
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Efficiently Deducing IDS False Positives
Using System Profiling

GCIA Gold Certification

Author: Michael Karwaski, mkarwaski@gmail.com 

Adviser: Brent Deterding 

 

Accepted: <> 

 

Abstract 

It is all too often modern day security analysts are plagued with security events that are irrelevant to a

targeted host. Current applications and technologies attempt to eliminate these events by means of

manually disabling and altering IPS/IDS rulesets. While this technology works, it does not provide an

automated process for distinguishing the higher priority events from the low/irrelevant security risks.

This paper is aimed at describing how to create a simple, static inventory database, then comparing

security alerts to see if they relate to the host in question. This will allow for greater visibility into

which alerts are actually relevant to the end users network.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 2

1. Introduction

This paper is aimed at providing an in-depth look at system profiling, and how correlating this

information with intrusion detection platforms will decrease the chance of witnessing irrelevant

network alerts, and increase the chance of escalating true positive network alarms, while assigning a

low risk threat to the alerts that do not relate to the host in question. We will look at how keeping

records of every system on a network can help in identifying whether activity from the host is normal

or abnormal. These records will include everything about the system that could generate network

traffic. This will be done by generating a sample corporate lab environment, containing several server

configurations and workstations, along with networking devices. We will look at identifying normal

and abnormal communications between these hosts using a combination of intrusion detection

platforms and profiles of all devices on the network.

In order to prove the profile correlation concept, several open source tools will be used to create

network traffic and monitor the behavior. We will also use a combination of operating

system/hardware configurations to show how each device, though similar in application, can produce

very different results. We will then look at how using a profile can assist a security analyst in

determining if a certain host is infected or whether the traffic produced is normal behavior. This will be

done by comparing three separate databases and inserting results based on the elimination of irrelevant

network alarms.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 3

2. Background

 Security analysts know all too well how noisy a networked environment can be these days. It is

all too often that we are required to dig deep into our analytic skills and research traffic patterns for

abnormal (unexpected) behavior when we don't have a solid standing point on where to start the

analysis. With the ever expanding collection of applications, hardware configurations, network

appliances, and bandwidth, we are witnessing noisy environments like none before.

 When we apply an intrusion detection system to a network, we all have one common goal in

mind; increase visibility into abnormal activity and respond in an immediate fashion once detected.

This is becoming a chore to the common network security professional, as he is faced with an increase

in intrusion alerts that fire on behavior that was not expected by the intrusion detection system (IDS),

but possibly expected by the other applications residing on the network.

New installments of IDS devices with little to no signature tuning tend to be quite noisy right

out of the box. Most of the alerts that get triggered are irrelevant to the network traffic, or are low

threat. Analysts need a method for extracting the pertinent alarms and taking action to quickly address

and remediate them. This requires attention to the comparison of normal network behavior to the

addition of noise and abnormal activity. Being able to decipher and extract the differences has been an

ongoing issue to security professionals around the globe.

 While tuning a system over time is done, one will need an efficient method to process and rule

out the large amount irrelevant alarms that get triggered and review them for possible signature tuning

or removal from the IDS altogether. While there are many techniques for dealing with this, one of the

greatest tools (in which this paper will discuss) is system profiling, and the correlation to IDS events to

affected applications and services. By correlating generated IDS events to the relevant (installed)

products, one can eliminate the high irrelevancy rate, and increase the true positive network alarms that

get displayed to the end user.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 4

3. Proof of Concept – Lab Design

3.1. Lab Overview

This brings us to our experiment and proof of concept where we will see the benefit of such a

system. In the following section we will set up a simple network with several lab machines and an IDS

to monitor the network. We will focus on internal network traffic only (as this is where the profiling

will help us out the most) and identify what normal vs. abnormal behavior is. We will then attempt to

correlate the detected activity with system profiles to determine the validity of the alert. From this

determination we can then proceed to adjust the signature, or eliminate it from the system. The

following is an outline of what type of information we can expect to gain from both a.) IDS events and

b.) A store of system profiles. The goal here is to provide a correlation mechanism and to prove its

usefulness in the networking arena.

 What detail does the IDS alert give us?

 Source IP(s)

 Destination IP(s)
 Suspected activity

 Possible payload
 Timestamps

 CVE Information
 Type of traffic

■ Protocols

 What do profiles tell us?

