
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

1 of 26
1

SANS Security DC 2000 Practical Assignment – GIAC Intrusion
Detection Curriculum

Eric Brelsford

9/11/00

Table of Contents:
Assignment 1 – Network Traces
Detect #1
Detect #2
Detect #3
Detect #4
Detect #5
Assignment 2 – Evaluate an Attack
Assignment 3 – “Analyze This” Scenario

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

2 of 26
1

Assignment 1 – Network Traces
Detect #1 – RPC Scan (Portmapper)
Aug 14 17:03:17 195.251.213.58:111 -> a.b.c.64:111 SYNFIN **SF****
Aug 14 17:03:17 195.251.213.58:111 -> a.b.c.65:111 SYNFIN **SF****
Aug 14 17:03:17 195.251.213.58:111 -> a.b.c.66:111 SYNFIN **SF****
Aug 14 17:03:17 195.251.213.58:111 -> a.b.c.67:111 SYNFIN **SF****
Aug 14 17:03:17 195.251.213.58:111 -> a.b.c.68:111 SYNFIN **SF****
Aug 14 17:03:17 195.251.213.58:111 -> a.b.c.69:111 SYNFIN **SF****
Aug 14 17:03:17 195.251.213.58:111 -> a.b.c.70:111 SYNFIN **SF****
Aug 14 17:03:17 195.251.213.58:111 -> a.b.c.71:111 SYNFIN **SF****

[**] SCAN-SYN FIN [**]
08/14-17:03:17.596759 195.251.213.58:111 -> a.b.c.64:111
TCP TTL:26 TOS:0x0 ID:39426
SF** Seq: 0x3CEF17E6 Ack: 0x2F80FB0C Win: 0x404

[**] RPC Info Query [**]
08/14-17:03:21.011106 195.251.213.58:604 -> a.b.c.d:111
TCP TTL:48 TOS:0x0 ID:33616 DF
*****PA* Seq: 0xA94FCEFC Ack: 0x193EB5DA Win: 0x7D78
80 00 00 28 4A E4 1C 10 00 00 00 00 00 00 00 02 ...(J...........
00 01 86 A0 00 00 00 02 00 00 00 04 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

1. Source of Trace:
http://www.sans.org/y2k/081700.htm

2. Detect Generated By:
The first part of this detect was generated by TCPDump. The second and third sections of the trace appear to be
generated by the Snort Intrusion Detection System.

3. Probability Source Was Spoofed
Very low. Attacker is performing a targeted scan of network for machines running portmapper in order to find
rpc (remote procedure call) services that will potentially be vulnerable to buffer overflow exploits. If the source
address is spoofed, the attacker will be unable to receive the results of the scan and subsequent query.

4. Description of Attack
The attacker is performing a sequential scan against the “my.net” network in search of machines running the
portmapper service (TCP/111). The portmapper service will return information on the rpc services running on the
target. There are several known buffer overflow vulnerabilities that exist with these services, and the attacker is
surely in search of vulnerable services that can be exploited. After conducting the network scan, the attacker
finds at least one machine running portmapper, to which the attacker issues an rpcinfo request in order to retrieve
the port #’s of the running rpc services. If this request is successful, the attacker can then attempt a buffer
overflow exploit against the running services.

There are numerous CVE entries associated with the rpc services that could be vulnerable to a buffer overflow
exploit:
rpc.ttdbserverd - CVE-1999-0687, CVE-1999-0003, CVE-1999-0693
rpc.cmsd – CVE-1999-0696
rpc.statd - CVE-1999-0018, CVE-1999-0019

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

3 of 26
1

5. Attack Mechanism
The attack begins with a sequential SYN-FIN scan of the target network. If the scanned machine is running the
portmapper service (TCP/111) it will respond with an ACK. If the service is not running, a RESET will be issued
to the attacker notifying him that the port is closed. The SYN-FIN combination is probably being used in an
attempt to elude IDS or firewall systems that may only be filtering for SYN only connections.

Following the sequential scan, the attacker issues an rpcinfo request to at least one of the targeted machines.
rpcinfo –p will contact the portmapper service and retrieve a listing of all of the RPC services running and their
associated port numbers. This request is identified by the third section of the trace. The hexadecimal string “00
01 86 A0 00 00 00 02 00 00 00 04” within the content of the TCP packet trips the Snort detection rule identifying
this as an RPC Info Query(see rule below.) Since the full trace is not presented on the GIAC website, it is unclear
how much information was returned in the response to this request. The potential outcome is that the attacker has
a listing of all of the RPC services and the ports they are running on.

Once the attacker has the port number of a potentially vulnerable RPC service, he will likely attempt to run one of
the many available buffer overflow exploits (e.g. rpc.ttdbserver.c)

An automated tool is clearly being used to perform the scan and rpcinfo request seen in this detect. The SYN-FIN
packets are obviously crafted since the SYN and FIN flags should never occur together. Additionally, the packets
are being sent at essentially the same time indicating an automated process. To top it off, the rpcinfo request is
occurring only 4 seconds after the last listed SYN-FIN scan indicating that it is also very likely incorporated into
the automated tool.

Snort rule being tripped:
alert tcp !$HOME_NET any -> $HOME_NET 111 (msg:"RPC Info Query"; content:"|00 01 86 A0 00 00 00 02
00 00 00 04|";) alert

6. Correlations
Scans for RPC services are very commonplace. Although I found no other scans listed from this particular host,
some other reports of scans listed on GIAC are:

http://www.sans.org/y2k/081600.htm
http://www.sans.org/y2k/081900.htm
http://www.sans.org/y2k/082100.htm

7. Evidence of Active Targeting
There does not appear to be active targeting involved here since a scan is performed of the entire target network.
Specific machines within the network will be targeted if they are found to be running portmapper.

8. Severity
Since this detect was taken from the GIAC site, the full severity of this attack is unknown. As a result I will make
some assumptions:
• There is a firewall in place that is blocking portmapper (TCP/111)
• Only the single machine listed in the trace responded to the SYN/FIN packets with a SYN/ACK. It lies in the

DMZ. The machine is running the latest patched versions of the RPC services.
• That machine is a Web Server for the organization

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

4 of 26
1

Using the formula for determining severity [Criticality + Lethality – System Countermeasures – Network
Countermeasures]:
5 (they system is a Web Server for the organization) + 5 (a buffer overflow would grant root access) – 4 (the
system is running with the latest versions of RPC services (but it likely shouldn’t be running them at all)) – 0
(machine in DMZ) = 6

This comes out as a pretty high severity attack. Only one machine is responding to the scan and it is running the
latest versions of the rpc services so it shouldn’t be vulnerable to existing rpc exploits. However, it probably
should not be running rpc services in the first place since it is a critical machine (a web server) and since it is
unprotected by the firewall (in the DMZ.) There is always the possibility that new RPC exploits will be
uncovered (probably a good possibility), and running unnecessary services with this track record is inadvisable.

9. Defensive Recommendations
The rpc services should be removed from the responding machine. If some of the rpc services are required, they
should be kept at the latest patch level to guard against any newly discovered exploits.

