
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-
Friendly Version of WinDump

GIAC (GCIA) Gold Certification

Author: Robert L. Adams, robert.louis.adams@gmail.com

Advisor: Hamed Khiabani, Ph.D.

Accepted: January 11th 2016

Abstract

WinDump is often used to analyze packet captures by incorporating Berkeley Packet

Filters, to reduce large captures into manageable subsets. The filtering makes use of

macros to easily specify common protocol properties, however, analyzing other

properties requires a deeper understanding of the protocol and more complicated

expressions. PowerShell is a Windows scripting language that has become increasingly

popular within the security community. PowerShell is extremely extensible, and can be

used to develop an easy way to interact with WinDump. This paper will demonstrate

how to write a custom PowerShell module that serves as a wrapper around WinDump,

enabling an easier and more intuitive way of unleashing the power of WinDump.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 2

Robert L. Adams, robert.louis.adams@gmail.com

1. Introduction

Security professionals rely on a myriad of tools to accomplish their job. This is no

different than the toolboxes that plumbers, electricians, and other trade professionals

carry with them every day. There are specific tools for various aspects of a job. These

tools tend to evolve over time and in some cases, new technology influences the creation

of a better tool.

 Some tools, like a hammer, are timeless. These types of tools are found within

the information security industry as well. WinDump, the Windows version of the

popular packet capture and analysis tool, tcpdump, has been an ageless asset to security

professionals for decades. WinDump is really good at its job: capturing and filtering

network packets. It is a command-line tool that succeeds in its minimalistic approach.

 A vast amount of time has passed since WinDump was released. Nine years have

passed since the latest update was distributed. This begs the question: How can

WinDump be better?

 Technology influences change. PowerShell is a Windows scripting language that

has influenced much change since its original release in 2006. More recently,

PowerShell has been affecting the way both attackers and defenders perform their job.

PowerShell’s appeal is largely attributed to the language’s extremely natural syntax,

power, and flexibility. It makes complete sense that PowerShell has been the underlying

inspiration to many security trends.

 PowerShell has influenced PowerSploit—the PowerShell flavor of Metasploit.

PowerShell has inspired Posh-Nessus--- the PowerShell take on automating the Tenable

Nesses Vulnerability Scanner. Can PowerShell be used to improve WinDump?

 WinDump captures and reads packets. It can also be used to filter packet captures

into relevant subsets to aid forensic investigation. WinDump makes uses of macros to

filter in a natural language-like way. Users can specify “tcp”, “src host”, “dst host” and

so on. However, the learning curve and complexity immediately spike when attempting

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 3

Robert L. Adams, robert.louis.adams@gmail.com

to identify specific (less than one byte) values in various protocol header fields: TCP

flags, IPv4 attributes, and so forth.

 PowerShell seems like the natural choice for creating a custom tool to serve as a

wrapper around WinDump. The complexity of more sophisticated filters can be

eradicated with extremely easy syntax. PowerShell can be used to provide increased

search functionality when working with packet captures. And finally, PowerShell can be

leveraged to provide concurrent processing and filtering of multiple packet captures.

2. WinDump – A Brief Overview and History

WinDump is a command-line network capture and analysis tool for Windows. The

original tool, tcpdump, was first written for UNIX. The Windows variant captures

network traffic through the use of the Windows Packet Capture (WinPcap) library

(WinDump, 2013). WinDump is free software and is extremely useful for packet capture

and analysis.

WinDump is extremely performant. The tool can process large packet captures and

detect patterns in very little time. The tool can be used to analyze live traffic that passes

through an interface. It can also be used to process previously captured traffic (in the

form of PCAP files).

There are several options built into WinDump. The variety of command-line

switches allow users to specify which interfaces to capture, the level of detail in the

output, and the amount of traffic to capture (Cane, 2014). Additionally, analysts can use

filters in the form of expressions to isolate very specific network traffic patterns.

2.1. Why is WinDump a Valuable Tool?

There are several network analyzers on the market today. Many of these tools have

robust graphical interfaces. Wireshark, for example, performs many of the same

functions as WinDump. Also, Wireshark is equipped with a powerful interface that

represents network data in a clean, organized, and colorful fashion. Wireshark grants

power to its users in a point-and-click way.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 4

Robert L. Adams, robert.louis.adams@gmail.com

Where does this leave WinDump? WinDump is a lot less attractive. The data is

simply displayed within a command line window. No color. No robust formatting.