 Hostname

 IP address
■ If available in a static environment

 MAC address(s)
 Authorized applications

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 5

 Authorized protocols

 Location
■ Physical location of the device

 Environment
■ what is the device used for

 Operating system
■ Type

■ Version
 Possible services running

■ Authorized ports

What we would like to accomplish, is to eliminate the alerts that do not apply to a system, based

on its profile. In order to accomplish this, we will need one more piece of information; a vulnerability

database. This third set of information will provide us what applications and service versions are

actually vulnerable.

3.2. Database Design

Suppose we receive an alert from our IDS device telling us that an attacker is trying to exploit

host x on our network. Within the IDS alert, we are provided with the CVE (Common Vulnerabilities

and Exposures) ID that we may reference to pull all the details about a vulnerability, including affected

products and related versions. From here, we can compare the affected products to our system profiles,

and see whether the product is actually vulnerable, and if the alert generated is a true positive. If the

alert is deemed as non-applicable, the alert can be disregarded and suppressed from the view of the end

user.

Until recently, the vulnerability database would be constructed by in-house contributors,

working to populate a list of applications and their associated threats. The end database would take lots

of time and effort to maintain and keep current. Luckily for us, the Open Source Vulnerability

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 6

Database (OSVDB) was created, and is being actively maintained by over 4,600 researchers, spanning

25,683 products, and covering over 58,000 vulnerabilities. (Open Source Vulnerability Database,

2008)

The OSVD can be downloaded from their website and imported into several different databases,

including MySQL, which we will use in the following experiments to tie in the correlation of alerts vs.

the affected profile database store. The OSVDB schema can be seen in the following figure 1.2. As

you can see, it lists references to vulnerabilities, and links to the affected products. This is a crucial

step in our quest for eliminating false positive IDS events.

In figures 1.1 and 1.3, you can see the other two databases, constructed in MySQL and used in

the experimental design. The Snort database schema is the default database used in the Snort db output

configuration, while the inventory database is a simple user-defined database created for the purposes

of this proof of concept design.

The Inventory Database (profile stores)

+----------------------
| Tables_in_inventory
+----------------------
| servers
| workstations
| network_devices
| applications
| application_map
| device_criticality
| criticality_map
+----------------------

The Open Source Vulnerability Database

+----------------------
| Tables_in_osvdb
+----------------------
| authors
| classification_items

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 7

| classification_types
| classifications
| credits
| ext_reference_types
| ext_references
| object_affect_types
| object_correlations
| object_links
| object_products
| object_vendors
| object_versions
| vulnerabilities
+----------------------

Snort Alert Database

+------------------
| Tables_in_snort
+------------------
| acid_ag
| acid_ag_alert
| acid_event
| acid_ip_cache
| base_roles
| base_users
| data
| detail
| encoding
| event
| icmphdr
| iphdr
| opt
| reference
| reference_system
| schema
| sensor
| sig_class
| sig_reference
| signature
| tcphdr
| udphdr
+--------------------

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 8

3.3. Lab Setup

 Now that we have an idea of what will be correlated, we can start generating events and looking

to see if they apply to the targeted system. In order to accomplish this task, a lab environment has been

setup containing the following devices and applications:

1) A scanning host running GFI LANGuard

a. This will be used to scan and trigger IDS events

2) A Snort IDS box / Database store

a. This host will store our three databases

i. Inventory database (profiles)

ii. Snort alert database (snort alerts)

iii. Vulnerability database (correlation to profiles)

3) A virtual machine host serving two hosts

a. Windows Application Server

b. Linux Application Server

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 9

The entire network topology can be visually described by looking at the following network topology.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 10

In order to ensure the scanning host would generate and trigger IDS events, services were

enabled on the application servers, so that the scanning engine attempted to communicate with the open

ports. The following is a description of each of the targeted hosts, and what service/ports are opened

on them.