10. Multiple Choice Question (based on trace)
Which service runs on TCP port 111?
a. IMAP
b. POP-2
c. POP-3
d. Portmapper

Correct Answer: d

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

5 of 26
1

Detect #2 – NetBios Name Resolution
Jul 24 23:59:22 picard kernel: Packet log: input DENY wp1_fr16
 PROTO=17 165.91.71.63:137 204.x.x.1:137
 L=78 S=0x00 I=42319 F=0x0000 T=114 (#57)
Jul 24 23:59:23 picard kernel: Packet log: input DENY wp1_fr16
 PROTO=17 165.91.71.63:137 204.x.x.1:137
 L=78 S=0x00 I=44367 F=0x0000 T=114 (#57)
Jul 24 23:59:23 picard kernel: Packet log: input DENY wp1_fr16
 PROTO=17 165.91.71.63:137 204.x.x.1:137
 L=78 S=0x00 I=45903 F=0x0000 T=114 (#57)
Jul 24 23:59:23 picard kernel: Packet log: input DENY wp1_fr16
 PROTO=17 165.91.71.63:137 204.x.x.1:137
 L=78 S=0x00 I=46159 F=0x0000 T=114 (#57)
Jul 24 23:59:24 picard kernel: Packet log: input DENY wp1_fr16
 PROTO=17 165.91.71.63:137 204.x.x.1:137
 L=78 S=0x00 I=46415 F=0x0000 T=114 (#57)
Jul 24 23:59:24 picard kernel: Packet log: input DENY wp1_fr16
 PROTO=17 165.91.71.63:137 204.x.x.1:137
 L=78 S=0x00 I=47439 F=0x0000 T=114 (#57)
Jul 24 23:59:24 picard kernel: Packet log: input DENY wp1_fr16
 PROTO=17 165.91.71.63:137 204.x.x.1:137
 L=78 S=0x00 I=47951 F=0x0000 T=114 (#57)

1. Source of Trace
http://www.sans.org/y2k/072600.htm

2. Detect Generated By
This detect was generated by ipchains.

The fields in the trace are as follows:

Line 1: Jul 24 23:59:22 picard kernel: Packet log: input DENY wp1_fr16
 (1) (2)

Line 2: PROTO=17 165.91.71.63:137 204.x.x.1:137
 (3) (4) (5)

Line 3: L=78 S=0x00 I=42319 F=0x0000 T=114 (#57)
 (6) (7) (8) (9) (10) (11)

(1) Timestamp
(2) Indicates interface packet came in on and what to do with packet (Deny)
(3) Protocol used
(4) Source address and port
(5) Destination address and port
(6) Size of packet
(7) Type of Service
(8) IP ID
(9) Fragmentation flags

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

6 of 26
1

(10) Time to live
(11) Rule number triggering detect

3. Probability Source Was Spoofed
This is a reconnaissance effort to enumerate information (such as users and groups) on the targeted machine. It is
unlikely that the source address is spoofed because the attacker would not receive any results from the scan using
a forged address.

4. Description of Attack
The attacker is performing a reconnaissance scan of the targeted machine in an effort to enumerate user and group
information. Once the attacker has a list of users and groups, he will be able to employ password guessing to
attempt to gain access to the target.

5. Attack Mechanism
The user is likely using NBTSTAT –A to enumerate the user and group information. NBTSTAT –A will issue a
request from port 137 on the source machine to port 137 on the target machine and will return the contents of the
target machine’s NetBIOS name table.

6. Correlations
This is a common scan that has been reported numerous times on the GIAC site. It has been reported by the same
individual on at least the following reports:

http://www.sans.org/y2k/081300.htm
http://www.sans.org/y2k/081800.htm
http://www.sans.org/y2k/082100.htm

7. Evidence of Active Targeting
According to the GIAC entry that this detect was taken from, this was the only machine targeted on the network.
This could indicate that some previous reconnaissance has been done to choose this particular machine to attack.

8. Severity
Since this detect was taken from the GIAC site, the full severity of this attack is unknown. As a result I will make
some assumptions:
• The targeted machine is an NT Server with NetBIOS Name Service running

Using the formula for determining severity [Criticality + Lethality – System Countermeasures – Network
Countermeasures]:
4 (they system is a Server for the organization) + 2 (attacker can gain information on users) – 3 (unknown how
secure system itself is) – 5 (The firewall blocks incoming request to NetBIOS Name Service) = -2

This is a low severity attack. Although this scan could provide the attacker with user and group information, the
firewall effectively blocks the incoming packets and defeats the attack.

9. Defensive Recommendations
The firewall provides the most critical protection for this machine, and it is already in place. An additional
measure to take would be to disallow null connections on the targeted machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

7 of 26
1

10. Multiple Choice Question
Which of the following commands will enumerate user names and groups on a NT machine?
a. netstat
b. nbtstat
c. net view
d. net use

correct answer: b

Detect #3 – Bind Inverse Query/Version Query
Name: ncn.ca
Address: 216.123.177.82
Aug 19 14:26:47 hostname named[xxx]: unapproved query from [216.123.177.82].4974 for "version.bind"
[**] IDS277/named-probe-iquery [**]
08/19-14:26:47.496410 216.123.177.82:4974 -> a.b.c.2:53
UDP TTL:50 TOS:0x0 ID:32151
Len: 35
1F 8F 09 80 00 00 00 01 00 00 00 00 00 00 01 00
01 00 00 7A 69 00 04 04 03 02 01 ...zi......
[**] MISC-DNS-version-query [**]
08/19-14:26:47.878934 216.123.177.82:4974 -> a.b.c.2:53
UDP TTL:50 TOS:0x0 ID:32190
Len: 38
42 24 01 80 00 01 00 00 00 00 00 00 07 76 65 72 B$...........ver
73 69 6F 6E 04 62 69 6E 64 00 00 10 00 03 sion.bind.....

1. Source of Trace
http://www.sans.org/y2k/082400-1030.htm

2. Detect Generated By
This detect was generated by Snort. In particular, the following two Snort rules triggered it:

alert udp !$HOME_NET any -> $HOME_NET 53 (msg:"IDS277 - NAMED Iquery Probe"; content: "|0980 0000 0001 0000
0000|"; offset: 2; depth: 16;)
alert udp !$HOME_NET any -> $HOME_NET 53 (msg:"MISC-DNS-version-query"; content:"version|04|bind|0000 1000
03";))

The fields in the trace are as follows:

Line1: [**] IDS277/named-probe-iquery [**]
 (1)
line 2: 08/19-14:26:47.496410 216.123.177.82:4974 -> a.b.c.2:53
 (2) (3) (4) (5) (6)
line3: UDP TTL:50 TOS:0x0 ID:32151

 (7) (8) (9) (10)
line4: Len: 35

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

8 of 26
1

(11)
line 5-6: 1F 8F 09 80 00 00 00 01 00 00 00 00 00 00 01 00
01 00 00 7A 69 00 04 04 03 02 01 ...zi......
 (12)

(1) Snort Rule msg
(2) Timestamp
(3) Source address
(4) Source port
(5) Destination address
(6) Destination port
(7) Protocol used
(8) Time To Live for packet
(9) Type of Service
(10) IP ID
(11) Size of UDP packet (including 8 byte header)
(12) Content of UDP packet

3. Probability Source Was Spoofed
The attacker is attempting to determine the version of BIND being run on the target. If the attacker is using a
spoofed address, then he would have no way of receiving the desired reconnaissance (e.g. the bind version). As a
result, it is very unlikely that the source of the attack is spoofed.

4. Description of Attack
The attacker is attempting to determine the version of BIND being run on the target machine (run on UDP/53) and
if it supports inverse queries in order to identify if the target machine will be susceptible to a buffer overflow
exploit. There are many known buffer overflow vulnerabilities with earlier versions of BIND (pre 8.2.2 patch
level 5) that will give an attacker root access.

This is CVE-1999-0009.

5. Attack Mechanism
The attacker first issues an inverse query request to determine if the target allows inverse queries. The attacker
follows this with a regular query requesting the bind version (identifiable by the “version.bind” in the content of
the second packet.) This is the same mechanism used by dig to retrieve the BIND version number (several other
tools appear to perform this same request.) This was almost surely performed by an automated script given the
close proximity in time that the inverse query and regular queries were performed. If a vulnerable target was
found, the attacker would very likely have followed with a BIND buffer overflow exploit.

6. Correlations
This is a common scan that can be found in numerous previous GIAC reports. Examples are:
http://www.sans.org/y2k/080100.htm
http://www.sans.org/y2k/071600.htm

7. Evidence of Active Targeting
Since this detect was taken from the GIAC site, it is unknown whether or not this particular machine was actively
targeted. If an assumption is made that the machine is part of a larger network and that it alone was singled out,
then it is likely that some previous reconnaissance has been done such as network mapping.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

9 of 26
1

8. Severity
Since this detect was taken from the GIAC site, the full severity of this attack is unknown. As a result I will make
some assumptions:
• The system is a Unix Server that is not the DNS server for its organization
• The system is running a vulnerable version of BIND
• The system lies behind the organization’s firewall
• The firewall blocks incoming requests to UDP/53.