However, this lightweight approach is what gives WinDump tremendous power. The

utility has little overhead and can process a ton of packets in a small amount of time.

Users interact with WinDump via the command line. The structure of commands is

comprised of two parts: options and expressions (See Appendix A for a complete list of

WinDump options).

Options allow one to specify which interface to capture, the level of verbosity,

whether or not to perform automatic hostname lookups, among others. Expressions are

used to determine exactly what type of traffic to display. Users can filter on IP addresses,

protocols, and ports. Expressions also support the use of “and”, “or”, and parenthetical

groupings (Van Styn, 2011).

WinDump’s minimalistic approach yields much power. The ability to carve

packet captures with expressions allows one to identify anomalous patterns. Or to simply

troubleshoot bizarre network behaviors.

2.2. What are WinDump’s Deficiencies?

WinDump is quick and powerful. WinDump filters, also called Berkeley Packet

Filters (BPF), afford the ability to filter on very specific protocol properties (whether

individual bits are on within TCP, for example). The problem is that BPF filters require a

deep understanding of multiple concepts: byte offsets, bit masking, and binary

arithmetic. In other words, there is no easy way to specify, “Show me all packets that

have the SYN and ACK flags set within TCP communication”.

The statement would have to be specified as: “TCP[13] == Ox12”. The protocol,

TCP, is first specified. Using bracket notation, the byte offset (13) is then specified

which corresponds to the position of the TCP flags within the TCP header. The

hexadecimal value, 12, is inserted to represent which bits (flags) to look for. Essentially,

the hexadecimal is translated into binary, which then translates into specific bits (that

represent TCP flags).

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 5

Robert L. Adams, robert.louis.adams@gmail.com

 There is a lot of information to process in order to capture a simple concept. It

would be extremely beneficial if the same filter could be represented in a natural way:

“TCP with SYN and ACK”.

3. PowerShell – A Brief Overview and History

PowerShell is a Windows scripting language that debuted in 2006. Since, it has

become heavily integrated with multiple core Microsoft technologies. As it relates to the

security community, PowerShell has become a trending technology. There have been

attacks that leveraged PowerShell. There are also several defender tools written in

PowerShell.

Jeffrey Snover, a Technical Fellow at Microsoft, is the founder of PowerShell. In

Snover’s original Monad Manifesto, the core idea and value proposition are discussed: a

scripting language that boasts an extremely easy syntax. All PowerShell commands,

called “cmdlets” (pronounced “command lets”), follow a verb-noun syntax: Get-

Eventlog. Get-ADForest. Restart-Service. New-GPO.

The result of cmdlets is in the form of objects. This means that users can manipulate

results in an object-oriented fashion, as PowerShell objects have properties and methods.

3.1. Mapping PowerShell’s Features to WinDump’s Deficiencies

PowerShell’s natural syntax makes it an excellent candidate for automating

WinDump’s core features. The complexity of WinDump’s common use-cases

(specifying TCP flags in the earlier example) can be extrapolated into a PowerShell

wrapper. “TCP[13] == Ox12” could be translated into “Invoke-WinDump –TCPFlags

‘SYN,ACK’”. The byte offsets and hexadecimal numbers could be handled

programmatically under the hood.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 6

Robert L. Adams, robert.louis.adams@gmail.com

4. Invoke-WinDump: Value Proposition

Invoke-WinDump is a custom PowerShell module intended to simplify the use of

WinDump. The idea focuses on the following value proposition:

 Extraordinarily easy syntax

 Elimination of byte offsets, hexadecimal and bit masking

 Searchable text patterns

 Lightning fast processing

4.1. Getting Started: Mapping Use-Cases

The intended outcome of Invoke-WinDump needs to be crystal clear: “How will

users interact with Invoke-WinDump?” “What are the common protocols and header

attributes that need to be easily specified?” The blueprint of Invoke-WinDump is

designed based on these types of common use-cases.

