
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Network Monitoring and Threat Detection In-Depth (Security 503)"
at http://www.giac.org/registration/gcia

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcia

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS GIAC
Intrusion Detection Assignments

Darling Harbour 2001

Assignment 1 - Network Detects

Detect 1: Adore Worm

Apr 6 20:08:16 waterfall.home.org.au ipmon[1348]: [ID 702911 local0.warning] 20:08:15.719774 ipdp0 @200:1 b
136.186.74.253,3157 -> 256.256.99.58,53 PR tcp len 20 60 -S IN

Apr 6 20:08:19 waterfall.home.org.au ipmon[1348]: [ID 702911 local0.warning] 20:08:18.693921 ipdp0 @200:1 b
136.186.74.253,3157 -> 256.256.99.58,53 PR tcp len 20 60 -S IN

1). Source of trace:
My home dialup gateway box.

2). Detect was generated by:
IPFilters 3.4.14 running on Solaris 8 (x86) which logged then dropped the packet.

3). Probability the source address was spoofed:
The packets above are typically used to establish a TCP session, indicating that the source IP address
has not been spoofed. The small number packets supports this, therefore the likelihood of spoofing is
low.

4). Description of attack:
The above attack was targeting DNS services by initially establishing a TCP session with port 53,
which were subsequently discarded. The attempted connections came from a Redhat linux box within
an Australian University.

5). Attack mechanism:
Due to the terse nature of the above IPFilter alerts it is hard to determine whether the above was an
actual attack or just a stray DNS request. However, the above protocol of the packets (ie TCP) rule out
the stray DNS query theory (the TCP side of DNS is typically used for zone transfers and not queries);
and the number of packets sent (ie 2) from what was later determined to be a redhat linux box, was too
few for a legitimate attempted TCP connection.
I believe the two packets were the first part of an attempted compromise of the system (see below:
Correlation Section) by the Adore worm http://www.sans.org/y2k/adore.htm . This variant of the
Adore worm uses the TSIG buffer overflow in Bind http://www.kb.cert.org/vuls/id/196945 to
compromise a host. The process it uses to compromise the host is as follows:
 attacker:port -> victim:53 TCP SYN
 victim:53 -> attacker:port TCP SYN ACK
 attacker:port -> victim:53 TCP ACK (TCP session established)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 attacker:port -> victim:53 UDP DNS inverse query request
where the UDP packet is crafted to exploit the BIND information leak vulnerability
http://www.cert.org/incident_notes/IN-2001-03.html .

6). Correlation:
The detect was made on the 6th of April when the Adore worm variant using the Bind TSIG buffer
overflow was quite active. The CERT Incident Note IN-2001-03 description of the attack process (ie
attacker first tries to establish a DNS TCP session with the victim) correlates with the suspect packets
detected. An finger print of the attacking host revealed it was a Redhat Linux box(the target and host
of the Adore worm).

7). Evidence active targeting:
As the dialup gateway is only connected to the internet on an "as needs" basis, is allocated a dynamic
IP on connection, does not provide DNS services, is not known public to provide DNS services, and the
way the Adore worm behaves (ie trawls through networks), I do not believe this host was being
actively targeted.

8). Severity:

Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermeasures)
 = (0 + 5) - (4 + 4)
 = -3
 system sufficiently safeguarded
where
 System Criticality = 0
 DNS/Named service is not running
 Attack Lethality = 5
 Perceived goal was to exploit a buffer overflow to gain root access
 System Countermeasures = 4
 System regularly patched and Services regularly maintained
 Network Countermeasures = 4
 External initiated connections denied by regularly maintained firewall

9). Defensive recommendations:
System is sufficiently protected.

10).Multiple choice question:
If the above packets were repeated a few hundred times a second, would it most likely be:
 a). a very active Adore worm
 b). an attempt DOS by the source IP
 c). part of a DDOS of the source IP
 d). misconfigured DNS replica
Answer: C

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect 2: Lion Worm

[**] IDS28 - PING NMAP TCP [**]
03/16-11:19:13.207731 194.133.58.129:80 -> 256.256.86.20:53
TCP TTL:49 TOS:0x0 ID:34944
A* Seq: 0x233 Ack: 0x0 Win: 0x578

10:19:13.207573 194.133.58.129.55 > 256.256.86.20.37852: [udp sum ok] udp 10 (ttl 49, id 34942, len 38)
10:19:13.207645 194.133.58.129 > 256.256.86.20: icmp: echo request (ttl 49, id 34943, len 38)
10:19:13.207731 194.133.58.129.80 > 256.256.86.20.53: . [tcp sum ok] 563:563(0) ack 0 win 1400 (ttl 49, id 34944, len 40)
10:19:13.207803 194.133.58.129.53 > 256.256.86.20.53: S [tcp sum ok] 170584361:170584361(0) win 1400 (ttl 49, id
34945, len 40)
10:19:13.220287 256.256.86.20 > 194.133.58.129: icmp: echo reply (DF) (ttl 254, id 0, len 38)
10:19:13.220790 256.256.86.20.53 > 194.133.58.129.80: R [tcp sum ok] 0:0(0) win 0 (DF) (ttl 254, id 0, len 40)
10:19:13.226839 256.256.86.20.53 > 194.133.58.129.53: S [tcp sum ok] 1842276561:1842276561(0) ack 170584362 win
5840 <mss 1460> (DF) (ttl 63, id 0, len 44)
10:19:13.590538 194.133.58.129.53 > 256.256.86.20.53: R [tcp sum ok] 170584362:170584362(0) win 1400 (ttl 49, id
34957, len 40)
10:19:13.590666 194.133.58.129.53 > 256.256.86.20.53: R [tcp sum ok] 170584362:170584362(0) win 1400 (ttl 49, id
34959, len 40)

[**] IDS28 - PING NMAP TCP [**]
03/17-14:53:41.560074 194.133.58.129:80 -> 256.256.86.20:53
TCP TTL:49 TOS:0x0 ID:53535
A* Seq: 0x161 Ack: 0x0 Win: 0x578

13:53:41.559756 194.133.58.129.55 > 256.256.86.20.37852: [udp sum ok] udp 10 (ttl 49, id 53533, len 38)
13:53:41.559826 194.133.58.129 > 256.256.86.20: icmp: echo request (ttl 49, id 53534, len 38)
13:53:41.560074 194.133.58.129.80 > 256.256.86.20.53: . [tcp sum ok] 353:353(0) ack 0 win 1400 (ttl 49, id 53535, len 40)
13:53:41.560144 194.133.58.129.53 > 256.256.86.20.53: S [tcp sum ok] 3400182499:3400182499(0) win 1400 (ttl 49, id
53536, len 40)
13:53:41.572162 256.256.86.20 > 194.133.58.129: icmp: echo reply (DF) (ttl 254, id 0, len 38)
13:53:41.572362 256.256.86.20.53 > 194.133.58.129.80: R [tcp sum ok] 0:0(0) win 0 (DF) (ttl 254, id 0, len 40)
13:53:41.577925 256.256.86.20.53 > 194.133.58.129.53: S [tcp sum ok] 3581211236:3581211236(0) ack 3400182500 win
5840 <mss 1460> (DF) (ttl 63, id 0, len 44)
13:53:41.945305 194.133.58.129.53 > 256.256.86.20.53: R [tcp sum ok] 3400182500:3400182500(0) win 1400 (ttl 49, id
53537, len 40)
13:53:41.949093 194.133.58.129.53 > 256.256.86.20.53: R [tcp sum ok] 3400182500:3400182500(0) win 1400 (ttl 49, id
53539, len 40)

1). Source of trace:
Outside Firewalling and packet filter equipment on external network.

2). Detect was generated by:
Snort on an external IDS provided the snort alerts while Shadow provided the raw network
information.

3). Probability the source address was spoofed:
The packets above appear to be trying to determining whether a UDP service is running on port 37852,
that the target is reachable, and establishing a TCP session, therefore the likelihood of the source IP
address being spoofed is low.

