
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Crist Clark - GCIA Practical Assignment
GIAC Intrusion Detection Curriculum

Network Security 2000
Monterey, CA

October 15-20, 2000

Contents

A. Network Detects
1. Napster Strikes Back
2. SOCKS, Telnet, and a little IRC
3. The 10101 Tool
4. Email Scanner

B. Attack Evaluation: IDSwakeup
C. "Analyze This"
D. Analysis Process

Network Detect #1: Napster Strikes Back
30Oct2000 8:15:24 accept >qfe3 tcp XXX.XXX.153.34:2263 -> 128.100.71.72:6699 44 (XXX.XXX.248.142:23494
30Oct2000 8:15:29 drop >hme0 tcp 128.100.71.72:255 -> XXX.XXX.248.142:6699 40
30Oct2000 8:17:06 drop >hme0 tcp 128.100.71.72:6699 -> XXX.XXX.153.34:2263 40 (128.100.71.72:6699
30Oct2000 8:19:50 drop >hme0 tcp 128.100.71.72:http -> XXX.XXX.248.142:6699 40
30Oct2000 8:20:20 drop >hme0 tcp 128.100.71.72:6699 -> XXX.XXX.153.34:2263 40 (128.100.71.72:6699
30Oct2000 8:24:09 drop >hme0 tcp 128.100.71.72:6699 -> XXX.XXX.153.34:2263 40 (128.100.71.72:6699
30Oct2000 8:29:17 accept >qfe3 tcp XXX.XXX.153.34:2267 -> 128.100.71.72:6699 44 (XXX.XXX.248.142:29529
30Oct2000 8:29:25 accept >qfe3 tcp XXX.XXX.153.34:2268 -> 128.100.71.72:6699 44 (XXX.XXX.248.142:29553
30Oct2000 8:31:57 drop >hme0 tcp 128.100.71.72:6699 -> XXX.XXX.153.34:2263 40 (128.100.71.72:6699
30Oct2000 8:32:10 drop >hme0 tcp 128.100.71.72:6699 -> XXX.XXX.248.142:23494 40
30Oct2000 8:32:40 drop >hme0 tcp 128.100.71.72: -> XXX.XXX.248.142:6699 40
30Oct2000 8:34:36 drop >hme0 tcp 128.100.71.72:6699 -> XXX.XXX.153.34:2263 40 (128.100.71.72:6699
30Oct2000 8:34:53 drop >hme0 tcp 128.100.71.72:daytime -> XXX.XXX.248.142:6699 40
30Oct2000 8:38:05 accept >qfe3 tcp XXX.XXX.153.34:2270 -> 128.100.71.72:6699 44 (XXX.XXX.248.142:33310
30Oct2000 8:44:05 drop >hme0 tcp 128.100.71.72:208 -> XXX.XXX.248.142:6699 40
30Oct2000 8:46:42 drop >hme0 tcp 128.100.71.72:6 -> XXX.XXX.248.142:6699 40
30Oct2000 8:49:16 drop >hme0 tcp 128.100.71.72:42 -> XXX.XXX.248.142:6699 40
30Oct2000 8:50:42 drop >hme0 tcp 128.100.71.72:6699 -> XXX.XXX.248.142:29553 40
30Oct2000 8:52:31 accept >qfe3 tcp XXX.XXX.153.34:2273 -> 128.100.71.72:6699 44 (XXX.XXX.248.142:44734

Source of Trace

Page 1 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Our company's Internet firewall which protects several class C networks.

Detect Generated by

Custom AWK scripts applied to "exported" Checkpoint Firewall-1 logs. The scripts and
commands used to generate the logs from FW-1 appear in Appendix A. The format of the logs is
fairly simple: date, time, firewall action, in (>) or out (<) interface, IP protocol, source address
and port, destination source and port, and packet size. The second pair of source and destination
addresses in parenthenses are translated NAT values, that is, the numbers seen by the outside
world. qfe3 is the interior interface and hme0 is external.

Like many firewalls, the log information is very bare bones. We do not have details about TCP
flags, TCP options, IP TTL, IP ID, etc. But we have to make a go with what is available.

Probability Source Address Spoofed

Very unlikely. Unless a man-in-the-middle or eavesdropper decided to spoof when he saw the
connection attempt, the chance that someone coincidentally spoofed that address at the same
time our user tried to connect is minute.

Description of Attack

After our user initially connects to the external server, 128.100.71.72, we start to see some very
interesting packets coming back. The port 6699 is typically associated with Napster and other
file sharing protocols. Seeing some connections trying to come back in once a Napster session
has started is not too unusual, but there are some interesting features that are further discussed in
the following sections.

Attack Mechanism

After the initial connection attempt by our user (we have no way to know if it is successful or
not), we begin to get a slow scan coming back. Notice that NAT has caused the remote attacker
to probe our firewall rather than the true source. What makes this particular collect interesting
are the unusual source ports on the returning connections and inferences we can make about the
packets due to their size.

Since we lack TCP flag information, it is hard to say why the packets that look like they be part
of the connection established by our internal user are being dropped. But note that the returning
packets are 40 bytes. It is not unusual to see lost, out of sequence, or otherwise plain broken
packets bouncing off of the firewall from Napster traffic due to the unreliable nature of the net.
However, such packets returning from a Napster server are typically bloated with data, often full
1500 byte packets (maximum size we can push through the Ethernet outside the firewall). Here
packets are not carrying data, but only carrying information for the TCP connection. They may
be ACK packets, but that would imply our client is pushing data which is either unlikely or very
bad. We do not want people sending data out of our network.

What makes this particular collect look less like a broken TCP packets from an every-day

Page 2 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Napster connection and more like an attack are the source ports of the incoming connections. In
particular, the source port of the second connection attempt is HTTP (port 80). This wreaks of an
attempt to circumvent a stateless packet filter. Look at the other source ports, 255, daytime (13),
208, 6, and 42. And there is the puzzling blank port. I am not sure what the firewall is trying to
tell me with that (perhaps port 0?), but it is really what the log has and not a problem with the
scripts. We would expect "ephemeral" ports to be used for incoming connections and analysis of
other Napster sessions would seem to confirm this. This is what makes me consider this trace a
possible attack.

Correlations

The source address has a reverse lookup of,

;; ANSWER SECTION:
72.71.100.128.in-addr.arpa. 23h41m56s IN PTR helicotrema.ibme.utoronto.ca.

And a quick check with ARIN (whois.arin.net) verifies that it is indeed within the University of
Toronto block. From the name, helicotrema (part of the inner ear), it definitely belongs to the
Institute of Biomedical Engineering (IBME). However, university computers are notorious for
being abused by students who may or may not have legitimate access as well as compromise by
script kiddies. Little can be determined from the identity of the source. No other traffic from our
network was observed to this address. There is no listener on port 6699 of the attacking host at
the time of this writing.

I mentioned several times what "typical" Napster traffic looks like. Below is an example,

2Nov2000 9:31:35 accept >qfe3 tcp 192.168.XXX.186:1412 -> 172.144.30.193:6699 44 (XXX.XXX.248.142:54446
2Nov2000 9:31:44 accept >qfe3 tcp XXX.XXX.152.239:1812 -> 203.96.106.137:6699 44 (XXX.XXX.248.142:54545
2Nov2000 9:35:44 drop >hme0 tcp 200.28.48.106:4020 -> XXX.XXX.248.142:6699 44
2Nov2000 9:41:25 drop >hme0 tcp 62.36.149.102:1104 -> XXX.XXX.248.142:6699 44
2Nov2000 9:44:12 drop >hme0 tcp 198.213.203.57:1133 -> XXX.XXX.248.142:6699 48
2Nov2000 9:44:27 drop >hme0 tcp 212.120.103.108:1273 -> XXX.XXX.248.142:6699 48
2Nov2000 9:47:51 drop >hme0 tcp 195.223.93.163:1185 -> XXX.XXX.248.142:6699 48
2Nov2000 9:52:21 accept >qfe3 tcp XXX.XXX.153.168:1292 -> 62.227.192.50:6699 64 (XXX.XXX.248.142:13156
2Nov2000 9:56:31 accept >qfe3 tcp XXX.XXX.153.196:1148 -> 4.4.58.52:6699 44 (XXX.XXX.248.142:14296
2Nov2000 10:02:32 drop >hme0 tcp 63.16.57.29:1180 -> XXX.XXX.248.142:6699 48
2Nov2000 10:10:08 drop >hme0 tcp 212.14.119.159:1458 -> XXX.XXX.248.142:6699 48

Internal users make connections to external machines and suddenly we get pounded by multiple
sites. But notice that the connections are not as persistent as above nor do they have the
suspicious source ports. A more thorough analysis for all Napster traffic during the week shows
similar patters as this example, although this particular snapshot is heavy on incoming attempts
relative to outgoing. In actuality, there were more than nine outgoing connections for every
attempt to come in (911 to 98) for the week of data checked. In addition, no other external hosts
made multiple connection attempts from more than one source port.

When initially doing this analysis, I did not have any other examples of this type of scan, and as I
previously mentioned, my data is quite limited with regard to things like TCP flags or IP
parameters like TTL and ID. However, while working on the Analyze This portion of the

Page 3 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

assignment, I found lots of really strange stuff coming in on port 6699 in the data sets. A few
examples,

Aug 17 08:43:01 130.239.11.230:0 -> MY.NET.181.173:6699 NOACK 2*SFR**U RESERVEDBITS
Aug 17 08:43:32 130.239.11.230:6699 -> MY.NET.181.173:4554 NULL ********
Aug 17 08:43:38 130.239.11.230:0 -> MY.NET.181.173:6699 NOACK ****R**U
Aug 17 08:43:58 130.239.11.230:6699 -> MY.NET.181.173:4554 INVALIDACK **SFR*A*
Aug 17 08:45:32 130.239.11.230:6699 -> MY.NET.181.173:4555 UNKNOWN 21**R*A* RESERVEDBITS

Sep 4 12:56:39 161.184.104.111:6699 -> MY.NET.222.154:1883 UNKNOWN *1***PAU RESERVEDBITS
Sep 4 12:57:23 161.184.104.111:6699 -> MY.NET.222.154:1883 INVALIDACK ***FRPA*
Sep 4 12:59:14 161.184.104.111:1 -> MY.NET.222.154:6699 INVALIDACK ***FRPA*

Sep 4 16:27:38 130.234.185.71:6699 -> MY.NET.221.170:1243 NULL ********
Sep 4 16:27:45 130.234.185.71:6699 -> MY.NET.221.170:1243 NULL ********
Sep 4 16:29:26 130.234.185.71:0 -> MY.NET.221.170:6699 NOACK *1**RP*U RESERVEDBITS
Sep 4 16:30:29 130.234.185.71:86 -> MY.NET.221.170:6699 NOACK *1**RP*U RESERVEDBITS

That pattern looks an awful lot like what I saw. In these examples, we see invalid packets
coming back on port 6699, null packets or other invalid flag combinations. Perhaps that is why
my firewall was dropping incoming packets. The strange blank source port in my data probably
corresponds to the 0 source port in these captures, a bug in the FW-1 logging code.

These are starting to look very much like fingerprinting and attempts to circumvent dumb packet
filters. The remote machine is sending invalid packets to see if they make it to the remote
machine (pass any firewalls) and then see how the machine responds (for the fingerprint).

Evidence of Active Targeting

From the deductions of the previous sections, it appears we were actively targeted. The trigger
was the Napster connection from one of our hosts to the attacker. The multiple connections
attempts from multiple and suspicious source ports coupled with the lack of this behavior from
other Napster servers leads to the conclusions that this was likely a reconnaissance scan of some
type. From the correlations with the more detailed Snort data from the Analyze This data we
were provided, this looks very much like a fingerprinting attempt.

Severity

Target Criticality: 2 The target was a Windows NT desktop system. The systems typically
contain little data (network drives store important things) and can easily be
replaced or repaired.

Lethality: 2 The lethality is harder to judge since we do not know what the attacker
was trying to do. I have concluded that it was most probably a
fingerprinting and firewall evading attempt. But what would the attacker
do next if he successfully reached and IDed the machine? Does he have a
platform specific exploit for Napster? That would explain the interest in
connecting back on 6699. Maybe he just really wants to connect to our
Napster and check out our music. Or maybe he has a completely different
exploit in mind if he gets through? Is he just IDing remote hosts with no

Page 4 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Defensive Recommendation

The firewall did its job, even if the logging leaves something to be desired. Blocking Napster
going out is a possibility being considered. Presently, it is tolerated so long as network
performance is not hurt. Total bandwidth usage leaving our network is monitored. This can
prevent large transfers from leaving the network unnoticed. If they are observed, manual action
can be taken to determine the source.

Multiple Choice Question

In the first detect above, even though we lack TCP flag information, which one of the following
is the LEAST likely possibility for the recurring, dropped TCP traffic coming from
128.100.71.72:6699 to XXX.XXX.153.34:2263,

a. SYN connection attempts
b. ACK-PSH retries
c. SYN-ACK retries
d. SYN-FIN scans

Return to top.

Network Detect #2: SOCKS, Telnet, and a little IRC
9Oct2000 9:14:05 drop >hme0 tcp 203.101.17.225:41095 -> XXX.XXX.248.142:SOCKS 60
9Oct2000 9:14:05 drop >hme0 tcp 203.101.17.225:41096 -> XXX.XXX.248.142:telnet 60

12Oct2000 8:15:11 drop >hme0 tcp 203.101.17.225:45176 -> XXX.XXX.248.142:SOCKS 60

malicious intent? Who knows, maybe he's collecting marketing data. All
of that considered, let us just consider the scan itself. It was not
particularly dangerous.

System
Countermeasures:

-
1

Our internal user is running Napster software. It has had security problems
in the past (CAN-2000-0281, CAN-2000-0412). However, even if the
software has vulnerabilities, it should be running as a non-privileged user.