Using the formula for determining severity [Criticality + Lethality – System Countermeasures – Network
Countermeasures]:
4 (they system is a Server for the organization) + 5 (a buffer overflow would grant root access) – 0 (the system is
running with a vulnerable version of BIND) – 5 (The firewall blocks incoming request to DNS) = 4

This is a moderate to high severity attack. Although it is unlikely that an attacker will be able to reach the
machine through the firewall, there is no protection against attacks generated from the inside of the firewall.

9. Defensive Recommendations
Some countermeasures can be taken to help ensure the integrity of the system. Since the system is not being used
as a DNS server (given the assumptions above), then the service should be disabled entirely to prevent any
possible exploits of it. If there is some valid reason to continue to run DNS on the box, then the administrator
should ensure that it is patched to the latest version of BIND.

10. Multiple Choice Question
08/19-14:26:47.878934 216.123.177.82:4974 -> a.b.c.2:53
UDP TTL:50 TOS:0x0 ID:32190
Len: 38
42 24 01 80 00 01 00 00 00 00 00 00 07 76 65 72 B$...........ver
73 69 6F 6E 04 62 69 6E 64 00 00 10 00 03 sion.bind.....

For the previous packet, which of the following is TRUE:
a. This is a BIND query
b. This is an Domain Inverse Query
c. This uses TCP
d. All of the above

Correct answer: a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

10 of 26
1

Detect #4 – Trojan Scans
FWIN,2000/07/02,02:23:36 -5:00
GMT,64.228.193.42:3293,X.X.X.156:12345,TCP
FWIN,2000/07/02,02:23:48 -5:00
GMT,64.228.193.42:3448,X.X.X.156:12346,TCP
FWIN,2000/07/02,02:23:52 -5:00 GMT,64.228.193.42:3603,X.X.X.156:20034,TCP
FWIN,2000/07/02,02:23:58 -5:00
GMT,64.228.193.42:3758,X.X.X.156:31337,TCP
FWIN,2000/07/02,02:24:04 -5:00
GMT,64.228.193.42:3914,X.X.X.156:1243,TCP

1. Source of Trace
http://www.sans.org/y2k/070500.htm

2. Detect Generated By
This detect was generated by ZoneAlarm.

3. Probability Source Was Spoofed
The attacker is “trolling for trojans”. In order to find a vulnerable system, the attacker must be able to receive the
results of the scan. As a result, it is very unlikely that the attacker is spoofing his address.

4. Description of Attack
The attacker is scanning a single host in an attempt to find trojans that can be used to gain control of the target. In
particular, the attacker is scanning for NetBus (TCP/12345, TCP/12346), NetBus 2 Pro(TCP/20034), Back Orifice
(UDP 31337), SubSeven (TCP/1243). If the attacker receives a response to any of the scan queries, he will then
use that particular trojan to gain control of the target.

5. Attack Mechanism
The attacker sends a series of packets to determine if any well known trojans are installed on the target machine
and listening on their typical ports. If the attacker receives a response from any of the packets, he will know that
the responding port has a trojan running on it that the attacker can then use to gain control over the target
machine.

6. Correlations
Scanning for trojans is common practice on the internet. In reviewing the GIAC site, I did not find any attacks
from the same source address, but there are a number of other similar scans for trojans. Examples are:

http://www.sans.org/y2k/072200.htm
http://www.sans.org/y2k/081500.htm

7. Evidence of Active Targeting
Since ZoneAlarm is being used in the detect, this is likely someone’s personal machine or network. As a result,
the attacker could very likely have been scanning the entire subnet around the target which would not pick up in
its detect. The timeframe between the packet arrivals is somewhat spaced out (4 – 12 seconds), but this could be
the product of a designed slow scan, or alternatively of a scan that is processing a subnet for a particular trojan
and then moving onto the next trojan.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

11 of 26
1

8. Severity
Since this detect was taken from the GIAC site, the full severity of this attack is unknown. As a result I will make
some assumptions:
• The system is the user’s personal box
• The system is running up-to date anti-virus software

Using the formula for determining severity [Criticality + Lethality – System Countermeasures – Network
Countermeasures]:
4 (assuming the system is the user’s personal box) + 5 (a trojan would grant root access) – 5 (the system has up-
to date anti-virus software) – 5 (ZoneAlarm is blocking these packets) = -1

This is a low risk attack. The combination of ZoneAlarm and the up-to date anti-virus software (assumed) will
effectively mitigate the risks involved.

9. Defensive Recommendations
Continue to update anti-virus definitions and the ZoneAlarm rules database.

10. Multiple Choice Question
What trojan is typically associated with the port TCP/1243?

a. SubSeven
b. Deep Throat
c. NetBus
d. None of the Above

Correct answer: a

Detect #5 – Scan for IMAP
Jun 25 21:03:27 dns1 portsentry[608]: attackalert:
 Connect from host: 203.239.106.61/203.239.106.61 to TCP port: 143
Jun 25 21:03:36 dns1 portsentry[608]: attackalert:
 Connect from host: 203.239.106.61/203.239.106.61 to TCP port: 143
Jun 25 21:03:27 dns3 portsentry[301]: attackalert:
 Connect from host: 203.239.106.61/203.239.106.61 to TCP port: 143
Jun 25 21:03:36 dns3 portsentry[301]: attackalert:
 Connect from host: 203.239.106.61/203.239.106.61 to TCP port: 143

1. Source of Trace
http://www.sans.org/y2k/062900.htm

2. Detect Generated By
This detect was generated by portsentry.

3. Probability Source Was Spoofed
The attacker is most likely attempting to identify if targets are running IMAP. In order to find a vulnerable
system, the attacker must be able to receive the results of the scan. As a result, it is very unlikely that the attacker
is spoofing his address.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

12 of 26
1

4. Description of Attack
The attacker is attempting to connect to the IMAP service on the targets (DNS1, DNS3). The IMAP service has
known buffer overflow vulnerabilities than can be exploited to give the attacker root access on the target
machines.

The CVE # for this are:
CVE-1999-0005, CVE-1999-0042, CVE-1999-0920

5. Attack Mechanism
The attacker is sending packets to connect to the IMAP service on the targets. From the trace, it is not fully
apparent the specific type of scan that is being performed (SYN-FIN, XMAS tree, etc…), but if a target sends
back a RESET response, the attacker will know that IMAP is not running. If the attacker receives a SYN-ACK
response, he will know that IMAP is available. Its not entirely clear why each of the targeted machines is
receiving two packets, but one explanation could be two different scan types being made in order to circumvent
filtering controls that might be in place. If the attacker is able to connect to the IMAP service, he will then
attempt a buffer overflow exploit to gain root control of the box.

6. Correlations
http://www.sans.org/y2k/062100-1030.htm
http://www.sans.org/y2k/062500.htm
http://www.sans.org/y2k/062700-1200.htm

7. Evidence of Active Targeting
The two machines identified in this scan are listed as DNS1 and DNS3. Since the attack is directed at the DNS
servers, there is a pretty strong indication that the attacker had some previous knowledge of the network prior to
launching the scan.

8. Severity
Using the formula for determining severity [Criticality + Lethality – System Countermeasures – Network
Countermeasures]:
5 (the targets are DNS servers) + 5 (an IMAP buffer overflow would grant root access) – 5 (PortSentry on the
DNS servers will block attempts) – 1 (DNS servers sitting in DMZ will have little network protection) = 4

This is probably not a high risk attack. The use of PortSentry should effectively block the connection attempts to
the IMAP service. Since the DNS services reside in the DMZ, there will be little in the way of additional network
protection.

9. Defensive Recommendations
The DNS servers should be assessed to determine if they actually require IMAP to be running. It is likely that
they do not need it. If it is required, it should be kept at the latest patch level and the PortSentry configuration
should be maintained to prevent unauthorized connections.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

13 of 26
1

10. Multiple Choice Question
Which port does IMAP typically run on?
a. TCP/143
b. UDP/143
c. TCP/161
d. UDP/161
e. Both a and b
f. Both c and d

Correct answer e

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

14 of 26
1

Assignment 2 – Evaluate an Attack
This is an analysis of exploiting unprotected file shares using the Microsoft “net view” and “net use” commands.

1. Location of Attack

The net view and net use commands are standard parts of the NT and win 9x operating systems.

