and file commands will be used to gather information about
the two files.

#stat /mnt/forensics /Program Files/Netscape/users/user_name/fat.db

File: "fat.db"
 Size: 1212416 Blocks: 2368 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 1446664 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Fri Mar 22 10:59:38 2002
Modify: Fri Mar 22 10:59:38 2002
Change: Thu Feb 7 13:09:16 2002

#stat /mnt/forensics /Program
Files/Netscape/users/user_name/netscape.hst

File: "netscape.hst"
 Size: 323584 Blocks: 640 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 1444576 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Fri Mar 22 10:59:38 2002
Modify: Fri Mar 22 10:59:38 2002
Change: Mon Oct 30 09:29:30 2000

#file netscape.hst
netscape.hst: Berkeley DB 1.85 (Hash, version 2, native byte-order)

#file fat.db
fat.db: Berkeley DB 1.85 (Hash, version 2, native byte-order)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
58

These are binary files so any data gathered will have to be done with the strings
command. The following command will be used to see how many if any lines in
the file contain the keyword keylogger.

#strings fat.db | grep keylogger | wc -l
 137
#strings netscape.hst | grep keylogger | wc -l
 146

The strings and grep commands are being piped to the unix utility wc, which
provides a word counts function. The fat.db file contained 137 references to
keylogger and netscape.hst contained 146 references. The strings and grep
commands will be run again this time with their output captured to files that will
be maintained as evidence. Here are some of the keylogger references
contained in the netscape.hst file:

http://keylogger.com/images/contactoff.gif
http://keylogger.com/images/contactoff.gif
http://keylogger.com/images/contactoff.gif
http://keylogger.com/images/contactoff.gif
AllTheWeb.com: Web pages results for `dat.cab keylogger'
http://www.alltheweb.com/search?cat=web&lang=any&query=dat.cab+keylogger
http://ln.doubleclick.net/ad/atw.ly.ln/r_atw;kw=ghost+keylogger+faq;h=misc;prov=
fast_atw;pos=2;sz=320x20;tile=2;!category=adult_atw;ratio=1_3;ord=5978990
?
http://ln.doubleclick.net/ad/atw.ly.ln/r_atw;kw=win32+keylogger;h=misc;prov=fast
_atw;pos=2;sz=320x20;tile=2;!category=adult_atw;ratio=1_3;ord=9990153?
http://www.keylogger.com/images/side-products.gif
http://www.keylogger.com/images/downloadsoff.gif
http://www.alltheweb.com/go/1/H/web/http/www.keylogger.net/index.html
Ghost Keylogger, an invisible keylogger with email fun
Ghost Keylogger, an invisible keylogger with email fun
Ghost Keylogger, an invisible keylogger with email functionality.
http://www.keylogger.net/index.ht
Ghost Keylogger, an invisible keylogger with email f
Ghost Keylogger, an invisible keylogger with email functionality.
http://www.keylogger.net/index.html
Results for 'ghost keylogger'
Results for 'ghost keylogger'

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
59

The entries in these Netscape files are key in determining that someone was
actively attempting to install a keylogger on this system. The keylogger was not
installed inadvertently in fact it appears some was searching for keylogger
information.

MACTime Analysis

MACtimes are time information stored by the filesystem to identify created,
accessed and modified times on files. This information can be used to show file
system modifications such as when a system was installed, when applications
where installed, and when files were created.

The mac_daddy script will be run over the mounted image to gather the MAC
times. The mac_daddy script will gather the time information on the mounted file
system, it will not gather data on deleted files. The command to do this was:

#mac_daddy /mnt/forensics > /root/forensics/output/mac_daddy.out

The size of the created file is 4704486 bytes and I also performed a MD5sum on
the file:

#md5sum mac_daddy.out
932a73dd85892422b37f949c2090f47a mac_daddy.out

The output of the mac_daddy file was then analyzed looking for dat.cab entries.

grep dat.cab mac_daddy.out

Jan 14 2002 07:14:20 135744 ..c -rwxr-xr-x root root /mnt/forensics/dat.cab
Feb 22 2002 09:09:02 135744 ma. -rwxr-xr-x root root /mnt/forensics/dat.cab
Mar 22 2002 10:52:46 135647 ..c -rwxr-xr-x root root
/mnt/forensics/windows/Desktop/dat.cab
Mar 27 2002 13:02:22 341 ..c -rwxr-xr-x root root
/mnt/forensics/windows/Recent/dat.cab.lnk
Mar 27 2002 13:02:24 341 ma. -rwxr-xr-x root root
/mnt/forensics/windows/Recent/dat.cab.lnk
 135647 ma. -rwxr-xr-x root root
/mnt/forensics/windows/Desktop/dat.cab

The fourth and fifth entries are symbolic links for a dat.cab file that showed up in
one of the recent files on the windows system. This could mean some viewed
the file May 27 2002 at 13:02. There are two dat.cab files:

• The first dat.cab file is directly on the C:\ drive and was created on Jan 14,
2002 and was modified and accessed on Feb 22, 2002 9:09:02.

• The second dat.cab file is located in the windows/Desktop directory (this is
the file I originally discovered). This file was created March 22, 2002
10:52 and was modified and accessed on May 27, 2002. March 22nd was
also the date that the netscape.hst and fat.db files were last modified.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
60

The next thing to investigate is the dat.cab file located in the root directory of the
system.