Network
Countermeasures:

-
3

Incoming attempts were blocked at the firewall and our use of NAT
protected the true address of our internal host. However, Napster is a two
way sharing protocol and we have reason to suspect there may have been a
flow of data out. The difficultly of determining the intent of the attacker
lowers our network protection. Assuming FW-1 locked tight is close to a
5, knock off a point for letting people Napster out and another point for the
weak logging at my disposal.

Severity: 0 The total threat from the attack is low.

ANSWER: b. ACK-PSH packets should contain data. The returning packets are small; the same
size as packets coming in to establish a connection. They do not carry data. All of
the other choices are more likely possibilities.

Page 5 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

12Oct2000 8:15:11 drop >hme0 tcp 203.101.17.225:45177 -> XXX.XXX.248.142:telnet 60
17Oct2000 15:04:48 drop >hme0 tcp 203.101.17.225:34127 -> XXX.XXX.248.142:SOCKS 60
17Oct2000 15:04:48 drop >hme0 tcp 203.101.17.225:34128 -> XXX.XXX.248.142:telnet 60
18Oct2000 8:44:53 drop >hme0 tcp 203.101.17.225:55267 -> XXX.XXX.248.142:SOCKS 60
18Oct2000 8:44:53 drop >hme0 tcp 203.101.17.225:55268 -> XXX.XXX.248.142:telnet 60
20Oct2000 10:11:09 drop >hme0 tcp 203.101.17.225:56599 -> XXX.XXX.248.142:SOCKS 60
20Oct2000 10:11:09 drop >hme0 tcp 203.101.17.225:56600 -> XXX.XXX.248.142:telnet 60
20Oct2000 13:32:29 drop >hme0 tcp 203.101.17.225:47415 -> XXX.XXX.248.142:SOCKS 60
20Oct2000 13:32:29 drop >hme0 tcp 203.101.17.225:47416 -> XXX.XXX.248.142:telnet 60
30Oct2000 10:59:05 drop >hme0 tcp 203.101.17.225:41623 -> XXX.XXX.248.142:SOCKS 60
30Oct2000 10:59:05 drop >hme0 tcp 203.101.17.225:41624 -> XXX.XXX.248.142:telnet 60
30Oct2000 13:47:19 drop >hme0 tcp 203.101.17.225:50625 -> XXX.XXX.248.142:SOCKS 60
30Oct2000 13:47:19 drop >hme0 tcp 203.101.17.225:50626 -> XXX.XXX.248.142:telnet 60
31Oct2000 10:24:52 drop >hme0 tcp 203.101.17.225:57006 -> XXX.XXX.248.142:SOCKS 60
31Oct2000 10:24:52 drop >hme0 tcp 203.101.17.225:57007 -> XXX.XXX.248.142:telnet 60
31Oct2000 14:42:00 drop >hme0 tcp 203.101.17.225:45119 -> XXX.XXX.248.142:SOCKS 60
31Oct2000 14:42:00 drop >hme0 tcp 203.101.17.225:45120 -> XXX.XXX.248.142:telnet 60
31Oct2000 14:46:06 drop >hme0 tcp 203.101.17.225:45371 -> XXX.XXX.248.142:SOCKS 60
31Oct2000 14:46:06 drop >hme0 tcp 203.101.17.225:45372 -> XXX.XXX.248.142:telnet 60
1Nov2000 9:12:45 drop >hme0 tcp 203.101.17.225:48972 -> XXX.XXX.248.142:SOCKS 60
1Nov2000 9:12:45 drop >hme0 tcp 203.101.17.225:48973 -> XXX.XXX.248.142:telnet 60
2Nov2000 13:10:32 drop >hme0 tcp 203.101.17.225:34516 -> XXX.XXX.248.142:SOCKS 60
2Nov2000 13:10:32 drop >hme0 tcp 203.101.17.225:34517 -> XXX.XXX.248.142:telnet 60
3Nov2000 10:03:42 drop >hme0 tcp 203.101.17.225:39692 -> XXX.XXX.248.142:SOCKS 60
3Nov2000 10:03:42 drop >hme0 tcp 203.101.17.225:39693 -> XXX.XXX.248.142:telnet 60
3Nov2000 13:49:32 drop >hme0 tcp 203.101.17.225:56618 -> XXX.XXX.248.142:SOCKS 60
3Nov2000 13:49:32 drop >hme0 tcp 203.101.17.225:56619 -> XXX.XXX.248.142:telnet 60

Source of Trace

Our company's Internet firewall which protects several class C networks.

Detect Generated by

Custom AWK scripts applied to "exported" Checkpoint Firewall-1 logs. See the description in
Detect #1 for details.

Probability Source Address Spoofed

Unlikely. These look like real TCP connection attempts.

Description of Attack

The attacker is repeatedly probing us for open telnet (23) and SOCKS (1080) ports.

Attack Mechanism

The attacker tries a SOCKS connection and then a telnet in rapid succession.

Correlations

Page 6 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The source, 203.101.17.225, has a reverse lookup of,

;; ANSWER SECTION:
225.17.101.203.in-addr.arpa. 1H IN PTR irc.one.net.au.

;; AUTHORITY SECTION:
17.101.203.IN-ADDR.ARPA. 1H IN NS red.one.net.au.
17.101.203.IN-ADDR.ARPA. 1H IN NS orange.one.net.au.

;; ADDITIONAL SECTION:
red.one.net.au. 15M IN A 203.17.224.11
orange.one.net.au. 15M IN A 203.17.224.12

The APNIC database (whois.apnic.net) verifies that the source address falls within the block of
One Net which appears to be an Australian ISP. The source address, their IRC server, seems
somewhat ominous. It may be a rooted box. Then again, I have heard of IRC servers behaving
like this as an attempt to check for people anonymizing themselves with open SOCKS proxies.

What was particularly worrisome in this case was that I was at first unable to correlate the
incoming attempts with any outgoing activity. In Detect #1, it seemed clear that the incoming
attempts were prompted by a particular internal machine making an outgoing connection. In this
case, no internal machines have tried to access this external IRC server during the time frame of
the incoming connection attempts.

This made me wonder if I had a trojan or some other malware on our internal net which was
"phoning home" on IRC. Perhaps a listening agent is connected to an IRC channel somewhere.
When an infected box connects to the channel, the agent tries to SOCKS and telnet to the
infected machine. This agent could easily be listening on an different IRC server from the one
the infected machine calls up. It is a scary thought and one not easy to confirm or deny. I went
through the logs dumping the connections immediately before the scans, but was not able to find
a source that correlated with the attacks.

Since IRC seems to be involved by the name of the scanning host, I decided to look at outgoing
IRC attempts. A quick examination showed that there was one "promising candidate,"

9Oct2000 9:12:49 accept >qfe3 tcp 172.XX.XXX.20:4752 -> 216.152.64.155:6667 64
9Oct2000 9:15:33 accept >qfe3 tcp 172.XX.XXX.20:4754 -> 206.101.197.250:6667 64

12Oct2000 8:10:06 accept >qfe3 tcp 172.XX.XXX.20:1174 -> 206.101.197.250:6667 64
12Oct2000 8:13:55 accept >qfe3 tcp 172.XX.XXX.20:1176 -> 216.152.64.155:6667 64
17Oct2000 13:55:18 accept >qfe3 tcp 172.XX.XXX.20:1943 -> 206.101.197.250:6667 64
17Oct2000 15:03:32 accept >qfe3 tcp 172.XX.XXX.20:1945 -> 216.152.64.155:6667 64
18Oct2000 8:41:00 accept >qfe3 tcp 172.XX.XXX.20:1574 -> 206.101.197.250:6667 64
18Oct2000 8:43:38 accept >qfe3 tcp 172.XX.XXX.20:1576 -> 216.152.64.155:6667 64
20Oct2000 10:09:49 accept >qfe3 tcp 172.XX.XXX.20:2633 -> 216.152.64.155:6667 64
20Oct2000 13:31:13 accept >qfe3 tcp 172.XX.XXX.20:2764 -> 216.152.64.155:6667 64
30Oct2000 10:57:49 accept >qfe3 tcp 172.XX.XXX.20:1050 -> 216.152.64.155:6667 64
30Oct2000 11:02:24 accept >qfe3 tcp 172.XX.XXX.20:1051 -> 216.152.64.155:6667 64
30Oct2000 11:03:17 accept >qfe3 tcp 172.XX.XXX.20:1052 -> 216.152.64.155:6667 64
30Oct2000 13:20:36 accept >qfe3 tcp 172.XX.XXX.20:1072 -> 206.101.197.250:6667 64
30Oct2000 13:31:37 accept >qfe3 tcp 172.XX.XXX.20:1074 -> 206.101.197.250:6667 64
30Oct2000 13:46:03 accept >qfe3 tcp 172.XX.XXX.20:1077 -> 216.152.64.155:6667 64
31Oct2000 10:23:36 accept >qfe3 tcp 172.XX.XXX.20:2940 -> 216.152.64.155:6667 64

Page 7 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

31Oct2000 14:38:43 accept >qfe3 tcp 172.XX.XXX.20:1083 -> 216.152.64.155:6667 64
31Oct2000 14:40:44 accept >qfe3 tcp 172.XX.XXX.20:1084 -> 216.152.64.155:6667 64
31Oct2000 14:44:40 accept >qfe3 tcp 172.XX.XXX.20:1085 -> 216.152.64.155:6667 64
1Nov2000 9:11:30 accept >qfe3 tcp 172.XX.XXX.20:1101 -> 216.152.64.155:6667 64
2Nov2000 13:05:03 accept >qfe3 tcp 172.XX.XXX.20:1251 -> 216.152.64.155:6667 64
2Nov2000 13:06:38 accept >qfe3 tcp 172.XX.XXX.20:1252 -> 216.152.64.155:6667 64
2Nov2000 13:07:29 accept >qfe3 tcp 172.XX.XXX.20:1253 -> 216.152.64.155:6667 64
2Nov2000 13:08:59 accept >qfe3 tcp 172.XX.XXX.20:1255 -> 198.165.100.11:6667 64
3Nov2000 10:02:11 accept >qfe3 tcp 172.XX.XXX.20:4922 -> 198.165.100.11:6667 64
3Nov2000 13:48:01 accept >qfe3 tcp 172.XX.XXX.20:4994 -> 198.165.100.11:6667 64

Just a little to close to be coincidental, no? So let me do a quick NMap scan of the source from
inside my network,

$ nmap 172.XX.XXX.20

Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nmap/)
Interesting ports on (172.XX.XXX.20):
(The 1520 ports scanned but not shown below are in state: closed)
Port State Service
139/tcp open netbios-ssn
12345/tcp open NetBus
31337/tcp open Elite

Nmap run completed - 1 IP address (1 host up) scanned in 1 second

Eiiieeeee! Not to be too dramatic, but I immediately hunted down the machine. It turns out that
the user was running some software on his PC called LockDown 2000(tm). It is a
firewall/honeypot package. From what I could deduce from the documentation, it should not go
as far as chat on IRC to entice script kiddies to bang on it (although I did not see mention of the
fact that it phoned home on HTTP periodically but did see it in the logs), but my NMap scan
came up positive since it listens on common trojan ports for scan attempts.

I had to wait until the next day, but I got hold of the user of the machine in question. He reported
that he uses IRC. So after the scare above, it looks like all we have some kind of 'bot listening on
IRC that scans users' source IP addresses. It is most likely a defensive measure by the IRC
servers.

Evidence of Active Targeting

We were definitely being targeted. The pattern repeated regularly over a long period to a single
IP address; the source address that is on outgoing NATed traffic. It was almost certainly
someone backtracing the source IP of some outgoing traffic.

Severity

The target machine, the notebook PC, was never listening on telnet or SOCKS ports. The attacks
themselves may have not been hostile, but a security check from the server looking out for
kiddies using open SOCKS proxies as anonymizers.
Target Criticality: 2 The target was a notebook PC.

Page 8 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Defensive Recommendation

Our Internet firewall was doing its job and blocking the attempts. I discussed the
firewall/honeypot software with the user, discontinued its use, and de-installed it. I have also sent
mail to the source of the probes to see if they will verify that the probes are not malicious. In
addition, the DNS records of the IRC server that our user was connecting to (remember it is not
the same one the probes come from) are suspicious. It very well may be a hijacked box. I
contacted the administrators of that system as well.

Multiple Choice Question

IRC has a reputation of being a playground for script kiddies and other unsavory characters.
Administrators of "legit" IRC servers have gone so far as to automate scans of incoming hosts'
SOCKS and telnet ports in an attempt to:

a. Make sure the client system is not running distributed denial of service attack tools.
b. Check that the connection is not too lossy or lagged.
c. Verify that the user is not using an open proxy or rooted box to hide his true location.
d. Determine if the TCP session is hijacked (Mitnick attack).

Return to top.

Network Detect #3: The 10101 Tool
(Note: The first scan shown below was edited edited for length. The "..." represent a continuing
scan to the end of the Class C block.)

Lethality: 1
System
Countermeasures:

-
3

The system was running security software. However, in quick research, I
have found reports that the firewall/honeypot software is not terribly
strong. The system is a Win9x machine with minimal services (for
Win9x) running and anti-virus software was properly configured.

Network
Countermeasures:

-
4

NAT misdirected the connect-back attempts and the firewall easily
blocked them. The only drawback again is the weak logging.

Severity:

-
4

A negative value says there is essentially no risk to the system. However,
this number would be different if I had not put the effort into tracking
down the attack and checking up that "legit" IRC servers really do scan
remote hosts for defensive purposes.

ANSWER: c. From responses I received after inquiring about this practice on
INCIDENTS@securityfocus.com this is a fairly widespread practice among IRC
administrators. The SOCKS check is for open proxies and the telnet for rooted
boxes with password-less logins. One person mentioned that the fact the scan
actually comes from a different host than the connection went to is a feature to
detect software that drops reflected connections.

