
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Practical Assignment for GCIA Certification, version 2.7a
TJ Vanderpoel

The Detects

Detect 1

Log 1

61.139.210.136 - - [26/Mar/2001:20:31:26 -0600] "GET http://www.s3.com HTTP/1.1" 302 5
61.139.210.136 - - [26/Mar/2001:20:31:28 -0600] "GET http://www.s3.com HTTP/1.1" 302 5
61.139.210.136 - - [26/Mar/2001:20:31:32 -0600] "GET http://www.s3.com HTTP/1.1" 302 5

Log 2

03/26-21:31:23.819505 61.139.210.136:3759 -> HOME.NET.BOUGY.41:80
TCP TTL:108 TOS:0x0 ID:25420 IpLen:20 DgmLen:148 DF
AP Seq: 0x183E2921 Ack: 0x870619C Win: 0x2238 TcpLen: 20
0x0000: 00 40 33 A3 00 9A 00 30 7B FB 8C 70 08 00 45 00 . @3....0{..p..E.
0x0010: 00 94 63 4C 40 00 6C 06 2E 28 3D 8B D2 88 00 00 ..cL@.l..(=.....
0x0020: 54 29 0E AF 00 50 18 3E 29 21 08 70 61 9C 50 18 T)...P.>)!.pa.P.
0x0030: 22 38 CF 64 00 00 47 45 54 20 68 74 74 70 3A 2F "8.d..GET http:/
0x0040: 2F 77 77 77 2E 73 33 2E 63 6F 6D 20 48 54 54 50 /www.s3.com HTTP
0x0050: 2F 31 2E 31 0D 0A 48 6F 73 74 3A 20 77 77 77 2E /1.1..Host: www.
0x0060: 73 33 2E 63 6F 6D 0D 0A 41 63 63 65 70 74 3A 20 s3.com..Accept:
0x0070: 2A 2F 2A 0D 0A 50 72 61 67 6D 61 3A 20 6E 6F 2D */*..Pragma: no-
0x0080: 63 61 63 68 65 0D 0A 55 73 65 72 2D 41 67 65 6E cache..User-Agen
0x0090: 74 3A 20 50 72 6F 78 79 48 75 6E 74 65 72 0D 0A t: ProxyHunter..
0x00A0: 0D 0A ..

1. Source of trace:
This traffic was captured from a personal server running a web server to publish Friends and
Family web pages. The server rarely receives hits from users outside a known range of addresses,
so the logs are checked for all connections originating outside that norm.

2. Detect Generated By:

Log-1 is the Apache access_log. To list the unknown hosts, I used:
egrep –v ‘host1.known.net|host2.known.net|host2.known.net’ access_log > suspects

 Then to give a count of unknown hosts who connected:
awk ‘{print $1}’ suspects|sort|uniq –c

 Finally, check out the traffic from the suspects:
 egrep <ip from suspect file> access_log

 Log-2 is a binary packet log captured by the snort sensor on this network, trace as follows:
 To get the unix timestamp of the event:
 date –d ‘Mar 26 2001’ +%s

I archive snort binary logs daily, saving them as snort.`date +%s .̀log, so to examine the traffic of
the suspect:
 snort –Xdvvr snort.9856[6789]*.log host 61.139.210.136|more

3. Probability of Spoofing:

This http connection requires a full 3-way handshake TCP connection, minimal probability of
spoofing.

4. Attack Description:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

By examining the payload of the packet from the snort log, it is easily recognizable that this
attacker is attempting to use this web server to access a web page hosted on s3.com. By relaying
thru this server, the attacker is able to mask his location and make it seem as if the source of his
web-traffic were this server.

5. Attack Mechanism:
A glance at the snort packet dump points to our culprit, Proxy Hunter.
From http://www.securityfocus.com:

To: Incidents
Subject: Re: Strange Scan
Date: Sun Dec 17 2000 20:44:05
Author: geoff < geoff@cardboardtransmitter.net >
Message-ID: <2euq3tob9eql8h6ukoan1mdet0tbte8dru@4ax.com>
In-Reply-To: <006c01c06896$b537f3e0$6500a8c0@dubz.com.au>

Proxy Hunter is a little utility I used to use to find anonymous
proxies (i.e. people that have set up WinProxy poorly). All it
does is scan a range of IP's and attempt to retrieve a web page.
...And dont worry about http://www.s3.com, it just happens to be
the default page that Proxy Hunter attempts to retrieve.

Ø gleNN

Proxy Hunter is a widely utilized tool of the Proxys-4-All project, a group that maintains a list of
proxies that allow unrestricted access. It should be noted that using the proxies at Proxys-4-All is
most likely violating the security policy of the Proxy Server and may rise to illegality.

6. Correlations:

http://www.securityfocus.com has several of these captures. It seems this tool has been in use
quite some time. The site http://www.sans.org/y2k/010600-1515.htm shows it as the most
frequent incident in January 2001; the earliest records of Proxy Hunter date back to 12/27/1999.

7. Evidence of active targeting:
No evidence of active targeting, this was most likely a potential intruder scanning a subnet for
later use. Since the web server is hosted by @home I get to see quite a large number of automated
scans/attacks.

8. Severity

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures) = Severity
(4+1)-(4+1)=0

Criticality (4)-This is the primary server for many friends/family websites and also serves as the
DNS for a few domains.

Lethality (1)-The web server does not answer proxy requests, so the user would normally receive
an error message from the server.

System Countermeasures (4)- In this case, I have all bad URL requests to the server redirected to
DocumentRoot/default.htm on the server. Proxy Hunter may have interpreted this as a positive
result, making the attacker believe proxying is enabled, but the lack of further activity from the
source host makes me believe that is not the case.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Network Countermeasures (1)-Since there is no snort rule set to search for this probe and the web
server open is to the public, nothing at the network layer would have alerted on this or attempted
to stop it.

9. Defensive recommendation:

Added snort rule to search for ProxyHunter:
 Alert tcp $EXTERNAL_NET any > $HOME_NET 80 (msg:”Proxy \

 Hunter Probe”;content:”ProxyHunter”;)

Blocked source host on firewall:
 iptables –I BLOCKED –s 61.139.210.136 –j DROP

10. Test Question

61.139.210.136 - - [26/Mar/2001:20:31:26 -0600] "GET http://www.s3.com HTTP/1.1" 302 5
61.139.210.136 - - [26/Mar/2001:20:31:28 -0600] "GET http://www.s3.com HTTP/1.1" 302 5
61.139.210.136 - - [26/Mar/2001:20:31:32 -0600] "GET http://www.s3.com HTTP/1.1" 302 5

 The pattern above shows:
a. A successful webpage retrieval from www.s3.com
b. Redirection by the web server to www.s3.com
c. Client at 61.139.210.136 using the web server as a proxy
d. www.s3.com receiving a webpage from server at 61.139.210.136

Detect 2

Log 1
messages.1:Feb 11 19:37:58 bougy portsentry[648]: attackalert: SYN/Normal scan from host: \

c540323-a.alntn1.tx.home.com/24.179.82.24 to TCP port: 6000
messages.1:Feb 11 19:37:58 bougy portsentry[659]: attackalert: UDP scan from host: \

c540323-a.alntn1.tx.home.com/24.179.82.24 to UDP port: 111
messages.1:Feb 11 19:37:58 bougy portsentry[648]: attackalert: Host 24.179.82.24 has been blocked \

via dropped route using command: "/usr/local/sbin/iptables -A INPUT -s 24.179.82.24 -j DROP"
messages.1:Feb 11 19:37:58 bougy portsentry[659]: attackalert: UDP scan from host: \

c540323-a.alntn1.tx.home.com/24.179.82.24 to UDP port: 111
messages.1:Feb 11 19:37:59 bougy portsentry[659]: attackalert: Host 24.179.82.24 has been blocked \
 via dropped route using command: "/usr/local/sbin/iptables -A INPUT -s 24.179.82.24 -j DROP"

Log 2
Feb 11 19:37:59 bougy snort: IDS021 - RPC - portmap-request-nisd: \

24.179.82.24:810->HOME.NET.BOUGY.41:111
Feb 11 19:37:59 bougy snort: IDS013 - RPC - portmap-request-mountd: \

