
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

GIAC Intrusion Detection Curriculum – Practical Assignment

SANS Parliament Hill 2000 – 21-14 August 2000

Marc Grégoire

Assignment 1 – Network Detects

Detect 1

19:52:16.700562 P 209.221.143.119 > MY.NET.0.0: icmp: echo request (ttl 236, id 40308)
19:52:16.702422 P 209.221.143.119 > MY.NET.1.0: icmp: echo request (ttl 236, id 40310)
19:52:16.704101 P 209.221.143.119 > MY.NET.0.255: icmp: echo request (ttl 235, id 40309)
19:52:16.704846 P 209.221.143.119 > MY.NET.1.255: icmp: echo request (ttl 235, id 40311)
19:52:16.722646 P 209.221.143.119 > MY.NET.10.0: icmp: echo request (ttl 236, id 40312)
19:52:16.723225 P 209.221.143.119 > MY.NET.100.0: icmp: echo request (ttl 236, id 40314)
19:52:16.724688 P 209.221.143.119 > MY.NET.10.255: icmp: echo request (ttl 235, id 40313)
19:52:16.743052 P 209.221.143.119 > MY.NET.101.0: icmp: echo request (ttl 236, id 40316)
19:52:16.744661 P 209.221.143.119 > MY.NET.101.255: icmp: echo request (ttl 235, id 40317)
19:52:16.745180 P 209.221.143.119 > MY.NET.100.255: icmp: echo request (ttl 235, id 40315)
19:52:16.765283 P 209.221.143.119 > MY.NET.102.255: icmp: echo request (ttl 235, id 40319)
19:52:16.779988 P 209.221.143.119 > MY.NET.102.0: icmp: echo request (ttl 236, id 40318)
19:52:16.780242 P 209.221.143.119 > MY.NET.103.0: icmp: echo request (ttl 236, id 40320)
19:52:16.782285 P 209.221.143.119 > MY.NET.104.0: icmp: echo request (ttl 236, id 40323)
19:52:16.784679 P 209.221.143.119 > MY.NET.103.255: icmp: echo request (ttl 235, id 40322)
19:52:16.785161 P 209.221.143.119 > MY.NET.104.255: icmp: echo request (ttl 235, id 40324)
19:52:16.803304 P 209.221.143.119 > MY.NET.106.0: icmp: echo request (ttl 236, id 40327)
19:52:16.803445 P 209.221.143.119 > MY.NET.105.0: icmp: echo request (ttl 236, id 40325)
19:52:16.805362 P 209.221.143.119 > MY.NET.105.255: icmp: echo request (ttl 235, id 40326)
19:52:16.822769 P 209.221.143.119 > MY.NET.107.0: icmp: echo request (ttl 236, id 40329)
19:52:16.825079 P 209.221.143.119 > MY.NET.106.255: icmp: echo request (ttl 235, id 40328)
19:52:16.825779 P 209.221.143.119 > MY.NET.107.255: icmp: echo request (ttl 235, id 40330)
19:52:16.842345 P 209.221.143.119 > MY.NET.109.0: icmp: echo request (ttl 236, id 40333)
19:52:16.842578 P 209.221.143.119 > MY.NET.108.0: icmp: echo request (ttl 236, id 40331)
19:52:16.845152 P 209.221.143.119 > MY.NET.108.255: icmp: echo request (ttl 235, id 40332)
19:52:16.862349 P 209.221.143.119 > MY.NET.11.0: icmp: echo request (ttl 236, id 40335)
19:52:16.864681 P 209.221.143.119 > MY.NET.109.255: icmp: echo request (ttl 235, id 40334)
19:52:16.865246 P 209.221.143.119 > MY.NET.11.255: icmp: echo request (ttl 235, id 40336)
19:52:16.882038 P 209.221.143.119 > MY.NET.110.0: icmp: echo request (ttl 236, id 40337)
19:52:16.883332 P 209.221.143.119 > MY.NET.111.0: icmp: echo request (ttl 236, id 40339)
19:52:16.884518 P 209.221.143.119 > MY.NET.110.255: icmp: echo request (ttl 235, id 40338)
19:52:16.903157 P 209.221.143.119 > MY.NET.112.255: icmp: echo request (ttl 236, id 40342)
19:52:16.904342 P 209.221.143.119 > MY.NET.111.255: icmp: echo request (ttl 235, id 40340)
19:52:16.904604 P 209.221.143.119 > MY.NET.112.0: icmp: echo request (ttl 235, id 40341)
19:52:16.923835 P 209.221.143.119 > MY.NET.113.0: icmp: echo request (ttl 235, id 40343)
19:52:16.924658 P 209.221.143.119 > MY.NET.114.0: icmp: echo request (ttl 235, id 40345)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

 1. Source of trace (Detect 1)

 This traffic is from my network. It is sniffed at the main gateway to the Internet.

 2. Detect was generated by: (Detect 1)

Shadow intrusion detection system. This Shadow system (version 1.6) is setup as an experimental
facility. It was setup to collect the raw network traffic, to be later used by analysts experimenting with
filters. This trace was generated by me using tcpdump filters on the raw traffic data archived by the
Shadow system. In this particular case, I was looking for malicious ICMP activities. I filtered on ICMP
traffic, then on “echo request” messages, and finally on a specific host that seemed involved in scanning
my network. The trace is in a tcpdump output format. Here is an ICMP sample with description:

Sample:
19:52:16.704101 P 209.221.143.119 > MY.NET.0.255: icmp: echo request (ttl 235, id 40309)

Description:
19:52:16.704101 = timestamp (hh:mm:ss.ssssss)
P = this characters always shows up in my output, it is apparently an artifact of the Linux flavor used. It
is not a protocol flag (not a PUSH). Not used for the analysis.
209.221.143.119 = source IP address
MY.NET.0.255 = destination IP address (sanitized)
icmp: echo request = the ICMP message
ttl 235 = Time To Live value
id 40309 = Packet Identification number

 3. Probability the source address was spoofed (Detect 1)

The source address is not likely to be spoofed. This trace has a Smurf (ICMP broadcast) flavor, which
would normally point to a spoofed source, but it also has a reconnaissance flavor, i.e. scanning hosts.
Normally, in reconnaissance, the source address is not spoofed because the source host needs to see if the
scanned hosts reply and therefore reveal information. In this case, I investigated the source address and
found out that it is an organization scanning the net, building a database of Smurf-amplifiers
(http:\\www.netscan.org). Their goal is apparently to detect the “misconfigured” hosts so that they can be
fixed and not be used as Smurf amplifiers. If the netscan.org address was spoofed, let say by hackers who
disagree with netscan.org “noble” goal of reducing Smurf attacks, we would have probably seen
destination addresses that are part of netscan.org database, i.e. confirmed Smurf amplifiers, which is not
the case for my network.

 4. Description of attack: (Detect 1)

ICMP Echo Request sent to x.y.z.0 and x.y.z.255 broadcast addresses on my network.

Reference: Common Vulnerabilities and Exposures

CVE-1999-0513 ICMP messages to broadcast addresses are allowed, allowing for a Smurf attack that

can cause a denial of service.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

My network is also scanned with these ICMP stimuli for reconnaissance purposes. So the attack can also
be viewed as a probe for Smurf-amplifiers.

 5. Attack mechanism: (Detect 1)

Sending a single ICMP echo request message to x.y.z.255 or to x.y.z.0 (broadcast addresses) could
generate replies from all the individual hosts on the x.y.z subnet. It has an amplification effect. This
technique (Smurf attack) is used for achieving denial of service attacks when the source address is
replaced with a victim’s address (spoofing). An attacker with low bandwidth can generate a lot of traffic
if he uses good amplifier sites. The spoofed address receives all the ICMP echo replies, creating a denial
of service. The amplifier sites are affected in two ways. Some bandwidth wasted and from the victim’s
point of view they look like an attacker. In the case of Detect 1, the source is not spoofed. The source is
systematically scanning all parts of my network to discover subnets that reply. This is the reconnaissance
aspect of Detect 1. The scan is fast in time, therefore no attempts to be stealthy. The source is building a
database of broadcast addresses with more than one reply and make the information publicly available,
hoping that the administrators of those sites will change their configurations to not reply to ICMP
broadcasts. The source web site claims that no network goes more than 2 weeks without being rescanned.

Although the intent of the source site is to pressure administrators of vulnerable subnets by exposing them
publicly, a side effect is an easy to get, complete list of Smurf-amplifiers for whoever wants to stage an
attack. It reminds me of the debate “should a system vulnerability be made public? If yes, then when?

6. Correlations: (Detect 1)

This type of scan to detect Smurf-amplifiers are mentioned on GIAC:

Global Incident Analysis Center - Detects Analyzed 3/5/00 - http://www.sans.org/y2k/030500.htm

 7. Evidence of active targeting: (Detect 1)

This is a general scan of my network. No specific host is targeted. This is in accordance with the
information posted on the source site, which claim that they scan all networks.

 8. Severity: (Detect 1)

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures)
-1 = (4 + 2) – (2 + 5)

Criticality = 4 (many of my hosts could be used as Smurf-amplifiers)
Lethality = 2 (if my hosts reply and later used in Smurf attacks, wasted bandwidth, not as bad as victim)
System Countermeasures = 2 (if it would reach individual hosts they would probably reply)
Network Countermeasures = 5 (the network blocks these request)

One aspect to consider is that the price of being used as a Smurf-amplifier may be bigger than the direct
effect of wasted bandwidth on my network. My organization would be seen as the attacker from the
victim’s point of view. For some types of organization, this kind of embarrassment should not be
neglected. This would normally be taken into account in the threat and risk assessment process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

 9. Defensive recommendation: (Detect 1)

The defensive recommendation is a network configuration that prevents replying to ICMP echo request
on broadcast addresses. It is also good practice to block all ICMP echo requests from the outside for most
internal hosts, and not only to broadcast addresses. In the case of my network, further analysis showed
that not a single reply was generated by the whole scan. The border gateway drops these echo requests.

 10. Multiple choice test question (Detect 1)

Based on this trace:

19:52:16.765283 209.221.143.119 > MY.NET.102.255: icmp: echo request (ttl 235, id 40319)
19:52:16.779988 209.221.143.119 > MY.NET.102.0: icmp: echo request (ttl 236, id 40318)
19:52:16.780242 209.221.143.119 > MY.NET.103.0: icmp: echo request (ttl 236, id 40320)
19:52:16.782285 209.221.143.119 > MY.NET.104.0: icmp: echo request (ttl 236, id 40323)
19:52:16.784679 209.221.143.119 > MY.NET.103.255: icmp: echo request (ttl 235, id 40322)
19:52:16.785161 209.221.143.119 > MY.NET.104.255: icmp: echo request (ttl 235, id 40324)

Would you conclude that?

a) the source is scanning for live routers on MY.NET
b) many spoofed addresses of MY.NET are used in a Smurf attack
c) the source is scanning MY.NET to find potential Smurf-amplifiers
d) the source is attempting a large denial of service on MY.NET

Answer: c

Detect 2

05:52:10.555135 P HOST.FOREIGN.NET.3618 > MY.NET.237.251.netbios-ssn: S
24974272:24974272(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 41158)
05:52:11.457963 P HOST.FOREIGN.NET.3619 > MY.NET.237.252.netbios-ssn: S
24981275:24981275(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 41926)
05:52:15.514718 P HOST.FOREIGN.NET.3621 > MY.NET.237.253.netbios-ssn: S
24988281:24988281(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 43718)
05:52:15.578149 P HOST.FOREIGN.NET.3617 > MY.NET.237.250.netbios-ssn: S
24967271:24967271(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 43974)
05:52:17.487909 P HOST.FOREIGN.NET.3619 > MY.NET.237.252.netbios-ssn: S
24981275:24981275(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 45254)
05:52:18.498834 P HOST.FOREIGN.NET.3621 > MY.NET.237.253.netbios-ssn: S
24988281:24988281(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 45510)
05:52:22.513408 P HOST.FOREIGN.NET.3622 > MY.NET.237.254.netbios-ssn: S
24995281:24995281(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 46278)
05:52:24.527847 P HOST.FOREIGN.NET.3621 > MY.NET.237.253.netbios-ssn: S
24988281:24988281(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 47302)
05:52:25.435006 P HOST.FOREIGN.NET.3622 > MY.NET.237.254.netbios-ssn: S
24995281:24995281(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 47558)
05:52:29.568854 P HOST.FOREIGN.NET.3619 > MY.NET.237.252.netbios-ssn: S
24981275:24981275(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 49862)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