Page 9 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.0:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.1:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.2:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.4:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.5:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.6:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.7:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.8:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.9:sunrpc 40
16Oct2000 7:14:46 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.152.10:sunrpc 40
...
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.0:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.1:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.2:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.4:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.5:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.6:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.7:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.8:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.9:sunrpc 40
16Oct2000 7:14:47 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.153.10:sunrpc 40
...
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.0:sunrpc 40
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.1:sunrpc 40
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.2:sunrpc 40
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.4:sunrpc 40
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.5:sunrpc 40
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.6:sunrpc 40
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.8:sunrpc 40
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.9:sunrpc 40
16Oct2000 7:14:48 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.154.10:sunrpc 40
...
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.0:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.1:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.2:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.4:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.5:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.6:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.7:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.8:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.9:sunrpc 40
16Oct2000 7:14:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.155.10:sunrpc 40
...
16Oct2000 7:16:49 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.141:sunrpc 40
16Oct2000 7:16:49 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.144:sunrpc 40
16Oct2000 7:16:49 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.145:sunrpc 40
16Oct2000 7:16:49 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.146:sunrpc 40
16Oct2000 7:16:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.148:sunrpc 40
16Oct2000 7:16:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.149:sunrpc 40
16Oct2000 7:16:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.150:sunrpc 40
...
16Oct2000 7:16:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.188:sunrpc 40
16Oct2000 7:16:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.189:sunrpc 40
16Oct2000 7:16:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.190:sunrpc 40
16Oct2000 7:16:50 drop >hme0 tcp 205.251.216.241:10101 -> XXX.XXX.248.191:sunrpc 40

17Oct2000 14:16:48 drop >hme0 tcp 12.7.184.17:10101 -> YYY.YYY.31.192:sunrpc 40

Page 10 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

17Oct2000 14:16:48 drop >hme0 tcp 12.7.184.17:10101 -> YYY.YYY.31.193:sunrpc 40
17Oct2000 14:16:48 drop >hme0 tcp 12.7.184.17:10101 -> YYY.YYY.31.194:sunrpc 40
17Oct2000 14:16:48 drop >hme0 tcp 12.7.184.17:10101 -> YYY.YYY.31.195:sunrpc 40
17Oct2000 14:16:48 drop >hme0 tcp 12.7.184.17:10101 -> YYY.YYY.31.196:sunrpc 40
17Oct2000 14:16:48 drop >hme0 tcp 12.7.184.17:10101 -> YYY.YYY.31.197:sunrpc 40
17Oct2000 14:16:48 drop >hme0 tcp 12.7.184.17:10101 -> YYY.YYY.31.198:sunrpc 40
17Oct2000 14:16:48 drop >hme0 tcp 12.7.184.17:10101 -> YYY.YYY.31.199:sunrpc 40

3Nov2000 5:59:58 drop >hme0 tcp 24.20.135.187:10101 -> YYY.YYY.31.192:sunrpc 40
3Nov2000 5:59:58 drop >hme0 tcp 24.20.135.187:10101 -> YYY.YYY.31.193:sunrpc 40
3Nov2000 5:59:58 drop >hme0 tcp 24.20.135.187:10101 -> YYY.YYY.31.194:sunrpc 40
3Nov2000 5:59:58 drop >hme0 tcp 24.20.135.187:10101 -> YYY.YYY.31.195:sunrpc 40
3Nov2000 5:59:58 drop >hme0 tcp 24.20.135.187:10101 -> YYY.YYY.31.196:sunrpc 40
3Nov2000 5:59:58 drop >hme0 tcp 24.20.135.187:10101 -> YYY.YYY.31.197:sunrpc 40
3Nov2000 5:59:58 drop >hme0 tcp 24.20.135.187:10101 -> YYY.YYY.31.198:sunrpc 40
3Nov2000 5:59:58 drop >hme0 tcp 24.20.135.187:10101 -> YYY.YYY.31.199:sunrpc 40

Source of Trace

Our company's Internet firewall which protects several class C networks.

Detect Generated by

Custom AWK scripts applied to "exported" Checkpoint Firewall-1 logs. See the description in
Detect #1 for details.

Probability Source Address Spoofed

Unlikely, but in some cases it could be possible. These look like a SYN-scan (possibly SYN-FIN
or other "stealthy" scan, more in the correlations section below) from an special scanning tool.
The attacker would need to hear responses to gather information.

Description of Attack

Shown above are three separate scans from three IP addresses on three different days. All are
scans for the portmap service, port 111. These are most probably scans from different individuals
using the same, specialized scanning tool, but it could possibly be one person or a small group
per persons using the same tool from lots of sacrificial, rooted boxes.

Attack Mechanism

The scanner is looking for machines with the portmapper service running. This is a classic. RPC
services, for which the portmapper plays an essential role, have had countless exploitable holes
on a wide variety of platforms and operating systems (the CVE list is too long to be included
here). Since none of our scans returned a favorable response to our kiddies, we did not get to
personally see what holes he may have been actually trying to exploit, but others did as we see in
the next section.

Note that in all cases the source port, 10101, does not change. This is the obvious signature of a

Page 11 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

specialized tool. Normal connection attempts, those going through a normal operating system,
will have a changing source port. Typically, we see the source port incrementing +1 each
connection.

Correlations

As stated, this is clearly coming from a scanning tool. That we see it used several times over a
few days, and that we have not seen this signature previously, is interesting. Before I had a
chance to correlate these scans, I had already seen chatter from other security administrators on
the INCIDENTS@securityfocus.com mail list about this tool. Let's see what some of the others
had found.

The thread started with Abe Getchell at the Kentucky Department of Education who reported in
his mail,

Subject: Network Scan - sunrpc
Date: Mon Oct 30 2000 11:17:48

Hello all,
A _huge_ scan was performed on our network this weekend from

129.62.1.75 (graduate-etd.baylor.edu) looking for anything with sunrpc open.
Has anyone noticed anything similar from this IP address before?

462816 28Oct2000 11:11:11 AM drop tcp 129.62.1.75 10101 xxx.xxx.xxx.xxx
sunrpc

Thanks,
Abe

Compared to my scans above, we see this source IP was not one that hit us, but notice the source
port, 10101. This mail was followed by James W. Abendschan who actually had a break-in,

Subject: Re: Network Scan - sunrpc
Date: Tue Oct 31 2000 11:47:56

On Mon, 30 Oct 2000, Abe Getchell wrote:

[Cut quote of previous mail. -cjc]

Yup. Here's a slightly modified writeup I sent to CERT:

On September 26th, 2000, two of the RH 6.2 Linux machines where I work
were broken into. The intruder apparently exploited a known bug in rpc.statd
(unpatched on these two boxes, naturally.)

One of these boxes was being used to probe machines. These probes
were sent to port 111/tcp and had a local port # of
10101/tcp. Interestingly, these probes were used to determine the
remote host OS, not enumerate RPC services.

The initial overflow attack came around 13:02 PDT from from 216.253.64.100.
As near as I can reconstruct, the sequence of events was as follows:

Page 12 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[Edited for length. Click here for the full archived message. I believe the rpc.statd
vulnerability that Mr. Getchell refers to is likely CVE-2000-0666 (cool number,
huh?).-cjc]

All this looks like the result of an automated script; if the timestamps
on the files are to be believed, it was installed after the statd exploit
in under 30 seconds.

[Snipped again. -cjc]

Shortly afterwards, I noticed the scanning activity from the box.
At the same time, complaints started coming in and I took the box
offline. Two things struck me as interesting about this:

1) They were scanning for host OS's only, not specific services.
2) the ssh_host_key might suggest that the intruder owns (literally

or figuratively) rapier.aerohead.com.

Finally, Guillaume Filion followed up with another mail claiming he had been hit by yet another
source IP. What was interesting about his mail was that he got what looks like an IPchains log
entry with more info about the packets,

Nov 3 22:26:52 cesam kernel: Packet log: input REJECT eth1 PROTO=6 24.200.yy.yy:10101 24.201.xx.xx:111 L=40 S=0x00 I=61434 F=0x0000 T=251 SYN (#51)

We see that these are "real" SYN packets, no attempt to even be stealthy. Unfortunately, he did
not post more than one to verify if the IP ID, 61434 for the packet above, is also static.

Going to the GIAC webpage to see what has been reported there, we find several more reports of
scans to portmapper from source port 10101. There were a number of summaries with reports of
these scans,

l Detects Analyzed 10/16/00
l Detects Analyzed 10/17/00
l Detects Analyzed 10/24/00
l Detects Analyzed 10/26/00
l Detects Analyzed 11/2/00
l Detects Analyzed 11/7/00
l Detects Analyzed 11/8/00

But nothing quite as interesting as the INCIDENTS exchange. However, some more complete
dumps of packets showed that IP IDs changes, but the sequence number and acknowledgment
number do not (100 and 0, respectively).

In the last entry, "Laurie@.edu," one of the regular posters to the GIAC page, did report getting
hit by the same cable modem scanner, 24.20.135.187, on November 8th. In the same report, she
also saw source port 10101 attacks being directed to 27374, the only reported scans not directed
at port 111.

Page 13 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The timing is also very peculiar. Lots of activity for a few weeks and then none. Maybe this is
not a widely distributed kiddie tool; those never seem to die. This could mean that we have a few
people (the author(s) of the tool might be more than just skr1pt k1ddyz) using the tool from lots
of different captured boxes.

Evidence of Active Targeting

The first scan walked across four full Class C nets, incrementing by one IP number, in just a few
seconds. Minutes later, it banged across another Class C separated from the first four by ninety-
three other C's. The other scans crossed a small 29-bit net we have routed to the firewall. This
address space separated from those in the previous scan in the first octet of the IP.

The point is, these were loud, broad scans. They were scanning the whole Internet for vulnerable
boxes. We were not actively targeted.

Severity

Defensive Recommendation

Again, this is exactly the kind of thing a firewall is there to block. However, one should still try
to keep up with patching the seemingly endless list of RPC program exploits. If not to protect
yourself from the kiddies outside the firewall, then from the inside job.

Multiple Choice Question

The scans above are almost certainly the product of an automated, packet-crafting tool because,

a. The IP addresses are walked in numerical order.

Target Criticality: 2 The one confirmed target was a Red Hat 6.2 box. We do not have any of
those around, or any Linux-type operating systems at all. However, that is
not proof that this was only going after exploits on those OSes. We have
other UNIX machines that use RPC services that may be targets, so I am
being conservative and giving this a 2.

Lethality: 5 This is an automated root exploit that someone reported haven fallen
victim to. 'Nuff said.

System
Countermeasures:

-
3

We try to keep the boxes patched, but many still run unnecessary
services. Plus, we have no evidence that our OSes are being targeted.

Network
Countermeasures:

-
5

This is exactly the kind of thing a firewall is perfect for blocking,
random, automated, connect scans. There was essentially no risk of this
getting past the firewall without going through the rules, and no rules
allow any traffic like this through.

Severity:
-
1

A negative value tells us there is essentially no risk. It is a lethal attack,
but exactly the kind of thing we have a firewall to block. We may have
machines potentially vulnerable to RPC exploits, but none to the one
exploit the tool has been confirmed to use.

Page 14 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

b. All of the source port addresses are identical.
c. All of the destination port addresses are identical.
d. The packets are coming in very rapidly.

Return to top.

Network Detect #4: Email Scanner
6Nov2000 11:05:27 drop >hme0 tcp 198.80.92.3:3717 -> AAA.BBB.31.192:mail 44
6Nov2000 11:05:32 drop >hme0 tcp 198.80.92.3:3718 -> AAA.BBB.31.193:mail 44
6Nov2000 11:05:37 drop >hme0 tcp 198.80.92.3:3721 -> AAA.BBB.31.195:mail 44
6Nov2000 11:05:42 drop >hme0 tcp 198.80.92.3:3722 -> AAA.BBB.31.196:mail 44
6Nov2000 11:05:47 drop >hme0 tcp 198.80.92.3:3723 -> AAA.BBB.31.197:mail 44
6Nov2000 11:05:52 drop >hme0 tcp 198.80.92.3:3724 -> AAA.BBB.31.198:mail 44
6Nov2000 11:05:57 drop >hme0 tcp 198.80.92.3:3725 -> AAA.BBB.31.199:mail 44

Source of Trace

Our company's Internet firewall which protects several class C networks.

Detect Generated by

Custom AWK scripts applied to "exported" Checkpoint Firewall-1 logs. See the description in
Detect #1 for details.

Probability Source Address Spoofed

Unlikely. This looks like a connect scan and as we will see, a connection was actually made.
This means the TCP three-way handshake was completed.

Description of Attack

We are scanned for SMTP (port 25) servers. Most SMTP scans are either spammers looking for
open relays or kiddies looking to break into SMTP daemons with canned exploits. We will see
this is most probably a kiddie looking for a box to steal.

Attack Mechanism

Our scanner is walking across the net one IP address at a time. From the rather slow pace of the

ANSWER: b. Nearly all operating system will change the source port, typically incrementing it
by +1, each time a connection is initiated using the kernel's TCP/IP stack.
Choices (a) and (c) would also be seen if the attacker was using a simple script.
The last choice, (d), might be a indication that it is not a script, since they often
are a bit slower, but a custom program using the kernel's stack would be just as
fast, if not faster, than a packet crafting program.

Page 15 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

walk, five seconds spacing between connection attempts, it looks like he might not be using a
specialized scanning tool. The source port is also in a reasonable range and stepping up once per
connection attempt. This also points to a "real" connection attempt using the normal operating
system.