Implementing a clean syntax is dependent on the underlying WinDump filters. And

the underlying WinDump filters require an understanding of the respective protocol

headers. What protocol support will Invoke-WinDump include?

 IPv4

 TCP

 UDP

 ICMP

WinDump is already equipped with a mechanism that allows users to specify

various protocol attributes in an easy way. Users can use predefined keywords, called

primitives (or macros), such as “src host”, dst port”, “ip6”, “tcp”, “udp”, and so on. An

understanding of WinDump’s built-in primitives makes it easier to derive use-cases for

Invoke-WinDump.

 The headers for each of WinDump’s target protocols is evaluated during the

design phase. Each of the headers are then distilled into matrixes that depict each

protocol field, byte offset location, the size of the field, and whether or not WinDump

already has a primitive for that field.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 7

Robert L. Adams, robert.louis.adams@gmail.com

 Internet Protocol Version 4 (IPv4) has a 20-byte header field that contains various

properties:

Figure 1 - IPv4 Header (NMAP, n.d.)

The IPv4 header is distilled into the following table:

IP Header

Attribute Byte Offset Size Primitive

Version 0 4 bits ip, ip6

IHL (Header

Length) 0 4 bits n/a

Type of Service

(TOS) 1 1 byte n/a

Total Length 2 2 bytes n/a

Identification 4 2 bytes n/a

IP Flags 6 3 bits n/a

Fragment Offset 6 13 bits n/a

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 8

Robert L. Adams, robert.louis.adams@gmail.com

Time to Live (TTL) 8 1 byte n/a

Protocol 9 1 byte tcp, udp, icmp

Header Checksum 10 2 bytes n/a

Source Address 12 4 bytes src host

Destination Address 16 4 bytes dst host

Table 1 - IPv4 Header – Mapping WinDump Primitives

Every header field is compared against WinDump’s built-in primitives. Column 4

depicts that there are several fields that do not have corresponding primitives. This

means that users have to specify a particular field’s byte offset position, and in some

cases, provide a bit mask, in order to filter when using WinDump. The goal is to identify

every protocol header field that does not have a primitive. This provides a roadmap for

developing use-cases for Invoke-WinDump.

Here is an example of using WinDump to check for packets that include IP options:

Figure 2- WinDump: Looking for IP Options

The Invoke-WinDump equivalent eliminates the need to provide a byte offset and a

bitmask:

Figure 3 - Invoke-WinDump: Looking for IP Options

The process of understanding each protocol header, and which fields have a built-

in primitive, is pertinent to mapping the functionality of Invoke-WinDump.

(See Appendix B for TCP, UDP, and ICMP header illustrations, along with primitive

mappings.)

4.1.1. Building the Invoke-WinDump Framework

There is now a clear roadmap for Invoke-WinDump. Invoke-WinDump will support

IPv4, TCP, UDP, and ICMP. Each of these protocol headers have been evaluated to

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 9

Robert L. Adams, robert.louis.adams@gmail.com

understand which have existing macros. One of the primary objectives is providing an

easy way to specify any of the protocol header fields.

Invoke-WinDump is a collection of PowerShell scripts (.ps1 files) that are wrapped

into a module. Users interact with the tool via Invoke-WinDump.ps1. The primary script

will be responsible for capturing user input and will rely on other script files for

processing. The dependent scripts are comprised of helper functions.

 Invoke-WinDump.ps1 has several parameter options. These parameters are

inspired by the WinDump parameter options. WinDump has many command-line

argument options. Invoke-WinDump incorporates the most common ones. The Invoke-

WinDump.ps1 starts off by defining these common parameter options:

Figure 4 - Invoke-WinDump Common Parameters

Here is a snippet of the function parameter definitions:

Figure 5 - Invoke-WinDump Parameter Definitions

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 10

Robert L. Adams, robert.louis.adams@gmail.com

Each parameter is declared as a variable with a data type. In addition, each

parameter specifies a help message that is displayed to the user when selecting options.

The two datatypes used are System.String and System.Boolean. These datatypes dictate

how users interact with tool and what types of values can be provided to the parameters.

