GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Det ecting Attacks on Web Applications

from Log Files

GCIA Gl d Certification

Aut hor: Roger Meyer

Advi ser: Carlos G d

Accepted: 26 January 2008

© SANS Institute 2008, Author retains full rights

Detecting Attacks on Web Applications

Outline
1 AbStracCte.eeeeeeeeeeeeseeeseescessesascossscssosssscsscsssscssssses 3
2 IntrodUCtLioON. et eeeeeeeeeeessessssssssssssssssssssssssssssss 4
3 Attacks on Web ApplicationsS....ceeieeeeeeeeeeeeeeeceecccccccnnss 5
3.1 Web server 10g fileS...eeeeeeeeeeeeeeeeeeeeeossssssssccnnns 6
3.2 Primer ON HT TP ...t eeeeeeooeesasososesssssssscssscssasnssccssse 8
3.2.1 HTTP Evasion TeCchniqUeS....ceeeeeeeesscccccsssccossss 12
3.3 Regular EXpressions (REGEX) ... eeeeessseesocssoccasoscasossse 14
4 Detecting AttacKS ... eeeeeeeoeseossesesessossossssassssssssssssss 15
4.1 Rule-based Detection (static rulesS)..ceeeeeeesceoccocccsss 20
4.1.1 Negative Security Model.....ceeeeeeeseecsoccsoccsnnses 20
4.1.2 Positive Security Model.....ceeeeeeeoeeooescsccsnnsses 21
4.2 Anomaly-based Detection (dynamic rule€S)....ceeeeeeeesccess 21
4.3 Detecting the OWASP Top Ten 2007 ... eeeeeccnnannss 22
4.3.1 Al - Cross Site Scripting (XSS)..eeeeeeeeeeeeecocnnns 22
4.3.2 A2 - Injection FlawS....eeeeeeeeeoececccsssssssssssnans 26
4.3.3 A3 - Malicious File EXeCUtiON...ceeeeeeeesceassconsss 32
4.3.4 A4 - Insecure Direct Object Reference.......eeeeeees. 33
4.3.5 A5 - Cross Site Request Forgery (CSRF)...ceeeeceecess 35
4.3.6 A6 - Information Leakage and Improper Error Handling. 37
4.3.7 A7 - Broken Authentication and Session Management. .. .38
4.3.8 A8 - Insecure Cryptographic StOorage.....cceeeeceeeesss 39
4.3.9 A9 - Insecure COmMMUNICALIiONS..ceeeeeeecesoccnscconsss 40
4.3.10 A10 - Failure to Restrict URL ACCESS.:ceeeeescoscoss 41
5 CONClUSION. e et eeeeeeoeesessssssssssssssssssssssssscsssssscscscs 42
6 ReferenCeS. it eeeeeeeeeeeesceescessessoasssocsssssoescssssscssscs 42
Roger Meyer 2

© SANS Institute 2008, Author retains full rights

Abstract Detecting Attacks on Web Applications

1 Abstract

Web traffic (Hypertext Transfer Protocol, HTTP) has overtaken
P2P traffic and continues to grow. [Ellacoya, 2007] Web site hacks
are on the rise and pose a greater threat than the broad-based
network attacks as they threaten to steal critical customer,
employee, and business partner information stored in applications

and databases linked to the Web. [Greenemeier, 2006]

The increasing shift towards web applications opens new
attack vectors. Traditional protection mechanisms like firewalls
were not designed to protect web applications and thus do not
provide adequate defense. Current attacks cannot be thwarted by

just blocking ports 80 (HTTP) and 443 (HTTPS).

Preventive measures (like Web Application Firewall rules) are
not always possible. Reactive methods — to detect what happened
previously — are usually easier but have the disadvantage of

always being behind the actual event.

This paper explains how to detect the most critical web
application security flaws. Web application log files allow a
detailed analysis of a users actions. Log files have its limits,
though. Web server log files contain only a fraction of the full
HTTP request and response. Knowing those limits, the majority of
attacks can be recognized and acted upon to prevent further

exploitation.

Roger Meyer 3
© SANS Institute 2008, Author retains full rights

Introduction Detecting Attacks on Web Applications

2 Introduction

Internet usage and online applications are experiencing
spectacular growth. Worldwide, there are over a billion Internet
users at present. A big reason for the success of the Internet is
the simplicity and that you can access the applications from
anywhere. This growth in popularity has not gone unnoticed by the
criminal element — the simplicity of the HTTP protocol makes it
easy to steal and spoof identity. The business liability
associated with protecting online information has increased

significantly and this is an issue that must be addressed.

The SANS Top-20 Internet Security Attack Targets (2007 Annual
Update) [SANS Top-20, 2007] is a consensus list of vulnerabilities
that require immediate remediation. According to this list the
number one targeted server-side vulnerability are Web
Applications. Some examples of Web Applications are Content
Management Systems (CMS), Wikis, Portals, Bulletin Boards, Shops,
Banking Systems and discussion forums. There are plenty of online
resources which state Web Applications are amongst the most

attacked targets ([SC Magazine, 2007] and [IT Week, 2006]).

This has made detecting and preventing these activities a top
priority for every major company. This paper addresses the
detection of attacks on web applications by analyzing log files
from web servers (like Apache and IIS). Why should you bother
analyzing log files instead of using a network intrusion detection

system? There might be several reasons for this:

e The HTTP traffic may be SSL encrypted (HTTPS);

e There may be no NIDS (hard to deploy; another zone of
attack);

Roger Meyer 4
© SANS Institute 2008, Author retains full rights

Introduction Detecting Attacks on Web Applications

e High traffic load makes it difficult to analyze network

traffic (in real time);

e NIDS are designed to work on the TCP/IP level, and thus

they may not be as effective on the HTTP layer;

e IDS evasion techniques (HTTP, encoding,

fragmenting, ...).

Analyzing web traffic out of log files has some advantages
and disadvantages over analyzing traffic from the network. Those
differences will be explored in the chapter '4. Detecting

Attacks'.

3 Attacks on Web Applications

Attacks on web applications are on a constant change. A
report from Fortify Software Inc. [Fortify, 2006] outlines four

trends:

e Bots are being used in more than half the attacks against

web applications;

e Attackers are finding flawed web applications using

Google and other search tools;
e Directed attacks are growing more sophisticated; and

e Attackers operating from bases around the world are

getting better at covering their tracks.

Similar trends have been found by [KYE: Web Application
Threats, 2007]. While most automated attacks targeted well-known
applications like PHPBB, Mambo, AWStats, etc., web application

security flaws can be categorized and rated. The OWASP Top Ten

Roger Meyer 5
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications Detecting Attacks on Web Applications

Project [OWASP Top Ten Project, 2007] lists the 10 most critical
web application security flaws. The OWASP Foundation is a not-for-
profit organization which provides information about application
security. The primary aim of the OWASP Top 10 is to educate
developers, designers, architects and organizations about the
consequences of the most common web application security
vulnerabilities. In the chapter '4.3 Detecting the OWASP Top Ten'

we will go into detail on how to detect these attacks.