But you have probably already noticed there is a hole in the scan at AAA.BBB.31.194. That is
because there actually is an SMTP listener at that address. You also may notice that there are no
logs of a successful connection included above. This is not because I filtered it out when
processing the log. The log data shown above are all of the entries with that IP address,
198.80.92.3, in any field. (So if my other three detects have not made the point already,
firewall logs often leave much to be desired.)

The firewall, Checkpoint FW-1, has an SMTP proxy server which screens the mail for the real
SMTP server, AAA.BBB.31.194. Messages that are received by the proxy are logged. Another
log entry is entered when the message is either passed to the real SMTP server or when the mail
is rejected. As we see above, there is no such entry.

After several tests with FW-1, I have determined there are two ways this can happen. If the
sender connects to the proxy and gracefully terminates the session at the application level
without trying to send a message of any kind,

$ telnet AAA.BBB.31.194 25
Trying AAA.BBB.31.194...
Connected to mail01.XXXXXX.com.
Escape character is '^]'.
220 CheckPoint FireWall-1 secure SMTP server
QUIT
221 Closing connection
Connection closed by foreign host.

Nothing is logged.

If the user interrupts the session at the application layer, but gracefully closes the TCP
connection, as happens if we kill the telnet session,

$ telnet AAA.BBB.31.194 25
Trying AAA.BBB.31.194...
Connected to mail01.XXXXXX.com.
Escape character is '^]'.
220 CheckPoint FireWall-1 secure SMTP server
^]
telnet> q
Connection closed.

Nothing is entered in the mail FW-1 log, but we do get a log entry in the SMTP-proxy's own,
separate log file,

18:08:53 fd: 7 src: 64.XXX.XXX.149 dst: AAA.BBB.31.194 Connection aborted by peer.

We did not get such an entry when the session was terminated at the application layer.

Page 16 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Now, if we search the proxy's logs for our SMTP scanner,

11:05:37 fd: 8 src: 198.80.92.3 dst: AAA.BBB.31.194 Connection aborted by peer.

We find that at a time that meshes perfectly with our log entries above, he most unpolitely
interrupted his session with the mail proxy.

From these facts, we can conclude he was most likely connecting to a STMP listener, examining
the SMTP server's banner, and if it was not what he wanted to see, he immediately cut the
connection. He was probably searching for versions of Sendmail, MS Exchange, etc. for which
he has canned exploits.

Our scanner was probably not a spammer. In general, spammers will actually attempt to forward
mail through the server. It is possible that we had a spammer who checked the banner first to try
to guess if it was even worth the attempt. That, however, seems to greatly over estimate the IQ of
your typical spammer; one of the few forms of 'Net life even lower than the script kiddies.

Correlations

Finding information on this particular source IP turned out to be difficult. The closest I could get
doing a reverse-lookup of the address was,

;; 92.80.198.in-addr.arpa, type = ANY, class = IN

;; ANSWER SECTION:
92.80.198.in-addr.arpa. 22h47m33s IN NS pic.net.
92.80.198.in-addr.arpa. 22h47m33s IN NS ns.stb.com.

;; AUTHORITY SECTION:
92.80.198.in-addr.arpa. 22h47m33s IN NS pic.net.
92.80.198.in-addr.arpa. 22h47m33s IN NS ns.stb.com.

ARIN (whois.arin.net) verified that the address is associated with pic.net and NETCOM,

Registrant:
NETCOM Interactive (PIC2-DOM)

1607 LBJ Freeway
Dallas, TX 75234
US

Domain Name: PIC.NET

Searches of the GIAC site and the INCIDENTS@securityfocus.com archive provided no leads.
Neither this address nor any others from its network (198.80.92.3/24) were present in our logs
during this time frame. No other anomalous email activity from any addresses was noticed at the
time of the scan.

Evidence of Active Targeting

This looks like a broad scan. The mail server they did find is pointed to by MX records for

Page 17 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

several of our domains. If they wanted to target that machine, public information was available,
but the fact the scan walked all of the way across the subnet makes that seem unlikely.

Severity

Defensive Recommendation

If we want to receive email, and email is still the primary business use of the Internet, we need to
have machines listening for incoming mail connections. People scanning for listening SMTP
agents will bump into them. We cannot hide our SMTP servers, we need public MX records for
email to work.

The scanners are almost certainly looking for unlisted, misconfigured, and forgotten SMTP
agents for exploit or spamming. The main thing for security staff and system administrators to
remember is to turn off SMTP listeners on systems that do not need them. Most UNIX-type
systems, Solaris, IRIX, HP-UX, most Linux distributions, and the *BSD's (except OpenBSD),
come with sendmail turned on out-of-the-box. Unless the machine needs it, and most do not, turn
it off! And if it does need it, make sure to configure it correctly.

Multiple Choice Question

Which of the choices below is either not a practical option for stopping email spammers or is not
an effective defense.

a. Turning off email services on machines that do not need to receive mail.
b. Keep your mail server software up to date and watch for vulnerability reports.
c. Properly configure email daemons to limit accepted relays to trusted sources.
d. Do not publically advertise your email server with DNS MX records.
e. Feed email spammers to wild dogs.

Target Criticality: 5 The target was our primary mail server.
Lethality: 2 From the evidence we have, it the attacker was just collecting banners

and no evidence of overt hostile activity exists.
System
Countermeasures:

-
4

In actuality, the system the scanner dealt with was the mail proxy. It is
specifically designed to deal with attacks. It loses a point for the hole in
the logging. It would be much more reassuring to know exactly what our
scanner did rather than have to reconstruct it.

Network
Countermeasures:

-
5

The firewall/proxy is there to handle these things. We already knocked
off a point for the poor logging.

Severity: -
2

There was essentially no risk our scanner could hurt our mail proxy. If he
was a spammer, we are configured to prevent that as well.

ANSWER:
d.

Yes, I am having a little fun here. Choice (e) is a gag, not that we wouldn't actually
like to do it, but it is probably not practical, at least not in the US. Choice (d) is the
real answer. It is not practical since MX records are essential for email to function
on the Internet. People have to some how be able to figure out where to send mail

Page 18 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Return to top.

Attack Evaluation: IDSwakeup

Introduction

While I was at the SANS 2000 Conference in Monterey, I happened to meet Stéphane Aubert
from HSC at one of the birds of a feather (BoF) meetings. He had earlier in the week managed to
defeat the IDSnet setup by several IDS vendors. Attendees were encouraged to try to break into a
number of boxes as the vendors' IDSes watched. As part of his successful attempt (the only
successful attempt of the week), he had used a tool of his creation called IDSwakeup. It is
designed to test IDSes by throwing false attacks and anomalous traffic at them to see if they are
triggered. The purpose is to check if the IDS falls over or false alarms occur at such a high rate
as to overwhelm operators. And as Stéphane showed at the IDSnet, it is also a good way for an
attacker to conceal the real attack. I have been meaning to take a look at this piece of software
and this assignment seemed like the perfect excuse.

Building the tools

I downloaded the code and easily built the tool following the instructions provided. IDSwakeup
requires a powerful packet crafting tool called hping2 (which has been analyzed in more than
one previous practical) and the packet building library, libnet. Fortunately for me, I already had
both of these installed on my systems. libnet has been ported to all the usual UNIX-type flavors
and has a port to WindowsNT. However, hping2 is only reported to be fully supported on Linux
and the *BSDs with a Solaris port in the works, no mention of a Windows port. (The following
testing was done mainly on FreeBSD and OpenBSD platforms.)

Reading the Documentation and Examining the Code

There is not extensive documentation of the tool (perhaps this analysis can help to serve such a
role for future users). However, the main routine, the IDSwakeup executable, is a well organized
shell script that is readily accessible to the user. It creates traffic to mimic the following denial-
of-service attacks, exploits, and suspicious activity in the order shown,

to your domain. All of the other choices, (a)-(c) are things that should be done to
protect your systems from being abused by spammers.

Teardrop CAN-1999-0015, CAN-1999-0104, CAN-1999-0257, CAN-1999-0258
A potential DOS caused by insufficient sanity checks in IP fragment
reassembly code. One of a family of such exploits. These were examined more
closely below.

Land Attack CVE-1999-0016
A potential DOS caused by insufficient sanity checks in the TCP/IP stack.

GET phf CVE-1999-0067

Page 19 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

A CGI program that allows execution of commands on the server through
shell metacharacters.

BIND Version CVE-1999-0009, CVE-1999-0010 , CVE-1999-0011 , CVE-1999-0024 ,
CVE-1999-0184 , CVE-1999-0385 , CVE-1999-0833 , CVE-1999-0835 ,
CVE-1999-0837 , CVE-1999-0848 , CVE-1999-0849 , CVE-1999-0851
Queries for the BIND version are actually not an exploit for any of these
vulnerabilities. Rather it is a frequent a precursor to attack. The attacker uses
the query to determine which exploit to try.

GET phf SYN-
ACK

CVE-1999-0067
A more sophisticated fake of a GET phf attack.

Ping of Death CVE-1999-0128
A DOS caused by flaws in the IP fragment reassembly code. So named for
exploits using oversized ICMP pings, but can be generalized to any IP
protocol.

Syndrop Another Teardrop variant.
Newtear Another Teardrop variant. Named after the tool, newtear.c.
X11 Communications on the first XWindow System port (6000).
SMBnegprot CVE-2000-0377

I believe this is related to a WinLogon DoS resulting from a malformed
network request.

SMTP expr
root

Watching for someone collecting reconnaissance on our systems.

finger
Redirect

CAN-1999-0106
Some finger daemons allow redirection. This could be used for finger (port
79) bombing.

FTP cwd root Appears like an attempt to change to the root users home directory during FTP
session. (In the actual code, this attack is mislabeled as the "FTP PORT"
signature.)

FTP PORT CVE-1999-0017, Looks like an FTP bounce attempt. (In the actual code, this
attack is mislabeled as the "FTP cwd root" signature.)

Trin00 Pong CAN-2000-0138
Uses ports and passes traffic with strings associated with the Trin00 DDoS
tool.

Back Orifice Generates traffic on ports used by the popular remote system control package.
MSADCS A Microsoft Internet Information Server (IIS) vulnerability.
WWW
Fragments

Tiny fragments of an HTTP request.

WWW, Best of CVE-1999-0148, CVE-1999-0191
A long list of other HTTP no-nos.

WWW, All An even longer list of HTTP no-nos.
DDoS, Best of Strings and port numbers that mimic DDoS signatures and server-zombie

communications.

Page 20 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The "Best of" series are collections of multiple signatures that may set off IDSs. They are too
numerous to go into here and most can be easily understood by examining the shell code.

Test Setup and Command Usage

IDSwakeup was run on an isolated network. The machine running IDSwakeup also recorded all
traffic using tcpdump. A second machine running Snort listened as well. The attack was focused
on a third machine. The "snort-rules" file distributed with Snort-1.6.3 was used to monitor the
attacks.

For the tests, IDSwakeup was run with the following arguments,

$ IDSwakeup 10.10.10.10 192.168.64.254

The 10.10.10.10 address is a fake source to be put on crafted packets. Since I was going to listen
on an actual network segment, at least the first hop to the destination needed to be valid. I chose
the target to be the gateway address on the 192.168.64.0/24 network. This gateway host has a
filter on its firewall rules to only allow in packets with a valid, 192.168.64.0/24, source. Since it
is dropping all of these crafted packets at its firewall, I felt it was the safest host to attack.

tcpdump was run to capture all of the attack traffic,

$ tcpdump -w idswakeup0.dmp -s 1500

FTP, Best of A number of ftp control channel signatures that may set off IDSs, e.g.
suspicious PORT commands.

Telnet, Best of A list of telnet abuses, e.g. username and password "cisco," "su root,"
dangerous environmental variables being passed, etc.

rlogin, Best of A subset of the telnet abuses but aimed at the rlogin port (513).
TCP flags,
Best of

Invalid TCP flag combinations usually associated with "stealth" scan attempts.

ICMP, Best of Tries all valid ICMP codes. Passes data in ping packets.
SMTP, Bestof Dangerous commands in SMTP sessions. Associated with a number of

vulnerabilities on different mail daemons.
Misc, Best of Stuff that did not fit in other categories but was not special enough for its own

group, e.g. SNMP public strings, Napster-like profiles, etc.
DoS chargen CVE-1999-0103

A UDP bomb between chargen (port 19) and echo (port 7).
DoS Snork CVE-1999-0969

A DoS associated with WinNT RPC services.
DoS syslog Sends a packet to the syslog (port 514, UDP) service with a non-syslog source

port. This attack is associated with one of many syslog vulnerabilities on
different platforms.

Page 21 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The arguments cause tcpdump to capture full packets (1500 is the MTU on the network segment)
and write the data to a raw file for later analysis.

Finally, Snort was run with the following command,

$ snort -h 192.168.64.0/24 -A fast -c snort-lib -l IDSwakeup -D

These arguments tells Snort that (1) 192.168.64.0/24 is our home network, (2) it should write
"fast" (one-line) alert messages, (3) it should use "snort-lib" as the rule file, (4) "IDSwakeup" is
the directory to put the logs in, and (5) that it should run in daemon-mode. In addition, the "-r"
option was used several times to run the tcpdump capture file through the Snort rules over again.

tcpdump Traces

In addition to using the hping2 tool, a simple command line packet crafter, iwu, came with the
package. It has the very simple command line syntax of,

$ iwu srcIP dstIP nb ttl ip-datagram

Where nb is the number of packets to send and ttl it the IP time-to-live.