For example, users can specify which packet capture file to read from. Users can

also depict whether or not to display ASCII while processing packet captures:

Figure 6 - Providing Value to -File Parameter

Figure 7 - Choosing to Display ASCII

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 11

Robert L. Adams, robert.louis.adams@gmail.com

5. Implementing Key Feature #1 – Easily Specified IPv4,
TCP, UDP, and ICMP Header Fields

The Invoke-WinDump.ps1 parameter definitions include several other options as

well. In fact, there is a parameter for each and every IPv4, TCP, UDP, and ICMP header

fields. Here is a snippet of the parameters that are related to IPv4:

Figure 8 - IPv4 Parameter Definitions

The screenshot depicts how the IPv4 $Version, $HeaderLength, $TOS,and

$TotalLength parameters are defined. The parameter list continues in this fashion for the

remaining IPv4, TCP, UDP, and ICMP header fields.

5.1. How Are All of These Parameters Processed?

Invoke-WinDump contains numerous parameter options. Users can specify any of

the IPv4, TCP, UDP, and ICMP header fields in a natural way. The question remains:

“How are these parameters mapped to the underlying execution of WinDump?”

Pseudocode can help answer this question.

1. Enumerate all user-provided parameters

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 12

Robert L. Adams, robert.louis.adams@gmail.com

2. Store the parameters into a hash table

3. Create a lookup between the values in the hash table and all protocol header fields

4. Convert the values into a WinDump acceptable expression format

The body of the Invoke-WinDump function begins with the following code:

Figure 9 - Start of Invoke-WinDump Function Body

The code starts by initializing the $parameters hash table. The values of

$PSBoundParameters is then enumerated and stored into the hash table: in key-value

pairs.

$PSBoundParameters is a default PowerShell variable

(System.Management.Automation.PSBoundParametersDictionary) that holds all user-

provider parameter values. For example, the output of $PSBoundParameters looks like

this:

Figure 10 - Looking at $PSBoundParameters

The newly created hash table is then enumerated in order to inspect the user provided

values. These values are then translated into WinDump-compatible expressions:

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 13

Robert L. Adams, robert.louis.adams@gmail.com

Figure 11 - Enumeration and Translation of Parameter Values

The hash table is enumerated and the name of each parameter is passed to the

Create-WinDumpFilter function. Each parameter name (which is stored in the hash

table) serves as an index that will be used to conduct translation of the value.

The body of the function is really simple. It contains one switch statement. The

case statements map to all of the protocols’ header fields. These case statements are

organized into sections that represent each protocol: IPv4, TCP, UDP, and ICMP.

The parameter names (in the form of $key.Name) that were passed to the function

serve as the switch statement’s keyword.

Here is a snippet of the switch statement:

Figure 12- Create-WinDumpFilter's Switch Statement

An examination of how one of these case statements gets invoked illustrates how

all of the pieces work together. Example: Using Invoke-WinDump to find all packets

that have IP options.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 14

Robert L. Adams, robert.louis.adams@gmail.com

Figure 13 - Finding IP Options with Invoke-WinDump

There are two parameters in our example: protocol and header length. As

depicted in the code above, these parameters and values are dissected from

$PSBoundParameters and stored in the $parameters hash table. The hash table looks like

this:

Name: Value:

Protocol “ip”

HeaderLength “>5”

The key-pair values are then passed to the Create-WinDumpFilter function in

order to translate the values into WinDump-type expressions. A switch statement is used

to depict what processing needs to take place per the parameters specified.

HeaderLength, for example:

Figure 14 - Taking a Deeper Look at "HeaderLength"

$Script:WinDumpFilter is a string that is used to construct the filter that will get passed

to the underlying WinDump.exe. In this case, the results filter looks like this:

Figure 15 - The Resulting WinDump Filter

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 15

Robert L. Adams, robert.louis.adams@gmail.com

6. Implementing Key Feature #2 – Easily Searchable Text
Patterns

The functionality of WinDump can be further extended by incorporating text-based

search. This could be useful when searching for a domain name, file name, or any other

pattern within a packet capture.

A new parameter is added to the Invoke-WinDump function:

Figure 16 - Adding a new function parameter: pattern

The new parameter is responsible for accepting a string. The user-provided string

will then be used to search against the packet capture.

The following code has been added to the bottom of the main script, Invoke-

WinDump.ps1:

The snippet checks for the presence of the $pattern parameter. If the user

specifies a string to search for, the code then relies on the Search-Packets helper function.