4). Description of attack:
The source starts by sending a group of 4 reconnaissance packets together, with, I believe, the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

following purpose:
 Packet 1: UDP packet to port 37852. Probably to check for a backdoor
 Packet 2: Echo Request. Maybe checking that the host is reachable (but why send the other
packets at the same time?), though more likely as part of a fingerprinting exercise.
 Packet 3: A TCP-ACK packet from port 80 (HTTP) to port 53 (DNS). This triggered the snort
rule "IDS28 - PING NMAP TCP" and is probably also part of a fingerprint exercise. The source port
of 80 perhaps chosen to try and avoid IDS detection and/or confuse IDS staff (but we know better than
that).
 Packet 4: A TCP-SYN packet from port 53 (DNS) to port 53 (DNS). Probably to to establish a
TCP session to ensure the Named service is running and in preparation for launching an attack against
Named via a known exploit.
The destination responds to packets 2,3 and 4 appropriately, while packet 1 is silently ignored as no
such service is running.
Based on the response the source receives, it then tears down/aborts the TCP session it was trying to
establish, possibly because its reconnaissance showed the target was not vulnerable or of the wrong
platform.
I believe this attack was from the linux Lion worm, which would have used a Bind exploit (probably
the TSIG exploit http://www.cert.org/incident_notes/IN-2001-03.html as it was popular at the time of
the detect), to compromise the system. If the worm had determined that the system was vulnerable, it
would have used the Bind TSIG exploit:
 attacker:port -> victim:53 TCP SYN
 victim:53 -> attacker:port TCP SYN ACK
 attacker:port -> victim:53 TCP ACK (TCP session established)
 attacker:port -> victim:53 UDP DNS inverse query request
and compromised the system.

5). Attack mechanism:
The above attack was targeting DNS services as indicated by attempting to establishing a TCP session
with port 53, whilst also looking for a backdoor to the system on UDP port 37852. An NMAP style
fingerprinting was also used in the initial reconnaissance phase to determine whether the host OS was
correct for the worm.

6). Correlation:
The date of the attack (mid March), the source IP and the attack pattern:
 attacker:55 -> victim:37852 UDP
 attacker -> victim Echo Request
 attacker:80 -> victim:53 TCP ACK
 attacker:53 -> victim:53 TCP SYN
all seem to correlate with two SANS Global Incident Analysis Centre Reports:
 http://www.sans.org/y2k/032401-1230.htm
 http://www.sans.org/y2k/032301-0915.htm
regarding the Lion worm:
 http://www.sans.org/y2k/lion.htm

7). Evidence active targeting:
The Lion worm typically scans networks looking for systems running Bind, then tries to exploit those
systems, however our Shadow logs showed the only traffic to come from the above source IP was
directed solely at our Primary DNS server, therefore I believe it was actively targeting this system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

8). Severity:

Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermeasures)
 = (4 + 3) - (5 + 1)
 = 1
 system sufficiently safeguarded, though packet filtering could reduce affect if compromised (eg
backdoor port not reachable).
where
 System Criticality = 4
 DNS/Named service is running and was our primary DNS server
 Attack Lethality = 3
 Perceived goal was to exploit a buffer overflow to gain root access, but not disrupt
 system services
 System Countermeasures = 5
 System/Services regularly patched and system stripped/hardened
 Network Countermeasures = 1
 On raw Internet so only IDS their to alert of attacks

9). Defensive recommendations:
System is sufficiently protected, however the use of a packet filter (ether on border routers or on the
host itself) could reduce the damage should the system be compromised (eg backdoor(s) not reachable).

10).Multiple choice question:
Which of the following would most likely cause the Lion worm to give up, similarly to the above
attack attempt:
 a). no response for any of the first 4 packets
 b). a response to all packets
 c). a response to packet 4 only
 d). a response to packet 1 only
Answer: A, B and D - with B and D showing the system was possibly already compromised!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect 3: IIS UNICODE attack

[15/May/2001:15:40:56] warning (21847): for host 209.15.2.7 trying to GET /scripts..Á../winnt/system32/cmd.exe, send-
file reports: can't find /public/http/cgi-bin..Á../winnt/system32/cmd.exe (No such file or directory)
[15/May/2001:15:41:15] warning (21847): for host 209.15.2.7 trying to GET /scripts/Á/winnt/system32/cmd.exe, send-file
reports: can't find /public/http/cgi-bin/Á/winnt/system32/cmd.exe (No such file or directory)

209.15.2.7 - - [15/May/2001:15:41:01 +1000] "GET /scripts/..%c0%qf../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0"
404 207 "-"
209.15.2.7 - - [15/May/2001:15:41:05 +1000] "GET /scripts/..%c1%8s../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0"
404 207 "-"
.
...103 more subtly different variants on the above
.
209.15.2.7 - - [15/May/2001:15:42:18 +1000] "GET
/_vti_cnf/..%c0%9v../..%c0%9v../..%c0%9v../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0" 404 207 "-"
209.15.2.7 - - [15/May/2001:15:42:20 +1000] "GET
/_vti_cnf/..%c1%1c../..%c1%1c../..%c1%1c../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0" 404 207 "-"

1). Source of trace:
Client web server logs.

2). Detect was generated by:
Netscape Enterprise Webserver on Solaris generated the above alerts. The first two alerts were
recorded as webserver system errors in the error log, while the following 109 alerts were recorded as
attempted accesses in the access log.

3). Probability the source address was spoofed:
The above alerts are normally the result of an established TCP session therefore the likelihood of the
source IP being spoofed is extremely low.

4). Description of attack:
The above attack shows various UNICODE shell metacharacter based exploits used to typically
compromise IIS 4 and 5 web servers http://www.whitehats.com/info/IDS434 . Then number exploits
attempted 109 for the duration of the attack 84 seconds suggests that some sort of tool was used to try
and compromise the system. From the logs it is plain to see that the attackers goal was to execute
/winnt/system32/cmd.exe.

5). Attack mechanism:
The purpose of this attack was to exploit a UNICODE bug in IIS 4 and 5 via the use of metacharacter
so that arbitrary code could be executed.

6). Correlation:
Further log analysis showed that this site had launched similar attacks, all designed around IIS exploits,
on the 11th, 15th and 18th of May.

209.15.2.7 - - [11/May/2001:06:28:37 +1000] "GET
/_vti_cnf/..%fc%80%80%80%80%af../..%fc%80%80%80%80%af../..%fc%80%80%80%80%af../winnt/system32
/cmd.exe?/c+dir+c:\ HTTP/1.0" 404 207 "-"
209.15.2.7 - - [11/May/2001:06:28:18 +1000] "GET
/iisadmpwd/..%e0%80%af../..%e0%80%af../..%e0%80%af../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0" 404 207 "-"
and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

209.15.2.7 - - [18/May/2001:17:52:47 +1000] "GET
/msadc/..%c0%af../..%c0%af../..%c0%af../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0" 404 207 "-"
209.15.2.7 - - [18/May/2001:17:52:46 +1000] "GET
/scripts/..%c0%af../..%c0%af../..%c0%af../winnt/system32/cmd.exe?/c+dir+c:\ HTTP/1.0" 404 207 "-"

The source IP traced back to a web hosting domain hosting4u.net, so it is possible that a one of the
boxes they host has been compromised.

7). Evidence active targeting:
I believe that his system was actively targeted as they launched an attack designed to compromise a
webserver at a webserver, however their initial reconnaissance was poor as they were trying to use IIS
exploits on a Netscape webserver, to execute Windows NT programs from a Solaris system. Further
log analysis showed that they launched similar attacks 4 days prior and 3 days later.

8). Severity:

Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermeasures)
 = (4 + 0) - (4 + 4)
 = -4
 system sufficiently safeguarded
where
 System Criticality = 4
 HTTP service is running
 Attack Lethality = 0
 Attempting exploit to gain administrator privileges, just wrong platform
 System Countermeasures = 4
 System regularly patched and Services regularly maintained
 Network Countermeasures = 4
 Firewall only allows specific services to and from web server.

9). Defensive recommendations:
System is sufficiently protected.