The 2007 update brought up some new vulnerabilities like
Malicious File Execution and Cross Site Request Forgery (CSRF).
The biggest jump forward was made by Cross Site Scripting (XSS)
though. Today, XSS is generally believed to be one of the most

common application layer hacking techniques.

Attackers are targeting web applications with different
goals. Every flaw has its own consequence. Attacks like XSS (Al)
and CSRF (A5) target the applications' users, while all the other
(Top 10) attacks target the web application itself. Taking
advantage of XSS vulnerabilities allows the attacker to insert
active code into a user's browser and executing it in the context
of the current application. Exploiting injection flaws for example
usually targets directly the application by inserting malicious
code into the backend or by reading unauthorized data from the

database.

3.1 Web server log files

Standard web servers like Apache and IIS generate logging
messages by default in the Common Log Format (CLF) specification.
The CLF log file contains a separate line for each HTTP request. A

line is composed of several tokens separated by spaces:

Roger Meyer 6
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications Detecting Attacks on Web Applications

host ident authuser date request status bytes

If a token does not have a value, then it is represented by a

hyphen (-). Tokens have these meanings:

e host: The fully qualified domain name of the client, or

its IP address.

e ident: If the IdentityCheck directive is enabled and the
client machine runs identd, then this is the identity

information reported by the client.

e authuser: If the requested URL required a successful
Basic HTTP authentication, then the user name is the value

of this token.
e date: The date and time of the request.

e request: The request line from the client, enclosed in

double quotes (").

e status: The three-digit HTTP status code returned to the

client.

e bytes: The number of bytes in the object returned to the

client, excluding all HTTP headers.

A request may contain additional data like the referer and
the user agent string. Let us consider an example of log entry (in

the Combined Log Format [Apache Combined Log Format, 2007]):

127.0.0.1 - frank [10/0ct/2007:13:55:36 -0700]
"GET /index.html HTTP/1.0" 200 2326
"http://www.example.com/links.html" "Mozilla/4.0 (compatible; MSIE
7.0; Windows NT 5.1; .NET CLR 1.1.4322)"

Roger Meyer 7
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications Detecting Attacks on Web Applications

127.0.0.1 : the IP address of the client

- : The "hyphen" in the output indicates that the requested
piece of information is not available. In this case, the
information that is not available is the RFC 1413 identity of the

client determined by identd on the clients machine.

frank : This is the userid of the person requesting the

document as determined by HTTP authentication.

[10/0ct/2007:13:55:36 -0700] : The time that the server

finished processing the request.

"GET /index.html HTTP/1.0" : The request line from the client

is given in double quotes.

200 : This is the status code that the server sends back to

the client.

2326 : This entry indicates the size of the object returned

to the client, not including the response headers.

"http://www.example.com/links.html" : The "Referer" (sic)

HTTP request header.

"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR
1.1.4322)" : The User-Agent HTTP request header.

3.2 Primer on HTTP

HTTP (short for Hyper Text Transfer Protocol) is the language
that web servers and browsers speak. Internet standards are
proposed, discussed and, eventually, specified in documents known
as RFCs (Request For Comments) and HTTP is no exception: its

latest incarnation, Rev. 1.1, is described in RFC 2616 [Fielding

Roger Meyer 8
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications Detecting Attacks on Web Applications

et al., 1999].

HTTP is a request/response system. Only the client is allowed
to make requests. It asks the web server to deliver a certain
page. If the file cannot be located, an error response is sent
instead. Such a location on a web server is described with

Universal Resource Locators or URLs:

scheme: //host [:port] /path/to/res |[?query]
ource
Protocol FODN of the |Optional Location of |Optional
identifier, |host: e.g port number |the context
e.g. http, www.example. of the resource, as information
https, ftp com service: e.g |[known to the
80 server

In a HTTP request, the client contacts the server over the
network, and sends a properly formatted request describing what
resource it wants. This is packaged in chunks called the request
header and the request body. The server parses the request, if
possible carries it out, and reacts by returning whether the
operation was successful, any meta-information regarding the
result data (if any), and the content that was retrieved as result
of the transaction. This is formatted and packaged in chunks known

as the server status, the response headers and the response body.

Let us have a look at what the client and server actually
tell each other. The most basic request is a typical GET

transaction, where a web browser asks for a HTML page to be sent.

Roger Meyer 9
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications

The client

Detecting Attacks on Web Applications

GET /index.html HTTP/1l.1

Request type (GET), path,

protocol & version.

Host: www.example.com

The host this request is for.

User-Agent: Mozilla/5.0 (X11l; U;

Linux i686; en-US; rv:1.8.1.8)
Gecko/20071004 Iceweasel/2.0.0.8

(Debian-2.0.0.8-1)

Identifier of the client.

Accept:
text/xml,application/xml,applica
tion/xhtml
+xml,text/html;g=0.9,text/plain;
g=0.8,image/png,*/*;g=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset:

IS0-8859-1,utf-8;9=0.7,*;9=0.7

Data types and encoding this

client can handle (MIME types).

Keep-Alive: 300

Keep the connection open for

further requests.

Connection: keep-alive

Don't close the connection.

Roger Meyer

© SANS Institute 2008,

Author retains full rights

10

Attacks on Web Applications Detecting Attacks on Web Applications

The server

HTTP/1.x 200 OK The result status: numeric and
description.

Date: Fri, 14 Dec 2007 10:25:51 |Time stamp.

GMT

Server: Apache Identifier of the server
software.

Content-Type: text/html; MIME formatted information on

charset=IS50-8859-1 type (html) of the result.
An empty line separates the
response headers from the
response body.

<!DOCTYPE HTML PUBLIC Now the document (HTML as

"-//W3C//DTD HTML 4.01 expected) is sent.

Transitional//EN">

The GET request fulfills the basic need of serving a URL to a
client. The POST request, for instance, allows the client to send
data to the server for further processing, and is the foundation
upon which fill-out web forms are built. All these requests,
however, follow the general schema outlined above, give or take a

few MIME headers.

Roger Meyer 11
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications Detecting Attacks on Web Applications

3.2.1 HTTP Evasion Techniques

There are different types of evasions in different places of the
HTTP protocol. They can occur in the request URI portion of the
HTTP protocol, other parts of the HTTP header, the HTTP body, etc.
Evasion types can be protocol decoding evasions, simple
obfuscation techniques, or more advanced evasions, like inserting
additional characters to deceive the IDS system. Evasions are
particularly effective against the URL and the URL parameters. We
will place our focus on those two types as they are both visible

in the web server log file.