24.179.82.24:960 -> HOME.NET.BOUGY.41:111

Feb 11 19:41:12 bougy snort: MISC-DNS-version-query: 24.179.82.24:4620 ->
HOME.NET.BOUGY.53:53
Feb 11 19:41:12 bougy snort: IDS021 - RPC - portmap-request-nisd: 24.179.82.24:815-
>HOME.NET.BOUGY.53:111
Feb 11 19:41:12 bougy snort: BIND Shell: 24.179.82.24:4917 -> HOME.NET.BOUGY.41:31337

Feb 11 19:46:00 bougy snort: Netbus/GabanBus: 24.179.82.24:15771 -> HOME.NET.BOUGY.53:12345
Feb 11 19:46:01 bougy snort: Back Orifice: 24.179.82.24:15776 -> HOME.NET.BOUGY.53:31337
Feb 11 19:46:02 bougy snort: IDS255 - DDoS shaft handler to agent: \

24.179.82.24:15824 -> HOME.NET.BOUGY.53:18753

Log 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Feb 11 19:38:09 bougy snort: IDS148 - CVE-1999-0183 - TFTP Write: \
24.179.82.24:63727 -> HOME.NET.BOUGY.41:69

02/11-20:38:09.701817 24.179.82.24:63727 -> HOME.NET.BOUGY.41:69
UDP TTL:124 TOS:0x0 ID:15502 IpLen:20 DgmLen:72
Len: 52
0x0000: 00 40 33 A3 00 9A 00 30 7B FB 8C 70 08 00 45 00 .@3....0{..p..E.
0x0010: 00 48 3C 8E 00 00 7C 11 2A 70 00 00 52 18 00 00 .H<...|.*p..R...
0x0020: 54 29 F8 EF 00 45 00 34 8B 81 00 02 2F 74 6D 70 T)...E.4..../tmp
0x0030: 2F 43 79 62 65 72 43 6F 70 2E 74 66 74 70 2E 76 /CyberCop.tftp.v
0x0040: 75 6C 6E 65 72 61 62 69 6C 69 74 79 00 6E 65 74 ulnerability.net
0x0050: 61 73 63 69 69 00 ascii.

1. Source of trace: These logs were captured from the gateway for a small office network running
Redhat Linux, kernel 2.4.1, with netfilter performing firewall functionality. The
network is used primarily for business purposes, serving web applications, e-mail and providing
Internet access for the office.

2. Detect Generated By: Log 1 comes from a portsentry report to syslog, which set off SWATCH

and alerted the analyst via pager. Log 2 shows snippets of the alerts generated by snort to the
syslog shortly thereafter. Log 3 includes a snort syslog alert as well as the decoded packet that it
references.

3. Probability of Spoofing: Some of these could certainly be spoofed probes, but many complete

a 3-way handshake connection. The sheer volume of the probe indicates that the source machine
could either be compromised and is being used as a remote reconnaissance gatherer, or is operated
by an unskilled or new administrator (script kiddie).

4. Attack Description: This intruder is probing the TCP and UDP ports on the gateway, gaining

information about the services that the network may provide and executing remote exploits in
rapid succession. Evidence that the attack was automated comes from both the speed of the
packets generated and, as shown in the activity from Log 2, the skipping up a few steps in the
MY.NET.84.0/24 subnet to MY.NET.84.53 within 4 minutes of the original probe on
MY.NET.84.41

5. Attack Mechanism: Log 3 gives away the tool used to automate the scan, CyberCop scanner. In

this packet, the CyberCop scanner attempts to write the file CyberCop.tftp to the /tmp directory on
MY.NET.84.41 using the TFTP protocol. This CyberCop activity, identified by CVE-1999-0183,
targets Linux boxes running a vulnerable TFTP server, allowing write privileges outside the TFTP
directory.

6. Correlations: CVE-1999-0183, Whitehats IDS 148.

7. Evidence of active targeting: No evidence of previous traffic from source. Most likely a first time

feature-test of a new CyberCop installation.

8. Severity:

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures) = Severity

(4+1)-(4+4)=-3

Criticality (4)-This is the primary server for this office, including DNS server and Internet
gateway.

Lethality (1)-The gateway does not run any of the services the probes were searching for.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

System Countermeasures (4)- PortSentry caught this probe from its inception and blocked the
source address. Snort also recorded all activity to a MySQL database for viewing with A.C.I.D,
and SWATCH informed an analyst of the activity within 30 seconds.

Network Countermeasures (4)-The gateway blocked the source before any reconnaissance could
be gathered, even if vulnerabilities existed, the source would never have received the information.

9. Defensive recommendation: Send detect to ISP of source host; if the machine is compromised,

they can inform their user and eliminate the attack point.

10. Test Question

Feb 11 19:37:59 bougy snort: IDS021 - RPC - portmap-request-nisd: \

24.179.82.24:810->HOME.NET.BOUGY.41:111
Feb 11 19:37:59 bougy snort: IDS013 - RPC - portmap-request-mountd: \

24.179.82.24:960 -> HOME.NET.BOUGY.41:111

Feb 11 19:41:12 bougy snort: MISC-DNS-version-query: 24.179.82.24:4620 ->
HOME.NET.BOUGY.53:53
Feb 11 19:41:12 bougy snort: IDS021 - RPC - portmap-request-nisd: 24.179.82.24:815-
>HOME.NET.BOUGY.53:111
Feb 11 19:41:12 bougy snort: BIND Shell: 24.179.82.24:4917 -> HOME.NET.BOUGY.41:31337

Feb 11 19:46:00 bougy snort: Netbus/GabanBus: 24.179.82.24:15771 -> HOME.NET.BOUGY.53:12345
Feb 11 19:46:01 bougy snort: Back Orifice: 24.179.82.24:15776 -> HOME.NET.BOUGY.53:31337
Feb 11 19:46:02 bougy snort: IDS255 - DDoS shaft handler to agent: \
24.179.82.24:15824 -> HOME.NET.BOUGY.53:18753

What can be determined by this trace?

a. 24.179.82.24 is ping scanning MY.NET.84.53
b. 24.179.82.24 has previous reconnaissance of MY.NET.84.0/24
c. 24.179.82.24 is spoofed
d. 24.179.82.24 is scanning the MY.NET.84.53 subnet with an automated vulnerability scanner

answer:d

Detect 3

Log 1

ID Signature TimeStamp Source
Address

Dest.
Address

Layer 4
Protocol

#0-(3-235) IDS277 - NAMED Iquery
Probe

2001-04-02
18:27:45 66.31.116.113 DSL.NET.156.179 UDP

Log 2

18:27:45.186465 h00e0296df973.ne.mediaone.net.4724 > adsl-DSL-NET-156-
180.dsl.rcsntx.swbell.net.domain: 43981 inv_q+ [b2&3=0x980] (23)
0x0000 4500 0033 a4b7 0000 2d11 54e4 421f 7471 E..3....-.T.B.tq
0x0010 40da 9cb4 1274 0035 001f 0057 abcd 0980 @....t.5...W....
0x0020 0000 0001 0000 0000 0000 0100 0120 2020
0x0030 2002 61 . .a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Log 3

18:18:47.086170 h00e0296df973.ne.mediaone.net.2854 > \
 adsl-DSL-NET-156-177.dsl.xxx.swbell.net.domain: S 3962152800:3962152800(0) \
 win 32120 <mss 1460,sackOK,timestamp 8091406 0,nop,wscale 0> (DF)
18:18:47.089628 h00e0296df973.ne.mediaone.net.2855 > \
 adsl-DSL-NET-156-178.dsl.xxx.swbell.net.domain: S 3956914051:3956914051(0) \
 win 32120 <mss 1460,sackOK,timestamp 8091406 0,nop,wscale 0> (DF)
18:18:47.112794 adsl-DSL-NET-156-178.dsl.xxx.swbell.net.domain > \
 h00e0296df973.ne.mediaone.net.2855: R 0:0(0) ack 3956914052 win 0

1. Source of trace: This capture took place on a home ADSL connection. The addresses from

DSL.NET.156.179 and dot-180 reside on a separate ADSL line from the DSL.NET.156.177 and
dot-178 addresses. Both ADSL lines support small home offices, serve web pages, e-mail, DNS
and provide user level Internet access.