05:52:31.492991 P HOST.FOREIGN.NET.3622 > MY.NET.237.254.netbios-ssn: S
24995281:24995281(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 51142)
05:52:36.618132 P HOST.FOREIGN.NET.3621 > MY.NET.237.253.netbios-ssn: S
24988281:24988281(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 55750)
05:52:43.563272 P HOST.FOREIGN.NET.3622 > MY.NET.237.254.netbios-ssn: S
24995281:24995281(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 58822)
06:22:13.891656 P HOST.FOREIGN.NET.3963 > MY.NET.236.1.netbios-ssn: S 26786841:26786841(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 37334)
06:22:16.865780 P HOST.FOREIGN.NET.3963 > MY.NET.236.1.netbios-ssn: S 26786841:26786841(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 38102)
06:22:20.895791 P HOST.FOREIGN.NET.3964 > MY.NET.236.2.netbios-ssn: S 26793846:26793846(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 38870)
06:22:22.896321 P HOST.FOREIGN.NET.3963 > MY.NET.236.1.netbios-ssn: S 26786841:26786841(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 39638)
06:22:23.901621 P HOST.FOREIGN.NET.3964 > MY.NET.236.2.netbios-ssn: S 26793846:26793846(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 40150)
06:22:27.890379 P HOST.FOREIGN.NET.3965 > MY.NET.236.3.netbios-ssn: S 26800856:26800856(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 41174)
06:22:29.951460 P HOST.FOREIGN.NET.3964 > MY.NET.236.2.netbios-ssn: S 26793846:26793846(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 41686)
06:22:30.839528 P HOST.FOREIGN.NET.3965 > MY.NET.236.3.netbios-ssn: S 26800856:26800856(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 41942)
06:22:34.906618 P HOST.FOREIGN.NET.3966 > MY.NET.236.4.netbios-ssn: S 26807861:26807861(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 42966)
06:22:34.961292 P HOST.FOREIGN.NET.3963 > MY.NET.236.1.netbios-ssn: S 26786841:26786841(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 43222)
06:22:36.839760 P HOST.FOREIGN.NET.3965 > MY.NET.236.3.netbios-ssn: S 26800856:26800856(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 43734)
06:22:37.866184 P HOST.FOREIGN.NET.3966 > MY.NET.236.4.netbios-ssn: S 26807861:26807861(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 43990)
06:22:41.906693 P HOST.FOREIGN.NET.3967 > MY.NET.236.5.netbios-ssn: S 26814871:26814871(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 44246)
06:22:41.988783 P HOST.FOREIGN.NET.3964 > MY.NET.236.2.netbios-ssn: S 26793846:26793846(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 44502)
06:22:43.908545 P HOST.FOREIGN.NET.3966 > MY.NET.236.4.netbios-ssn: S 26807861:26807861(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 45270)
06:22:44.892675 P HOST.FOREIGN.NET.3967 > MY.NET.236.5.netbios-ssn: S 26814871:26814871(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 45526)
06:22:48.908741 P HOST.FOREIGN.NET.3968 > MY.NET.236.6.netbios-ssn: S 26821881:26821881(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 46294)
06:22:48.917258 P HOST.FOREIGN.NET.3965 > MY.NET.236.3.netbios-ssn: S 26800856:26800856(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 46550)
06:22:50.937626 P HOST.FOREIGN.NET.3967 > MY.NET.236.5.netbios-ssn: S 26814871:26814871(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 46806)
06:22:51.842506 P HOST.FOREIGN.NET.3968 > MY.NET.236.6.netbios-ssn: S 26821881:26821881(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 47574)
06:22:55.917875 P HOST.FOREIGN.NET.3969 > MY.NET.236.7.netbios-ssn: S 26828891:26828891(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 47830)
06:22:55.978850 P HOST.FOREIGN.NET.3966 > MY.NET.236.4.netbios-ssn: S 26807861:26807861(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 48086)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

06:22:57.867594 P HOST.FOREIGN.NET.3968 > MY.NET.236.6.netbios-ssn: S 26821881:26821881(0)
win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 48342)

 1. Source of trace (Detect 2)

 This traffic is from my network. It is sniffed at the main gateway to the Internet.

 2. Detect was generated by: (Detect 2)

Shadow intrusion detection system. This Shadow system (version 1.6) is setup as an experimental
facility. It was setup to collect the raw network traffic, to be later used by analysts experimenting with
filters. This trace was generated by me using tcpdump filters on the raw traffic data archived by the
Shadow system. In this particular case, I was looking for activities on port 139, the NETBIOS session
service port, which is known to be used by exploits. I extracted any traffic with destination port of 139,
and then noticed this scan on my network. The trace is in a tcpdump output format. Here is a TCP
sample with description:

Sample:
05:52:10.555135 P HOST.FOREIGN.NET.3618 > MY.NET.237.251.netbios-ssn: S
24974272:24974272(0) win 8192 <mss 536,nop,nop,sackOK> (DF) (ttl 108, id 41158)

Description:
05:52:10.555135 = timestamp (hh:mm:ss.ssssss)
P = this characters always shows up in my output, it is apparently an artifact of the Linux flavor used. It
is not a protocol flag (not a PUSH). Not used for the analysis.
HOST.FOREIGN.NET.36118 = source host network address (sanitized) and source port (36118)
MY.NET.237.251.netbios-ssn = destination IP address (sanitized) and destination port (netbios-ssn=139)
S 24974272:24974272(0) = TCP SYN flag set, sequence numbers (begin:end), data size in bytes (0)
win 8192 = window size
<mss 536,nop,nop,sackOK> = TCP options (e.g. mss is maximum segment size)
(DF) = IP Don’t Fragment flag
(ttl 108, id 41158) = Time To Live value (108) and Packet Identification number (41158)

 3. Probability the source address was spoofed (Detect 2)

It is unlikely that the source address is spoofed because this trace looks like a reconnaissance scan, and
the source needs to get the reply in order to gather information about the hosts on my network. A whois
query pointed at a Chinese telecom company.

 4. Description of attack: (Detect 2)

Scans of hosts on my network to find out if there are hosts listening on the NETBIOS session service port
(139). There is a known exploit for this port. On Windows NT/2000 computers, users or shares can be
detected using a null session on this port.

Reference: Common Vulnerabilities and Exposures

CAN-1999-0519 ** CANDIDATE (under review) ** A NETBIOS/SMB share password is the

default, null, or missing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

 5. Attack mechanism: (Detect 2)

This attack is a scan to discover hosts that are vulnerable to “null session” attacks. The source host is
systematically scanning each host on my network by trying to establish a TCP connection with a SYN.
The source attempts to connect to each destination host 3 times, which could be a normal TCP retry
behavior. The source port is incremented with each destination host, which would happen if the scanning
tool uses system calls. The pace of the scan is 34 SYNs per minute (i.e. 11 hosts/min.). This is relatively
slow and could be a way to stay below a certain IDS alert threshold.

If a destination hosts replied to those SYNs it would become a potential target for “null session” attacks.
A null session attacks. A null session is a NetBIOS connection established with a zero length string as
user, password, and domain name, which is designed to enable enumeration of shares and users. It was
also found to allow access to the registry with the same level of permissions as the Everyone group

 6. Correlations: (Detect 2)

There are many references to port 139 exploitation from personal firewall developers. Some scans on this
port were reported at: http://www.physiology.rwth-aachen.de/~jens/wwp.html#t10

 7. Evidence of active targeting: (Detect 2)

This is a general scan of my network. No specific host is targeted. The full list of destination hosts
includes many inactive IP numbers. The source does not seem to know a priori which of my hosts are
Windows boxes as it scans all of them.

 8. Severity: (Detect 2)

 Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures)
-1 = (3 + 3) – (2 + 5)

Criticality = 3 (my whole network is targeted)
Lethality = 3 (valuable information could be revealed in successful null session)
System Countermeasures = 2
Network Countermeasures = 5 (the border gateway blocks these port from the Internet)

 9. Defensive recommendation: (Detect 2)

An investigation of the complete trace showed that no hosts replied the TCP connection attempts. It is
good practice to block access to the NETBIOS ports (135-139) from outside a corporate network, and to
verify that they are actually blocked. On a small home network, if one must share files, it is safer to use
NetBEUI or IPX to transfer the files rather than TCP/IP.

 10. Multiple choice test question (Detect 2)

06:22:36.839760 HOST.FOREIGN.NET.3965 > MY.NET.236.3.139: S 26800856:26800856(0) win
8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 43734)
06:22:37.866184 HOST.FOREIGN.NET.3966 > MY.NET.236.4.139: S 26807861:26807861(0) win
8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 43990)
06:22:41.906693 HOST.FOREIGN.NET.3967 > MY.NET.236.5.139: S 26814871:26814871(0) win
8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 44246)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

06:22:41.988783 HOST.FOREIGN.NET.3964 > MY.NET.236.2.139: S 26793846:26793846(0) win
8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 44502)
06:22:43.908545 HOST.FOREIGN.NET.3966 > MY.NET.236.4.139: S 26807861:26807861(0) win
8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 45270)
06:22:44.892675 HOST.FOREIGN.NET.3967 > MY.NET.236.5.139: S 26814871:26814871(0) win
8192 <mss 536,nop,nop,sackOK> (DF) (ttl 109, id 45526)

What is HOST.FOREIGN.NET trying to do?

a) load balancing
b) discover potential targets for null session exploits
c) denial of service
d) finding which source port is suitable for destination port 139

Answer: b

Detect 3

10:41:07.151930 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.14.sunrpc: SF 1405366985:1405366985(0) win
1028 (ttl 31, id 39426)
10:41:07.151997 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.15.sunrpc: SF 1817927555:1817927555(0) win
1028 (ttl 31, id 39426)
10:41:07.155512 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.22.sunrpc: SF 1677527703:1677527703(0) win
1028 (ttl 31, id 39426)
10:41:07.155580 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.25.sunrpc: SF 607499012:607499012(0) win
1028 (ttl 31, id 39426)
10:41:07.159133 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.42.sunrpc: SF 473126440:473126440(0) win
1028 (ttl 31, id 39426)
10:41:07.159162 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.52.sunrpc: SF 1927185356:1927185356(0) win
1028 (ttl 31, id 39426)
10:41:07.159229 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.53.sunrpc: SF 1167671860:1167671860(0) win
1028 (ttl 31, id 39426)
10:41:07.161440 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.61.sunrpc: SF 745606514:745606514(0) win
1028 (ttl 31, id 39426)
10:41:07.163089 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.62.sunrpc: SF 164504862:164504862(0) win
1028 (ttl 31, id 39426)
10:41:07.166656 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.66.sunrpc: SF 1585136521:1585136521(0) win
1028 (ttl 31, id 39426)
10:41:07.166723 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.71.sunrpc: SF 60654602:60654602(0) win 1028
(ttl 31, id 39426)
10:41:07.170241 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.73.sunrpc: SF 1323437936:1323437936(0) win
1028 (ttl 31, id 39426)
10:41:07.170307 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.74.sunrpc: SF 1275247030:1275247030(0) win
1028 (ttl 31, id 39426)
10:41:07.173834 P HOST.BIGNAME.EDU.sunrpc > MY.NET.10.94.sunrpc: SF 1221002675:1221002675(0) win
1028 (ttl 31, id 39426)

 1. Source of trace (Detect 3)

 This traffic is from my network. It is sniffed at the main gateway to the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

 2. Detect was generated by: (Detect 3)

Shadow intrusion detection system. This Shadow system (version 1.6) is setup as an experimental
facility. It was setup to collect the raw network traffic, to be later used by analysts experimenting with
filters. This trace was generated by me, using tcpdump filters on the raw traffic data archived by the
Shadow system. In this case, I was looking for TCP flag settings typical of traffic trying to be stealthy, in
particular the SYN/FIN combination. I noticed a SYN/FIN scan from a particular host and filtered to
isolate it. The tcpdump filter looks like this:

ip and tcp and (tcp[13] & 0x03 =3) and host HOST.BIGNAME.EDU

(See Detect 2 for output format description)

 3. Probability the source address was spoofed (Detect 3)

It is unlikely that the source address is spoofed because this trace is a reconnaissance scan, and the source
needs to get the reply in order to gather information about the hosts on my network. The source IP
address belongs to a prestigious university in the USA. University computers are sometime compromised
by outsiders to and used for malicious activity.

 4. Description of attack: (Detect 3)

This is a SYN/FIN host scan on port 111 (sunrpc). The attacker is looking for Remote Procedure Call
(RPC) services running on my hosts to later exploit some of the vulnerabilities known for the RPC
services. An example would be the rpc.cmsd overflow exploit, which could be used to execute arbitrary
commands.

Reference: Common Vulnerabilities and Exposures

CVE-1999-0696 Buffer overflow in CDE Calendar Manager Service Daemon (rpc.cmsd)

 5. Attack mechanism: (Detect 3)

This attack is a scan to discover Unix hosts with RPC programs waiting for connections. The connections
to the port 111, if successful, would be answered by rpcbind or portmapper. The reply would then
indicate the RPC services running and the attacker would use that information to select his favorite RPC
service exploit.

Let’s describe the scan trace in more details. The pace of the scan is fast in time. Both the SYN and the
FIN TCP flags are set, which is not normal. This is a know technique to evade some packet filtering
devices which may, for instance, block only access to port 111 for a normal SYN attempt.

There are two other interesting points about the trace. First, the source port is the same as the destination
port (111). This is not really required to access the portmapper. Second, the packet ID is the same for all
packets (39426). This is probably a signature of the attack tool. Correlation research on GIAC reports
shows SYN/FIN port scans with the exact same packet ID number (39426) and the destination port
number equal to the source port number. Examples of these traces are at:

http://www.sans.org/y2k/070200-2000.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

http://www.sans.org/y2k/050200.htm

 6. Correlations: (Detect 3)

This GIAC reference contains a similar SYN/FIN scan (to DNS port), with the same tool signature and
also a port 111 scan.

http://www.sans.org/y2k/032000.htm

7. Evidence of active targeting: (Detect 3)

This is a general scan of my network. No specific host is targeted. Although the section of the trace
posted in this report may show that some hosts number are missing, the full trace shows that all numbers
are present but not in a clean sequence. The source does not seem to know a priori which of my hosts are
Sun Solaris boxes (sunrpc port) as it scans all of them.

 8. Severity: (Detect 3)

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures)
0 = (3 + 4) – (2 + 5)

Criticality = 3 (my whole network is targeted by a scan)
Lethality = 4 (RPC services exploit could be serious)
System Countermeasures = 3
Network Countermeasures = 5 (the border gateway blocks these port from the Internet)

 9. Defensive recommendation: (Detect 3)

Block access from Internet to port 111 whenever possible regardless of the TCP flags set, and verify that
it works. Some of the RPC services may required, so make sure that all the relevant patches are installed.
Also, the reply which lists the services (rpcinfo) may be disabled.