#stat /mnt/forensics/dat.cab

File: "dat.cab"
 Size: 135744 Blocks: 272 IO Block: 8192 Regular File
Device: 700h/1792d Inode: 900952 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: Fri Feb 22 09:09:02 2002
Modify: Fri Feb 22 09:09:02 2002
Change: Mon Jan 14 07:14:20 2002

The size of this file is 135744 bytes (this file is a little larger then the first dat.cab
file). The Modify and Access time for the file is Feb 22, 2002 and the change
time is Jan 14, 2002 these dates are closer to the binary installation date of Dec
21, 2001. This data file was created prior to the first examined file. Now the
contents of the file need to examined.

#cat /mnt/forensics/dat.cab

Again this file was filled with “” but there was also clear evidence of emails, email
addresses, and passwords being captured. The data captured in the second file
appears much more sensitive then the data captured in the file
C:\windows\Desktop\dat.cab. This is a sample of the data that was captured
much of the data in this file was potentially sensitive and is not included.

"da...Bksp...C"^M
"mollette"^M
"daollet...Bksp.....Bksp.....Bksp.....Bksp.....Bksp.....Bksp..."^M
"(Cant Undo)IGuy...Bksp.....Bksp...s"^M
"Hey ...Bksp...Af...Bksp.....Bksp...ds...Bksp.....Bksp...a...Bksp.....Bksp...s this you
Axam? I...Bksp...ts me xxx."^M

This data is definitely different then the first keystroke capture file. This is the
second data file that has been recovered.

#grep win323.exe mac_daddy.out

Dec 21 2001 18:31:16 28672 mac -rwxr-xr-x root root
/mnt/forensics/windows/Desktop/win323.exe

This command confirmed what the stat of the file had shown the keylogger
executable had been installed on Dec 21, 2001 18:31.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
61

grep ik97v12s.exe mac_daddy.out

This command returned nothing. This could mean that the original download
executable was possibly deleted and has been overwritten by the Operating
System.

Several pieces of information have been gathered but are there more dat.cab
files that were deleted and there could also be more evidence in cache html files
that were deleted. In order to get at that data I would have to use the Sleuthkit
(TASK) to generate a timeline complete with deleted file information. The
commands that were used to create the second timeline using tools from TASK
1.62 were:

#fls –f fat32 –m / -r /root/forensics/hda1.img > ./output/fls.out
#ils –f fat32 –m –r /root/forensics/hda1.img > ./output/ils.out
#cat ils.out fls.out > mac.out
#mactime –b mac.out > timeline.out

The fls command is used to list file and directory names from a forensics image
(fls manpage). The parameters for the fls command are –f the filesystem type
(fat32) –m lists the mount point for the image, and –r means to recursively list
directories. The ils command is used to list inode information and by default lists
only inodes of deleted files. The parameters to the ils command are –f the
filesystem type (fat32) –m display output in format for the mactime program to
read the data, -r means to recursively list directories. The cat command is used
to combine the two files into one file called mac.out. Finally the mactime
program from TASK is used to generate the timeline. The –b option for mactime
is used to specify the file. Next the Unix utility grep will be used to look for
dat.cab files in the timeline.out file:

grep dat.cab timeline.out

Mon Jan 14 2002 07:14:20 135744 ..c -/-rwxrwxrwx 0 0 85 /dat.cab (DAT.CAB)
 135744 m.. -/-rwxrwxrwx 0 0 85 /dat.cab (DAT.CAB)
Fri Feb 22 2002 12:11:34 32979 ..c -/-rwxrwxrwx 0 0 14178842 /WINDOWS/DESKTOP/dat.cab (_AT.CAB)
(deleted)
Fri Mar 08 2002 08:41:56 22887 m.. -/-rwxrwxrwx 0 0 14178851 /WINDOWS/DESKTOP/Copy of dat.cab
(_OPYOF~1.CAB) (deleted)
 22887 ..c -/-rwxrwxrwx 0 0 14178851 /WINDOWS/DESKTOP/Copy of dat.cab
(_OPYOF~1.CAB) (deleted)
 22887 .a. -/-rwxrwxrwx 0 0 14178851 /WINDOWS/DESKTOP/Copy of dat.cab
(_OPYOF~1.CAB) (deleted)
 135744 .a. -/-rwxrwxrwx 0 0 85 /dat.cab (DAT.CAB)
 54 .a. -/-r-xr-xr-x 0 0 14178822 /WINDOWS/DESKTOP/~$dat.cab (_$DAT.CAB) (deleted)
 54 .a. -/-r-xr-xr-x 0 0 14178824 /WINDOWS/DESKTOP/~$dat.cab (_$DAT.CAB) (deleted)
 32979 .a. -/-rwxrwxrwx 0 0 14178842 /WINDOWS/DESKTOP/dat.cab (_AT.CAB) (deleted)
 54 .a. -/-r-xr-xr-x 0 0 83 /~$dat.cab (_$DAT.CAB) (deleted)
Fri Mar 22 2002 10:16:28 32979 m.. -/-rwxrwxrwx 0 0 14178842 /WINDOWS/DESKTOP/dat.cab (_AT.CAB)
(deleted)
 135647 ..c -/-rwxrwxrwx 0 0 14178827 /WINDOWS/DESKTOP/dat.cab (DAT.CAB)
Fri Mar 22 2002 10:57:06 54 ..c -/-r-xr-xr-x 0 0 14178824 /WINDOWS/DESKTOP/~$dat.cab (_$DAT.CAB)
(deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
62