Windows Application Server

Windows XP Professional
Service Pack 2
Version 2002

Hostname: windowsLab
IP Address: 192.168.1.111

Open Ports:
 PORT STATE SERVICE

 135/tcp open msrpc
 139/tcp open netbios-ssn

 445/tcp open microsoft-ds
 3389/tcp open ms-term-serv

Linux Application Server

Ubuntu Server 4.3.2-1
Hostname: ubuntuLab

IP Address: 192.168.1.113
Open Ports:

PORT STATE SERVICE
22/tcp open ssh

53/tcp open domain
80/tcp open http

110/tcp open pop3
139/tcp open netbios-ssn

143/tcp open imap

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 11

445/tcp open microsoft-ds

993/tcp open imaps
995/tcp open pop3s

3.4. Generating Results from a Vulnerability Scan

3.4.1. Scan Setup

With the hosts setup and configured to respond on the network, we can now begin the scanning

with our GFI Languard scanning software. We will first scan the Windows application server, followed

by the Linux host. Once the scanning is complete, the Snort alerts will be checked via the Basic

Analysis and Security Engine (BASE) web-based tool for ease of viewing the Snort alert database.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 12

3.4.1. Windows Server Results

 The following screenshot shows what alerts were triggered from the vulnerability scan from

GFI Languard. The alerts are taken from the BASE display.

In looking at the results of the first scan against our Windows server, some of the immediate

alerts that stand out, are the MS Terminal Server events related to the CVE 2001-0540:

“Memory leak in Terminal servers in Windows NT and Windows 2000 allows remote attackers to

cause a denial of service (memory exhaustion) via a large number of malformed Remote Desktop

Protocol (RDP) requests to port 3389.”

(CVE Editorial Board, 2001)

This particular vulnerability applies to the following applications per the MS:MS01-040 security

bulletin from Microsoft:

Affected Software:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 13

- Microsoft Windows NT 4.0, Terminal Server Edition

- Microsoft Windows 2000 Server

- Microsoft Windows 2000 Advanced Server

- Microsoft Windows 2000 Datacenter Server

(Microsoft Corporation, 2003)

 Now, if you remember the inventory details for this Windows host (on the previous page 13), it

is running “Windows XP Version 2002 Service Pack 2”. This means that the alerts generated from the

scan do not apply and can be eliminated (or considered low priority) from the presentation of events to

the end user. We will discuss on how to do this later. For now, we can keep in mind that seven alerts

can be disregarded from the scan (relating to the Terminal Services vulnerability), and do not need to

be presented as high severity. Really, the only observation we can take from this alert, is that a host is

attempting to scan us (recon activity observation only). No action would be needed, as the host is not

vulnerable to this and cannot be exploited

.

3.4.2. Linux Server Results

 Let’s take another look at a second alert, this time generated from the scanning host, directed at

the Linux application server. We expect to be able to eliminate any events that do not apply to this host

as well.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 14

Here, we can see that the Snort IDS engine had picked up several traffic patterns related to

SNMP, specifically the ones for CVE 2002-0012:

“Vulnerabilities in a large number of SNMP implementations allow remote attackers to cause a denial

of service or gain privileges via SNMPv1 trap handling, as demonstrated by the PROTOS c06-SNMPv1

test suite. NOTE: It is highly likely that this candidate will be SPLIT into multiple candidates, one or

more for each vendor. This and other SNMP-related candidates will be updated when more accurate

information is available.”

(CVE Editorial Board, 2002)

But wait, per our profile in the inventory database, this host is not even running SNMP at all. In

fact port 161 or 162 are not even open on the Linux host. Therefore, we can safely disregard the

SNMP events altogether. Again, we will see how this correlation will work in the later part of this

document.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 15

4. Correlating Lab Results

4.1. Lab Result Overview

Now that we have a couple solid events to base our research off of, we can start processing

them and comparing to the two databases, showing how to efficiently eliminate the false positives.

This will involve taking an alert, parsing through it to obtain the CVE information, looking up the CVE

in our local OSVDB, then seeing if the vulnerability is applicable to the targeted host. From here, the

results can be sent to a final database, where the pertinent alerts are presented to an analyst.

 We also must keep in mind that, even though the alert may not be applicable to the host at hand,

the alert needs to be treated as an “attempted” action against the network. While we do not foresee any

immediate threat, the pure fact that someone is conducting malicious behavior should not be ignored.

One way to factor in these low threat events, is to create some sort of criticality index, giving a higher

rating to the number of occurrences some action took place between the source and destination.

 Internal hosts that generate outbound IDS alerts (possible worm, Trojan, or virus infections)

may also need to be given a higher priority in the criticality index, as these would indicate post-

infection. It may be possible that the infected host contracted the malware by an undetected method,

and the system does not alert based on the profile. Given the malware had changed system settings

(ports, services, applications), the profile would no longer apply, as the system becomes unaware of the

actual vulnerable system.