So, for example, the first attack, Teardrop, is written in the main IDSwakeup script as,

teardrop () {
$IWU $src $dst $nb $ttl "\

4500 0038 00f2 2000 4011 53be 0101 0101 \
0202 0202 e63e 4494 0024 0000 0000 0000 \
0000 0000 0000 0000 0000 0000 0000 0000 \
0000 0000 0000 0000"

$IWU $src $dst $nb $ttl "\
4500 0018 00f2 0003 4011 73db 0101 0101 \
0202 0202 e63e 4494"

}

Which makes our jobs as analysts almost too easy. The tcpdump capture of the packets generated
by this code was,

$ tcpdump -nxvv -c 2 -r idswakeup1.dmp
23:13:25.698106 10.10.10.10.58942 > 192.168.64.254.17556: udp 28 (frag 242:36@0+) (ttl 32)

4500 0038 00f2 2000 2011 6409 0a0a 0a0a
c0a8 40fe e63e 4494 0024 0000 0000 0000
0000 0001 0406 0900 0000 0c0e 0000 0000
0000 0000 0000 0000

23:13:25.712861 10.10.10.10 > 192.168.64.254: (frag 548:4@14792) (ttl 32)
4500 0018 0224 0739 2011 7bbe 0a0a 0a0a
c0a8 40fe e63e 4494

We can see the changes made to the TTL, checksum, source, and destination fields. There also
seems to be a problem in the TCP data field. I have not been able to determine where those
values are coming from.

Page 22 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Several of the other attacks are also written in this tcpdump-like format. The IDSwakeup source
code contains what amounts to a tcpdump-formatted list of interesting and common attacks. This
is now combined this with the fact that I have gone through the research for the names and CVE
numbers for as many as possible. I now have a nice, one-stop reference source for basic
information on how these attacks actually look on the wire as well as the capability to generate
them.

The other tool used to craft packets was hping2. However, since it has been covered multiple
times in previous practicals, I will not discuss it in detail here.

Snort Traces

IDSwakeup definitely did cause Snort to alert heavily. These are the alerts generated by the
default Snort ruleset,

11/11-02:00:39.108197 [**] Tiny Fragments - Possible Hostile Activity [**] 10.10.10.10
11/11-02:00:39.122403 [**] Mostly Empty Fragmented Packet Discarded! [**] 10.10.10.10:0
11/11-02:00:45.178020 [**] Mostly Empty Fragmented Packet Discarded! [**] 10.10.10.10:0
11/11-02:00:48.207928 [**] MISC-DNS-version-query [**] 10.10.10.10:1249
11/11-02:00:54.277707 [**] Tiny Fragments - Possible Hostile Activity [**] 10.10.10.10
11/11-02:00:57.308657 [**] Tiny Fragments - Possible Hostile Activity [**] 10.10.10.10
11/11-02:01:21.568308 [**] Back Orifice [**] 10.10.10.10:1249 -> 192.168.64.254:31337
11/11-02:01:24.648513 [**] IIS-msadc/msadcs.dll [**] 10.10.10.10:1549 -> 192.168.64.254:80
11/11-02:01:37.730244 [**] Tiny Fragments - Possible Hostile Activity [**] 10.10.10.10
11/11-02:01:37.731084 [**] WEB-/.... [**] 10.10.10.10:2198 -> 192.168.64.254:80
11/11-02:01:47.808706 [**] Tiny Fragments - Possible Hostile Activity [**] 10.10.10.10
11/11-02:02:10.964258 [**] IDS227 - Web-CGI-Scriptalias [**] 10.10.10.10:1267
11/11-02:02:31.103831 [**] SCAN-Whisker! [**] 10.10.10.10:1284 -> 192.168.64.254:80
11/11-02:02:51.245439 [**] WEB-CGI-Webdist CGI access attempt [**] 10.10.10.10:1704
11/11-02:03:01.314801 [**] SCAN - Whisker Stealth- mlog access attempt [**] 10.10.10.10:1914
11/11-02:03:11.384480 [**] SCAN - Whisker Stealth- mylog access attempt [**] 10.10.10.10:2124
11/11-02:04:01.739859 [**] WEB-CGI-Wrap CGI access attempt [**] 10.10.10.10:1526
11/11-02:04:11.811353 [**] IDS128 - CVE-1999-0067 - CGI phf attempt [**] 10.10.10.10:1736
11/11-02:05:02.162042 [**] CVE-1999-0278 - IIS-asp [**] 10.10.10.10:2383
11/11-02:05:52.513005 [**] FrontPage-administrators.pwd [**] 10.10.10.10:1785
11/11-02:06:02.582323 [**] IDS235 - CVE-1999-0148 - CGI-HANDLERprobe! [**] 10.10.10.10:1995
11/11-02:06:12.652695 [**] WEB-etc/passwd [**] 10.10.10.10:2205 -> 192.168.64.254:80
11/11-02:06:22.723679 [**] IDS219 - WEB-CGI-Perl access attempt [**] 10.10.10.10:2415
11/11-02:06:32.793689 [**] CVE-1999-0191 - IIS-newdsn [**] 10.10.10.10:2625
11/11-02:06:42.863800 [**] IIS-search97 [**] 10.10.10.10:2835 -> 192.168.64.254:80
11/11-02:07:06.038009 [**] IDS111 - DDoS - mstream client to handler [**] 10.10.10.10:1687
11/11-02:07:16.123703 [**] IDS110 - DDoS - mstream handler to client [**] 10.10.10.10:12754
11/11-02:07:26.216487 [**] IDS110 - DDoS - mstream client to handler [**] 10.10.10.10:1629
11/11-02:07:36.308789 [**] IDS103 - DDoS - mstream agent pong to handler [**] 10.10.10.10:1654
11/11-02:07:46.398601 [**] IDS102 - DDoS - mstream handler ping to agent [**] 10.10.10.10:1643
11/11-02:07:56.489524 [**] IDS101- DDoS - mstream handler to agent [**] 10.10.10.10:1692
11/11-02:08:06.579785 [**] IDS100 - DDoS - mstream agent to handler [**] 10.10.10.10:1593
11/11-02:08:16.648727 [**] DDoS - Trin00 Attacker to Master-default mdie pass detected! [**] 10.10.10.10:1113
11/11-02:08:26.739814 [**] IDS187 - DDoS - Trin00 [**] 10.10.10.10:1714
11/11-02:08:56.989784 [**] DDoS - Trin00 Attacker to Master defaultr.i.passdetected! [**] 10.10.10.10:1953
11/11-02:09:07.059389 [**] IDS254 - DDoS shaft client to handler [**] 10.10.10.10:1760
11/11-02:09:17.151331 [**] IDS255 - DDoS shaft handler to agent [**] 10.10.10.10:1645
11/11-02:09:27.241721 [**] IDS256 - DDoS shaft agent to handler [**] 10.10.10.10:1726
11/11-02:09:37.331667 [**] IDS252 - DDoS shaft synflood incoming [**] 10.10.10.10:23

Page 23 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

11/11-02:10:20.620830 [**] IDS213 - FTP-Password Retrieval [**] 10.10.10.10:2021
11/11-02:10:30.691630 [**] FTP-site-exec [**] 10.10.10.10:2231 -> 192.168.64.254:21
11/11-02:10:40.762349 [**] FTP-site-exec [**] 10.10.10.10:2441 -> 192.168.64.254:21
11/11-02:10:50.832657 [**] IDS213 - FTP-Password Retrieval [**] 10.10.10.10:2651
11/11-02:11:10.972319 [**] FTP-cwd~root [**] 10.10.10.10:1071 -> 192.168.64.254:21
11/11-02:12:54.689433 [**] TELNET - resolv_host_conf [**] 10.10.10.10:1559
11/11-02:13:04.758924 [**] TELNET - ld_preload [**] 10.10.10.10:1769 -> 192.168.64.254:23
11/11-02:41:24.288797 [**] spp_portscan: PORTSCAN DETECTED from 10.10.10.10 (STEALTH) [**]
11/11-02:14:21.295581 [**] SCAN-SYN FIN [**] 10.10.10.10:1716 -> 192.168.64.254:80
11/11-02:41:24.289799 [**] spp_portscan: portscan status from 10.10.10.10: 2 connections across 1 hosts: TCP(2), UDP(0) STEALTH [**]
11/11-02:41:24.290248 [**] spp_portscan: portscan status from 10.10.10.10: 1 connections across 1 hosts: TCP(1), UDP(0) STEALTH [**]
11/11-02:41:24.290992 [**] spp_portscan: portscan status from 10.10.10.10: 1 connections across 1 hosts: TCP(1), UDP(0) STEALTH [**]
11/11-02:41:24.291433 [**] spp_portscan: portscan status from 10.10.10.10: 1 connections across 1 hosts: TCP(1), UDP(0) STEALTH [**]
11/11-02:41:24.291831 [**] spp_portscan: End of portscan from 10.10.10.10: TOTAL time(50s) hosts(1) TCP(5) UDP(0) STEALTH [**]
11/11-02:41:24.292684 [**] spp_portscan: PORTSCAN DETECTED from 10.10.10.10 (STEALTH) [**]
11/11-02:41:24.293151 [**] spp_portscan: portscan status from 10.10.10.10: 2 connections across 1 hosts: TCP(2), UDP(0) STEALTH [**]
11/11-02:41:24.293592 [**] spp_portscan: portscan status from 10.10.10.10: 1 connections across 1 hosts: TCP(1), UDP(0) [**]
11/11-02:16:05.325368 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:16:15.396019 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:16:25.465870 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:16:35.536359 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:16:45.606840 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:16:55.676392 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:17:05.746775 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:17:15.817273 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:17:25.886849 [**] ICMP Destination Unreachable [**] 10.10.10.10
11/11-02:17:35.957038 [**] ICMP Source Quench [**] 10.10.10.10 -> 192.168.64.254
11/11-02:18:26.308614 [**] IDS162 - PING Nmap2.36BETA [**] 10.10.10.10 -
11/11-02:18:36.378723 [**] ICMP Time Exceeded [**] 10.10.10.10 -> 192.168.64.254
11/11-02:18:46.448906 [**] ICMP Time Exceeded [**] 10.10.10.10 -> 192.168.64.254
11/11-02:19:10.039426 [**] IDS031 - SMTP-expn-root [**] 10.10.10.10:1615
11/11-02:19:20.109852 [**] IDS032 - SMTP-expn-decode [**] 10.10.10.10:1825
11/11-02:41:24.305869 [**] spp_portscan: End of portscan from 10.10.10.10: TOTAL time(21s) hosts(1) TCP(3) UDP(0) STEALTH [**]
11/11-02:20:43.586775 [**] SNMP public access [**] 10.10.10.10:1610 -> 192.168.64.254:161
11/11-02:21:23.926776 [**] MISC-PCAnywhere Attempted Administrator Login [**] 10.10.10.10:1136
11/11-02:21:34.017267 [**] MISC-Attempted Sun RPC high port access [**] 10.10.10.10:1678
11/11-02:21:44.086770 [**] Napster Client Data [**] 10.10.10.10:1153 -> 192.168.64.254:6699
11/11-02:21:54.156574 [**] Napster 8888 Data [**] 10.10.10.10:1363 -> 192.168.64.254:8888
11/11-02:22:04.226758 [**] Napster 7777 Data [**] 10.10.10.10:1573 -> 192.168.64.254:7777
11/11-02:22:14.296570 [**] Napster 6666 Data [**] 10.10.10.10:1783 -> 192.168.64.254:6666
11/11-02:22:24.366888 [**] Napster 5555 Data [**] 10.10.10.10:2345 -> 192.168.64.254:5555
11/11-02:22:34.436645 [**] Napster 4444 Data [**] 10.10.10.10:2555 -> 192.168.64.254:4444
11/11-02:22:44.507419 [**] Napster Server Login [**] 10.10.10.10:2765 -> 192.168.64.254:8875

If you note the timestamps on the alerts, you will notice that they are coming in fairly slowly. In
the wild, IDSwakeup can run at a very much faster pace. I altered the source code to slow down
the attack for a number of reasons during my testing. It would be quite easy to generate all of the
above alerts in a second or two.

The Snort scan report contains information about the nonsense TCP flag combinations sent. It
looks something like a fingerprint attempt.

Nov 11 02:14:21 10.10.10.10:1716 -> 192.168.64.254:80 SYNFIN **SF****
Nov 11 02:14:31 10.10.10.10:1609 -> 192.168.64.254:80 NOACK **S*R***
Nov 11 02:14:41 10.10.10.10:1706 -> 192.168.64.254:80 NULL ********

Page 24 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Nov 11 02:15:01 10.10.10.10:1688 -> 192.168.64.254:80 NOACK **SFR***
Nov 11 02:15:11 10.10.10.10:1629 -> 192.168.64.254:80 INVALIDACK 21SFRPA* RESERVEDBITS
Nov 11 02:15:31 10.10.10.10:1747 -> 192.168.64.254:80 INVALIDACK **SFR*A*
Nov 11 02:15:42 10.10.10.10:1668 -> 192.168.64.254:80 NULL 21****** RESERVEDBITS
Nov 11 02:15:52 10.10.10.10:1761 -> 192.168.64.254:1999 SYN **S*****

IDSwakeup Signatures

While examining the IDSwakeup script, it is almost immediately obvious that IDSwakeup has
some recognizable signatures of its own. (Although it does seems somewhat ironic to be
considering building signatures for a tool that is intended to create false signatures.) Besides the
the obvious feature that it would trigger ridiculously many alarms in a set sequence on most any
IDS, there are multiple fields in the crafted packets that will be identical each time. For example,
in the Teardrop attack examined earlier, the source and destination ports will always be 58942
and 17556, respectively. One could conceivably compile a list of all such quirks in the code.
However, it is trivial for the user to change the values in the script, even using the pseudo-
random number generator already built into the script making the values change each run.

Still, we all are aware of how rarely attackers actually have either the skills or motivation to
modify attack tools. The best identifying feature for an unmodified IDSwakeup attack will be the
order of the alerts. They will generally occur in the order shown in the Snort alert output above.
However, if the attack is being run from a remote location, there can be some slight jostling of
the order if the packets do not arrive in the order they were sent.