Fri Mar 22 2002 10:57:08 54 m.. -/-r-xr-xr-x 0 0 14178824 /WINDOWS/DESKTOP/~$dat.cab (_$DAT.CAB)
(deleted)
 54 ..c -/-r-xr-xr-x 0 0 83 /~$dat.cab (_$DAT.CAB) (deleted)
Fri Mar 22 2002 11:04:40 54 m.. -/-r-xr-xr-x 0 0 83 /~$dat.cab (_$DAT.CAB) (deleted)
Fri Mar 22 2002 11:05:02 54 ..c -/-r-xr-xr-x 0 0 14178822 /WINDOWS/DESKTOP/~$dat.cab (_$DAT.CAB)
(deleted)
 54 m.. -/-r-xr-xr-x 0 0 14178822 /WINDOWS/DESKTOP/~$dat.cab (_$DAT.CAB) (deleted)
Wed Mar 27 2002 13:02:22 341 ..c -/-rwxrwxrwx 0 0 14605329 /WINDOWS/RECENT/dat.cab.lnk
(DATCAB~1.LNK)
Wed Mar 27 2002 13:02:24 341 m.. -/-rwxrwxrwx 0 0 14605329 /WINDOWS/RECENT/dat.cab.lnk
(DATCAB~1.LNK)

This command found the two dat.cab files that have already been investigated
and the symbolic links that were discovered in the mac_daddy output (those
already discovered files are bolded). The other discovered files need to be
investigated for more information. The Files that are called “Copy of dat.cab”
should also be compared to the original files to make sure they are the same.

The grep command was used to look for win323.exe and also to discover if any
other files were modified or created at or about the same time as the win323.exe
file:

grep win323.exe timeline.out

Thu Dec 20 2001 15:03:32 522 m.. -rwxrwxrwx 0 0 28473672 <hda1.img-_2202001.LOG-dead-28473672>
Fri Dec 21 2001 18:31:16 28672 m.c -/-rwxrwxrwx 0 0 14178844 /WINDOWS/DESKTOP/win323.exe
(WIN323.EXE)
Fri Dec 21 2001 19:25:56 889 m.c -/-rwxrwxrwx 0 0 20544582 /RECYCLED/_C68.TXT (deleted)
 889 m.c -rwxrwxrwx 0 0 20544582 <hda1.img-_C68.TXT-dead-20544582>

The win323.exe file and the C68.TXT file were the only files impacted all day on
Dec 21. Here is another output from the grep command

Tue May 13 2003 00:00:00 28672 .a. -/-rwxrwxrwx 0 0 14178844 /WINDOWS/DESKTOP/win323.exe
(WIN323.EXE)

This information shows that the win323 file was accessed on May 13, 2003.
There were several other files accessed at this time mostly in the windows
directory this is possibly when this system was rebooted by the desktop
technicians prior to noticing the keylogger application.

String Searches

Several string searches and file searches were conducted during the
investigation. Searches were conducted over binary files including the
win323.exe file, the netscape.hst file, fat.db, index.dat, the MACtime output, and
the logical image of the target system. The following patterns were searched for:

• Keylogger
• Camouflage
• win323.exe
• ik97v12s.exe
• dat.cab

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
63

File Recovery

At this point in the investigation several files that have been deleted from the
original image need to be recovered. In order to recover the files the icat utility
from the Sleuthkit will be used. In order to recover the file the inode of the file
must be provided. The inode information can be gathered from the MACTIME
analysis or by doing a ls –i on the filesystem.

An inode is a data structure holding information about files in a Unix file system.
There is an inode for each file and each file is uniquely identified by the file
system by the inode. Deleted files can be recovered from the filesystem because
often when a file is deleted it really is not destroyed. The pointer to the file is
removed but the data that was contained at that disk location is potentially not
overwritten. However this hidden data can be overwritten by the operating
system. Each operating system writes data to the filesystem differently some
operating systems will quickly reuse these deleted pointers and will overwrite the
hidden data.

All of the deleted dat.cab files and the C68.txt file should be recovered from the
image. The first file to recover is the _C68.txt file that was deleted on the same
day that the win323.exe was installed on the system.

#icat -f fat32 hda1.img 20544582 > C68.txt

This is a beta release v0.9 of a stealth keylogger.

If for any reason you are unable to get this program to start when windows starts
simply create a shortcut into the windows startup folder or any other way you can
think of.

When first run on the remote computer it should automatically create the required
reg enteries to run at startup BUT i have not been able to test this fully. It should
be automatic from then on.

Before running the program it must be in the folder its going to stay in. E.G the
main windows directory.(C:\windows) and the file must be named whatever you
want it to be. This is to ensure the reg enteries are correct.
The log file created by this program is called dat.cab an is located in the same
directory as the program executable.

thats it

enjoy:)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
64

bug reports, questions or if you just want to contact me e-mail
D0110101@hotmail.com

The icat command is used to recover data from a forensics image by specifying
an inode number. The parameters to the icat command are –f to specify the
filesystem format and then the image followed by the inode.

The recovered text file contains some important information.
• Confirms the keylogger version as beta release v0.9 of a stealth

keylogger.
• Confirms the registry entries as the means of starting the keylogger.
• Confirms the dat.cab files as the log files for the keylogger application.
• This confirms someone deleted keylogger Readme file the same day the

keylogger was installed on the system. The keylogger application was
probably not installed as part of a virus.