2. Detect Generated By: the 177/178 network captures IP traffic using the Shadow NIDS; the

179/180 network utilizes Snort with A.C.I.D reporting. Log 1 is the A.C.I.D. event, Log 2 is that
packet, dumped by Snort and Log 3 are packets captured with Shadow and decoded with tcpdump.

3. Probability of Spoofing: Since a three-way-handshake is never completed, there is no way to

guarantee this address wasn’t spoofed. If the attacker were using a spoofed source, however, the
information about the services on DSL.NET would not have been returned to that source, so
he/she would need an intermediary packet sniffer to trap the results in-transit.

4. Attack Description: The suspect is scanning UDP port 53 for versions of the BIND nameserver,

possibly to use for a later penetration. From IDS277:
A remote user attempted to determine if a nameserver supports IQUERY. This
signature often indicates a pre-attack probe used to locate vulnerable servers
running named.

The probe shows evidence of automation as it is hitting the DSL.NET.156.0/24 subnet
sequentially and in rapid succession.

5. Attack Mechanism: This packet differs from the hard-coded values in the exploit bof-test.c by

Josh Drake. The source IP in the original exploit was 4.3.2.1 and the TTL was 31337. Either
the bof-test.c code was modified and reused, or a new probe was concocted to search for the
Iquery response.

6. Correlations: IDS277, CVE-1999-0009, BugtraqID 134

7. Evidence of active targeting: No previous traffic from source address to either of the DSL

networks indicates lack of active targeting; however, since these are spoofable packets the actual
source could indeed be targeting one or both of these networks.

8. Severity:

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures) = Severity

(5+3)-(4+3)=1

Criticality (5)-These are servers and workstations used by the networks users for telecommuting.
Outages or compromise of the systems could be business crippling.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Lethality (3)- This exploit would allow root access if an unpatched DNS server were on the
network.

System Countermeasures (4)- All O/S’s are patched, but DNS is listening on both networks, any
information gathered about the servers could aid in later penetrations. The DNS servers also
return bogus information about their versions.

Network Countermeasures (3)-The networks were protected from DSN exploits over TCP via the
firewall and Snort is in active response mode against obsolete DNS query types, sending RSTs to
TCP queries and ICMP Unreachables to UDP queries.

9. Defensive recommendation:
Log all traffic from source address and verify that all DNS server software is updated. Report to
GIAC.

10. Test Question

18:27:45.186465 h00e0296df973.ne.mediaone.net.4724 > adsl-DSL-NET-156-
180.dsl.rcsntx.swbell.net.domain: 43981 inv_q+ [b2&3=0x980] (23)
0x0000 4500 0033 a4b7 0000 2d11 54e4 421f 7471 E..3....-.T.B.tq
0x0010 40da 9cb4 1274 0035 001f 0057 abcd 0980 @....t.5...W....
0x0020 0000 0001 0000 0000 0000 0100 0120 2020
0x0030 2002 61 . .a

This packet is an example of:

a. Response to a successful DNS query
b. Reverse DNS host lookup.
c. DNS domain transfer
d. Inverse DNS query

Detect 4

Log 1
Mar 26 13:00:05 tjv snort: IDS291 - MISC - Shellcode x86 stealth NOP: \

12.4.218.41:80 -> 10.20.59.11:34821

Log 2
13:58:47.377276 tjv.E.NET.34821 > 12.4.218.41.www: S 1549488150:1549488150(0) win 5840 \

<mss 1460,sackOK,timestamp 43491220 0,nop,wscale 0> (DF)
13:58:47.425384 12.4.218.41.www > tjv.E.NET.34821: S 558175390:558175390(0) ack 1549488151 \

win 17376 <mss 1460,nop,wscale 0,nop,nop,timestamp 2064994 43491220> (DF)
13:58:47.425480 tjv.E.NET.34821 > 12.4.218.41.www: . ack 1 win 5840 <nop,nop,timestamp \

43491225 2064994> (DF)
13:58:47.425808 tjv.E.NET.34821 > 12.4.218.41.www: P 1:384(383) ack 1 win 5840 \

<nop,nop,timestamp 43491225 2064994> (DF)
13:58:47.478424 12.4.218.41.www > tjv.E.NET.34821: . ack 384 win 16993 <nop,nop,timestamp \

2064994 43491225> (DF)
13:58:47.521105 12.4.218.41.www > tjv.E.NET.34821: . 1:1449(1448) ack 384 win \

17376 <nop,nop,timestamp 2064994 43491225> (DF)
13:58:47.521216 tjv.E.NET.34821 > 12.4.218.41.www: . ack 1449 win 8688 \

<nop,nop,timestamp 43491235 2064994> (DF)
13:58:47.523777 12.4.218.41.www > tjv.E.NET.34821: P 1449:2049(600) ack 384 win \

17376 <nop,nop,timestamp 2064994 43491225> (DF)
13:58:47.523859 tjv.E.NET.34821 > 12.4.218.41.www: . ack 2049 win 11584 \

<nop,nop,timestamp 43491235 2064994> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1. Source of trace: These packets were captured on an internal network at an e-commerce

corporation. The client (tjv.net1.com) is the workstation of a security analyst with no ports or
services listening.

2. Detect Generated By: Log 1 is a syslog alert generated by snort, Log 2 is a tcpdump decode of the

beginning of the www session.

3. Probablility of Spoofing: Not spoofed, full TCP three-way-handshake.

4. Attack Description: stealth NOP’s are used to send buffer overflow attacks to vulnerable daemons
while avoiding intrusion detection systems. As described by Xtremist in “Writing anti-IDS
shellcode”:

 Anti-IDS tactic:
 The main problem here is the presence of NOP's in the shellcode.

Exploits usually pad the stack with NOP's so that the return
address dosent have to be exact. It is this NOP which is the
problem. The main shellcode (which probably start execve or append
a line to passwd) need not be changed because it dosent contain
NOP's. The problem lies here -

 for(i=0;i<(LEN-strlen(shellcode));i++){*(bof+i)=0x90;)

where the beginning of the stact gets padded with NOP's. NOP is
used only to jump to the next instruction without any modification
to execution of the assembly code. NOP=No OPeration. But the same
function can be achieved by using a jump to the next instrucion
(jmp 0x00).

Since blackhats learned that IDS systems look for NOPs, it was necessary that they find an
alternative in the one-upmanship contest in which we participate daily.

5. Attack Mechanism: The web server here generated the Snort-offending traffic during a normal

web session. The client initiated a large download (evidenced by the packets’ size) and the
jmp0x00 instructions turned out to be a legitimate part of the download (source code of the
Pentium C Compiler).

6. Correlations: IDS291, post from Max Vision on the IDS Mailing List, “Writing anti-IDS

shellcode”

7. Evidence of active targeting: None, this is a false positive.

8. Severity

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures) = Severity

(3+1)-(5+4)=-6

Criticality (3)-This is a Unix user workstation, elevated to a 3 because of the sensitive Incident
Handling information stored on it.

Lethality (1)- As a false alarm, the lethality is non-existent.

System Countermeasures (5)- This is a secure workstation, with no daemons and no file shares or
other network services offered.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Network Countermeasures (4)-The network is protected by a screening router and a firewall; the
connection was allowed because it was initiated from the inside.

9. Defensive recommendation: Watch this rule for future false alarms. Grab an exploit that utilizes

stealth NOP’s and try to modify the rule, enabling it to differentiate between false alarms and
actual shellcode execution attempts.