The first evasions were as simple as adding multiple slashes
to directories and other path traversal attacks. The following URI

have all the same meaning:

/admin/index.html
//admin/index.html
/admin/./index.html
/admin/../admin/index.html

/admin/./../admin/index.html

There could be infinite combinations of those evasions. The
goal of these techniques is to evade the detection by an IDS but
still get executed by the web application. Here are a few more

normalisation methods [WASC, 2006]:

1. URL-decoding (e.g. %XX)

2. Null byte string termination

3. Self-referencing paths (i.e. use of /./ and encoded

equivalents)

4. Path back-references (i.e. use of /../ and encoded

Roger Meyer 12
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications Detecting Attacks on Web Applications

equivalents)

5. Mixed case

6. Excessive use of whitespace

7. Comment removal (e.g. convert DELETE/**/FROM to DELETE

FROM)

8. Conversion of (Windows-supported) backslash characters

into forward slash characters.

9. Conversion of IIS-specific Unicode encoding (%uXXYY)

10.Decode HTML entities (e.g. c, ", ª)

11.Escaped characters (e.g. \t, \001, \xAA, \uAABB)

A very popular evasion technique is to obfuscate the URL and
its parameter by using different encoding schemes. According to
[Roelker, 2003], there are only two RFC standards for encoding a
request URI: hex encoding and UTF-8 Unicode encoding. Both methods
are encoded using the '%' character to escape a one encoded byte.
There are other encoding schemes but these are all server specific

and non-RFC compliant.

Hex Encoding

The hex encoding is the simplest way of encoding a URL. It
consists of escaping a hexadecimal byte value for the encoded
character with a '%'. To encode the letter C, which has an ASCII

hexadecimal value of 0x43, the encoding would look like this:

How would such a request look like in a log file? Let us make

Roger Meyer 13
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications Detecting Attacks on Web Applications

another request (/index.html). This is how it would look like:

e GET /index.html HTTP/1.1

Now we encode the URI with hex values:

e GET /%69%6E%64%65%78%2E%68%74%6D%6C HTTP/1.1

Further encodings are the double percent hex encoding, the
double nibble hex encoding, the first nibble hex encoding and the
second nibble hex encoding. These will not be supported by all web

server though.

For other encoding variants like UTF-8 encoding, please see

[Roelker, 2003] for an overview.

3.3 Regular Expressions (Regex)

Regular expressions enable a powerful, flexible, and
efficient text processing. Regular expressions allow you, with a
general pattern notation almost like a mini programming language,
to describe and parse text. This powerful pattern language and the

patterns themselves are called regular expressions.

Regular expressions are available in many types of tools, but
their power is most fully exposed when available as part of a
programming language. The goal of a regular expression is to match

a certain expression within a lump of text.

Example regular expression:

/(java)?script/i

A regular expression pattern is usually enclosed within

slashes ('/'). This regex finds all occurrences of 'script' or

Roger Meyer 14
© SANS Institute 2008, Author retains full rights

Attacks on Web Applications

Detecting Attacks on Web Applications

'javascript'. Modifiers, usually appended after the closing slash,

allow to set certain options like case-

matching (the 'i' modifier).

insensitive pattern

For more information about regular expressions, see [Friedl,

1997].

4 Detecting Attacks

Web applications are running on the OSI [OSI,

1994]

layer 7 - the application layer. To detect attacks against web

applications, the detection mechanisms have to be application

layer aware and see the relevant traffic.

Attacks can be detected at different zones and devices in the

network infrastructure. Each place has a different view of the

traffic and has its advantages and disadvantages. We are now going

to explore each of these places in the

HTTP(S),

etc.

network.

Web Application
Logs

Logs

Firewall Logs

Web Server / WAF

SOAP,

HTTP(S) (HTML,
Javascript, Flash, etc.)

|
|

Firewall X‘

| B
\AAL;?f//

Network Intrusion
Detection System (NIDS)

Web Client

=

Illustration 1: Detecting Attacks in a Network

Roger Meyer
© SANS Institute 2008,

Web Server
Web Applicatiofi |

Firewa

Web Application

{ -7/

SQL DB

Y

SQL DB

15

Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

Layer 3/4 Firewall

A traditional (stateful and non-stateful) firewall is working
on OSI layers 3 (Network Layer) and 4 (Transport Layer). The
firewall analyzes traffic based on the common protocols like TCP,
UDP and ICMP and their corresponding ports or types/codes.
Firewalls can detect anomalies in the protocols they are aware of
like fragmented IP traffic, but they are generally not the best
place to detect attacks on the application layer. Firewall log
files usually do not contain application layer data like HTTP
data, only layer 3 and 4 information, so they are not very helpful

in detecting what is going on higher layers.

Application layer firewall / web application firewall (WAF)

Web application firewalls are designed to work on the OSI
layer 7 (the application layer). They are fully aware of
application layer protocols such as HTTP(S) and SOAP and can
analyze those requests in great detail. Compared to a layer 3/4
firewall, rules can be defined to allow/disallow certain HTTP
requests like POST, PUSH, OPTIONS, etc., set limits in file
transfer size or URL parameter argument length. WAF log files
contain as much information as those from a web server plus the
policy decisions of the filter rules (e.g. HTTP request blocked;
file transfer size limit reached, etc.). A WAF provides a wealth
of information for filtering and detection purposes and is thus a

good place for the detection of attacks.

Web server

The web server is the end device of an HTTP request. Standard
web servers like Apache and IIS are logging by default in the
Common Log Format (CLF) specification. See chapter '3.1 Web server

log files' for a detailed description of the CLF format.

Roger Meyer 16
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

Web server logs do not contain any data sent in the HTTP
header, like POST parameters. The HTTP header can contain valuable
data, as most forms and their parameters are submitted by POST

requests. This comes as a big deficiency for web server log files.

A web server can also act as a web application firewall (see
previous section). The Apache module mod security [Breach
Security, 2007] allows for example to set detailed rules on HTTP
data, exactly like on a WAF. Of course, such rules will have
access to the full HTTP header information, including POST
parameters and can enable additional logging of such parameters

(successful or denied access).
Web application

A web application consists of a framework (PHP, ASP, J2EE,
etc.) which implements the business logic. It is considered to be
best practice to perform input/output validation in this tier. A
strong input validation policy will detect malformed and malicious
input and can log security related information to a log file. The
application has access to the full user trail - each step a user
takes (logging in, making a transfer, logging out, etc.). A
comprehensive logging at the application tier enables the
detection of misuse and fraud and allows a full reconstruction of

a user's steps.
Network Intrusion Detection System (NIDS)

A Network Intrusion Detection System (NIDS) is placed in the
network infrastructure where it can see the traffic to and from
the web application. It usually resides on its own machine and
analyzes the web traffic without touching the firewalls and the
application itself. The NIDS has a number of disadvantages over a

WAF :

Roger Meyer 17
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

e If the HTTP traffic is SSL encrypted (HTTPS), the NIDS

might not decrypt the traffic;

e A high traffic load can make it difficult to analyze

network traffic in real time;

e NIDS are designed to work on the TCP/IP level (OSI layer

3/4), and thus may not be as effective on the HTTP layer;

e Attackers might use IDS evasion techniques (HTTP,

encoding, fragmenting, etc.) which the IDS is not aware of.