If not, the results from WinDump are displayed on screen.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 16

Robert L. Adams, robert.louis.adams@gmail.com

Search-Packets is a function that searches the WinDump results for the presence

of the user-specified string. For example, a user can specify that they want to search the

packet capture for the presence of “evildomain.com”.

Search-Packets accepts two parameters:

Figure 17 - Search-Packets

$set is used to store the results of WinDump and $pattern is the user-specified

search string. Why is $set defined as an array of objects? WinDump returns an array of

objects when executed, therefore, the data type remains consistent in the helper function.

The Search-Packets helper function relies on PowerShell’s Select-String under

the hood. The PowerShell help manual describes Select-String as PowerShell’s version

of Unix’s grep.

The core of the Search-Packets function is quite simplistic:

The results of WinDump (represented as $set) is passed to PowerShell’s Select-

String. The user-specified string is fed to Select-String’s pattern parameter. The search

results are saved to the $matches variable and outputted to the screen.

Here is an example of using the search function:

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 17

Robert L. Adams, robert.louis.adams@gmail.com

Figure 18 - Searching a Domain

The results:

Figure 19 – Searching a Domain - Results

The original packet capture contains 2,263 packets. Using the new search feature

yields a single result for the search string, “cwgsy.net”. The returned packet is a DNS

query containing the specified search string.

(The packet capture was derived from WireShark.org’s samples (WireShark, n.d.)).

7. Implementing Key Feature #3 – Processing Multiple
Packet Captures

The final feature of Invoke-WinDump will be focused on processing multiple

packet captures. An analyst may be interested in a domain IOC related to DNS traffic. It

would be useful to specify the filter once and apply it to a directory full of packet

captures.

A new parameter is added at the top of the main Invoke-WinDump.ps1 script:

Figure 20 - New $Files parameter

The bottom of the script will introduce a new conditional statement that will

check for the presence of the $Files parameter. If the user does specify a directory

(containing multiple packet captures), the code will read the files and execute

WinDump.exe on each file:

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 18

Robert L. Adams, robert.louis.adams@gmail.com

Figure 21- Enumerating Multiple Packet Captures

The functionality is tested on a handful of packet captures:

Figure 22- C : \ Tools \ Captures

Invoke-WinDump is executed with the newly defined $Files parameter:

Figure 23 - Searching Multiple PCAPS

Invoke-WinDump returns any packet (across all files) where there are IP options:

Figure 24- Finding IP Options Results

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 19

Robert L. Adams, robert.louis.adams@gmail.com

The script output annotates which packet capture (nb6-startup.pcap) contained the

resulting matches, and then displays the 3 corresponding packets.

7.1. Performance Gains

Invoke-WinDump currently processes multiple packet captures sequentially. This

works fine for a limited number of reasonably sized captures. The script can be further

enhanced by processing packet captures concurrently. This can be achieved by

leveraging PowerShell jobs.

 Enumerating multiple packet captures and executing WinDump is demonstrated

in the previous section. The same code will be repurposed into the body of a new helper

function:

Figure 25 - Start-PacketJob Function

Start-PacketJob is called as the main script (Invoke-WinDump.ps1) enumerates the

user provided directory containing multiple packet captures. Essentially, the function

instantiates a new PowerShell job for each and every packet capture.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 20

Robert L. Adams, robert.louis.adams@gmail.com

A second helper function is used to keep track of the job statuses and alerts when

all the jobs have completed—signifying that WinDump has processed each packet

capture:

Figure 26 - Check-Jobs Function

The bottom of the main Invoke-WinDump.ps1 script has been modified to incorporate the

new helper functions. Here is how the main script relies on the new functions:

Figure 27 – Enumerating PCAPs and Starting Jobs

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 21

Robert L. Adams, robert.louis.adams@gmail.com

Here is the output of executing Invoke-WinDump a second time with the updated code:

Figure 28 - Searching Multiple PCAPS

Figure 29 - Output of Updated Invoke-WinDump

The results of instantiating a job for each packet capture file (4 in total) is now

displayed. The status of the jobs is also displayed to the console as a result of the Check-

Jobs function.