The next step is to take the list of deleted dat.cab files and attempt to recover
them. The inodes of the deleted dat.cab files are: 14178822, 83, 14178824,
14178842, 85, and 14178851. All of these files will be recovered using icat.

Inodes 83, 14178822, and 14178824 all were identical and contained the
following text (The data was the system owners name and was modified for this
document).

#icat –f fat32 /root/forensics/hda1.img 83
#icat –f fat32 /root/forensics/hda1.img 14178822
#icat –f fat32 /root/forensics/hda1.img 14178824

^xxxxxxxxxxx±o
IV^@^
@^@^@^@^@^@^@^@^@^@^@^@

To verify that these three files were all the same the files were recovered and
their md5sums were compared to prove that they are the same. The files were
recovered and named inode_number.inode and the md5sum for all three files
was: 3d3702173fb194b12fc19ad46852991f. All three files were the same but
were different from the original two dat.cab files recovered.

The next set of inodes needs to be recovered. Inode number 85 was recovered
using the following command:

#icat –f fat32 /root/forensics/hda1.img 85

This file was identical to the second dat.cab file that was found (located at C:\ on
the original system). This is a deleted copy of the first dat.cab file (first created
but the second file found). The file recovered from inode number 85 was

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
65

recovered and saved as 85.inode and the md5sum of the file was created. The
md5sum was a04574fcd64703fc1f4eb94fffde4452 which was identical to the
dat.cab located at C:\.

The inode located at 14178842 was recovered and investigated using the
following commands:

#icat –f fat32 /root/forensics/hda1.img 14178842 > 14178842.inode
#strings –a 14178842.inode

1.0.1 15 30722 116As
pect WinSet

 2.2
 15 30723 1861CustomView Director

 2.1
 15 30724 119Asymetrix DVP Capture

 4.0
 15 30725 119Digital Video Producer

 4.0 15 30726 124IRMA for

This file does not appear to be a keylogger data file. However it was kept as
evidence, the md5sum for the file is: 90b9129ab8b03addc5f8c21d44d8fa33.

The last of this series of inodes to recover is inode 14178851. The commands
used to recover and investigate this file are:

#icat –f fat32 /root/forensics/hda1.img 14178851 > 14178851.inode
#strings –a 14178851.inode

"p"
"ci
"
"g"
"debu
"
""
"/"
"/"
"/ordpa...Bksp...d...Bksp...
"
""

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
66

"k(Cant Undo)sysconfigex...Bksp...e"
"x"
"."
"
"
""
""
""
""
"keylogger

This file appeared very much like the first keylogger dat.cab file located at
C:\Windows\Desktop, but it was much smaller (1989 Lines and 8192
Characters). It is possibly a subset of that first file. The md5sum for this
recovered file and probable third different dat.cab file is:
faff53f70e4287cad19239a9b0adfb60.

Now that deleted dat.cab files have been recovered what other files have been
deleted from the system that can be recovered. To find out what had been
deleted the grep command will be used to create a list of deleted files.

#grep deleted timeline.out > deletedfiles.txt

This produced a text document with 2626 entries. I noticed that several entries
from C:\Program Files\Netscape/Users/user_name were deleted on Fri Feb 15
2002 06:43:16. This could possibly be the user cleaning his cache directory.
There are also several tmp files being removed from the recycle directory. There
was other cab files listed in the deleted file list:

Fri Feb 22 2002 09:09:02 135744 m.. -/-rwxrwxrwx 0 0 14178853
/WINDOWS/DESKTOP/datorig.cab (_ATORIG.CAB) (deleted)

This file needs to recovered and investigated to see if the data is the same or
different from previous keystroke captures.

#icat –f fat32 /root/forensics/hda1.img 14178853 > 14178853.inode
#strings –a cabfile.txt

"///"
//;/
"//"
".(Cant Undo)"
"implem...Bksp...3a...Bksp.....Bksp......Bksp...s........
"//"
"//"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
67

"//"
"//"
"67"
"12949b16b716
"//"
gustavo...Bksp.....Bksp.....Bksp.....Bksp.....Bksp.....Bksp.....Bksp.....Bksp...
..Bksp...name"
name
"naa2001
"hotmail.com
"essigrl4jessjean24
...Bksp.....Bksp......Bksp.....Bksp.....Bksp.....Bksp.....Bksp.....Bksp.....Bksp
.....Bksp.....Bksp.....Bksp.....Bksp.....Bksp...jesjan88
"se"
"autocad24b716b716
"Annivrsary TOm...Bksp.....Bksp.....Bksp.....Bksp...In 2 ...Bksp.....Bksp.....Bk
sp...@ Days"
"sex"
"user name"
"..."
"AAm"
"da...Bksp...C"
"mollette"
"daollet...Bksp.....Bksp.....Bksp.....Bksp.....Bksp.....Bksp..."
"(Cant Undo)IGuy...Bksp.....Bksp...s"
"Hey ...Bksp...Af...Bksp.....Bksp...ds...Bksp.....Bksp...a...Bksp.....Bksp...s t
his you name? I...Bksp...ts me name."
"//"
"//"
"//"
"//"
"//"

This data file was not the same as any previous dat.cab file. The md5sum of this
the fourth different dat.cab file was: 9a5575bff76380f8ffdbecb5bcaf3ded. This
appears to be the last data file to be recovered. However some other information
was found in the deleted file listing:

1152 .a. -/-rwxrwxrwx 0 0 11406931 /MYDOCU~1/camoflage.reg
(_AMOFL~1.REG) (deleted)

This data was registry information for the camouflage program that was
previously displayed. Perhaps the user was investigating the footprint the
camouflage program was leaving on his system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
68

One other thing looking at the timeline.out file for the system is that there is a
huge gab between File system modifications from April 2, 2002 until May 9,
2003.