This analysis also seems to have found a Snort bug. I found IDSwakeup can quite reliably seg-
fault Snort 1.6.3 while I was using another ruleset (I was originally planning to compare the
results of the two sets). I reproduced the problem on both FreeBSD and OpenBSD platforms.
Once I narrow it down a bit more, verify it is a real bug and not a problem with my build, I will
be in contact with Marty. Any problems or solutions will be posted at BugTraq.

Return to top.

"Analyze This"

Introduction

As part of a bidding process, we were asked to review a several weeks of network logs for
intrusion detection purposes. The data was gathered by Snort-based intrusion detection systems
on the network of GIAC Enterprises. Several megabytes of collection data was made available to
us. However, we were provided no information about the network architecture, current security
procedures, practices, or policies. We did have access to earlier analyses of this network by
groups doing similar project. But we did not have access to the actual data they used.

The vast majority of the patterns in the network logs have been described to you multiple times
in the previous reports. Below, we try to avoid going into depth on topics that have already been
brought to your attention.

Page 25 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The Computer Network Center Chinese Academy of Sciences

Your network is subject to heavy probing from the 159.226.0.0/16 netblock which belongs to,

The Computer Network Center Chinese Academy of Sciences (NET-NCFC)
P.O. Box 2704-10,
Institute of Computing Technology Chinese Academy of Sciences
Beijing 100080, China

Netname: NCFC
Netnumber: 159.226.0.0

Coordinator:
Qian, Haulin (QH3-ARIN) hlqian@NS.CNC.AC.CN
+86 1 2569960

Domain System inverse mapping provided by:

NS.CNC.AC.CN 159.226.1.1
GINGKO.ICT.AC.CN 159.226.40.1

Record last updated on 25-Jul-1994.
Database last updated on 20-Nov-2000 06:10:16 EDT.

From your logs, it does appear that your network and security administrators are well aware of
this fact. Reviews of the previous security evaluations of your network show that the NCFC
network has historically shown this behavior.

Our analysis as well as previous ones noted significant STMP (email, port 25) traffic between the
networks. With just the information available it is difficult to determine whether this was
"legitimate" email traffic or not. We can determine that the initial TCP connections were
completed and there was likely some exchange of data. Whether a message was actually sent is
difficult to determine. Here is a typical trace from the host 159.226.63.200,

08/11-02:44:27.163055 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:44:28.112227 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:44:29.082632 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:44:29.960565 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:44:29.982611 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:44:30.028586 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:44:30.028637 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:44:30.583344 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:44:30.979301 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:44:30.989213 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:44:30.991029 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:44:31.966763 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:44:31.966876 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:44:32.595327 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:45:54.286460 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:45:58.285486 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:45:58.393495 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:45:58.393540 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973
08/11-02:45:58.399331 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1985
08/11-02:46:00.574367 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1973

Page 26 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

08/11-02:46:01.397970 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1985
08/11-02:46:04.270275 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:47:27.880074 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1985
08/11-02:47:27.880711 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1985
08/11-02:47:28.709646 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1985
08/11-02:47:28.709694 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1985
08/11-02:47:28.709742 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1985
08/11-02:47:28.717819 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1989
08/11-02:47:30.557600 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:47:30.721803 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1985
08/11-02:47:31.459016 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:47:31.531969 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:47:31.532012 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:47:32.416612 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:47:32.416729 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:113
08/11-02:47:56.144008 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1989
08/11-02:47:56.144227 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1989
08/11-02:47:56.718868 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1989
08/11-02:49:21.030334 [**] Watchlist 000222 NET-NCFC [**] 159.226.63.200:1989

We see what looks like three separate connections made to port 25 over a three minute time span.
Each time, the email server in MY.NET responded with a ident query (port 113) and we see the
response coming back. It looks like there is an initial exchange, a pause (perhaps a timeout),
before some final activity (possibly closing up the connection).

The machines MY.NET.253.41, MY.NET.253.42, and MY.NET.253.43 have had several
thousand SMTP (email, port 25) connection attempts during the period examined. From the data
it appears these machines do have email services enabled. Below is the list of hosts from the
NCFC netblock which have made SMTP connection attempts and the number of attempts,

IP Address No. of Attempts
159.226.63.190 9798
159.226.45.3 1209
159.226.63.200 988
159.226.5.77 254
159.226.21.3 144
159.226.5.222 114
159.226.115.1 87
159.226.64.152 58
159.226.23.155 57
159.226.5.94 51
159.226.228.1 48
159.226.66.130 25
159.226.158.188 19
159.226.159.1 18

IP Address No. of Attempts
159.226.64.61 10
159.226.8.6 9
159.226.39.1 6
159.226.156.1 6
159.226.118.1 6
159.226.64.138 5
159.226.116.129 5
159.226.114.1 5
159.226.47.196 4
159.226.5.225 3
159.226.128.1 3
159.226.91.20 2
159.226.99.1 1
159.226.68.65 1

Page 27 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Below are the destinations of these connection attempts. Over 95% of the attempts were made to
three machines on your network,

Without mail logs or information about what is passing in the TCP stream, it is difficult to
diagnose this behavior further. Are the top three destinations listed above mail servers? These
connection attempts generated a large number of ident (port 113) responses in the reverse
direction. This indicates that there is indeed a SMTP listener on these machines. If these
machines are servers, the SMTP server logs should be watched closely and the SMTP
configuration properly maintained. If these are not mail servers, SMTP services should be
deactivated.

isdn.net.il

The netblock 212.179.0.0/17,

domain: isdn.net.il
descr: Bezeq International
descr: 40 hashaham st Petach-Tikva
descr: Israel
phone: +972 3 9257790
fax-no: +972 3 9257795
e-mail: ori@bezeqint.net
admin-c: OR214-IL
tech-c: OR214-IL
zone-c: NP469-IL

159.226.5.65 13
159.226.5.188 12
159.226.22.30 11

159.226.41.188 1
159.226.128.8 1

IP Address No. of Attempts
MY.NET.253.43:25 4839
MY.NET.253.42:25 3842
MY.NET.253.41:25 3750
MY.NET.100.230:25 421
MY.NET.6.7:25 173
MY.NET.110.150:25 11
MY.NET.6.35:25 10
MY.NET.1.2:25 6
MY.NET.97.181:25 5
MY.NET.6.34:25 5
MY.NET.179.80:25 1
MY.NET.1.14:25 1

Page 28 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

nserver: ns1.bezeqint.net
nserver: ns2.bezeqint.net
mnt-by: NET-IL-DNS
changed: registrar@ns.il 19971013 (Assigned)
changed: registrar@ns.il 19971202 (Changed)
changed: registrar@ns.il 19990629 (Changed)
changed: registrar@ns.il 19990907 (Changed)
source: IL

Showed continued interest in your networks and hosts. Again, this is a block which your IDS is
already closely watching and has been the subject of multiple analyses and recommendations in
previous reports. Specific incidents are dealt with below.

Public SNMP

A number of internal hosts continue to try to access host MY.NET.101.192 using default
"public" SNMP settings. This has been repeatedly referenced in earlier reports. We can only
assume that the administrators of the network do not perceive this to be a threat. We would note
that no external (outside of MY.NET.0.0/16) SNMP traffic was monitored.

Examples of the alerts,

08/15-19:59:52.855020 [**] SNMP public access [**] MY.NET.97.154:1049 -> MY.NET.101.192:161
08/15-20:00:04.771520 [**] SNMP public access [**] MY.NET.97.154:1050 -> MY.NET.101.192:161
08/15-20:00:05.128465 [**] SNMP public access [**] MY.NET.97.154:1058 -> MY.NET.101.192:161
08/15-20:00:05.347645 [**] SNMP public access [**] MY.NET.97.154:1059 -> MY.NET.101.192:161
08/15-20:00:05.896381 [**] SNMP public access [**] MY.NET.97.154:1060 -> MY.NET.101.192:161

And the list of machines that attempted to access SNMP on MY.NET.101.192,

Sun RPC Access Reports

A large number of alerts were generated for "Attempted Sun RPC high port access." Many of
these were between port 4000 on the remote machine and 32771 on the local (on MY.NET)
machine, e.g.,

09/02-11:28:18.700102 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-11:30:18.587762 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-11:31:18.724356 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-11:33:50.060535 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-11:55:17.743505 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-11:56:17.517864 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:04:19.150958 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:06:20.197634 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000

MY.NET.97.154 MY.NET.97.206 MY.NET.97.217 MY.NET.97.244
MY.NET.97.246 MY.NET.98.109 MY.NET.98.114 MY.NET.98.148
MY.NET.98.159 MY.NET.98.171 MY.NET.98.172 MY.NET.98.177
MY.NET.98.181 MY.NET.98.190 MY.NET.98.191 MY.NET.98.201

Page 29 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

09/02-12:07:22.893069 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:09:24.013527 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:13:25.015051 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:19:28.516129 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:38:37.579259 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:41:40.298888 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:42:40.785940 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000
09/02-12:45:44.968047 [**] Attempted Sun RPC high port access [**] 205.188.153.109:4000

The source address, 205.188.153.109, is listed as an ICQ server,

;; ANSWER SECTION:
109.153.188.205.in-addr.arpa. 1H IN PTR fes-d013.icq.aol.com.

This could be usage of the ICQ service. But it is also possible that it is an attempt to circumvent
a firewall to access RPC services (port 32771 is frequently where a "ghost" portmapper lives)
and hide it as ICQ.

This is the same conclusion previous analysts have reached. The local hosts involved should be
examined, the users of the machines asked if they have been using ICQ, and the continued use of
ICQ should be studied with respect to your site's security policy.

Another group of such alerts,

09/06-23:10:10.012419 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:10.159763 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:10.302667 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:10.312668 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:11.455277 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:12.021403 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:12.021491 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:12.021997 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:12.173462 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:17.091000 [**] SUNRPC highport access! [**] 193.64.205.17:56880
09/06-23:10:20.590610 [**] SUNRPC highport access! [**] 193.64.205.17:56880
.
.
.

Occurs with a host registered to,

% Rights restricted by copyright. See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 193.64.205.16 - 193.64.205.31
netname: SSH-FI-2
descr: SSH Communications Security Ltd.
descr: Fredrikinkatu 42, 00100 Helsinki
country: FI
admin-c: JS19169-RIPE
tech-c: JS19169-RIPE
status: ASSIGNED PA
notify: hostmaster@kpnqwest.fi
mnt-by: KQFI-NOC-MNT

Page 30 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

changed: hostmaster@kpnqwest.fi 20001023
source: RIPE

This may be high ports used for a FTP data connection. However, the local machine did show
other odd activity on this port,

09/07-21:10:18.892811 [**] SUNRPC highport access! [**] 207.29.195.22:2646
09/11-21:24:53.037663 [**] SUNRPC highport access! [**] 209.10.41.242:21
09/11-21:24:53.037663 [**] SUNRPC highport access! [**] 209.10.41.242:21

So it is possibly worth checking up on.

SOCKS/WinGate

Previous analyses (practicals) warned that the WinGate/SOCKS scans were signs of
compromised machines. However, a quick survey of the machines scanning you for SOCKs
shows a very large proportion are IRC servers. As previously referenced above, this is often a
defensive action of IRC servers. The most appropriate action is to consider your corporate policy
on allowing users to access IRC servers.

Out of the 192 machines attempting WinGate connections, 45 were appeared to be running IRC
servers at the time of this writing.

IP Address Host Name
142.177.93.59 hlfx43-59.ns.sympatico.ca
168.120.16.250 irc.au.ac.th
192.216.128.28 protege.linkline.com
194.159.247.49 draconic.fyremoon.net
194.75.152.237 dalnet.lineone.net
198.182.76.100 irc.blackened.com
199.120.223.4 cosmos.lod.com
199.172.149.141
203.85.89.3 princess.os.st
204.228.135.144 poseidon.mediabang.com
205.252.89.153 sana-chan.animenet.org
207.126.106.118 mandarin.peopleweb.com
207.151.147.201 pool.207.151.147.201.cinenet.net
207.25.80.133
207.25.80.134
207.7.26.15 hermes.acronet.net
208.178.165.228 pub.iad.redhat.com

IP Address Host Name
209.133.28.137 webmaster.ca.us.webchat.org
209.133.35.87 irc2.bondage.com
209.133.35.89 irc3.bondage.com
209.235.102.9 www-virt-atl.dns-host.com
212.29.92.167
212.72.0.73
213.188.7.2 login1.ssc.net
216.152.64.129 sauron.ca.us.webchat.org
216.152.64.130 glass.webmaster.com
216.152.64.137 glass2.webmaster.com
216.152.64.150 stable.ca.us.webchat.org
216.152.64.151 katana.ca.us.webchat.org
216.152.64.213 w2k.webmaster.com
216.234.161.197 mircx.com
216.252.144.239 ipg239.compass.com.ph
216.35.116.103 wm3018.inktomi.com
216.35.116.90 si3000.inktomi.com

Page 31 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Happy 99 Virus

Snort detected the Happy 99 worm possibly being sent to two machines, MY.NET.6.35:25 on
August 16th and MY.NET.179.80:25 on August 20th. The mail logs on those machines should
be reviewed so the recipients can be found and any required action taken.