10).Multiple choice question:
Could the above attack worked if the system was running a Netscape webserver on Windows NT:
 a). yes
 b). no
 c). possibly
 d). Netscape doesn't have a Windows NT webserver
Answer: B - the exploit is with IIS's UNICODE handling.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect 4: Queso Fingerprint

[**] IDS29 - SCAN-Possible Queso Fingerprint attempt [**]
03/16-09:50:22.922350 256.256.86.20:3639 -> 202.14.256.256:25
TCP TTL:63 TOS:0x0 ID:0 DF
12****S* Seq: 0x1E295F32 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 22226160 0 NOP WS: 0

[**] IDS29 - SCAN-Possible Queso Fingerprint attempt [**]
03/16-11:39:34.106001 256.256.86.20:3499 -> 202.14.256.256:25
TCP TTL:63 TOS:0x0 ID:0 DF
12****S* Seq: 0xBA6D7CE0 Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 22881269 0 NOP WS: 0

[**] IDS29 - SCAN-Possible Queso Fingerprint attempt [**]
03/16-12:05:52.915208 256.256.86.20:1827 -> 202.14.256.256:25
TCP TTL:63 TOS:0x0 ID:0 DF
12****S* Seq: 0x1D8D772B Ack: 0x0 Win: 0x16D0
TCP Options => MSS: 1460 SackOK TS: 23039147 0 NOP WS: 0

[**] IDS29 - SCAN-Possible Queso Fingerprint attempt [**]
03/16-13:36:02.197487 256.256.86.20:1281 -> 202.14.256.256:25
TCP TTL:63 TOS:0x0 ID:0 DF
12****S* Seq: 0x7256559A Ack: 0x0 Win: 0x16D0

1). Source of trace:
Outside my employer's firewalls.

2). Detect was generated by:
Snort running on an external IDS sensor.

3). Probability the source address was spoofed:
I would like to think so (as the source host was our external SMTP gateway), however the destination
address was outside our network and our IDS was local to the source address. Therefore the likelihood
is extremely low.

4). Description of attack:
The source host had been actively Queso fingerprinting multiple hosts for the previous two days. The
host began Queso probing remote hosts after a system reboot, however IDS and system logs failed to
show any suspicious activity directed at the system prior to the reboot.
E-mails were beginning to arrive from administrators of remote networks asking us to explain why our
SMTP gateway was scanning their networks, and clients were beginning to complain about being
unable to send e-mails to a few remote sites.
Further analysis showed that the SMTP gateway was only Queso probing other SMTP gateways, and
that the mail queue was beginning to backi up for a few internet sites (such as the above destination
gateway).
The system logs showed that the system had been rebooted by a staff account, and upon questioning
that staff member it was found that the system had been rebooted to use a new linux kernel. The new
kernel had been configured to use "Quality of Service and Fair Queuing", which uses the two reserved
bits within the TCP flags section in the initial TCP SYN packet to negotiate these features with the
remote host if it supports these advanced networking features. Upon reconfiguring the kernel without
this feature and rebooting, our SMTP gateway stopped triggering false positives for us and remote

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

networks, and the e-mail backlog began clearing.

5). Attack mechanism:
The above packets generated by our mail relay contained the two reserved bits and the SYN bit set in
the TCP flags section of each packet. This is the signature of a Queso style remote server finger
printing attempt (http://www.cert.org/incident_notes/IN-98.04.html) used typically as a reconnaissance
mechanism for determining the operating system of various targets. The way the target handles the
initial packet, and subsequently the structure of the packet returned by the target provides the
fingerprint.

6). Correlation:
By correlating that the Queso detects began after the system was rebooted, and that the only service
triggering the alerts were the initial TCP packet sent when negotiating a new SMTP connection to a
remote SMTP gateway, we were able to safely predict that the above detects were most likely false
positives.

7). Evidence active targeting:
Remote sites would have felt we were actively targeting them as the false positive Queso probes were
to their SMTP gateway on the SMTP port.

8). Severity:

Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermeasures)
 = (5 + 3) - (1 + 3)
 = 4
 better testing before implementing
where
 System Criticality = 5
 Primary SMTP gateway being blocked by remote SMTP gateways
 Attack Lethality = 3
 Only a small number of remote sites were actually detecting and subsequently
 blocking on the false positive
 System Countermeasures = 1
 Change control procedures
 Network Countermeasures = 3
 IDS to alert of suspicious behaviour

9). Defensive recommendations:
Stronger testing procedures prior to implementing changes to production systems, and two person
teams doing any production change to ensure

10).Multiple choice question:
If an administrator adds a service to a production system without sufficiently testing it, should they:
 a). have root access revoked
 b). be ridiculed by their peers
 c). be forced to become an MCSE where such skills are appreciated
 d). be sacked
 e). be promoted to webmaster
Answer: A & B and possible C & E

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Detect 5: Wingate/Socks scan

[**] MISC-WinGate-1080-Attempt [**]
03/17-01:41:43.423245 61.151.158.41:3472 -> 256.256.120.1:1080
TCP TTL:44 TOS:0x0 ID:44857
******S* Seq: 0x38457D Ack: 0x0 Win: 0x1920
TCP Options => MSS: 536 NOP NOP SackOK
[**] MISC-WinGate-1080-Attempt [**]
03/17-01:41:43.427974 61.151.158.41:3473 -> 256.256.120.2:1080
TCP TTL:44 TOS:0x0 ID:45113
******S* Seq: 0x38457E Ack: 0x0 Win: 0x1920
TCP Options => MSS: 536 NOP NOP SackOK
.
... sequentially through adjacent C classes 256.256.120 and 256.256.121 ...
.
[**] MISC-WinGate-1080-Attempt [**]
03/17-01:42:19.223798 61.151.158.41:3980 -> 256.256.121.253:1080
TCP TTL:44 TOS:0x0 ID:9022
******S* Seq: 0x38D1AC Ack: 0x0 Win: 0x1920
TCP Options => MSS: 536 NOP NOP SackOK

[**] MISC-WinGate-1080-Attempt [**]
03/17-01:42:19.412258 61.151.158.41:3981 -> 256.256.121.254:1080
TCP TTL:44 TOS:0x0 ID:9790
******S* Seq: 0x38D1DC Ack: 0x0 Win: 0x1920
TCP Options => MSS: 536 NOP NOP SackOK

00:41:43.423245 61.151.158.41.3472 > 256.256.120.1.1080: S [tcp sum ok] 3687805:3687805(0) win 6432 <mss
536,nop,nop,sackOK> (ttl 44, id 44857, len 48)
00:41:43.427974 61.151.158.41.3473 > 256.256.120.2.1080: S [tcp sum ok] 3687806:3687806(0) win 6432 <mss
536,nop,nop,sackOK> (ttl 44, id 45113, len 48)
.
... sequentially through adjacent C classes 256.256.120 and 256.256.121 ...
.
00:42:19.223798 61.151.158.41.3980 > 256.256.121.253.1080: S [tcp sum ok] 3723692:3723692(0) win 6432 <mss
536,nop,nop,sackOK> (ttl 44, id 9022, len 48)
00:42:19.412258 61.151.158.41.3981 > 256.256.121.254.1080: S [tcp sum ok] 3723740:3723740(0) win 6432 <mss
536,nop,nop,sackOK> (ttl 44, id 9790, len 48)

1). Source of trace:
Outside Firewalling and packet filter equipment on external network.

2). Detect was generated by:
Snort on an external IDS provided the snort alerts while Shadow provided the raw network
information.

3). Probability the source address was spoofed:
The packets above appear to be part of a scan trying to establish a TCP session and therefore the
likelihood of the source IP address being spoofed is low.

4). Description of attack:
The source quickly scanned two adjacent C Class networks (508 addresses in 36 seconds), looking for
the Wingate/Socks service. The source port indicates that this was the only network they were
targeting (ie starts at 3472 and increments by 1 for each host, up to 3981 for the last host IP in the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

second C Class).
Not much more can be said about this attack/scan. Very simple, very obvious scan (for anyone running
an IDS), and very affective when they stumble across ISPs and cable modem networks.

5). Attack mechanism:
The above attack was searching for hosts running the Wingate/Socks services as indicated by
attempting to establishing a TCP session with port 1080. Typically they would then use such a service
to 'bounce' further attacks through any hosts found at a third site they wished to attack.

6). Correlation:
This is a common scan hackers use to try and find hosts that can be used to hide their tracks
http://www.whitehats.com/info/IDS175.