Snort, the most powerful open source IDS, has over 800 rules
(community rules, released 2007-04-27) for detecting malicious web
traffic (over 400 for PHP alone). With the help of preprocessors
like frag3 (IP defragmentation), stream4 (stateful
inspection/stream reassembly) and http inspect (normalize and
detect HTTP traffic and protocol anomalies) snort tries to
assemble packets and avoid IDS evasion techniques. These hurdles

have to be overcome before anything can be detected.
Analyzing logs vs. full traffic

Log files contain only a partial set of the full traffic
going over the network. Depending on the application which writes
the logs, this can be a full audit trail or just some data. The
following table shows the most significant differences between

analyzing log files and full traffic.

Roger Meyer 18
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

Advantages Disadvantages

Log files data is easily available |logs usually contain only
to be analyzed (in a fraction of the full
files) data (e.g. missing HTTP

POST parameters)

Full traffic |all the information can |- data has to be captured
be analyzed first

- data might have to be
assembled, defragmented,
normalized, etc. (IP
packets, IP fragments)

- it might be difficult to
capture data (encrypted
traffic, high traffic
load, etc.)

The biggest benefit of log files is the relative simple
availability and analysis of their content. Web servers like
Apache have logging enabled by default. Applications usually do
some logging to ensure the traceability of their actions. While
full traffic provides additional information, its acquisition and
processing costs usually outweigh their benefit. The collection of
network traffic requires a) visibility to packets and b) usually
additional hardware. Watching traffic can be achieved with hubs,
SPAN ports, taps or inline devices. All these devices have to be
purchased, installed and supported. Once the data is collected, it
has to be processed into a suitable format so that it can be
analyzed. Only now the collected network traffic is in the same

form as the log files and is ready for being analyzed. In the end,

Roger Meyer 19
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

log files provide an easy available and easy to process

possibility to do security monitoring.

The next section discusses the two detection strategies -

static rules and dynamic rules.

4.1 Rule-based Detection (static rules)

Attacks can be detected by two different strategies: rule-
based and anomaly-based. The rule-based strategy defines static
rules which have to be defined before the analysis can be made.
Those can be simple rules like the detection of certain characters

or more complex rules like session fixation attacks.

Anomaly-rules consist of dynamic rules, they will be

discussed in the next section.

Static rules are defined once and stay the same during the
detection phase. They have to be defined and specifically crafted
for each application. Static rules make most sense for pre-known
values like certain input characters, a fixed length of a

parameter or an upper limit of a transfer amount.

Static rules can be further divided into two detection

models: the negative and the positive security model.

4.1.1 Negative Security Model

The negative security model, or the blacklist approach, has a
default policy of allow everything. This means that everything is
allowed to pass, or everything is considered "normal", accepted
traffic. The policy (the blacklist, or the rule-base) defines what

is not allowed or in IDS terms what will be flagged as an attack.

This model is usually considered the easier one as it is

Roger Meyer 20
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

easier to implement, it is however not a good approach security-
wise. The biggest disadvantage is that the detection will only be
as good as the policy. It has to be adopted to new findings and
updated to recognize new attack vectors. One of the positive
points is that it yields very little false-positives as the rules
will usually look for specific, well known attack strings or

behaviour.

The Snort rule set is an example of a blacklist approach.

4.1.2 Positive Security Model

The positive security model is the opposite of the negative
security model. The default policy here is deny all, the policy
will then define what is allowed. The policy, or the whitelist,
defines what is considered "normal", good traffic. This whitelist
can be defined automatically in a learning phase or be manually
defined. It is important that the learning phase consists of
legitimate traffic, as everything else will be considered as

malicious.

This model is the preferred way from a security standpoint.
False negatives can be reduced to a minimum, while false positives

help to improve the whitelist.

Firewalls are usually configured this way. The default policy
will be deny. For every server/service there has to be a new

whitelist entry for this specific machine and port.

4.2 Anomaly-based Detection (dynamic rules)

Anomaly-rules consist of dynamic rules. As the name implies,
those rules are not static nor are they manually defined. Instead,

the rules are defined through a learning phase. In this learning

Roger Meyer 21
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

phase, good traffic is recorded as “normal”. It is of greatest
importance, that this traffic is “clean” and free of attacks, as
this will be used as our baseline. Usually, a simulation
environment is used for such kind of tests. The goal of a learning
phase is to define how “normal”, accepted traffic looks like to
eventually flag anomalous traffic which does not look like
“normal” and raise an alarm. Deviations from this ruleset will be

flagged as anomalous traffic.

4.3 Detecting the OWASP Top Ten 2007

This chapter describes how the OWASP Top Ten 2007 can be
detected. The detection only applies to data stored in web
application log files. This reduced dataset limits the detection
to the available data, which of course simplifies the analysis
but - more importantly - narrows the detection. Each vulnerability
will be briefly described and explained how it can be detected

with a sample regular expression.

4.3.1 Al - Cross Site Scripting (XSS)

XSS flaws are currently the No. 1 flaw on Mitre's Common
Vulnerabilities and Exposures (CVE) [MITRE, 2007] site - a
considerable growth from 12 months ago. XSS vulnerabilities
comprised one in five of all CVE-reported bugs in 2006 [Christey,

2007].

Cross Site Scripting attacks work by embedding script tags in
URLs/HTTP requests and enticing unsuspecting users to click on
them, ensuring that the malicious javascript gets executed on the
victim's machine. These attacks leverage the trust between the
user and the server and the fact that there is no input/output

validation on the server to reject javascript or other active code

Roger Meyer 22
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

characters. Simple attacks contain HTML tags like <hl> or
<script>. An often used example is <script>alert('XSS')</script>.
A simple way is to detect such HTML tags. The following regular

expression recognizes tags:

/((\%3C) |<) ((\%2F) |\/)*[a-2z0-9\%]1+((\%3E) |>)/ix

Explanation:

((\%3C)|<) check for opening angle bracket or hex
equivalent ('3C')

((\%2F) |\/)* the forward slash for a closing tag or its hex
equivalent ('2F')

[a-z0-9\% 1+ check for alphanumeric string inside the tag, or
hex representation of these (the additional
percent character)

((\%3E)|>) check for closing angle bracket or hex

equivalent ('3E')

The modifiers 'i' and 'x' (at the end of the regex, after the
closing slash '/') are used in order to match without case

sensitivity and to ignore whitespaces, respectively.