10. Test Question

13:58:47.377276 tjv.E.NET.34821 > 12.4.218.41.www: S 1549488150:1549488150(0) win 5840 \

<mss 1460,sackOK,timestamp 43491220 0,nop,wscale 0> (DF)
13:58:47.425384 12.4.218.41.www > tjv.E.NET.34821: S 558175390:558175390(0) ack 1549488151 \

win 17376 <mss 1460,nop,wscale 0,nop,nop,timestamp 2064994 43491220> (DF)
13:58:47.425480 tjv.E.NET.34821 > 12.4.218.41.www: . ack 1 win 5840 <nop,nop,timestamp \

43491225 2064994> (DF)
13:58:47.425808 tjv.E.NET.34821 > 12.4.218.41.www: P 1:384(383) ack 1 win 5840 \

<nop,nop,timestamp 43491225 2064994> (DF)
13:58:47.478424 12.4.218.41.www > tjv.E.NET.34821: . ack 384 win 16993 <nop,nop,timestamp \

2064994 43491225> (DF)
13:58:47.521105 12.4.218.41.www > tjv.E.NET.34821: . 1:1449(1448) ack 384 win \

17376 <nop,nop,timestamp 2064994 43491225> (DF)
13:58:47.521216 tjv.E.NET.34821 > 12.4.218.41.www: . ack 1449 win 8688 \
<nop,nop,timestamp 43491235 2064994> (DF)

This trace shows:

a. Normal 3-way handshake with tjv.e.net connecting to web server at 12.4.18.41
b. Webserver at 12.4.218.41 initiating a connection with tjv.e.net
c. RPC session between 12.4.218.41 and tjv.e.net
d. None of the above

Answer: a.

Detect 5

Log 1
 Signature TimeStamp Source

Address
Dest.
Address

Layer 4
Protocol

 IDS155 - PING Delphi-Piette Windows 2001-03-28 14:54:31 195.29.34.17 E.NET.61.108 ICMP

 IDS155 - PING Delphi-Piette Windows 2001-03-28 14:54:31 195.29.34.17 E.NET.61.108 ICMP

Log 2
000 : 50 69 6E 67 69 6E 67 20 66 72 6F 6D 20 44 65 6C Pinging from Del
010 : 70 68 69 20 63 6F 64 65 20 77 72 69 74 74 65 6E phi code written
020 : 20 62 79 20 46 2E 20 50 69 65 74 74 65 20 20 20 by F. Piette
030 : 20 20 20 20 20 20 20 20

1. Source of trace: This was capture on the same Corporate network as Detect 4. The target of the
PING is a private, developers’ subnet that should never be accessed from the Extranet.

2. Detect Generated By: Two separate Snort Sensors, one inside the main Firewall and one inside the

Firewall protecting the private subnet, alerted on this packet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3. Probability of Spoofing: ICMP is not a connection-oriented protocol, so likelihood of spoof is
high.

4. Attack Description: A PING is a simple test to see if a host is alive. An ICMP echo request is sent

and if an echo reply is returned, the recipient gets confirmation that the endhost can be contacted
via IP.

5. Attack Mechanism: The very plain description of the packet in Log 2 shows Delphi generated this

PING with code written by F. Piette.

6. Correlations: CAN-1999-0523, IDS155

7. Evidence of active targeting: Since this private subnet should not even be mapped to the Extranet,
the evidence of any packet from the Internet reaching this subnet is disturbing. The lack of
previous traffic from this source offers no consolation, as ICMP is easily spoofed. Although the
target of this PING did not respond, an “ADMIN PROHIBITED” message was returned to the
suspect’s host, possibly giving information as to the mapping of our internal network.

8. Severity

(Criticality + Lethality) – (System Countermeasures + Network Countermeasures) = Severity

(3+1)-(5+4)=-6

Criticality (5)-This is a highly sensitive developer’s subnet. Compromise of any machine,
gateway device, security policy, or network information could have a substantial impact on
business.

Lethality (2)- This is not a PING meant to destroy or disable, only to probe/map.

System Countermeasures (5)- The system in question will not respond to pings, has the latest OS
revisions and does not listen on any UDP or TCP port.

Network Countermeasures (2)-The network is protected by a screening router and two firewalls,
but the ruleset on the innermost firewall had been purged the previous evening, allowing this
offending packet.

9. Defensive recommendation: Re-implement the secure rule-set on the innermost firewall, initiate

process to check the firewall rules regularly.

10. Test Question

000 : 50 69 6E 67 69 6E 67 20 66 72 6F 6D 20 44 65 6C Pinging from Del
010 : 70 68 69 20 63 6F 64 65 20 77 72 69 74 74 65 6E phi code written
020 : 20 62 79 20 46 2E 20 50 69 65 74 74 65 20 20 20 by F. Piette
030 : 20 20 20 20 20 20 20 20

The packet above contains:

a. Numerous NOPs
b. IP address of F. Piette
c. Information about the application and operating system of the source host
d. Hidden shell code

Answer: c.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The Whitepaper

Deploying Open Sourced Network Intrusion Detection For The Enterprise.

TJ Vanderpoel
March 04, 2001

1. Introduction

In order to satisfy Security Professionals’ needs to monitor their networks, an abundance of
Enterprise Management Systems (EMS) have surfaced that tout themselves as “All-in-one”
Network Monitoring systems. These frequently have a component that performs some level of
Network Intrusion Detection and that displays the alerts from the intrusion detection (ID) sensors
on the same console as other Monitored Services, Networks or Systems. While many of these
products are indeed quality applications, the resulting integration with general monitoring services
may be undesirable, giving Monitoring Operations Staff the ability and responsibility of analyzing
Intrusion Incidents- something for which entry-level engineers generally are not qualified. In
addition, these multifarious application suites generally require higher-end equipment, which may
have the effect of a company choosing far fewer sensors than it might if sensors could be built
from obsolete stock or far less expensive new equipment. An EMS can be expensive even without
the necessary costly equipment, which must also be added to the price of the Operating System
needed to run the applications on the sensors and console. To alleviate these issues and give
Security Teams the ability to maintain complete control of their NIDS, a variety of solid open-
sourced software can be loaded onto low-power, relatively inexpensive equipment while providing
the same features as a commercial EMS NIDS component. This document can be looked at as a
guideline for such an implementation.

2. What IS Open Source?

Open source software is software like any other; the difference is in the licensing philosophies:

 From the preamble of the GNU Public License:

The licenses for most software are designed to take away your freedom to share and
change it.

 Concurrently, the Open Source Initiative (OSI) website claims:

The basic idea behind open source is very simple. When programmers can read,
redistribute, and modify the source code for a piece of software, the software evolves.
People improve it, people adapt it, people fix bugs. And this can happen at a speed that,
if one is used to the slow pace of conventional software development, seems astonishing.

Open source licenses are meant to make the distribution of source code for applications free for
everyone. They protect the author by stipulating that redistributions of the software must include
the full source code, as well as credit to the original author. They basically give everyone the right
to share and change the original source code, provided they do not attempt to infringe on the rights
of others to do the same. To help maintain standards, the Open Source Initiative offers an Open
Source Definition and also serves as a certifying authority for open source licenses. It can be
viewed at http://www.opensource.org/docs/definition.html. OSI also maintains a list of accepted
open source licenses; for our purposes, these will be:

The PHP License – http://www.php.net/license/2_02.txt
The Apache Software License – http://www.opensource.org/license/apachepl.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The GNU Public License (GPL) – http://www.opensource.org/license/gpl-license.html

Support for software used in this implementation can be supported by a variety of 3rd party
consultants as well as the company maintaining the software package (i.e. MySQL support can be
purchased from http://www.mysql.com). This support differs from most companies in that you
rarely talk to a “support technician”. For example, MySQL maintains a list of developers
currently logged in to their system. When you have a problem, you receive this list of developers
and their contact information after logging in to the MySQL website. Depending on the level of
support purchased (from e-mail only to full 24/7 phone support), you then contact the developer
and he/she handles the support request directly. Most open source software is readily available in
both stable and development releases; sites that publish open source software include Freshmeat,
Sourceforge, and the GNU (GNU’s Not Unix!) organization.