The matching packets are exactly the same as before:

Figure 30 - Resulting Packets

Parallel execution increases the power of WinDump and is extremely useful for

carving several packet captures simultaneously.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 22

Robert L. Adams, robert.louis.adams@gmail.com

8. Putting It All Together

The Invoke-WinDump.ps1 script is now equipped with the functionality to easily

search for various header attributes in IP, TCP, UDP, and ICMP. In addition, the script

can perform text-based pattern search and concurrently process packet captures. The

main Invoke-WinDump.ps1 file relies on a handful of helper functions that are defined in

dependent script files: Create-WinDumpFilter.ps1, Search-Pattern.ps1, and Start-

PacketJob.ps1.

Invoke-WinDump can be distributed to users by sending them all of the script files.

However, a better solution would be aggregating all of the files into a PowerShell

module. A PowerShell module is essentially a collection of related PowerShell

functionalities. There are 4 types of PowerShell modules:

1. Script Modules

2. Binary Modules

3. Manifest Modules

4. Dynamic Modules

A script module is simply a file (.psm1) that contains PowerShell code—to include

functions and variables. Users can then load the module which contains all of the

relevant code (Microsoft, n.d.).

PowerGUI is a third-party PowerShell IDE (integrated development environment)

that has support for converting PowerShell code into a module. The plugin essentially

creates the necessary .psm1 file on behalf of the user.

Users can use the “Convert to Module…” functionality (from the File dropdown menu) to

handle this task:

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 23

Robert L. Adams, robert.louis.adams@gmail.com

Figure 31 - PowerGUI's Convert to Module

Two files are created within the newly created Invoke-WinDump directory: C : \ Users \

[User] \ Documents \ WindowsPowerShell \ Modules \ Invoke-WinDump:

Figure 32 - Created .psd1 & .psm1 Files

The newly created Invoke-WinDump directory can be copied/moved to

C:\Windows\System32\WindowsPowerShell\v1.0\Modules to make it accessible to

everyone.

Finally, the newly created module is imported into a new PowerShell session:

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 24

Robert L. Adams, robert.louis.adams@gmail.com

Figure 33 - Importing Invoke-WinDump Module

All of the module’s functions are now available, including the main Invoke-WinDump

function.

8.1. Invoke-WinDump in Action (Examples)

The following illustrates Invoke-WinDump in action. A couple of variables are

initialized and defined to point to the packet captures that will be analyzed:

Example #1: Using Invoke-WinDump to look for packets within SkypeIRC.cap with the

don’t fragment (DF) flag set, and containing “freenode.net”:

Figure 34 - Pattern Searching

Results:

Figure 35 - Pattern Searching - Results

Example #2: Using Invoke-WinDump to look for packets within teardrop.cap with the

more fragment (MF) flag set:

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 25

Robert L. Adams, robert.louis.adams@gmail.com

Figure 36 - Looking for MF Flag

Results:

Figure 37 - Looking for MF Flag - Results

Example #3: Using Invoke-WinDump to look for packets within nb6-startup.pcap with

only the SYN flag set:

Figure 38 - Looking for SYN Flag

Results:

Figure 39 - Looking for SYN Flag - Results

Example #4: Using Invoke-WinDump to look for packets within a directory full of

captures, with only the ACK and PUSH flags set:

Figure 40 - Searching Across Multiple PCAPs

Results:

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 26

Robert L. Adams, robert.louis.adams@gmail.com

Figure 41 - Searching Across Multiple PCAPs - Results

9. Conclusion

WinDump is a packet capture and analysis tool that has been around for several years.

WinDump is a quintessential security tool that will always have a spot in an analyst’s

toolbox. WinDump is lightweight and powerful, allowing users to trim down large

packet captures in little time. WinDump is extremely easy to use. However, using the

tool for granular filtering introduces a level of complexity.

 Windows PowerShell is a performant scripting language that is equipped with a

very simplistic syntax. Windows PowerShell can be used to automate many security

tasks—and this has been the case here: PowerShell to script WinDump’s more

complicated use-cases.