7). Evidence active targeting:
This was a quick scan of two adjacent C Class networks so I would say that their was no targeting
involved.

8). Severity:

Severity = (Criticality + Lethality) - (System Countermeasures + Network Countermeasures)
 = (0 + 3) - (5 + 5)
 = -8
 no threat
where
 System Criticality = 0
 Wingate/Socks is not running externally, nor is any other known service on port 1080
 Attack Lethality = 3
 Goal would be to 'bounce' traffic through such hosts to tracing difficult for the end
 target
 System Countermeasures = 5
 Service not running on any servers
 Network Countermeasures = 5
 Firewalls set to drop all such traffic, and IDS to detect such traffic

9). Defensive recommendations:
Ensure firewalls do drop such traffic, and service is not installed on any systems.

10).Multiple choice question:
During such a scan packets with source port 1080 were seen but not going to the original host, because:
 a). they were 'bounced' through wingate/socks running on a system that you didn't know about
 b). was next available ephemeral source port at the time
 c). one of your systems is scanning for wingate too
 d). mangled packet
Answer: B

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 2 - Describe the State of Intrusion Detection

Host based Intrusion Detection Systems
A Packet Filtering approach

First proposed as a mechanism for screening networks,Packet Filtering has become the basis for
any network security product. Today, all security conscious organisations employ packet filtering
gateways to protect their network, with the more aware strategically putting in place Network
Intrusion Detection Systems. The ever increasing list of Security Threats/Exploits coupled with the
exponential growth of network traffic, especially within intranet/office networks, is eroding the
effectiveness of IDS systems in medium to large networks.
Host/Server based packet filtering provides a basic IDS mechanism, whilst ensuring only explicit
services are accessible and then only by trusted hosts. This design coupled with IDS systems at
network bottlenecks (eg routers) and other critical points within an organisation provides broader
coverage and increases the basic security of all hosts within an organisation.

The purpose of this paper is to detail how one can improve the security of hosts within their control via
the use of a packet filter with a simple ruleset, and how the logs such a design generates can then be
used to compliment Intrusion Detection Systems. In large networks, such as Intranets, the shear
volumes of traffic are restrictive on the effectiveness of IDSs. By building a hard coating around your
soft centred server, you can significantly reduce the risk to your servers whilst minimising the affect if
they are compromised, and alerting you of any anomalies.

Various techniques can be employed to increase the general security of your systems:

� hardening the operating system (eg titan http://www.fish.com/~brad/titan/Titan-
Docs/index.html)

� removing all non-essential services
� restricting access to services via their configuration files or via products like tcp_wrappers

http://uwsg.iu.edu/security/tcp_wrappers.html)
but these often come with significant costs:

� often a time consuming and involved process
� requires a good knowledge of the operating system you are working with
� requires a good knowledge of the application and services you are working with
� can render the system un-maintainable
� Patch Clusters and Service Packs often undo all your hard work

The last point is particularly important as sites like http://defaced.alldas.de/ highlight, through the nmap
scans they provide of defaced servers, where all too often a site has removed all services except web,
but a scan shows that recent patching has re-enable another service (eg rpcbind).

It is the above costs and added complexity that limits what systems that are typically secured in such a
fashion. By using a host based packet filter approach, the following benefits can be achieved:

� limits what connections can be made to the server and where from
� limits what connections the server can make and where to
� can provide added protection (eg anti-spoofing, funny IP option, fragmentation)
� provides logs of everything outside of the above bounds

with the following costs

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

� understanding of what services the system provides and who too
� understanding of what services the system needs access to
� understanding of how to write the packet filtering rulesets
� understanding of how to interpret the packet filtering logs
� slightly increased system load due to the packet filter

It should be noted that this approach does not protect you from exploits targeted at services that you
allow from trusted hosts, nor will it detect such attacks! You still need to actively maintain such
systems, however the risk that Service Packs and Patch Clusters can pose is significantly reduced.
Also, services that use dynamic ports need to be configured to use as small a set of ports as possible.

The packet filtering product I will use as an example is IPFilters, though their are a range of free
products available:

� IPFilters for *BSD, Solaris, HP-UX & IRIX
� IPChains / IPTables for linux
� SunScreen Lite for Solaris

The aim is to construct a portable ruleset that is easily maintained so that it can scale as your network
scales.

IPFilters background
IPFilters is a freeware stateful packet filter and network address translating firewalling package
http://coombs.anu.edu.au/~avalon/ written primarily by Darren Reed. The way the filter works is that
each packet is checked against the ruleset sequentially (from top to bottom) and tagged as either being
allowed or denied (and possibly logged) depending on the last rule to match the packet. The one
exception is the quick tag. If a matching rule has the quick tag, then no more matching is done, and that
rule is applied to the packet.
Rules can be grouped using the head tag and then subsequent rules are added to the group using the
group tag. This is handy for grouping things based on direction, interface and protocol.
Finally, there is a keep state tag. This rule can be applied to TCP, UDP and ICMP, even though UDP
and ICMP are stateless protocols by definition. IPFilters does this for UDP and ICMP packets by
keeping a record (briefly) of any allowed UDP/ ICMP packets. If a matching UDP/ICMP packet is
returned (before the initial packet is aged out of the state table), it is allowed back through the filter.
This avoids writing messy rules to handle reply packets to stateless protocols (eg DNS queries).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Worked Example
Lets say we had an Intranet with the following characteristics:
 10.254.254/24 Private Network
 10.254.254.1/32 Route to Internet
 10.254.254.2/31 Corporate Systems (DNS, SMTP, ...etc...)
 10.254.254.101 Web Backend Oracle Server
 10.254.254.201 Corporate Web Server
 10.254.254.8/29 Administration Systems
plus many more servers that are superfluous to this example. We will focus on the ruleset required for
the Corporate Web Server which serves only internal staff and interfaces with an Oracle database
backend.
I have broken the IPFilter ruleset into 6 sections. Apart from two lines in section 4 (ie anti-spoofing of
the server's IP lines) and all of section 5 (ie host specific services), the rest of the ruleset should be
identical for any other server of desktop in the organisation.

Section 0: Default Deny Rule
Like all good security people, our first answer to everything is NO (this always simplifies security
issues). We do this with the below two lines. Also, we start defining groups. Groups are handy in
analysis as the group number is part of logging, therefore pointing us at the subset of rules that could
have been triggered.

Section 1: Grouping Alerts
Next we set up some more groups to make our logs a bit more meaningful.

Section 2: Nasty Packets
Lets start by blocking and logging some nasty packets.

a). Anything with a ttl of 1. Typically packets with a low ttl are being used for reconnoissance,
such as the traceroute program. Unfortunately IPFilters only accepts explicit ttl values and not
ranges, otherwise we could specify values of X or less.
b). Anything with strange IP options set. This will catch packets with strange IP options set.
c). Anything with fragments. We should rarely receive packets that have been fragmented,
especially within an organisation. We have two types of fragments defined. short refers to
fragments that are so small/short that they could only truthfully be malicious. frag refers to any
packets with fragmentation.

Section 3: Loopback Interface
Now we look at the loopback interface. UNIX systems use the loopback interface heavily, so we set up
a few anti-spoofing rules before allowing full access to the loopback interface.

Section 4: Anti-Spoofing
Next we look at anti-spoofing rules based on which network(s) are not allowed to connect to this
server, and ensuring that this host does not send/receive any ambiguously addressed packets.

Section 5: Host Specific Services
Finally, we enable the various services this host provides and requires. The above anti-spoofing rules
limit who can access this system already, however we can further restrict this. We could replace all
"any" entries in this section with 10.254.254.201/32 as they refer to the host, however the above anti-
spoofing rules should have dealt with packets that weren't relevant to this server. This makes the
ruleset more portable as the server's IP isn't hard coded throughout the ruleset, without reducing the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

quality of the ruleset (provided your anti-spoofing rules are correct).

Section 6: Closing Groups
This section is not required, however it provides us with more useful logs by closing the original
groups we created. Packets that pass through to this point do not have the correct group allocated to
them as we only created the various groups (based on direction, interface and protocol type) but did not
activate them. We do this by using the "group" field where we initially had the "head" field.