2. Description of Attack
The Microsoft “net view” and “net use” commands are designed to enable discovery and sharing of resources
between computers on a network. “net view” will display a list of computers in a specified domain or the
shared resources available on a specific computer. “net use” can be used to then connect your computer to the
shared resources on another computer.

Although these are both very useful commands, they are also a simple tool for attackers to use to enumerate
the computers in a domain or to discover open and unprotected file shares on a specific machine. The steps
of the attack are:

a. The attacker performs a “net view \\10.10.45.132”. This returns a list of all the open file shares on the

target machine (see screen shot.) Note that there are three open file shares and one of them appears to be
for the entire hard disk (C.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

15 of 26
1

b. The attacker now performs a “net use f: \\10.10.45.132/c”. This will attempt to map a drive to the share
“C” which will likely grant access to the entire remote hard disk. From the screen shot we can see that
the share “C” is password protected. The attacker could attempt a brute-force effort to gain access, but it
will be easier to try the other available shares to see if they are unprotected.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

16 of 26
1

c. The attacker now issues a “net use \\10.10.45.132/data” command to attempt to connect to the “data”

share. From the screenshot, we can see that this share is unprotected and does not require a password for
connection. The attacker will now have access to any files within this share and can potentially place his
own files (e.g. trojans) there as well.

3. Annotated Network Trace
Network traces of this attack were captured using a packet sniffer called Analyzer. First we will look at the trace
for the “net view” command:

1 | 16h:29m:09s:756855us | FFFFFF-FFFFFF | 0010A4-06A79A | IPX: 0x00000000.0x0552 => 0x00000000.0x0551 | NETBIOS |
2 | 16h:29m:09s:773659us | FFFFFF-FFFFFF | 0010A4-06A79A | ARP: Hardware type= 1, Protocol Type = IP (0800h) | ARP Request |
3 | 16h:29m:09s:773958us | 0010A4-06A79A | 00E029-71C279 | ARP: Hardware type= 1, Protocol Type = IP (0800h) | ARP Reply |
4 | 16h:29m:09s:774038us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (78) | UDP: Port (137 => 137) NETBIOS
NAME: Request: Query |
5 | 16h:29m:09s:774565us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (275) | UDP: Port (137 => 137) NETBIOS
NAME: Response: Query |
6 | 16h:29m:09s:774716us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (64) | TCP: Port (1034 => 139) Data (SN
1994041, ACK 0) |
7 | 16h:29m:09s:774996us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (44) | TCP: Port (139 => 1034) Data (SN
5481384, ACK 1994042) |
8 | 16h:29m:09s:775126us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1034 => 139) Data (SN
1994042, ACK 5481385) |
9 | 16h:29m:09s:775140us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (112) | TCP: Port (1034 => 139) Data (SN
1994042, ACK 5481385) NETBIOS SESSION: Session Request: |
10 | 16h:29m:09s:775542us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (44) | TCP: Port (139 => 1034) Data (SN
5481385, ACK 1994114) NETBIOS SESSION: Positive Session Response |
11 | 16h:29m:09s:776006us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (198) | TCP: Port (1034 => 139) Data (SN
1994114, ACK 5481389) NETBIOS SESSION: Session Message SMB: Negotiate: |
12 | 16h:29m:09s:776315us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (121) | TCP: Port (139 => 1034) Data (SN
5481389, ACK 1994272) NETBIOS SESSION: Session Message SMB: Negotiate: |

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

17 of 26
1

13 | 16h:29m:09s:777272us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (213) | TCP: Port (1034 => 139) Data (SN
1994272, ACK 5481470) NETBIOS SESSION: Session Message SMB: Session Setup andX: |
14 | 16h:29m:09s:777531us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (96) | TCP: Port (139 => 1034) Data (SN
5481470, ACK 1994445) NETBIOS SESSION: Session Message SMB: Session Setup andX: |
15 | 16h:29m:09s:777956us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (139) | TCP: Port (1034 => 139) Data (SN
1994445, ACK 5481526) NETBIOS SESSION: Session Message SMB: Transaction: |
16 | 16h:29m:09s:778404us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (226) | TCP: Port (139 => 1034) Data (SN
5481526, ACK 1994544) NETBIOS SESSION: Session Message SMB: Transaction: |
17 | 16h:29m:09s:892641us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1034 => 139) Data (SN
1994544, ACK 5481712) |
18 | 16h:29m:12s:027265us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (79) | TCP: Port (1034 => 139) Data (SN
1994544, ACK 5481712) NETBIOS SESSION: Session Message SMB: Tree Disconnect: |
19 | 16h:29m:12s:027531us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (79) | TCP: Port (139 => 1034) Data (SN
5481712, ACK 1994583) NETBIOS SESSION: Session Message SMB: Tree Disconnect: |
20 | 16h:29m:12s:027809us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1034 => 139) Data (SN
1994583, ACK 5481751) |
21 | 16h:29m:12s:028005us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (40) | TCP: Port (139 => 1034) Data (SN
5481751, ACK 1994584) NETBIOS SESSION: |
22 | 16h:29m:12s:028113us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1034 => 139) Data (SN
1994584, ACK 5481752) |

On lines 4 and 5 we see an initial connection being made on UDP 137. The source machine is retrieving the
NETBIOS name information to use in its request for share information.

4 | 16h:29m:09s:774038us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (78) | UDP: Port (137 => 137) NETBIOS
NAME: Request: Query |
5 | 16h:29m:09s:774565us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (275) | UDP: Port (137 => 137) NETBIOS
NAME: Response: Query |

On lines 6 through 8 we see the TCP handshake to establish the connection on port 139.

6 | 16h:29m:09s:774716us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (64) | TCP: Port (1034 => 139) Data (SN
1994041, ACK 0) |
7 | 16h:29m:09s:774996us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (44) | TCP: Port (139 => 1034) Data (SN
5481384, ACK 1994042) |
8 | 16h:29m:09s:775126us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1034 => 139) Data (SN
1994042, ACK 5481385) |

Lines 9 – 13 are establishing the SMB connection on the hidden interprocess communications share (IPC$). If we
look at the content of the packet on line 13, we see the specific connection request to that share being made (in
bold.)

* 00 E0 29 71 | C2 79 00 10 | A4 06 A7 9A | 08 00 45 0E [..)q.y........E.]
* 00 D5 D3 00 | 40 00 80 06 | B7 F7 0A 0A | 2D 85 0A 0A [....@.......-...]
* 2D 84 04 0A | 00 8B 00 1E | 6E 20 00 53 | A3 FE 50 18 [-.......n .S..P.]
* 21 E3 97 A5 | 00 00 00 00 | 00 A9 FF 53 | 4D 42 73 00 [!..........SMBs.]
* 00 00 00 10 | 00 00 00 00 | 00 00 00 00 | 00 00 00 00 [................]
* 00 00 00 00 | 00 43 00 01 | 00 01 0D 75 | 00 70 00 68 [.....C.....u.p.h]
* 0B 02 00 00 | 00 0D 00 00 | 80 01 00 01 | 00 00 00 00 [................]
* 00 01 00 00 | 00 33 00 00 | 00 45 52 49 | 43 5F 54 5F [.....3...ERIC_T_]
* 42 52 45 4C | 53 46 4F 52 | 44 00 47 4D | 55 2D 4C 4D [BRELSFORD.GMU-LM]
* 55 00 57 69 | 6E 64 6F 77 | 73 20 34 2E | 30 00 57 69 [U.Windows 4.0.Wi]
* 6E 64 6F 77 | 73 20 34 2E | 30 00 04 FF | 00 00 00 02 [ndows 4.0.......]
* 00 18 00 2E | 00 59 9F 7C | F9 E8 94 BC | B1 B4 3E 78 [.....Y.|......>x]
* EB 68 FA 4E | C6 0D 15 44 | 71 53 06 EA | 21 5C 5C 42 [.h.N...DqS..!\\B]
* 52 45 4C 53 | 46 4F 52 44 | 31 5C 49 50 | 43 24 00 49 [RELSFORD1\IPC$.I]
* 50 43 00 | | | [PC.]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

18 of 26
1

Lines 14 – 16 consist of the actual request for the share information, the response back from the target, and the
acknowledgment from the source machine:

14 | 16h:29m:09s:777531us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (96) | TCP: Port (139 => 1034) Data (SN
5481470, ACK 1994445) NETBIOS SESSION: Session Message SMB: Session Setup andX: |
15 | 16h:29m:09s:777956us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (139) | TCP: Port (1034 => 139) Data (SN
1994445, ACK 5481526) NETBIOS SESSION: Session Message SMB: Transaction: |
16 | 16h:29m:09s:778404us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (226) | TCP: Port (139 => 1034) Data (SN
5481526, ACK 1994544) NETBIOS SESSION: Session Message SMB: Transaction: |

The content of the packet from line 15 shows the share information that is being returned:

* 00 10 A4 06 | A7 9A 00 E0 | 29 71 C2 79 | 08 00 45 00 [........)q.y..E.]
* 00 E2 1E 01 | 40 00 20 06 | CC F8 0A 0A | 2D 84 0A 0A [....@.-...]
* 2D 85 00 8B | 04 0A 00 53 | A4 36 00 1E | 6F 30 50 18 [-......S.6..o0P.]
* 20 42 2B 34 | 00 00 00 00 | 00 B6 FF 53 | 4D 42 25 00 [B+4.......SMB%.]
* 00 00 00 80 | 00 00 00 00 | 00 00 00 00 | 00 00 00 00 [................]
* 00 00 00 00 | 00 43 00 00 | 01 01 0A 00 | 08 00 76 00 [.....C........v.]

 * 00 00 08 00 | 37 00 00 00 | 76 00 40 00 | 00 00 00 7F [....7...v.@....]
* 00 00 00 8A | 4F 04 00 04 | 00 5C 44 41 | 54 41 00 00 [....O....\DATA..]
* 00 00 00 00 | 00 00 00 00 | 00 00 FF 4F | A5 C8 43 00 [...........O..C.]
* 00 00 00 00 | 00 00 00 00 | 00 00 00 00 | 00 00 FE 4F [...............O]
* A5 C8 4D 59 | 20 44 4F 43 | 55 4D 45 4E | 54 53 00 00 [..MY DOCUMENTS..]
* 00 00 FD 4F | A5 C8 49 50 | 43 24 00 00 | 00 00 00 00 [...O..IPC$......]
* 00 00 00 00 | 03 00 DA 4F | A5 C8 52 65 | 6D 6F 74 65 [.......O..Remote]
* 20 49 6E 74 | 65 72 20 50 | 72 6F 63 65 | 73 73 20 43 [Inter Process C]
* 6F 6D 6D 75 | 6E 69 63 61 | 74 69 6F 6E | 00 00 00 00 [ommunication....]

Next we will look at the trace from the “net use” command. For brevity, we will just look at the second net use
command issued – “net use f: \\10.10.45.132/data”:

1 | 17h:02m:19s:662744us | FFFFFF-FFFFFF | 0010A4-06A79A | IPX: 0x00000000.0x0552 => 0x00000000.0x0551 | NETBIOS |
2 | 17h:02m:19s:679743us | FFFFFF-FFFFFF | 0010A4-06A79A | ARP: Hardware type= 1, Protocol Type = IP (0800h) | ARP Request |
3 | 17h:02m:19s:679999us | 0010A4-06A79A | 00E029-71C279 | ARP: Hardware type= 1, Protocol Type = IP (0800h) | ARP Reply |
4 | 17h:02m:19s:680071us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (78) | UDP: Port (137 => 137) NETBIOS
NAME: Request: Query |
5 | 17h:02m:19s:680601us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (275) | UDP: Port (137 => 137) NETBIOS
NAME: Response: Query |
6 | 17h:02m:19s:680767us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (64) | TCP: Port (1039 => 139) Data (SN
3984238, ACK 0) |
7 | 17h:02m:19s:681089us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (44) | TCP: Port (139 => 1039) Data (SN
7471566, ACK 3984239) |
8 | 17h:02m:19s:681211us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1039 => 139) Data (SN
3984239, ACK 7471567) |
9 | 17h:02m:19s:681228us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (112) | TCP: Port (1039 => 139) Data (SN
3984239, ACK 7471567) NETBIOS SESSION: Session Request: |
10 | 17h:02m:19s:681638us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (44) | TCP: Port (139 => 1039) Data (SN
7471567, ACK 3984311) NETBIOS SESSION: Positive Session Response |
11 | 17h:02m:19s:684094us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (78) | UDP: Port (137 => 137) NETBIOS
NAME: Request: Query |
12 | 17h:02m:19s:684430us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (275) | UDP: Port (137 => 137) NETBIOS
NAME: Response: Query |
13 | 17h:02m:19s:685025us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (198) | TCP: Port (1039 => 139) Data (SN
3984311, ACK 7471571) NETBIOS SESSION: Session Message SMB: Negotiate: |
14 | 17h:02m:19s:685380us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (121) | TCP: Port (139 => 1039) Data (SN
7471571, ACK 3984469) NETBIOS SESSION: Session Message SMB: Negotiate: |
15 | 17h:02m:19s:686411us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (212) | TCP: Port (1039 => 139) Data (SN
3984469, ACK 7471652) NETBIOS SESSION: Session Message SMB: Session Setup andX: |
16 | 17h:02m:19s:686673us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (95) | TCP: Port (139 => 1039) Data (SN
7471652, ACK 3984641) NETBIOS SESSION: Session Message SMB: Session Setup andX: |
17 | 17h:02m:19s:807521us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1039 => 139) Data (SN
3984641, ACK 7471707) |

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

19 of 26
1

18 | 17h:02m:22s:248237us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (122) | TCP: Port (1039 => 139) Data (SN
3984641, ACK 7471707) NETBIOS SESSION: Session Message SMB: Transaction2: |
19 | 17h:02m:22s:248708us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (122) | TCP: Port (139 => 1039) Data (SN
7471707, ACK 3984723) NETBIOS SESSION: Session Message SMB: Transaction2: |
20 | 17h:02m:22s:374540us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1039 => 139) Data (SN
3984723, ACK 7471789) |

As with the “Net View” command, lines 6 – 8 are establishing the TCP handshake on port 139:

6 | 17h:02m:19s:680767us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (64) | TCP: Port (1039 => 139) Data (SN
3984238, ACK 0) |
7 | 17h:02m:19s:681089us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (44) | TCP: Port (139 => 1039) Data (SN
7471566, ACK 3984239) |
8 | 17h:02m:19s:681211us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1039 => 139) Data (SN
3984239, ACK 7471567) |

Lines 15 – 17 contain the connection request to the “data” share. Line 15 contains the request, line 16 is the
response, and line 17 is the source’s acknowledgement of the response:

15 | 17h:02m:19s:686411us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (212) | TCP: Port (1039 => 139) Data (SN
3984469, ACK 7471652) NETBIOS SESSION: Session Message SMB: Session Setup andX: |
16 | 17h:02m:19s:686673us | 0010A4-06A79A | 00E029-71C279 | IP: 10.10.45.132 => 10.10.45.133 (95) | TCP: Port (139 => 1039) Data (SN
7471652, ACK 3984641) NETBIOS SESSION: Session Message SMB: Session Setup andX: |
17 | 17h:02m:19s:807521us | 00E029-71C279 | 0010A4-06A79A | IP: 10.10.45.133 => 10.10.45.132 (40) | TCP: Port (1039 => 139) Data (SN
3984641, ACK 7471707) |

The contents of the packet on line 15 show the actual connection request to the “data” share:

* 00 E0 29 71 | C2 79 00 10 | A4 06 A7 9A | 08 00 45 0A [..)q.y........E.]
* 00 D4 2F 01 | 40 00 80 06 | 5B FC 0A 0A | 2D 85 0A 0A [../.@...[...-...]
* 2D 84 04 0F | 00 8B 00 3C | CC 55 00 72 | 02 24 50 18 [-......<.U.r.$P.]
* 21 E3 59 0F | 00 00 00 00 | 00 A8 FF 53 | 4D 42 73 00 [!.Y........SMBs.]
* 00 00 00 10 | 00 00 00 00 | 00 00 00 00 | 00 00 00 00 [................]
* 00 00 00 00 | 00 43 00 01 | 02 01 0D 75 | 00 70 00 68 [.....C.....u.p.h]
* 0B 02 00 00 | 00 12 00 01 | 80 01 00 01 | 00 00 00 00 [................]
* 00 01 00 00 | 00 33 00 00 | 00 45 52 49 | 43 5F 54 5F [.....3...ERIC_T_]
* 42 52 45 4C | 53 46 4F 52 | 44 00 47 4D | 55 2D 4C 4D [BRELSFORD.GMU-LM]
* 55 00 57 69 | 6E 64 6F 77 | 73 20 34 2E | 30 00 57 69 [U.Windows 4.0.Wi]
* 6E 64 6F 77 | 73 20 34 2E | 30 00 04 FF | 00 00 00 02 [ndows 4.0.......]
* 00 18 00 2D | 00 F3 BF 95 | 0A 59 FC 39 | 28 1A 43 EA [...-.....Y.9(.C.]
* B6 87 39 04 | 89 FA 5B FF | FF 0E EA 5B | 13 5C 5C 42 [..9...[....[.\\B]
* 52 45 4C 53 | 46 4F 52 44 | 31 5C 44 41 | 54 41 00 41 [RELSFORD1\DATA.A]
* 3A 00 | | | [:.]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

20 of 26
1

Assignment 3 - "Analyze This" Scenario

As part of our bid to provide security services to this facility, this organization has been asked to provide an
analysis report of the IDS detection logs over the past 30 days. As part of this analysis, we intend to identify
hostile traffic and any steps that can be taken to mitigate the associated risk.

Note: For clarity, the log files have been parsed to group related traffic signatures together.

1. WinGate proxy server connections
The largest volume of traffic on this network is destined for WinGate proxy servers. The proxy server will enable
an individual to connect through it to surf the internet. As a result, the individual will appear to be coming from
the proxy server’s address and not their own. This is a popular feature for people that seek anonymity online, but
it can also help to hide the identify of an attacker.

The following table summarizes the most prevalent source and destination addresses within the log files:

Source Address # of Entries Destination Address # of Entries
202.38.128.188 22338 MY.NET.253.105 16045
MY.NET.253.12 6448 MY.NET.99.85 1090
128.231.171.123 2974 MY.NET.60.11 235
24.3.26.53 2010 MY.NET.100.59 108
136.160.4.159 1198 MY.NET.60.8 87
24.13.120.49 934 MY.NET.99.51 82
64.67.15.98 628
199.128.230.169 619
136.160.5.145 568
63.27.117.212 562

From the figures above and the patterns of connection requests, it is apparent that at least two computers within
this network are running WinGate proxy servers. In particular:
• MY.NET.253.105:8080
• MY.NET.99.85:8080

The traces indicate that connections are actually being established and proxying is taking place given the repeated
number of connection requests with the same source and destination addresses. Also indicative of this is the
incrementing port number of the source address and the time interval over which the connections are taking place.
The below excerpt from the logs illustrates this point:

05/24-14:26:32.568556 [**] WinGate 8080 Attempt [**] 136.160.4.159:1976 -> MY.NET.253.105:8080
05/24-14:26:33.564233 [**] WinGate 8080 Attempt [**] 136.160.4.159:1982 -> MY.NET.253.105:8080
05/24-14:26:35.066971 [**] WinGate 8080 Attempt [**] 136.160.4.159:1989 -> MY.NET.253.105:8080
05/24-14:26:35.627300 [**] WinGate 8080 Attempt [**] 136.160.4.159:1992 -> MY.NET.253.105:8080
05/24-14:26:36.490496 [**] WinGate 8080 Attempt [**] 136.160.4.159:1999 -> MY.NET.253.105:8080
05/24-14:26:36.807356 [**] WinGate 8080 Attempt [**] 136.160.4.159:2002 -> MY.NET.253.105:8080
05/24-14:26:40.783081 [**] WinGate 8080 Attempt [**] 136.160.4.159:2032 -> MY.NET.253.105:8080
05/24-14:26:41.065141 [**] WinGate 8080 Attempt [**] 136.160.4.159:2034 -> MY.NET.253.105:8080
05/24-14:26:41.377991 [**] WinGate 8080 Attempt [**] 136.160.4.159:2036 -> MY.NET.253.105:8080
05/24-14:26:41.486061 [**] WinGate 8080 Attempt [**] 136.160.4.159:2037 -> MY.NET.253.105:8080
05/24-14:26:42.132882 [**] WinGate 8080 Attempt [**] 136.160.4.159:2041 -> MY.NET.253.105:8080
*
*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

21 of 26
1

*
05/24-14:38:20.566315 [**] WinGate 8080 Attempt [**] 136.160.4.159:1634 -> MY.NET.253.105:8080
05/24-14:38:24.778626 [**] WinGate 8080 Attempt [**] 136.160.4.159:1635 -> MY.NET.253.105:8080
05/24-14:40:15.164195 [**] WinGate 8080 Attempt [**] 136.160.4.159:1649 -> MY.NET.253.105:8080

In addition to legitimate proxying activities, there is also clear evidence of active scanning of the host network for
WinGate proxy servers. A host with the source address 202.38.128.188 performed a sequential scan of the entire
MY.NET network within a 39 minute interval.

06/01-01:59:13.012322 [**] WinGate 8080 Attempt [**] 202.38.128.188:4953 -> MY.NET.1.0:8080
06/01-01:59:13.036870 [**] WinGate 8080 Attempt [**] 202.38.128.188:4954 -> MY.NET.1.1:8080
06/01-01:59:13.049802 [**] WinGate 8080 Attempt [**] 202.38.128.188:4955 -> MY.NET.1.2:8080
06/01-01:59:13.100513 [**] WinGate 8080 Attempt [**] 202.38.128.188:4956 -> MY.NET.1.3:8080
06/01-01:59:13.181110 [**] WinGate 8080 Attempt [**] 202.38.128.188:4959 -> MY.NET.1.6:8080
06/01-01:59:13.216122 [**] WinGate 8080 Attempt [**] 202.38.128.188:4960 -> MY.NET.1.7:8080
06/01-01:59:13.340451 [**] WinGate 8080 Attempt [**] 202.38.128.188:4963 -> MY.NET.1.10:8080
06/01-01:59:13.351379 [**] WinGate 8080 Attempt [**] 202.38.128.188:4964 -> MY.NET.1.11:8080
06/01-01:59:13.584223 [**] WinGate 8080 Attempt [**] 202.38.128.188:4970 -> MY.NET.1.17:8080
06/01-01:59:13.619683 [**] WinGate 8080 Attempt [**] 202.38.128.188:4971 -> MY.NET.1.18:8080
06/01-01:59:13.663364 [**] WinGate 8080 Attempt [**] 202.38.128.188:4972 -> MY.NET.1.19:8080
06/01-01:59:13.684310 [**] WinGate 8080 Attempt [**] 202.38.128.188:4973 -> MY.NET.1.20:8080
06/01-01:59:13.717973 [**] WinGate 8080 Attempt [**] 202.38.128.188:4974 -> MY.NET.1.21:8080
*
*
*
06/01-02:38:26.736583 [**] WinGate 8080 Attempt [**] 202.38.128.188:2398 -> MY.NET.254.250:8080
06/01-02:38:26.753044 [**] WinGate 8080 Attempt [**] 202.38.128.188:2399 -> MY.NET.254.251:8080
06/01-02:38:27.028567 [**] WinGate 8080 Attempt [**] 202.38.128.188:2400 -> MY.NET.254.252:8080
06/01-02:38:27.042807 [**] WinGate 8080 Attempt [**] 202.38.128.188:2401 -> MY.NET.254.253:8080
06/01-02:38:27.045056 [**] WinGate 8080 Attempt [**] 202.38.128.188:2402 -> MY.NET.254.254:8080
06/01-02:38:27.049122 [**] WinGate 8080 Attempt [**] 202.38.128.188:2403 -> MY.NET.254.255:8080

There is also evidence that the internal host MY.NET.253.12 has been compromised. This host is performing a
sequential scan of the .16, .19, .101, and .102 subnets. This scan is occurring between 5/28 and 6/1. However,
there is a gap in the logging on 5/30 so additional subnets likely have been scanned as well.