 The challenges that security professionals face today are greater than ever. It is

important to work efficiently to combat the evolving threats. Automation should be a key

focus in these efforts. PowerShell is extremely versatile and can be used to get the job

done in a proficient and clear fashion. Security professionals should continuously look

for ways to optimize their tools so that they can remain agile and effective.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 27

Robert L. Adams, robert.louis.adams@gmail.com

References

Cane, B. (2014, October 13). A Quick and Practical Reference for tcpdump. Retrieved

from Benjamin Cane: http://bencane.com/2014/10/13/quick-and-practical-

reference-for-tcpdump/

Dittrich, D. (n.d.). Notes About tcpdump Filters. Retrieved from University of

Washington: https://staff.washington.edu/dittrich/talks/core02/tools/tcpdump-

filters.txt

Microsoft. (2015, August 9). Get-Job. Retrieved from Microsoft Developer Network:

https://technet.microsoft.com/en-us/library/hh849693.aspx

Microsoft. (n.d.). Windows PowerShell Module Concepts. Retrieved from Microsoft

TechNet: https://technet.microsoft.com/en-

us/%5Clibrary/dd901839(v=vs.85).aspx

Microsoft. (n.d.). Windows PowerShell Tip of the Week - Using the Switch Statement.

Retrieved from Microsoft TechNet: https://technet.microsoft.com/en-

us/library/ff730937.aspx

Microsoft. (n.d.). Windows PowerShell Tip of the Week - Working with Hash Tables.

Retrieved from Microsoft TechNet: https://technet.microsoft.com/en-

us/library/ee692803.aspx

Miessler, D. (n.d.). A tcpdump Primer with Examples. Retrieved from Daniel Miessler:

https://danielmiessler.com/study/tcpdump/

NMAP. (n.d.). TCP/IP Reference. Retrieved from NMAP.org:

https://nmap.org/book/tcpip-ref.html

Stack Overflow. (2010, January 19). Error When Calling 3rd Party Executable from

Powershell when Using an IDE. Retrieved from Stack Overflow:

http://stackoverflow.com/questions/2095088/error-when-calling-3rd-party-

executable-from-powershell-when-using-an-ide

Stack Overflow. (2011, March 8). How Do I Get Help Messages to Appear for My

Powershell Script Parameters? Retrieved from Stack Overflowq:

http://stackoverflow.com/questions/5237723/how-do-i-get-help-messages-to-

appear-for-my-powershell-script-parameters

Stack Overflow. (2012, April 26). Outputting PSBound Parameters. Retrieved from

Stack Overflow: http://stackoverflow.com/questions/10328083/outputting-

psbound-parameters

Van Styn, H. (2011, December 19). tcpdump fu. Retrieved from Linux Journal:

http://www.linuxjournal.com/content/tcpdump-fu

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 28

Robert L. Adams, robert.louis.adams@gmail.com

Wains, S. (2013, June 6). tcpdump Advanced Filters. Retrieved from Sebastien Wains:

http://www.wains.be/pub/networking/tcpdump_advanced_filters.txt

WinDump. (2013). WinDump Overview. Retrieved from WinDump:

https://www.winpcap.org/windump/default.htm

WireShark. (n.d.). Sample Captures. Retrieved from WireShark Wiki:

https://wiki.wireshark.org/SampleCaptures

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 29

Robert L. Adams, robert.louis.adams@gmail.com

Appendix A – WinDump Command-Line Options

Option Description

-A Print each packet in ASCII.

-c Exit after receiving count packets.

-C Before writing a raw packet to a savefile,

check whether the file is currently larger

than file_size

-d Dump the compiled packet-matching code

in a human readable form to standard

output and stop.

-dd Dump packet-matching code as

a C program fragment.

-ddd Dump packet-matching code as decimal

numbers (preceded with a count).

-D Print the list of the network interfaces

available on the system and on

which tcpdump/WinDump can capture

packets.

-e Print the link-level header on each dump

line.

-E Use spi@ipaddr algo:secret for decrypting

IPsec ESP packets that are addressed

to addrand contain Security Parameter

Index value spi. This combination may be

repeated with comma or newline

separation.

-f Print `foreign' IPv4 addresses numerically

rather than symbolically.

-F Use file as input for the filter expression.

An additional expression given on the

command line is ignored.