Tests

Traceroute from allowed system
traceroute -p 22 10.254.254.201
18:46:47.317919 10.254.254.9.52414 > 10.254.254.201.22: udp 12 (DF) [ttl 1]
May 3 18:46:47 www ipmon[115]: 18:46:47.317919 le0 @901:1 b 10.254.254.9,52414 ->
10.254.254.201,22 PR udp len 20 40 IN

TCP ACK scan on allowed port from allowed system
nmap -sA -p 22 10.254.254.201
18:26:14.611539 10.254.254.9.47821 > 10.254.254.201.22: . ack 0 win 3072 (DF)
May 3 18:26:14 www ipmon[115]: 18:26:14.611539 le0 @201:1 b 10.254.254.9,47821 ->
10.254.254.201,22 PR tcp len 20 40 -A IN

Small fragment attack on allowed port from allowed system
nmap -sS -f -p 22 10.254.254.201
18:23:39.527878 10.254.254.9.36736 > 10.254.254.201.22: [|tcp] (DF)
May 3 18:23:39 www ipmon[115]: 18:23:39.527878 le0 @903:1 b 10.254.254.9,36736 ->
10.254.254.201,22 PR tcp len 20 36 -S IN

Attempt to access system external to organisation on non-allowed port:
telnet 192.168.1.1 27374
May 3 19:25:10 oscar ipmon[115]: 19:25:09.760392 le0 @250:1 b 10.254.254.201,32774 ->
192.168.1.1,27374 PR tcp len 20 44 -S OUT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Example IPFilter ruleset

SECTION 0 - Default Deny Rules

block in log all head 100
block out log all head 150

SECTION 1 - Grouping Alerts

block in log on le0 all head 200 group 100
block in log on le0 proto tcp all head 201 group 200
block in log on le0 proto udp all head 202 group 200
block in log on le0 proto icmp all head 203 group 200

block out log on le0 all head 250 group 150
block out log on le0 proto tcp all head 251 group 250
block out log on le0 proto udp all head 252 group 250
block out log on le0 proto icmp all head 253 group 250

SECTION 2 - Nasty Packet Handler

block in log ttl 1 all head 901
block in log quick ttl 1 all group 901
block out log ttl 1 all head 951
block out log quick ttl 1 all group 951

block in log all with ipopts head 902
block in log quick all with ipopts group 902
block out log all with ipopts head 952
block out log quick all with ipopts group 952

block in log all with short head 903
block in log quick all with short group 903
block out log all with short head 953
block out log quick all with short group 953

block in log all with frag head 904
block in log quick all with frag group 904
block out log all with frag head 954
block out log quick all with frag group 954

SECTION 3 - Loopback Interface

block in log quick from 127.0.0.0/8 to any group 200
block in log quick from any to 127.0.0.0/8 group 250
pass in quick on lo0 all
pass out quick on lo0 all

SECTION 4 - Anti-spoofing

block in log quick from !10.254.254.0/24 to any group 200
block in log quick from 10.254.254.0/32 to any group 200
block in log quick from 10.254.254.255/32 to any group 200

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

block in log quick from 10.254.254.201/32 to any group 200
block in log quick from any to !10.254.254.201/32 group 200

block out log quick from any to !10.254.254.0/24 group 250
block out log quick from any to 10.254.254.0/32 group 250
block out log quick from any to 10.254.254.255/32 group 250
block out log quick from any to 10.254.254.201/32 group 250
block out log quick from !10.254.254.201/32 to any group 250

SECTION 5 - Host Specific Services

Internal System ONLY, therefore NO interaction with the Internet router required

block in log quick from 10.254.254.1/32 to any group 200
block out log quick from any to 10.254.254.1/32 group 250

Allow host to perform DNS / LDAP / SMTP / SYSLOG to Corporate Systems

pass out quick proto udp from any to 10.254.254.2/31 port = 53 keep state group 252
pass out quick proto tcp from any to 10.254.254.2/31 port = 389 flags S keep state group 251
pass out quick proto tcp from any to 10.254.254.2/31 port = 25 flags S keep state group 251
pass out quick proto udp from any to 10.254.254.2/31 port = 514 keep state group 252

Allow SSH from Administration Systems to host

pass in quick proto tcp from 10.254.254.8/29 to any port = 22 flags S keep state group 201

Allow Ping / HTTP / HTTPS from Private Network to host

pass in quick proto icmp from 10.254.254.0/24 to any icmp-type echo keep state group 203
pass in quick proto tcp from 10.254.254.0/24 to any port = 80 flags S keep state group 201
pass in quick proto tcp from 10.254.254.0/24 to any port = 443 flags S keep state group 201

Allow SQL*NET from host to Oracle Server

pass out quick proto tcp from any to 10.254.254.101/32 port = 1521 flags S keep state group 251

SECTION 6 - Closing Groups

block in log quick on le0 all group 200
block in log quick on le0 proto tcp all group 201
block in log quick on le0 proto udp all group 202
block in log quick on le0 proto icmp all group 203

block out log quick on le0 all group 250
block out log quick on le0 proto tcp all group 251
block out log quick on le0 proto udp all group 252
block out log quick on le0 proto icmp all group 253

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Assignment 3 - Analyse This

Introduction
The Fundamentalist Internet Extremists Pty Ltd has undertaken to provide a detailed analysis of the
network security of GIAC University. A large set of data files containing collected network traffic and
alerts were supplied. Unfortunately, no network diagrams were supplied, nor any information on what
purpose various hosts and networks served within GIAC University. This made analysis more time
consuming, however it ensured that there were no misconceptions on what would be perceived
legitimate traffic.

Method
All logs were processed using standard UNIX commands and ad-hoc UNIX and Perl scripts.

Key fields were identified within the logs and files contain subsets of data, based on these fields and
other identifying information, were created.

Summaries were then derived from the various subsets of data, and statistics were generated.

Finally, the information generated was correlated to look for various patterns, and Internet sites were
referenced to help identify all anomalies.

The following information is a by product of the above procedures, and is the basis for the
recommendations made.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The Logs

Below is a summary of logs provided. The logs were named in such a fashion that you could
distinguish what type of data they held (A for Alert, S for Scan, and OOS for Out of Spec), however
the numbering used didn't aid in identifying the period of the log. Also there were some duplicate logs
as indicated by the numbers in the table below. Finally, it is quite evident that there are some serious
flaws in the collection of logs as indicated by the vast number of missing logs.

Date Alerts Scans OOS Date Alerts Scans OOS Date Alerts Scans OOS
 20001201 1 20010101 1 2
 20001202 1 20010102 1 1
 20001203 1 20010103 1 1
 20001204 1 20010104 1 1
 20001205 1 1 20010105 1 1
 20001206 1 1 20010106 1
 20001207 1 1 20010107 1
 20001208 1 1 20010108 1 1 1
 20001209 1 1 1 20010109 1 1 1
 20001210 1 1 1 20010110 1 1
 20001211 20010111 1 1 1
 20001212 1 1 1 20010112 1 1 1
 20001213 1 1 1 20010113 1 1 1
 20001214 20010114 1
 20001215 1 1 20010115 1 1 1
 20001216 1 1 20010116 1 1
 20001217 1 1 20010117 1
 20001218 20010118 1 1
 20001219 1
 20001220 1 1 1
 20001221 1 3
 20001222 1
 20001223 1
20001124 1 20001224 1 1
20001125 20001225 1
20001126 1 20001226 1
20001127 20001227 1
20001128 1 1 20001228 1 1 1
20001129 1 20001229 1 1
20001130 20001230 1 1
 20001231 1 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Alerts

Below is a summary of the Snort Alerts provided. I will provide a brief explanation of each alert, and
highlight any concerns relating to the alerts themselves. One interesting point - the bracketed field in
the totals section shows how many of that column's total was the MY.NET address. This is disturbing
as it shows a number of alerts were triggered by hosts within MY.NET, going to both remote and local
hosts.