The scan itself follows an interesting pattern:
• Two connection requests are made to port 1080 on the destination host always using source port numbers

43746 and 43747.
• Four connection requests are then made to port 8080 using source port numbers 43746, 43747, 43749, 43750
• Two additional requests are then made to port 1080 using source port numbers 43749 and 43750

05/29-04:59:00.935197 [**] WinGate 1080 Attempt [**] MY.NET.253.12:43746 -> MY.NET.16.234:1080
05/29-04:59:01.416507 [**] WinGate 1080 Attempt [**] MY.NET.253.12:43747 -> MY.NET.16.234:1080
05/29-04:59:33.623965 [**] WinGate 8080 Attempt [**] MY.NET.253.12:43746 -> MY.NET.16.234:8080
05/29-04:59:34.103378 [**] WinGate 8080 Attempt [**] MY.NET.253.12:43747 -> MY.NET.16.234:8080
05/29-05:01:34.304755 [**] WinGate 8080 Attempt [**] MY.NET.253.12:43749 -> MY.NET.16.234:8080
05/29-05:01:34.785441 [**] WinGate 8080 Attempt [**] MY.NET.253.12:43750 -> MY.NET.16.234:8080
05/29-05:02:10.574773 [**] WinGate 1080 Attempt [**] MY.NET.253.12:43749 -> MY.NET.16.234:1080
05/29-05:02:11.094899 [**] WinGate 1080 Attempt [**] MY.NET.253.12:43750 -> MY.NET.16.234:1080

05/31-22:27:21.156888 [**] WinGate 1080 Attempt [**] MY.NET.253.12:43746 -> MY.NET.101.95:1080
05/31-22:27:21.477444 [**] WinGate 1080 Attempt [**] MY.NET.253.12:43747 -> MY.NET.101.95:1080
05/31-22:27:43.151467 [**] WinGate 8080 Attempt [**] MY.NET.253.12:43746 -> MY.NET.101.95:8080
05/31-22:27:43.439376 [**] WinGate 8080 Attempt [**] MY.NET.253.12:43747 -> MY.NET.101.95:8080
05/31-22:29:05.668525 [**] WinGate 8080 Attempt [**] MY.NET.253.12:43749 -> MY.NET.101.95:8080
05/31-22:29:05.988126 [**] WinGate 8080 Attempt [**] MY.NET.253.12:43750 -> MY.NET.101.95:8080
05/31-22:29:27.180431 [**] WinGate 1080 Attempt [**] MY.NET.253.12:43749 -> MY.NET.101.95:1080
05/31-22:29:27.507107 [**] WinGate 1080 Attempt [**] MY.NET.253.12:43750 -> MY.NET.101.95:1080

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

22 of 26
1

2. RPC High Port Access
There are a significant number of “RPC High Port Access” entries in the Snort logs. The following table
summarizes the most prevalent source and destination addresses within the log files:

Source Address # of Entries Destination Address # of Entries
MY.NET.253.12 3249 MY.NET.217.2 1496
205.188.153.106 1976 MY.NET.16.169 8
205.188.153.100 1496 MY.NET.16.171 8
63.90.234.50 580 MY.NET.16.173 8
207.25.253.26 100 MY.NET.16.175 8

A large number of these are false positives. ICQ traffic from source port 4000 going to destination port 32771 is
triggering the Snort RPC rule. ICQ servers typically operate on port 4000 and pick a high numbered port to
connect with.

06/12-09:43:54.351183 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771
06/12-09:45:31.294379 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771
06/12-09:45:54.292615 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771
06/12-09:50:54.130382 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771
06/12-09:51:54.070618 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771
06/12-09:53:53.993889 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771
06/12-09:56:53.860173 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771
06/12-09:57:53.873593 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771
06/12-09:58:53.788880 [**] Attempted Sun RPC high port access [**] 205.188.153.106:4000 ->
MY.NET.218.66:32771

There are several source addresses that are using the port of 4000 and each of them resolves to an AOL ICQ
server when an nslookup is performed.

The remaining RPC-related snort entries should raise some concern. The majority of the connection attempts are
being made to port 32771. Under Solaris, the Rpcbind service listens on port 32771 in addition to the standard
port 111. It is very likely that the attackers are attempting to connect to this service in order to find out what RPC
services are being offered. There are several known buffer overflow vulnerabilities with RPC services that can be
exploited to grant root access.

06/13-10:46:39.512793 [**] SUNRPC highport access! [**] 207.25.253.26:20 -> MY.NET.70.127:32771
06/13-10:46:39.619936 [**] SUNRPC highport access! [**] 207.25.253.26:20 -> MY.NET.70.127:32771
06/13-10:46:39.619987 [**] SUNRPC highport access! [**] 207.25.253.26:20 -> MY.NET.70.127:32771
06/13-10:46:39.620308 [**] SUNRPC highport access! [**] 207.25.253.26:20 -> MY.NET.70.127:32771
06/13-10:46:39.719026 [**] SUNRPC highport access! [**] 207.25.253.26:20 -> MY.NET.70.127:32771
06/13-10:46:39.724895 [**] SUNRPC highport access! [**] 207.25.253.26:20 -> MY.NET.70.127:32771

06/16-09:50:49.140278 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771
06/16-09:50:55.704322 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771
06/16-09:51:08.868385 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771
06/16-09:51:14.620319 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771
06/16-09:51:31.516747 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771
06/16-09:51:34.786129 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771
06/16-09:51:38.876762 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771
06/16-09:51:43.242912 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771
06/16-09:51:44.299559 [**] SUNRPC highport access! [**] 208.226.167.19:21 -> MY.NET.143.87:32771

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

23 of 26
1

The compromised host MY.NET.253.12 is also performing a scan to gather information about available RPC
services. Note that the tool performing this scan in conjunction with the WinGate scan described above is
utilizing the same port numbers for the different types of scans.

05/28-14:30:50.876461 [**] SUNRPC highport access! [**] MY.NET.253.12:43746 -> MY.NET.16.0:32771
05/28-14:30:51.185774 [**] SUNRPC highport access! [**] MY.NET.253.12:43747 -> MY.NET.16.0:32771
05/28-14:31:04.905230 [**] SUNRPC highport access! [**] MY.NET.253.12:43749 -> MY.NET.16.0:32771
05/28-14:31:05.245775 [**] SUNRPC highport access! [**] MY.NET.253.12:43750 -> MY.NET.16.0:32771
05/28-14:34:34.562778 [**] SUNRPC highport access! [**] MY.NET.253.12:43746 -> MY.NET.16.3:32771
05/28-14:34:34.860094 [**] SUNRPC highport access! [**] MY.NET.253.12:43747 -> MY.NET.16.3:32771
05/28-14:34:48.011149 [**] SUNRPC highport access! [**] MY.NET.253.12:43749 -> MY.NET.16.3:32771
05/28-14:34:48.331077 [**] SUNRPC highport access! [**] MY.NET.253.12:43750 -> MY.NET.16.3:32771
05/28-14:38:06.627119 [**] SUNRPC highport access! [**] MY.NET.253.12:43746 -> MY.NET.16.4:32771
05/28-14:38:06.945139 [**] SUNRPC highport access! [**] MY.NET.253.12:43747 -> MY.NET.16.4:32771
05/28-14:38:20.386266 [**] SUNRPC highport access! [**] MY.NET.253.12:43749 -> MY.NET.16.4:32771
05/28-14:38:20.698481 [**] SUNRPC highport access! [**] MY.NET.253.12:43750 -> MY.NET.16.4:32771
05/28-14:41:26.069867 [**] SUNRPC highport access! [**] MY.NET.253.12:43746 -> MY.NET.16.5:32771
05/28-14:41:26.399063 [**] SUNRPC highport access! [**] MY.NET.253.12:43747 -> MY.NET.16.5:32771

3. SNMP Public Access
SNMP activity is also being captured within the Snort logs. The following table summarizes the most prevalent
source and destination addresses:

Source Address # of Entries Destination Address # of Entries
MY.NET.97.183 418 MY.NET.101.192 1242
MY.NET.97.52 120 (*no other destinations)
MY.NET.97.133 113
MY.NET.97.12 93
MY.NET.97.226 80

It is very likely that this is simply normal network traffic that is showing up as a false positive. The strongest
evidence for this is that all of the source addresses emanate from the MY.NET.97 subnet and are all destined for
MY.NET.101.192. There are no external source addresses attempting SNMP connections and none of the
connection attempts are from the known compromised system (MY.NET.253.12.) Additionally, there has been
no evidence that the MY.NET.97 network itself has been compromised.