3. What will I need?

Here’s a list of required software packages, with versions and download sites, used for the system
described in this document:

Redhat Linux 6.2 – http://www.redhat.com
 Operating system for console and sensors

Bastille Linux version 1.1.1 – http://bastille-linux.sourceforge.net
 Security hardening script for the Redhat Linux Operating System

FreeS/WAN version 1.8 – http://www.freeswan.org
 VPN software to allow encrypted transmission of alerts/configs/etc

Snort version 1.7 – http://www.snort.org
 Intrusion Detection software for the sensors, the core of the system

Libpcap version 0.6.2 – http://www.tcpdump.org

Library that handles the actual capturing of packets from the network interface; Snort
depends upon it

 Apache Web Server version 1.3.19 – http://www.apache.org
 Web server that will run the console and reporting software

 PHP version 4.0.4 – http://www.php.net
 Scripting language support for A.C.I.D on Apache

Mod_ssl version 2.8.2-1.3.19 – http://www.modssl.org
 Enables Apache to server SSL-secured web pages

 OpenSSL version 0.9.6 – http://www.openssl.org
 Library that performs encryption/decryption for mod_ssl (and OpenSSH)

 OpenSSH version 2.5.2 – http://www.openssh.com
 Network connectivity tools using the SSH protocol suite, for remote administration

 MySQL1 version 3.23.36 – http://www.mysql.com

Database to store alerts

 A.C.I.D. version 0.9.5 – http://www.cert.org/kb/acid

Analysis Console Engine for Intrusion Detection, a PHP-based analysis engine to search
and process the data generated by the Snort sensors

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 SWATCH version 3 -- http://www.stanford.edu/~atkins/swatch/

The Simple WATCHer watches a syslog file and takes action based on user-defined
rules; used for alerting Information Security Personnel of possible intrusion events

4. What about hardware?

This implementation is designed to allow for a multitude of hardware type to be used. In the
practical sense, here are the guidelines for each of the 3 components necessary for an Enterprise
Deployment.

ID Sensor—The worker bees of the system. They sit in strategic locations and simply listen to all
the traffic passing by them and optionally take action based on pre-defined or dynamic rules. For
the ID sensors, ease of deployment and replication should be a top priority. Ideally, unused x86
architecture capable machines with speeds preferably greater than 233 Mhz, 96MB of RAM and
2GIG or more of hard drive space can be found in a closet and given a new lease on life as ID
sensors. If such hardware is not available, new equipment need not be more than 500Mhz, with
the same minimums of RAM and hard drive space as above. In essence, other architectures such
as those found in Macintosh or SPARC computers could be utilized as well, provided the
engineers had proficiency installing and administrating Linux on that particular type. This
implementation used 5 identical Pentium 266 laptop computers with 2.1 GIG hard drives and
96MB of ram.

ID Console---The back end. This is where the data gets gathered, processed, and presented to the
end user. This will need to run the following services:

Apache Web Server with mod_ssl and OpenSSL for Secure Sockets Layer support
MySQL Relational Database Server

 PHP Scripting Language to support the web applications for the remote console

The hardware needed to support this depends on factors such as: how many sensors are reporting
to the console, how many administrators are using the console concurrently and how much data is
being stored on the console (how much traffic is being captured). This implementation used a
Pentium 300 with 96 MB of RAM and two 20GIG SCSI hard drives running a RAID 2
configuration. The RAID configuration was chosen to give the greatest reliability based on the
hardware available, but the recommended Production Implementation should include a truly
redundant central ID Console, a feature easily implemented with Redhat Linux 6.2 using its
Piranha Clustering Software.

Remote Console---This will be the workstation that the Security Analyst or monitoring team will
use to interface with the ID Console. Any workstation capable of running a GUI Web Browser
should suffice, although the A.C.I.D. web interface was only tested on Netscape 4, Netscape 6 and
Internet Explorer 5. For administering the ID Console, this workstation should have software
capable of communicating via the SSH Protocol Suite.

5. How do I do it?

Setup begins with installing Linux on each of the ID Sensors and the ID console. This can be
done individually on each machine with a Linux distribution CD or network installation.
Optionally, the installation of the ID Sensors can be automated either with an installation script or
by mirroring the hard drives of the Sensors from one installation. In the case of an automated
installation using Redhat Linux, a server installation should be chosen from the installer options,
with all unnecessary applications being left uninstalled, such as Web Server (this will be installed
later), DNS server, anonymous FTP server, News Server, etc. See the SANS Securing Linux
Step-By-Step guide (available from http://www.sansstore.org) and the documentation from the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Redhat distribution (http://www.redhat.com/apps/support/documentation.html) for a more
comprehensive description. Once installed, the Linux Kernel should be rebuilt using the most
current stable 2.2.X version. This can be found at http://www.kernel.org and at this time is
version 2.2.18. If possible, it is recommended to build a monolithic kernel as opposed to as
modular (see http://linuxdocs.org/Kernel-HOWTO.html). Support for ipchains, the native firewall
for Linus 2.2.x systems, should be enabled (see http://linuxdocs.org/HOWTOs/Firewall-
HOWTO.html). After rebuilding the kernel, it’s time to finish the lockdown by running Bastille-
Linux. What is Bastille-Linux?

Bastille is set of open source scripts designed to harden a virgin Red Hat … installation.
… Unneeded daemons are stopped, logging enabled/improved, SUID and file
permissions tightened, account security improved and even a chroot environment is
provided for DNS servers.

This excerpt comes from “Hardening Red Hat Linux with Bastille” by Sean Boran, available at
http://www.securityportal.com/cover/coverstory20000501.html, a useful place to begin for those
unfamiliar with Bastille-Linux. Please reference http://bastille-linux.sourceforge.net/ for the most
recent announcements, changes, documentation and developments. After completing the Bastille
lockdown process, FreeS/WAN should be installed and configured on the ID sensors and console
(http://www.freeswan.org/freeswan_trees/freeswan-1.8/doc/install.html#install), to enable a secure
communications tunnel. Before beginning this step, it is important to note the IP addresses the ID
sensors and console will use on the network. After configuring FreeS/WAN and testing network
connectivity between the sensors and console, the rest of the applications can be installed.
For the ID Console:

I. Install OpenSSL---An rpm for the installation can be downloaded from the Redhat
website; alternatively the source can be downloaded directly from
http://www.openssl.org. Installing the current version (0.9.6) from source is as follows:
a. untar the source file-

tar zxvf openssl-0.9.6.tar.gz
b. change to the source directory and configure for compiling-

cd openssl-0.9.6
./configure

c. compile and install-
make > build.log
make install > install.log

d. link the libraries-
echo /usr/local/lib >> /etc/ld.so.conf
ldconfig

II. Install MySQL, Apache, mod_ssl and PHP. Again, rpms are available, but source
installs are preferred using the latest source from the websites referenced in section 3.
The tarballs should be downloaded to the same directory, in this case /usr/local/src.
a. untar the source files-

tar zxvf mysql-3.23.35.tar.gz
tar zxvf apache_1.3.19.tar.gz
tar zxvf mod_ssl-2.8.1-1.3.19.tar.gz
tar zxvf php-4.0.4.tar.gz

b. Build and install MySQL
groupadd mysql
useradd -g mysql mysql
cd mysql-3.23.35
./configure --prefix=/usr/local/mysql
make > build.log && make install > install.log
scripts/mysql_install_db
echo /usr/local/mysql/lib/mysql >> /etc/ld.so.conf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ldconfig
c. Build and install the Web Server

cd mod_ssl
./configure --with-apache=../apache_1.3.19 --with-ssl=../openssl-0.9.6 --enable-\

shared=ssl --enable-shared=most --enable-module=max
cd ../apache_1.3.19
./configure --enable-shared=ssl --enable-shared=most --enable-module=max \
 --enable-rule=EAPI --prefix=/usr/local/apache
make > build.log && make certificate TYPE=custom
make install > install.log
cd ../php-4.0.4
./configure --with-mysql=/usr/local/mysql --with- \

apxs=/usr/local/apache/bin/apxs

make > build.log && make install > install.log
d. Start the database and create users

BINDIR=/usr/local/mysql/bin; export BINDIR
$BINDIR/safe_mysqld &
$BINDIR/mysqladmin –u root password <your_password>
$BINDIR/mysql –p
 mysql> \u mysql
 mysql> DELETE FROM user WHERE User = ‘’;
 mysql> DELETE FROM user WHERE Password = ‘’;
 mysql> GRANT ALL PRIVELEGES ON *.* TO dba@localhost \
 IDENTIFIED BY ‘password’;
 mysql> CREATE DATABASE snort;

mysql> GRANT INSERT,SELECT,DELETE ON snort.* TO \
snort@localhost IDENTIFIED BY ‘password’;

 mysql> \q

 III. Configure Apache and install A.C.I.D.

a. Edit /usr/local/apache/conf/httpd.conf, setting values as follows

MinSpareServers 1
MaxSpareServers 3
StartServers 2
MaxClients 5
Port 443
SSLRequireSSL (in <Directory /usr/local/apache/htdocs>)
ServerSignature Off

b. create .htaccess file and .htpasswd file (or other authentication system for apache,

auth_user.php was used in the example system, available from
bougyman@i.am)

c. extract acid source

tar zxvf acid-0.9.6.tar.gz (from /usr/local/src)
mkdir /usr/local/apache/htdocs/acid
cd acid-0.9.6
cp *.php *.html *.css /usr/local/apache/htdocs/acid
chmod 755 /usr/local/apache/htdocs/acid
chmod 644 /usr/local/apache/htdocs/acid/*