 10. Multiple choice test question (Detect 3)

10:41:07.161440 HOST.BIGNAME.EDU.sunrpc > MY.NET.10.61.sunrpc: SF 745606514:745606514(0) win 1028
(ttl 31, id 39426)
10:41:07.163089 HOST.BIGNAME.EDU.sunrpc > MY.NET.10.62.sunrpc: SF 164504862:164504862(0) win 1028
(ttl 31, id 39426)
10:41:07.166656 HOST.BIGNAME.EDU.sunrpc > MY.NET.10.66.sunrpc: SF 1585136521:1585136521(0) win
1028 (ttl 31, id 39426)
10:41:07.166723 HOST.BIGNAME.EDU.sunrpc > MY.NET.10.71.sunrpc: SF 60654602:60654602(0) win 1028
(ttl 31, id 39426)
10:41:07.170241 HOST.BIGNAME.EDU.sunrpc > MY.NET.10.73.sunrpc: SF 1323437936:1323437936(0) win
1028 (ttl 31, id 39426)
10:41:07.170307 HOST.BIGNAME.EDU.sunrpc > MY.NET.10.74.sunrpc: SF 1275247030:1275247030(0) win
1028 (ttl 31, id 39426)

In this trace, what could be a sign that an attack tool generated it?

 a) SYN and FIN are both set
 b) the packet ID is the same for all packets

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

 c) the source port and the destination port are both sunrpc (111)
 d) all of the above

 answer: d

Detect 4

18:52:31.264953 P 64.71.131.44.13269 > MY.NET.135.206.1163: R 0:0(0) ack 674719802 win 0 (ttl 55, id 59623)
18:52:32.104755 P 64.71.131.44.17022 > MY.NET.175.133.1163: R 0:0(0) ack 674719802 win 0 (ttl 55, id 61164)
18:52:33.864967 P 64.71.131.44.25101 > MY.NET.153.8.1163: R 0:0(0) ack 674719802 win 0 (ttl 55, id 26692)
18:52:37.066629 P 64.71.131.44.2654 > MY.NET.95.133.1243: R 0:0(0) ack 674719802 win 0 (ttl 53, id 53833)
18:52:40.710212 P 64.71.131.44.3101 > MY.NET.62.233.2212: R 0:0(0) ack 674719802 win 0 (ttl 53, id 9151)
18:52:43.246199 P 64.71.131.44.3101 > MY.NET.62.233.2212: R 0:0(0) ack 1 win 0 (ttl 53, id 45912)
18:52:53.443359 P 64.71.131.44.4184 > MY.NET.205.4.1412: R 0:0(0) ack 674719802 win 0 (ttl 53, id 41721)
18:52:54.988496 P 64.71.131.44.45374 > MY.NET.249.159.1163: R 0:0(0) ack 674719802 win 0 (ttl 53, id 64715)
18:52:57.152022 P 64.71.131.44.2117 > MY.NET.10.108.1403: R 0:0(0) ack 674719802 win 0 (ttl 53, id 18620)
18:53:09.399683 P 64.71.131.44.5496 > MY.NET.108.13.2292: R 0:0(0) ack 674719802 win 0 (ttl 53, id 58244)
18:53:09.568816 P 64.71.131.44.5496 > MY.NET.108.13.2292: R 0:0(0) ack 1 win 0 (ttl 53, id 26360)
18:53:10.257344 P 64.71.131.44.8201 > MY.NET.157.237.1591: R 0:0(0) ack 674719802 win 0 (ttl 53, id 8641)
18:53:28.648904 P 64.71.131.44.8590 > MY.NET.65.95.2292: R 0:0(0) ack 674719802 win 0 (ttl 53, id 64870)
18:53:54.990773 P 64.71.131.44.17867 > MY.NET.10.189.2212: R 0:0(0) ack 674719802 win 0 (ttl 55, id 59093)
18:54:04.146890 P 64.71.131.44.9597 > MY.NET.26.123.1742: R 0:0(0) ack 674719802 win 0 (ttl 55, id 47503)
18:54:07.291858 P 64.71.131.44.17867 > MY.NET.10.189.2212: R 0:0(0) ack 1 win 0 (ttl 55, id 4531)
18:54:24.480494 P 64.71.131.44.15473 > MY.NET.206.96.1403: R 0:0(0) ack 674719802 win 0 (ttl 53, id 5250)
18:54:26.398717 P 64.71.131.44.23082 > MY.NET.156.208.1153: R 0:0(0) ack 674719802 win 0 (ttl 53, id 47658)
18:54:28.738882 P 64.71.131.44.24329 > MY.NET.91.87.1153: R 0:0(0) ack 674719802 win 0 (ttl 55, id 54135)
18:54:29.956284 P 64.71.131.44.14644 > MY.NET.35.32.2193: R 0:0(0) ack 674719802 win 0 (ttl 53, id 48706)
18:54:30.162606 P 64.71.131.44.14644 > MY.NET.35.32.2193: R 0:0(0) ack 1 win 0 (ttl 53, id 1739)
18:54:30.519873 P 64.71.131.44.14644 > MY.NET.35.32.2193: R 0:0(0) ack 1 win 0 (ttl 53, id 10941)
18:54:32.077821 P 64.71.131.44.19685 > MY.NET.219.195.1502: R 0:0(0) ack 674719802 win 0 (ttl 53, id 6106)
18:54:32.902430 P 64.71.131.44.22964 > MY.NET.125.197.2212: R 0:0(0) ack 674719802 win 0 (ttl 53, id 26816)
18:54:34.352097 P 64.71.131.44.60026 > MY.NET.183.1.1163: R 0:0(0) ack 674719802 win 0 (ttl 55, id 60258)
18:54:38.404614 P 64.71.131.44.20954 > MY.NET.86.89.1502: R 0:0(0) ack 674719802 win 0 (ttl 55, id 53078)
18:54:38.948925 P 64.71.131.44.22964 > MY.NET.125.197.2212: R 0:0(0) ack 1 win 0 (ttl 53, id 27757)
18:54:56.704594 P 64.71.131.44.21550 > MY.NET.143.32.2292: R 0:0(0) ack 674719802 win 0 (ttl 53, id 149)
18:55:03.328968 P 64.71.131.44.23018 > MY.NET.1.94.1323: R 0:0(0) ack 674719802 win 0 (ttl 53, id 52461)
18:55:17.047121 P 64.71.131.44.29243 > MY.NET.38.37.2212: R 0:0(0) ack 674719802 win 0 (ttl 53, id 65405)
18:55:19.161270 P 64.71.131.44.27808 > MY.NET.59.182.1502: R 0:0(0) ack 674719802 win 0 (ttl 53, id 55066)
18:55:21.894106 P 64.71.131.44.24679 > MY.NET.236.214.1671: R 0:0(0) ack 674719802 win 0 (ttl 55, id 24394)
18:55:22.309434 P 64.71.131.44.25713 > MY.NET.176.117.1323: R 0:0(0) ack 674719802 win 0 (ttl 55, id 30602)
18:55:24.749258 P 64.71.131.44.29243 > MY.NET.38.37.2212: R 0:0(0) ack 1 win 0 (ttl 53, id 27484)
18:55:38.078357 P 64.71.131.44.34865 > MY.NET.203.252.1153: R 0:0(0) ack 674719802 win 0 (ttl 55, id 1051)
18:55:44.459454 P 64.71.131.44.24115 > MY.NET.208.143.1652: R 0:0(0) ack 674719802 win 0 (ttl 53, id 53868)
18:55:44.603734 P 64.71.131.44.24115 > MY.NET.208.143.1652: R 0:0(0) ack 1 win 0 (ttl 53, id 44609)
18:55:50.177750 P 64.71.131.44.24763 > MY.NET.170.53.1742: R 0:0(0) ack 674719802 win 0 (ttl 53, id 39675)
18:56:06.566824 P 64.71.131.44.33404 > MY.NET.100.247.1412: R 0:0(0) ack 674719802 win 0 (ttl 55, id 18219)
18:56:11.116097 P 64.71.131.44.29380 > MY.NET.26.167.1483: R 0:0(0) ack 674719802 win 0 (ttl 53, id 12314)
18:56:17.429423 P 64.71.131.44.29236 > MY.NET.189.102.1041: R 0:0(0) ack 674719802 win 0 (ttl 55, id 50827)
18:56:18.020523 P 64.71.131.44.30652 > MY.NET.139.137.2193: R 0:0(0) ack 674719802 win 0 (ttl 55, id 40819)
18:56:18.105743 P 64.71.131.44.30652 > MY.NET.139.137.2193: R 0:0(0) ack 1 win 0 (ttl 55, id 45681)
18:56:18.338424 P 64.71.131.44.30652 > MY.NET.139.137.2193: R 0:0(0) ack 1 win 0 (ttl 55, id 46022)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

 1. Source of trace (Detect 4)

 This traffic is from my network. It is sniffed at the main gateway to the Internet.

 2. Detect was generated by: (Detect 4)

Shadow intrusion detection system. This Shadow system (version 1.6) is setup as an experimental
facility. It was setup to collect the raw network traffic, to be later used by analysts experimenting with
filters. This trace was generated by me, using tcpdump filters on the raw traffic data archived by the
Shadow system.

 3. Probability the source address was spoofed (Detect 4)

It is unlikely that the source address is spoofed because this trace is a reconnaissance scan, and the source
needs to get the reply in order to gather information about the hosts on my network.

 4. Description of attack: (Detect 4)

This is a RESET scan. It is meant to provoke responses that could be used to map my network. Some
routers may return information on the host targeted not being reachable

 5. Attack mechanism: (Detect 4)

This is some sort of stealthy technique to map networks. The scanner tries to hit destination host with a
TCP RESET packet, without prior exchange with that host. From the destination host point of view it is a
response to a stimulus that it did not sent. The scanner may get replies from routers saying that certain
hosts are not reachable because the router may assume that the inside hosts did initiate the connection
with the host. In fact, the router does not know because it does not keep track of the states of connections.
The scanner concludes that the hosts for which the unreachable was not sent really exists. This is called
inverse mapping.

 6. Correlations: (Detect 4)

I found a similar trace on page in the book Network Intrusion Detection – An analyst’s handbook, by
Stephen Northcutt (NewRiders Publishing). The trace in the book is probably from the same attack tool
because the packet sequence number is constant and identical to the one in my trace (674719802).

 7. Evidence of active targeting: (Detect 4)

This is a general scan of my network. No specific host seems targeted.

 8. Severity: (Detect 4)

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures)
-2 = (3 + 2) – (2 + 5)

Criticality = 3 (many of my hosts could be used as Smurf-amplifiers)
Lethality = 2 (only scanning, for now)
System Countermeasures = 2
Network Countermeasures = 5 (the network blocks these request)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

9. Defensive recommendation: (Detect 4)

Defenses are fine, our border router did not return any information to the scanning source during the
whole scan.

 10. Multiple choice test question (Detect 4)

18:52:31.264953 P 64.71.131.44.13269 > MY.NET.135.206.1163: R 0:0(0) ack 674719802 win 0 (ttl 55, id 59623)
18:52:32.104755 P 64.71.131.44.17022 > MY.NET.175.133.1163: R 0:0(0) ack 674719802 win 0 (ttl 55, id 61164)
18:52:33.864967 P 64.71.131.44.25101 > MY.NET.153.8.1163: R 0:0(0) ack 674719802 win 0 (ttl 55, id 26692)
18:52:37.066629 P 64.71.131.44.2654 > MY.NET.95.133.1243: R 0:0(0) ack 674719802 win 0 (ttl 53, id 53833)
18:52:40.710212 P 64.71.131.44.3101 > MY.NET.62.233.2212: R 0:0(0) ack 674719802 win 0 (ttl 53, id 9151)
18:52:43.246199 P 64.71.131.44.3101 > MY.NET.62.233.2212: R 0:0(0) ack 1 win 0 (ttl 53, id 45912)
18:52:53.443359 P 64.71.131.44.4184 > MY.NET.205.4.1412: R 0:0(0) ack 674719802 win 0 (ttl 53, id 41721)
18:52:54.988496 P 64.71.131.44.45374 > MY.NET.249.159.1163: R 0:0(0) ack 674719802 win 0 (ttl 53, id 64715)
18:52:57.152022 P 64.71.131.44.2117 > MY.NET.10.108.1403: R 0:0(0) ack 674719802 win 0 (ttl 53, id 18620)
18:53:09.399683 P 64.71.131.44.5496 > MY.NET.108.13.2292: R 0:0(0) ack 674719802 win 0 (ttl 53, id 58244)
18:53:09.568816 P 64.71.131.44.5496 > MY.NET.108.13.2292: R 0:0(0) ack 1 win 0 (ttl 53, id 26360)
18:53:10.257344 P 64.71.131.44.8201 > MY.NET.157.237.1591: R 0:0(0) ack 674719802 win 0 (ttl 53, id 8641)
18:53:28.648904 P 64.71.131.44.8590 > MY.NET.65.95.2292: R 0:0(0) ack 674719802 win 0 (ttl 53, id 64870)
18:53:54.990773 P 64.71.131.44.17867 > MY.NET.10.189.2212: R 0:0(0) ack 674719802 win 0 (ttl 55, id 59093)
18:54:04.146890 P 64.71.131.44.9597 > MY.NET.26.123.1742: R 0:0(0) ack 674719802 win 0 (ttl 55, id 47503)
18:54:07.291858 P 64.71.131.44.17867 > MY.NET.10.189.2212: R 0:0(0) ack 1 win 0 (ttl 55, id 4531)

What do you think this trace is?

 a) MY.NET hosts are replying to a Smurf attack
 b) 64.71.131.44 is a defective router
 c) a traceroute
 d) a RESET scan for mapping purposes

 answer: d

Assignment 2 – Evaluate and Attack

Attack name: Teardrop
Attack type: Denial of service
Attack tool: Targa 2

The attack tool is Targa 2 (http://mixter.warrior2k.com/targa2.c). The author is Mixter, also known as the
author of TFN, a distributed denial of service tool. Targa 2 is an interface to eleven multi-platform remote
denial of service (DoS) exploits. Here is the header of the source program that includes the list of DoS
exploits, their author, and the vulnerable platforms.