New Findings: Telnet

Among all of the traffic captured by the filters for NCFC there seems to be a new and somewhat
alarming signature. There is extensive TELNET (port 23) traffic between MY.NET and NCFC.
Host 159.226.45.108 appears to have connected with MY.NET.6.7 from 0151 to 0223 on August
11th. At that point it appears to pick up a TELNET with MY.NET.60.8 which is active until
0225. A new session with MY.NET.6.7 begins at this point and runs until 0301. Nothing is seen
again until host 159.226.45.3 connects to MY.NET.6.7 from 2042 until 2050 on August 16th. No
other, similar incoming TELNET signatures were found. The first and last trace entries for each
is shown,

08/11-01:51:05.043450 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.108:1051
...
08/11-02:23:28.664773 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.108:1051

08/11-02:23:44.834384 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.108:1054
...
08/11-02:25:17.278243 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.108:1054

08/11-02:25:24.710017 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.108:1055
...
08/11-02:34:48.216685 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.108:1055

08/11-02:33:24.097140 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.108:1057
...
08/11-03:01:53.618330 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.108:1057

08/16-20:42:09.047163 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.3:4628
...
08/16-20:50:55.336179 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.3:4628

There is what appears to be an outgoing telnet connection from MY.NET.98.168 to 212.179.58.2
which lies in the suspicious isdn.net.il block. The connection lasted from 1135 to 1151 on
August 11th. Later that day, from 1611 to 1621 there appears to be an outgoing TELNET from

208.199.34.160
208.5.1.212 unassigned.starnet.com.eg
209.1.224.129 oldftp4.geocities.com
209.1.224.160 oldftp1.geocities.com
209.1.233.136
209.10.218.250 java.webmaster.com

216.35.116.91 si3001.inktomi.com

24.113.168.58 cr277399-
a.nvcr1.bc.wave.home.com

63.160.118.9 cols631601189.cols.net
63.238.214.65 irc.friendlynet.com

64.229.194.201 HSE-MTL-
ppp70868.qc.sympatico.ca

Page 32 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

MY.NET.60.11 to 159.226.41.166 in the NCFC block. Finally, on September 11th from 1058
until 1117 there appears to be a TELNET from MY.NET.163.32 to 159.226.45.3.

08/11-11:35:46.194548 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.58.2:23
...
08/11-11:51:55.268612 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.58.2:23

08/11-16:11:43.712817 [**] Watchlist 000222 NET-NCFC [**] 159.226.41.166:23
...
08/11-16:21:53.440338 [**] Watchlist 000222 NET-NCFC [**] 159.226.41.166:23

09/11-10:58:58.817818 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.3:23
...
09/11-11:17:22.505410 [**] Watchlist 000222 NET-NCFC [**] 159.226.45.3:23

These local hosts should be investigated for intrusions if they have not been already.
MY.NET.6.7 seems to be a particular focus of NCFC TELNET and SMTP activity. It also was
portscanned by 195.57.243.171 which belongs to a Spansish ISP,

% Rights restricted by copyright. See http://www.ripe.net/ripencc/pub-services/db/copyright.html

inetnum: 195.57.243.0 - 195.57.243.255
netname: BITELNET
descr: Internet Service Provider
country: ES
admin-c: JAM1-RIPE
admin-c: JB8545-RIPE
tech-c: JB8545-RIPE
tech-c: JAM1-RIPE
status: ASSIGNED PA
mnt-by: MAINT-AS3352
changed: felicidad.martin@telefonica-data.com 19991115
changed: felicidad.martin@telefonica-data.com 19991116
changed: felicidad.martin@telefonica-data.com 20000621
source: RIPE

Host MY.NET.53.28 may have been compromised. There was unusual traffic to sent by
192.117.131.201, and then days later we see a great deal of traffic to a suspicious host,
212.179.29.150.

Aug 16 15:45:12 192.117.131.201:1129 -> MY.NET.53.28:4407 NOACK *1SFRP** RESERVEDBITS

08/20-09:05:41.982563 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098
08/20-09:05:42.671792 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098
08/20-09:05:44.418409 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098
08/20-09:05:44.420038 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098
08/20-09:05:44.856254 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098
08/20-09:05:44.858776 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098
08/20-09:05:44.900843 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098
.
.
.
08/20-09:08:30.055172 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098
08/20-09:08:30.366963 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098

Page 33 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

08/20-09:08:38.725691 [**] Watchlist 000220 IL-ISDNNET-990517 [**] 212.179.29.150:1098

The integrity of host MY.NET.53.28 should be checked if it has not been already.

Napster, Again

As discussed in the "Napster Strikes Back" trace above, there appear to be a number of "bounce-
back" connections from Napster machines with unusual properties. Some hosts that showed this
behavior and the local machine that was attacked include,

A significant amount of the Napster-like traffic involved hosts on the isdn.net.il watchlist. The
hosts pairings involved were,

Remote Host Local Host
128.138.14.148 MY.NET.179.52
128.194.51.187 MY.NET.210.114
128.226.152.34 MY.NET.206.114
128.61.105.106 MY.NET.218.202
128.61.59.79 MY.NET.217.34
129.59.24.21 MY.NET.204.126
129.93.214.47 MY.NET.223.186
130.239.11.230 MY.NET.181.173
130.239.142.167 MY.NET.223.58
130.49.220.26 MY.NET.226.6
132.199.220.223 MY.NET.205.26
137.82.136.39 MY.NET.97.150
139.91.171.50 MY.NET.211.234
141.40.205.133 MY.NET.224.34
150.216.127.179 MY.NET.206.66
193.251.71.243 MY.NET.146.68
194.237.99.150 MY.NET.223.38
195.132.204.48 MY.NET.220.154

Remote Host Local Host
200.145.151.163 MY.NET.221.114
200.52.201.4 MY.NET.217.222
207.230.248.254 MY.NET.208.18
212.33.70.83 MY.NET.206.66
216.63.200.250 MY.NET.203.106
24.112.241.246 MY.NET.201.58
24.160.189.151 MY.NET.220.206
24.164.181.31 MY.NET.217.26
24.180.196.93 MY.NET.217.250
24.19.101.91 MY.NET.222.46
24.22.125.94 MY.NET.223.38
24.232.79.188 MY.NET.206.114
24.28.33.193 MY.NET.224.134
24.29.7.199 MY.NET.218.94
24.8.241.127 MY.NET.70.217
24.92.174.232 MY.NET.217.130
24.92.188.4 MY.NET.106.164
62.2.64.86 MY.NET.218.10

Remote Host Local Host
212.179.127.45 MY.NET.202.58
212.179.58.174 MY.NET.157.200
212.179.58.204 MY.NET.205.254
212.179.66.2 MY.NET.181.87
212.179.66.2 MY.NET.221.94

Page 34 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Interestingly, there is no overlap between the two groups.

The use of Napster-like applications by users should be considered with respect your security
policy. If users should not be using it, block it where possible and investigate unauthorized use.
If it is decided that file sharing will be tolerated, educate users on how to use the tools safely.

FTP

Right now, almost daily FTP scans are part of living on the Internet. Your network was no
exception. The following hosts conducted FTP scans of your net,

The scanner 24.17.189.83, listed as the number two culprit above, was detected actually
attempting different WU-FTP exploits (CVE-1999-0080 and one not clearly identified by the
logs) on,

Also, there is evidence that the scanning host 212.141.100.97 may have established data
connections with the following hosts,

212.179.67.195 MY.NET.208.178

IP Address No. Hosts Scanned
195.114.226.41 42652
24.17.189.83 20155
212.141.100.97 19931
194.165.230.250 3300
210.61.144.125 2411
212.170.19.199 823
4.54.37.160 814
24.94.176.113 589
212.41.61.40 291
213.188.8.45 227
210.100.192.254 225

IP Address No. Hosts Scanned
206.18.105.224 56
195.130.128.202 42
64.1.198.164 40
24.180.134.156 31
140.134.26.58 20
212.143.237.22 19
207.151.147.201 5
131.155.192.220 2
24.180.174.167 1
216.99.200.242 1
198.62.155.11 1

MY.NET.99.104
MY.NET.150.24
MY.NET.202.190
MY.NET.202.202

MY.NET.130.116
MY.NET.130.190

Page 35 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

These hosts should be checked for compromise and to see what data the scanners may have had
access to.

Port Scans

A number of machines were portscanned. In additions to searches for open ports (SYN scans),
attempts to fingerprint the operating system were conducted where indicated.

MY.NET.201.26
MY.NET.5.7

Target Source Fingerprint
129.21.145.131 MY.NET.150.24 YES
131.155.192.220 MY.NET.5.7 YES
134.28.9.225 MY.NET.111.67
141.30.227.175 MY.NET.223.106 YES
144.132.5.130 MY.NET.217.218 YES
147.208.171.139 MY.NET.150.89
147.208.171.139 MY.NET.203.86
147.208.171.139 MY.NET.97.230
147.208.171.139 MY.NET.98.160
151.196.73.119 MY.NET.253.112 YES
168.120.13.177 MY.NET.97.248
168.120.26.87 MY.NET.97.248
192.193.195.178 MY.NET.53.41 YES
195.57.243.171 MY.NET.6.7
195.57.243.171 MY.NET.60.8
198.62.155.10 MY.NET.217.10
198.62.155.101 MY.NET.217.10
198.62.155.102 MY.NET.217.10
198.62.155.103 MY.NET.217.10
198.62.155.104 MY.NET.217.10
198.62.155.105 MY.NET.217.10
198.62.155.106 MY.NET.217.10
198.62.155.107 MY.NET.217.10
198.62.155.109 MY.NET.217.10
198.62.155.11 MY.NET.217.10
198.62.155.111 MY.NET.217.10

Target Source Fingerprint
207.102.30.6 MY.NET.218.62 YES
207.123.169.54 MY.NET.202.150
207.123.169.54 MY.NET.217.206
207.123.169.54 MY.NET.220.190
207.151.147.201 MY.NET.60.8 YES
207.236.3.96 MY.NET.20.10
209.123.109.175 MY.NET.207.74
209.123.109.175 MY.NET.219.118
209.70.118.223 MY.NET.60.11
210.125.174.11 MY.NET.97.199
210.56.17.202 MY.NET.98.201
212.242.100.15 MY.NET.218.130 YES
216.138.44.49 MY.NET.98.129
216.234.161.76 MY.NET.218.34
216.99.200.242 MY.NET.97.209
216.99.200.242 MY.NET.97.216
216.99.200.242 MY.NET.98.188
24.112.134.95 MY.NET.218.70 YES
24.113.80.28 MY.NET.203.110 YES
24.12.112.239 MY.NET.205.26
24.13.114.3 MY.NET.60.8
24.180.174.167 MY.NET.253.42
24.180.174.167 MY.NET.253.52
24.180.174.167 MY.NET.60.11
24.180.196.93 MY.NET.217.250 YES
24.23.198.174 MY.NET.217.46 YES

Page 36 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

An honorable mention must go to 24.180.134.156 who did an NMap fingerprint and TCP
connect scan of the entire MY.NET.208.0/24 subnet. His efforts were not included above for the
sake of space.

Other than the several, possibly spoofed, hosts that scanned MY.NET.217.10, there seems to be
little pattern to the targeting. We presently have no evidence that anything more than scans of the
hosts were conducted in these examples.

Host Scans

Your network was subject to a number of broad host scans for the usual Windows trojans,
BackOrifice, Subseven, Netbus, etc. Except for the FTP scans and WinGate/SOCKS issues
referenced above, none of the scans appears to be a significant threat. Since these have been dealt
with extensively in previous evaluations, we will forego further analysis of these scans.

NetBIOS

In August, there were a number of alerts dealing with SMB. It is often difficult to determine
whether these are the product of normal traffic, misconfigured machines, or malicious intent.
Ports 137, 138, and 139 should be blocked both in and out at your perimeter. There is no reason
for this traffic to have to leave your local network. Since this topic has been dealt with
extensively in previous evaluations, a detailed analysis was not undertaken.

Summary

As the many examples above indicate, your systems are subject to intense scrutiny from external
networks. Your first line of defense should be firewalls. Hopefully, the traces we received were
taken outside of any such firewalls. Besides the major examples above, there were any number
of smaller scans, probes, and unidentified activities taking place. There are simply too many to
analyze with the limited time and information provided. Perhaps with a better idea of the
defenses your network currently has, we could ignore broad host and port scans and other attacks
which you may not be vulnerable to, and instead focus on more realistic threats contained in the
voluminous logs.

Return to top.

Analysis Methodology
The first step was to simply examine the data and get an idea of what I was looking at. It quickly

203.130.2.59 MY.NET.98.201
203.176.29.200 MY.NET.97.144
203.176.29.202 MY.NET.97.218
203.176.29.202 MY.NET.98.164

24.6.140.249 MY.NET.130.190 YES
38.179.244.220 MY.NET.60.11
63.144.227.21 MY.NET.208.190 YES
63.226.208.41 MY.NET.253.41 YES

Page 37 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

became clear the naming convention for the files was "SnortA*" for alert files, "SnortS*" for the
scan reports, and "SOOS*" for packet details. The numbering of each series of files corresponds
to temporal order, but there is no particular correspondence between the different types. To make
the timing of the files a bit more clear, I renamed all files,

 mmdd_original-name

The biggest problem with most IDS is not the lack of data, but rather false alarms. This data set
is a clear example. It was quite obvious from from a cursory examination of the data that a
substantial amount of the detects and alerts correspond to normal traffic. My approach to security
is generally an explicit match to pass and then subject everything else to a default deny. I apply
this to intrusion detection by taking the data, removing the traffic that I allow and expect, and
then see what I have left.

However, this proves to be very difficult under these circumstances. Typically, when I am
analyzing network traces I am familiar with the network or have some means to get more
information about the network. This way, I can pull out false alarms and non-threatening traffic.
For example, in the "Analyze This" data, if those machines being hit with all of SMTP traffic are
the actual mail servers, there is not much cause for alarm. If they are not, we need to examine the
SMTP traffic carefully. With no information, we cannot put it aside and focus on more
"interesting" traces.

All of the port scans and host scans create a lot of noise in the logs. On my networks, I know
what hosts are running services and how firewalls are protecting networks and hosts. When I see
a scan bounce of my firewall, I can quickly determine the threat. I can record the source of the
scan and any other pertinent information for posterity and then move on. But in this case I have
no information about existing defenses, every kiddie's scan requires some level of analysis to
watch for possible exploits. This consumed a large amount of effort.