 IV. Install Snort and create databases

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a. Remove Redhat tcpdump and install libpcap
rpm –e tcpdump
tar zxvf libpcap-0.6.2.tar.gz
cd libpcap-0.6.2
./configure
make > build.log && make install > install.log
make install-incl
ldconfig

b. unzip, build, and install Snort
tar zxvf snort-1.7.tar.gz (from /usr/local/src)
cd snort-1.7
./configure --with-mysql=/usr/local/mysql
make > build.log && make install > install.log

c. Create snort data directory and databases

mkdir /storage/snort (used in example, make this a partition with a lot of space, not
the same as the / filesystem)

 mysql –u dba –p snort < /usr/local/src/snort-1.7/contribs/create_mysql
 mysql –u dba –p snort < /usr/local/src/acid-0.9.6/create_acid_tbls.sql

 V. Configure for remote syslog and install SWATCH

a. edit /etc/rc.d/init.d/syslog, changing the start command to :
daemon syslogd –r –m 0 (-r allows remote logging)

b. install SWATCH

tar xvf latest.tar (from /usr/local/src)
cd swatch-3.0.1
perl Makefile.PL
make > build.log && make test
make install > install.log (if tests are successful)

 VI. Install OpenSSH

a. unzip, build, and install
tar zxvf openssh-2.3.0p1.tar.gz (from /usr/local/src)
cd openssh-2.3.0p1
./configure
make > build.log && make install > install.log

 VII. Finalize configurations and start services

a. edit /usr/local/apache/htdocs/acid/acid_conf.php, setting the values for:
$alert_dbname
$alert_user
$alert_password (use the values chosen in part d. of step II.)

b. Configure SWATCH

edit ~/.swatchrc , originally, a single rule will work:

watchfor /snort/
 echo
 beep 2
 mail=admin@one.dot.com (wherever you want alerts sent)

c. Start everything

/usr/local/apache/bin/startssl

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/usr/local/sbin/sshd
/usr/bin/swatch –daemon &

d. Test it

Open a web browser to http://console.hostname.com/acid

The ID console is now complete. To begin the ID sensors, install OpenSSL as you did for the
console, Step I, as well as openssh, then

Install MySQL client only
 cd mysql-3.23.35
 ./configure –wihtout-server --prefix=/usr/local/mysql
 make > build.log && make install > install.log
 echo /usr/local/mysql/lib/mysql >> /etc/ld.so.conf
 ldconfig

Complete the sensor by installing snort as in part b. of section IV. above. After installation, create
the snort data directory structure:
 mkdir /storage/snort
 mkdir /storage/snort/conf
 mkdir /storage/snort/logs
 mkdir /storage/snort/bin
 chmod –R 700 /storage/snort/*

And copy the snort configuration files to the configuration directory:
 cp /usr/local/src/snort-1.7/*-lib /usr/local/src/snort/snort.conf /storage/snort/conf

Configure Snort for your site:
 Set $HOME_NET, $EXTERNAL_NET, $DNS_SERVERS, and enable/disable any plug-
ins you decide upon. Be sure to read the documentation accompanying each plug-in you choose
for possible side effects. For the example, these are:

preprocessor defrag
preprocessor http_decode
preprocessor portscan $HOME_NET 4 3 portscan.log
preprocessor portscan-ignorehosts: $DNS_SERVERS
output alert_syslog: LOG_LOCAL2
output database: alert, mysql, user=snort dbname=snort host=localhost \
 password=password sensor_name=NameOfSensor (use same values chosen in section II. Above)

Test it.

snort -b –l /storage/snort/logs –L snort.log –c /storage/snort/snort.conf

Assuming the test succeeds, it is time to use your strengths to customize the system. For the
example, each sensor has these lines appended to snort.conf:

pass tcp $HOME_NET 22 <> $HOME_NET any
log tcp any any <> any any
log udp any any <> any any
log icmp any any <> any any

This will cause snort to log every bit of every packet that it sees, except the ssh traffic to
$HOME_NET. While desirable, if hard drive space is scarce this option may not be viable for
your sensors. In the example, a 2GIG drive would fill in approximately 4 weeks. Rotating the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

snort.log file daily and archiving it to the console biweekly (using a simple shell script on a
cronjob), kept the sensor’s hard drive from filling up.

Edit /etc/syslog.conf, adding these two lines to enable remote logging of alerts to console:

local2.* @console (set console to the ip or hostname of your ID Console)
warn.* @console

6. What Now?

Watch, research, modify rulesets, watch, research, modify rulesets, repeat. The A.C.I.D. should begin
to receive events immediately. As you identify frequently occurring false positives, the rule can be
modified or removed in the /storage/snort/conf file that contains it.

grep –h <rulename> /storage/snort/conf/*
will let you know which file contains the offending rule.

After a day or two of watching traffic and eliminating the false positives identified, you can begin a
more granular configuration of SWATCH to notify the security incident handler of only potentially
threatening events, set time based alerting (so only the handler on duty receives alerts), etc. See the
SWATCH documentation for a complete detail of features and configuration options. In 2 months of
use, this system has not only effectively deterred possible wily hackers, but also aided in the diagnosis
of a multitude of network and client-server communication problems. We became aware of traffic
entering our network by means that we didn’t even know existed: compromised network entities,
internal mischief such as XXX web browsing, Napster activity and plenty of misuse of equipment
(chat, day-trading, online gaming). Since we were able to use equipment that was considered obsolete
and of little value, spend only $30 on software (the Redhat 6.2 CD) and the complete implementation
took less than a week with no detrimental network impact, the system has more than paid for itself
already.

7. Is that It?

Of course not. As new releases and fixes are available for each of the software components, the
sensors and console will need updating. Use shell scripts and cronjobs to automate as much as the
install/update process as possible as well as log rotation/archival. A thorough RTFM (Read The Fine
Manual) session should be indulged upon for each of the software packages, as well as familiarization
with the online references and download locations. As mentioned above, the optimal implementation
would consist of a fully redundant/load balancing ID console. Choosing identical hardware for the ID
sensors allows for rapid initial and subsequent deployment. Try to keep a backup sensor at the ready
in case of a sensor outage and a master image on at least one hard drive at each location where a sensor
is deployed. Choose sensor locations wisely, keeping in mind bandwidth limitations (~50mbps or less
for maximum performance). Protect both sensors and console with ipchains (see the Linux Firewall
HOWTO). Sign up for security mailing lists, especially those focused on the tools in use. Keeping up-
to-date is an essential component of any security system; since open source software evolves so
rapidly, even more emphasis should be placed upon maintaining current, stable releases.

Good luck and happy hacker hunting.

References

Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison Wesley Longman, Inc, 1994.

Northcutt, Stephen and Novak, Judy and McLachlan, Donald. Network Intrusion Detection Second Edition.
Indianapolis: New Riders Publishing, 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Vision, Max. “Max Vision’s Whitehats.” 2001 URL:
http://www.whitehats.com (1 March 2001)

Vision, Max. “Re:Detecting exploits/shellcode.” 16 June 2000. URL:
http://archives.neohapsis.com/archives/ids/2000-q2/0157.html (30 March 2001)

Williamson, Glenn. “Re: Strange Scan.” 18 December 2000. URL:
http://www.securityfocus.com/frames/?content=/templates/archive.pike%3Flist%3D75%26tid%3D151426
%26end%3D2001-04-07%26threads%3D0%26start%3D2001-04-01%26 (2 March 2001).

Free Software Foundation, The. “The General Public License.” Version 2. June 1991. URL:
http://www.opensource.org/licenses/gpl-license.html (7 March 2001).