Tue Apr 02 2002 07:37:18 3072 m.. 0 0 17771813 /WINDOWS/TEMP/~DF5B3E.TMP
 3072 m.. 0 0 17771814 /WINDOWS/TEMP/~DF5BAC.TMP
Fri May 09 2003 00:00:00 67072 .a. 0 0 1806504 /WINDOWS/SYSTEM/cabinet.dll
 1728 .a. 0 0 1805076 /WINDOWS/SYSTEM/NDSWAN16.DLL
 3072 .a. 0 0 17771822 /WINDOWS/TEMP/~DF68FC.TMP
 20480 .a. 0 0 1805410 /WINDOWS/SYSTEM/WOW32.DLL

This output makes it appear that the user stopped using the system in April and
not in January. Why was the system not used for such a long period of time?

Conclusions

The forensics on this system proved that there was a keylogger application on
this system that was installed on Dec 21, 2001. The application was installed in
the registry and was started every time the system was rebooted. The keylogger
application was not very well hidden (perhaps a trial or beta version) it was
installed on the desktop and left a fingerprint in the process manager listed as
“keylogger”. The keylogger application captured system commands, email
messages, potential passwords, and other information was captured by the
keylogger and was archived on the system.

In addition web cache files were found on the system that showed someone
using the system had been actively searching for information about keyloggers.
Cache files on the system showed activity that occurred after the application had
already been installed. Other information showed up in strings information on the
drive and the cache files for this evidence was not recovered. In addition a
keylogger readme file was recovered that was deleted on the day that the
keylogger application was installed. The installation of the keylogger application
does not appear to have occurred through a Trojan horse or any kind of virus.

The keylogger was installed while the computer was in the user’s possession and
data from the application was copied and deleted also while in the user’s
possession. Either the user installed the keylogger to monitor the activity on his
computer (perhaps suspicious of co-workers) or a co-worker installed the
keylogger on the system while the user was gone. Either scenario violates local
security policies as well as Federal wiretaps laws.

The timeline shows that there was no file activity from April 2, 2002 until May 9,
2003. This concurs with the technician’s story of the computer sitting for a long
period of time with no activity.

The user also had several MP3 files located on the system that appeared to be in
his mailbox. There may be questions about whether he created these files or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
69

was receiving them through email. The local policy restricts access to common
MP3 sites through our webproxy system. Because of this the user webproxy
logs were pulled for a large period of time to determine his Internet activity.

In addition email logs were checked looking for evidence of two things:
1. Was the keylogger application sending data to an offsite email address.

There was not any apparent configuration information in the registry for
the keylogger, so it was difficult to obtain any potential addresses. So in
order to be certain email records were checked to see if any potential data
was sent offsite. It did not appear that this had occurred but the logs were
given to the investigative authorities.

2. The second reason was to look for a potential source for the MP3 files on
the user’s system. These records were also given to the investigative
authorities.

Other systems that were located is this physical location where checked for
evidence of keyloggers or of any other tampering. Any other system that the
user had access to was also inspected for any evidence. This user did not have
administrative control over any other system. No other evidence was found.

Because of the potential for wiretapping this case was turned over to our
investigative authorities. The following files were submitted to the investigators:

File name Description Md5sum
14178822.inode Inode

14178822
recovered
dat.cab.file

3d3702173fb194b12fc19ad46852991f

14178824.inode Inode
14178824
recovered
dat.cab file

3d3702173fb194b12fc19ad46852991f

83.inode Inode 83
recovered
dat.cab file

3d3702173fb194b12fc19ad46852991f

14178842.inode Inode
14178842
recovered
dat.cab file

90b9129ab8b03addc5f8c21d44d8fa33

14178851.inode Inode
14178851
recovered
dat.cab file

faff53f70e4287cad19239a9b0adfb60

dat.cab.1 The earliest
created dat.cab
file.

a04574fcd64703fc1f4eb94fffde4452

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
70

/dev/hda1 This is not a file
this is the
original
harddive
checksum

149e3ad6212ab0f04bcaf7378b0dfe88

hda1.img The created
image file

149e3ad6212ab0f04bcaf7378b0dfe88

C68.txt The recovered
keylogger
readme file

bba5a483579b6f2f067268f0cc9ed480

dat.cab2 The second
created dat.cab
file

7e9fba68448e0112f21e5b670efafc9f

deleted.out A list of all the
deleted files
from the
timeline.out file

4e15e91fbd2ee36f8a79f8171f8876ce

fls.out Output from the
fls command

0df7c39db6ed5d393601b27a2cb2b937

fsstat.out Output of the
fsstat command

e927903bd0bba412130a21329ee42793

ils.out Output of the ils
command

c54b5fe9481e4dbb00212a0dfd878d76

Keyloggerstrings.out Output of the
strings
command on
the hda1.img
file looking for
the keyword
“keylogger”