Snort Signatures # Alerts # Source IPs # Dest IPs
Watchlist 000220 IL-ISDNNET-990517 105918 46 100
SYN-FIN scan 51192 37 27067
DNS udp DoS attack described on unisog 16146 8 6
Tiny Fragments - Possible Hostile Activity 5340 27 13
connect to 515 from outside 4238 10 2877
Watchlist 000222 NET-NCFC 2401 31 19
WinGate 1080 Attempt 2239 474 572
Attempted Sun RPC high port access 2053 16 23
Null scan 826 527 173
Queso fingerprint 710 52 72
SNMP public access 591 20 7
NMAP TCP ping 558 47 156
Russia Dynamo - SANS Flash 28-jul-00 546 2 2
SMB Name Wildcard 515 93 171
SUNRPC highport access 204 25 19
connect to 515 from inside 159 10 98
Broadcast Ping to subnet 70 154 24 1
TCP SMTP Source Port traffic 100 5 88
Back Orifice 77 10 71
External RPC call 59 15 25
Probable NMAP fingerprint attempt 8 5 6
site exec - Possible wu-ftpd exploit - GIAC000623 2 2 2
STATDX UDP attack 1 1 1
SITE EXEC - Possible wu-ftpd exploit - GIAC000623 1 1 1
Happy 99 Virus 1 1 1
TOTALS (MY.NET only TOTAL) 194039 (892) 1467 (31) 27727 (27715)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Alerts in Detail

I have broken the alerts into 3 groups:

1. Critical - those which show signs of a system acting in manner that would suggest it has been
compromised, or use of a system in a malicious manner (eg DDoS, SPAM).

2. Dangerous - those alerts which show an attempt to compromise a system
3. Warning - those alerts that are primarily related to information gathering, which is often a

precursor to an attack

1). Critical

Connections to 515
This port is typically for network printing. There are a number of know exploits for this services on
various platforms (http://www.whitehats.com/info/IDS456, http://www.whitehats.com/info/IDS457
) and some DoS.
The hosts 209.217.166.69 and 141.211.176.99 trawled through parts of the MY.NET network, while
the host 216.119.15.88 seemed to target:
 MY.NET.214.166 with 207 alerts
 MY.NET.130.86 with 258 alerts
 MY.NET.99.104 with 403 alerts
 MY.NET.100.209 with 405 alerts
Also, the hosts 62.46.70.175 and 192.118.36.9 showed definite packet crafting as they sent packets
with source ports less than 1023.

More suspicious was the traffic generated from MY.NET. The host MY.NET.70.38 is of particular
concern as it scanned a number of hosts in the MY.NET.0 network and the external host
212.187.65.135. Seven other MY.NET hosts sent the odd LPD packet to remote sites.

Tiny Fragments - Possible Hostile Activity
Tiny fragments are typically used for stealthy reconnaissance (as all the fragments have to collected
and put together to get a full picture of what is going on), and/or as a DoS (you can craft fragmented
packets so that anything trying to rebuild them needs to allocate a large amounts of memory), as they
do not typically occur naturally in the wild. Unfortunately, this only alerts us to the possibility of a
scan or DoS. If the raw packets were available, a more through analysis could be done.
Two suspiciously looking IPs:
 4.4.4.4
 8.8.8.8
launched a total of 168 tiny fragments at MY.NET.60.11 around the same time. These IPs look crafted,
so their purpose was probably as a DoS against MY.NET.60.11.
Finally, on 20001129, MY.NET.219.122 was detected as sending a number of tiny fragments at
208.162.62.208. This is particularly disturbing as it indicates that this host could be compromised.

External RPC call
Remote Procedure Calls are one of the most effect ways of compromising a system, by allowing the
remote execution code. A number of hosts in the MY.NET network appeared to have been probe for

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the services, however the host MY.NET.6.15 drew repeated attention from a number of external hosts
and should be suspected of being compromised.

STATDX UDP attack
This alert informs us someone tried to use the STATD exploit to compromise a system
http://www.whitehats.com/info/IDS442. This alert does not say if the attempt was successful, but the
host launching the attack 206.210.80.6, at MY.NET.6.15, ran a number of tests against rpcbind prior to
trying STATD exploit. It would be worth checking this thoroughly to determine if it has been
comprised.

SUNRPC highport access and attempted access
A number of alerts concerning port 32771 were detected. Some of these are false positives as 32771 is
a legitimate ephemeral port, some alerts appeared to be legitimate external RPC communications (if
there is such a thing), however multiple hosts in the 205.188.153/24 network attacked a number of
MY.NET hosts. In all cases the source port remained 4000, suggesting packet craft. I would treat all
the below hosts as potentially compromised:
 MY.NET.213.158 554 alerts detected
 MY.NET.222.218 434 alerts detected
 MY.NET.97.213 224 alerts detected
 MY.NET.223.106 221 alerts detected
 MY.NET.224.138 214 alerts detected
 MY.NET.105.115 90 alerts detected
 MY.NET.97.208 78 alerts detected
 MY.NET.98.238 57 alerts detected
 MY.NET.97.96 43 alerts detected
 MY.NET.226.242 14 alerts detected
 MY.NET.97.245 12 alerts detected
 MY.NET.224.62 11 alerts detected
 MY.NET.98.192 10 alerts detected
 MY.NET.97.45 10 alerts detected
 MY.NET.220.118 8 alerts detected
 MY.NET.98.226 7 alerts detected
 MY.NET.97.74 6 alerts detected
 MY.NET.97.163 3 alerts detected
 MY.NET.225.234 3 alerts detected

DNS udp DoS attack described on unisog
This is a DDoS targeting the IP address B (see http://www.sans.org/y2k/011101.htm). What I assume
are your three DNS servers
 MY.NET.1.3
 MY.NET.1.4
 MY.NET.1.5
were used as the repeaters for the DDoS, which generated around 16132 packets over a 90 minute
period, starting at 18:30-EST 20010106.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Watchlist 000220 IL-ISDNNET-990517
Their were vast amounts off alerts from the Israel network 212.179/16 and MY.NET. A large portion
of this traffic look to be recreational (eg Napster and Online Gaming), however we can not be 100%
sure of covert communications over known services (eg 6688 and 6699 for Napster) is not happening.
The host 212.179.58.12 seemed to have an active telnet session to MY.NET.60.11 for over 30 minutes,
which requires further investigation.

Watchlist 000222 NET-NCFC
This alert references all traffic coming from the 159.226/16 network in China to the MY.NET network.
Because it doesn't look at the traffic in the opposite direction, it can be misleading. The activity
recorded falls into three groups:
 a). a number of sites in this network have been scan for SMTP relays in MY.NET, and possibly
relaying mail through any gateways found. The following sites account for almost half of the alerts,
and should be looked at to ensure they are not being used as mail relays:
 MY.NET.100.230 737 alerts to port 25 (SMTP)
 MY.NET.253.41 264 alerts to port 25 (SMTP)
 MY.NET.253.42 103 alerts to port 25 (SMTP)
 MY.NET.253.43 100 alerts to port 25 (SMTP)
 b). the host 159.226.121.37 appeared to be using various services from MY.NET servers
(IMAP2, SMTP and SSL). Unless you have a valid user work in this network, you should definitely
examine this. The connection were:
 MY.NET.6.7 505 alerts to port 143 (IMAP2)
 MY.NET.5.29 275 alerts to port 443 (SSL)
 MY.NET.253.53 57 alerts to port 25 (SMTP)
 MY.NET.253.51 39 alerts to port 25 (SMTP)
 MY.NET.253.52 18 alerts to port 25 (SMTP)
 c). the host 159.226.47.14 makes periodic ftp connections to MY.NET.145.18, but doesn't seem
to do anything (ie no data connections).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2). Dangerous

Site Exec - Possible wu-ftpd exploit
This alert is in response to someone trying to execute a command on the remote ftp server
http://www.whitehats.com/info/IDS317. This has the potential to compromise the destination and gain
root access. The three hosts that this was detected for were:
 MY.NET.156.127:21
 MY.NET.130.98:21
 MY.NET.97.162:21
These hosts need to be reviewed to determine if they are running an exploitable version of wu-ftpd and
assessed on whether they truly need to provide ftp services to the internet community.

Happy 99 Virus
An e-mail was delivered to MY.NET.6.47 on 20001222 possibly infected with the this virus
http://www.cert.org/incident_notes/IN-99-02.html. Every time the infected machine sends and e-mail,
a second e-mail is sent with the virus. As no alerts from MY.NET hosts were detected, then hopefully
your virus scanning software removed the virus. It is worth checking virus scanning logs to make sure
this is the case, and if not track it down through your mail logs.