We did have the previous practicals to use for reference. These practicals mostly focused on
these noisy features in the logs. We can use these to verify that this has been an ongoing
situation, but I still felt I needed to watch for changes from the patters they described.

All of those issues aside, I did my best to follow my security prefered model. I started with the
most broad features of the logs, the various traffic from NCFC, isdn.net.il, etc. analyzed them
and then removed them. In this way I moved to smaller and smaller features. Most of the
external tools for Snort analysis I was able to find primarily focused on making data pretty, but
did not do much for analysis. I mostly used UNIX command line tools like grep, sort, and
uniq. Scripting languages like awk and perl were used heavily as well.

This script is an example of the quick-and-dirty tools I created to analyze the data. It was
designed to reduce data on host scans. It parses a Snort scan log. It tracks all of the ports scanned
on a destination host for a given IP source and destination pair. The original had no comments,
but I have added some for clarification here,

#
scanstat.awk
#

Page 38 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Only parse lines that start with a date
/^(Aug|Sep)/ {

Break the source IP address from the port number (XXX.XXX.XXX.XXX:YYYY)
split($4,ipport,":");
Store the source IP
ips = ipport[1];
Break the destination IP from the port
split($6,ipport,":");
Store both destination IP and port
ipd = ipport[1];
portd = ipport[2];
The index of the array is a string (gotta love AWK)
indx = ips " -> " ipd;
Store the list of ports scanned in the array
scan[indx] = scan[indx] " " portd;

}

After the input is read, this is executed
END {

Iterate over the indicies of the array scan[]
for (indx in scan) {

If the number of spaces in the string is greater than 4...
if (gsub(/ /,"&",scan[indx]) > 4) {

Print the source and destination IP (remember they are the
index) and the list of scanned ports
print indx ": " scan[indx];
This is commented out, but sometimes wanted to print just the IPs

print indx;
}

}
}

The next example is a step-by-step demonstration of how I would isolate a certain feature of the
traffic. In this case, I was removing the SNMP traffic for further analysis. First, I pull out the
SNMP traffic,

$ grep ':161 *$' SnortA* > SNMP/port_161.A

Before I move on to analyze it, I remove SNMP from my "cleaned" alert file. The cleaned alert
file is a concatenation of all of the alerts. Each time an alert is put aside for analysis, I remove it,

$ grep -v ':161 *$' snort_alert.clean > snort_alert.clean.0
$ mv snort_alert.clean.0 snort_alert.clean

When I want to move on to the next set of traces to analyze, I visually examine the clean file to
see what interesting looking data remains. For this particular example, I had more analysis of the
SNMP to do. I wanted to verify that no SNMP public queries were made from the outside,

$ grep -v 'MY\.NET\..* -> MY\.NET\.' SNMP/port_161.A
$ _

As I prefer, I used a explicit pass to remove traffic that I was not overly concerned about and

Page 39 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

watched for anything else to fall out. In this case we were lucky and nothing did.

I still felt that using public SNMP internally was not a good idea, so I wanted to present that
point in the above analysis. I checked earlier practicals to see if this was a new feature. It was not
new. Since other practicals had gone in depth about why public SNMP strings are bad, I felt it
best for me to skip a rehash of details and just give a summary of what hosts were still using it. I
had noticed through visual examination that all of the SNMP traffic was destined for one host.
For the report, I wanted one last bit of information from the logs, the list of machines that were
making SNMP queries and the number of times they did it. At the command line I took full
advantage of pipes to generate the HTML in one step,

$ awk '{ sub(/:[0-9]*/,"",$7); print $7 }' SNMP/port_161.A | sort | uniq
sort -nr | awk '{ print "<tr><td> " $2 " </td></td> " $1 " </td></tr>" }'

<tr><td> MY.NET.98.172 </td></td> 226 </td></tr>
<tr><td> MY.NET.98.109 </td></td> 208 </td></tr>
<tr><td> MY.NET.97.217 </td></td> 194 </td></tr>
<tr><td> MY.NET.97.154 </td></td> 53 </td></tr>
<tr><td> MY.NET.98.114 </td></td> 52 </td></tr>
<tr><td> MY.NET.98.171 </td></td> 33 </td></tr>
<tr><td> MY.NET.98.191 </td></td> 31 </td></tr>
<tr><td> MY.NET.98.181 </td></td> 26 </td></tr>
<tr><td> MY.NET.97.244 </td></td> 23 </td></tr>
<tr><td> MY.NET.98.159 </td></td> 21 </td></tr>
<tr><td> MY.NET.98.201 </td></td> 19 </td></tr>
<tr><td> MY.NET.98.148 </td></td> 16 </td></tr>
<tr><td> MY.NET.97.246 </td></td> 6 </td></tr>
<tr><td> MY.NET.98.177 </td></td> 5 </td></tr>
<tr><td> MY.NET.97.206 </td></td> 5 </td></tr>
<tr><td> MY.NET.98.190 </td></td> 4 </td></tr>
$ _

I then continued this type analysis on the larger features in the logs. If the traffic looked
threatening, I would add it to the analysis. If in my judgment the traffic was most likely a false
alarm, I had to decide whether to present that information in the analysis or drop it silently. That
is actually a difficult call for an assignment like this. I have the desire to tell the evaluator all of
my findings, including why I ignored a substantial amount of traffic (e.g. patterns that appear to
be valid DNS query replies), but in the pretext of the assignment, an analysis of a network's
security for a bidding process, I would not include such extraneous information. I had to try to
find a happy medium, and I hope I came close.

Return to top.

Appendix A
In order to create logs in the format shown in the network traces, Checkpoint Firewall-1 logs are
"exported" to another machine for processing,

/opt/CKPdw/bin/fw logexport -n -o /var/tmp/fwlog.exp
scp /var/tmp/fwlog.exp process-host:Firewall/Processing

Page 40 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Various command line and script tools are then used to analyze the logs. The methods used are
very similar to those outlined in the Analysis Methodology above.

A script was used to generate the traces as shown. The script contains code for several automatic
log scans as well as a framework for doing more complicated analyses from the command line.
Only a small portion of the script is actually important for just printing the logs. However, the
entire script is presented for your perusal. Some specific host and network numbers have been
obfuscated.

#
fwlog.awk - 2000/10/24, cclark
#
Template for processing FW-1 text logfiles. Based on the awk
script for pulling apart exported logs.
#
2000/11/07- Seems the columns for "translated" logs and
untranslated ones turn out different? ("Translated" means
IP to hostnames.) Columns 17-20 swap with 21-25?

$1 num
$2 date
$3 time
$4 orig
$5 type
$6 action
$7 alert
$8 i/f_name
$9 i/f_dir
$10 proto
$11 src
$12 dst
$13 service
$14 s_port
$15 len
$16 rule
$17 xlatesrc
$18 xlatedst
$19 xlatesport
$20 xlatedport
$21 agent
$22 orig_from
$23 orig_to
$24 from
$25 to
$26 icmp-type
$27 icmp-code
$28 reason:
$29 srckeyid
$30 dstkeyid
$31 user
$32 scheme:
$33 methods:
$34 reason
$35 error notification:
$36 message

Page 41 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

$37 h_len
$38 ip_vers
$39 port:
$40 ISAKMP Log:
$41 sys_msgs

function spaceip(ip, ipb) {
if (ip ~ /^[0-9\.]+$/) {

split(ip,ipb,/\./);
return sprintf("%3d.%3d.%3d.%3d",ipb[1],ipb[2],ipb[3],ipb[4]);

} else {
return ip;

}
}

function stdprint(line) {
split(line,w,";");
dir = (w[9] == "inbound") ? ">" : "<";
printf "%9s %8s %6s %s%4s", w[2], w[3], w[6], dir, w[8];
if ((w[10] == "tcp") || (w[10] == "udp")) {

printf " %4s %s:%s -> %s:%s %d", w[10], w[11], w[14], w[12], w[13], w[15];
} else if (w[10] == "icmp") {

printf " %4s %s -> %s %d:%d %d", w[10], w[11], w[12], w[26], w[27], w[15];
} else {

printf " %4s %s -> %s %d", w[10], w[11], w[12], w[15];
}
if (w[17]) {

printf " (%s:%s -> %s:%s)", w[17], w[19], w[18], w[20];
}
printf "\n";

}

function fullprint() {
print "\

num: " $1 "\n\
date: " $2 "\n\
time: " $3 "\n\
orig: " $4 "\n\
type: " $5 "\n\

action: " $6 "\n\
alert: " $7 "\n\

i/f_name: " $8 "\n\
i/f_dir: " $9 "\n\

proto: " $10 "\n\
src: " $11 "\n\
dst: " $12 "\n\

service: " $13 "\n\
s_port: " $14 "\n\

len: " $15 "\n\
rule: " $16 "\n\

xlatesrc: " $17 "\n\
xlatedst: " $18 "\n\

xlatesport: " $19 "\n\
xlatedport: " $20 "\n\

agent: " $21 "\n\
orig_from: " $22 "\n\

orig_to: " $23 "\n\

Page 42 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

from: " $24 "\n\
to: " $25 "\n\

icmp-type: " $26 "\n\
icmp-code: " $27 "\n\
srckeyid: " $28 "\n\
dstkeyid: " $29 "\n\

user: " $30 "\n\
reason: " $31 "\n\
scheme: " $32 "\n\

methods: " $33 "\n\
reason: " $34 "\n\

error notification: " $35 "\n\
message: " $36 "\n\

port: " $37 "\n\
sys_msgs: " $38 "\n";

}

BEGIN {
if (scan2 == 1) {

FS="|";
if (slimit == 0) {

slimit = 5;
}

} else {
FS="\;";

}
i = 0;

}

(full == 1) && ($5 == "log") && ($8 != "daemon") {
stdprint($0);

}

(mail == 1) && (($13 == "smtp") || ($25 == "mail")) {
fullprint();

}

(extdrop == 1) && ($5 == "log") && ($8 == "hme0") && ($6 != "accept") && ($13 !~ /(ncp|http|427|ident)/) && ($10 != "94") {
stdprint($0);

}

UDP external traceroutes, dump slow DNS responses
(traceroute == 1) && ($10 == "udp") && ($8 == "hme0") && (($13 + 0) > 33434) && ! (($14 == "domain

stdprint($0);
}

#
Host scan checks. These are meant to be run in series
since portions of the processing are best done outside
of an AWK script (convert to perl?). Command line like,
#
$ gzcat file.log.gz | awk -f fwlog.awk -v"scan1=1" | \
sort | awk -f fwlog.awk -v"scan2=1"

Phase 1 of a check for scans
(scan1 == 1) && ($8 == "hme0") && ($9 == "inbound") && ($6 != "accept") {

Page 43 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

print $11 "|" $12 "|" $13 "|" $0;
}

Phase 2 of check for scans
(scan2 == 1) {
print "1: " w[12] " " w[13];

split($4,w,";");
if (((w[12] == "XXX.XXX.248.142") && (w[13] == "ident")) \

|| ((w[12] ~ /(XXX.XXX.(248.147|152.1[05])|YYY.YYY.31.194)/) \
&& (w[13] == "domain-udp")) \

|| ((w[12] ~ /XXX.XXX.248.14[79]/) && (w[13] ~ /^http/)) \
|| ((w[12] ~ /XXX.XXX.152.1[123]/) && (w[13] == 427) && (w[14] == 427)) \
|| ((w[12] ~ /XXX.XXX.15(2.1[123]|4.254)/) && (w[13] == "ncp")) \
|| ((w[12] == "XXX.XXX.152.79") && (w[13] ~ /(mail|pop-3|imap)/))) {

next;
}

print "2: " w[12] " " w[13];
if (src == $1) {

if (i < slimit) {
i++;
line[i] = $4;

} else {
if (i > slimit) {

stdprint($4);
} else {

print "";
for (j=1;j<=slimit;j++) {

stdprint(line[j]);
}
stdprint($4);
i++;

}
}

} else {
src = $1;
i = 1;
line[i] = $4;

}
}

Check for delayed mail
(chkmail == 1) && ($13 == "smtp") {
stdprint($0);

if ($21 ~ /server/) {
for(i=0;qmail[i];i++) { }

print i;
qmail[i] = $0;
if (i > max) {

max = i;
}

} else { if ($21 ~ /dequeuer/) {
for(i=0;i<=max;i++) {

split(qmail[i],pmail);
print pmail[11] " == " $11 "; " pmail[12] " == " $12 "; " pmail[14] " == " $14 ";";

if ((pmail[11] == $11) && (pmail[14] == $14) && \
(pmail[22] == $22)) {

print "match!";

Page 44 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

if (pmail[2] != $2) {
print "--- Differing dates ---";
stdprint(qmail[i]);
fullprint();

} else {
split(pmail[3],otime,":");
split($3,time,":");
print "dt = " 3600*(time[1]-otime[1]) + \

60*(time[2]-otime[2]) + time[3]-otime[3];
}
delete qmail[i];

}
}
if (qmail[i]) {

print "--- Not queued? ---";
fullprint();

}
} }

}

END {
if (chkmail == 1) {

for(i=0;i<=max;i++) {
stdprint(qmail[i]);

}
}

}

#End

If you find the script useful or have any interesting modifications to improve it, please mail me
and let me know.

As an example of how to use this, the logs for the first trace were generated by looking for
entries in an archived (gzipped) log file with either a source or destination IP address of
128.100.71.72,

$ gunzip fw_20001105.log.gz | \
awk -f fwlog.awk --source '($11 == "128.100.71.72") || ($12 == "128.100.71.72") { stdprint($0) }'

Return to top.

Page 45 of 45Crist Clark - GCIA Practical Assignment

3/9/2005file://C:\Practicals\Input\Crist_Clark_GCIA.html