45576f1b6661e1d2ffe12a6fdac5b870

mac_daddy.out Output of the
mac_daddy perl
script

932a73dd85892422b37f949c2090f47a

Smallertime.out Mactime output
for period of
12/01/01 –
05/17/03

4948827681725ecab7c7441e948497fe

Strings_win323.exe Strings on the
win323.exe
binary file

68e8f5a772e2d0b321f791da9308e32f

System.dat.txt Text
representation
of the
system.dat file
provided by
regutils

d41d8cd98f00b204e9800998ecf8427e

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
71

Timeline.out MAC time
output provided
by TASK

f3b0b66e0929e1c3918a0b4c44a5089e

User.dat.txt Text
representation
of the user.dat
file provided by
regutils

62042de394dfc30ac19e1dc299f5b973

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
72

Section 3

You are the system administrator for an Internet Service Provider that provides
Internet access to paying customers. You receive a telephone call from a law
enforcement officer who informs you that an account on your system was used to
hack into a government computer. He asks you to verify the activity by reviewing
your logs and determine if your logs reflect whether or not the activity was
initiated there or from another upstream provider. You review your logs and can
only determine a valid user account logged in via a dialup account during the
period of the suspicious activity.

1. What if any, information can you provide to the law enforcement officer over
the phone during the initial contact?

Because the Internet Service Provider (ISP) provides access to the public (in this
case paying customers) the Electronic Communications Privacy Act governs the
disclosure of information. The ISP may disclose subscriber information only
under certain conditions:

• When the subscriber consents (banner or user agreement).
• To protect the provider’s rights and property
• To the government if provider believes that an emergency causing

danger or possible bodily harm could occur without disclosure.
• To any person other than a government entity.

Unless one of those exceptions are in place the information cannot be disclosed
to the officer without a court order or subpoena. This would protect the ISP from
potential civil liability.

According to doj website http://www.cybercrime.gov/s&manual2002.htm

“Defendants will occasionally raise a Fourth Amendment challenge to the
acquisition of account records and subscriber information held by Internet
service providers using less process than a full search warrant. As
discussed in a later chapter, the Electronic Communications Privacy Act
permits the government to obtain transactional records with an "articulable
facts" court order, and basic subscriber information with a subpoena. See
18 U.S.C. Â§Â§ 2701-2712.” 5

The courts have ruled in several cases that account records maintained by an
Internet Service Provider do not have a reasonable expectation of privacy.
According to http://www.cybercrime.gov/s&manual2002.htm:

“These statutory procedures comply with the Fourth Amendment because
customers of Internet service providers do not have a reasonable
expectation of privacy in customer account records maintained by and for

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
73

the provider's business. See United States v. Hambrick, 55 F. Supp. 2d
504, 508 (W.D. Va. 1999), aff'd, 225 F.3d 656 (4th Cir. 2000) (unpublished
opinion) (finding no Fourth Amendment protection for network account
holder's basic subscriber information obtained from Internet service
provider); United States v. Kennedy, 81 F. Supp. 2d 1103, 1110) (D. Kan.
2000) (same). This rule accords with prior cases considering the scope of
Fourth Amendment protection in customer account records. See, e.g.,
United States v. Fregoso, 60 F.3d 1314, 1321 (8th Cir. 1995) (holding that
a telephone company customer has no reasonable expectation of privacy
in account information disclosed to the telephone company); In re Grand
Jury Proceedings, 827 F.2d 301, 302-03 (8th Cir. 1987) (holding that
customer account records maintained and held by Western Union are not
entitled to Fourth Amendment protection).” 5

The Electronics Communications Privacy Act dictates that law enforcement must
answer three questions to determine the procedures required to obtain
information from an Internet Service Provider.

1. Is the network provider a public or private provider? Can a normal person
subscribe the this providers service or does the provider only provide
access for employees. In this case we have paying customers so we are
a public provider.

2. What type of information is being sought, is it subscriber information,
transaction information, or content of communications? In this case law
enforcement is requesting subscriber information about a user account.

3. Finally is the ISP voluntarily providing the information or is law
enforcement requesting the information? In this case we know law
enforcement is actively requesting this information.

18 U.S.C. § 2703 offers five mechanisms that law enforcement can utilize to
gather information from a source:

1. Subpoena
2. Subpoena with prior notice to subscriber or customer
3. § 2703(d) court order
4. § 2703(d) court order with prior notice to subscriber or customer
5. Search Warrant

In this case the law enforcement agent is requesting basic subscriber
information, he would need at a minimum a subpoena to request this information.
Any of the other mechanisms could also be used to request this information.

2. What must the law enforcement officer do to ensure you to preserve this
evidence if there is a delay in obtaining any required legal authority?