A basic algorithm is shown in the following diagram.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 16

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 17

4.2. Applying the Correlation Algorithm

 Now that we know the theory behind correlating events to the inventory and vulnerability

databases, we will go into an outline of the program responsible for parsing the output and correlating

the events. The following pseudo code will outline the process in the Perl programming language.

#!/usr/bin/perl

#keep reading the snort alert database forever until killed

While(1) {
 #create a connection to the snort alert database

My $snort_db = DB->new(‘snort alert database’);

#extract the alert from the snort database
My $alert = $snort_db->query(‘select alert from database’);

 #parse out the cve information from the alert

 If($alert =~ m/’cve information ‘/) {
 #parse out the alert and CVE information

 My $cve = cve_number;
 My $target = target;

 My $alert_id = snort_alert_id;
 }

 #open connection to the osvdb

 My $vuln_db = DB->new(‘vulnerability database’);

 #grab all vulnerability information related to the cve above
 My @vuln_software = $vuln_db->query(‘ select affected_software from osvdb

 where cve = $cve’);

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 18

 #open a connection to the inventory database
 my $inventory_db = DB->new(‘inventory database’);

 #extract actual software installed on the host

 my @host_software = $inventory_db->query(‘select software from inventory
 where hostname/source = $target’

 #loop through the installed software on host x and compare it to the found
 #vulnerable software above and insert the alert into final db if found

 foreach my $host_app (@host_software) {

 foreach my $vuln_app (@vuln_software) {
 if ($vuln_app eq $host_app) {

 connect to final alert db and insert;
 }

 }
 }

Sleep .5;
}

4.3. Result Display to End User

 Now that the end database is populated with our relevant alerts, we can read from it and grab

our pertinent security events. All of the irrelevant events have either been discarded, or prioritized as

low threat. The end display will read from the final database, where the above Perl script writes to.

These end alerts can be inserted in the same format as the original Snort alert, or altered to meet the

needs of the end user. This is one of the great features of the correlation process, as it will work in

almost every environment. The end security analyst will now only see the events of relevance.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 19

5. Technology Drawbacks

5.1. Drawback Overview

 While we are now eliminating many of the irrelevant alerts generated from vulnerability scans,

we also have to be cognizant of several drawbacks to this correlation technology. Having an

understanding of what these drawbacks are is essential in grasping the entire picture of our secured

network. We also have to understand that this implementation may not suit the needs of every

organization, nor may it work in every networked environment. The tools used in this paper may not

necessarily be the ones used in your environment, but the general idea still holds true; creating an

aftermarket automated correlation process for IDS events, and eliminating non-applicable positives

through inventory correlation will greatly reduce the load on security analysts while increasing

visibility into actual security threats.

5.2. Database Upkeep

 As you may have figured out already, managing the three databases is essential in the successful

use of this particular correlation technology. While the Snort alert database is pretty easy to maintain

(since its already defined and updated accordingly using Snort), the other two (Inventory and OSVDB)

need to be updated on a regular basis. Without a current inventory, there wouldn’t be anything to

compare the targets to.

5.2.1 Inventory Database Maintenance

Marinating a current inventory is beyond the scope of this document, but one might opt to

create an automated process for this as well. This may include creating a policy, tracking all

application installs and changes, and then inserting them into the inventory database. An inventory

system could be developed and automated application mapping tools could keep the list up-to-date.

We must also keep in mind that the goal of this particular correlation technology (as opposed to other

passive monitoring tools), relies on a static inventory, which allows for the greatest correlation

accuracy. While it does not matter how this list gets populated, it is essential that is be accurate.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 20

5.2.2 Vulnerability Database Maintenance

The Open Source Vulnerability Database is a great, well maintained set of vulnerabilities that

the common user is free to use. While the database is great for well-know vulnerabilities (provides

CVE information, as well as affected products and applications), some of the lesser known ones either

do not exist, or do not contain the appropriate information required to compare the event to our

inventory database.

 Maintaining the vulnerability database will involve alerting it to suit the needs of your network.

For example, if the vulnerability is not referenced by a CVE number, one may want to add the number

to the database, so that the automaton process can pick up on it and compare it to the generated IDS

alert. A second example may be the fact that the applications are not listed for a particular CVE in the

vulnerability database. This can be resolved by adding the pertinent applications to the list.