MITRE Corporation, The. “Common Vulnerabilities and Exposures.” 2001. URL:
http://cve.mitre.org (5 March 2001)

Xtremist. “Writing anti-IDS shellcode.” URL:
http://darknet.hq.alert.sk/papers/basicoverflows/stealthcode.txt (8 March 2001)

SecurityFocus.com. “BugTraq” 2001. URL:
http://www.securityfocus.com (5 March 2001)

Open Source Initiative, The. “Open Source Initiative-Homepage.” 2001. URL:
http://www.opensource.org (8 March 2001).

Neohapsis, Inc. “Neohapsis Archives.” 11 January 2001. URL:
http://archives.neohapsis.com (12 March 2001)

Boran, Sean. “Hardening Red Hat Linux with Bastille.” 1 April 2000. URL:
http://www.securityportal.com/cover/coverstory20000501.html (1 March 2001).

The Analysis

GIAC Enterprises:

Thank you once again for the opportunity examine and aid in improvement of your
Information Security. Building upon the work of my associates Lenny Zeltser and Marc
Bayerkohler, the most recent data you sent has provided further insight into
recommendations for securing your network. This analysis will compare the results of
the data analyzed by my associates against the current Snort log files you have provided
for assessment.

Top Alert Destinations

Host Previous # of Alerts (8-14-00
and 12-4-00)

 # of
Alerts(current)

Updated status

MY.NET.253.105 22165 8 Minor Recon Target

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

MY.NET.100.230 4211 803 Investigate port 80 connections
to mail server.

MY.NET.253.41 8563 296 Mail server, minor recon target

MY.NET.220.126 N/A 25183 Peer-to-peer sharing, possible
compromise.

MY.NET.201.222 N/A 37609 Peer-to-peer sharing, possible
compromise.

MY.NET.253.105: Activity has fallen off almost completely to this system. All of the
alerts received were TCP scans: 2 TCP PINGs to port 21, 4 NULL scans (a TCP packet
with no TCP flags set) from the 216.51.0.0 Class B subnet and 2 SYN-FIN scans from
different subnets. The 216.51.0.0/16 network seems to be actively mapping or searching
for something on this machine; it should be monitored for further activity.

MY.NET.253.41: This mail server received 279 connections to port 25, 272 from the
NET-NCFC watchlist. The other 7 connections included 3 Queso Fingerprints from
204.42.254.5, in which the attacker attempts to determine the O/S of the target by sending
malformed packets and judging the response based on predetermined baselines. One
additional Queso Fingerprint originated from 128.183.103.20, but this is a probable false
positive, the host seemed to make a bona fide mail connection to the server. This system
also received 3 TCP PINGs to port 25 from destinations all using source port 80. The
source port 80 is normally only used by web servers, chances are a web e-mail
application is being served from them.

MY.NET.100.230: Of the 803 alerts targeted at this server, 739 were e-mail connections
triggered by the watchlist for NET-NCFC. 11 TCP PINGs were received by this system
as well, all of them from port 80 as with MY.NET.253.41. If the sources of these probes
are not authorized to communicate with the mail server, they should be prohibited at the
border router or firewall. The other alerts included the 2 network-wide probes and NET-
NCFC watchlist alerts from connections to the identd server.

MY.NET.220.126: All of these alerts except one were generated by 212.179.79.2 which
communicated with this system on TCP port 6699. This is an unreserved port, used
recently on many of the peer-to-peer file sharing systems such as Napster and Gnutella.
Because the use of such clients allows outside networks to transfer files to and from this
workstation, the 6699 port and any others used for such activity should be prohibited at
the external gateway. Port 6699 could be used for nearly any TCP service, but its status
as “Unreserved” would mean the application using it would be non-standard, possibly a
trojan daemon.

MY.NET.201.222: These alerts exhibit the same qualities as those for MY.NET.220.126;
the differences are the source host (212.179.27.111) and port used (6688). The
symptoms of the traffic and recommendations for this system are identical to those of
MY.NET.201.222

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Top Alert Sources

Host Previous # of Alerts (8-14-00
and 12-4-00)

 # of
Alerts(current)

Updated status

MY.NET.253.12 18869 3 Minor threat, greatly reduced
activity

159.226.45.3 6624 69 E-mail client.

212.179.79.2 N/A 48786 Increase monitoring, hostile
threat

212.179.27.111 N/A 39015 Increase monitoring, hostile
threat

MY.NET.253.12: All 3 alerts generated by this system were for printing to 64.23.4.67, an
offsite host (possibly a home pc). If this activity is unauthorized or disallowed, a firewall
rule or border router ACL will prevent it.

159.226.45.3: Of the 69 alerts generated by this system, 48 were e-mail connections from
NET-NCFC, with 44 of those to MY.NET.253.41 and MY.NET.253.42. 3 connections
were to the mail server at MY.NET.6.7 and one to MY.NET.1.2. All of the remaining
alerts were generated from identd traffic. If e-mail relaying from this host is not
authorized, it should be blocked at the firewall or border router. If authorized, an
exception should be added in snort.conf to avoid false positive alerting.

212.179.79.2: This host’s alerts include the 25181 connections to 6699 on
MY.NET.220.126 as well as 5080 connections to port 4876 on MY.NET.229.114, 803
connections to port 4683 on MY.NET.213.222, 4445 connections to MY.NET.228.214
on port 4876, 9309 connections to port 4967 on MY.NET.225.234, 688 connections to
MY.NET.212.38 on port 4336, 1912 connections to MY.NET.201.130 on port 6346, 8
connections to MY.NET.201.142 on port 4909, 386 connections to MY.NET.221.10 on
port 4285, and 973 other connections, all following the same traffic pattern: connections
to unreserved ports in the 4000-6699 range. The traffic appears similar to what I have
hypothesized as peer-to-peer software, but could also indicate a backdoor into this
network. The aggregate traffic shows many similarities to eggdrop botnet traffic, a
network of ‘robots’ that sit in Internet Relay Chat servers, performing channel
maintenance and protection tasks. This IP should be prohibited from the network unless
this traffic is authorized.

212.179.27.111: 37604 of these events follow the same pattern as the alerts generated by
212.179.79.2. The remaining alerts were connections to port 41033 and 41038 on
MY.NET.217.138. This host should also be blocked at the gateway unless this traffic can
be explained as authorized, and if so should be excepted in snort.conf.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Most Probed Targets

Host Previous # of Alerts (8-14-00
and 12-4-00)

 # of
Alerts(current)

Updated status

MY.NET.101.89 4368 106 DNS, Auth, and NTP activity
only

MY.NET.70.243 2290 10 FTP/News server, reduced
targeting.

MY.NET.179.78 2692 5 Minor target

MY.NET.221.158 N/A 13656 Increase monitoring

MY.NET.101.89: 92 reported scans to this system were false positives triggered by DNS
requests to MY.NET.1.3 and MY.NET.1.4. The remaining 14 events include identd
(Auth) requests and NTP (Network Time Protocol) requests to internal servers. These
requests should be excepted in snort.conf to reduce false positives.

MY.NET.70.243: This FTP/NNTP server was probed far less than in the previous traffic
from your site. Every alert besides the network-wide DNS/FTP probe can be classified
as authorized traffic provided that the ips 194.204.224.131, 210.96.87.189,
216.17.174.253, 216.6.8.25, 24.191.63.215, 62.158.93.109, and 62.227.243.120 are
authorized clients.

MY.NET.179.78: Though the amount of scans has reduced, the traffic from this system
indicates it was probed for the SSH daemon, software that enabled a system to be
remotely operated. If SSH is listening on this system, TCP Wrappers, a firewall rule, or a
router ACL should filter port 22.

MY.NET.221.158: This host was targeted by 207.29.192.114, which scanned 13647
individual TCP ports on it. Monitoring should be increased and the 207.29.192.114
address should be blocked at the gateway.

Most Common Sources of Probes

Host Previous # of Alerts (8-14-00
and 12-4-00)

 # of Alerts
(current)

Updated status

MY.NET.202.94 N/A 29014 Investigate, possible compromise

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

207.46.204.86 N/A 5731 Likely compromise; investigate
immediately.

MY.NET.60.8 N/A 134 Increase monitoring

MY.NET.202.94: 16304 of these events were probes from port 9000 on the system to
ports 9000/9004 on the 207.46.204.0/24 subnet. This port is reserved as CSListener, but
a quick web search brought up a better explanation. IBM’s WebSphere server listens for
administrative functionality on port 9000. This port should not be opened to the Internet,
and if 207.46.204.0/24 is not a subnet from which you authorize administration, it should
be prohibited at your gateway. The risks of a remote attacker accessing a web server in
this manner include website defacement, manipulation of network trust, and access to any
data stored on the web server.