The officer can communicate to the Internet Service Provider to preserve data
prior to receiving the court order or subpoena. The reason for allowing this is
there is no consistency in how ISP’s maintain logs. Each ISP may log different

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
74

information and may maintain the logs for different periods of time. Allowing the
officer to request that the logs be preserved protects law enforcement from
missing evidence between the periods of initial contact versus getting the court
order for the records. To minimize the risk of losing evidence 18 U.S.C. § 2703(f)
allows the government to request the ISP maintain logs.

http://www.cybercrime.gov/s&smanual2002.htm states:

“In general, investigators should communicate with network service
providers before issuing subpoenas or obtaining court orders that compel
the providers to disclose information. Law enforcement officials who
procure records under ECPA quickly learn the importance of
communicating with network service providers. This is true because every
network provider works differently. Some providers retain very complete
records for a long period of time; others retain few records, or even none.
Some providers can comply easily with law enforcement requests for
information; others struggle to comply with even simple requests. These
differences result from varied philosophies, resources, hardware and
software among network service providers. Because of these differences,
agents often will want to communicate with network providers to learn how
the provider operates before obtaining a legal order that compels the
provider to act.” 5

There are no laws that require Internet Service Providers to maintain records for
any period of time, however the officer under the ECPA can request the provider
to maintain the current their current records.

“In general, no law regulates how long network service providers must
retain account records in the United States. Some providers retain records
for months, others for hours, and others not at all. As a practical matter,
this means that evidence may be destroyed or lost before law
enforcement can obtain the appropriate legal order compelling disclosure.
For example, agents may learn of a child pornography case on Day 1,
begin work on a search warrant on Day 2, obtain the warrant on Day 5,
and then learn that the network service provider deleted the records in the
ordinary course of business on Day 3. To minimize this risk, ECPA permits
the government to direct providers to "freeze" stored records and
communications pursuant to 18 U.S.C. Â§ 2703(f). “ 5

The law enforcement officer can make the request either using the phone or
preferably using a fax or email request in order to provide the ISP a paper record
and ensures that the request was communicated clearly. There are two other
facts to § 2703(f) letters first current logs can be maintained but this letter will not
cover future records. The second fact is that not all providers can fully comply
with these requests.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
75

3. What legal authority, if any, does the law enforcement officer need to
provide to you in order for you to send him your logs.

Because the logs are stored information and not real-time the Electronic
Communications Privacy Act again governs the disclosure of information.
Depending on the type of information in the logs the provider has exceptions to
determine whether to disclose the information or to require a court order. If the
logs contain content of communications the following exceptions can allow the
ISP to disclose the logs to law enforcement:

• The disclosure was made with the consent of the originator or the
recipient of the communication, § 2702(b)(3)

• Protection for provider assets, is the attacker a threat to the
provider

• If the contents were inadvertently obtained by the service provider
and it appears to pertain to a crime.

• An emergency or immediate danger or serious bodily injury
requires immediate disclosure.

• Child protection and Sexual Predator Punishment Act of 1998 42
U.S.C § 13032 provides immediate disclosure, 18 U.S.C. §
2702(b)(6)(B)

• The disclosure is made to the intended recipient.

If the logs the officer is requesting is for content of communication then with
consent from the government institution that was attacked under the first
exception the logs could be provided to law enforcement. This would only be
applicable to transaction records for this account to the government agency.

However it appears that the logs in question are access records and not
communication content. These logs contain a different set of exceptions:

• When the subscriber consents (banner or user agreement).
• To protect the provider’s rights and property
• To the government if provider believes that an emergency causing

danger or possible bodily harm could occur without disclosure.
• To any person other than a government entity.

It does not appear that any of these exceptions apply in this case. The rules for
receiving the logs are similar to the rules for question 1.

Recent amendments to 18 U.S.C. § 2703 (c) provided by the USA Patriot Act of
2001 allow law enforcement to use a subpoena to obtain the following additional
information:

• Records of session times and durations
• Any assigned network addresses
• Remote IP Addresses that a customer connects to the provider

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
76

• Means and source of payment information; this information may be
important in tracking an individual to a crime.

4. What other “investigative” activity are you permitted to conduct at this
time?

Because of the potential risk the ISP should insure that all logging is activated
and the log files should be secured and backed up to another media to prevent
possible compromise of the log data.

The “provider exception” §2511(2)(a)(i) allows the provider to conduct reasonable
monitoring to protect the providers “rights or property” However this right cannot
be used to gather evidence of a crime not related to their own rights or property.
This essentially means that the provider could monitor their systems more closely
to monitor for any attacks on their own systems. However this exception does
not permit providers to conduct unlimited monitoring.

http://www.cybercrime.gov/s&smanual2002.htm states:

“Providers investigating unauthorized use of their systems have broad
authority to monitor and then disclose evidence of unauthorized use under
§2511(2)(a)(i), but should attempt to tailor their monitoring and disclosure
so as to minimize the interception and disclosure of private
communications unrelated to the investigation. ” 5

However the provider exception does not authorize the ISP to monitor
communications between the authorized user and the government location that
was under attack. Law enforcement cannot request the ISP to perform additional
monitoring.

5. How would your actions change if your logs disclosed a hacker gained
unauthorized access to your system at some point, created an account for
him/her to use, and used THAT account to hack into the government
system?

If the user is an intruder and not an authorized customer of the ISP additional
monitoring could be conducted possibly by the ISP or by law enforcement.
Management and the legal counsel of the ISP should be consulted to determine
what the company policy is regarding unauthorized access. One of the
exceptions to the wiretap act is the “computer trespasser” exception 2511(2)(i)
this states that a wiretap can be conducted if the suspect is not an authorized
user of the system. Law enforcement could be used at this point to intercept
communications to and from the suspect.