05/28-19:14:37.565109 [**] SNMP public access [**] MY.NET.97.63:1301 -> MY.NET.101.192:161
05/28-19:15:39.881123 [**] SNMP public access [**] MY.NET.97.63:1302 -> MY.NET.101.192:161
05/28-19:16:42.440903 [**] SNMP public access [**] MY.NET.97.63:1303 -> MY.NET.101.192:161
05/28-19:17:44.802250 [**] SNMP public access [**] MY.NET.97.63:1304 -> MY.NET.101.192:161
05/29-18:27:19.423820 [**] SNMP public access [**] MY.NET.97.183:1051 -> MY.NET.101.192:161
05/29-18:27:21.131280 [**] SNMP public access [**] MY.NET.97.183:1052 -> MY.NET.101.192:161
05/29-18:27:22.201702 [**] SNMP public access [**] MY.NET.97.183:1052 -> MY.NET.101.192:161
05/29-18:27:22.217405 [**] SNMP public access [**] MY.NET.97.183:1053 -> MY.NET.101.192:161

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

24 of 26
1

4. Tiny Fragments
On several instances, external hosts attempted to send fragmented packets that were smaller than should occur
naturally. The following table lists all of the source and destination addresses found in these entries:

Source Address # of Entries Destination Address # of Entries
206.193.209.254 84 MY.NET.219.58 84
24.3.7.221 67 MY.NET.70.121 67
63.236.34.174 6 MY.NET.1.8 6

Attackers will sometimes fragment packets intentionally small in order to pass them through filtering devices that
would otherwise drop the packet. If for example, the TCP header is truncated in half, a packet filtering device
might pass it on to the host even if it is destined for a disallowed port.

05/23-15:24:32.519971 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58
05/23-15:24:33.012982 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58
05/23-15:24:38.099890 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58
05/23-15:24:42.932586 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58
05/23-15:24:43.245630 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58
05/23-15:24:44.262475 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58
05/23-15:24:46.175629 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58
05/23-15:24:47.995867 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58
05/23-15:24:48.590209 [**] Tiny Fragments - Possible Hostile Activity [**] 206.193.209.254 -> MY.NET.219.58

To mitigate this risk, you should ensure that your packet filtering devices will drop packets that are too small to be
naturally occurring.

5. Watchlist Connections
There is a large amount of traffic coming from a foreign network in China and one in Israel. The table details the
most prevalent source and destination addresses:

Source Address # of Entries Destination Address # of Entries
159.226.45.3 4743 MY.NET.253.41 4028
212.179.33.224 3146 MY.NET.181.87 3146
159.226.159.1 2954 MY.NET.100.230 2770
212.179.44.36 1782 MY.NET.253.42 1636
212.179.41.10 691 MY.NET.253.43 1179

A considerable amount of this traffic is destined for port 25 (SMTP). This could be indicative of an active attack
on the mail servers or of these foreign networks sending hostile e-mail to the MY.NET network.

06/01-14:46:40.682610 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2674 -> MY.NET.253.43:25
06/01-14:46:41.917746 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2674 -> MY.NET.253.43:25
06/01-14:46:41.936591 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2674 -> MY.NET.253.43:25
06/01-14:46:43.424081 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2674 -> MY.NET.253.43:25
06/01-14:46:43.427403 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2675 -> MY.NET.253.42:25
06/01-14:46:47.281896 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2675 -> MY.NET.253.42:25
06/01-14:46:48.532084 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2675 -> MY.NET.253.42:25
06/01-14:46:48.543636 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2675 -> MY.NET.253.42:25
06/01-14:46:50.659246 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2675 -> MY.NET.253.42:25
06/01-14:46:52.011940 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2674 -> MY.NET.253.43:25
06/01-14:46:53.463444 [**] Watchlist 000222 NET-NCFC [**] 159.226.159.1:2674 -> MY.NET.253.43:25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Practical Assignment - Eric Brelsford

25 of 26
1

All traffic to and from these networks should be disallowed given the large volume of traffic coming from them
and their specific presence within the snort rules (since they do not appear to have been blocked yet.)

6. NMAP Scan
The compromised host MY.NET.253.12 also appears to be running an NMAP scan as part of its overall scanning
effort. It appears that the destination port is a random high numbered port so this is likely an effort at TCP/IP
stack fingerprinting to determine the OS of the target (as opposed to enumerating the listening services.)

06/01-13:28:49.362157 [**] NMAP TCP ping! [**] MY.NET.253.12:43758 -> MY.NET.102.73:32342
06/01-13:28:53.635992 [**] NMAP TCP ping! [**] MY.NET.253.12:43758 -> MY.NET.102.73:35407
06/01-13:28:56.632772 [**] NMAP TCP ping! [**] MY.NET.253.12:43758 -> MY.NET.102.73:35407
06/01-13:32:18.904953 [**] NMAP TCP ping! [**] MY.NET.253.12:43758 -> MY.NET.102.74:44697
06/01-13:32:23.669483 [**] NMAP TCP ping! [**] MY.NET.253.12:43758 -> MY.NET.102.74:43793
06/01-13:32:26.039215 [**] NMAP TCP ping! [**] MY.NET.253.12:43758 -> MY.NET.102.74:43793
06/01-13:35:37.820606 [**] NMAP TCP ping! [**] MY.NET.253.12:43758 -> MY.NET.102.75:42169

The compromise of MY.NET.253.12 should immediately be addressed to prevent any further damage to the
network.

7. General Port Scans
The Snort portscan preprocessor is generating a very large number of entries in the log. The portscan
preprocessor will create a log entry if a threshold number of ports are being connected to within your network
within a given time interval. The threshold number of ports in this system is set to 7 and the time interval is 2
seconds.

05/27-02:05:54.185396 [**] spp_portscan: PORTSCAN DETECTED from 202.235.50.12 (THRESHOLD 7 connections
in 2 seconds) [**]
05/27-02:05:55.100141 [**] spp_portscan: portscan status from 202.235.50.12: 56 connections across 56
hosts: TCP(56), UDP(0) [**]
05/27-02:05:55.860890 [**] spp_portscan: portscan status from 202.235.50.12: 55 connections across 55
hosts: TCP(55), UDP(0) [**]
05/27-02:05:56.804220 [**] spp_portscan: portscan status from 202.235.50.12: 53 connections across 53
hosts: TCP(53), UDP(0) [**]
05/27-02:05:57.572766 [**] spp_portscan: portscan status from 202.235.50.12: 57 connections across 57
hosts: TCP(57), UDP(0) [**]
05/27-02:05:58.361731 [**] spp_portscan: portscan status from 202.235.50.12: 50 connections across 50
hosts: TCP(50), UDP(0) [**]
05/27-02:05:59.140873 [**] spp_portscan: portscan status from 202.235.50.12: 53 connections across 53
hosts: TCP(53), UDP(0) [**]
05/27-02:05:59.881040 [**] spp_portscan: portscan status from 202.235.50.12: 62 connections across 62
hosts: TCP(62), UDP(0) [**]
05/27-02:06:00.710415 [**] spp_portscan: portscan status from 202.235.50.12: 55 connections across 55
hosts: TCP(55), UDP(0) [**]
05/27-02:06:01.707889 [**] spp_portscan: portscan status from 202.235.50.12: 47 connections across 47
hosts: TCP(47), UDP(0) [**]
05/27-02:06:02.998446 [**] spp_portscan: portscan status from 202.235.50.12: 39 connections across 39
hosts: TCP(39), UDP(0) [**]

The source hosts are conducting these port scans for reconnaissance purposes. A prudent course of action would
be to filter against the most common source addresses before they attempt an active attack. Another course of
action is to notify the ISP’s about the activities of their customers.