207.46.204.86: These alerts show the return traffic from the port 9000 connections
described above. If not an authorized administration host, this should be blocked at the
gateway and the incident reported to your CIRT.

MY.NET.60.8: 4156 alerts show targeting of this system by the host at 134.192.143.247;
another 25 from 128.244.27.166 indicate targeting as well. The probes indicating this
system as source show evidence of the AFS Filessystem protocol to 128.2.0.0/24,
128.8.0.0/24, 18.159.0.24, 18.181.0.23, 129.74.250.23, 134.207.10.0/24 and
192.54.226.61 (an internal, unroutable address). These connections follow the normal
traffic pattern, but each location should be investigated to verify authorized use.

Out of band or corrupt IP headers received

As was the case during our last analysis, a significant number of hosts on your network
were probed by packets containing malformed headers. These packets are used to gauge
the response of the target system against baselines in order to determine the host’s
operating system or software. Because there are no legitimate reasons for these packets
on the network, a firewall rule should be put in place blocking all combinations of:
SYN with FIN
SYN with RST
NULL (no TCP flags)
PSH with RST
PSH with SYN

New events of interest, recommendations

Below is a table generated by snortsnarf.pl which shows the total non-portscan alerts
generated as well as the analysis of threat posed by the alert.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Signature # of
Alerts

of
Sources

of
Destinations Analysis

SITE EXEC –
Possible wu-
ftpd exploit -
GIAC000623

1 1 1 Unsuccessful Attack

STATDX UDP
attack 1 1 1

Targeted attack, investigate
and monitor 206.210.80.6 and
MY.NET.6.15

Happy 99 Virus 1 1 1
Perform virus scan on
MY.NET.6.47, update virus
signatures

site exec -
Possible wu-
ftpd exploit -
GIAC000623

2 2 2 Unsuccessful attack

Probable
NMAP
fingerprint
attempt

8 5 6 Deny malformed packets at
gateway

External RPC
call 59 15 25

Increase monitoring on
MY.NET.6.15, secure port 111
with tcp wrappers, firewall
filter, or secure portmap.

Back Orifice 77 10 71

Unlikely to be successful, Deny
port 31337 and source
209.94.199.202 as
precautionary.

TCP SMTP
Source Port
traffic

100 5 88
Investigate traffic from
63.11.25.117, deny if
unauthorized.

Broadcast Ping
to subnet 70 154 24 1

Block 213.154.131.131 and
194.102.93.101, as well as
193.231.220.0/24. Block pings
to x.x.x.255 at gateway.

connect to 515
from inside 159 10 98

Investigate MY.NET.70.38, If
printing is authorized, except
the traffic in snort.conf.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SUNRPC
highport access! 204 25 19

Mostly false positives, higher
fidelity logs (binary captures)
needed to determine for sure.

SMB Name
Wildcard 515 93 171

Block 141.157.104.204,
continue monitoring, focusing
on External -> Internal
connections. Consider
Blocking SMB at gateway.

Russia Dynamo
- SANS Flash
28-jul-00

546 2 2

No Information available about
this signature, please forward
the snort rule which generated
this for analysis, possible peer-
to-peer filesharing or trojan
activity. Monitor closely.

NMAP TCP
ping! 558 47 156 Recon Probes, continue

monitoring.

SNMP public
access 591 20 7

Change community names to
nonstandard naming
convention.

Queso
fingerprint 710 52 72 Block malformed headers.

Null scan! 826 527 173 Block malformed headers.

Attempted Sun
RPC high port
access

2053 16 23 Consider Secure
Portmapper/filters.

WinGate 1080
Attempt 2239 474 572 Verify security of proxy servers

for strong password protection.

Watchlist
000222 NET-
NCFC

2401 31 19 Investigate VPN for authorized
clients from this network.

connect to 515
from outside 4238 10 2877

Block 141.211.176.99 if
unauthorized for printing on
your network as well as
216.119.15.88. Implement
ACL for port 515 from
Extranet.

Tiny Fragments 5340 27 13 Unknown, blocking these is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

- Possible
Hostile Activity

usually safe.

DNS udp DoS
attack
described on
unisog

16146 8 6 Block 209.67.50.0/24

SYN-FIN scan! 51192 37 27067 Recon probes, block packets
with malformed headers.

Watchlist
000220 IL-
ISDNNET-
990517

105918 46 100 Investigate VPN for authorized
clients from this network.

It is our hope that these recommendations will further protect your environment from
external threat. Thank you once again for allowing us the opportunity to assist you in
your evolving security posture.

Methodology

The first step in analyzing the data set was to generate event totals by source and
destination IP for the scan data and the alert data. After changing all instances of
MY.NET to ‘172.30’ for consistency with

for x in `ls SnortA*.txt`;do (change the ‘SnortA*’ to ‘SnortS*’ for scan files)
sed –e ‘s/MY\.NET/172\.30/g’ $x new.$I
done

This was done with a simple shell script:

#!/bin/sh
for i in `ls new.SnortA*.txt`;do
 grep "^[01]" $i |grep -v portscan|awk -F'**' '{print $3}'|awk '{print $2}'|awk -F':' \

'{print $1}' >> srcips
 grep "^[01]" $i |grep -v portscan|awk -F'**' '{print $3}'|awk '{print $4}'|awk -F':' \

'{print $1}' >> dstips
done
sort srcips|uniq -c|sort -nr > srcips.totaled
sort dstips|uniq -c|sort -nr > dstips.totaled

which gave two, totaled files, containing each unique source and destination addresses as
well as the number of alerts associated with that source or destination. For the scan
alerts, the script was modified to:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

#!/bin/sh
grep -e '^[Dec|Nov|Jan]' new.SnortS*|awk '{print $4" "$6" "$7" "$8}' > allscans
awk -F':' '{print $1}' allscans > srcips
awk -F':' '{print $2}' allscans|awk '{print $2}' > dstips
sort srcips|uniq -c|sort -nr > srcips.totaled
sort dstips|uniq -c|sort -nr > dstips.totaled

Giving the same totaled file format of the scanning events.

The alert files (194039 events) were also processed with snortsnarf.pl, and although the
workstation processing them was a dual 866 Mhz, 256 MB RAM monster, this process
took over 19 hours. The same workstation was unable to parse all of the portscan alert
files (867314 events) in the same manner; each had to be parsed individually to avoid
filling up memory. At that point I went the way of Marc Bayerkohler before me and
moved on to GNU command line tools (awk, grep, sed, wc).

Two scripts proved the most valuable for this step, both of them meant to dig information
about an IP from the scan or alert files. For scan files:

#!/bin/sh
#Dighost for Snort portscan logfiles
#usage: ./dighost <IP> (must be done from directory containing scan files, named
#new.SnortS*.txt)
name=`echo $1|awk -F'.' '{print $1”-“$2”-“$3"-"$4}'`
grep "${1}:" new.SnortS* > $name
awk '{print $4" "$6" "$7" "$8}' $name|sort|uniq -c |sort -nr> $name.sorted.noscan

and for alerts:

#!/bin/sh
#Dighost for Snort portscan logfiles
#usage: ./dighost <IP> (must be done from directory containing alert files, named
#new.SnortA*.txt)
name=`echo $1|awk -F'.' '{print $1”-“$2”-“$3"-"$4}'`
grep "${1}:" new.SnortA*|grep -v portscan > $name
sed -e 's/\[**\]/****/g' $name|awk -F'****' '{print $2}'|sort|uniq -c |sort -nr>
$name.sorted

This created two useful files, one containing each event by the IP dug for (if the IP were
10.1.2.3, the file would be 10-2-2-3, the other containing totals of events for each IP (10-
1-2-3.sorted).

Utilizing wc to count events and grep to search the resulting files for expressions as
described in Mr Bayerkohlers analysis, I was able to drill down to any particular Event of
Interest desired.