This will of course detect any XML/HTML tag, including any
legitimate user input as usually happens in an Internet forum, and

may lead to many false positives.

This was a nice regex to start with. Unfortunately,
javascript can be included in many more places and tags. One
popular place is the 'img' tag, where users might be able to set
their own image file name (an avatar for example). The 'src'
parameter of the 'img' tag will work well as a javascript vector.

There are many more HTML tags, where javascript can be included.

Examples:

e image 1l

Roger Meyer 23
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

e image
2
e <img

src=javascript:a&#
108era#116('XSS')>image 3
javascript:alert('XSS')

e link
e <body onload="alert(String.fromCharCode(88,83,83))">

A basic approach to detect above attacks would be to look for

the tag name, e.g. img:

/((\%3C) <) ((\%69) |i]| (\249)) ((\%6D) |m| (\24D)) ((\%67) |g]| (\
$47))["\n]+((\%3E)|>)/I

Explanation:
(\%3C) |<) opening angled bracket or hex equivalent ('3C')
(\%69)|1i|(\%49)) the letters 'img' in varying combinations of
((\%6D) |m| (\%4D)) ASCII, or upper or lower case hex equivalents
((\%67) |g|(\%47)
["\n]+ any character other than a new line following

the '<img’

(\%3E) |>) closing angled bracket or hex equivalent ('3E')

A more successful approach would be to look for all the
possible expressions which may trigger javascript or other active

code. Here is a list of possible script inclusions:

HTML tags:

e Jjavascript, vbscript, expression, applet, meta, xml,
blink, link, style, script, embed, object, iframe, frame,

frameset, ilayer, layer, bgsound, title, base

Roger Meyer 24
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

Javascript event handlers (excerpt):

e onabort, onactivate, onafterprint, onafterupdate,

onsubmit, onunload, ...
Let us write a regex to detect some of those keywords:

/ (javascript|vbscript|expression|applet|script|embed|object|

iframe|frame|frameset)/i

Explanation:
(javascript | Each keyword inside the parantheses will be
vbscript|...) matched. The pipe character ('|') denotes an OR.

But even looking for all of the above expressions is no
guarantee to find all XSS injections. The context of the code
injection is the crux. If the injection takes place inside a
javascript code part, there is no need for a tag or one of the
above expressions, one can usually just insert javascript code.

Those kind of XSS injections are very hard to detect.

Detecting real world XSS attacks

For a real world analysis we need logs from a web server.
The Honeynet Project used to provide regular Honeynet Challenges
to analyze attacks and share their findings. The challenge in
Scan 31 was to analyze web server log files looking for signs of

abuse [Honeynet Project - Scan 31, 2004].

The log files from Scan 31 can be downloaded from the
Honeynet Project website. Analyzing the apache access log file

with the above regular expressions yields interesting findings.

Here are two example requests:

Roger Meyer 25

© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

217.160.165.173 - - [12/Mar/2004:22:31:12 -0500]
"GET /foo.jsp?<SCRIPT>foo</SCRIPT>.jsp HTTP/1.1" 200 578 "-"
"Mozilla/4.75 [en] (X11l, U; Nessus)"

217.160.165.173 - - [12/Mar/2004:22:37:17 -0500] "GET /cgi-
bin/cvslog.cgi?file=<SCRIPT>window.alert</SCRIPT> HTTP/1.1" 403
302 "-" "Mozilla/4.75 [en] (X111, U; Nessus)"

These are two requests of a Nessus scan, trying to find
scripts which are vulnerable to XSS. According to the HTTP
status code, in the first request the web sever responded with a
200 OK, which means that foo.jsp was there and served a page. We
don't know if this page is vulnerable, though. We would have to
try this request manually to find out. The second request
(cvslog.cgi) was not successful, the server responded with a 403
Forbidden response, which means that the web server denied the

access.

4.3.2 A2 - Injection Flaws

Code injection can be any type of code like SQL, LDAP, XPath,
XSLT, HTML, XML and OS command injection. XSS (see Al) is in fact
a subset of HTML injection. Here, we are focusing on the most
prevalent injection, the SQL injection. For SQL injections to
work, the attacker has to jump out of the original SQL statement.
This is usually done by the single-quote (') or the double-dash
(--). The single-quote acts as a delimiter for an SQL query; the

double-dash is the comment character in Oracle and MS SQL.

J (N NB27) | (\=\=) | (#)]| (\%23)/ix

Explanation:

Roger Meyer 26
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

(\')] (\%27) the single quote and its URL encoded version
(\=-\-) the double-dash
(#)|(\%23) the pound sign and its URL encoded version

We first detect either the hex equivalent of the single-
quote, the single-quote itself or the presence of the double-dash.
These are SQL characters for MS SQL Server and Oracle, which
denote the beginning of a comment, and everything that follows is
ignored. Additionally, if you're using MySQL, you need to check
for the presence of the '#' or its hex-equivalent. Note that we do
not need to check for the hex-equivalent of the double-dash,
because it is not an HTML meta-character and will not be encoded
by the browser. Also, if an attacker tries to manually modify the
double-dash to its hex value of %2D (using a proxy like Achilles),

the SQL injection attack fails.

The previous regex fails when there is neither a single-quote
nor a double-dash in the attack pattern. SQL injection is possible
even without the single-quote [Anley, 2002]. Let us take this

example SQL statement:

select valuel, numeric value2 from tablel where

numeric_value2=user_input

Here, an attacker may execute an additional SQL query, by

supplying an input like:
7; select * from users

The above detection pattern could be easily extended with the
semi-colon (';'). Unfortunately, the semi-colon is a common

character in URLs. Example:

POST /login.]jsp;jsessionid=HLQxtLQ13

Roger Meyer 27
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

The detection could be narrowed down by detecting the equals
character ('='), and only look for semi-colons in URL parameters.

Malicious user input could look like this:

POST /login.jsp?username=bill&password=1234;select * from

users

Let us modify our previous regex to detect this kind of

attack.
/CA\%3D) [(=))["\n1*((\827) [(\") [(\=\=) | (\#3B) | (;))/1
Explanation:
((\%3D) | (=)) The equals sign ('=') or its URL encoded version
[“\n]* zero or more non-newline characters
((\s27) | (\") | The single-quote, the double-dash or the semi-
(\=\-) | (\23B) | colon or their URL encoded versions

(7))

This pattern looks for the equals sign followed by zero or
more non-newline characters and then a single-quote, a double-dash

or a semi-colon.