/* targa2.c - copyright by Mixter <mixter@popmail.com>
 version 2.1 - released 22/3/99 - interface to 11
 multi-platform remote denial of service exploits

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

 gcc -Wall -O2 targa2.c -o targa2 ; strip targa2 */

/*
 * featured exploits / authors / vulnerable platforms
 * bonk by route|daemon9 & klepto - win95, nameservers
 * jolt by Jeff W. Roberson (overdrop: Mixter) - win95, klog (old linux)
 * land by m3lt - win95/nt, old un*x's
 * nestea by humble & ttol - older linux/bsd?
 * newtear by route|daemon9 - linux/bsd/win95/others
 * syndrop by PineKoan - linux/win95/?
 * teardrop by route|daemon9 - lots of os's
 * winnuke by _eci - win95/win31
 * 1234 by DarkShadow/Flu - win95/98/nt/others?
 * saihyousen by noc-wage - win98/firewalls/routers
 * oshare by r00t zer0 - win9x/NT/macintosh
 */

/* http://members.xoom.com/i0wnu - code copyright by Mixter */

Teardrop Attack

Teardrop is an attack that aims at crashing vulnerable systems by sending them fragmented packets with
illegal offset values that cause the destination system to reassemble the data with an overlap. Some
systems were found to “badly react” to this. Here is Common Vulnerabilities and Exposures (CVE) entry
and a Microsoft Support Article about this vulnerability.

CVE version: 20000712
Name Description
CAN-1999-0015 ** CANDIDATE (under review) ** Teardrop IP denial of service.

Microsoft Knowledge Base Article - Q154174
Invalid ICMP Datagram Fragments Hang Windows NT, Windows 95

The information in this article applies to:

• Microsoft Windows NT Workstation versions 3.51, 4.0
• Microsoft Windows NT Server versions 3.51, 4.0
• Microsoft Windows 95
• Microsoft Windows NT Server version 4.0, Terminal Server Edition

SYMPTOMS
Computers running Windows NT or Windows 95 may stop responding (hang) when they receive
corrupted Internet Control Message Protocol (ICMP) datagram fragments from a client.

RESOLUTION
Microsoft has updated the TCP/IP protocol stack to correct this problem. Instructions for installing it are
available from Microsoft support channels or directly from the Internet locations below.
…

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

Targa was installed on one host on a small lab network and was used to generate many simultaneous DoS
attacks (Teardrop and others) on the same LAN. Here is a Targa Teardrop attack trace for one of the
source address, followed by a detailed explanation of the trace.

23:57:27.167915 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 0 win 512 urg 0 (frag 242:40@0+)
23:57:27.168001 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.187773 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.187860 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.207773 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.207858 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.227787 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.227873 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.247780 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.247864 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.267921 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.268007 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.287773 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.287857 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.307760 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.307846 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.327847 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.327930 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.347764 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.347848 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.367743 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.367828 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.387780 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.387864 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.407780 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.407864 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.427848 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.427932 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)
23:57:27.447792 P 160.247.118.26.35992 > 172.30.0.229.51934: . 0:40(40) ack 1 win 512 urg 0 (frag 242:40@0+)
23:57:27.447865 P 160.247.118.26 > 172.30.0.229: (frag 242:4@24)

Explanation:

The first two packets represent a complete Teardrop attack. The first packet is a fragmented packet with
these characteristics:

- TCP
- fragment ID = 242
- datagram length = 40 bytes
- fragment offset = 0 (the + means more fragments to come)

The second fragment has these characteristics:

- fragment ID = 242 (same as first fragment, therefore it is the second fragment)
- datagram length = 4 bytes
- fragment offset = 24 (no + means this is the last fragment)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

The fragment offset of 24 is not normal. If the first fragment started at offset 0 and had a length of 40
bytes, then the next fragment should have an offset of 40, and not 24. The destination source TCP/IP
stack would overlap the second fragment with the first fragment, as shown in this sketch:

 Fragment 1 0--------------------40
 Fragment 2 24++++

 After reassembly 0-----------++++-----40

Reassembling with an overlap is known to crash/reboot some versions of some operating systems, which
constitutes a denial of service for the user of that system.

One of the signatures of the Teardrop attack is the fragment ID of 242. Some intrusion detection systems
used that value in their detection of this attack, but they had to be patched when variants of Teardrop
started to change that value. The length and offset values in this trace are also signatures of Teardrop.

The Targa delivery of the Teardrop attack repeated that process 15 times, as fast as it could, with the same
spoofed address. I determined that the source address was spoofed because I ran the attack within an
isolated LAN, for which the IP addresses are known.

The Targa program was also generating other DoS attacks on the same host, and one of these attacks is
relevant to the discussion on Teardrop. A tcpdump output of this other attack is presented below:

23:57:07.463870 P 58.83.99.98 > 172.30.0.229: icmp: echo request (frag 4321:380@0+)
23:57:07.464151 P 58.83.99.98 > 172.30.0.229: (frag 4321:380@376+)
23:57:07.464427 P 58.83.99.98 > 172.30.0.229: (frag 4321:380@760+)
23:57:07.464704 P 58.83.99.98 > 172.30.0.229: (frag 4321:380@1136+)
23:57:07.464980 P 58.83.99.98 > 172.30.0.229: (frag 4321:380@1520+)
.
. (packets removed)
.
23:57:07.512401 P 58.83.99.98 > 172.30.0.229: (frag 4321:380@64216+)
23:57:07.512678 P 58.83.99.98 > 172.30.0.229: (frag 4321:380@64600+)
23:57:07.512954 P 58.83.99.98 > 172.30.0.229: (frag 4321:380@64976+)
23:57:07.513230 P 58.83.99.98 > 172.30.0.229: (frag 4321:380@65360)

This is a trace of the Targa’s Jolt attack. It is some sort of combination of the Teardrop attack, because of
the fragment offset anomaly just discussed (376 < 380), and of the Ping O’Death attack, which causes
reassembled IP datagrams to be larger than the maximum IP data size (65360 + 380 > 65535).

The best defense for the Teardrop attack is to apply the patches to the TCP/IP stacks of the affected
operating systems.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

Assignment 3 – “Analyze This” Scenario

(Note: The format is a report from Marc Grégoire to the owner of the MY.NET network)

Introduction

This is a security analysis of your network (MY.NET). Your network was monitored with the Snort
intrusion detection system (IDS) over about 40 days. The Snort reports were analyzed to assess the
security of the network. This report covers the following:

- Data collection,
- Overall statistics of Snort alert reports,
- Overall statistics of Snort scan reports,
- Detailed analysis of specific alerts and specific hosts activities,

- Alerts from outside hosts

- Alerts from inside hosts
- Port scans from outside hosts
- Port scans from inside hosts

- Summary and recommendations.

Data Collection

Network activity was monitored with the Snort IDS (http://www.snort.org). Snort is a free IDS used
extensively by the network security community. The network was monitored from June 27th to August
10th 2000. There were some gaps in the data collected, but the time periods covered are enough to do a
first level assessment of the network activity from a security point of view.

The Snort reports produced are of two types: alert reports and scan reports. The statistics and the analysis
presented below tend to treat the two types of reports separately. A large amount of Snort data was
collected: 80K+ of alerts and 280K+ of scan events. These reports were generated using a fairly standard
set of Snort rules. Each Snort rule is a filter designed to detect a specific type of network traffic that is
normally recognized as malicious, also called attack. As with all other IDS, it is common to have these
rules triggering on legitimate network traffic. These are called false positives, and are part of daily work
of network intrusion detection analysts. The were false positives in the Snort reports on the MY.NET
network.

Overall statistics of Snort alert reports

This section presents overall statistics produced by processing the complete set of Snort alert reports. It is
meant to give a top view of general suspicious activity on your network. Specific events will be
discussed in the detailed section.

The distribution of attacks methods for the whole monitoring period is presented in table 1.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

Table 1: The distribution of attack methods
===
 # of
 % attacks methods
===
37.42 30112 Port Scan related (often more than 1 alert per scan)
24.94 20067 SYN-FIN scan!
17.36 13972 Watchlist 000220 IL-ISDNNET-990517
5.93 4776 Watchlist 000222 NET-NCFC
4.09 3291 WinGate 8080 Attempt
2.88 2318 Attempted Sun RPC high port access
2.78 2240 WinGate 1080 Attempt
1.48 1188 SNMP public access
1.45 1170 IDS247 - MISC - Large UDP Packet
0.40 323 Napster 8888 Data
0.30 240 SMB Name Wildcard
0.26 206 GIAC 000218 VA-CIRT port 34555
0.23 186 GIAC 000218 VA-CIRT port 35555
0.21 170 Napster 7777 Data
0.12 98 Null scan!
0.06 46 NMAP TCP ping!
0.02 20 SUNRPC highport access!
0.01 12 Napster Client Data
0.01 11 Queso fingerprint
0.01 8 External RPC call
0.01 7 IDS127 - TELNET - Login Incorrect
0.01 5 site exec - Possible wu-ftpd exploit - GIAC000623
0.00 4 Happy 99 Virus
0.00 2 Possible wu-ftpd exploit - GIAC000623
0.00 1 Probable NMAP fingerprint attempt
0.00 1 IDS08 - TELNET - daemon-active
0.00 1 FTP-bad-login
0.00 1 Back Orifice

This table clearly shows that a lot of suspicious activity is taking place on this network. The large number
of attacks are not necessarily out of the ordinary for a network of this size, but there are security issues
that need to be addressed in the short term and in the long term. Many of the attack methods will be
addressed in the detailed analysis section. It is worth mentioning that the number of attacks reported for
the “port scan” method is much larger than the number of “complete”port scan detected. This is caused
by the way the Snort system reports these in its Alert Report. Further analysis showed that there were
1487 “complete” port scans.

The number of attacks from same host to same destination using the same method are presented in Table
2. Only the top part of the table is included for clarity (the complete table is available from the author).
Note also that the port scan attacks are not part of this table.

Table 2: The number of attack from same host to same destination using same method
===
 # of
 attacks from to with
===
 4323 212.179.38.141 MY.NET.217.38 Watchlist 000220 IL-ISDNNET-990517
 3231 212.179.19.134 MY.NET.217.114 Watchlist 000220 IL-ISDNNET-990517
 2240 205.188.153.111 MY.NET.217.126 Attempted Sun RPC high port access
 1971 212.179.41.218 MY.NET.217.114 Watchlist 000220 IL-ISDNNET-990517
 1808 212.179.54.69 MY.NET.182.94 Watchlist 000220 IL-ISDNNET-990517

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

 1702 212.179.23.4 MY.NET.179.51 Watchlist 000220 IL-ISDNNET-990517
 1345 159.226.115.1 MY.NET.253.41 Watchlist 000222 NET-NCFC
 1183 128.231.171.123 MY.NET.253.105 WinGate 8080 Attempt
 1170 211.40.176.214 MY.NET.98.179 IDS247 - MISC - Large UDP Packet
 730 212.179.4.238 MY.NET.53.28 Watchlist 000220 IL-ISDNNET-990517
 589 159.226.64.164 MY.NET.253.41 Watchlist 000222 NET-NCFC
 573 159.226.64.164 MY.NET.253.43 Watchlist 000222 NET-NCFC
 546 159.226.64.164 MY.NET.253.42 Watchlist 000222 NET-NCFC
 282 24.3.26.53 MY.NET.253.105 WinGate 8080 Attempt
 274 159.226.5.77 MY.NET.100.230 Watchlist 000222 NET-NCFC
 259 159.226.91.37 MY.NET.100.230 Watchlist 000222 NET-NCFC
 242 MY.NET.97.186 MY.NET.101.192 SNMP public access
 228 MY.NET.101.160 MY.NET.101.192 SMB Name Wildcard
 223 216.0.124.26 MY.NET.253.105 WinGate 8080 Attempt
 209 24.3.42.201 MY.NET.253.105 WinGate 8080 Attempt
 205 208.184.216.189 MY.NET.201.2 Napster 8888 Data
 159 MY.NET.97.80 MY.NET.101.192 SNMP public access
 131 MY.NET.97.237 MY.NET.101.192 SNMP public access
 110 MY.NET.98.152 MY.NET.101.192 SNMP public access
 106 159.226.45.3 MY.NET.253.41 Watchlist 000222 NET-NCFC
 90 208.184.216.183 MY.NET.97.204 Napster 7777 Data
 87 209.122.205.2 MY.NET.253.105 WinGate 8080 Attempt
 85 159.226.45.108 MY.NET.6.7 Watchlist 000222 NET-NCFC
 85 212.179.101.218 MY.NET.181.88 Watchlist 000220 IL-ISDNNET-990517
 83 24.6.132.179 MY.NET.253.105 WinGate 8080 Attempt
 79 MY.NET.97.219 MY.NET.101.192 SNMP public access
 78 24.40.24.9 MY.NET.253.105 WinGate 8080 Attempt
 75 159.226.5.152 MY.NET.100.165 Watchlist 000222 NET-NCFC
 75 MY.NET.97.239 MY.NET.101.192 SNMP public access
 72 212.38.168.183 MY.NET.97.101 WinGate 8080 Attempt
 70 159.226.45.3 MY.NET.253.43 Watchlist 000222 NET-NCFC
 67 MY.NET.97.87 MY.NET.101.192 SNMP public access
 64 212.179.123.13 MY.NET.151.33 Watchlist 000220 IL-ISDNNET-990517
 64 152.163.224.100 MY.NET.253.24 GIAC 000218 VA-CIRT port 34555
 64 62.10.172.146 MY.NET.97.101 WinGate 8080 Attempt
 64 MY.NET.97.176 MY.NET.101.192 SNMP public access
 61 63.14.215.174 MY.NET.253.105 WinGate 8080 Attempt
 60 159.226.45.3 MY.NET.253.42 Watchlist 000222 NET-NCFC
 59 172.166.188.140 MY.NET.253.105 WinGate 8080 Attempt
 53 MY.NET.98.118 MY.NET.101.192 SNMP public access
 52 205.188.179.33 MY.NET.105.2 Attempted Sun RPC high port access
 51 172.142.83.53 MY.NET.253.105 WinGate 8080 Attempt
 50 159.226.5.222 MY.NET.100.230 Watchlist 000222 NET-NCFC
 50 159.226.63.200 MY.NET.100.230 Watchlist 000222 NET-NCFC
 50 159.226.21.3 MY.NET.100.230 Watchlist 000222 NET-NCFC
 50 172.155.237.188 MY.NET.253.105 WinGate 8080 Attempt
 49 209.49.30.23 MY.NET.253.105 WinGate 8080 Attempt
 49 159.226.5.65 MY.NET.100.230 Watchlist 000222 NET-NCFC
 48 MY.NET.98.148 MY.NET.101.192 SNMP public access
 46 63.14.215.127 MY.NET.253.105 WinGate 8080 Attempt
 46 205.217.233.122 MY.NET.99.85 WinGate 8080 Attempt
 45 216.164.225.93 MY.NET.253.105 WinGate 8080 Attempt
 44 208.184.216.191 MY.NET.201.2 Napster 8888 Data
 40 158.103.132.100 MY.NET.253.105 WinGate 8080 Attempt
 38 MY.NET.97.214 MY.NET.101.192 SNMP public access
 37 159.226.66.130 MY.NET.253.42 Watchlist 000222 NET-NCFC
 37 203.155.129.248 MY.NET.97.27 WinGate 1080 Attempt
 36 159.226.228.1 MY.NET.100.230 Watchlist 000222 NET-NCFC
 36 209.10.218.251 MY.NET.60.11 WinGate 1080 Attempt
 36 64.38.32.54 MY.NET.253.105 WinGate 8080 Attempt
 35 159.226.159.1 MY.NET.253.43 Watchlist 000222 NET-NCFC
 34 24.40.25.20 MY.NET.253.105 WinGate 8080 Attempt
 32 216.164.230.12 MY.NET.253.105 WinGate 8080 Attempt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