NMAP TCP Ping
This alert typically is associated with reconnaissance http://www.whitehats.com/info/IDS28. Some
UNIX worms have been incorporating such scans as part of their own initial reconnaissance before
launching an attack against a site. The Lion worm does this http://www.cert.org/incident_notes/IN-
2001-03.html, often triggering IDSs with this alert. Any such alerts with a source port of either 80 or
53 and a destination port of 53 for DNS servers and 25 for SMTP gateways should be investigated
further. Unfortunately, raw TCP logs aren't available and a list of servers was not supplied, so we can
only speculate based on traffic.
The following servers were pinged on the DNS port 53:
 MY.NET.1.3
 MY.NET.1.4
 MY.NET.1.5
 MY.NET.1.8
 MY.NET.1.9
 MY.NET.1.10
The following servers were pinged on the SMTP port 25:
 MY.NET.253.42
 MY.NET.6.47
 MY.NET.253.41
 MY.NET.253.43
 MY.NET.6.35
 MY.NET.6.34
 MY.NET.100.230
 MY.NET.110.39

Broadcast Ping to subnet 70
Pings to the broadcast of any network will normally be replied to by most equipment on the network,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

with the exception of Microsoft Windows machines. There are two goals of such traffic:
1). to map what equipment you have in a network
2). to use in a DDoS/Smurf attack

and there is evidence of both, with the most serious being someone using this network to perform a
smurf DoS on the primary nameserver for endzone.ro (213.154.131.131) on 20001201.

Russia Dynamo - SANS Flash 28-jul-00
On the surface this looks like a host in Russia 194.87.6.38 establishing a Napster session with your host
MY.NET.205.138 on 20001208 for about 30 minutes. You have created a special rule for this network,
so I would recommend further investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3). Warnings

SYN-FIN scan
This type of crafted packet scan is designed to detect open ports and is often used to either trawl
through networks targeting a specific port or target a single host and find all TCP services running on
it. It was considered a stealth type scan with the possibility of penetrating firewalls, however IDSs and
stateful firewalls detect this activity. This sort of activity is typically used for reconnaissance, prior to
targeting specific services on those hosts that respond. The majority of these alerts concerned three
hosts:
 211.34.40.1 with 17604 alerts
 195.56.182.206 with 9878 alerts
 194.234.48.26 with 8565 alerts
scanning large sections of the MY.NET network on ports
 53 (DNS) with 18862 alerts
 21 (FTP) with 21604 alerts
 109 (POP-2) with 9099 alerts
A slower scan (over a month period) of host MY.NET.253.112 from multiple sites was noticed. The
18 detects always had a source port of 32808 and a dest port of 259!

WinGate 1080 Attempt
The Wingate service is used to share internet connections and is therefore highly sought after as it
allows people to relay through them, thus hiding their true location
http://www.whitehats.com/info/IDS175. These alerts appeared to be scans of various systems.

Null scan
These are packets with no flags set and are often used for stealth scanning. These are crafted packets,
and a number of the alerts show strong packet crafting (eg source and destination ports of 0).

Queso fingerprint
This is typically used to fingerprint a remote OS http://www.whitehats.com/info/IDS29 by setting the
TCP flags "12S". Linux's "Quality of Service" networking feature legitimately sets these flags and
subsequently is a cause of many false positives.

SNMP public access
This alerts us to more information gathering attempts, and suggests we should check ALL MY.NET
equipment providing public community snmp information to ensure that it is not writeable.

SMB Name Wildcard
This is typically used for reconnaissance as this service provides name service information, however
there are some known exploits http://www.cert.org/vul_notes/VN-2000-03.html. It is hard from the
queries alone to determine malicious activity, however three MY.NET hosts:
 MY.NET.202.30
 MY.NET.111.156
 MY.NET.101.160

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

queried other MY.NET hosts. This could just have been a nosey user on these machines at the time,
and not the machine doing anything malicious, however it would probably be worth speaking to
whomever was logged on the machine at the time.

Back Orifice
A number of hosts scanned sections of the MY.NET network for the Back Orifice backdoor
http://www.whitehats.com/info/IDS188. This is a particularly nasty trojan
http://www.cert.org/vul_notes/VN-98.07.backorifice.html. No sustained activity was reported so we
can take it that the trojan was not found. It would be nice to go through the raw TCP logs to make sure
no server did respond.

TCP SMTP Source Port traffic
This appears to be more scans designed to hopefully avoid detection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Scans and Out of Spec Summary

Scans themselves are typically used as an information gathering exercise, and are more irritating than
harmful, with the following exceptions:

1. when used as a DoS against us
2. when used against us to act as a repeater as part of a DDoS
3. when they are originating from something you control (ie possibly compromised host)

It is the third point that is of most concern to us.

The Top 5 Scans of MY.NET hosts for any one day were:
Source Destination Time Duration #Alerts Scan Type
24.4.196.167 MY.NET.223.86 08:14 2000/12/05 ~ 25 mins 29528 SYN portscan
24.180.134.156 MY.NET.201.78 05:39 2000/12/06 ~ 45mins 24415 SYN and UDP portscans
24.26.40.11 MY.NET.223.86 10:08 2000/12/05 ~ 20 mins 18744 SYN portscan
66.20.207.21 MY.NET.98.182 11:34 2000/12/28 ~ 30 mins 9262 SYN portscan
216.66.200.242 MY.NET.203.94 21:05 2000/12/30 ~ 45mins 7134 SYN and UDP portscans

The Top 5 Scans from MY.NET hosts for any one day were:
Source Destination Time Duration #Alerts Scan Type
MY.NET.1.[3-5] 203.164.58.41 02:44 2000/12/24 ~ 5mins 6459 clusters of DNS query replies (UDP)
MY.NET.60.16 216.15.60.112 13:23 2000/12/28 ~ 5mins 5348 UDP portscan with fixed source port of

1298
MY.NET.202.94 207.46.204.86 04:21 2001/01/01 ~13hrs 4297 online gaming over UDP port 9000
MY.NET.217.150 216.3.226.131 00:00 2000/01/15 ~6hrs 3842 slow repetitive scan of ports 1788/1799
MY.NET.1.[3-5] 203.18.238.26 05:36 2000/12/24 ~ 20mins 6459 clusters of DNS query replies (UDP)

Of more importance though, are those MY.NET hosts that generated suspicious traffic, hinting at that
they maybe compromised. The next 3 tables highlights such activity.

Miscellaneous Scans from MY.NET network

Source Destination Time Duration # Alerts Scan Type
MY.NET.60.16 216.15.60.112 13:23 2000/12/28 4secs 5348 UDP portscan with fixed source port

(1298)
MY.NET.70.163 24.3.45.174 15:18 2001/01/03 ~ 40mins 1581 SYN and UDP portscan
MY.NET.201.210 TCP:59 05:44 2001/01/13 ~15mins 2053 multihost SYN scan of port 59
MY.NET.98.238 172.147.[5-45] 11:43 2001/01/15 ~15mins 7148 multihost SYN scan for SubSeven

trojan (27374)
MY.NET.70.38 MY.NET.0/24 14:27 2001/01/18 ~ 9hrs 396 NMAP TCP ping and portscan for

UDP:515

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Crafted Packet Scans

The following table is a list of MY.NET hosts that are suspected of being compromised as they
generated packets that appeared to have crafted flags (eg VECNA 21*F*P** RESERVEDBITS). I
have listed only those alerts greater than 9 for any one host on any one day. A total of 57 MY.NET
hosts showed packet crafting, though some of these were false positives as they were responding to
crafted packets that were sent to them.