Another typical attack vector is by using the SQL keyword
'or'. An example SQL attack might look like 1' or '2'='2. Of
course, there are infinite variations of this like 1' or 1<2--.
The only constant part is the single-quote followed by the word
'or'. Let us try to write a regular expression to detect this

attack:

/\w* ((\%27) | (\')) (\s|\+]|\220)* ((\%6F) |o| (\%4F)) ((\272) || (\
$52))/ix

Roger Meyer 28
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

Explanation:

\w* zero or more alphanumeric or underscore
characters

(\s|\+]|\%20)* zero, one or more white spaces or their HTTP
encoded equivalents

((\227) | (\")) the single-quote or its hex equivalent

((\%6F) |o| (\%4F)) the word 'or' with combinations of its upper and

((\%872)|r|[(\%52)) lower case hex equivalents

Beside the 'or' keyword, there is another SQL keyword which
is commonly used in attacks — the UNION keyword. UNION is used to
combine the result from multiple SELECT statements into a single
result set. Attackers can use it to combine a select statement
given by the application with an attacker specified select
statement. This allows an attacker read tables different from the
one specified in the statement by the application. Let us expand

the previous regex with some more interesting SQL keywords.

/((\%27)|(\"')) (select|union|insert|update|delete|replace|

truncate)/ix

Explanation:
(\227) | (\") the single-quote and its hex equivalent
(select|union| the SQL keywords

insert|update|
delete|replace|
truncate)

If the backend database runs on MS SQL, there are some
especially dangerous stored procedures, which the attacker will
try to exploit. These procedures start with the letters 'sp' or
'Xp' respectively. One of the infamous procedures is the
'xp cmdshell' extended procedure, which allows the execution of
Windows shell commands through the SQL Server. The access rights

with which these commands will be executed are those of the

Roger Meyer 29
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

account with which SQL Server is running - usually Local System.

/exec (\s|\+)+(s|x)p\w+/ix

Explanation:

exec the keyword required to run the stored or
extended procedure

(\s|\+)+ one or more whitespaces or their HTTP encoded
equivalents

(s|x)p the letters 'sp' or 'xp' to identify stored or
extended procedures respectively

\w+ one or more alphanumeric or underscore

characters to complete the name of the procedure

Other injection flaws like OS command injections are a bit
more difficult to detect as there is no predefined pattern
available. Although there are some special characters like the

pipe symbol ('|') which is rarely used in an URL:
/(\||%00|system\(|eval\ (| |\\)/1i

Explanation:

\ | The pipe symbol: used in commands to "pipe" the
stdout of one program into stdin of another.
This can be abused to execute another command.

%00 The NUL character (decimal and hexadecimal 0) is
used in C/C++ based programs as a string
delimiter (the last element in a char array). It
can sometimes be abused to trick those programs
to treat this character as the last char and
ignore any further characters. Other languages
like Perl or PHP will happily read past the NUL
character and execute the code.

system)\ (System() is a function in programming languages
like Perl and PHP which executes an external
program and displays the output.

eval (Eval() is a function in PHP, Perl and other
languages which evaluates a string as
PHP/Perl/... code.

Roger Meyer 30
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

The backtick operator is similar to the system()
function in that it executes an external
program.

\\ The backlash is used for escaping characters. If
the escaping backlash can be escaped, attackers
can jump out of the escaped sequence.

Detecting real world injection attacks

We are analyzing again the Scan 31 from the Honeynet Project
Challenge [Honeynet Project - Scan 31, 2004]. Here are two

example requests, detected with the above regular expressions:

81.171.1.165 - - [13/Mar/2004:10:46:43 -0500] "HEAD
http://www.sweetgeorgia.com/cgi-bin/af.cgi?_ browser out=|
echo;id;exit| HTTP/1.0" 200 0 "http://www.sweetgeorgia.com/cgi-
bin/af.cgi? browser out=|echo;id;exit|" "Mozilla/4.0

(compatible; MSIE 6.0; Windows NT 5.1)"

66.138.147.49 - - [13/Mar/2004:13:33:06 -0500] "GET
http://login.korea.yahoo.com/config/login?.redir from=PROFILES?.
&login=&.tries=1&.src=jpg&.last=&promo=&.intl=usé&.bypass=&.partn
er=&.chkP=Y&.done=http://jpager.yahoo.com/jpager/pager2.shtml&lo
gin=blood~1234567890&passwd=password HTTP/1.0" 200 566 "-" "-"

The first request is trying to execute OS commands. The
variable ' browser out' contains a pipe symbol, followed by Unix

system commands ('|echo;id;exit]|"').

The second request is calling a login function. In its login
name (parameter 'login') is a back tick symbol
('blood™1234567890'). This might be a simple brute force attack
or a test how the application handles the back tick symbol.

Roger Meyer 31
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

4.3.3 A3 - Malicious File Execution

Applications which allow the user to provide a filename, or
part of a filename are often vulnerable if the input is not
carefully validated. Allowing the attacker to manipulate the
filename may cause the application to execute a system program or

an external URL.

In the past PHP has very often been criticized for the possibility
to allow URLs in include and require statements. It is the cause
for the most dangerous vulnerabilities in PHP applications: the
often called remote URL include vulnerabilities. The following
include statement will include and execute everything POSTed to

the server:
include "php://input";

The following include statement will include and execute the

base64 encoded payload. Here this is just phpinfo():
include "data:;base64,PD9waHAgcGhwaW5smbygp0Oz8+";

Let us first try to catch the remote file inclusions. If a
file is referenced on a remote machine, there will be a protocol
and a path, like http://www.example.com/bad.inc. We can try to

detect these protocol specifiers:
/(https?|ftp|php|data):/i

Explanation:

(https?|ftp|php| the protocols http(s), ftp, php and data
data) followed by the colon

Applications which allow file uploads have the additional

Roger Meyer 32
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

risk of executable code being placed into the application.
However, the log file will only contain the script, where the file
will be uploaded to (e.g. POST /upload.php HTTP/1l.1). The content

of the file is only visible in the application.

4.3.4 A4 - Insecure Direct Object Reference

Applications often expose internal objects, making them
accessible via parameters. When those objects are exposed, the
attacker may manipulate unauthorized objects, if proper access

controls are not in place.
Internal Objects might include:
e Files or Directories
e URLs
e Database keys, such as acct no, group id etc.
e Other database object names such as table name

Files can be recognized by their name or ending. Especially
dangerous files might be /etc/passwd, /etc/shadow or cmd.exe.
Directories can be traversed by using the dot-dot-slash attack

(../), or path traversal.