 32 159.226.66.130 MY.NET.253.43 Watchlist 000222 NET-NCFC
 30 216.179.0.37 MY.NET.60.16 WinGate 1080 Attempt
 30 159.226.66.130 MY.NET.253.41 Watchlist 000222 NET-NCFC
 30 64.38.32.127 MY.NET.253.105 WinGate 8080 Attempt
 30 168.120.16.250 MY.NET.97.143 WinGate 1080 Attempt
(truncated)

This table shows which IP address sources are interested in your network and how often they targeted
specific hosts with a given method. The top 15 sources includes Israel, China, AmericaOnline, Korea,
@Home, National Institute of Health. Most of them are probably sources that you do not want involved
with your network at all. Notice also that there are occasions where the source of the attacks are the
MY.NET network. Does this mean that some of the MY.NET hosts are compromised? Is it mostly just
bad security practice? Or is it case of false positives? To better answer these questions, Table 4 presents
the types of alerts generated by hosts inside your network and the frequency of occurrence. The detailed
analysis section will address each of these types.

Table 3: Summary of alerts with MY.NET as the source
Alert type # of occurrences

SNMP public access 1188
SMB Name Wildcard 231
PING-ICMP Destination Unreachable 673
Napster 81
TELNET - Login Incorrect 7
FTP-bad-login 1
TELNET - daemon-active 1
WinGate 1080 Attempt 1

I am not including another table that I produced which contains the number of attacks from a specific host
to a specific destination, regardless of the attack method. The reason is that the top part of the table is
very similar to Table 2, which means that targeted hosts were not attacked with a series of methods, at
least for the item with large number of attacks.

The sorted list of most often attacked hosts on your network are presented in Table 4.

Table 4: The percentage and number of attacks to one certain host
===
 # of
 % attacks to type
===
6.46 5202 MY.NET.217.114 Watchlist 000220 IL-ISDNNET-990517
5.37 4323 MY.NET.217.38 Watchlist 000220 IL-ISDNNET-990517
3.62 2912 MY.NET.253.105 WinGate 8080 Attempt
2.78 2240 MY.NET.217.126 Attempted Sun RPC high port access
2.65 2133 MY.NET.253.41 Watchlist 000222 NET-NCFC
2.25 1808 MY.NET.182.94 Watchlist 000220 IL-ISDNNET-990517
2.11 1702 MY.NET.179.51 Watchlist 000220 IL-ISDNNET-990517
1.48 1188 MY.NET.101.192 SNMP public access
1.45 1170 MY.NET.98.179 IDS247 - MISC - Large UDP Packet
1.04 838 MY.NET.100.230 Watchlist 000222 NET-NCFC
1.01 811 MY.NET.253.43 Watchlist 000222 NET-NCFC
0.93 745 MY.NET.53.28 Watchlist 000220 IL-ISDNNET-990517
0.87 703 MY.NET.253.42 Watchlist 000222 NET-NCFC
0.38 305 MY.NET.60.11 WinGate 1080 Attempt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

0.33 262 MY.NET.60.8 WinGate 1080 Attempt
0.31 249 MY.NET.201.2 Napster 8888 Data
0.28 228 MY.NET.101.192 SMB Name Wildcard
0.20 160 MY.NET.60.16 WinGate 1080 Attempt
0.17 136 MY.NET.97.101 WinGate 8080 Attempt
0.17 133 MY.NET.6.7 Watchlist 000222 NET-NCFC
0.15 118 MY.NET.253.24 GIAC 000218 VA-CIRT port 34555
0.11 90 MY.NET.97.204 Napster 7777 Data
0.11 85 MY.NET.181.88 Watchlist 000220 IL-ISDNNET-990517
0.10 77 MY.NET.99.85 WinGate 8080 Attempt
0.09 76 MY.NET.253.24 GIAC 000218 VA-CIRT port 35555
0.09 75 MY.NET.100.165 Watchlist 000222 NET-NCFC
0.09 73 MY.NET.20.10 WinGate 8080 Attempt
0.08 64 MY.NET.151.33 Watchlist 000220 IL-ISDNNET-990517
0.08 61 MY.NET.97.27 WinGate 1080 Attempt
0.07 56 MY.NET.99.51 WinGate 1080 Attempt
0.07 54 MY.NET.105.2 Attempted Sun RPC high port access
 (truncated)

From the knowledge of your network (IP Vs Name), and from Table 4, you should be able to quickly
identify if some of your critical assets are top targets.

Overall statistics of Snort scan reports

This section presents overall statistics produced by processing the complete set of Snort scan reports. It is
meant to give a top view of suspicious scanning activity on your network. Specific events will be
discussed in the detailed section.
Scanning destination host ports is a method to gather information on the destination network. Scanning
sources are looking for alive hosts, legitimate services running on hosts, and of course the presence of
trojans.

All the of port scans detected by the Snort IDS installed on your network were triggered by two family of
rules. The first one is that a number of hits, over a period of time, was beyond a specified threshold, e.g.
7 connections in 2 seconds. The other is that the packets had characteristics often used by malicious
scanners to penetrate network perimeter defense, for instance, setting both the SYN and the FIN flags in a
TCP packets. This is not normal TCP behavior, and some packet filtering devices overlook this type of
traffic. Snort alerts uses the word stealth to describe this type of scan.

A total of 1487 port scan events was reported by Snort.

Table 5 presents the main sources scanning hosts and ports on your network. Additional information
about the source IP is shown in the last column.

Table 5: Statistics on main port scanning sources.

Source IP Target_hosts

of TCP
ports

of UDP
ports

Information on source

212.170.19.199 29326 30227 2 Telefonica Data Espana
211.60.222.33 23511 23591 0 NS.MKIBI.COM (Korea?)

169.229.88.203 23503 23638 1 ida-88-203.Reshall.Berkeley.EDU
24.2.123.9 22924 0 22976 ci196729-a.wllmsn1.tn.home.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

209.61.158.214 22035 22114 0 Rackspace.com
202.0.178.98 19627 19793 29 gatnoxs.com

211.36.253.174 17785 17832 0 Korea
211.38.95.138 16307 16366 0 Korea
24.31.224.110 15729 15867 1 mkc-31-224-110.kc.rr.com
193.251.15.20 12951 13603 0 ATuileries-101-2-2-20.abo.wanadoo.fr

24.7.157.43 12625 12822 0 cx149768-a.stche1.la.home.com
211.112.142.2 12452 12512 0 Korea

128.125.104.191 9636 9670 0 avila.usc.edu
4.54.218.36 9625 9927 0 BBN Planet

63.29.27.192 8344 8574 0 UUNET Technologies, Inc
35.10.82.105 6367 6404 0 mcc-2.user.msu.edu
4.54.218.182 5219 5360 0 PPPa57-ResaleAppleton2-

2R7237.saturn.bbn.com
200.241.187.2 5106 5136 12 Brazil

207.155.88.200 4636 4783 3
63.79.70.130 3049 3056 0 falcon.jdenisco.com

202.147.24.142 2580 2634 0 me-as-07-142.free.net.au
4.54.218.59 2185 2306 0 PPPa30-ResaleAppleton1-

1R7237.saturn.bbn.com
211.44.13.212 1561 1562 0 NS2.AGENTLEADER.COM

195.132.120.31 1055 1127 0 r120m31.cybercable.tm.fr

Again, a quick look at the sources should raise concerns. You have many suspicious sources scanning the
ports of your hosts, the next question should be: what are they looking for? To help answer this question
I built Table 6. It lists the most popular destination ports and the probable reasons why they are targeted.

Table 6: The most popular ports scanned.

Port number

TCP/UDP
of
hits

Looking for?

21 141623 File Transfer Protocol (FTP)
53 58162 Domain Name Service (DNS)

27374 36818 Subseven trojan
98 34631 Linuxconf (sysadmin tool for Linux)

110 1572 POP3 (Internet mail)
6970 1374 RealAudio (false positive)
23 530 Telnet (remote login)

31337 473 Back Orifice trojan
44767 430
12345 225 Netbus trojan
7000 187
6346 163
1693 155
1685 153
1686 151
1682 144
1678 138

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

1681 137
2929 128
1059 126

This is a fairly typical lists of scanned ports. The targeted ports represent what we see elsewhere a lot, i.e.
trying to access either well know ports (0-1023) often offering services outside like FTP, Telnet and DNS,
as well as fishing for trojans servers on their default listening ports. There are also some false positive
alerts in this list. It is the case for the port used by RealAudio (UDP 6970) and for some legitimate DNS
traffic.

The next question we should try to answer is which hosts are targeted by port scans. Table 7 presents the
top 20 destination host subjected to port scans and the number of port hits. To put the number of hit of
Table 7 in perspective, it is interesting to note that 99.7% of your hosts that were port scanned had ports
hit counts below 30.

Table 7: Top 20 hosts targeted by port scans

Host Hits
MY.NET.70.127 1389
MY.NET.97.83 1242
MY.NET.253.114 1147
MY.NET.98.118 1060
MY.NET.181.88 903
MY.NET.1.3 899
MY.NET.101.89 843
MY.NET.5.4 526
MY.NET.98.185 360
MY.NET.60.8 358
MY.NET.179.56 336
MY.NET.179.86 332
MY.NET.60.11 331
MY.NET.97.68 328
MY.NET.179.78 312
MY.NET.153.111 270
MY.NET.153.112 242
MY.NET.156.109 210
MY.NET.156.104 209
MY.NET.156.106 203

Some of these port scans will be discussed in the detailed analysis section.

Snort also reported scans coming from inside your network. Table 8 lists all these suspicious events.
These could be a signs of compromised hosts. More on these in the detailed analysis section.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

Table 8: Port scans alerts from inside hosts.

Source # of port scan
alerts

MY.NET.1.3 75
MY.NET.101.192 2
MY.NET.1.4 1
MY.NET.19.10 1
MY.NET.101.1 1

Detailed analysis of specific alerts and specific hosts activities

This section presents detailed analysis of specific security events highlighted in the overall statistics
sections. The four sub-sections cover alerts and port scans, from inside and outside hosts. My conclusion
is shown at the end of each discussion, within brackets, e.g. [conclusion].

Detailed Analysis - Alerts from outside hosts

This section presents some analysis of Snort alerts generated by hosts outside your network. Obviously,
most of the alerts come from outside hosts. I will discuss the most often used attacks in this section.
Statistics on the frequency of these attacks were shown earlier in Table 1.

• 20067 SYN-FYN scans (see Table 1)

These are reconnaissance scans using a stealthy techniques to evade being detected by perimeter control
devices (firewalls, routers, etc…)

• Watchlist 000220 IL-ISDNNET-990517 (see Table 1)

This is traffic involving hosts in Israel, from which suspicious activity has been seen before by the
network security community. This is all inbound traffic alerts. Most of the traffic involve ports 6699 and
6698, which looks like Napster traffic, but I am not certain. You would have to confirm if this is desired
traffic with further investigation.

• Watchlist 000222 NET-NCFC (see Table 1)

This is traffic involving hosts at the Chinese Academy of Science. The alerts are all from inbound traffic.
Most of this traffic is to destination port 25, which is SMTP. There is probably email exchange with
these Chinese hosts. You should clarify this email activity on your affected hosts. There is also some
Telnet traffic in this watch list.