5.2. Ignored Event Visibility

 As mentioned in previously, we may not want to ignore all the irrelevant events for a specified

target. In doing so, we may not be visible to an attack. Instead of ignoring the irrelevant events, we

can tag them as low threat, and wrap them up into a single event. For example, say the events from the

SNMP scan against the Linux server (in the conducted lab) are not relevant due to the absence of

SNMP on the server. Just because they are irrelevant does not mean someone was not trying to scan

us. We may want to know that someone is “knocking at our door”. The automation program can

create a criticality index of the event and wrap all the SNMP events into a single “recon” event. This

event will show up in the final alert database as low threat, and tell us that someone is trying to scan us

(with irrelevant vulnerabilities).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 21

6. Existing Correlation Technologies

 Probably the most recognized relevant technology that attempts to profile systems in a passive

matter is that of Sourcefire’s RNA (Real-time Network Awareness).

“Sourcefire RNA is an innovative, passive sensing technology that provides real-time network

intelligence to the Sourcefire 3D® System. RNA enables organizations to confidently protect their

dynamic networks through a unique, patented combination of passive network discovery, network flow

analysis, and targeted vulnerability assessment technologies.”

(Sourcefire, 2009)

 RNA attempts to profile systems in real-time by passively monitoring the addition of new hosts

on the network and analyzing the traffic created by them. The RNA system proceeds to create a

“baseline” for the normal traffic, and then compares this to all future traffic. It generates alerts based

on anomalies from abnormal traffic.

 The main difference between the two technologies, is the process by which the inventory

databases get updated. Sourcefire RNA processes use automated passive mapping technologies to

assign installed applications and services to a database. The RNA process also develops a baseline of

expected traffic, and alerts on anything that does not match the baseline and matches an RNA rule in

the Snort IDS engine configuration. The static entry method, as discussed within this paper, relies on

manual insertion of the inventory records.

 SC Magazine had done a review on the Sourcefire 3D system, a combination of the Snort IDS,

and RNA processes. In their review, they had identified that the RNA setup is about 80% accurate in

identifying the applications and services installed on a host. Other services are hard to identify without

sufficient data and observations. The static entry mechanism, while harder to maintain on large network

with many hosts, will provide better accuracy in the alerting mechanism.

(SC Magazine, 2005)

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 22

7. Conclusion

 As we have seen through the correlation of IDS events generated from a vulnerability scan,

compared to an inventory database, we can efficiently and effectively eliminate false positive from our

system. This allows us focus on actual security events, and provides better incident response times, as

we do not waste time analyzing false positives.

 We have proved through the lab that there are many irrelevant signatures that fire on a

vulnerability scan that do not need to be investigated. This can be done by applying a simple

correlation algorithm, comparing the applications and services installed on a particular host to the

vulnerability database to see if an event applies. The end result gives only events that are pertinent to

the host.

 We have discussed the drawbacks to the technology, but still have proven that, given the

networked environment, the system is worth implementing. Even is an event does not apply to a

particular host, it can still be logged and tracked, but given a lower priority. If the targeted host does

not exist in the inventory database, the alert can be sent to the end user for manual analysis. All in all,

correlation technology will save lots of time, research, and resources if properly maintained.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

GCIA Gold Certification

Michael Karwaski, mkarwaski@gmail.com 23

8. References

CVE Editorial Board, . (2001, July 25). Cve-2001-0540.

Retrieved from http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001-0540

CVE Editorial Board, . (2002, January 1). Cve-2002-0012.
 Retrieved from http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002-0012

Microsoft Corporation, . (2003, June 13). Microsoft security

bulletin ms01-040. Retrieved from http://www.microsoft.com/technet/
security/bulletin/ms01-040.mspx

Open Source Vulnerability Database, OSVDB. (2008). The Open

source vulnerability database. Retrieved from
http://osvdb.org/about

Timm, K. (2001, September 11). Strategies to reduce false positives

and false negatives in nids. Retrieved from
http://www.securityfocus.com/infocus/1463

SC Magazine, . (2005, June 15). Sourcefire 3d system.

Sourcefire 3D System, Retrieved from
http://www.scmagazineus.com/Sourcefire-3D-System/Review/213/

Sourcefire, . (2009, October). Network monitoring with real-time

passive network intelligence. Retrieved from
http://www.sourcefire.com/products/3D/rna