/(\.|(%]%25)2E) (\.|(%]%25)2E) (\/|(%]|%25)2F|\\|(%]|%25)5C) /i
Explanation:
(\.](%]|%25)2E) Two dots & their URL encoded equivalents,
(\.](%]|%25)2E) including the double percent hex encoding.
(\/] (%] the slash and the backslash (& their URL encoded
%25)2F [\\| (%] equivalents), as a directory separator can be
$25)5C) "\" but also "/"
Roger Meyer 33

© SANS Institute 2008, Author retains full rights

© SANS Institute 2008,

Detecting Attacks Detecting Attacks on Web Applications

Additionally, encoded requests can be combined in many

different ways. Some examples of URL encoding and double URL

encoding:
32e%2e%2f ../ (%2e : dot; %2f : slash)
32e%2e/ oo/
..%2f ./
%$2e%2e%5c ..\ (%5c : backslash)
%2e%2e\ .Y
..%5¢C <\
$252e%252e%255¢c ..\ (This is a double percent

hex encoding: the %25 represents
a percent char)

..%255c ..\ (another double percent
hex encoding)

..%c0%af ../ (UTF-8 encoding)

..%cl%9c ..\ (UTF-8 encoding)

Database records are usually referenced by a URL parameter
like DocumentID, AccountID, StatementID or simply id. If those
keys are numerically only, one can search for non-numeric

arguments.

Web applications often use the account number as the primary

key. Therefore the account number can be directly manipulated in a

Roger Meyer 34

Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

parameter field. Attackers would usually try to loop through all
(or some) of the possible account numbers, trying to find wvalid
user accounts. This can be detected by recording the IP addresses
and parameter values. If a single IP address tries more than a
certain amount of account numbers, an attack is happening. (see

also A7 - Broken Authentication and Session Management)

Detecting real world directory traversal attacks

Scan 31 from the Honeynet Project Challenge [Honeynet
Project - Scan 31, 2004] will serve us again as an example for a

real world directory traversal attack:

68.48.142.117 - - [09/Mar/2004:22:29:43 -0500]
"GET /scripts/..%255c../winnt/system32/cmd.exe?/c+dir HTTP/1.0"
200 566 "_" ll_ll

The '%$255c' is a double percent hex encoding. The '%25'
resolves to a percent character ('%'), the resulting '%5c’
resolves to a backslash ('\'). The request tries to access the
cmd.exe program, the windows command shell to execute the 'dir'
command (list all files in a directory). This request is very
common for the Nimda worm. Nimda uses the Unicode Web Traversal

exploit to attack unpatched Microsoft IIS web servers.

4.3.5 A5 - Cross Site Request Forgery (CSRF)

Cross site request forgery attacks are probably the most
spread attack in web applications today. It takes advantage of one
of the most basic HTML feature — the link. Any process with a

request like this is vulnerable:

https://www.example.com/transfer.php?amount=100&toAcct=12345

Roger Meyer 35
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

Basically, every application whose requests are based only on
credentials automatically submitted such as a session cookie is

vulnerable.

To exploit a CSRF vulnerability, an attacker could post the

following to a forum:

<img src="https://www.example.com/trx.php?

amt=100&toAcct=1234" width="0" height="0">

The browser will try to load the zero-width (i.e., invisible)
image by making a request to the specified URL. It is not
important that the image URL does not refer to a proper image, the
request will be sent anyway (providing the browser did not disable

to download images).

How can this be detected in a log file? One approach would be
to measure the time-difference of the requests of a user. If there
was no user input for several minutes and then suddenly some
transfer requests are coming in, it could be an indicator that
this request was triggered by something/someone else. It would be
an error prone way as one would have to define certain time

limits, which will vary from user to user.

A better approach is the use of the referer. The
"referer" (sic) is a HTTP request header which will be logged in
the Combined Log Format. The referer indicates the last URL, which
linked to the current request. In case of a CSRF, this URL will be
the attackers site. Let us make an example: an attacker prepares a

website on the following URL:

http://www.attacker.com/freestuff.php

The attacker tricks a legitimate user — which is logged into

Roger Meyer 36
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

his online banking application (https://www.bank.com/) to surf to
his prepared site. This site contains a XSRF attack which makes a
transfer on the user's online banking application. The log file on

the banking application would look something like this:

192.168.4.6 - - [10/0ct/2007:13:55:36 -0700] "GET /trx.php?
amt=100&toAcct=12345 HTTP/1.0" 200 4926
"http://www.attacker.com/freestuff.php" "Mozilla/4.0 (compatible;
MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322)"

Two fields are important here, the requested URL (/trx.php?
amt=100&toAcct=12345) and the referer
("http://www.attacker.com/freestuff.php"). Usually, the referer is
an URL from the same site (www.bank.com). Here is a sample perl

snippet, how this could be detected:

assuming S$referer is set with the, well, referer
if ((Sreferer ne '-') &&
(Sreferer !~
/"https?:\/\/www.bank.com\/(login|overview|trx)\.jsp/)
) A
handle XSRF attack

print (“XSRF attack: Sreferer\n”);

4.3.6 A6 - Information Leakage and Improper Error Handling

Information leakage usually happens in error pages which give
away too much information. Error messages can contain valuable
data like if a user name exists on the system, application paths,
server information and configuration files. Error pages can be
recognized with the three-digit HTTP status code, which is logged
for every request. These HTTP status codes are mostly used for

monitoring the server and debugging purposes. We can analyze them

Roger Meyer 37
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

to detect attacks like user name enumeration or an abnormal amount

of error-requests. Here is an overview of the HTTP status codes:

Status code Meaning
1XX Informational
2XX Successful
3XX Redirection
4XX Client Error
5XX Server Error

In general, all error codes >= 400 indicate some serious
error and should be looked into. Some error codes like the 404
(Not Found) are obviously very common. However, they can be as

interesting as the others if they give out (too) much information.

4.3.7 A7 - Broken Authentication and Session Management

Most applications implement their own authentication,
password management and timeout, and are thus not easily
detectable in web server log files. There are some basic
principles though, how it should not be implemented. There are two

notable principles which are visible in log files:

e Do not accept new, preset or invalid session identifiers
from the URL or in the request. This is called a session

fixation attack;

e Do not expose any session identifiers or any portion of

Roger Meyer 38
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

valid credentials in URLs or logs (no session rewriting or

storing the user’s password in log files).

Generally, a URL query string should not be used for any
sensitive data like session IDs, user/session information, user
names, passwords, etc. URLs are stored in the browser cache and
are logged in web proxies and stored in the proxy cache. If
session IDs are cached by a proxy, it might be possible that other

users will be able to access this users account.
Examples:
https://www.example.net/login?userid=bill&password=1234
https://www.exampl.net/doSomething?varA=123; jsessionid=1234

Parameter names are application specific but are easily

identifiable:
/login\.jsp.*\?.*(userId|password)=./
/; jsessionid=./

Explanation:

login\.jsp.*\?.* The login.jsp script followed by a question mark

(userId| and either the parameter userId or password.
password)=.
; Jsessionid=. Search for the jsessionid parameter in the URL.