Sample SMTP activity:
08/04-04:48:40.674427 [**] Watchlist 000222 NET-NCFC [**] 159.226.91.37:3042 ->
MY.NET.100.230:25
08/04-04:48:42.631850 [**] Watchlist 000222 NET-NCFC [**] 159.226.91.37:3040 ->
MY.NET.100.230:25
08/04-04:48:43.532486 [**] Watchlist 000222 NET-NCFC [**] 159.226.91.37:3040 ->
MY.NET.100.230:25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 25

08/04-04:48:44.373603 [**] Watchlist 000222 NET-NCFC [**] 159.226.91.37:3040 ->
MY.NET.100.230:25

 • WinGate 8080 and 1080 Attempt (see Table 1)

These are attempts to find WinGate proxy servers on your network. Once found, the attacker would try to
compromise your host with a WinGate vulnerability and, if successful, could use your host to attack other
hosts. I’m not sure if those attempts were successful or not. For instance, the patterns show the same
outside host generating many WinGate alerts on the same destination host like this:

06/27-13:25:45.386994 [**] WinGate 8080 Attempt [**] 24.6.132.179:1308 -> MY.NET.253.105:8080
06/27-13:25:52.639126 [**] WinGate 8080 Attempt [**] 24.6.132.179:1310 -> MY.NET.253.105:8080
06/27-13:26:09.669794 [**] WinGate 8080 Attempt [**] 24.6.132.179:1313 -> MY.NET.253.105:8080
06/27-13:26:09.669924 [**] WinGate 8080 Attempt [**] 24.6.132.179:1314 -> MY.NET.253.105:8080
06/27-13:26:09.689942 [**] WinGate 8080 Attempt [**] 24.6.132.179:1315 -> MY.NET.253.105:8080
06/27-13:26:09.699518 [**] WinGate 8080 Attempt [**] 24.6.132.179:1316 -> MY.NET.253.105:8080
06/27-13:26:09.707177 [**] WinGate 8080 Attempt [**] 24.6.132.179:1317 -> MY.NET.253.105:8080
06/27-13:26:09.707270 [**] WinGate 8080 Attempt [**] 24.6.132.179:1318 -> MY.NET.253.105:8080
06/27-13:26:09.712752 [**] WinGate 8080 Attempt [**] 24.6.132.179:1319 -> MY.NET.253.105:8080
…

This does not look like a scan, but more like some traffic involving a server. You should identify the
services on your host MY.NET.253.105, as it is almost always the destination.

• Attempted Sun RPC high port access (see Table 1)

08/04-10:00:31.105746 [**] Attempted Sun RPC high port access [**] 205.188.153.111:4000 ->
MY.NET.217.126:32771
08/04-10:01:31.000604 [**] Attempted Sun RPC high port access [**] 205.188.153.111:4000 ->
MY.NET.217.126:32771
08/04-10:02:30.954425 [**] Attempted Sun RPC high port access [**] 205.188.153.111:4000 ->
MY.NET.217.126:32771
08/04-10:03:30.782653 [**] Attempted Sun RPC high port access [**] 205.188.153.111:4000 ->
MY.NET.217.126:32771
08/04-10:05:30.563818 [**] Attempted Sun RPC high port access [**] 205.188.153.111:4000 ->
MY.NET.217.126:32771
08/04-10:06:30.487499 [**] Attempted Sun RPC high port access [**] 205.188.153.111:4000 ->
MY.NET.217.126:32771

These alerts are caused by accesses to a RPC high port (32771). The recurring pattern almost always
involve the source port 4000. This is probably ICQ traffic (port 4000). Is this a security concern? You
have to decide if you have a real requirement for ICQ. If not, then I would suggest you block ICQ traffic
because ICQ clients are exploitable because of many published vulnerabilities.

• SNMP public access (see Table 1)

07/11-16:00:18.945847 [**] SNMP public access [**] MY.NET.97.122:1125 -> MY.NET.101.192:161
07/11-16:00:23.891592 [**] SNMP public access [**] MY.NET.97.122:1125 -> MY.NET.101.192:161
07/11-16:01:26.018511 [**] SNMP public access [**] MY.NET.97.122:1128 -> MY.NET.101.192:161
07/10-18:14:05.658622 [**] SNMP public access [**] MY.NET.97.159:1042 -> MY.NET.101.192:161
07/10-18:14:07.349004 [**] SNMP public access [**] MY.NET.97.159:1043 -> MY.NET.101.192:161

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 26

07/10-18:14:07.557554 [**] SNMP public access [**] MY.NET.97.159:1043 -> MY.NET.101.192:161
07/10-18:16:11.703651 [**] SNMP public access [**] MY.NET.97.159:1057 -> MY.NET.101.192:161
07/10-18:17:13.553745 [**] SNMP public access [**] MY.NET.97.159:1059 -> MY.NET.101.192:161
…

All these alerts involve MY.NET.101.192 on the normal SNMP port (Simple Network Management
Protocol – port 161). The other hosts are always from inside your network, which is reassuring. The alert
is because the transactions with this SNMP device use the SNMP community string of "public", which
like using a default password. This password should be change to increase security because some SNMP
devices are critical infrastructure assets, like routers.

• IDS247 - MISC - Large UDP Packet (see Table 1)

08/05-18:57:26.372376 [**] IDS247 - MISC - Large UDP Packet [**] 211.40.176.214:29536 ->
MY.NET.98.179:6970
08/05-18:57:28.174478 [**] IDS247 - MISC - Large UDP Packet [**] 211.40.176.214:29536 ->
MY.NET.98.179:6970
08/05-18:57:29.402770 [**] IDS247 - MISC - Large UDP Packet [**] 211.40.176.214:29536 ->
MY.NET.98.179:6970
08/05-18:57:30.987902 [**] IDS247 - MISC - Large UDP Packet [**] 211.40.176.214:29536 ->
MY.NET.98.179:6970
08/05-18:57:32.242808 [**] IDS247 - MISC - Large UDP Packet [**] 211.40.176.214:29536 ->
MY.NET.98.179:6970
08/05-18:57:34.750281 [**] IDS247 - MISC - Large UDP Packet [**] 211.40.176.214:29536 ->
…

Port 6970 indicates probable RealAudio traffic. Not a security concern.

• Napster 8888 Data and Napster 7777 Data (see Table 1)

Napster traffic. Do you want to allow Napster traffic on your network. This Napster issue is discussed at
a few other places in this report.

• SMB Name Wildcard (see Table 1)

These are all the SMB Name Wildcard alerts with outside sources:
08/03-11:38:50.220540 [**] SMB Name Wildcard [**] 206.15.45.126:137 -> MY.NET.70.66:137
08/04-16:23:34.611008 [**] SMB Name Wildcard [**] 132.201.232.167:137 -> MY.NET.15.127:137
08/04-16:23:34.611091 [**] SMB Name Wildcard [**] 208.16.237.10:137 -> MY.NET.15.127:137
08/04-16:23:42.770412 [**] SMB Name Wildcard [**] 208.16.237.10:137 -> MY.NET.15.127:137
08/04-16:23:42.770527 [**] SMB Name Wildcard [**] 132.201.232.167:137 -> MY.NET.15.127:137
08/04-16:23:44.293564 [**] SMB Name Wildcard [**] 132.201.232.167:137 -> MY.NET.15.127:137
08/04-16:23:44.293784 [**] SMB Name Wildcard [**] 208.16.237.10:137 -> MY.NET.15.127:137
08/04-16:23:50.888340 [**] SMB Name Wildcard [**] 132.201.232.167:137 -> MY.NET.15.127:137
08/04-16:23:50.888445 [**] SMB Name Wildcard [**] 208.16.237.10:137 -> MY.NET.15.127:137

This is not the kind of traffic that you want to see, i.e. NetBIOS traffic (port 137 to port 137) involving
hosts outside your network. This is Windows networking traffic and it should normally be contained
within your intranet. I researched information on the three external IP sources. The results are not known
malicious sources. Two of them are large ISPs (Sprint and Southwestern Bell) and the third is a public

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 27

library in xxxxx county (sanitized). Could this be inside users generating hits from their homes? Is this
public library in your geographical area?

As a good practice, I recommend that you block inbound traffic going to Windows networking ports
(137-139).

• GIAC 000218 VA-CIRT port 34555 and GIAC 000218 VA-CIRT port 35555 (see Table 1)

This alert refers to malicious activity reported on the February 18th 2000, at the Global Incident Analysis
Center (GIAC) of the SANS Institute (http://www.sans.org/giac.htm). The GIAC report describes the
communications involving a trojan (Windows version of Trinoo) used for distributed denial of service
attack. The complete signature is a ping to an inside host on port 34555 provoking a reply from port
35555.

Sample alerts:
06/30-14:55:27.290209 [**] GIAC 000218 VA-CIRT port 34555 [**] 140.142.100.15:25 ->
MY.NET.253.52:34555
06/30-14:55:27.476759 [**] GIAC 000218 VA-CIRT port 34555 [**] 140.142.100.15:25 ->
MY.NET.253.52:34555
06/30-14:55:27.724280 [**] GIAC 000218 VA-CIRT port 34555 [**] 140.142.100.15:25 ->
MY.NET.253.52:34555
06/30-17:31:33.953871 [**] GIAC 000218 VA-CIRT port 35555 [**] 199.1.13.9:113 ->
MY.NET.6.35:35555
06/30-17:31:33.953930 [**] GIAC 000218 VA-CIRT port 35555 [**] 199.1.13.9:113 ->
MY.NET.6.35:35555
06/30-17:31:34.018246 [**] GIAC 000218 VA-CIRT port 35555 [**] 199.1.13.9:113 ->
MY.NET.6.35:35555
06/30-17:31:34.018457 [**] GIAC 000218 VA-CIRT port 35555 [**] 199.1.13.9:113 ->
MY.NET.6.35:35555
…

These alerts were all generated simply because the port 34555 and 35555 were active. Since none of the
alerts have an inside host sending from any of these two ports I considered this to be false positive.

• Possible wu-ftpd exploit - GIAC000623 (see Table 1)
• site exec - Possible wu-ftpd exploit - GIAC000623 (see Table 1)

06/30-16:33:57.773279 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**] 151.164.223.206:4499 ->
MY.NET.99.16:21
06/30-16:34:00.037398 [**] Possible wu-ftpd exploit - GIAC000623 [**] 151.164.223.206:4499 ->
MY.NET.99.16:21
06/30-16:35:11.406398 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**] 151.164.223.206:4500 ->
MY.NET.144.59:21
06/30-16:35:13.560305 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**] 151.164.223.206:4500 ->
MY.NET.144.59:21
06/30-16:35:13.626498 [**] Possible wu-ftpd exploit - GIAC000623 [**] 151.164.223.206:4500 ->
MY.NET.144.59:21
07/19-03:53:00.191779 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**] 212.35.163.64:1245 ->
MY.NET.100.165:21
07/29-12:07:56.525800 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**] 211.38.95.138:3048 ->
MY.NET.156.127:21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 28

These alerts concern me. GIAC reported a new FTP attack (wu-ftpd exploit) only seven days before
seeing these alerts on your network. The Snort rule is fairly specific in this case, it includes targeting the
FTP control port (21) with a specific string in the content. There is less chance of a false positive in this
situation. Let’s investigate the each of your three inside hosts affected..

Investigation on MY.NET.156.127:

Attacking source 211.38.95.138 is from Korea. It scanned your network only once. It was complete
network (MY.NET.x.y) scan with destination port 21. It scanned MY.NET.156.27 on Jul 29th at
12:00:57. The “site exec - Possible wu-ftpd exploit” alert for this host is reported about 7 minutes later.

Jul 29 12:02:49 211.38.95.138:2971 -> MY.NET.156.127:21 SYN **S*****

 There is a good probability that MY.NET.156.27 is compromised. Although Snort did not report
anything involving MY.NET.156.27 after the possible compromising event, you must investigate this
host immediately.

Investigation on MY.NET.100.165:

Here is a scary trace:

07/19-03:53:00.191779 [**] site exec - Possible wu-ftpd exploit - GIAC000623 [**] 212.35.163.64:1245 ->
MY.NET.100.165:21
07/30-22:49:42.452934 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80
07/30-22:49:43.244400 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80
07/30-22:49:44.554166 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80
07/30-22:49:44.560012 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80
…
07/30-22:51:58.267475 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80
07/30-22:51:58.267525 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80
07/30-22:51:58.801371 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80
07/30-22:51:59.131277 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80
07/30-22:51:59.466739 [**] Watchlist 000222 NET-NCFC [**] 159.226.5.152:719 -> MY.NET.100.165:80

On July 19th MY.NET.100.165 may have been compromised with a wu-ftpd exploit by
212.35.163.64:1245 (Ukraine). On July 30th , a series of alerts related to traffic between
MY.NET.100.165 and a host of the Chinese Academy of Sciences. This traffic is very suspicious because
it is from low port 719) to low port (80). It looks almost like a server was installed on MY.NET.100.165,
a web server? MY.NET.100.165 is most likely compromised. It should be shut down and
investigated.

Investigation on MY.NET. 99.16 and MY.NET. 144.59:

I did not find any relevant alerts, beyond the possible wu-ftpd exploit alerts, that would involve these two
local hosts. Considering the discussions on MY.NET.156.27 and MY.NET.100.165 and possible wu-ftpd
exploits above, it would be wise to investigate MY.NET. 99.16 and MY.NET. 144.59 as well.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 29

Detailed Analysis - Alerts from inside hosts

• SMB Name Wildcard (see Table 1)

07/27-20:12:29.816023 [**] SMB Name Wildcard [**] MY.NET.101.160:137 -> MY.NET.101.192:137
07/27-20:12:31.306913 [**] SMB Name Wildcard [**] MY.NET.101.160:137 -> MY.NET.101.192:137
07/27-20:13:48.439202 [**] SMB Name Wildcard [**] MY.NET.101.160:137 -> MY.NET.101.192:137
07/27-20:13:49.969821 [**] SMB Name Wildcard [**] MY.NET.101.160:137 -> MY.NET.101.192:137
07/30-18:44:40.664758 [**] SMB Name Wildcard [**] MY.NET.101.160:137 -> MY.NET.101.192:137
07/30-18:44:42.151370 [**] SMB Name Wildcard [**] MY.NET.101.160:137 -> MY.NET.101.192:137
07/30-18:44:43.750890 [**] SMB Name Wildcard [**] MY.NET.101.160:137 -> MY.NET.101.192:137

This kind of internal traffic is most likely normal NetBIOS traffic. It almost always involve
MY.NET.101.192 on port 137 (NetBIOS name service)

• One WinGate 1080 Attempt by MY.NET.99.51:20 (see Table 3)

06/27-13:20:12.138930 [**] WinGate 1080 Attempt [**] MY.NET.99.51:20 -> MY.NET.101.155:1080

Could this be normal internal FTP traffic (port 20 = data) between two internal hosts, MY.NET.99.51
being the server.