A “computer trespasser” cannot be a person known by the provider to have an
existing contractual relationship for use of the system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
77

A second exception to the Wiretap Act could also be used. The §2511(2)(a)(i)
“provider” exception allows the ISP to conduct reasonable monitoring to protect
their systems from further damage. This is not a criminal investigator’s privilege.
This means that law enforcement cannot use the “provider exception” to monitor
a users activities. It is important to note that this still does not permit unlimited
monitoring by the ISP or by law enforcement.

http://www.cybercrime.gov/s&smanual2002.htm states:

“Providers investigating unauthorized use of their systems have broad
authority to monitor and then disclose evidence of unauthorized use under
§2511(2)(a)(i), but should attempt to tailor their monitoring and disclosure
so as to minimize the interception and disclosure of private
communications unrelated to the investigation.” 5

In addition since a server belonging to the ISP has been compromised the
system should be analyzed to determine how the intruder gained unauthorized
access to the system. This could involve creating a forensic image of the server
to analyze.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
78

References

Section I

1) Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison
Wesley Longman, Inc, 1994.

2) Cole, Eric. Hackers Beware. Indianapolis: New Riders, 2002. 601-602.

3) McClure, Stuart and Scambray, Joel and Kurtz, George. Hacking
Exposed 4th edition. Berkeley: McGraw-Hill/Osborne, 2003. 565-566.

4) Krutz, Ronald L. and Vines, Russell Dean. The CISSP Prep Guide. New
York: John Wiley and Sons, Inc, 2001.

5) Daemon9 route@infonexus.com, LOKI2 (the implementation). 01
September 1997. URL: http://www.phrack.org/phrack/51/P51-06.

6) Dittrich, David, “The stacheldraht distributed denial of service attack tool”.
29 December 1999.
URL:http://project.honeynet.org/papers/enemy/ddos.txt.

7) Lee, Rob and Zeltzer, Lenny. System Forensics, Investigation and
Response: Advanced Forensics. 2003. The SANS Institute.

8) Foundstone Inc. “Foundstone enterprise software and services.” 2003.
URL: http://www.foundstone.com.

9) Russinovich, Mark and Cogswell, Bryce. “Freeware Sysinternals”. 30
July 2003. URL: http://www.sysinternals.com.

10) DataRescue. “IDA Pro Disssembler 4.51”. 07 July 2003. URL:
http://www.datarescue.com.

Section II

1) Kruse, Warren G and Heiser, Jay G. Computer Forensics Incident
Response Essentials. Indianapolis: Addison-Wesley, 2002.

2) Mandia, Kevin and Prosise, Chris. Incident Response Investigating
Computer Crime. Berkeley: Osborne/MacGraw-Hill, 2001.

3) Caloyannides, Michael A. Computer Forensics and Privacy. Norwood:
Artech House, Inc, 2001. 145-152.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
79

4) Carrier, Brian. “The Sleuth Kit”. 10 June 2003.
URL:http://www.sleuthkit.org/sleuthkit/index.php.

5) @stake Inc. “Research tools: Network Utility Tools:” 2003.
URL:http://www.atstake.com/research/tools/network_utilities/

6) Sourceforge. “Project: DMZS-Biatchux Bootable CD Distro: Summary”:
14 May 2003. URL:http://www.sourceforge.net/projects/biatchux.

7) Rendell, Michael. “regutils – win9x registry and ini file manipulation for
unix”. No date. URL:http://web.cs.mun.ca/~michael/regutils/.

8) StegoArchive.com. “Steganography Software”. 2003.
URL:http://www.jjtc.com/stegoarchive/stego/software.html.

9) Lee, Rob and Zeltzer, Lenny. System Forensics, Investigation and
Response: Advanced Forensics. 2003. The SANS Institute.

10) Green, John and Carrier, Brian. System Forensics, Investigation and
Response: The Coroner’s Toolkit, TASK, and Autopsy. 2003. The SANS
Institute.

11) Lee, Rob. System Forensics, Investigation and Response: Windows
2000/XP Forensics. 2003. The SANS Institute.

12) Lee, Rob. System Forensics, Investigation and Response: Forensic and
Investigative Essentials. 2003. The SANS Institute.

13) Green, John. System Forensics, Investigation and Response: Basic
Forensic Principles Illustrated with Linux. 2003. The SANS Institute.

14) Soloman, David A., Russinovich, Mark E. Inside Microsoft Windows 2000
3rd edition. Redmond: Microsoft Press, 2000.

Section III

1) Mandia, Kevin and Prosise, Chris. Incident Response Investigating
Computer Crime. Berkeley: Osborne/MacGraw-Hill, 2001.

2) Krutz, Ronald L. and Vines, Russell Dean. The CISSP Prep Guide. New
York: John Wiley and Sons, Inc, 2001.

3) US Department of Justice, “United States code annotated title 18. Crimes
and criminal procedure”. 19 May 2003.
URL:http://www.cybercrime.gov/ECPA2701_2712.htm.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
80

4) US Department of Justice, “Field Guidance on New Authorities that relate
to computer crime and electronic evidence enacted in the USA Patriot Act
of 2001”. 05 November 2001.
URL:http://www.cybercrime.gov/PatriotAct.htm.

5) US Department of Justice, “Searching and Seizing Computers and
Obtaining Electronic Evidence in Criminal Investigations”. July 2002.
URL: http://www.cybercrime.gov/s&smanual2002.htm

6) Salgado, Richard P. System Forensics, Investigation and Response:
Frameworks and Best Practices: Managerial and Legal Issues. 2003. The
SANS Institute.