Source Date # Alerts
MY.NET.217.158 12 Jan 2001 3124
MY.NET.217.158 13 Jan 2001 2702
MY.NET.217.150 11 Jan 2001 1918
MY.NET.217.150 15 Jan 2001 1518
MY.NET.219.126 8 Jan 2001 1185
MY.NET.217.182 20 Dec 2001 882
MY.NET.217.158 11 Jan 2001 645
MY.NET.217.126 9 Jan 2001 478
MY.NET.219.126 9 Jan 2001 367
MY.NET.217.182 16 Dec 2001 216
MY.NET.217.182 17 Dec 2001 125
MY.NET.217.182 21 Dec 2001 82
MY.NET.98.152 15 Jan 2001 37
MY.NET.186.16 15 Jan 2001 35
MY.NET.98.156 29 Dec 2001 23
MY.NET.186.16 11 Jan 2001 16
MY.NET.186.17 8 Jan 2001 14
MY.NET.201.94 1 Jan 2001 13
MY.NET.186.16 9 Jan 2001 12
MY.NET.186.17 11 Jan 2001 11
MY.NET.186.16 8 Jan 2001 10
MY.NET.98.185 12 Jan 2001 10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Scans with destination ports of 0 and 2000

The following table is a list of MY.NET hosts that are suspected of being compromised as they
generated packets that appeared to have crafted ports, eg
 Dec 27 03:14:54 MY.NET.98.177:12130 -> 172.152.114.120:2000 SYN **S*****
 Dec 27 03:14:54 MY.NET.98.177:12520 -> 155.239.78.17:2000 SYN **S*****
 Dec 27 03:14:54 MY.NET.98.177:0 -> 216.175.99.165:0 UDP
 Dec 27 03:14:55 MY.NET.98.177:0 -> 216.175.99.165:0 UDP
I have listed only those alerts greater than 9 for any one host on any one day. A total of 28 MY.NET
hosts showed packet crafting. I do not know of any legitimate software that behaves like this, so we
must assume this is hostile.

Source Date # Alerts
MY.NET.98.177 27 Dec 2001 9416
MY.NET.97.208 29 Dec 2001 4606
MY.NET.97.165 27 Dec 2001 3930
MY.NET.98.140 31 Dec 2001 3526
MY.NET.97.176 31 Dec 2001 3161
MY.NET.98.106 28 Dec 2001 1883
MY.NET.97.208 30 Dec 2001 1762
MY.NET.97.41 15 Jan 2001 1288
MY.NET.98.168 31 Dec 2001 1264
MY.NET.97.203 30 Dec 2001 763
MY.NET.98.161 1 Jan 2001 751
MY.NET.98.106 27 Dec 2001 602
MY.NET.97.206 21 Dec 2001 499
MY.NET.98.198 16 Dec 2001 482
MY.NET.98.198 17 Dec 2001 200
MY.NET.98.130 20 Dec 2001 194
MY.NET.97.170 20 Dec 2001 80
MY.NET.71.38 8 Dec 2001 62
MY.NET.98.156 20 Dec 2001 15

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Recommendations

The shear volume of data reported highlights a need to look closer at what people are doing within
GIAC University (ie non=work related activity), and to GIAC University. Once the "non-work related"
traffic of online gaming, chat and music streaming is removed from the logs (assuming that no covert
channels were operating over these services), we begin to get a picture that all is not well, and the finer
we take our analysis, more GIAC University's hosts appear to be generating suspicious traffic.

I would strongly suggest that GIAC University focus on the below key recommendations:

� Logs - these are critical if you are truly serious about detecting any breaches. The first table
showed a great number of missing logs, for which we are essentially blind to the goings on on
these days. A more robust log management procedure is required, with a datestamp in the
name of the logs to make them easier to be identified and to avoid log duplication/overwriting.

� Network Flight Recorder - if the funds and disk space are available, it is worth capturing at
least the first 68 bytes of every packet that enters and leaves your network, so you can replay
any traffic that your IDSs alerted you to. This will help clarify if something is a false positive,
information gathering exercise or something more malicious.

� Acceptable Use Policy - a large portion of the logs were the result of what is often considered
"non-work related" traffic (ie chat, online gaming and napster). This activity needs
addressing, and if their is a business case then make the appropriate changes to your IDS rules
to properly filter the allow services.

� Network Segregation - it is worth segregating your network into functional groups (eg
infrastructure segment, desktop segment, public segments ...etc...), and assess what the
business requirements are for each group to be accessible from the internet. The result of this
analysis should be the basis for put a number of networks being some sort of packet filtering
gateway(s).

� Border Router filters - stronger filters on your border routers is recommended, especially if a
large portion of your equipment to remain essentially available to the internet. The filtering of
exploitable services that you do not want external people to have access to (eg RPCs, LPD and
WinGate), directed broadcasts and basic anti-spoofing rules will reduce your exposure to be
exploited/DoS (or used to exploit/DoS other sites) and reduce the number of alerts detected.

� Compromised Hosts - a number of hosts showed suspicious activity and should be checked
to ensure they are not compromised. If they are found not to be compromised, then I would
investigate who was using the system when it generated any suspicious activity.

� Vulnerability Scanning - all hosts that have been available to the internet should have a
vulnerability scan (such as NMAP), run against them to determine what services are running
on the system. Should become a regular exercise on all externally accessible hosts.

� Training - I would strongly recommend that GIAC University looks at send key staff on
various Internet Security course. SANS offers great courses in this field http://www.sans.org.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Analysis Tools

The above information was derived through the use of UNIX scripts, perl scripts and adhoc command
line tools (eg grep, sed, awk, sort, uniq, wc, head, tail, ...etc...).

Example: Scripts involved in deriving the list of MY.NET hosts that have been sending packets with
crafted flags.

We start by running my summary.sh script. This script calls my perl script summary.pl and executes it
against each scan log. It assumes the logs are named in the format
 YYYYMMDD
and are located in a directory of a similar name.

#!/bin/sh
for i in `ls | grep 200`
do
 cd $i
 mkdir scansrc
 mkdir scansrcport
 mkdir scandest
 mkdir scandestport
 mkdir scantype
 ../summary.pl $i
 cd ..
done

The summary.pl script takes a scanlog and creates files based on:
 source
 source port
 destination
 destination port
 flags
in their own subdirectory. Eg: the line
Dec 16 09:59:43 MY.NET.209.162:2110 -> 24.31.9.25:2340 INVALIDACK 2***RPAU RESERVEDBITS
would be put in the files
 20001216/scansrc/MY.NET.209.162
 20001216/scansrcport/2110
 20001216/scandest/24.31.9.25
 20001216/scandestport/2340
 20001216/scanscan/INVALIDACK 2***RPAU RESERVEDBITS
This is not pretty, but if you have the disk space available, it makes analysis a lot easier and quicker.

#!/bin/perl
while (<>) {
 chop;
 ($month,$day,$time,$src,$x,$dest) = split;
 ($x,$scantype) = split "-> $dest ";
 ($srchost,$srcport) = split(':',$src);
 ($desthost,$destport) = split(':',$dest);
 open SCANSRC, ">> scansrc/$srchost";
 open SCANSRCPORT, ">> scansrcport/$srcport";

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 open SCANDEST, ">> scandest/$desthost";
 open SCANDESTPORT, ">> scandestport/$destport";
 open SCANTYPE, ">> scantype/$scantype";
 printf SCANSRC "%s\n",$_;
 printf SCANSRCPORT "%s\n",$_;
 printf SCANDEST "%s\n",$_;
 printf SCANDESTPORT "%s\n",$_;
 printf SCANTYPE "%s\n",$_;
 close SCANTYPE;
 close SCANDESTPORT;
 close SCANDEST;
 close SCANSRCPORT;
 close SCANSRC;
}

Finally we create a summary report
 find . -type f -exec wc -l {} \; > summary.txt

Now we can start to look for alerts about crafted flags from the MY.NET network.

We first dynamicly create the script craft.sh from our summary file
 grep scantype summary.txt | grep -v UDP | grep -v "SYN **S*****" | grep -v "FIN ***F****" | sed
's#^.*\./#grep \"MY\.NET\.*\-\>\" \"#' | sed 's/$/\"/' >> craft.sh

We then execute the script and grab the date and source address, and generate alerts statistics
 ./craft.sh | | awk '{print $1,$2,$4}' | cut -d: -f 1 | sort | uniq -c | sort -r > craft.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References

Security information
http://www.sans.org/
http://www.whitehats.com/
http://www.cert.org/

Port information
http://www.sans.org/y2k/gaming.htm
http://www.tech-nic.net/html/
http://www.snort.org/

General searching
http://www.google.com/
http://groups.google.com/