• One TELNET - daemon-active - MY.NET.99.51:20 (see Table 3)

08/05-19:03:45.522918 [**] IDS08 - TELNET - daemon-active [**] MY.NET.99.51:23 -> 24.25.111.117:1029

I do not know for sure what this alert could be. Could MY.NET.99.51 be also a Telnet server. Do you
want to allow Telnet from outside? This one would require further analysis.

• Various Napster alerts from MY.NET.x.y (see Table 3)

You have hosts with Napster on your net. The most Napster busy clients for that period are
MY.NET.201.2 and MY.NET.217.158

• TELNET - Login Incorrect from MY.NET.x.y (see Table 3)

08/05-18:37:37.745999 [**] IDS127 - TELNET - Login Incorrect [**] MY.NET.60.11:23 -> 208.198.33.168:1024
08/05-18:47:13.982488 [**] IDS127 - TELNET - Login Incorrect [**] MY.NET.60.8:23 -> 207.172.151.22:1674
08/05-18:47:20.888622 [**] IDS127 - TELNET - Login Incorrect [**] MY.NET.60.8:23 -> 207.172.151.22:1674
08/05-18:53:09.934812 [**] IDS127 - TELNET - Login Incorrect [**] MY.NET.60.8:23 -> 151.198.144.196:1026
08/05-18:54:24.387218 [**] IDS127 - TELNET - Login Incorrect [**] MY.NET.60.11:23 -> 24.6.134.169:3452
08/05-18:56:11.376893 [**] IDS127 - TELNET - Login Incorrect [**] MY.NET.60.8:23 -> 63.24.126.127:1197
08/05-18:59:23.821523 [**] IDS127 - TELNET - Login Incorrect [**] MY.NET.6.7:23 -> 38.30.171.95:1223

These are failed attempts to telnet from outside hosts to inside hosts. It could be honest mistakes, like
typing errors. However, you should consider blocking Telnet from outside if you do not have a
requirement for it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 30

Detailed Analysis - Port scans from outside hosts

• MY.NET.70.127 was hit 1389 times by outside hosts doing port scans (see Table 7)
Scanned on large sequences of high ports.
[Reconnaissance scan]

• MY.NET.97.83 was hit 1242 times by outside hosts doing port scans (see Table 7)

Jul 8 15:25:32 165.138.228.4:7777 -> MY.NET.97.83:1700 UDP
Jul 8 15:25:35 165.138.228.4:7777 -> MY.NET.97.83:1700 UDP
Jul 8 15:25:35 165.138.228.4:7777 -> MY.NET.97.83:1681 UDP
Jul 8 15:25:35 165.138.228.4:7777 -> MY.NET.97.83:1682 UDP
Jul 8 15:25:35 165.138.228.4:7777 -> MY.NET.97.83:1685 UDP
Jul 8 15:25:35 165.138.228.4:7777 -> MY.NET.97.83:1686 UDP
Jul 8 15:25:35 165.138.228.4:7777 -> MY.NET.97.83:1678 UDP
Jul 8 15:25:35 165.138.228.4:7777 -> MY.NET.97.83:1693 UDP

This is not a port scan but Napster traffic. Napster is a program that allows two hosts to exchange data
directly between each other. The two Napster hosts first make contact through a central Napster server.
Napster has been in the news lately because it is used extensively to illegally exchange copyrighted
material (music files in MP3 format). One of the side effect of having many Napster clients on a network
is large bandwidth consumption. Although it is a false positive from the port scan point of view, it points to
a type of traffic, Napster, that you may want deny on your internal network.
[False positive port scan – Napster traffic]

• MY.NET.253.114 was hit 1147 times by outside hosts doing port scans (see Table 7)

Large port scan.
[Reconnaissance scan]

• MY.NET. 98.118 was hit 1060 times by outside hosts doing port scans (see Table 7)

Mostly scanning of low port numbers
[Reconnaissance scan]

• MY.NET.181.88 was hit 903 times by outside hosts doing port scans (see Table 7)
• MY.NET.179.56 was hit 336 times by outside hosts doing port scans (see Table 7)
• MY.NET.179.86 was hit 332 times by outside hosts doing port scans (see Table 7)
• MY.NET.179.78 was hit 312 times by outside hosts doing port scans (see Table 7)

Typical reconnaissance port scans.
[Reconnaissance scan]

• MY.NET.1.3 was hit 899 times by outside hosts doing port scans (see Table 7)

See discussion titled 75 port scan alerts with source = MY.NET.1.3 in the section Detailed Analysis - Port
scans from inside hosts.
[False positive – DNS server]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 31

• MY.NET. 101.89 was hit 843 times by outside hosts doing port scans (see Table 7)

See discussion titled 75 port scan alerts with source = MY.NET.1.3 in the section Detailed Analysis - Port
scans from inside hosts.
[False positive – DNS client]

• MY.NET.5.4 was hit 526 times by outside hosts doing port scans (see Table 7)

Scanning of mix of low and high port numbers.
[Reconnaissance scan]

• MY.NET.98.185 was hit 360 times by outside hosts doing port scans (see Table 7)

Scans of high UDP ports.
[Reconnaissance scan]

• MY.NET.60.8 was hit 358 times by outside hosts doing port scans (see Table 7)

sample:
Jul 27 10:14:06 210.84.179.196:1248 -> MY.NET.60.8:194 SYN **S*****
Jul 27 10:14:06 210.84.179.196:1249 -> MY.NET.60.8:195 SYN **S*****
Jul 27 10:14:06 210.84.179.196:1250 -> MY.NET.60.8:196 SYN **S*****
Jul 27 10:14:06 210.84.179.196:1251 -> MY.NET.60.8:197 SYN **S*****
Jul 27 10:14:06 210.84.179.196:1252 -> MY.NET.60.8:198 SYN **S*****
Jul 27 10:14:06 210.84.179.196:1254 -> MY.NET.60.8:200 SYN **S*****
Jul 27 10:14:06 210.84.179.196:1253 -> MY.NET.60.8:199 SYN **S*****
Jul 27 10:15:14 210.84.179.196:15392 -> MY.NET.60.8:113 SYN **S*****
Jul 27 10:15:14 210.84.179.196:15396 -> MY.NET.60.8:113 SYNFIN **SF****
Jul 27 10:15:14 210.84.179.196:15398 -> MY.NET.60.8:113 SYN 21S***** RESERVEDBITS
Jul 27 10:15:14 210.84.179.196:15394 -> MY.NET.60.8:113 FIN ***F****
Jul 27 10:15:14 210.84.179.196:15397 -> MY.NET.60.8:113 VECNA *****P**
…

Scans of high port numbers. There is an interesting pattern on destination port 113. Five different TCP
packet formats are tried. This is probably the signature of a scanning tool.
[Reconnaissance scan]

• MY.NET.60.11 was hit 331 times by outside hosts doing port scans (see Table 7)

Mostly scans of high port numbers.
[Reconnaissance scan]

• MY.NET.97.68 was hit 328 times by outside hosts doing port scans (see Table 7)

Jul 9 21:26:09 165.138.228.4:7777 -> MY.NET.97.68:2077 UDP
Jul 9 21:26:09 165.138.228.4:7777 -> MY.NET.97.68:2079 UDP
Jul 9 21:26:09 165.138.228.4:7777 -> MY.NET.97.68:2081 UDP
Jul 9 21:26:09 165.138.228.4:7777 -> MY.NET.97.68:2084 UDP
Jul 9 21:26:09 165.138.228.4:7777 -> MY.NET.97.68:2089 UDP
Jul 9 21:26:09 165.138.228.4:7777 -> MY.NET.97.68:2091 UDP
Jul 9 21:26:09 165.138.228.4:7777 -> MY.NET.97.68:2092 UDP
Jul 9 21:26:09 165.138.228.4:7777 -> MY.NET.97.68:2095 UDP
…

Mostly Napster traffic. Also scans of UDP ports

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 32

[Napster traffic + Reconnaissance scan]

• MY.NET.153.109 was hit 133 times by outside hosts doing port scans
• MY.NET.153.111 was hit 270 times by outside hosts doing port scans (see Table 7)
• MY.NET.153.112 was hit 242 times by outside hosts doing port scans (see Table 7)

Napster traffic for the 3 alerts above.
[False positive port scan – Napster traffic]

• MY.NET.156.101 was hit 194 times by outside hosts doing port scans
• MY.NET.156.103 was hit 158 times by outside hosts doing port scans
• MY.NET.156.104 was hit 209 times by outside hosts doing port scans (see Table 7)
• MY.NET.156.105 was hit 194 times by outside hosts doing port scans
• MY.NET.156.106 was hit 203 times by outside hosts doing port scans (see Table 7)
• MY.NET.156.109 was hit 210 times by outside hosts doing port scans (see Table 7)
• MY.NET.156.110 was hit 127 times by outside hosts doing port scans
• MY.NET.156.111 was hit 203 times by outside hosts doing port scans

The following trace applies to the eight port scans above:

Jun 27 13:48:21 216.46.175.35:29160 -> MY.NET.156.111:6970 UDP
Jun 27 13:48:23 216.46.175.35:22594 -> MY.NET.156.101:6970 UDP
Jun 27 13:48:23 216.46.175.35:24328 -> MY.NET.156.106:6970 UDP
Jun 27 13:48:23 216.46.175.35:15504 -> MY.NET.156.109:6970 UDP
Jun 27 13:48:23 216.46.175.35:8708 -> MY.NET.156.107:6970 UDP
Jun 27 13:48:23 216.46.175.35:24684 -> MY.NET.156.105:6970 UDP
Jun 27 13:48:23 216.46.175.35:23638 -> MY.NET.156.104:6970 UDP
Jun 27 13:48:23 216.46.175.35:22504 -> MY.NET.156.103:6970 UDP
Jun 27 13:48:26 216.46.175.35:24684 -> MY.NET.156.105:6970 UDP
Jun 27 13:48:26 216.46.175.35:8708 -> MY.NET.156.107:6970 UDP
Jun 27 13:48:26 216.46.175.35:15504 -> MY.NET.156.109:6970 UDP
Jun 27 13:48:26 216.46.175.35:29160 -> MY.NET.156.111:6970 UDP
Jun 27 13:48:26 216.46.175.35:24328 -> MY.NET.156.106:6970 UDP
…

This looks like normal RealAudio traffic (UDP 6970). RealAudio client allows the user to receive
streaming audio/video. The complete trace indicates that these eight hosts, with close IP numbers, were
receiving RealAudio traffic at the same time. This could be members of the same work unit listening to
the same Webcast event.
[False positive port scan – RealAudio traffic]

Detailed Analysis - Port scans from inside hosts

• 75 port scan alerts with source = MY.NET.1.3 (see Table 8)

The port scan reports show MY.NET.1.3 scanning some hosts inside your network. Is this a compromised
hosts? This scans were present the first day of the Snort log, so there is no way to correlate the start of the
scans with another alert related to MY.NET.1.3 being infected. The scans behavior need to be
investigated in more details.

The characteristics of the packets are always the same: UDP, source port 53, high destination port. This
looks like a DNS server. More research on the traffic with its most popular “target” (MY.NET.101.89)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 33

also shows signs of legitimate DNS query traffic. For instance, there is a clear correlation between the
port number and the time, which probably means that MY.NET.101.89 is just a busy DNS client.

I conclude that MY.NET.1.3 is not scanning MY.NET.101.89 and the other inside hosts but simply
answering DNS clients.
[False positive – DNS server]

• 2 port scan alerts with source = MY.NET.101.192 (see Table 8)

07/28-18:40:35.376341 [**] spp_portscan: PORTSCAN DETECTED from MY.NET.101.192
(THRESHOLD 7 connections in 2 seconds) [**]
07/30-18:54:23.857420 [**] spp_portscan: PORTSCAN DETECTED from MY.NET.101.192
(THRESHOLD 7 connections in 2 seconds) [**]

Some of the scan events:

Jul 28 18:28:08 MY.NET.101.192:161 -> MY.NET.98.127:1055 UDP
Jul 28 18:28:08 MY.NET.101.192:161 -> MY.NET.98.127:1056 UDP
Jul 28 18:28:08 MY.NET.101.192:161 -> MY.NET.98.127:1057 UDP
Jul 28 18:28:08 MY.NET.101.192:161 -> MY.NET.98.127:1058 UDP
Jul 28 18:28:09 MY.NET.101.192:161 -> MY.NET.98.127:1059 UDP
Jul 28 18:28:10 MY.NET.101.192:161 -> MY.NET.98.127:1060 UDP
Jul 28 18:28:10 MY.NET.101.192:161 -> MY.NET.98.127:1061 UDP
Jul 28 18:28:10 MY.NET.101.192:161 -> MY.NET.98.127:1062 UDP
Jul 28 18:28:12 MY.NET.101.192:161 -> MY.NET.98.127:1063 UDP
Jul 28 18:28:14 MY.NET.101.192:161 -> MY.NET.98.127:1063 UDP
…

There are also many alerts involving MY.NET.101.192 similar to this:

07/14-08:13:26.293120 [**] SNMP public access [**] MY.NET.97.237:1044 -> MY.NET.101.192:161
07/14-08:13:26.355872 [**] SNMP public access [**] MY.NET.97.237:1048 -> MY.NET.101.192:161
07/14-08:13:26.757707 [**] SNMP public access [**] MY.NET.97.237:1049 -> MY.NET.101.192:161
07/14-08:13:27.270174 [**] SNMP public access [**] MY.NET.97.237:1051 -> MY.NET.101.192:161
07/14-08:13:29.240565 [**] SNMP public access [**] MY.NET.97.237:1052 -> MY.NET.101.192:161

The appearance of scanning is probably from legitimate Simple Network Management Protocol (SNMP)
traffic. This alert is from a threshold rule, and not from a stealth rule, which would be a bigger sign of a
malicious scan. To address the [**] SNMP public access [**] alerts, but the community string should be
changed to something more secure.
[Probably false positive, but security measures to be taken - password].