4.3.8 A8 - Insecure Cryptographic Storage

Insecure cryptographic storage is not detectable with
automated vulnerability scanning tools. There is also no trace in

the web server log how sensitive data is stored.

Roger Meyer 39
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

4.3.9 A9 - Insecure Communications

Every HTTP application uses some form of authentication which
has to be transmitted over the Internet. To ensure the safe and
confidential transmission over an insecure medium like the
Internet, all authentication traffic needs to go over SSL, not

just the actual login request.

How can we verify that the application properly encrypts all
authentication and sensitive communications? Web servers provide
support for logging any SSL-related aspect of the request. Apache,
for example, allows with the CustomlLog directive to log

information about the SSL parameters. Here are some interesting

directives:

Directive Name Description
%{SSL_PROTOCOL}x the protocol version
%{SSL_CIPHER}X cipher suites
${SSL_CIPHER USEKEYSIZE}xX key size

It is recommended to at least log the protocol version and

chosen cipher suites:

CustomLog logs/ssl request log \
"$t $h ${HTTPS}x %{SSL PROTOCOL}x %{SSL_CIPHER}X
%{SSL_CIPHER USEKEYSIZE}x %{SSL_CLIENT VERIFY}X
\"$r\" sb"

Example log entry:

Roger Meyer 40
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

2007.12.04-04:43:30 10.3.78.36 on SSLv3 RC4-MD5 128 NONE "GET
/index.html HTTP/1.1" 13552

This request is using a 128 bit SSLv3 connection with a RC4-

MD5 cipher suite.

To ensure that all HTTP requests are SSL encrypted, the SSL
requests log file can be monitored for non-encrypted requests.

Example:
2007.12.04-20:09:49 10.73.60.22 off - - - - "GET /"

If the web server only supports SSL connections over TCP port
443 in the first place, then one should only see encrypted
connections in the log file. It is always a good idea to verify

though.

4.3.10 Al0 - Failure to Restrict URL Access

When the application fails to restrict access to
administrative URLs, the attacker can access such pages by typing
in the URL’s into the browser. This is surprisingly common, for

example:

add account form.php - checks for admin access before

displaying the form.

This form then posts to add acct.php which does the work, but

doesn’t check for admin privileges!

A consistent URL access control has to be carefully designed.
For detecting such kind of attacks, there is no foolproof method
available. Once again, the referer check can be helpful. If you
see web sites other than the local one in the referer for some

privileged page, this might be suspicious. One can also monitor

Roger Meyer 41
© SANS Institute 2008, Author retains full rights

Detecting Attacks Detecting Attacks on Web Applications

files which are not supposed to be accessed like include and

library files.

5 Conclusion

There are two fundamentally different attack detection
methods — rule-based detection (static rules) and anomaly-based
detection (dynamic rules). Web server log analysis is a rule-based
detection mode which concentrates on web attacks which are visible

in default web server log files like Apache or IIS.

There are several hurdles which have to be overcome to detect
attacks in log files. First, the attack vectors have to be known
to make detection rules. Hence, it is important to know as many
different attack variants as possible. Another hurdle is the
different encoding variants and standards. Standards are important
but can sometimes be difficult as different vendors implement them
slightly different. Each web server also supports different

standards, which have to be accounted for.

Once the different idiosyncrasies are studied, well known
attacks can be easily detected and eventually reacted upon. A well
defined set of regular expressions allow the identification of
many of the OWASP Top Ten most critical web application security

flaws.

6 References

The Honeynet Project & Research Alliance (2007). Know your
Enemy: Web Application Threats.

http://www.honeynet.orqg/papers/webapp/

Friedl, J. (1997). Mastering Regular Expressions. Sebastopol,

Roger Meyer 42
© SANS Institute 2008, Author retains full rights

References Detecting Attacks on Web Applications
CA: O'Reilly Media, Inc.

Kruegel, C., Vigna, G. (2003). Anomaly Detection of Web-based

Attacks. New York, NY: Association for Computing Machinery.

Mookhey, K. K., Burghate N. (2004). Detection of SQL
Injection and Cross-site Scripting Attacks.

http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-

mookhev/old/bh—us—04—mookhev_whitepaper.pdf

Anley, C. (2002). Advanced SQL Injection In SQL Server
Applications.

http://www.nextgenss.com/papers/advanced sgl injection.pdf

Roelker J. D., (2003). HTTP IDS Evasions Revisited.

http://docs.idsresearch.org/http ids evasions.pdf

Web Application Security Consortium, (2006). Web Application
Firewall Evaluation Criteria.

http://www.webappsec.org/projects/wafec/

SANS Institute, (2007). SANS Top-20 Internet Security Attack

Targets. http://www.sans.org/top20/

SC Magazine, (2007). Web app exploits biggest hacking target

in 2007. http://www.securecomputing.net.au/print.aspx?CIID=72867

IT Week, (2006). Web applications are easy targets.

http://www.vnunet.com/articles/print/2148638

Fortify Software Inc., (2006). Web Applications Under Attack.

http://www.fortifysoftware.com/reports/threatreport.jsp

The Open Web Application Security Project (OWASP), (2007).
OWASP Top Ten Project.

Roger Meyer 43
© SANS Institute 2008, Author retains full rights

References Detecting Attacks on Web Applications

http://www.owasp.org/index.php/OWASP_Top Ten Project

Apache HTTP Server, (2007). Combined Log Format.
http://httpd.apache.org/docs/1.3/1logs.html#combined

The Open Systems Interconnection, (1994). The Open Systems
Interconnection Basic Reference Mode (ISO standard 7498-1:1994)

http://en.wikipedia.org/wiki/OSI model

Breach Security (2007). ModSecurity for Apache.

http://www.modsecurity.orqg/

The MITRE Corporation (2007). Common Vulnerabilities and

Exposures (CVE®). http://cve.mitre.org/about/

Christey, S., Martin, R. A., (2007). Vulnerability Type

Distributions in CVE. http://cve.mitre.org/docs/vuln-trends/

The Honeynet Project, (2004). Scan 31 - Discover how an

OpenProxy is abused. http://www.honeynet.org/scans/scan31/

Fielding et al., (1999). RFC 2616: Hypertext Transfer
Protocol — HTTP/1.1. http://www.ietf.org/rfc/rfc2616.txt

Ellacoya Networks, Inc. (2007). Press release: Ellacoya Data
Shows Web Traffic Overtakes Peer-to-Peer (P2P) as Largest
Percentage of Bandwidth on the Network
http://www.ellacoya.com/news/pdf/2007/NXTcommEllacoyaMediaAlert.pd
f

Greenemeier L., (2006). InformationWeek: Web App Hack
Incidents Are Up As Businesses Take Cover

http://www.informationweek.com/industries/showArticle.jhtml?

articleID=185300842

Roger Meyer 44
© SANS Institute 2008, Author retains full rights