-i Listen on interface. If

unspecified, tcpdump searches the system

interface list for the lowest numbered,

configured up interface (excluding

loopback).

-I Make stdout line buffered.

-L List the known data link types for the

interface and exit.

-m Load SMI MIB module definitions from

file module.

-M Use secret as a shared secret for validating

the digests found in TCP segments with the

TCP-MD5 option (RFC 2385), if present.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 30

Robert L. Adams, robert.louis.adams@gmail.com

-n Don't convert addresses (i.e., host

addresses, port numbers, etc.) to names.

-N Don't print domain name qualification of

host names.

-O Do not run the packet-matching code

optimizer.

-p Don't put the interface into promiscuous

mode.

-q Quick (quiet?) output. Print less protocol

information so output lines are shorter.

-R Assume ESP/AH packets to be based on

old specification (RFC1825 to RFC1829).

-r Read packets from file (which was created

with the -w option). Standard input is used

if fileis ``-''.

-S Print absolute, rather than relative, TCP

sequence numbers.

-s Snarf snaplen bytes of data from each

packet rather than the default of 68.

-T Force packets selected by "expression" to

be interpreted the specified type.

-t Don't print a timestamp on each dump line.

-tt Print an unformatted timestamp on each

dump line.

-ttt Print a delta (in micro-seconds) between

current and previous line on each dump

line.

-tttt Print a timestamp in default format

proceeded by date on each dump line.

-u Print undecoded NFS handles.

-U Make output saved via the -w option

``packet-buffered''.

-v When parsing and printing, produce

(slightly more) verbose output.

-vv Even more verbose output. For example,

additional fields are printed from NFS reply

packets, and SMB packets are fully

decoded.

-vvv Even more verbose output. For example,

telnet SB ... SE options are printed in full.

With -XTelnet options are printed in hex as

well.

-w Write the raw packets to file rather than

parsing and printing them out.

-W Used in conjunction with the -C option, this

will limit the number of files created to the

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 31

Robert L. Adams, robert.louis.adams@gmail.com

specified number.

-x When parsing and printing, in addition to

printing the headers of each packet, print

the data of each packet (minus its link level

header) in hex.

-xx When parsing and printing, in addition to

printing the headers of each packet, print

the data of each packet, including its link

level header, in hex.

-X When parsing and printing, in addition to

printing the headers of each packet, print

the data of each packet (minus its link level

header) in hex and ASCII.

-XX When parsing and printing, in addition to

printing the headers of each packet, print

the data of each packet, including its link

level header, in hex and ASCII.

-y Set the data link type to use while capturing

packets to datalinktype.

-Z Drops privileges (if root) and changes user

ID to user and the group ID to the primary

group of user.

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 32

Robert L. Adams, robert.louis.adams@gmail.com

Appendix B – TCP, UDP, and ICMP Illustrations

Figure 42 – TCP Header (NMAP, n.d.)

TCP Header Attribute Byte Offset Size Primitive

Source Port 0 2 bytes src port
Destination Port 2 2 bytes dst port
Sequence Number 4 4 bytes n/a
Acknowledgment
Number 8 4 bytes n/a
Data Offset 12 4 bits n/a
Reserved 12 4 bits n/a
Flags 13 1 byte n/a
Window Size 14 2 bytes n/a
Checksum 16 2 bytes n/a
Urgent Pointer 18 2 bytes n/a

Table 2 - TCP Header – Mapping NMAP Primitives

© 2016 The SANS Institute Author retains full rights.

How to Leverage PowerShell to Create a User-Friendly Version of WinDump 33

Robert L. Adams, robert.louis.adams@gmail.com

Figure 42 - UDP Header (NMAP, n.d.)

UDP Header
Attribute Byte Offset Size Primitive

Source Port 0 2 bytes src port
Destination Port 2 2 bytes dst port
Length 4 2 bytes n/a
Cheksum 6 2 bytes n/a

Table 2 - UDP Header – Mapping NMAP Primitives

Figure 43 - ICMP Header (NMAP, n.d.)

ICMP Header Attribute Byte Offset Size Primitive

Type 0 1 byte n/a

Code 1 1 byte n/a

Checksum 2 2 bytes n/a
Table 3 - ICMP Header – Mapping NMAP Primitives