• 1 port scan alert with source = MY.NET.1.4 (see Table 8)

06/30-10:57:05.273259 [**] spp_portscan: PORTSCAN DETECTED from MY.NET.1.4
(THRESHOLD 7 connections in 2 seconds) [**]

sample scan traces:
Aug 8 11:44:16 MY.NET.1.4:53 -> MY.NET.75.149:1620 UDP
Aug 8 11:44:16 MY.NET.1.4:53 -> MY.NET.75.149:1621 UDP
Aug 8 11:44:16 MY.NET.1.4:53 -> MY.NET.75.106:1847 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 34

Aug 8 11:44:16 MY.NET.1.4:53 -> MY.NET.75.106:1848 UDP
Aug 8 11:44:19 MY.NET.1.4:53 -> MY.NET.75.118:2332 UDP
Aug 8 11:44:19 MY.NET.1.4:53 -> MY.NET.75.118:2333 UDP
…
Jun 30 10:43:55 MY.NET.1.4:53 -> MY.NET.101.53:2393 UDP
Jun 30 10:43:55 MY.NET.1.4:53 -> MY.NET.101.53:2397 UDP
Jun 30 10:43:56 MY.NET.1.4:53 -> MY.NET.101.53:2404 UDP
Jun 30 10:43:56 MY.NET.1.4:53 -> MY.NET.101.53:2406 UDP
Jun 30 10:43:56 MY.NET.1.4:53 -> MY.NET.101.53:2408 UDP

This looks a lot like normal DNS traffic. MY.NET.1.4:53 is probably a DNS server.
[False positive – DNS server]

• 1 port scan alert with source = MY.NET.19.10 (see Table 8)

06/28-15:51:14.018991 [**] spp_portscan: PORTSCAN DETECTED from MY.NET.19.10 (STEALTH)
06/28-15:51:18.405985 [**] spp_portscan: End of portscan from MY.NET.19.10 (TOTAL HOSTS:1
TCP:1 UDP:0) [**]

The Snort scan report for that day is missing. It is therefore impossible for me to know which host was
the target. Note that only one host was hit, and on one port only. The scan rule that triggered this alert is
STEALTH, which means that it was a malformed TCP packet. This is very low volume, one hit, but it
should be investigated further because it is not normal for this host to send a malformed packet.
[Inconclusive – could be compromised, need to be investigated further]

• 1 port scan alert with source = MY.NET.101.1 (see Table 8)

06/28-16:20:45.959895 [**] spp_portscan: PORTSCAN DETECTED from MY.NET.101.1 (STEALTH)
06/28-16:20:49.756355 [**] spp_portscan: End of portscan from MY.NET.101.1 (TOTAL HOSTS:1
TCP:1 UDP:0) [**]

The Snort scan report for that day is missing. It is therefore impossible for me to know which host was
the target. Note that only one host was hit, and on one port only. The scan rule that triggered this alert is
STEALTH, which means that it was a malformed TCP packet. This is very low volume, one hit, but it
should be investigated further because it is not normal for this host to send a malformed packet.
[Inconclusive – could be compromised, need to be investigated further]

• MY.NET.5.37 is scanning its IP neighbors

Aug 10 06:15:03 MY.NET.5.37:2600 -> MY.NET.5.3:5632 UDP
Aug 10 06:15:03 MY.NET.5.37:2600 -> MY.NET.5.3:22 UDP
Aug 10 06:15:04 MY.NET.5.37:2600 -> MY.NET.5.13:5632 UDP
Aug 10 06:15:04 MY.NET.5.37:2600 -> MY.NET.5.13:22 UDP
Aug 10 06:15:04 MY.NET.5.37:2600 -> MY.NET.5.15:5632 UDP
Aug 10 06:15:04 MY.NET.5.37:2600 -> MY.NET.5.25:5632 UDP
Aug 10 06:15:04 MY.NET.5.37:2600 -> MY.NET.5.29:5632 UDP
Aug 10 06:15:04 MY.NET.5.37:2600 -> MY.NET.5.34:5632 UDP
Aug 10 06:15:05 MY.NET.5.37:2600 -> MY.NET.5.40:5632 UDP
Aug 10 06:15:05 MY.NET.5.37:2600 -> MY.NET.5.41:5632 UDP
Aug 10 06:15:05 MY.NET.5.37:2600 -> MY.NET.5.42:5632 UDP
Aug 10 06:15:05 MY.NET.5.37:2600 -> MY.NET.5.45:5632 UDP
Aug 10 06:15:06 MY.NET.5.37:2600 -> MY.NET.5.101:5632 UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 35

Aug 10 06:15:07 MY.NET.5.37:2600 -> MY.NET.5.103:5632 UDP
Aug 10 06:15:07 MY.NET.5.37:2600 -> MY.NET.5.104:5632 UDP
Aug 10 06:15:07 MY.NET.5.37:2600 -> MY.NET.5.105:5632 UDP
Aug 10 06:15:07 MY.NET.5.37:2600 -> MY.NET.5.106:5632 UDP
Aug 10 06:15:07 MY.NET.5.37:2600 -> MY.NET.5.107:5632 UDP
Aug 10 06:15:07 MY.NET.5.37:2600 -> MY.NET.5.109:5632 UDP
Aug 10 06:15:07 MY.NET.5.37:2600 -> MY.NET.5.119:5632 UDP
Aug 10 06:15:07 MY.NET.5.37:2600 -> MY.NET.5.120:5632 UDP
Aug 10 06:15:10 MY.NET.5.37:2600 -> MY.NET.5.200:5632 UDP
Aug 10 06:15:10 MY.NET.5.37:2600 -> MY.NET.5.200:22 UDP
…

This is probably a host with a remote access program, called PCAnywhere, that is scanning its subnet for
PCAnywhere agents. This is known to happen on certain versions of PCAnywhere that are configured,
by default, with the NETWORK option. In this case, MY.NET.5.37 scans MY.NET.5.x. The three parts of
this signature are local class C scanning and UPD port 5632 and 22. If you need PCAnywhere on this
host, then I suggest you disable the NETWORK option.
[PCAnywhere scanning its subnet]

Summary and recommendations

I think that this analysis provides you with better picture of the security of your network. I remind you
that it was done with data with a few gaps in coverage and limited time. Nevertheless I believe that I
gave you an accurate assessment of the problems that you have and will briefly list what should be done
to improve the security of you network infrastructure.

Let me summarize some of the security issues identified in the analysis: You have some compromised
hosts which need to be taken care of and investigated immediately. You should report those incidents to
your computer incidents response team (CIRT). I would not be surprised that further analysis of the data
I was provided with could identify a few more compromised hosts. You are subjected to a lot of port
scans, stealth and noisy, done for information gathering purposes. The danger is that vulnerabilities found
by these scans will be exploited later by malicious sources. You have too much traffic involving outside
IP addresses which are suspected or known to carry malicious activities (watch lists). You have Napster
clients running on some of your hosts. You have hosts that are exposed to being exploited and that can be
made more secure easily, e.g. changing the default password used on some SNMP devices.

I now want to discuss measures that I think should be taken to improve the security of your network.

You should start by making sure that standard, good practice, procedures are part of your network
operations. These would normally include the following:

• Stronger password (change default values),
• Better access control at the perimeter devices, like routers and firewalls,
• Systematically blocking traffic from all IP addresses that you know for sure have no business

contacting your inside hosts,
• Tighter control of certain types of traffic, e.g. Telnet and FTP. Consider using encryption-

based solutions if you need to offer remote access from outside,
• Etc…

You should implement, or revised, an Acceptable Use Policy that addresses issues like the use of Napster
and PCAnywhere.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 36

Your computers, especially the hosts critical to your operation, should have updated patches to avoid
being exploited (ex: wu-ftpd exploit). There are vulnerability assessment tools that could help you
identify the exposed systems.

I also recommend the strategic deployment of permanent Intrusion Detection Systems (IDS) on your
network infrastructure. There are free IDS software products, like Shadow and Snort, which allow very
affordable solutions. There are also many popular commercial IDS products like Cisco Secure IDS, ISS
Real Secure, NFR and Dragon. If possible, deploy IDS on both sides of your firewalls. This is an
excellent way to control the common firewall rule errors issues. Firewall rules are sometime enabled but
not systematically verified for correct operations. Your busy firewall system administrators would
appreciate the increased confidence in perimeter controls.

I am very interested in being part of your network security solution. I could participate to many phases of
a project to significantly improve the security posture of your network, including the Threat and Risk
Assessment (TRA) study, the vulnerability assessment study, the selection and deployment of IDS, and
the analysis support required to operate the IDS.

Marc Grégoire
GIAC CIA Candidate

Assignment 4 – Analysis Process

This assignment is to describe the process used in analyzing the data in assignment 3. Some of this is
included in assignment 3, because I made an effort to explain the steps taken in the Detailed Analysis
section. I took the approach of starting from a specific Snort alert, and then progress through my
reasoning, telling what the next question should be and how it could be answered, including additional
traces where necessary to support my statements. Hopefully, the reader would feel more confident about
my conclusion on that alert. I especially tried to verbose for the false positive cases because I believe that
carefully discarding false alarms is a big part of the work of the intrusion detection analyst.

Methodology

I list here, in bullet form, the steps of the high level approach I used when confronted to the task of
analyzing the scenario.

1) Collect all the material required for the task:

• Practical assignment description (what to do)
• Snort data (www.sans.org)
• Snort program information to understand output and rule creation
• Standard sets of Snort rule (from www.snort.org.)
• TCP/IP protocol reference
• Port lists (Well known ports, registered ports, trojan ports)
• Sample of practical exams from GIAC certified analysts
• Unix and Windows computers
• Web bookmarks for:

• security sites describing incidents and known attacks (GIAC, NetworkICE, etc…)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 37

• a site to do nslookup and whois (http://name.space.xs2.net/search/)
• Computer books (Unix, shell scripts, Perl)
• Intrusion detection reference books

• SANS Parliament Hill 2000 course notes
• Network Intrusion Detection – An analyst’s handbook, by Stephen Northcutt.

• Support from spouse (for evenings to be spent working on practical exam)

2) High level statistics on the Snort data.

I found the amount of data overwhelming at first. Because the Snort report data is plain text, with fairly
constant patterns, and with one message per line, it lends itself well to be processed with Perl scripts. I
figured that other intrusion detection analysts were had faced with analyzing large amount Snort data
before. Browsing the Snort web site revealed a few Perl scripts to do statistics. I used a script called
snort_stat, by Yen-Ming Chen, that I modified to read the format of the Snort files provided for the
practical exam.

I merged all the Snort Alert reports into one big file. Then I ran my version of snort_stat.pl on the big
alert report file. This gave me 29 pages of sorted statistics. The output lists are:

• The number of attack from same host to same destination using same method,
• Percentage and number of attacks from a host to a destination
• The percentage and number of attacks to one certain host
• Percentage and number of attacks from one host to any with same method
• The distribution of attack methods

The output of snort_stat.pl gave me a good indication of the suspicious activity on MY.NET.

I also extracted all the “spp_portscan” messages from the alert reports because they contain more
information than reported by snort_stal.pl. In particular, this line with the total values:

[**] spp_portscan: End of portscan from 208.160.10.19 (TOTAL HOSTS:8 TCP:6 UDP:2) [**]

The list of all the “End of portscan” lines were imported in Microsoft Excel. It is then easy to apply
filters, to sort, etc…

I merged all the Snort Scan reports into one big file also. I used many grep commands, or even Windows
FIND when I am stock on my Win98 machine at home, and simple shell scripts to extract information
from this big scan report file, like:

• How many times each MY.NET hosts is hit by a port scan
• How many hits for each of the 65535 ports

3) High level analysis of the Snort data

I used the top part of the sorted statistics tables just described to establish:

• What are the main attack methods used and that I should research and understand
• What are the main sources of attacks
• What are the most targeted hosts
• What are the most scanned port numbers

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 38

I also researched the main IP addresses attacking with whois and nslookup queries.

I treated all the events from two aspects:

• Snort alert event or scan event
• Source is outside or inside MY.NET

4) Detailed analysis of specific Snort alerts

I started analyzing specific alerts from the top of my statistics tables. The analysis steps used were:

• What is really meant by this alert? Research/analyze:
• Protocol
• Port numbers involved
• Snort rule that triggered the alert
• Correlation: reports on similar attacks (from GIAC and other security/hacker web sites)

• Get a history picture for the source
• Extract all lines with same IP (as source OR destination)

• Get a history picture for the destination
• Extract all lines with same IP (as source OR destination)

• If it is a scan, extract all scan traffic with same source from big Snort scan report (visual
inspection of this extracted data is very informative)

• Assess the event
• Inconclusive, if more research needed then what data is required,
• False positive, (ideally, should rule be modified?)
• Positive, evaluate the severity

To create a historical snapshot of a specific host I wrote a short batch which I invoke with the IP
address as the argument.

5) Tools

My favorite tools, which I used with in the process I described were:

• grep
• Perl
• Unix shell scripting
• Microsoft Excel spreadsheet
• Servant Salamander, a Windows based freeware file manager with built-in viewers and

archivers (zip, tar, gz, etc…), excellent for working with Unix files in Windows environment.
• Copernic, Windows interface to multiple search engines, saves results of Web searches.

__

